version 1.275, 2017/06/30 13:39:33
|
version 1.347, 2022/09/18 14:36:44
|
Line 1
|
Line 1
|
/* $Id$ |
/* $Id$ |
$State$ |
$State$ |
$Log$ |
$Log$ |
|
Revision 1.347 2022/09/18 14:36:44 brouard |
|
Summary: version 0.99r42 |
|
|
|
Revision 1.346 2022/09/16 13:52:36 brouard |
|
* src/imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you Feinuo |
|
|
|
Revision 1.345 2022/09/16 13:40:11 brouard |
|
Summary: Version 0.99r41 |
|
|
|
* imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you Feinuo |
|
|
|
Revision 1.344 2022/09/14 19:33:30 brouard |
|
Summary: version 0.99r40 |
|
|
|
* imach.c (Module): Fixing names of variables in T_ (thanks to Feinuo) |
|
|
|
Revision 1.343 2022/09/14 14:22:16 brouard |
|
Summary: version 0.99r39 |
|
|
|
* imach.c (Module): Version 0.99r39 with colored dummy covariates |
|
(fixed or time varying), using new last columns of |
|
ILK_parameter.txt file. |
|
|
|
Revision 1.342 2022/09/11 19:54:09 brouard |
|
Summary: 0.99r38 |
|
|
|
* imach.c (Module): Adding timevarying products of any kinds, |
|
should work before shifting cotvar from ncovcol+nqv columns in |
|
order to have a correspondance between the column of cotvar and |
|
the id of column. |
|
(Module): Some cleaning and adding covariates in ILK.txt |
|
|
|
Revision 1.341 2022/09/11 07:58:42 brouard |
|
Summary: Version 0.99r38 |
|
|
|
After adding change in cotvar. |
|
|
|
Revision 1.340 2022/09/11 07:53:11 brouard |
|
Summary: Version imach 0.99r37 |
|
|
|
* imach.c (Module): Adding timevarying products of any kinds, |
|
should work before shifting cotvar from ncovcol+nqv columns in |
|
order to have a correspondance between the column of cotvar and |
|
the id of column. |
|
|
|
Revision 1.339 2022/09/09 17:55:22 brouard |
|
Summary: version 0.99r37 |
|
|
|
* imach.c (Module): Many improvements for fixing products of fixed |
|
timevarying as well as fixed * fixed, and test with quantitative |
|
covariate. |
|
|
|
Revision 1.338 2022/09/04 17:40:33 brouard |
|
Summary: 0.99r36 |
|
|
|
* imach.c (Module): Now the easy runs i.e. without result or |
|
model=1+age only did not work. The defautl combination should be 1 |
|
and not 0 because everything hasn't been tranformed yet. |
|
|
|
Revision 1.337 2022/09/02 14:26:02 brouard |
|
Summary: version 0.99r35 |
|
|
|
* src/imach.c: Version 0.99r35 because it outputs same results with |
|
1+age+V1+V1*age for females and 1+age for females only |
|
(education=1 noweight) |
|
|
|
Revision 1.336 2022/08/31 09:52:36 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.335 2022/08/31 08:23:16 brouard |
|
Summary: improvements... |
|
|
|
Revision 1.334 2022/08/25 09:08:41 brouard |
|
Summary: In progress for quantitative |
|
|
|
Revision 1.333 2022/08/21 09:10:30 brouard |
|
* src/imach.c (Module): Version 0.99r33 A lot of changes in |
|
reassigning covariates: my first idea was that people will always |
|
use the first covariate V1 into the model but in fact they are |
|
producing data with many covariates and can use an equation model |
|
with some of the covariate; it means that in a model V2+V3 instead |
|
of codtabm(k,Tvaraff[j]) which calculates for combination k, for |
|
three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact |
|
the equation model is restricted to two variables only (V2, V3) |
|
and the combination for V2 should be codtabm(k,1) instead of |
|
(codtabm(k,2), and the code should be |
|
codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been |
|
made. All of these should be simplified once a day like we did in |
|
hpxij() for example by using precov[nres] which is computed in |
|
decoderesult for each nres of each resultline. Loop should be done |
|
on the equation model globally by distinguishing only product with |
|
age (which are changing with age) and no more on type of |
|
covariates, single dummies, single covariates. |
|
|
|
Revision 1.332 2022/08/21 09:06:25 brouard |
|
Summary: Version 0.99r33 |
|
|
|
* src/imach.c (Module): Version 0.99r33 A lot of changes in |
|
reassigning covariates: my first idea was that people will always |
|
use the first covariate V1 into the model but in fact they are |
|
producing data with many covariates and can use an equation model |
|
with some of the covariate; it means that in a model V2+V3 instead |
|
of codtabm(k,Tvaraff[j]) which calculates for combination k, for |
|
three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact |
|
the equation model is restricted to two variables only (V2, V3) |
|
and the combination for V2 should be codtabm(k,1) instead of |
|
(codtabm(k,2), and the code should be |
|
codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been |
|
made. All of these should be simplified once a day like we did in |
|
hpxij() for example by using precov[nres] which is computed in |
|
decoderesult for each nres of each resultline. Loop should be done |
|
on the equation model globally by distinguishing only product with |
|
age (which are changing with age) and no more on type of |
|
covariates, single dummies, single covariates. |
|
|
|
Revision 1.331 2022/08/07 05:40:09 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.330 2022/08/06 07:18:25 brouard |
|
Summary: last 0.99r31 |
|
|
|
* imach.c (Module): Version of imach using partly decoderesult to rebuild xpxij function |
|
|
|
Revision 1.329 2022/08/03 17:29:54 brouard |
|
* imach.c (Module): Many errors in graphs fixed with Vn*age covariates. |
|
|
|
Revision 1.328 2022/07/27 17:40:48 brouard |
|
Summary: valgrind bug fixed by initializing to zero DummyV as well as Tage |
|
|
|
Revision 1.327 2022/07/27 14:47:35 brouard |
|
Summary: Still a problem for one-step probabilities in case of quantitative variables |
|
|
|
Revision 1.326 2022/07/26 17:33:55 brouard |
|
Summary: some test with nres=1 |
|
|
|
Revision 1.325 2022/07/25 14:27:23 brouard |
|
Summary: r30 |
|
|
|
* imach.c (Module): Error cptcovn instead of nsd in bmij (was |
|
coredumped, revealed by Feiuno, thank you. |
|
|
|
Revision 1.324 2022/07/23 17:44:26 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.323 2022/07/22 12:30:08 brouard |
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.322 2022/07/22 12:27:48 brouard |
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.321 2022/07/22 12:04:24 brouard |
|
Summary: r28 |
|
|
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.320 2022/06/02 05:10:11 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.319 2022/06/02 04:45:11 brouard |
|
* imach.c (Module): Adding the Wald tests from the log to the main |
|
htm for better display of the maximum likelihood estimators. |
|
|
|
Revision 1.318 2022/05/24 08:10:59 brouard |
|
* imach.c (Module): Some attempts to find a bug of wrong estimates |
|
of confidencce intervals with product in the equation modelC |
|
|
|
Revision 1.317 2022/05/15 15:06:23 brouard |
|
* imach.c (Module): Some minor improvements |
|
|
|
Revision 1.316 2022/05/11 15:11:31 brouard |
|
Summary: r27 |
|
|
|
Revision 1.315 2022/05/11 15:06:32 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.314 2022/04/13 17:43:09 brouard |
|
* imach.c (Module): Adding link to text data files |
|
|
|
Revision 1.313 2022/04/11 15:57:42 brouard |
|
* imach.c (Module): Error in rewriting the 'r' file with yearsfproj or yearsbproj fixed |
|
|
|
Revision 1.312 2022/04/05 21:24:39 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.311 2022/04/05 21:03:51 brouard |
|
Summary: Fixed quantitative covariates |
|
|
|
Fixed covariates (dummy or quantitative) |
|
with missing values have never been allowed but are ERRORS and |
|
program quits. Standard deviations of fixed covariates were |
|
wrongly computed. Mean and standard deviations of time varying |
|
covariates are still not computed. |
|
|
|
Revision 1.310 2022/03/17 08:45:53 brouard |
|
Summary: 99r25 |
|
|
|
Improving detection of errors: result lines should be compatible with |
|
the model. |
|
|
|
Revision 1.309 2021/05/20 12:39:14 brouard |
|
Summary: Version 0.99r24 |
|
|
|
Revision 1.308 2021/03/31 13:11:57 brouard |
|
Summary: Version 0.99r23 |
|
|
|
|
|
* imach.c (Module): Still bugs in the result loop. Thank to Holly Benett |
|
|
|
Revision 1.307 2021/03/08 18:11:32 brouard |
|
Summary: 0.99r22 fixed bug on result: |
|
|
|
Revision 1.306 2021/02/20 15:44:02 brouard |
|
Summary: Version 0.99r21 |
|
|
|
* imach.c (Module): Fix bug on quitting after result lines! |
|
(Module): Version 0.99r21 |
|
|
|
Revision 1.305 2021/02/20 15:28:30 brouard |
|
* imach.c (Module): Fix bug on quitting after result lines! |
|
|
|
Revision 1.304 2021/02/12 11:34:20 brouard |
|
* imach.c (Module): The use of a Windows BOM (huge) file is now an error |
|
|
|
Revision 1.303 2021/02/11 19:50:15 brouard |
|
* (Module): imach.c Someone entered 'results:' instead of 'result:'. Now it is an error which is printed. |
|
|
|
Revision 1.302 2020/02/22 21:00:05 brouard |
|
* (Module): imach.c Update mle=-3 (for computing Life expectancy |
|
and life table from the data without any state) |
|
|
|
Revision 1.301 2019/06/04 13:51:20 brouard |
|
Summary: Error in 'r'parameter file backcast yearsbproj instead of yearsfproj |
|
|
|
Revision 1.300 2019/05/22 19:09:45 brouard |
|
Summary: version 0.99r19 of May 2019 |
|
|
|
Revision 1.299 2019/05/22 18:37:08 brouard |
|
Summary: Cleaned 0.99r19 |
|
|
|
Revision 1.298 2019/05/22 18:19:56 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.297 2019/05/22 17:56:10 brouard |
|
Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1 |
|
|
|
Revision 1.296 2019/05/20 13:03:18 brouard |
|
Summary: Projection syntax simplified |
|
|
|
|
|
We can now start projections, forward or backward, from the mean date |
|
of inteviews up to or down to a number of years of projection: |
|
prevforecast=1 yearsfproj=15.3 mobil_average=0 |
|
or |
|
prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0 |
|
or |
|
prevbackcast=1 yearsbproj=12.3 mobil_average=1 |
|
or |
|
prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1 |
|
|
|
Revision 1.295 2019/05/18 09:52:50 brouard |
|
Summary: doxygen tex bug |
|
|
|
Revision 1.294 2019/05/16 14:54:33 brouard |
|
Summary: There was some wrong lines added |
|
|
|
Revision 1.293 2019/05/09 15:17:34 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.292 2019/05/09 14:17:20 brouard |
|
Summary: Some updates |
|
|
|
Revision 1.291 2019/05/09 13:44:18 brouard |
|
Summary: Before ncovmax |
|
|
|
Revision 1.290 2019/05/09 13:39:37 brouard |
|
Summary: 0.99r18 unlimited number of individuals |
|
|
|
The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur. |
|
|
|
Revision 1.289 2018/12/13 09:16:26 brouard |
|
Summary: Bug for young ages (<-30) will be in r17 |
|
|
|
Revision 1.288 2018/05/02 20:58:27 brouard |
|
Summary: Some bugs fixed |
|
|
|
Revision 1.287 2018/05/01 17:57:25 brouard |
|
Summary: Bug fixed by providing frequencies only for non missing covariates |
|
|
|
Revision 1.286 2018/04/27 14:27:04 brouard |
|
Summary: some minor bugs |
|
|
|
Revision 1.285 2018/04/21 21:02:16 brouard |
|
Summary: Some bugs fixed, valgrind tested |
|
|
|
Revision 1.284 2018/04/20 05:22:13 brouard |
|
Summary: Computing mean and stdeviation of fixed quantitative variables |
|
|
|
Revision 1.283 2018/04/19 14:49:16 brouard |
|
Summary: Some minor bugs fixed |
|
|
|
Revision 1.282 2018/02/27 22:50:02 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.281 2018/02/27 19:25:23 brouard |
|
Summary: Adding second argument for quitting |
|
|
|
Revision 1.280 2018/02/21 07:58:13 brouard |
|
Summary: 0.99r15 |
|
|
|
New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c |
|
|
|
Revision 1.279 2017/07/20 13:35:01 brouard |
|
Summary: temporary working |
|
|
|
Revision 1.278 2017/07/19 14:09:02 brouard |
|
Summary: Bug for mobil_average=0 and prevforecast fixed(?) |
|
|
|
Revision 1.277 2017/07/17 08:53:49 brouard |
|
Summary: BOM files can be read now |
|
|
|
Revision 1.276 2017/06/30 15:48:31 brouard |
|
Summary: Graphs improvements |
|
|
Revision 1.275 2017/06/30 13:39:33 brouard |
Revision 1.275 2017/06/30 13:39:33 brouard |
Summary: Saito's color |
Summary: Saito's color |
|
|
Line 690
|
Line 1013
|
|
|
The same imach parameter file can be used but the option for mle should be -3. |
The same imach parameter file can be used but the option for mle should be -3. |
|
|
Agnès, who wrote this part of the code, tried to keep most of the |
Agnès, who wrote this part of the code, tried to keep most of the |
former routines in order to include the new code within the former code. |
former routines in order to include the new code within the former code. |
|
|
The output is very simple: only an estimate of the intercept and of |
The output is very simple: only an estimate of the intercept and of |
Line 869 Important routines
|
Line 1192 Important routines
|
- Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities) |
- Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities) |
and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually. |
and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually. |
- printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables |
- printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables |
o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if |
o There are 2**cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if |
race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless. |
race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless. |
|
|
|
|
|
|
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
Institut national d'études démographiques, Paris. |
Institut national d'études démographiques, Paris. |
This software have been partly granted by Euro-REVES, a concerted action |
This software have been partly granted by Euro-REVES, a concerted action |
from the European Union. |
from the European Union. |
It is copyrighted identically to a GNU software product, ie programme and |
It is copyrighted identically to a GNU software product, ie programme and |
Line 939 Important routines
|
Line 1262 Important routines
|
#define POWELLNOF3INFF1TEST /* Skip test */ |
#define POWELLNOF3INFF1TEST /* Skip test */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
|
/* #define FLATSUP *//* Suppresses directions where likelihood is flat */ |
|
|
#include <math.h> |
#include <math.h> |
#include <stdio.h> |
#include <stdio.h> |
Line 993 typedef struct {
|
Line 1317 typedef struct {
|
#define MAXLINE 2048 /* Was 256 and 1024. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
#define MAXLINE 2048 /* Was 256 and 1024. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
|
|
#define GNUPLOTPROGRAM "gnuplot" |
#define GNUPLOTPROGRAM "gnuplot" |
|
#define GNUPLOTVERSION 5.1 |
|
double gnuplotversion=GNUPLOTVERSION; |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
#define FILENAMELENGTH 132 |
#define FILENAMELENGTH 256 |
|
|
#define GLOCK_ERROR_NOPATH -1 /* empty path */ |
#define GLOCK_ERROR_NOPATH -1 /* empty path */ |
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
Line 1005 typedef struct {
|
Line 1331 typedef struct {
|
#define NINTERVMAX 8 |
#define NINTERVMAX 8 |
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
#define NCOVMAX 30 /**< Maximum number of covariates used in the model, including generated covariates V1*V2 or V1*age */ |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define MAXN 20000 |
/*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */ |
#define YEARM 12. /**< Number of months per year */ |
#define YEARM 12. /**< Number of months per year */ |
/* #define AGESUP 130 */ |
/* #define AGESUP 130 */ |
#define AGESUP 150 |
/* #define AGESUP 150 */ |
|
#define AGESUP 200 |
#define AGEINF 0 |
#define AGEINF 0 |
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEBASE 40 |
#define AGEBASE 40 |
Line 1032 typedef struct {
|
Line 1359 typedef struct {
|
/* $State$ */ |
/* $State$ */ |
#include "version.h" |
#include "version.h" |
char version[]=__IMACH_VERSION__; |
char version[]=__IMACH_VERSION__; |
char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018"; |
char copyright[]="September 2022,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022"; |
char fullversion[]="$Revision$ $Date$"; |
char fullversion[]="$Revision$ $Date$"; |
char strstart[80]; |
char strstart[80]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ |
int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ |
|
int debugILK=0; /* debugILK is set by a #d in a comment line */ |
int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */ |
int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */ |
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
/* Number of covariates model (1)=V2+V1+ V3*age+V2*V4 */ |
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
/* Model(2) V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */ |
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
int cptcovn=0; /**< cptcovn decodemodel: number of covariates k of the models excluding age*products =6 and age*age but including products */ |
int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */ |
int cptcovt=0; /**< cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ |
int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */ |
int cptcovs=0; /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ |
|
int cptcovsnq=0; /**< cptcovsnq number of SIMPLE covariates in the model but non quantitative V2+V1 =2 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
int cptcoveff=0; /* Total number of single dummy covariates (fixed or time varying) to vary for printing results (2**cptcoveff combinations of dummies)(computed in tricode as cptcov) */ |
int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */ |
int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */ |
int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */ |
int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */ |
|
int ncovvt=0; /* Total number of effective (wave) varying covariates (dummy or quantitative or products [without age]) in the model */ |
int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */ |
int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */ |
int nsd=0; /**< Total number of single dummy variables (output) */ |
int nsd=0; /**< Total number of single dummy variables (output) */ |
int nsq=0; /**< Total number of single quantitative variables (output) */ |
int nsq=0; /**< Total number of single quantitative variables (output) */ |
Line 1056 int nqfveff=0; /**< nqfveff Number of Qu
|
Line 1386 int nqfveff=0; /**< nqfveff Number of Qu
|
int ntveff=0; /**< ntveff number of effective time varying variables */ |
int ntveff=0; /**< ntveff number of effective time varying variables */ |
int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */ |
int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */ |
int cptcov=0; /* Working variable */ |
int cptcov=0; /* Working variable */ |
|
int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs+1 declared globally ;*/ |
|
int nobs=10; /* Number of observations in the data lastobs-firstobs */ |
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
int npar=NPARMAX; |
int npar=NPARMAX; /* Number of parameters (nlstate+ndeath-1)*nlstate*ncovmodel; */ |
int nlstate=2; /* Number of live states */ |
int nlstate=2; /* Number of live states */ |
int ndeath=1; /* Number of dead states */ |
int ndeath=1; /* Number of dead states */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ |
int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable*/ |
|
int ncovcolt=0; /* ncovcolt=ncovcol+nqv+ntv+nqtv; total of covariates in the data, not in the model equation*/ |
int popbased=0; |
int popbased=0; |
|
|
int *wav; /* Number of waves for this individuual 0 is possible */ |
int *wav; /* Number of waves for this individuual 0 is possible */ |
Line 1194 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
Line 1527 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **pmmij, ***probs; /* Global pointer */ |
double **pmmij, ***probs; /* Global pointer */ |
double ***mobaverage, ***mobaverages; /* New global variable */ |
double ***mobaverage, ***mobaverages; /* New global variable */ |
|
double **precov; /* New global variable to store for each resultline, values of model covariates given by the resultlines (in order to speed up) */ |
double *ageexmed,*agecens; |
double *ageexmed,*agecens; |
double dateintmean=0; |
double dateintmean=0; |
|
double anprojd, mprojd, jprojd; /* For eventual projections */ |
|
double anprojf, mprojf, jprojf; |
|
|
|
double anbackd, mbackd, jbackd; /* For eventual backprojections */ |
|
double anbackf, mbackf, jbackf; |
|
double jintmean,mintmean,aintmean; |
double *weight; |
double *weight; |
int **s; /* Status */ |
int **s; /* Status */ |
double *agedc; |
double *agedc; |
Line 1204 double **covar; /**< covar[j,i], value
|
Line 1543 double **covar; /**< covar[j,i], value
|
* covar=matrix(0,NCOVMAX,1,n); |
* covar=matrix(0,NCOVMAX,1,n); |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
double **coqvar; /* Fixed quantitative covariate nqv */ |
double **coqvar; /* Fixed quantitative covariate nqv */ |
double ***cotvar; /* Time varying covariate ntv */ |
double ***cotvar; /* Time varying covariate start at ncovcol + nqv + (1 to ntv) */ |
double ***cotqvar; /* Time varying quantitative covariate itqv */ |
double ***cotqvar; /* Time varying quantitative covariate itqv */ |
double idx; |
double idx; |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
/* Some documentation */ |
/*k 1 2 3 4 5 6 7 8 9 */ |
/* Design original data |
/*Tvar[k]= 5 4 3 6 5 2 7 1 1 */ |
* V1 V2 V3 V4 V5 V6 V7 V8 Weight ddb ddth d1st s1 V9 V10 V11 V12 s2 V9 V10 V11 V12 |
/* Tndvar[k] 1 2 3 4 5 */ |
* < ncovcol=6 > nqv=2 (V7 V8) dv dv dv qtv dv dv dvv qtv |
/*TDvar 4 3 6 7 1 */ /* For outputs only; combination of dummies fixed or varying */ |
* ntv=3 nqtv=1 |
/* Tns[k] 1 2 2 4 5 */ /* Number of single cova */ |
* cptcovn number of covariates (not including constant and age or age*age) = number of plus sign + 1 = 10+1=11 |
/* TvarsD[k] 1 2 3 */ /* Number of single dummy cova */ |
* For time varying covariate, quanti or dummies |
/* TvarsDind 2 3 9 */ /* position K of single dummy cova */ |
* cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti |
/* TvarsQ[k] 1 2 */ /* Number of single quantitative cova */ |
* cotvar[wav][ncovcol+nqv+ iv(1 to nqtv)][i]= [(1 to nqtv)][i]=(V12) quanti |
/* TvarsQind 1 6 */ /* position K of single quantitative cova */ |
* cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1 |
/* Tprod[i]=k 4 7 */ |
* cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1 |
/* Tage[i]=k 5 8 */ |
* covar[Vk,i], value of the Vkth fixed covariate dummy or quanti for individual i: |
/* */ |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 + V9 + V9*age + V10 |
|
* k= 1 2 3 4 5 6 7 8 9 10 11 |
|
*/ |
|
/* According to the model, more columns can be added to covar by the product of covariates */ |
|
/* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1 |
|
# States 1=Coresidence, 2 Living alone, 3 Institution |
|
# V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi |
|
*/ |
|
/* V5+V4+ V3+V4*V3 +V5*age+V2 +V1*V2+V1*age+V1 */ |
|
/* kmodel 1 2 3 4 5 6 7 8 9 */ |
|
/*Typevar[k]= 0 0 0 2 1 0 2 1 0 *//*0 for simple covariate (dummy, quantitative,*/ |
|
/* fixed or varying), 1 for age product, 2 for*/ |
|
/* product */ |
|
/*Dummy[k]= 1 0 0 1 3 1 1 2 0 *//*Dummy[k] 0=dummy (0 1), 1 quantitative */ |
|
/*(single or product without age), 2 dummy*/ |
|
/* with age product, 3 quant with age product*/ |
|
/*Tvar[k]= 5 4 3 6 5 2 7 1 1 */ |
|
/* nsd 1 2 3 */ /* Counting single dummies covar fixed or tv */ |
|
/*TnsdVar[Tvar] 1 2 3 */ |
|
/*Tvaraff[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ |
|
/*TvarsD[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ |
|
/*TvarsDind[nsd] 2 3 9 */ /* position K of single dummy cova */ |
|
/* nsq 1 2 */ /* Counting single quantit tv */ |
|
/* TvarsQ[k] 5 2 */ /* Number of single quantitative cova */ |
|
/* TvarsQind 1 6 */ /* position K of single quantitative cova */ |
|
/* Tprod[i]=k 1 2 */ /* Position in model of the ith prod without age */ |
|
/* cptcovage 1 2 */ /* Counting cov*age in the model equation */ |
|
/* Tage[cptcovage]=k 5 8 */ /* Position in the model of ith cov*age */ |
|
/* Tvard[1][1]@4={4,3,1,2} V4*V3 V1*V2 */ /* Position in model of the ith prod without age */ |
|
/* Tvardk[4][1]=4;Tvardk[4][2]=3;Tvardk[7][1]=1;Tvardk[7][2]=2 */ /* Variables of a prod at position in the model equation*/ |
|
/* TvarF TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 ID of fixed covariates or product V2, V1*V2, V1 */ |
|
/* TvarFind; TvarFind[1]=6, TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod) */ |
/* Type */ |
/* Type */ |
/* V 1 2 3 4 5 */ |
/* V 1 2 3 4 5 */ |
/* F F V V V */ |
/* F F V V V */ |
/* D Q D D Q */ |
/* D Q D D Q */ |
/* */ |
/* */ |
int *TvarsD; |
int *TvarsD; |
|
int *TnsdVar; |
int *TvarsDind; |
int *TvarsDind; |
int *TvarsQ; |
int *TvarsQ; |
int *TvarsQind; |
int *TvarsQind; |
|
|
#define MAXRESULTLINES 10 |
#define MAXRESULTLINESPONE 10+1 |
int nresult=0; |
int nresult=0; |
int parameterline=0; /* # of the parameter (type) line */ |
int parameterline=0; /* # of the parameter (type) line */ |
int TKresult[MAXRESULTLINES]; |
int TKresult[MAXRESULTLINESPONE]; /* TKresult[nres]=k for each resultline nres give the corresponding combination of dummies */ |
int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */ |
int resultmodel[MAXRESULTLINESPONE][NCOVMAX];/* resultmodel[k1]=k3: k1th position in the model corresponds to the k3 position in the resultline */ |
int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */ |
int modelresult[MAXRESULTLINESPONE][NCOVMAX];/* modelresult[k3]=k1: k1th position in the model corresponds to the k3 position in the resultline */ |
int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */ |
int Tresult[MAXRESULTLINESPONE][NCOVMAX];/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */ |
double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */ |
int Tinvresult[MAXRESULTLINESPONE][NCOVMAX];/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line */ |
double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */ |
double TinvDoQresult[MAXRESULTLINESPONE][NCOVMAX];/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */ |
int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */ |
int Tvresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */ |
|
double Tqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */ |
|
double Tqinvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */ |
|
int Tvqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */ |
|
|
|
/* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1 |
|
# States 1=Coresidence, 2 Living alone, 3 Institution |
|
# V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi |
|
*/ |
/* int *TDvar; /\**< TDvar[1]=4, TDvarF[2]=3, TDvar[3]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
/* int *TDvar; /\**< TDvar[1]=4, TDvarF[2]=3, TDvar[3]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
Line 1257 int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3
|
Line 1636 int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3
|
int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
int *TvarVV; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ |
|
int *TvarVVind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
|
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
/* TvarVV={3,1,3}, for V3 and then the product V1*V3 is decomposed into V1 and V3 */ |
|
/* TvarVVind={2,5,5}, for V3 and then the product V1*V3 is decomposed into V1 and V3 */ |
int *Tvarsel; /**< Selected covariates for output */ |
int *Tvarsel; /**< Selected covariates for output */ |
double *Tvalsel; /**< Selected modality value of covariate for output */ |
double *Tvalsel; /**< Selected modality value of covariate for output */ |
int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
Line 1273 int *TmodelInvQind; /** Tmodelqind[1]=1
|
Line 1658 int *TmodelInvQind; /** Tmodelqind[1]=1
|
int *Ndum; /** Freq of modality (tricode */ |
int *Ndum; /** Freq of modality (tricode */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
int **Tvard; |
int **Tvard; |
|
int **Tvardk; |
int *Tprod;/**< Gives the k position of the k1 product */ |
int *Tprod;/**< Gives the k position of the k1 product */ |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 */ |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 */ |
int *Tposprod; /**< Gives the k1 product from the k position */ |
int *Tposprod; /**< Gives the k1 product from the k position */ |
Line 1443 char *cutl(char *blocc, char *alocc, cha
|
Line 1829 char *cutl(char *blocc, char *alocc, cha
|
{ |
{ |
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
gives blocc="abcdef" and alocc="ghi2j". |
gives alocc="abcdef" and blocc="ghi2j". |
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
*/ |
*/ |
char *s, *t; |
char *s, *t; |
Line 1725 char *subdirf(char fileres[])
|
Line 2111 char *subdirf(char fileres[])
|
/*************** function subdirf2 ***********/ |
/*************** function subdirf2 ***********/ |
char *subdirf2(char fileres[], char *preop) |
char *subdirf2(char fileres[], char *preop) |
{ |
{ |
|
/* Example subdirf2(optionfilefiname,"FB_") with optionfilefiname="texte", result="texte/FB_texte" |
|
Errors in subdirf, 2, 3 while printing tmpout is |
|
rewritten within the same printf. Workaround: many printfs */ |
/* Caution optionfilefiname is hidden */ |
/* Caution optionfilefiname is hidden */ |
strcpy(tmpout,optionfilefiname); |
strcpy(tmpout,optionfilefiname); |
strcat(tmpout,"/"); |
strcat(tmpout,"/"); |
Line 2096 void linmin(double p[], double xi[], int
|
Line 2484 void linmin(double p[], double xi[], int
|
#endif |
#endif |
#ifdef LINMINORIGINAL |
#ifdef LINMINORIGINAL |
#else |
#else |
if(fb == fx){ /* Flat function in the direction */ |
if(fb == fx){ /* Flat function in the direction */ |
xmin=xx; |
xmin=xx; |
*flat=1; |
*flat=1; |
}else{ |
}else{ |
*flat=0; |
*flat=0; |
#endif |
#endif |
/*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */ |
/*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */ |
Line 2157 void linmin(double p[], double xi[], int
|
Line 2545 void linmin(double p[], double xi[], int
|
|
|
/*************** powell ************************/ |
/*************** powell ************************/ |
/* |
/* |
Minimization of a function func of n variables. Input consists of an initial starting point |
Minimization of a function func of n variables. Input consists in an initial starting point |
p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di- |
p[1..n] ; an initial matrix xi[1..n][1..n] whose columns contain the initial set of di- |
rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value |
rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value |
such that failure to decrease by more than this amount on one iteration signals doneness. On |
such that failure to decrease by more than this amount in one iteration signals doneness. On |
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
*/ |
*/ |
Line 2185 void powell(double p[], double **xi, int
|
Line 2573 void powell(double p[], double **xi, int
|
double fp,fptt; |
double fp,fptt; |
double *xits; |
double *xits; |
int niterf, itmp; |
int niterf, itmp; |
#ifdef LINMINORIGINAL |
|
#else |
|
|
|
flatdir=ivector(1,n); |
|
for (j=1;j<=n;j++) flatdir[j]=0; |
|
#endif |
|
|
|
pt=vector(1,n); |
pt=vector(1,n); |
ptt=vector(1,n); |
ptt=vector(1,n); |
Line 2198 void powell(double p[], double **xi, int
|
Line 2580 void powell(double p[], double **xi, int
|
xits=vector(1,n); |
xits=vector(1,n); |
*fret=(*func)(p); |
*fret=(*func)(p); |
for (j=1;j<=n;j++) pt[j]=p[j]; |
for (j=1;j<=n;j++) pt[j]=p[j]; |
rcurr_time = time(NULL); |
rcurr_time = time(NULL); |
|
fp=(*fret); /* Initialisation */ |
for (*iter=1;;++(*iter)) { |
for (*iter=1;;++(*iter)) { |
fp=(*fret); /* From former iteration or initial value */ |
|
ibig=0; |
ibig=0; |
del=0.0; |
del=0.0; |
rlast_time=rcurr_time; |
rlast_time=rcurr_time; |
/* (void) gettimeofday(&curr_time,&tzp); */ |
/* (void) gettimeofday(&curr_time,&tzp); */ |
rcurr_time = time(NULL); |
rcurr_time = time(NULL); |
curr_time = *localtime(&rcurr_time); |
curr_time = *localtime(&rcurr_time); |
printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); |
/* printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); */ |
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
/* fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); */ |
|
printf("\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); |
|
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
|
fp=(*fret); /* From former iteration or initial value */ |
for (i=1;i<=n;i++) { |
for (i=1;i<=n;i++) { |
fprintf(ficrespow," %.12lf", p[i]); |
fprintf(ficrespow," %.12lf", p[i]); |
} |
} |
Line 2314 void powell(double p[], double **xi, int
|
Line 2699 void powell(double p[], double **xi, int
|
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* New value of last point Pn is not computed, P(n-1) */ |
/* New value of last point Pn is not computed, P(n-1) */ |
for(j=1;j<=n;j++) { |
for(j=1;j<=n;j++) { |
if(flatdir[j] >0){ |
if(flatdir[j] >0){ |
printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
} |
} |
/* printf("\n"); */ |
/* printf("\n"); */ |
/* fprintf(ficlog,"\n"); */ |
/* fprintf(ficlog,"\n"); */ |
} |
} |
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */ |
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */ |
if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */ |
if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
Line 2359 void powell(double p[], double **xi, int
|
Line 2744 void powell(double p[], double **xi, int
|
} |
} |
#endif |
#endif |
|
|
#ifdef LINMINORIGINAL |
|
#else |
|
free_ivector(flatdir,1,n); |
|
#endif |
|
free_vector(xit,1,n); |
free_vector(xit,1,n); |
free_vector(xits,1,n); |
free_vector(xits,1,n); |
free_vector(ptt,1,n); |
free_vector(ptt,1,n); |
Line 2476 void powell(double p[], double **xi, int
|
Line 2857 void powell(double p[], double **xi, int
|
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
|
#ifdef FLATSUP |
|
free_vector(xit,1,n); |
|
free_vector(xits,1,n); |
|
free_vector(ptt,1,n); |
|
free_vector(pt,1,n); |
|
return; |
|
#endif |
} |
} |
#endif |
#endif |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
Line 2507 void powell(double p[], double **xi, int
|
Line 2895 void powell(double p[], double **xi, int
|
|
|
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres) |
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres) |
{ |
{ |
/* Computes the prevalence limit in each live state at age x and for covariate combination ij |
/**< Computes the prevalence limit in each live state at age x and for covariate combination ij . Nicely done |
(and selected quantitative values in nres) |
* (and selected quantitative values in nres) |
by left multiplying the unit |
* by left multiplying the unit |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
* matrix by transitions matrix until convergence is reached with precision ftolpl |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
* Wx is row vector: population in state 1, population in state 2, population dead |
/* or prevalence in state 1, prevalence in state 2, 0 */ |
* or prevalence in state 1, prevalence in state 2, 0 |
/* newm is the matrix after multiplications, its rows are identical at a factor */ |
* newm is the matrix after multiplications, its rows are identical at a factor. |
/* Initial matrix pimij */ |
* Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl. |
|
* Output is prlim. |
|
* Initial matrix pimij |
|
*/ |
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
/* 0, 0 , 1} */ |
/* 0, 0 , 1} */ |
Line 2529 void powell(double p[], double **xi, int
|
Line 2920 void powell(double p[], double **xi, int
|
/* 0.51326036147820708, 0.48673963852179264} */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j,k, k1; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */ |
double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */ |
double **newm; |
double **newm; |
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
int ncvloop=0; |
int ncvloop=0; |
|
int first=0; |
|
|
min=vector(1,nlstate); |
min=vector(1,nlstate); |
max=vector(1,nlstate); |
max=vector(1,nlstate); |
Line 2556 void powell(double p[], double **xi, int
|
Line 2948 void powell(double p[], double **xi, int
|
newm=savm; |
newm=savm; |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[2]=agefin; |
cov[2]=agefin; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin; |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
} |
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
/* Model(2) V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */ |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
/* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */ |
/* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
} |
if(Typevar[k1]==1){ /* A product with age */ |
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
}else{ |
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
cov[2+nagesqr+k1]=precov[nres][k1]; |
/* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
} |
} |
}/* End of loop on model equation */ |
for (k=1; k<=cptcovage;k++){ /* For product with age */ |
|
if(Dummy[Tvar[Tage[k]]]){ |
/* Start of old code (replaced by a loop on position in the model equation */ |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
/* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only of the model *\/ */ |
} else{ |
/* /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */ |
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
/* /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; *\/ */ |
} |
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])]; */ |
/* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
/* /\* model = 1 +age + V1*V3 + age*V1 + V2 + V1 + age*V2 + V3 + V3*age + V1*V2 */ |
} |
/* * k 1 2 3 4 5 6 7 8 */ |
for (k=1; k<=cptcovprod;k++){ /* For product without age */ |
/* *cov[] 1 2 3 4 5 6 7 8 9 10 */ |
/* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
/* *TypeVar[k] 2 1 0 0 1 0 1 2 */ |
if(Dummy[Tvard[k][1]==0]){ |
/* *Dummy[k] 0 2 0 0 2 0 2 0 */ |
if(Dummy[Tvard[k][2]==0]){ |
/* *Tvar[k] 4 1 2 1 2 3 3 5 */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* *nsd=3 (1) (2) (3) */ |
}else{ |
/* *TvarsD[nsd] [1]=2 1 3 */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; |
/* *TnsdVar [2]=2 [1]=1 [3]=3 */ |
} |
/* *TvarsDind[nsd](=k) [1]=3 [2]=4 [3]=6 */ |
}else{ |
/* *Tage[] [1]=1 [2]=2 [3]=3 */ |
if(Dummy[Tvard[k][2]==0]){ |
/* *Tvard[] [1][1]=1 [2][1]=1 */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; |
/* * [1][2]=3 [2][2]=2 */ |
}else{ |
/* *Tprod[](=k) [1]=1 [2]=8 */ |
cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; |
/* *TvarsDp(=Tvar) [1]=1 [2]=2 [3]=3 [4]=5 */ |
} |
/* *TvarD (=k) [1]=1 [2]=3 [3]=4 [3]=6 [4]=6 */ |
} |
/* *TvarsDpType */ |
} |
/* *si model= 1 + age + V3 + V2*age + V2 + V3*age */ |
|
/* * nsd=1 (1) (2) */ |
|
/* *TvarsD[nsd] 3 2 */ |
|
/* *TnsdVar (3)=1 (2)=2 */ |
|
/* *TvarsDind[nsd](=k) [1]=1 [2]=3 */ |
|
/* *Tage[] [1]=2 [2]= 3 */ |
|
/* *\/ */ |
|
/* /\* cov[++k1]=nbcode[TvarsD[k]][codtabm(ij,k)]; *\/ */ |
|
/* /\* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=nsq;k++) { /\* For single quantitative varying covariates only of the model *\/ */ |
|
/* /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */ |
|
/* /\* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */ |
|
/* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][resultmodel[nres][k1]] */ |
|
/* /\* cov[++k1]=Tqresult[nres][k]; *\/ */ |
|
/* /\* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* For product with age *\/ */ |
|
/* if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
/* /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */ |
|
/* /\* cov[++k1]=Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* /\* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */ |
|
/* /\* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
/* /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; *\/ */ |
|
/* } */ |
|
/* } */ |
|
/* } /\* End product without age *\/ */ |
|
/* ENd of old code */ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
/* age and covariate values of ij are in 'cov' */ |
/* age and covariate values of ij are in 'cov' */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
|
|
savm=oldm; |
savm=oldm; |
Line 2632 void powell(double p[], double **xi, int
|
Line 3072 void powell(double p[], double **xi, int
|
free_vector(meandiff,1,nlstate); |
free_vector(meandiff,1,nlstate); |
return prlim; |
return prlim; |
} |
} |
} /* age loop */ |
} /* agefin loop */ |
/* After some age loop it doesn't converge */ |
/* After some age loop it doesn't converge */ |
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
if(!first){ |
Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
first=1; |
|
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
}else if (first >=1 && first <10){ |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
first++; |
|
}else if (first ==10){ |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
printf("Warning: the stable prevalence dit not converge. This warning came too often, IMaCh will stop notifying, even in its log file. Look at the graphs to appreciate the non convergence.\n"); |
|
fprintf(ficlog,"Warning: the stable prevalence no convergence; too many cases, giving up noticing, even in log file\n"); |
|
first++; |
|
} |
|
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
free_vector(min,1,nlstate); |
free_vector(min,1,nlstate); |
free_vector(max,1,nlstate); |
free_vector(max,1,nlstate); |
Line 2671 Earliest age to start was %d-%d=%d, ncvl
|
Line 3123 Earliest age to start was %d-%d=%d, ncvl
|
/* 0.51326036147820708, 0.48673963852179264} */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j,k, k1; |
int first=0; |
int first=0; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
Line 2701 Earliest age to start was %d-%d=%d, ncvl
|
Line 3153 Earliest age to start was %d-%d=%d, ncvl
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
/* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
/* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */ |
/* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
|
for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */ |
ncvloop++; |
ncvloop++; |
newm=savm; /* oldm should be kept from previous iteration or unity at start */ |
newm=savm; /* oldm should be kept from previous iteration or unity at start */ |
/* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */ |
/* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */ |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[2]=agefin; |
cov[2]=agefin; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin;; |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
} |
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
if(Typevar[k1]==1){ /* A product with age */ |
/* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
} |
|
/* for (k=1; k<=cptcovn;k++) { */ |
|
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */ |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
|
/* /\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\/ */ |
|
/* } */ |
|
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
|
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
|
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
|
/* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; */ |
|
/* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */ |
|
for (k=1; k<=cptcovage;k++){ /* For product with age */ |
|
if(Dummy[Tvar[Tage[k]]]){ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else{ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* For product without age */ |
|
/* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
if(Dummy[Tvard[k][1]==0]){ |
|
if(Dummy[Tvard[k][2]==0]){ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; |
|
} |
|
}else{ |
}else{ |
if(Dummy[Tvard[k][2]==0]){ |
cov[2+nagesqr+k1]=precov[nres][k1]; |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; |
|
}else{ |
|
cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; |
|
} |
|
} |
} |
} |
}/* End of loop on model equation */ |
|
|
|
/* Old code */ |
|
|
|
/* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */ |
|
/* /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; */ |
|
/* /\* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */ |
|
/* } */ |
|
/* /\* for (k=1; k<=cptcovn;k++) { *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */ |
|
/* /\* /\\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\\/ *\/ */ |
|
/* /\* } *\/ */ |
|
/* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */ |
|
/* /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; */ |
|
/* /\* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* /\* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* /\* for (k=1; k<=cptcovprod;k++) /\\* Useless *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* For product with age *\/ */ |
|
/* /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age *\\/ ERROR ???*\/ */ |
|
/* if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
/* } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */ |
|
/* } */ |
|
/* /\* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */ |
|
/* /\* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
Line 2802 Earliest age to start was %d-%d=%d, ncvl
|
Line 3267 Earliest age to start was %d-%d=%d, ncvl
|
|
|
maxmax=0.; |
maxmax=0.; |
for(i=1; i<=nlstate; i++){ |
for(i=1; i<=nlstate; i++){ |
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */ |
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column, could be nan! */ |
maxmax=FMAX(maxmax,meandiff[i]); |
maxmax=FMAX(maxmax,meandiff[i]); |
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
} /* i loop */ |
} /* i loop */ |
Line 2815 Earliest age to start was %d-%d=%d, ncvl
|
Line 3280 Earliest age to start was %d-%d=%d, ncvl
|
free_vector(meandiff,1,nlstate); |
free_vector(meandiff,1,nlstate); |
return bprlim; |
return bprlim; |
} |
} |
} /* age loop */ |
} /* agefin loop */ |
/* After some age loop it doesn't converge */ |
/* After some age loop it doesn't converge */ |
if(first){ |
if(!first){ |
first=1; |
first=1; |
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\ |
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\ |
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
Line 2862 double **pmij(double **ps, double *cov,
|
Line 3327 double **pmij(double **ps, double *cov,
|
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */ |
} |
} |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
Line 2871 double **pmij(double **ps, double *cov,
|
Line 3336 double **pmij(double **ps, double *cov,
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
/* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */ |
} |
} |
} |
} |
|
|
for(i=1; i<= nlstate; i++){ |
for(i=1; i<= nlstate; i++){ |
s1=0; |
s1=0; |
for(j=1; j<i; j++){ |
for(j=1; j<i; j++){ |
|
/* printf("debug1 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
} |
for(j=i+1; j<=nlstate+ndeath; j++){ |
for(j=i+1; j<=nlstate+ndeath; j++){ |
|
/* printf("debug2 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
} |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
ps[i][i]=1./(s1+1.); |
ps[i][i]=1./(s1+1.); |
/* Computing other pijs */ |
/* Computing other pijs */ |
for(j=1; j<i; j++) |
for(j=1; j<i; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i];/* Bug valgrind */ |
for(j=i+1; j<=nlstate+ndeath; j++) |
for(j=i+1; j<=nlstate+ndeath; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
Line 2900 double **pmij(double **ps, double *cov,
|
Line 3366 double **pmij(double **ps, double *cov,
|
ps[ii][ii]=1; |
ps[ii][ii]=1; |
} |
} |
} |
} |
|
|
|
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
Line 2921 double **pmij(double **ps, double *cov,
|
Line 3387 double **pmij(double **ps, double *cov,
|
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
{ |
{ |
/* Computes the backward probability at age agefin and covariate combination ij. In fact cov is already filled and x too. |
/* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too. |
* Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij. |
* Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij. |
*/ |
*/ |
int i, ii, j,k; |
int i, ii, j,k; |
Line 2929 double **pmij(double **ps, double *cov,
|
Line 3395 double **pmij(double **ps, double *cov,
|
double **out, **pmij(); |
double **out, **pmij(); |
double sumnew=0.; |
double sumnew=0.; |
double agefin; |
double agefin; |
double k3=0.; /* constant of the w_x diagonal matrixe (in order for B to sum to 1 even for death state) */ |
double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */ |
double **dnewm, **dsavm, **doldm; |
double **dnewm, **dsavm, **doldm; |
double **bbmij; |
double **bbmij; |
|
|
doldm=ddoldms; /* global pointers */ |
doldm=ddoldms; /* global pointers */ |
dnewm=ddnewms; |
dnewm=ddnewms; |
dsavm=ddsavms; |
dsavm=ddsavms; |
|
|
|
/* Debug */ |
|
/* printf("Bmij ij=%d, cov[2}=%f\n", ij, cov[2]); */ |
agefin=cov[2]; |
agefin=cov[2]; |
/* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */ |
/* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */ |
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
Line 2944 double **pmij(double **ps, double *cov,
|
Line 3412 double **pmij(double **ps, double *cov,
|
/* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
|
|
/* P_x */ |
/* P_x */ |
pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm */ |
pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm *//* Bug valgrind */ |
/* outputs pmmij which is a stochastic matrix in row */ |
/* outputs pmmij which is a stochastic matrix in row */ |
|
|
/* Diag(w_x) */ |
/* Diag(w_x) */ |
/* Problem with prevacurrent which can be zero */ |
/* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */ |
sumnew=0.; |
sumnew=0.; |
/*for (ii=1;ii<=nlstate+ndeath;ii++){*/ |
/*for (ii=1;ii<=nlstate+ndeath;ii++){*/ |
for (ii=1;ii<=nlstate;ii++){ /* Only on live states */ |
for (ii=1;ii<=nlstate;ii++){ /* Only on live states */ |
/* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */ |
/* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */ |
sumnew+=prevacurrent[(int)agefin][ii][ij]; |
sumnew+=prevacurrent[(int)agefin][ii][ij]; |
} |
} |
if(sumnew >0.01){ /* At least some value in the prevalence */ |
if(sumnew >0.01){ /* At least some value in the prevalence */ |
Line 2975 double **pmij(double **ps, double *cov,
|
Line 3443 double **pmij(double **ps, double *cov,
|
} |
} |
/* End doldm, At the end doldm is diag[(w_i)] */ |
/* End doldm, At the end doldm is diag[(w_i)] */ |
|
|
/* left Product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm) */ |
/* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */ |
bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* Bug Valgrind */ |
bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */ |
|
|
/* Diag(Sum_i w^i_x p^ij_x */ |
/* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */ |
/* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */ |
/* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */ |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
sumnew=0.; |
sumnew=0.; |
Line 2996 double **pmij(double **ps, double *cov,
|
Line 3464 double **pmij(double **ps, double *cov,
|
} /*End ii */ |
} /*End ii */ |
} /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */ |
} /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */ |
|
|
ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* Bug Valgrind */ |
ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */ |
/* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
/* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
/* end bmij */ |
/* end bmij */ |
return ps; /*pointer is unchanged */ |
return ps; /*pointer is unchanged */ |
Line 3068 double **bpmij(double **ps, double *cov,
|
Line 3536 double **bpmij(double **ps, double *cov,
|
ps[ii][ii]=1; |
ps[ii][ii]=1; |
} |
} |
} |
} |
/* Added for backcast */ /* Transposed matrix too */ |
/* Added for prevbcast */ /* Transposed matrix too */ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
s1=0.; |
s1=0.; |
for(ii=1; ii<= nlstate+ndeath; ii++){ |
for(ii=1; ii<= nlstate+ndeath; ii++){ |
Line 3124 double **matprod2(double **out, double *
|
Line 3592 double **matprod2(double **out, double *
|
|
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres ) |
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres ) |
{ |
{ |
/* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over |
/* Already optimized with precov. |
|
Computes the transition matrix starting at age 'age' and dummies values in each resultline (loop on ij to find the corresponding combination) to over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. |
nhstepm*hstepm matrices. |
Line 3136 double ***hpxij(double ***po, int nhstep
|
Line 3605 double ***hpxij(double ***po, int nhstep
|
|
|
*/ |
*/ |
|
|
int i, j, d, h, k; |
int i, j, d, h, k, k1; |
double **out, cov[NCOVMAX+1]; |
double **out, cov[NCOVMAX+1]; |
double **newm; |
double **newm; |
double agexact; |
double agexact; |
Line 3156 double ***hpxij(double ***po, int nhstep
|
Line 3625 double ***hpxij(double ***po, int nhstep
|
cov[1]=1.; |
cov[1]=1.; |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=nsd;k++) { /* For single dummy covariates only */ |
|
/* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */ |
|
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
|
/* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
|
} |
|
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
|
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
|
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
|
/* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovage;k++){ |
|
if(Dummy[Tvar[Tage[k]]]){ |
|
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
|
} else{ |
|
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
|
} |
|
/* printf("hPxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
|
} |
|
for (k=1; k<=cptcovprod;k++){ /* */ |
|
/* printf("hPxij Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
} |
} |
|
/* Model(2) V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */ |
|
/* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */ |
|
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
|
if(Typevar[k1]==1){ /* A product with age */ |
|
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
|
}else{ |
|
cov[2+nagesqr+k1]=precov[nres][k1]; |
|
} |
|
}/* End of loop on model equation */ |
|
/* Old code */ |
|
/* if( Dummy[k1]==0 && Typevar[k1]==0 ){ /\* Single dummy *\/ */ |
|
/* /\* V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) *\/ */ |
|
/* /\* for (k=1; k<=nsd;k++) { /\\* For single dummy covariates only *\\/ *\/ */ |
|
/* /\* /\\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\\/ *\/ */ |
|
/* /\* codtabm(ij,k) (1 & (ij-1) >> (k-1))+1 *\/ */ |
|
/* /\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
|
/* /\* k 1 2 3 4 5 6 7 8 9 *\/ */ |
|
/* /\*Tvar[k]= 5 4 3 6 5 2 7 1 1 *\/ */ |
|
/* /\* nsd 1 2 3 *\/ /\* Counting single dummies covar fixed or tv *\/ */ |
|
/* /\*TvarsD[nsd] 4 3 1 *\/ /\* ID of single dummy cova fixed or timevary*\/ */ |
|
/* /\*TvarsDind[k] 2 3 9 *\/ /\* position K of single dummy cova *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];or [codtabm(ij,TnsdVar[TvarsD[k]] *\/ */ |
|
/* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */ |
|
/* /\* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,TnsdVar[TvarsD[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,TnsdVar[TvarsD[k]])); *\/ */ |
|
/* printf("hpxij Dummy combi=%d k1=%d Tvar[%d]=V%d cov[2+%d+%d]=%lf resultmodel[nres][%d]=%d nres/nresult=%d/%d \n",ij,k1,k1, Tvar[k1],nagesqr,k1,cov[2+nagesqr+k1],k1,resultmodel[nres][k1],nres,nresult); */ |
|
/* printf("hpxij new Dummy precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */ |
|
/* }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /\* Single quantitative variables *\/ */ |
|
/* /\* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline *\/ */ |
|
/* cov[2+nagesqr+k1]=Tqresult[nres][resultmodel[nres][k1]]; */ |
|
/* /\* for (k=1; k<=nsq;k++) { /\\* For single varying covariates only *\\/ *\/ */ |
|
/* /\* /\\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */ |
|
/* printf("hPxij Quantitative k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */ |
|
/* printf("hpxij new Quanti precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */ |
|
/* }else if( Dummy[k1]==2 ){ /\* For dummy with age product *\/ */ |
|
/* /\* Tvar[k1] Variable in the age product age*V1 is 1 *\/ */ |
|
/* /\* [Tinvresult[nres][V1] is its value in the resultline nres *\/ */ |
|
/* cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvar[k1]]*cov[2]; */ |
|
/* printf("DhPxij Dummy with age k1=%d Tvar[%d]=%d TinvDoQresult[nres=%d][%d]=%.f age=%.2f,cov[2+%d+%d]=%.3f\n",k1,k1,Tvar[k1],nres,TinvDoQresult[nres][Tvar[k1]],cov[2],nagesqr,k1,cov[2+nagesqr+k1]); */ |
|
/* printf("hpxij new Dummy with age product precov[nres=%d][k1=%d]=%.4f * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */ |
|
|
|
/* /\* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; *\/ */ |
|
/* /\* for (k=1; k<=cptcovage;k++){ /\\* For product with age V1+V1*age +V4 +age*V3 *\\/ *\/ */ |
|
/* /\* 1+2 Tage[1]=2 TVar[2]=1 Dummy[2]=2, Tage[2]=4 TVar[4]=3 Dummy[4]=3 quant*\/ */ |
|
/* /\* *\/ */ |
|
/* /\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
|
/* /\* k 1 2 3 4 5 6 7 8 9 *\/ */ |
|
/* /\*Tvar[k]= 5 4 3 6 5 2 7 1 1 *\/ */ |
|
/* /\*cptcovage=2 1 2 *\/ */ |
|
/* /\*Tage[k]= 5 8 *\/ */ |
|
/* }else if( Dummy[k1]==3 ){ /\* For quant with age product *\/ */ |
|
/* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */ |
|
/* printf("QhPxij Quant with age k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */ |
|
/* printf("hpxij new Quanti with age product precov[nres=%d][k1=%d] * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */ |
|
/* /\* if(Dummy[Tage[k]]== 2){ /\\* dummy with age *\\/ *\/ */ |
|
/* /\* /\\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\\* dummy with age *\\\/ *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\/ */ |
|
/* /\* printf("hPxij Age combi=%d k=%d cptcovage=%d Tage[%d]=%d Tvar[Tage[%d]]=V%d nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]]])]=%d nres=%d\n",ij,k,cptcovage,k,Tage[k],k,Tvar[Tage[k]], nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]])],nres); *\/ */ |
|
/* /\* } else if(Dummy[Tage[k]]== 3){ /\\* quantitative with age *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* printf("hPxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* }else if(Typevar[k1]==2 ){ /\* For product (not with age) *\/ */ |
|
/* /\* for (k=1; k<=cptcovprod;k++){ /\\* For product without age *\\/ *\/ */ |
|
/* /\* /\\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\\/ *\/ */ |
|
/* /\* /\\* k 1 2 3 4 5 6 7 8 9 *\\/ *\/ */ |
|
/* /\* /\\*Tvar[k]= 5 4 3 6 5 2 7 1 1 *\\/ *\/ */ |
|
/* /\* /\\*cptcovprod=1 1 2 *\\/ *\/ */ |
|
/* /\* /\\*Tprod[]= 4 7 *\\/ *\/ */ |
|
/* /\* /\\*Tvard[][1] 4 1 *\\/ *\/ */ |
|
/* /\* /\\*Tvard[][2] 3 2 *\\/ *\/ */ |
|
|
|
/* /\* printf("hPxij Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]=%d nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]=%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2],nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])],nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]); *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; */ |
|
/* printf("hPxij Prod ij=%d k1=%d cov[2+%d+%d]=%.5f Tvard[%d][1]=V%d * Tvard[%d][2]=V%d ; TinvDoQresult[nres][Tvardk[k1][1]]=%.4f * TinvDoQresult[nres][Tvardk[k1][1]]=%.4f\n",ij,k1,nagesqr,k1,cov[2+nagesqr+k1],k1,Tvardk[k1][1], k1,Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][1]], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
/* printf("hpxij new Product no age product precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */ |
|
|
|
/* /\* if(Dummy[Tvardk[k1][1]]==0){ *\/ */ |
|
/* /\* if(Dummy[Tvardk[k1][2]]==0){ /\\* Product of dummies *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tinvresult[nres][Tvardk[k1][1]] * Tinvresult[nres][Tvardk[k1][2]]; *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])]; *\/ */ |
|
/* /\* }else{ /\\* Product of dummy by quantitative *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * Tqresult[nres][k]; *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]; *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* }else{ /\\* Product of quantitative by...*\\/ *\/ */ |
|
/* /\* if(Dummy[Tvard[k][2]]==0){ /\\* quant by dummy *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][Tvard[k][1]]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tresult[nres][Tinvresult[nres][Tvardk[k1][2]]] ; *\/ */ |
|
/* /\* }else{ /\\* Product of two quant *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]] ; *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* }/\\*end of products quantitative *\\/ *\/ */ |
|
/* }/\*end of products *\/ */ |
|
/* } /\* End of loop on model equation *\/ */ |
/* for (k=1; k<=cptcovn;k++) */ |
/* for (k=1; k<=cptcovn;k++) */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
/* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */ |
/* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */ |
Line 3190 double ***hpxij(double ***po, int nhstep
|
Line 3738 double ***hpxij(double ***po, int nhstep
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/* right multiplication of oldm by the current matrix */ |
/* right multiplication of oldm by the current matrix */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
/* if((int)age == 70){ */ |
/* if((int)age == 70){ */ |
Line 3225 double ***hpxij(double ***po, int nhstep
|
Line 3773 double ***hpxij(double ***po, int nhstep
|
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres ) |
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres ) |
{ |
{ |
/* For a combination of dummy covariate ij, computes the transition matrix starting at age 'age' over |
/* For dummy covariates given in each resultline (for historical, computes the corresponding combination ij), |
|
computes the transition matrix starting at age 'age' over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. |
nhstepm*hstepm matrices. |
Line 3237 double ***hbxij(double ***po, int nhstep
|
Line 3786 double ***hbxij(double ***po, int nhstep
|
The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output |
The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output |
*/ |
*/ |
|
|
int i, j, d, h, k; |
int i, j, d, h, k, k1; |
double **out, cov[NCOVMAX+1], **bmij(); |
double **out, cov[NCOVMAX+1], **bmij(); |
double **newm, ***newmm; |
double **newm, ***newmm; |
double agexact; |
double agexact; |
Line 3260 double ***hbxij(double ***po, int nhstep
|
Line 3809 double ***hbxij(double ***po, int nhstep
|
cov[1]=1.; |
cov[1]=1.; |
agexact=age-( (h-1)*hstepm + (d) )*stepm/YEARM; /* age just before transition, d or d-1? */ |
agexact=age-( (h-1)*hstepm + (d) )*stepm/YEARM; /* age just before transition, d or d-1? */ |
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
|
/* Debug */ |
|
/* printf("hBxij age=%lf, agexact=%lf\n", age, agexact); */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=cptcovn;k++){ |
} |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
/** New code */ |
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */ |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)]; |
if(Typevar[k1]==1){ /* A product with age */ |
/* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */ |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
} |
}else{ |
for (k=1; k<=nsq;k++) { /* For single varying covariates only */ |
cov[2+nagesqr+k1]=precov[nres][k1]; |
/* Here comes the value of quantitative after renumbering k with single quantitative covariates */ |
} |
cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; |
}/* End of loop on model equation */ |
/* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */ |
/** End of new code */ |
} |
/** This was old code */ |
for (k=1; k<=cptcovage;k++){ /* Should start at cptcovn+1 */ |
/* for (k=1; k<=nsd;k++){ /\* For single dummy covariates only *\//\* cptcovn error *\/ */ |
if(Dummy[Tvar[Tage[k]]]){ |
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */ |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
/* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */ |
} else{ |
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])];/\* Bug valgrind *\/ */ |
cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; |
/* /\* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */ |
} |
/* } */ |
/* printf("hBxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */ |
/* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */ |
} |
/* /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */ |
for (k=1; k<=cptcovprod;k++){ /* Useless because included in cptcovn */ |
/* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* /\* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */ |
} |
/* } */ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/* for (k=1; k<=cptcovage;k++){ /\* Should start at cptcovn+1 *\//\* For product with age *\/ */ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/* /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age error!!!*\\/ *\/ */ |
|
/* if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
/* } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */ |
|
/* } */ |
|
/* /\* printf("hBxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){ /\* Useless because included in cptcovn *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* /\*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*\/ */ |
|
/* /\*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*\/ */ |
|
/** End of old code */ |
|
|
/* Careful transposed matrix */ |
/* Careful transposed matrix */ |
/* age is in cov[2], prevacurrent at beginning of transition. */ |
/* age is in cov[2], prevacurrent at beginning of transition. */ |
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); |
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);/* Bug valgrind */ |
/* if((int)age == 70){ */ |
/* if((int)age == 70){ */ |
/* printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
/* printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
Line 3347 double ***hbxij(double ***po, int nhstep
|
Line 3924 double ***hbxij(double ***po, int nhstep
|
/*************** log-likelihood *************/ |
/*************** log-likelihood *************/ |
double func( double *x) |
double func( double *x) |
{ |
{ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk, kf=0; |
int ioffset=0; |
int ioffset=0; |
|
int ipos=0,iposold=0,ncovv=0; |
|
|
|
double cotvarv, cotvarvold; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
int s1, s2; |
int s1, s2; |
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
|
|
double bbh, survp; |
double bbh, survp; |
long ipmx; |
|
double agexact; |
double agexact; |
|
double agebegin, ageend; |
/*extern weight */ |
/*extern weight */ |
/* We are differentiating ll according to initial status */ |
/* We are differentiating ll according to initial status */ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
Line 3379 double func( double *x)
|
Line 3960 double func( double *x)
|
*/ |
*/ |
ioffset=2+nagesqr ; |
ioffset=2+nagesqr ; |
/* Fixed */ |
/* Fixed */ |
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
for (kf=1; kf<=ncovf;kf++){ /* For each fixed covariate dummy or quant or prod */ |
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
/* # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi */ |
|
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
/* TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 ID of fixed covariates or product V2, V1*V2, V1 */ |
|
/* TvarFind; TvarFind[1]=6, TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod) */ |
|
cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (TvarFind[1]=6)*/ |
|
/* V1*V2 (7) TvarFind[2]=7, TvarFind[3]=9 */ |
} |
} |
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 |
has been calculated etc */ |
has been calculated etc */ |
/* For an individual i, wav[i] gives the number of effective waves */ |
/* For an individual i, wav[i] gives the number of effective waves */ |
/* We compute the contribution to Likelihood of each effective transition |
/* We compute the contribution to Likelihood of each effective transition |
mw[mi][i] is real wave of the mi th effectve wave */ |
mw[mi][i] is real wave of the mi th effectve wave */ |
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] |
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] because now is moved after nvocol+nqv |
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
*/ |
*/ |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
/* Wave varying (but not age varying) */ |
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ |
/* for(k=1; k <= ncovv ; k++){ /\* Varying covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3) Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*\/ */ |
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
/* /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? *\/ */ |
} |
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */ |
|
/* } */ |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age )*/ |
|
itv=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate */ |
|
cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i]; /* cotvar[wav][ncovcol+nqv+iv][i] */ |
|
}else{ /* fixed covariate */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
cov[ioffset+ipos]=cotvarv; |
|
} |
|
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ |
|
/* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ |
|
/* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ |
|
/* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ |
|
/* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ |
|
/* } */ |
|
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
|
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
|
/* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */ |
|
/* } */ |
|
/* for products of time varying to be done */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
} |
} |
|
|
|
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
|
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
for(d=0; d<dh[mi][i]; d++){ |
for(d=0; d<dh[mi][i]; d++){ |
newm=savm; |
newm=savm; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
Line 3411 double func( double *x)
|
Line 4030 double func( double *x)
|
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; /* Should be changed here */ |
cov[3]= agexact*agexact; /* Should be changed here */ |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
if(!FixedV[Tvar[Tage[kk]]]) |
if(!FixedV[Tvar[Tage[kk]]]) |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
else |
else |
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; |
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
} |
} |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
Line 3494 double func( double *x)
|
Line 4113 double func( double *x)
|
/*survp += out[s1][j]; */ |
/*survp += out[s1][j]; */ |
lli= log(survp); |
lli= log(survp); |
} |
} |
else if (s2==-4) { |
/* else if (s2==-4) { */ |
for (j=3,survp=0. ; j<=nlstate; j++) |
/* for (j=3,survp=0. ; j<=nlstate; j++) */ |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
/* survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */ |
lli= log(survp); |
/* lli= log(survp); */ |
} |
/* } */ |
else if (s2==-5) { |
/* else if (s2==-5) { */ |
for (j=1,survp=0. ; j<=2; j++) |
/* for (j=1,survp=0. ; j<=2; j++) */ |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
/* survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */ |
lli= log(survp); |
/* lli= log(survp); */ |
} |
/* } */ |
else{ |
else{ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
} |
} |
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*if(lli ==000.0)*/ |
/*if(lli ==000.0)*/ |
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
/* printf("num[i], i=%d, bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
Line 3522 double func( double *x)
|
Line 4141 double func( double *x)
|
} /* end of individual */ |
} /* end of individual */ |
} else if(mle==2){ |
} else if(mle==2){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
ioffset=2+nagesqr ; |
|
for (k=1; k<=ncovf;k++) |
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i]; |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for(k=1; k <= ncovv ; k++){ |
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
|
} |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 3569 double func( double *x)
|
Line 4193 double func( double *x)
|
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
if(!FixedV[Tvar[Tage[kk]]]) |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
} |
} |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
Line 3625 double func( double *x)
|
Line 4252 double func( double *x)
|
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/* printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
/* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ |
} /* end of wave */ |
} /* end of wave */ |
} /* end of individual */ |
} /* end of individual */ |
}else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ |
}else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ |
Line 3644 double func( double *x)
|
Line 4271 double func( double *x)
|
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
if(!FixedV[Tvar[Tage[kk]]]) |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
} |
} |
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
Line 3673 double func( double *x)
|
Line 4303 double func( double *x)
|
double funcone( double *x) |
double funcone( double *x) |
{ |
{ |
/* Same as func but slower because of a lot of printf and if */ |
/* Same as func but slower because of a lot of printf and if */ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk, kf=0; |
int ioffset=0; |
int ioffset=0; |
|
int ipos=0,iposold=0,ncovv=0; |
|
|
|
double cotvarv, cotvarvold; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
Line 3696 double funcone( double *x)
|
Line 4329 double funcone( double *x)
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
ioffset=0; |
ioffset=0; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
|
/* Computes the values of the ncovmodel covariates of the model |
|
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
|
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
|
to be observed in j being in i according to the model. |
|
*/ |
/* ioffset=2+nagesqr+cptcovage; */ |
/* ioffset=2+nagesqr+cptcovage; */ |
ioffset=2+nagesqr; |
ioffset=2+nagesqr; |
/* Fixed */ |
/* Fixed */ |
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */ |
for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */ |
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
/* printf("Debug3 TvarFind[%d]=%d",kf, TvarFind[kf]); */ |
|
/* printf(" Tvar[TvarFind[kf]]=%d", Tvar[TvarFind[kf]]); */ |
|
/* printf(" i=%d covar[Tvar[TvarFind[kf]]][i]=%f\n",i,covar[Tvar[TvarFind[kf]]][i]); */ |
|
cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
/* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ |
/* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ |
/* cov[2+6]=covar[Tvar[6]][i]; */ |
/* cov[2+6]=covar[Tvar[6]][i]; */ |
/* cov[2+6]=covar[2][i]; V2 */ |
/* cov[2+6]=covar[2][i]; V2 */ |
Line 3713 double funcone( double *x)
|
Line 4354 double funcone( double *x)
|
/* cov[2+9]=covar[Tvar[9]][i]; */ |
/* cov[2+9]=covar[Tvar[9]][i]; */ |
/* cov[2+9]=covar[1][i]; V1 */ |
/* cov[2+9]=covar[1][i]; V1 */ |
} |
} |
|
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
|
is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 |
|
has been calculated etc */ |
|
/* For an individual i, wav[i] gives the number of effective waves */ |
|
/* We compute the contribution to Likelihood of each effective transition |
|
mw[mi][i] is real wave of the mi th effectve wave */ |
|
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
And the iv th varying covariate in the DATA is the cotvar[mw[mi+1][i]][ncovcol+nqv+iv][i] |
|
*/ |
|
/* This part may be useless now because everythin should be in covar */ |
/* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ |
/* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ |
/* cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */ |
/* cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */ |
/* } */ |
/* } */ |
Line 3722 double funcone( double *x)
|
Line 4374 double funcone( double *x)
|
|
|
|
|
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
/* Wave varying (but not age varying) */ |
/* Wave varying (but not age varying) *//* V1+V3+age*V1+age*V3+V1*V3 with V4 tv and V5 tvq k= 1 to 5 and extra at V(5+1)=6 for V1*V3 */ |
for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ |
/* for(k=1; k <= ncovv ; k++){ /\* Varying covariates (single and product but no age )*\/ */ |
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ |
/* /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; *\/ */ |
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; |
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */ |
} |
/* } */ |
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ |
|
/* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
/* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ |
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
/* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ |
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
/* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ |
/* TvarVV[1]=V3 (first time varying in the model equation, TvarVV[2]=V1 (in V1*V3) TvarVV[3]=3(V3) */ |
/* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ |
/* We need the position of the time varying or product in the model */ |
|
/* TvarVVind={2,5,5}, for V3 at position 2 and then the product V1*V3 is decomposed into V1 and V3 but at same position 5 */ |
|
/* TvarVV gives the variable name */ |
|
/* Other example V1 + V3 + V5 + age*V1 + age*V3 + age*V5 + V1*V3 + V3*V5 + V1*V5 |
|
* k= 1 2 3 4 5 6 7 8 9 |
|
* varying 1 2 3 4 5 |
|
* ncovv 1 2 3 4 5 6 7 8 |
|
* TvarVV[ncovv] V3 5 1 3 3 5 1 5 |
|
* TvarVVind 2 3 7 7 8 8 9 9 |
|
* TvarFind[k] 1 0 0 0 0 0 0 0 0 |
|
*/ |
|
/* Other model ncovcol=5 nqv=0 ntv=3 nqtv=0 nlstate=3 |
|
* V2 V3 V4 are fixed V6 V7 are timevarying so V8 and V5 are not in the model and product column will start at 9 Tvar[4]=6 |
|
* FixedV[ncovcol+qv+ntv+nqtv] V5 |
|
* V1 V2 V3 V4 V5 V6 V7 V8 |
|
* 0 0 0 0 0 1 1 1 |
|
* model= V2 + V3 + V4 + V6 + V7 + V6*V2 + V7*V2 + V6*V3 + V7*V3 + V6*V4 + V7*V4 |
|
* kmodel 1 2 3 4 5 6 7 8 9 10 11 |
|
* ncovf 1 2 3 |
|
* ncovvt=14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
* TvarVV[1]@14 = itv {6, 7, 6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4} |
|
* TvarVVind[1]@14= {4, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11} |
|
* TvarFind[1]@14= {1, 2, 3, 0 <repeats 12 times>} |
|
* Tvar[1]@20= {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14} |
|
* TvarFind[itv] 0 0 0 |
|
* FixedV[itv] 1 1 1 0 1 0 1 0 1 0 0 |
|
* Tvar[TvarFind[ncovf]]=[1]=2 [2]=3 [4]=4 |
|
* Tvar[TvarFind[itv]] [0]=? ?ncovv 1 à ncovvt] |
|
* Not a fixed cotvar[mw][itv][i] 6 7 6 2 7, 2, 6, 3, 7, 3, 6, 4, 7, 4} |
|
* fixed covar[itv] [6] [7] [6][2] |
|
*/ |
|
|
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age) including individual from products */ |
|
itv=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
/* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */ |
|
cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i]; /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ |
|
}else{ /* fixed covariate */ |
|
/* cotvarv=covar[Tvar[TvarFind[itv]]][i]; /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
cov[ioffset+ipos]=cotvarv; |
|
/* For products */ |
|
} |
|
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates single *\/ */ |
|
/* iv=TvarVDind[itv]; /\* iv, position in the model equation of time varying covariate itv *\/ */ |
|
/* /\* "V1+V3+age*V1+age*V3+V1*V3" with V3 time varying *\/ */ |
|
/* /\* 1 2 3 4 5 *\/ */ |
|
/* /\*itv 1 *\/ */ |
|
/* /\* TvarVInd[1]= 2 *\/ */ |
|
/* /\* iv= Tvar[Tmodelind[itv]]-ncovcol-nqv; /\\* Counting the # varying covariate from 1 to ntveff *\\/ *\/ */ |
|
/* /\* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; *\/ */ |
|
/* /\* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; *\/ */ |
|
/* /\* k=ioffset-2-nagesqr-cptcovage+itv; /\\* position in simple model *\\/ *\/ */ |
|
/* /\* cov[ioffset+iv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; *\/ */ |
|
/* cov[ioffset+iv]=cotvar[mw[mi][i]][itv][i]; */ |
|
/* /\* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][itv][i]=%f\n", i, mi, itv, TvarVDind[itv],cotvar[mw[mi][i]][itv][i]); *\/ */ |
|
/* } */ |
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
Line 3759 double funcone( double *x)
|
Line 4475 double funcone( double *x)
|
if(!FixedV[Tvar[Tage[kk]]]) |
if(!FixedV[Tvar[Tage[kk]]]) |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
else |
else |
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; |
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
} |
} |
/* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
/* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
Line 3770 double funcone( double *x)
|
Line 4486 double funcone( double *x)
|
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
} /* end mult */ |
} /* end mult */ |
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias at large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
s1=s[mw[mi][i]][i]; |
s1=s[mw[mi][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
/* if(s2==-1){ */ |
/* if(s2==-1){ */ |
Line 3802 double funcone( double *x)
|
Line 4530 double funcone( double *x)
|
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
/* Printing covariates values for each contribution for checking */ |
|
/* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ |
if(globpr){ |
if(globpr){ |
fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
%11.6f %11.6f %11.6f ", \ |
%11.6f %11.6f %11.6f ", \ |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); |
2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); |
|
/* printf("%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ */ |
|
/* %11.6f %11.6f %11.6f ", \ */ |
|
/* num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, */ |
|
/* 2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
llt +=ll[k]*gipmx/gsw; |
llt +=ll[k]*gipmx/gsw; |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
|
/* printf(" %10.6f",-ll[k]*gipmx/gsw); */ |
} |
} |
fprintf(ficresilk," %10.6f\n", -llt); |
fprintf(ficresilk," %10.6f ", -llt); |
} |
/* printf(" %10.6f\n", -llt); */ |
} /* end of wave */ |
/* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */ |
} /* end of individual */ |
/* fprintf(ficresilk,"%09ld ", num[i]); */ /* not necessary */ |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */ |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
fprintf(ficresilk," %g",covar[Tvar[TvarFind[kf]]][i]); |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
} |
if(globpr==0){ /* First time we count the contributions and weights */ |
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age) including individual from products */ |
gipmx=ipmx; |
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
gsw=sw; |
if(ipos!=iposold){ /* Not a product or first of a product */ |
} |
fprintf(ficresilk," %g",cov[ioffset+ipos]); |
return -l; |
/* printf(" %g",cov[ioffset+ipos]); */ |
} |
}else{ |
|
fprintf(ficresilk,"*"); |
|
/* printf("*"); */ |
/*************** function likelione ***********/ |
} |
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double [])) |
iposold=ipos; |
|
} |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
if(!FixedV[Tvar[Tage[kk]]]){ |
|
fprintf(ficresilk," %g*age",covar[Tvar[Tage[kk]]][i]); |
|
/* printf(" %g*age",covar[Tvar[Tage[kk]]][i]); */ |
|
}else{ |
|
fprintf(ficresilk," %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
|
/* printf(" %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/ */ |
|
} |
|
} |
|
/* printf("\n"); */ |
|
/* } /\* End debugILK *\/ */ |
|
fprintf(ficresilk,"\n"); |
|
} /* End if globpr */ |
|
} /* end of wave */ |
|
} /* end of individual */ |
|
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
|
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
|
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
|
if(globpr==0){ /* First time we count the contributions and weights */ |
|
gipmx=ipmx; |
|
gsw=sw; |
|
} |
|
return -l; |
|
} |
|
|
|
|
|
/*************** function likelione ***********/ |
|
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double [])) |
{ |
{ |
/* This routine should help understanding what is done with |
/* This routine should help understanding what is done with |
the selection of individuals/waves and |
the selection of individuals/waves and |
to check the exact contribution to the likelihood. |
to check the exact contribution to the likelihood. |
Plotting could be done. |
Plotting could be done. |
*/ |
*/ |
int k; |
void pstamp(FILE *ficres); |
|
int k, kf, kk, kvar, ncovv, iposold, ipos; |
|
|
if(*globpri !=0){ /* Just counts and sums, no printings */ |
if(*globpri !=0){ /* Just counts and sums, no printings */ |
strcpy(fileresilk,"ILK_"); |
strcpy(fileresilk,"ILK_"); |
Line 3844 void likelione(FILE *ficres,double p[],
|
Line 4608 void likelione(FILE *ficres,double p[],
|
printf("Problem with resultfile: %s\n", fileresilk); |
printf("Problem with resultfile: %s\n", fileresilk); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
} |
} |
|
pstamp(ficresilk);fprintf(ficresilk,"# model=1+age+%s\n",model); |
fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav "); |
fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav "); |
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
for(k=1; k<=nlstate; k++) |
for(k=1; k<=nlstate; k++) |
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n"); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total) "); |
} |
|
|
/* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */ |
|
for(kf=1;kf <= ncovf; kf++){ |
|
fprintf(ficresilk,"V%d",Tvar[TvarFind[kf]]); |
|
/* printf("V%d",Tvar[TvarFind[kf]]); */ |
|
} |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
/* printf(" %d",ipos); */ |
|
fprintf(ficresilk," V%d",TvarVV[ncovv]); |
|
}else{ |
|
/* printf("*"); */ |
|
fprintf(ficresilk,"*"); |
|
} |
|
iposold=ipos; |
|
} |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
if(!FixedV[Tvar[Tage[kk]]]){ |
|
/* printf(" %d*age(Fixed)",Tvar[Tage[kk]]); */ |
|
fprintf(ficresilk," %d*age(Fixed)",Tvar[Tage[kk]]); |
|
}else{ |
|
fprintf(ficresilk," %d*age(Varying)",Tvar[Tage[kk]]);/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
|
/* printf(" %d*age(Varying)",Tvar[Tage[kk]]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/ */ |
|
} |
|
} |
|
/* } /\* End if debugILK *\/ */ |
|
/* printf("\n"); */ |
|
fprintf(ficresilk,"\n"); |
|
} /* End glogpri */ |
|
|
*fretone=(*funcone)(p); |
*fretone=(*func)(p); |
if(*globpri !=0){ |
if(*globpri !=0){ |
fclose(ficresilk); |
fclose(ficresilk); |
if (mle ==0) |
if (mle ==0) |
Line 3862 void likelione(FILE *ficres,double p[],
|
Line 4656 void likelione(FILE *ficres,double p[],
|
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); |
fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); |
|
|
for (k=1; k<= nlstate ; k++) { |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
|
<img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
|
} |
|
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
<img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
<img src=\"%s-ori.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \ |
fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \ |
<img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
<img src=\"%s-dest.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
|
|
|
for (k=1; k<= nlstate ; k++) { |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br>\n \ |
|
<img src=\"%s-p%dj.png\">\n",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
|
for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */ |
|
/* kvar=Tvar[TvarFind[kf]]; */ /* variable */ |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
|
<img src=\"%s-p%dj-%d.png\">",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]); |
|
} |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Loop on the time varying extended covariates (with extension of Vn*Vm */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */ |
|
kvar=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ |
|
/* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
/* fprintf(ficresilk," V%d",TvarVV[ncovv]); */ |
|
/* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); */ |
|
if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm) */ |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored time varying dummy covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
|
<img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar); |
|
} /* End only for dummies time varying (single?) */ |
|
}else{ /* Useless product */ |
|
/* printf("*"); */ |
|
/* fprintf(ficresilk,"*"); */ |
|
} |
|
iposold=ipos; |
|
} /* For each time varying covariate */ |
|
} /* End loop on states */ |
|
|
|
/* if(debugILK){ */ |
|
/* for(kf=1; kf <= ncovf; kf++){ /\* For each simple dummy covariate of the model *\/ */ |
|
/* /\* kvar=Tvar[TvarFind[kf]]; *\/ /\* variable *\/ */ |
|
/* for (k=1; k<= nlstate ; k++) { */ |
|
/* fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */ |
|
/* <img src=\"%s-p%dj-%d.png\">",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]); */ |
|
/* } */ |
|
/* } */ |
|
/* for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /\* Loop on the time varying extended covariates (with extension of Vn*Vm *\/ */ |
|
/* ipos=TvarVVind[ncovv]; /\* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate *\/ */ |
|
/* kvar=TvarVV[ncovv]; /\* TvarVV={3, 1, 3} gives the name of each varying covariate *\/ */ |
|
/* /\* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); *\/ */ |
|
/* if(ipos!=iposold){ /\* Not a product or first of a product *\/ */ |
|
/* /\* fprintf(ficresilk," V%d",TvarVV[ncovv]); *\/ */ |
|
/* /\* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); *\/ */ |
|
/* if(Dummy[ipos]==0 && Typevar[ipos]==0){ /\* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm) *\/ */ |
|
/* for (k=1; k<= nlstate ; k++) { */ |
|
/* fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */ |
|
/* <img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar); */ |
|
/* } /\* End state *\/ */ |
|
/* } /\* End only for dummies time varying (single?) *\/ */ |
|
/* }else{ /\* Useless product *\/ */ |
|
/* /\* printf("*"); *\/ */ |
|
/* /\* fprintf(ficresilk,"*"); *\/ */ |
|
/* } */ |
|
/* iposold=ipos; */ |
|
/* } /\* For each time varying covariate *\/ */ |
|
/* }/\* End debugILK *\/ */ |
fflush(fichtm); |
fflush(fichtm); |
} |
}/* End globpri */ |
return; |
return; |
} |
} |
|
|
Line 3880 void likelione(FILE *ficres,double p[],
|
Line 4726 void likelione(FILE *ficres,double p[],
|
|
|
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
{ |
{ |
int i,j, iter=0; |
int i,j,k, jk, jkk=0, iter=0; |
double **xi; |
double **xi; |
double fret; |
double fret; |
double fretone; /* Only one call to likelihood */ |
double fretone; /* Only one call to likelihood */ |
Line 3914 void mlikeli(FILE *ficres,double p[], in
|
Line 4760 void mlikeli(FILE *ficres,double p[], in
|
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
fprintf(ficrespow,"\n"); |
fprintf(ficrespow,"\n"); |
#ifdef POWELL |
#ifdef POWELL |
|
#ifdef LINMINORIGINAL |
|
#else /* LINMINORIGINAL */ |
|
|
|
flatdir=ivector(1,npar); |
|
for (j=1;j<=npar;j++) flatdir[j]=0; |
|
#endif /*LINMINORIGINAL */ |
|
|
|
#ifdef FLATSUP |
|
powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); |
|
/* reorganizing p by suppressing flat directions */ |
|
for(i=1, jk=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]); |
|
if(flatdir[jk]==1){ |
|
printf(" To be skipped %d%d flatdir[%d]=%d ",i,k,jk, flatdir[jk]); |
|
} |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f ",p[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
} |
|
/* skipping */ |
|
/* for(i=1, jk=1, jkk=1;(flatdir[jk]==0)&& (i <=nlstate); i++){ */ |
|
for(i=1, jk=1, jkk=1;i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]); |
|
if(flatdir[jk]==1){ |
|
printf(" To be skipped %d%d flatdir[%d]=%d jk=%d p[%d] ",i,k,jk, flatdir[jk],jk, jk); |
|
for(j=1; j <=ncovmodel; jk++,j++){ |
|
printf(" p[%d]=%12.7f",jk, p[jk]); |
|
/*q[jjk]=p[jk];*/ |
|
} |
|
}else{ |
|
printf(" To be kept %d%d flatdir[%d]=%d jk=%d q[%d]=p[%d] ",i,k,jk, flatdir[jk],jk, jkk, jk); |
|
for(j=1; j <=ncovmodel; jk++,jkk++,j++){ |
|
printf(" p[%d]=%12.7f=q[%d]",jk, p[jk],jkk); |
|
/*q[jjk]=p[jk];*/ |
|
} |
|
} |
|
printf("\n"); |
|
} |
|
fflush(stdout); |
|
} |
|
} |
|
powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); |
|
#else /* FLATSUP */ |
powell(p,xi,npar,ftol,&iter,&fret,func); |
powell(p,xi,npar,ftol,&iter,&fret,func); |
#endif |
#endif /* FLATSUP */ |
|
|
|
#ifdef LINMINORIGINAL |
|
#else |
|
free_ivector(flatdir,1,npar); |
|
#endif /* LINMINORIGINAL*/ |
|
#endif /* POWELL */ |
|
|
#ifdef NLOPT |
#ifdef NLOPT |
#ifdef NEWUOA |
#ifdef NEWUOA |
Line 3943 void mlikeli(FILE *ficres,double p[], in
|
Line 4846 void mlikeli(FILE *ficres,double p[], in
|
} |
} |
nlopt_destroy(opt); |
nlopt_destroy(opt); |
#endif |
#endif |
|
#ifdef FLATSUP |
|
/* npared = npar -flatd/ncovmodel; */ |
|
/* xired= matrix(1,npared,1,npared); */ |
|
/* paramred= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ |
|
/* powell(pred,xired,npared,ftol,&iter,&fret,flatdir,func); */ |
|
/* free_matrix(xire,1,npared,1,npared); */ |
|
#else /* FLATSUP */ |
|
#endif /* FLATSUP */ |
free_matrix(xi,1,npar,1,npar); |
free_matrix(xi,1,npar,1,npar); |
fclose(ficrespow); |
fclose(ficrespow); |
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
Line 4327 void pstamp(FILE *fichier)
|
Line 5238 void pstamp(FILE *fichier)
|
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
} |
} |
|
|
|
void date2dmy(double date,double *day, double *month, double *year){ |
|
double yp=0., yp1=0., yp2=0.; |
|
|
|
yp1=modf(date,&yp);/* extracts integral of date in yp and |
|
fractional in yp1 */ |
|
*year=yp; |
|
yp2=modf((yp1*12),&yp); |
|
*month=yp; |
|
yp1=modf((yp2*30.5),&yp); |
|
*day=yp; |
|
if(*day==0) *day=1; |
|
if(*month==0) *month=1; |
|
} |
|
|
|
|
|
|
/************ Frequencies ********************/ |
/************ Frequencies ********************/ |
Line 4334 void freqsummary(char fileres[], double
|
Line 5259 void freqsummary(char fileres[], double
|
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
{ /* Some frequencies as well as proposing some starting values */ |
{ /* Some frequencies as well as proposing some starting values */ |
|
/* Frequencies of any combination of dummy covariate used in the model equation */ |
int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1; |
int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1; |
int iind=0, iage=0; |
int iind=0, iage=0; |
int mi; /* Effective wave */ |
int mi; /* Effective wave */ |
Line 4342 void freqsummary(char fileres[], double
|
Line 5267 void freqsummary(char fileres[], double
|
double ***freq; /* Frequencies */ |
double ***freq; /* Frequencies */ |
double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */ |
double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */ |
int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb); |
int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb); |
double *meanq; |
double *meanq, *stdq, *idq; |
double **meanqt; |
double **meanqt; |
double *pp, **prop, *posprop, *pospropt; |
double *pp, **prop, *posprop, *pospropt; |
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
Line 4355 void freqsummary(char fileres[], double
|
Line 5280 void freqsummary(char fileres[], double
|
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
|
stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
|
idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
meanqt=matrix(1,lastpass,1,nqtveff); |
meanqt=matrix(1,lastpass,1,nqtveff); |
strcpy(fileresp,"P_"); |
strcpy(fileresp,"P_"); |
strcat(fileresp,fileresu); |
strcat(fileresp,fileresu); |
Line 4378 void freqsummary(char fileres[], double
|
Line 5305 void freqsummary(char fileres[], double
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm); |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies (weight=%d) and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm, weightopt); |
|
|
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
Line 4388 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5315 Title=%s <br>Datafile=%s Firstpass=%d La
|
exit(70); |
exit(70); |
} else{ |
} else{ |
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
,<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr); |
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>(weight=%d) frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr,weightopt); |
|
|
y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
Line 4400 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5327 Title=%s <br>Datafile=%s Firstpass=%d La
|
j1=0; |
j1=0; |
|
|
/* j=ncoveff; /\* Only fixed dummy covariates *\/ */ |
/* j=ncoveff; /\* Only fixed dummy covariates *\/ */ |
j=cptcoveff; /* Only dummy covariates of the model */ |
j=cptcoveff; /* Only simple dummy covariates used in the model */ |
|
/* j=cptcovn; /\* Only dummy covariates of the model *\/ */ |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
|
|
Line 4408 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5336 Title=%s <br>Datafile=%s Firstpass=%d La
|
reference=low_education V1=0,V2=0 |
reference=low_education V1=0,V2=0 |
med_educ V1=1 V2=0, |
med_educ V1=1 V2=0, |
high_educ V1=0 V2=1 |
high_educ V1=0 V2=1 |
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff |
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcovn |
*/ |
*/ |
dateintsum=0; |
dateintsum=0; |
k2cpt=0; |
k2cpt=0; |
Line 4445 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5373 Title=%s <br>Datafile=%s Firstpass=%d La
|
if(nj==1) |
if(nj==1) |
j=0; /* First pass for the constant */ |
j=0; /* First pass for the constant */ |
else{ |
else{ |
j=cptcoveff; /* Other passes for the covariate values */ |
j=cptcoveff; /* Other passes for the covariate values number of simple covariates in the model V2+V1 =2 (simple dummy fixed or time varying) */ |
} |
} |
first=1; |
first=1; |
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all covariates combination of the model, excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */ |
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all dummy covariates combination of the model, ie excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */ |
posproptt=0.; |
posproptt=0.; |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
/*printf("cptcovn=%d Tvaraff=%d", cptcovn,Tvaraff[1]); |
scanf("%d", i);*/ |
scanf("%d", i);*/ |
for (i=-5; i<=nlstate+ndeath; i++) |
for (i=-5; i<=nlstate+ndeath; i++) |
for (s2=-5; s2<=nlstate+ndeath; s2++) |
for (s2=-5; s2<=nlstate+ndeath; s2++) |
Line 4463 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5391 Title=%s <br>Datafile=%s Firstpass=%d La
|
posprop[i]=0; |
posprop[i]=0; |
pospropt[i]=0; |
pospropt[i]=0; |
} |
} |
/* for (z1=1; z1<= nqfveff; z1++) { */ |
for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */ |
/* meanq[z1]+=0.; */ |
idq[z1]=0.; |
|
meanq[z1]=0.; |
|
stdq[z1]=0.; |
|
} |
|
/* for (z1=1; z1<= nqtveff; z1++) { */ |
/* for(m=1;m<=lastpass;m++){ */ |
/* for(m=1;m<=lastpass;m++){ */ |
/* meanqt[m][z1]=0.; */ |
/* meanqt[m][z1]=0.; */ |
/* } */ |
/* } */ |
/* } */ |
/* } */ |
|
|
/* dateintsum=0; */ |
/* dateintsum=0; */ |
/* k2cpt=0; */ |
/* k2cpt=0; */ |
|
|
Line 4479 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5410 Title=%s <br>Datafile=%s Firstpass=%d La
|
if(j !=0){ |
if(j !=0){ |
if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
/* for (z1=1; z1<= nqfveff; z1++) { */ |
|
/* meanq[z1]+=coqvar[Tvar[z1]][iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
|
/* } */ |
|
for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */ |
for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */ |
/* if(Tvaraff[z1] ==-20){ */ |
/* if(Tvaraff[z1] ==-20){ */ |
/* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
/* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
/* }else if(Tvaraff[z1] ==-10){ */ |
/* }else if(Tvaraff[z1] ==-10){ */ |
/* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
/* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
/* }else */ |
/* }else */ /* TODO TODO codtabm(j1,z1) or codtabm(j1,Tvaraff[z1]]z1)*/ |
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ /* for combination j1 of covariates */ |
/* if( iind >=imx-3) printf("Searching error iind=%d Tvaraff[z1]=%d covar[Tvaraff[z1]][iind]=%.f TnsdVar[Tvaraff[z1]]=%d, cptcoveff=%d, cptcovs=%d \n",iind, Tvaraff[z1], covar[Tvaraff[z1]][iind],TnsdVar[Tvaraff[z1]],cptcoveff, cptcovs); */ |
|
if(Tvaraff[z1]<1 || Tvaraff[z1]>=NCOVMAX) |
|
printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=1+age+%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model); |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]){ /* for combination j1 of covariates */ |
/* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */ |
/* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */ |
bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */ |
bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */ |
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", */ |
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
/* bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),*/ |
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
/* j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
} /* Onlyf fixed */ |
} /* Onlyf fixed */ |
} /* end z1 */ |
} /* end z1 */ |
} /* cptcovn > 0 */ |
} /* cptcoveff > 0 */ |
} /* end any */ |
} /* end any */ |
}/* end j==0 */ |
}/* end j==0 */ |
if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */ |
if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */ |
/* for(m=firstpass; m<=lastpass; m++){ */ |
/* for(m=firstpass; m<=lastpass; m++){ */ |
for(mi=1; mi<wav[iind];mi++){ /* For that wave */ |
for(mi=1; mi<wav[iind];mi++){ /* For each wave */ |
m=mw[mi][iind]; |
m=mw[mi][iind]; |
if(j!=0){ |
if(j!=0){ |
if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
for (z1=1; z1<=cptcoveff; z1++) { |
for (z1=1; z1<=cptcoveff; z1++) { |
if( Fixed[Tmodelind[z1]]==1){ |
if( Fixed[Tmodelind[z1]]==1){ |
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
/* iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; /\* Good *\/ */ |
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality. If covariate's |
iv= Tvar[Tmodelind[z1]]; /* Good *//* because cotvar starts now at first at ncovcol+nqv+ntv */ |
|
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality. If covariate's |
value is -1, we don't select. It differs from the |
value is -1, we don't select. It differs from the |
constant and age model which counts them. */ |
constant and age model which counts them. */ |
bool=0; /* not selected */ |
bool=0; /* not selected */ |
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
/* i1=Tvaraff[z1]; */ |
|
/* i2=TnsdVar[i1]; */ |
|
/* i3=nbcode[i1][i2]; */ |
|
/* i4=covar[i1][iind]; */ |
|
/* if(i4 != i3){ */ |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { /* Bug valgrind */ |
bool=0; |
bool=0; |
} |
} |
} |
} |
Line 4522 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5459 Title=%s <br>Datafile=%s Firstpass=%d La
|
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
} /* end j==0 */ |
} /* end j==0 */ |
/* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
/* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
if(bool==1){ |
if(bool==1){ /*Selected */ |
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
and mw[mi+1][iind]. dh depends on stepm. */ |
and mw[mi+1][iind]. dh depends on stepm. */ |
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
Line 4540 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5477 Title=%s <br>Datafile=%s Firstpass=%d La
|
if(s[m][iind]==-1) |
if(s[m][iind]==-1) |
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean on known values only */ |
|
if(!isnan(covar[ncovcol+z1][iind])){ |
|
idq[z1]=idq[z1]+weight[iind]; |
|
meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind]; /* Computes mean of quantitative with selected filter */ |
|
/* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; *//*error*/ |
|
stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]; /* *weight[iind];*/ /* Computes mean of quantitative with selected filter */ |
|
} |
|
} |
/* if((int)agev[m][iind] == 55) */ |
/* if((int)agev[m][iind] == 55) */ |
/* printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */ |
/* printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */ |
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
Line 4555 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5500 Title=%s <br>Datafile=%s Firstpass=%d La
|
bool=1; |
bool=1; |
}/* end bool 2 */ |
}/* end bool 2 */ |
} /* end m */ |
} /* end m */ |
|
/* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */ |
|
/* idq[z1]=idq[z1]+weight[iind]; */ |
|
/* meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
|
/* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/ /\* Computes mean of quantitative with selected filter *\/ */ |
|
/* } */ |
} /* end bool */ |
} /* end bool */ |
} /* end iind = 1 to imx */ |
} /* end iind = 1 to imx */ |
/* prop[s][age] is feeded for any initial and valid live state as well as |
/* prop[s][age] is fed for any initial and valid live state as well as |
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
|
|
|
|
Line 4573 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5523 Title=%s <br>Datafile=%s Firstpass=%d La
|
fprintf(ficlog, "\n#********** Variable "); |
fprintf(ficlog, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++){ |
for (z1=1; z1<=cptcoveff; z1++){ |
if(!FixedV[Tvaraff[z1]]){ |
if(!FixedV[Tvaraff[z1]]){ |
printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
}else{ |
}else{ |
printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
} |
} |
} |
} |
printf( "**********\n#"); |
printf( "**********\n#"); |
Line 4592 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5542 Title=%s <br>Datafile=%s Firstpass=%d La
|
fprintf(ficresphtmfr, "**********</h3>\n"); |
fprintf(ficresphtmfr, "**********</h3>\n"); |
fprintf(ficlog, "**********\n"); |
fprintf(ficlog, "**********\n"); |
} |
} |
|
/* |
|
Printing means of quantitative variables if any |
|
*/ |
|
for (z1=1; z1<= nqfveff; z1++) { |
|
fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.3g (weighted) individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]); |
|
fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]); |
|
if(weightopt==1){ |
|
printf(" Weighted mean and standard deviation of"); |
|
fprintf(ficlog," Weighted mean and standard deviation of"); |
|
fprintf(ficresphtmfr," Weighted mean and standard deviation of"); |
|
} |
|
/* mu = \frac{w x}{\sum w} |
|
var = \frac{\sum w (x-mu)^2}{\sum w} = \frac{w x^2}{\sum w} - mu^2 |
|
*/ |
|
printf(" fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
fprintf(ficlog," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
fprintf(ficresphtmfr," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
} |
|
/* for (z1=1; z1<= nqtveff; z1++) { */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */ |
|
/* } */ |
|
/* } */ |
|
|
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */ |
if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */ |
fprintf(ficresp, " Age"); |
fprintf(ficresp, " Age"); |
if(nj==2) for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
if(nj==2) for (z1=1; z1<=cptcoveff; z1++) { |
|
printf(" V%d=%d, z1=%d, Tvaraff[z1]=%d, j1=%d, TnsdVar[Tvaraff[%d]]=%d |",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])], z1, Tvaraff[z1], j1,z1,TnsdVar[Tvaraff[z1]]); |
|
fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
} |
for(i=1; i<=nlstate;i++) { |
for(i=1; i<=nlstate;i++) { |
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d) N(%d) N ",i,i); |
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d) N(%d) N ",i,i); |
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
Line 4675 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5652 Title=%s <br>Datafile=%s Firstpass=%d La
|
}else if( nj==2){ |
}else if( nj==2){ |
if( iage <= iagemax){ |
if( iage <= iagemax){ |
fprintf(ficresp," %d",iage); |
fprintf(ficresp," %d",iage); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
} |
} |
} |
} |
for(s1=1; s1 <=nlstate ; s1++){ |
for(s1=1; s1 <=nlstate ; s1++){ |
Line 4752 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5729 Title=%s <br>Datafile=%s Firstpass=%d La
|
printf("# This combination (%d) is not valid and no result will be produced\n",j1); |
printf("# This combination (%d) is not valid and no result will be produced\n",j1); |
invalidvarcomb[j1]=1; |
invalidvarcomb[j1]=1; |
}else{ |
}else{ |
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1); |
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced (or no resultline).</p>",j1); |
invalidvarcomb[j1]=0; |
invalidvarcomb[j1]=0; |
} |
} |
fprintf(ficresphtmfr,"</table>\n"); |
fprintf(ficresphtmfr,"</table>\n"); |
Line 4826 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5803 Title=%s <br>Datafile=%s Firstpass=%d La
|
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
} |
} |
} |
} |
} |
} /* end of state i */ |
printf("#Freqsummary\n"); |
printf("#Freqsummary\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
Line 4868 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 5845 Title=%s <br>Datafile=%s Firstpass=%d La
|
} |
} |
} /* end mle=-2 */ |
} /* end mle=-2 */ |
dateintmean=dateintsum/k2cpt; |
dateintmean=dateintsum/k2cpt; |
|
date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); |
|
|
fclose(ficresp); |
fclose(ficresp); |
fclose(ficresphtm); |
fclose(ficresphtm); |
fclose(ficresphtmfr); |
fclose(ficresphtmfr); |
|
free_vector(idq,1,nqfveff); |
free_vector(meanq,1,nqfveff); |
free_vector(meanq,1,nqfveff); |
|
free_vector(stdq,1,nqfveff); |
free_matrix(meanqt,1,lastpass,1,nqtveff); |
free_matrix(meanqt,1,lastpass,1,nqtveff); |
free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
Line 4979 void prevalence(double ***probs, double
|
Line 5959 void prevalence(double ***probs, double
|
/*j=cptcoveff;*/ |
/*j=cptcoveff;*/ |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
first=1; |
first=0; |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */ |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of simple dummy covariates */ |
for (i=1; i<=nlstate; i++) |
for (i=1; i<=nlstate; i++) |
for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++) |
for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++) |
prop[i][iage]=0.0; |
prop[i][iage]=0.0; |
Line 4997 void prevalence(double ***probs, double
|
Line 5977 void prevalence(double ***probs, double
|
/* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ |
/* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ |
for (z1=1; z1<=cptcoveff; z1++){ |
for (z1=1; z1<=cptcoveff; z1++){ |
if( Fixed[Tmodelind[z1]]==1){ |
if( Fixed[Tmodelind[z1]]==1){ |
iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; |
iv= Tvar[Tmodelind[z1]];/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */ |
if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality */ |
bool=0; |
bool=0; |
}else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ |
}else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) { |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { |
bool=0; |
bool=0; |
} |
} |
} |
} |
Line 5037 void prevalence(double ***probs, double
|
Line 6017 void prevalence(double ***probs, double
|
if(posprop>=1.e-5){ |
if(posprop>=1.e-5){ |
probs[i][jk][j1]= prop[jk][i]/posprop; |
probs[i][jk][j1]= prop[jk][i]/posprop; |
} else{ |
} else{ |
if(first==1){ |
if(!first){ |
first=0; |
first=1; |
printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
|
}else{ |
}else{ |
fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]); |
} |
} |
} |
} |
} |
} |
Line 5060 void prevalence(double ***probs, double
|
Line 6039 void prevalence(double ***probs, double
|
|
|
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
{ |
{ |
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
/* Concatenates waves: wav[i] is the number of effective (useful waves in the sense that a non interview is useless) of individual i. |
Death is a valid wave (if date is known). |
Death is a valid wave (if date is known). |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
and mw[mi+1][i]. dh depends on stepm. |
and mw[mi+1][i]. dh depends on stepm. s[m][i] exists for any wave from firstpass to lastpass |
*/ |
*/ |
|
|
int i=0, mi=0, m=0, mli=0; |
int i=0, mi=0, m=0, mli=0; |
Line 5085 void concatwav(int wav[], int **dh, int
|
Line 6064 void concatwav(int wav[], int **dh, int
|
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
mi=0; /* First valid wave */ |
mi=0; /* First valid wave */ |
mli=0; /* Last valid wave */ |
mli=0; /* Last valid wave */ |
m=firstpass; |
m=firstpass; /* Loop on waves */ |
while(s[m][i] <= nlstate){ /* a live state */ |
while(s[m][i] <= nlstate){ /* a live state or unknown state */ |
if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */ |
if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */ |
mli=m-1;/* mw[++mi][i]=m-1; */ |
mli=m-1;/* mw[++mi][i]=m-1; */ |
}else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
}else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
mw[++mi][i]=m; |
mw[++mi][i]=m; /* Valid wave: incrementing mi and updating mi; mw[mi] is the wave number of mi_th valid transition */ |
mli=m; |
mli=m; |
} /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */ |
} /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */ |
if(m < lastpass){ /* m < lastpass, standard case */ |
if(m < lastpass){ /* m < lastpass, standard case */ |
m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */ |
m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */ |
} |
} |
else{ /* m >= lastpass, eventual special issue with warning */ |
else{ /* m = lastpass, eventual special issue with warning */ |
#ifdef UNKNOWNSTATUSNOTCONTRIBUTING |
#ifdef UNKNOWNSTATUSNOTCONTRIBUTING |
break; |
break; |
#else |
#else |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ /* no death date and known date of interview, case -2 (vital status unknown is warned later */ |
if(firsthree == 0){ |
if(firsthree == 0){ |
printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
firsthree=1; |
firsthree=1; |
|
}else if(firsthree >=1 && firsthree < 10){ |
|
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
|
firsthree++; |
|
}else if(firsthree == 10){ |
|
printf("Information, too many Information flags: no more reported to log either\n"); |
|
fprintf(ficlog,"Information, too many Information flags: no more reported to log either\n"); |
|
firsthree++; |
|
}else{ |
|
firsthree++; |
} |
} |
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p%d%d .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
mw[++mi][i]=m; /* Valid transition with unknown status */ |
mw[++mi][i]=m; |
|
mli=m; |
mli=m; |
} |
} |
if(s[m][i]==-2){ /* Vital status is really unknown */ |
if(s[m][i]==-2){ /* Vital status is really unknown */ |
nbwarn++; |
nbwarn++; |
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified? */ |
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified?not a transition */ |
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
} |
} |
Line 5136 void concatwav(int wav[], int **dh, int
|
Line 6123 void concatwav(int wav[], int **dh, int
|
#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE |
#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE |
else if ((int) andc[i] != 9999) { /* Date of death is known */ |
else if ((int) andc[i] != 9999) { /* Date of death is known */ |
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */ |
if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* month of death occured before last wave month and status should have been death instead of -1 */ |
nbwarn++; |
nbwarn++; |
if(firstfiv==0){ |
if(firstfiv==0){ |
printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
firstfiv=1; |
firstfiv=1; |
}else{ |
}else{ |
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
} |
} |
}else{ /* Death occured afer last wave potential bias */ |
s[m][i]=nlstate+1; /* Fixing the status as death. Be careful if multiple death states */ |
|
}else{ /* Month of Death occured afer last wave month, potential bias */ |
nberr++; |
nberr++; |
if(firstwo==0){ |
if(firstwo==0){ |
printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
firstwo=1; |
firstwo=1; |
} |
} |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictive wave at the date of last vital status scan, with a dead status or alive but unknown state status (-1). See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
} |
} |
}else{ /* if date of interview is unknown */ |
}else{ /* if date of interview is unknown */ |
/* death is known but not confirmed by death status at any wave */ |
/* death is known but not confirmed by death status at any wave */ |
if(firstfour==0){ |
if(firstfour==0){ |
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
firstfour=1; |
firstfour=1; |
} |
} |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
} |
} |
} /* end if date of death is known */ |
} /* end if date of death is known */ |
#endif |
#endif |
wav[i]=mi; /* mi should be the last effective wave (or mli) */ |
wav[i]=mi; /* mi should be the last effective wave (or mli), */ |
/* wav[i]=mw[mi][i]; */ |
/* wav[i]=mw[mi][i]; */ |
if(mi==0){ |
if(mi==0){ |
nbwarn++; |
nbwarn++; |
if(first==0){ |
if(first==0){ |
Line 5177 void concatwav(int wav[], int **dh, int
|
Line 6165 void concatwav(int wav[], int **dh, int
|
} /* End individuals */ |
} /* End individuals */ |
/* wav and mw are no more changed */ |
/* wav and mw are no more changed */ |
|
|
|
printf("Information, you have to check %d informations which haven't been logged!\n",firsthree); |
|
fprintf(ficlog,"Information, you have to check %d informations which haven't been logged!\n",firsthree); |
|
|
|
|
for(i=1; i<=imx; i++){ |
for(i=1; i<=imx; i++){ |
for(mi=1; mi<wav[i];mi++){ |
for(mi=1; mi<wav[i];mi++){ |
if (stepm <=0) |
if (stepm <=0) |
Line 5288 void concatwav(int wav[], int **dh, int
|
Line 6279 void concatwav(int wav[], int **dh, int
|
/* *cptcov=0; */ |
/* *cptcov=0; */ |
|
|
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
|
for (k=1; k <= maxncov; k++) |
|
for(j=1; j<=2; j++) |
|
nbcode[k][j]=0; /* Valgrind */ |
|
|
/* Loop on covariates without age and products and no quantitative variable */ |
/* Loop on covariates without age and products and no quantitative variable */ |
/* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */ |
for (k=1; k<=cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ |
for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */ |
|
for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ |
/* printf("Testing k=%d, cptcovt=%d\n",k, cptcovt); */ |
|
if(Dummy[k]==0 && Typevar[k] !=1 && Typevar[k] != 2){ /* Dummy covariate and not age product nor fixed product */ |
switch(Fixed[k]) { |
switch(Fixed[k]) { |
case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
|
modmaxcovj=0; |
|
modmincovj=0; |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
|
/* printf("Waiting for error tricode Tvar[%d]=%d i=%d (int)(covar[Tvar[k]][i]=%d\n",k,Tvar[k], i, (int)(covar[Tvar[k]][i])); */ |
ij=(int)(covar[Tvar[k]][i]); |
ij=(int)(covar[Tvar[k]][i]); |
/* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
/* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
* If product of Vn*Vm, still boolean *: |
* If product of Vn*Vm, still boolean *: |
Line 5308 void concatwav(int wav[], int **dh, int
|
Line 6305 void concatwav(int wav[], int **dh, int
|
modmaxcovj=ij; |
modmaxcovj=ij; |
else if (ij < modmincovj) |
else if (ij < modmincovj) |
modmincovj=ij; |
modmincovj=ij; |
if ((ij < -1) && (ij > NCOVMAX)){ |
if (ij <0 || ij >1 ){ |
|
printf("ERROR, IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i); |
|
fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i); |
|
fflush(ficlog); |
|
exit(1); |
|
} |
|
if ((ij < -1) || (ij > NCOVMAX)){ |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
exit(1); |
exit(1); |
}else |
}else |
Line 5354 void concatwav(int wav[], int **dh, int
|
Line 6357 void concatwav(int wav[], int **dh, int
|
/* nbcode[Tvar[j]][3]=2; */ |
/* nbcode[Tvar[j]][3]=2; */ |
/* To be continued (not working yet). */ |
/* To be continued (not working yet). */ |
ij=0; /* ij is similar to i but can jump over null modalities */ |
ij=0; /* ij is similar to i but can jump over null modalities */ |
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
|
|
/* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
|
/* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */ |
|
/* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of |
|
* nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */ |
|
/*, could be restored in the future */ |
|
for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
break; |
break; |
} |
} |
ij++; |
ij++; |
nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/ |
nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/ |
cptcode = ij; /* New max modality for covar j */ |
cptcode = ij; /* New max modality for covar j */ |
} /* end of loop on modality i=-1 to 1 or more */ |
} /* end of loop on modality i=-1 to 1 or more */ |
break; |
break; |
Line 5375 void concatwav(int wav[], int **dh, int
|
Line 6384 void concatwav(int wav[], int **dh, int
|
break; |
break; |
} /* end switch */ |
} /* end switch */ |
} /* end dummy test */ |
} /* end dummy test */ |
|
if(Dummy[k]==1 && Typevar[k] !=1 && Fixed ==0){ /* Fixed Quantitative covariate and not age product */ |
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
/* /\*recode from 0 *\/ */ |
if(Tvar[k]<=0 || Tvar[k]>=NCOVMAX){ |
/* k is a modality. If we have model=V1+V1*sex */ |
printf("Error k=%d \n",k); |
/* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
exit(1); |
/* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ |
} |
/* } */ |
if(isnan(covar[Tvar[k]][i])){ |
/* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ |
printf("ERROR, IMaCh doesn't treat fixed quantitative covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i); |
/* if (ij > ncodemax[j]) { */ |
fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i); |
/* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
fflush(ficlog); |
/* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
exit(1); |
/* break; */ |
} |
/* } */ |
} |
/* } /\* end of loop on modality k *\/ */ |
} /* end Quanti */ |
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
} /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/ |
|
|
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
/* Look at fixed dummy (single or product) covariates to check empty modalities */ |
/* Look at fixed dummy (single or product) covariates to check empty modalities */ |
Line 5402 void concatwav(int wav[], int **dh, int
|
Line 6411 void concatwav(int wav[], int **dh, int
|
|
|
ij=0; |
ij=0; |
/* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
/* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
for (k=1; k<= cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
for (k=1; k<= cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ |
|
/* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
/* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy and non empty in the model */ |
if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy simple and non empty in the model */ |
|
/* Typevar[k] =0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
|
/* Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product*/ |
/* If product not in single variable we don't print results */ |
/* If product not in single variable we don't print results */ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */ |
++ij;/* V5 + V4 + V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V1, *//* V5 quanti, V2 quanti, V4, V3, V1 dummies */ |
|
/* k= 1 2 3 4 5 6 7 8 9 */ |
|
/* Tvar[k]= 5 4 3 6 5 2 7 1 1 */ |
|
/* ij 1 2 3 */ |
|
/* Tvaraff[ij]= 4 3 1 */ |
|
/* Tmodelind[ij]=2 3 9 */ |
|
/* TmodelInvind[ij]=2 1 1 */ |
Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
Line 5424 void concatwav(int wav[], int **dh, int
|
Line 6442 void concatwav(int wav[], int **dh, int
|
} /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
} /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
/* ij--; */ |
/* ij--; */ |
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
*cptcov=ij; /*Number of total real effective covariates: effective |
*cptcov=ij; /* cptcov= Number of total real effective simple dummies (fixed or time arying) effective (used as cptcoveff in other functions) |
* because they can be excluded from the model and real |
* because they can be excluded from the model and real |
* if in the model but excluded because missing values, but how to get k from ij?*/ |
* if in the model but excluded because missing values, but how to get k from ij?*/ |
for(j=ij+1; j<= cptcovt; j++){ |
for(j=ij+1; j<= cptcovt; j++){ |
Line 5445 void concatwav(int wav[], int **dh, int
|
Line 6463 void concatwav(int wav[], int **dh, int
|
|
|
{ |
{ |
/* Health expectancies, no variances */ |
/* Health expectancies, no variances */ |
|
/* cij is the combination in the list of combination of dummy covariates */ |
|
/* strstart is a string of time at start of computing */ |
int i, j, nhstepm, hstepm, h, nstepm; |
int i, j, nhstepm, hstepm, h, nstepm; |
int nhstepma, nstepma; /* Decreasing with age */ |
int nhstepma, nstepma; /* Decreasing with age */ |
double age, agelim, hf; |
double age, agelim, hf; |
Line 5513 void concatwav(int wav[], int **dh, int
|
Line 6533 void concatwav(int wav[], int **dh, int
|
/* If stepm=6 months */ |
/* If stepm=6 months */ |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
/* printf("HELLO evsij Entering hpxij age=%d cij=%d hstepm=%d x[1]=%f nres=%d\n",(int) age, cij, hstepm, x[1], nres); */ |
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres); |
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres); |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
Line 5555 void concatwav(int wav[], int **dh, int
|
Line 6575 void concatwav(int wav[], int **dh, int
|
/* Covariances of health expectancies eij and of total life expectancies according |
/* Covariances of health expectancies eij and of total life expectancies according |
to initial status i, ei. . |
to initial status i, ei. . |
*/ |
*/ |
|
/* Very time consuming function, but already optimized with precov */ |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int nhstepma, nstepma; /* Decreasing with age */ |
int nhstepma, nstepma; /* Decreasing with age */ |
double age, agelim, hf; |
double age, agelim, hf; |
Line 5702 void concatwav(int wav[], int **dh, int
|
Line 6723 void concatwav(int wav[], int **dh, int
|
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
} |
} |
} |
} |
|
/* if((int)age ==50){ */ |
|
/* printf(" age=%d cij=%d nres=%d varhe[%d][%d]=%f ",(int)age, cij, nres, 1,2,varhe[1][2]); */ |
|
/* } */ |
/* Computing expectancies */ |
/* Computing expectancies */ |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres); |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
Line 5763 void concatwav(int wav[], int **dh, int
|
Line 6786 void concatwav(int wav[], int **dh, int
|
/************ Variance ******************/ |
/************ Variance ******************/ |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres) |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres) |
{ |
{ |
/* Variance of health expectancies */ |
/** Variance of health expectancies |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl); |
/* double **newm;*/ |
* double **newm; |
/* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/ |
* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) |
|
*/ |
|
|
/* int movingaverage(); */ |
/* int movingaverage(); */ |
double **dnewm,**doldm; |
double **dnewm,**doldm; |
double **dnewmp,**doldmp; |
double **dnewmp,**doldmp; |
int i, j, nhstepm, hstepm, h, nstepm ; |
int i, j, nhstepm, hstepm, h, nstepm ; |
|
int first=0; |
int k; |
int k; |
double *xp; |
double *xp; |
double **gp, **gm; /* for var eij */ |
double **gp, **gm; /**< for var eij */ |
double ***gradg, ***trgradg; /*for var eij */ |
double ***gradg, ***trgradg; /**< for var eij */ |
double **gradgp, **trgradgp; /* for var p point j */ |
double **gradgp, **trgradgp; /**< for var p point j */ |
double *gpp, *gmp; /* for var p point j */ |
double *gpp, *gmp; /**< for var p point j */ |
double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
double **varppt; /**< for var p point j nlstate to nlstate+ndeath */ |
double ***p3mat; |
double ***p3mat; |
double age,agelim, hf; |
double age,agelim, hf; |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
Line 5819 void concatwav(int wav[], int **dh, int
|
Line 6844 void concatwav(int wav[], int **dh, int
|
pstamp(ficresprobmorprev); |
pstamp(ficresprobmorprev); |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies"); |
fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies"); |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* We use TinvDoQresult[nres][resultmodel[nres][j] we sort according to the equation model and the resultline: it is a choice */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ /\* To be done*\/ */ |
|
/* fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
|
for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ /* To be done*/ |
|
/* fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); */ |
|
fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
for(j=1;j<=cptcoveff;j++) |
/* for(j=1;j<=cptcoveff;j++) */ |
fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]); |
/* fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficresprobmorprev,"\n"); |
fprintf(ficresprobmorprev,"\n"); |
|
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
Line 5839 void concatwav(int wav[], int **dh, int
|
Line 6870 void concatwav(int wav[], int **dh, int
|
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
/* } */ |
|
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
pstamp(ficresvij); |
pstamp(ficresvij); |
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
Line 5894 void concatwav(int wav[], int **dh, int
|
Line 6925 void concatwav(int wav[], int **dh, int
|
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
|
/**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and |
|
* returns into prlim . |
|
*/ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
|
|
|
/* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */ |
if (popbased==1) { |
if (popbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
Line 5906 void concatwav(int wav[], int **dh, int
|
Line 6940 void concatwav(int wav[], int **dh, int
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
prlim[i][i]=mobaverage[(int)age][i][ij]; |
} |
} |
} |
} |
|
/**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h. |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); /* Returns p3mat[i][j][h] for h=1 to nhstepm */ |
*/ |
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); /* Returns p3mat[i][j][h] for h=0 to nhstepm */ |
|
/**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability |
|
* at horizon h in state j including mortality. |
|
*/ |
for(j=1; j<= nlstate; j++){ |
for(j=1; j<= nlstate; j++){ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
} |
} |
} |
} |
/* Next for computing probability of death (h=1 means |
/* Next for computing shifted+ probability of death (h=1 means |
computed over hstepm matrices product = hstepm*stepm months) |
computed over hstepm matrices product = hstepm*stepm months) |
as a weighted average of prlim. |
as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 . |
*/ |
*/ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
} |
} |
/* end probability of death */ |
|
|
/* Again with minus shift */ |
|
|
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres); |
|
|
if (popbased==1) { |
if (popbased==1) { |
Line 5955 void concatwav(int wav[], int **dh, int
|
Line 6994 void concatwav(int wav[], int **dh, int
|
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
} |
} |
/* end probability of death */ |
/* end shifting computations */ |
|
|
|
/**< Computing gradient matrix at horizon h |
|
*/ |
for(j=1; j<= nlstate; j++) /* vareij */ |
for(j=1; j<= nlstate; j++) /* vareij */ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
} |
} |
|
/**< Gradient of overall mortality p.3 (or p.j) |
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
*/ |
|
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */ |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
} |
} |
|
|
} /* End theta */ |
} /* End theta */ |
|
|
|
/* We got the gradient matrix for each theta and state j */ |
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
|
|
for(h=0; h<=nhstepm; h++) /* veij */ |
for(h=0; h<=nhstepm; h++) /* veij */ |
Line 5978 void concatwav(int wav[], int **dh, int
|
Line 7021 void concatwav(int wav[], int **dh, int
|
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
for(theta=1; theta <=npar; theta++) |
for(theta=1; theta <=npar; theta++) |
trgradgp[j][theta]=gradgp[theta][j]; |
trgradgp[j][theta]=gradgp[theta][j]; |
|
/**< as well as its transposed matrix |
|
*/ |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
for(j=1;j<=nlstate;j++) |
for(j=1;j<=nlstate;j++) |
vareij[i][j][(int)age] =0.; |
vareij[i][j][(int)age] =0.; |
|
|
|
/* Computing trgradg by matcov by gradg at age and summing over h |
|
* and k (nhstepm) formula 15 of article |
|
* Lievre-Brouard-Heathcote |
|
*/ |
|
|
for(h=0;h<=nhstepm;h++){ |
for(h=0;h<=nhstepm;h++){ |
for(k=0;k<=nhstepm;k++){ |
for(k=0;k<=nhstepm;k++){ |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
Line 5995 void concatwav(int wav[], int **dh, int
|
Line 7044 void concatwav(int wav[], int **dh, int
|
} |
} |
} |
} |
|
|
/* pptj */ |
/* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of |
|
* p.j overall mortality formula 49 but computed directly because |
|
* we compute the grad (wix pijx) instead of grad (pijx),even if |
|
* wix is independent of theta. |
|
*/ |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
Line 6098 void concatwav(int wav[], int **dh, int
|
Line 7151 void concatwav(int wav[], int **dh, int
|
int theta; |
int theta; |
|
|
pstamp(ficresvpl); |
pstamp(ficresvpl); |
fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); |
fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n"); |
fprintf(ficresvpl,"# Age "); |
fprintf(ficresvpl,"# Age "); |
if(nresult >=1) |
if(nresult >=1) |
fprintf(ficresvpl," Result# "); |
fprintf(ficresvpl," Result# "); |
Line 6127 void concatwav(int wav[], int **dh, int
|
Line 7180 void concatwav(int wav[], int **dh, int
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
for(i=1; i<=npar; i++){ /* Computes gradient */ |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
/* prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */ |
else |
/* else */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gp[i] = prlim[i][i]; |
gp[i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
} |
} |
for(i=1; i<=npar; i++) /* Computes gradient */ |
for(i=1; i<=npar; i++) /* Computes gradient */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
/* prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */ |
else |
/* else */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gm[i] = prlim[i][i]; |
gm[i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
Line 6189 void concatwav(int wav[], int **dh, int
|
Line 7242 void concatwav(int wav[], int **dh, int
|
fprintf(ficresvpl,"%.0f ",age ); |
fprintf(ficresvpl,"%.0f ",age ); |
if(nresult >=1) |
if(nresult >=1) |
fprintf(ficresvpl,"%d ",nres ); |
fprintf(ficresvpl,"%d ",nres ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++){ |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
|
/* for(j=1;j<=nlstate;j++) */ |
|
/* fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */ |
|
} |
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
free_vector(gp,1,nlstate); |
free_vector(gp,1,nlstate); |
free_vector(gm,1,nlstate); |
free_vector(gm,1,nlstate); |
Line 6338 void varprob(char optionfilefiname[], do
|
Line 7394 void varprob(char optionfilefiname[], do
|
int k2, l2, j1, z1; |
int k2, l2, j1, z1; |
int k=0, l; |
int k=0, l; |
int first=1, first1, first2; |
int first=1, first1, first2; |
|
int nres=0; /* New */ |
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
double **dnewm,**doldm; |
double **dnewm,**doldm; |
double *xp; |
double *xp; |
Line 6407 void varprob(char optionfilefiname[], do
|
Line 7464 void varprob(char optionfilefiname[], do
|
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
|
|
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. %s</li>\n",optionfilehtmcov,optionfilehtmcov); |
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
Line 6425 To be simple, these graphs help to under
|
Line 7482 To be simple, these graphs help to under
|
tj = (int) pow(2,cptcoveff); |
tj = (int) pow(2,cptcoveff); |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
j1=0; |
j1=0; |
for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates or only once*/ |
|
|
for(nres=1;nres <=nresult; nres++){ /* For each resultline */ |
|
for(j1=1; j1<=tj;j1++){ /* For any combination of dummy covariates, fixed and varying */ |
|
/* printf("Varprob TKresult[nres]=%d j1=%d, nres=%d, cptcovn=%d, cptcoveff=%d tj=%d cptcovs=%d\n", TKresult[nres], j1, nres, cptcovn, cptcoveff, tj, cptcovs); */ |
|
if(tj != 1 && TKresult[nres]!= j1) |
|
continue; |
|
|
|
/* for(j1=1; j1<=tj;j1++){ /\* For each valid combination of covariates or only once*\/ */ |
|
/* for(nres=1;nres <=1; nres++){ /\* For each resultline *\/ */ |
|
/* /\* for(nres=1;nres <=nresult; nres++){ /\\* For each resultline *\\/ *\/ */ |
if (cptcovn>0) { |
if (cptcovn>0) { |
fprintf(ficresprob, "\n#********** Variable "); |
fprintf(ficresprob, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprob, "**********\n#\n"); |
|
fprintf(ficresprobcov, "\n#********** Variable "); |
fprintf(ficresprobcov, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficgp, "\n#********** Variable "); |
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
fprintf(ficresprobcor, "\n#********** Variable "); |
|
|
|
/* Including quantitative variables of the resultline to be done */ |
|
for (z1=1; z1<=cptcovs; z1++){ /* Loop on each variable of this resultline */ |
|
/* printf("Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); */ |
|
fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); |
|
/* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */ |
|
if(Dummy[modelresult[nres][z1]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to z1 in resultline */ |
|
if(Fixed[modelresult[nres][z1]]==0){ /* Fixed referenced to model equation */ |
|
fprintf(ficresprob,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficresprobcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficgp,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(fichtmcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficresprobcor,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficresprob,"fixed "); |
|
fprintf(ficresprobcov,"fixed "); |
|
fprintf(ficgp,"fixed "); |
|
fprintf(fichtmcov,"fixed "); |
|
fprintf(ficresprobcor,"fixed "); |
|
}else{ |
|
fprintf(ficresprob,"varyi "); |
|
fprintf(ficresprobcov,"varyi "); |
|
fprintf(ficgp,"varyi "); |
|
fprintf(fichtmcov,"varyi "); |
|
fprintf(ficresprobcor,"varyi "); |
|
} |
|
}else if(Dummy[modelresult[nres][z1]]==1){ /* Quanti variable */ |
|
/* For each selected (single) quantitative value */ |
|
fprintf(ficresprob," V%d=%lg ",Tvqresult[nres][z1],Tqresult[nres][z1]); |
|
if(Fixed[modelresult[nres][z1]]==0){ /* Fixed */ |
|
fprintf(ficresprob,"fixed "); |
|
fprintf(ficresprobcov,"fixed "); |
|
fprintf(ficgp,"fixed "); |
|
fprintf(fichtmcov,"fixed "); |
|
fprintf(ficresprobcor,"fixed "); |
|
}else{ |
|
fprintf(ficresprob,"varyi "); |
|
fprintf(ficresprobcov,"varyi "); |
|
fprintf(ficgp,"varyi "); |
|
fprintf(fichtmcov,"varyi "); |
|
fprintf(ficresprobcor,"varyi "); |
|
} |
|
}else{ |
|
printf("Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
fprintf(ficlog,"Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
exit(1); |
|
} |
|
} /* End loop on variable of this resultline */ |
|
/* for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); */ |
|
fprintf(ficresprob, "**********\n#\n"); |
fprintf(ficresprobcov, "**********\n#\n"); |
fprintf(ficresprobcov, "**********\n#\n"); |
|
|
fprintf(ficgp, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficgp, "**********\n#\n"); |
fprintf(ficgp, "**********\n#\n"); |
|
|
|
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
|
fprintf(ficresprobcor, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprobcor, "**********\n#"); |
fprintf(ficresprobcor, "**********\n#"); |
if(invalidvarcomb[j1]){ |
if(invalidvarcomb[j1]){ |
fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); |
fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); |
Line 6456 To be simple, these graphs help to under
|
Line 7561 To be simple, these graphs help to under
|
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
for (age=bage; age<=fage; age ++){ |
for (age=bage; age<=fage; age ++){ /* Fo each age we feed the model equation with covariates, using precov as in hpxij() ? */ |
cov[2]=age; |
cov[2]=age; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= age*age; |
cov[3]= age*age; |
for (k=1; k<=cptcovn;k++) { |
/* New code end of combination but for each resultline */ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
/*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4 |
if(Typevar[k1]==1){ /* A product with age */ |
* 1 1 1 1 1 |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
* 2 2 1 1 1 |
}else{ |
* 3 1 2 1 1 |
cov[2+nagesqr+k1]=precov[nres][k1]; |
*/ |
} |
/* nbcode[1][1]=0 nbcode[1][2]=1;*/ |
}/* End of loop on model equation */ |
} |
/* Old code */ |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* /\* for (k=1; k<=cptcovn;k++) { *\/ */ |
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; *\/ */ |
for (k=1; k<=cptcovprod;k++) |
/* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* /\* Here comes the value of the covariate 'j1' after renumbering k with single dummy covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(j1,TnsdVar[TvarsD[k]])]; */ |
|
/* /\*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*\//\* j1 1 2 3 4 */ |
|
/* * 1 1 1 1 1 */ |
|
/* * 2 2 1 1 1 */ |
|
/* * 3 1 2 1 1 */ |
|
/* *\/ */ |
|
/* /\* nbcode[1][1]=0 nbcode[1][2]=1;*\/ */ |
|
/* } */ |
|
/* /\* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */ |
|
/* /\* ) p nbcode[Tvar[Tage[k]]][(1 & (ij-1) >> (k-1))+1] *\/ */ |
|
/* /\*for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; *\/ */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* For product with age *\/ */ |
|
/* if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(j1,TnsdVar[Tvar[Tage[k]]])]*cov[2]; */ |
|
/* /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */ |
|
/* printf("Internal IMaCh error, don't know which value for quantitative covariate with age, Tage[k]%d, k=%d, Tvar[Tage[k]]=V%d, age=%d\n",Tage[k],k ,Tvar[Tage[k]], (int)cov[2]); */ |
|
/* /\* cov[2+nagesqr+Tage[k]]=meanq[k]/idq[k]*cov[2];/\\* Using the mean of quantitative variable Tvar[Tage[k]] /\\* Tqresult[nres][k]; *\\/ *\/ */ |
|
/* /\* exit(1); *\/ */ |
|
/* /\* cov[++k1]=Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* /\* cov[2+Tage[k]+nagesqr]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){/\* For product without age *\/ */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* }else{ /\* Should we use the mean of the quantitative variables? *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * Tqresult[nres][resultmodel[nres][k]]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][TnsdVar[Tvard[k][1]]]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][TnsdVar[Tvard[k][1]]]* Tqinvresult[nres][TnsdVar[Tvard[k][2]]]; */ |
|
/* /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; *\/ */ |
|
/* } */ |
|
/* } */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* } */ |
|
/* For each age and combination of dummy covariates we slightly move the parameters of delti in order to get the gradient*/ |
for(theta=1; theta <=npar; theta++){ |
for(theta=1; theta <=npar; theta++){ |
for(i=1; i<=npar; i++) |
for(i=1; i<=npar; i++) |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
Line 6604 To be simple, these graphs help to under
|
Line 7751 To be simple, these graphs help to under
|
} |
} |
|
|
/* Eigen vectors */ |
/* Eigen vectors */ |
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){ |
|
printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12); |
|
fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12); |
|
v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12))); |
|
}else |
|
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
/*v21=sqrt(1.-v11*v11); *//* error */ |
/*v21=sqrt(1.-v11*v11); *//* error */ |
v21=(lc1-v1)/cv12*v11; |
v21=(lc1-v1)/cv12*v11; |
v12=-v21; |
v12=-v21; |
Line 6635 To be simple, these graphs help to under
|
Line 7787 To be simple, these graphs help to under
|
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)), \ |
mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2))); /* For gnuplot only */ |
mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */ |
}else{ |
}else{ |
first=0; |
first=0; |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
Line 6655 To be simple, these graphs help to under
|
Line 7807 To be simple, these graphs help to under
|
} /*l1 */ |
} /*l1 */ |
}/* k1 */ |
}/* k1 */ |
} /* loop on combination of covariates j1 */ |
} /* loop on combination of covariates j1 */ |
|
} /* loop on nres */ |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
Line 6672 To be simple, these graphs help to under
|
Line 7825 To be simple, these graphs help to under
|
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
int lastpass, int stepm, int weightopt, char model[],\ |
int lastpass, int stepm, int weightopt, char model[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int popforecast, int mobilav, int prevfcast, int mobilavproj, int backcast, int estepm , \ |
int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \ |
double jprev1, double mprev1,double anprev1, double dateprev1, double dateproj1, double dateback1, \ |
double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \ |
double jprev2, double mprev2,double anprev2, double dateprev2, double dateproj2, double dateback2){ |
double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){ |
int jj1, k1, i1, cpt, k4, nres; |
int jj1, k1, i1, cpt, k4, nres; |
|
/* In fact some results are already printed in fichtm which is open */ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
</ul>"); |
</ul>"); |
fprintf(fichtm,"<ul><li> model=1+age+%s\n \ |
/* fprintf(fichtm,"<ul><li> model=1+age+%s\n \ */ |
</ul>", model); |
/* </ul>", model); */ |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ", |
fprintf(fichtm,"<li> - Observed prevalence (cross-sectional prevalence) in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ", |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm")); |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm")); |
fprintf(fichtm,", <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
fprintf(fichtm,", <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
Line 6695 void printinghtml(char fileresu[], char
|
Line 7848 void printinghtml(char fileresu[], char
|
- Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
- Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_")); |
stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
- Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
- Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_")); |
subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
Line 6714 void printinghtml(char fileresu[], char
|
Line 7867 void printinghtml(char fileresu[], char
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
fprintf(fichtm," \n<ul><li><b>Graphs (first order)</b></li><p>"); |
|
|
jj1=0; |
jj1=0; |
|
|
fprintf(fichtm," \n<ul>"); |
fprintf(fichtm," \n<ul>"); |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k1=1; k1<=m;k1++){ /* For each combination of covariate */ |
/* k1=nres; */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0)k1=1; /* To be checked for no result */ |
|
/* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescov"); |
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescov"); |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ |
fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
} |
|
/* for (cpt=1; cpt<=cptcoveff;cpt++){ */ |
|
/* fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
fprintf(fichtm,"\">"); |
fprintf(fichtm,"\">"); |
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
fprintf(fichtm,"************ Results for covariates"); |
fprintf(fichtm,"************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
for (cpt=1; cpt<=cptcovs;cpt++){ |
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
} |
|
/* fprintf(fichtm,"************ Results for covariates"); */ |
|
/* for (cpt=1; cpt<=cptcoveff;cpt++){ */ |
|
/* fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
continue; |
continue; |
Line 6749 void printinghtml(char fileresu[], char
|
Line 7912 void printinghtml(char fileresu[], char
|
fprintf(fichtm,"</a></li>"); |
fprintf(fichtm,"</a></li>"); |
} /* cptcovn >0 */ |
} /* cptcovn >0 */ |
} |
} |
fprintf(fichtm," \n</ul>"); |
fprintf(fichtm," \n</ul>"); |
|
|
jj1=0; |
jj1=0; |
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k1=1; k1<=m;k1++){ /* For each combination of covariate */ |
/* k1=nres; */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
fprintf(fichtm,"\n<p><a name=\"rescov"); |
fprintf(fichtm,"\n<p><a name=\"rescov"); |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
for (cpt=1; cpt<=cptcovs;cpt++){ |
fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
} |
|
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
} |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
fprintf(fichtm,"\"</a>"); |
fprintf(fichtm,"\"</a>"); |
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
for (cpt=1; cpt<=cptcovs;cpt++){ |
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); |
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout); |
printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
/* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */ |
/* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */ |
} |
} |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
|
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout); |
|
} |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
printf("\nCombination (%d) ignored because no cases \n",k1); |
printf("\nCombination (%d) ignored because no cases \n",k1); |
Line 6804 divided by h: <sub>h</sub>P<sub>ij</sub>
|
Line 7965 divided by h: <sub>h</sub>P<sub>ij</sub>
|
<img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
<img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Survival functions (period) in state j */ |
/* Survival functions (period) in state j */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
} |
} |
/* State specific survival functions (period) */ |
/* State specific survival functions (period) */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ |
fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\ |
Or probability to survive in various states (1 to %d) being in state %d at different ages. \ |
And probability to be observed in various states (up to %d) being in state %d at different ages. \ |
<a href=\"%s_%d-%d-%d.svg\">%s_%d%d-%d.svg</a><br> <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
<a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> ", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
|
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
} |
} |
/* Period (stable) prevalence in each health state */ |
/* Period (forward stable) prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
} |
} |
if(backcast==1){ |
if(prevbcast==1){ |
/* Period (stable) back prevalence in each health state */ |
/* Backward prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJB_"),subdirf2(optionfilefiname,"PIJB_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
} |
} |
} |
} |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* Projection of prevalence up to period (stable) prevalence in each health state */ |
/* Projection of prevalence up to period (forward stable) prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateproj1, dateproj2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"F_"),subdirf2(optionfilefiname,"F_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", |
|
subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
} |
} |
} |
} |
if(backcast==1){ |
if(prevbcast==1){ |
/* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */ |
/* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \ |
fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \ |
from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \ |
from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \ |
account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \ |
account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \ |
with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \ |
with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"FB_"),subdirf2(optionfilefiname,"FB_")); |
|
fprintf(fichtm," <img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
} |
} |
} |
} |
|
|
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a> <br> \ |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\"> %s.txt</a>)\n<br>",subdirf2(optionfilefiname,"E_"),subdirf2(optionfilefiname,"E_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres ); |
} |
} |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
}/* End k1=nres */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
|
|
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
Line 6881 See page 'Matrix of variance-covariance
|
Line 8051 See page 'Matrix of variance-covariance
|
<a href=\"%s\">%s</a> <br>\n</li>", |
<a href=\"%s\">%s</a> <br>\n</li>", |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
- Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
|
/* if(popforecast==1) fprintf(fichtm,"\n */ |
/* if(popforecast==1) fprintf(fichtm,"\n */ |
Line 6895 See page 'Matrix of variance-covariance
|
Line 8065 See page 'Matrix of variance-covariance
|
/* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ |
/* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ |
/* <br>",fileres,fileres,fileres,fileres); */ |
/* <br>",fileres,fileres,fileres,fileres); */ |
/* else */ |
/* else */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=1+age+%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
fflush(fichtm); |
fflush(fichtm); |
fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
fprintf(fichtm," <ul><li><b>Graphs (second order)</b></li><p>"); |
|
|
|
jj1=0; |
|
|
|
fprintf(fichtm," \n<ul>"); |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* k1=nres; */ |
|
k1=TKresult[nres]; |
|
/* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescovsecond"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
fprintf(fichtm,"\">"); |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm,"************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
|
continue; |
|
} |
|
fprintf(fichtm,"</a></li>"); |
|
} /* cptcovn >0 */ |
|
} /* End nres */ |
|
fprintf(fichtm," \n</ul>"); |
|
|
jj1=0; |
jj1=0; |
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k1=1; k1<=m;k1++){ |
/* k1=nres; */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* for(k1=1; k1<=m;k1++){ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<p><a name=\"rescovsecond"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
fprintf(fichtm,"\"</a>"); |
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++) /**< cptcoveff number of variables */ |
for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcoveff number of variables */ |
fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]); |
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
} |
fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
|
} |
|
|
|
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model); |
|
|
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); |
fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); |
continue; |
continue; |
} |
} |
} |
} /* If cptcovn >0 */ |
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \ |
fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>\n <br>\ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
<img src=\"%s_%d-%d-%d.svg\">",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s\">%s</a>)\n <br>",subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"V_"), cpt,k1,nres); |
} |
} |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
health expectancies in each live states (1 to %d). If popbased=1 the smooth (due to the model) \ |
true period expectancies (those weighted with period prevalences are also\ |
true period expectancies (those weighted with period prevalences are also\ |
drawn in addition to the population based expectancies computed using\ |
drawn in addition to the population based expectancies computed using\ |
observed and cahotic prevalences: <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>\n<br>\ |
observed and cahotic prevalences: <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>",nlstate, subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres); |
<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>) \n<br>",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres); |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
|
}/* End nres */ |
}/* End nres */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
fflush(fichtm); |
fflush(fichtm); |
} |
} |
|
|
/******************* Gnuplot file **************/ |
/******************* Gnuplot file **************/ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int backcast, char pathc[], double p[], int offyear, int offbyear){ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){ |
|
|
char dirfileres[132],optfileres[132]; |
char dirfileres[132],optfileres[132]; |
char gplotcondition[132], gplotlabel[132]; |
char gplotcondition[132], gplotlabel[132]; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,kf=0,kvar=0,kk=0,ipos=0,iposold=0,ij=0, ijp=0, l=0; |
int lv=0, vlv=0, kl=0; |
int lv=0, vlv=0, kl=0; |
int ng=0; |
int ng=0; |
int vpopbased; |
int vpopbased; |
Line 6975 void printinggnuplot(char fileresu[], ch
|
Line 8186 void printinggnuplot(char fileresu[], ch
|
fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate); |
fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate); |
fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
|
fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] for [j=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate, nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
fprintf(ficgp,"\n#show arrow\nunset label\n"); |
fprintf(ficgp,"\n#show arrow\nunset label\n"); |
fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0. font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate); |
fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0. font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate); |
Line 7012 void printinggnuplot(char fileresu[], ch
|
Line 8223 void printinggnuplot(char fileresu[], ch
|
fprintf(ficgp,"\nset out;unset log\n"); |
fprintf(ficgp,"\nset out;unset log\n"); |
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
|
/* Plot the probability implied in the likelihood by covariate value */ |
|
fprintf(ficgp,"\nset ter pngcairo size 640, 480"); |
|
/* if(debugILK==1){ */ |
|
for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */ |
|
kvar=Tvar[TvarFind[kf]]; /* variable name */ |
|
/* k=18+Tvar[TvarFind[kf]];/\*offset because there are 18 columns in the ILK_ file but could be placed else where *\/ */ |
|
k=18+kf;/*offset because there are 18 columns in the ILK_ file */ |
|
for (i=1; i<= nlstate ; i ++) { |
|
fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar); |
|
fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot \"%s\"",subdirf(fileresilk)); |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar); |
|
} |
|
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
|
} |
|
} /* End of each covariate dummy */ |
|
for(ncovv=1, iposold=0, kk=0; ncovv <= ncovvt ; ncovv++){ |
|
/* Other example V1 + V3 + V5 + age*V1 + age*V3 + age*V5 + V1*V3 + V3*V5 + V1*V5 |
|
* kmodel = 1 2 3 4 5 6 7 8 9 |
|
* varying 1 2 3 4 5 |
|
* ncovv 1 2 3 4 5 6 7 8 |
|
* TvarVV[ncovv] V3 5 1 3 3 5 1 5 |
|
* TvarVVind[ncovv]=kmodel 2 3 7 7 8 8 9 9 |
|
* TvarFind[kmodel] 1 0 0 0 0 0 0 0 0 |
|
* kdata ncovcol=[V1 V2] nqv=0 ntv=[V3 V4] nqtv=V5 |
|
* Dummy[kmodel] 0 0 1 2 2 3 1 1 1 |
|
*/ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */ |
|
kvar=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ |
|
/* printf("DebugILK ficgp ncovv=%d, kvar=TvarVV[ncovv]=%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
/* printf(" %d",ipos); */ |
|
/* fprintf(ficresilk," V%d",TvarVV[ncovv]); */ |
|
/* printf(" DebugILK ficgp suite ipos=%d != iposold=%d\n", ipos, iposold); */ |
|
kk++; /* Position of the ncovv column in ILK_ */ |
|
k=18+ncovf+kk; /*offset because there are 18 columns in the ILK_ file plus ncovf fixed covariate */ |
|
if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm) */ |
|
for (i=1; i<= nlstate ; i ++) { |
|
fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar); |
|
fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot \"%s\"",subdirf(fileresilk)); |
|
|
|
if(gnuplotversion >=5.2){ /* Former gnuplot versions do not have variable pointsize!! */ |
|
/* printf("DebugILK gnuplotversion=%g >=5.2\n",gnuplotversion); */ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar); |
|
} |
|
}else{ |
|
/* printf("DebugILK gnuplotversion=%g <5.2\n",gnuplotversion); */ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable \\\n",i,1,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable ",i,j,k,i,j,kvar); |
|
} |
|
} |
|
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
|
} |
|
}/* End if dummy varying */ |
|
}else{ /*Product */ |
|
/* printf("*"); */ |
|
/* fprintf(ficresilk,"*"); */ |
|
} |
|
iposold=ipos; |
|
} /* For each time varying covariate */ |
|
/* } /\* debugILK==1 *\/ */ |
|
/* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */ |
|
/* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */ |
|
/* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */ |
|
fprintf(ficgp,"\nset out;unset log\n"); |
|
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
|
|
|
|
strcpy(dirfileres,optionfilefiname); |
strcpy(dirfileres,optionfilefiname); |
strcpy(optfileres,"vpl"); |
strcpy(optfileres,"vpl"); |
/* 1eme*/ |
/* 1eme*/ |
for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */ |
for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */ |
for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */ |
/* for (k1=1; k1<= m ; k1 ++){ /\* For each valid combination of covariate *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
if(m != 1 && TKresult[nres]!= k1) |
/* if(m != 1 && TKresult[nres]!= k1) */ |
continue; |
/* continue; */ |
/* We are interested in selected combination by the resultline */ |
/* We are interested in selected combination by the resultline */ |
/* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */ |
/* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */ |
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); |
fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files and live state =%d ", cpt); |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate k get corresponding value lv for combination k1 *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the value of the covariate corresponding to k1 combination *\\/ *\/ */ |
/* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
/* printf(" V%d=%d ",Tvaraff[k],vlv); */ |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
} |
/* vlv= nbcode[Tvaraff[k]][lv]; /\* vlv is the value of the covariate lv, 0 or 1 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv *\/ */ |
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
/* /\* printf(" V%d=%d ",Tvaraff[k],vlv); *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* /\* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
} |
} |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
/* printf("\n#\n"); */ |
/* printf("\n#\n"); */ |
Line 7052 void printinggnuplot(char fileresu[], ch
|
Line 8343 void printinggnuplot(char fileresu[], ch
|
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres); |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres); |
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
/* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */ |
|
fprintf(ficgp,"set title \"Alive state %d %s model=1+age+%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
/* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */ |
/* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */ |
/* k1-1 error should be nres-1*/ |
/* k1-1 error should be nres-1*/ |
Line 7060 void printinggnuplot(char fileresu[], ch
|
Line 8352 void printinggnuplot(char fileresu[], ch
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
Line 7078 void printinggnuplot(char fileresu[], ch
|
Line 8370 void printinggnuplot(char fileresu[], ch
|
}else{ |
}else{ |
kl=0; |
kl=0; |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */ |
|
lv=codtabm(k1,TnsdVar[Tvaraff[k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
Line 7098 void printinggnuplot(char fileresu[], ch
|
Line 8391 void printinggnuplot(char fileresu[], ch
|
} /* end covariate */ |
} /* end covariate */ |
} /* end if no covariate */ |
} /* end if no covariate */ |
|
|
if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
if(cptcoveff ==0){ |
if(cptcoveff ==0){ |
Line 7106 void printinggnuplot(char fileresu[], ch
|
Line 8399 void printinggnuplot(char fileresu[], ch
|
}else{ |
}else{ |
kl=0; |
kl=0; |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */ |
|
lv=codtabm(k1,TnsdVar[Tvaraff[k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* vlv= nbcode[Tvaraff[k]][lv]; */ |
|
vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; |
kl++; |
kl++; |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
Line 7120 void printinggnuplot(char fileresu[], ch
|
Line 8415 void printinggnuplot(char fileresu[], ch
|
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
}else{ |
}else{ |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]); |
kl++; |
kl++; |
} |
} |
} /* end covariate */ |
} /* end covariate */ |
} /* end if no covariate */ |
} /* end if no covariate */ |
if(backcast == 1){ |
if(prevbcast == 1){ |
fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
/* k1-1 error should be nres-1*/ |
/* k1-1 error should be nres-1*/ |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
Line 7137 void printinggnuplot(char fileresu[], ch
|
Line 8432 void printinggnuplot(char fileresu[], ch
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 5,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
for (i=1; i<= nlstate ; i ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
fprintf(ficgp,"\" t\"\" w l lt 4"); |
fprintf(ficgp,"\" t\"\" w l lt 4"); |
} /* end if backprojcast */ |
} /* end if backprojcast */ |
} /* end if backcast */ |
} /* end if prevbcast */ |
fprintf(ficgp,"\nset out ;unset label;\n"); |
/* fprintf(ficgp,"\nset out ;unset label;\n"); */ |
|
fprintf(ficgp,"\nset out ;unset title;\n"); |
} /* nres */ |
} /* nres */ |
} /* k1 */ |
/* } /\* k1 *\/ */ |
} /* cpt */ |
} /* cpt */ |
|
|
|
|
/*2 eme*/ |
/*2 eme*/ |
for (k1=1; k1<= m ; k1 ++){ |
/* for (k1=1; k1<= m ; k1 ++){ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
} |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
/* for(k=1; k <= ncovds; k++){ */ |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* } */ |
|
/* /\* for(k=1; k <= ncovds; k++){ *\/ */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
} |
} |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
Line 7213 void printinggnuplot(char fileresu[], ch
|
Line 8516 void printinggnuplot(char fileresu[], ch
|
} /* vpopbased */ |
} /* vpopbased */ |
fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ |
fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ |
} /* end nres */ |
} /* end nres */ |
} /* k1 end 2 eme*/ |
/* } /\* k1 end 2 eme*\/ */ |
|
|
|
|
/*3eme*/ |
/*3eme*/ |
for (k1=1; k1<= m ; k1 ++){ |
/* for (k1=1; k1<= m ; k1 ++){ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
for (cpt=1; cpt<= nlstate ; cpt ++) { /* Fragile no verification of covariate values */ |
fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files: combination=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files: combination=%d state=%d",k1, cpt); |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
} |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
} |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
} |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
Line 7268 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 8578 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
} |
} |
fprintf(ficgp,"\nunset label;\n"); |
fprintf(ficgp,"\nunset label;\n"); |
} /* end nres */ |
} /* end nres */ |
} /* end kl 3eme */ |
/* } /\* end kl 3eme *\/ */ |
|
|
/* 4eme */ |
/* 4eme */ |
/* Survival functions (period) from state i in state j by initial state i */ |
/* Survival functions (period) from state i in state j by initial state i */ |
for (k1=1; k1<=m; k1++){ /* For each covariate and each value */ |
/* for (k1=1; k1<=m; k1++){ /\* For each covariate and each value *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/ |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state %d : 'LIJ_' files, cov=%d state=%d", cpt, k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
} |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
Line 7319 set ter svg size 640, 480\nunset log y\n
|
Line 8636 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp,"\nset out; unset label;\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end nres */ |
} /* end nres */ |
} /* end covariate k1 */ |
/* } /\* end covariate k1 *\/ */ |
|
|
/* 5eme */ |
/* 5eme */ |
/* Survival functions (period) from state i in state j by final state j */ |
/* Survival functions (period) from state i in state j by final state j */ |
for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */ |
/* for (k1=1; k1<= m ; k1++){ /\* For each covariate combination if any *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
} |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
Line 7377 set ter svg size 640, 480\nunset log y\n
|
Line 8701 set ter svg size 640, 480\nunset log y\n
|
} |
} |
fprintf(ficgp,"\nset out; unset label;\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
/* } /\* end covariate *\/ */ |
} /* end nres */ |
} /* end nres */ |
|
|
/* 6eme */ |
/* 6eme */ |
/* CV preval stable (period) for each covariate */ |
/* CV preval stable (period) for each covariate */ |
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */ |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
} |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
Line 7431 set ter svg size 640, 480\nunset log y\n
|
Line 8762 set ter svg size 640, 480\nunset log y\n
|
|
|
|
|
/* 7eme */ |
/* 7eme */ |
if(backcast == 1){ |
if(prevbcast == 1){ |
/* CV back preval stable (period) for each covariate */ |
/* CV backward prevalence for each covariate */ |
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */ |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pijb' files, covariatecombination#=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
} |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
Line 7472 set ter svg size 640, 480\nunset log y\n
|
Line 8810 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp,", '' "); |
fprintf(ficgp,", '' "); |
/* l=(nlstate+ndeath)*(i-1)+1; */ |
/* l=(nlstate+ndeath)*(i-1)+1; */ |
l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */ |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */ |
/* for (j=2; j<= nlstate ; j ++) */ |
/* for (j=2; j<= nlstate ; j ++) */ |
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
Line 7483 set ter svg size 640, 480\nunset log y\n
|
Line 8821 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp,"\nset out; unset label;\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
} /* End if backcast */ |
} /* End if prevbcast */ |
|
|
/* 8eme */ |
/* 8eme */ |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* Projection from cross-sectional to stable (period) for each covariate */ |
/* Projection from cross-sectional to forward stable (period) prevalence for each covariate */ |
|
|
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
} |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
Line 7563 set ter svg size 640, 480\nunset log y\n
|
Line 8908 set ter svg size 640, 480\nunset log y\n
|
kl=0; |
kl=0; |
strcpy(gplotcondition,"("); |
strcpy(gplotcondition,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
lv=codtabm(k1,TnsdVar[Tvaraff[k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
/* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */ |
|
vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; |
kl++; |
kl++; |
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
kl++; |
kl++; |
Line 7599 set ter svg size 640, 480\nunset log y\n
|
Line 8946 set ter svg size 640, 480\nunset log y\n
|
} /* end covariate */ |
} /* end covariate */ |
} /* End if prevfcast */ |
} /* End if prevfcast */ |
|
|
if(backcast==1){ |
if(prevbcast==1){ |
/* Back projection from cross-sectional to stable (mixed) for each covariate */ |
/* Back projection from cross-sectional to stable (mixed) for each covariate */ |
|
|
for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(m != 1 && TKresult[nres]!= k1) |
k1=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt); |
fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt); |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
} |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
} |
} |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
Line 7675 set ter svg size 640, 480\nunset log y\n
|
Line 9029 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp," u %d:(",ioffset); |
fprintf(ficgp," u %d:(",ioffset); |
kl=0; |
kl=0; |
strcpy(gplotcondition,"("); |
strcpy(gplotcondition,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k of the resultline, get corresponding value lv for combination k1 */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
if(Dummy[modelresult[nres][k]]==0){ /* To be verified */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate writing the chain of conditions *\/ */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
lv=Tvresult[nres][k]; |
kl++; |
vlv=TinvDoQresult[nres][Tvresult[nres][k]]; |
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
kl++; |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
if(k <cptcoveff && cptcoveff>1) |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
/* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
kl++; |
|
/* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */ |
|
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,Tvresult[nres][k], kl+1,TinvDoQresult[nres][Tvresult[nres][k]]); |
|
kl++; |
|
if(k <cptcovs && cptcovs>1) |
|
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
|
} |
} |
} |
strcpy(gplotcondition+strlen(gplotcondition),")"); |
strcpy(gplotcondition+strlen(gplotcondition),")"); |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
Line 7712 set ter svg size 640, 480\nunset log y\n
|
Line 9074 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp,"\nset out; unset label;\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
} /* End if backcast */ |
} /* End if prevbcast */ |
|
|
|
|
/* 9eme writing MLE parameters */ |
/* 9eme writing MLE parameters */ |
Line 7750 set ter svg size 640, 480\nunset log y\n
|
Line 9112 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp,"#\n"); |
fprintf(ficgp,"#\n"); |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n"); |
fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n"); |
fprintf(ficgp,"#model=%s \n",model); |
fprintf(ficgp,"#model=1+age+%s \n",model); |
fprintf(ficgp,"# Type of graphic ng=%d\n",ng); |
fprintf(ficgp,"# Type of graphic ng=%d\n",ng); |
fprintf(ficgp,"# k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */ |
fprintf(ficgp,"# k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */ |
for(k1=1; k1 <=m; k1++) /* For each combination of covariate */ |
/* for(k1=1; k1 <=m; k1++) /\* For each combination of covariate *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(m != 1 && TKresult[nres]!= k1) |
/* k1=nres; */ |
continue; |
k1=TKresult[nres]; |
fprintf(ficgp,"\n\n# Combination of dummy k1=%d which is ",k1); |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
fprintf(ficgp,"\n\n# Resultline k1=%d ",k1); |
strcpy(gplotlabel,"("); |
strcpy(gplotlabel,"("); |
sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1); |
/*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/ |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
for (k=1; k<=cptcovs; k++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
/* for each resultline nres, and position k, Tvresult[nres][k] gives the name of the variable and |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
TinvDoQresult[nres][Tvresult[nres][k]] gives its value double or integer) */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
vlv= nbcode[Tvaraff[k]][lv]; |
} |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* if(m != 1 && TKresult[nres]!= k1) */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); |
/* continue; */ |
} |
/* fprintf(ficgp,"\n\n# Combination of dummy k1=%d which is ",k1); */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
/* strcpy(gplotlabel,"("); */ |
fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* /\*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*\/ */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ |
} |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ |
|
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* } */ |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres); |
fprintf(ficgp,"\nset label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); |
fprintf(ficgp,"\nset key outside "); |
|
/* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */ |
|
fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
if (ng==1){ |
if (ng==1){ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
Line 7820 set ter svg size 640, 480\nunset log y\n
|
Line 9198 set ter svg size 640, 480\nunset log y\n
|
/* for(j=3; j <=ncovmodel-nagesqr; j++) { */ |
/* for(j=3; j <=ncovmodel-nagesqr; j++) { */ |
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
switch(Typevar[j]){ |
if(j==Tage[ij]) { /* Product by age To be looked at!!*/ |
case 1: |
if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
if(DummyV[j]==0){ |
if(j==Tage[ij]) { /* Product by age To be looked at!!*//* Bug valgrind */ |
fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; |
if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
}else{ /* quantitative */ |
if(DummyV[j]==0){/* Bug valgrind */ |
fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
ij++; |
} |
} |
ij++; |
|
} |
} |
} |
} |
}else if(cptcovprod >0){ |
break; |
if(j==Tprod[ijp]) { /* */ |
case 2: |
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
if(cptcovprod >0){ |
if(ijp <=cptcovprod) { /* Product */ |
if(j==Tprod[ijp]) { /* */ |
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
if(ijp <=cptcovprod) { /* Product */ |
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
}else{ /* Vn is dummy and Vm is quanti */ |
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
}else{ /* Vn is dummy and Vm is quanti */ |
} |
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
}else{ /* Vn*Vm Vn is quanti */ |
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
if(DummyV[Tvard[ijp][2]]==0){ |
} |
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
}else{ /* Vn*Vm Vn is quanti */ |
}else{ /* Both quanti */ |
if(DummyV[Tvard[ijp][2]]==0){ |
fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
} |
} |
} |
|
ijp++; |
} |
} |
ijp++; |
} /* end Tprod */ |
} |
} |
} /* end Tprod */ |
break; |
} else{ /* simple covariate */ |
case 0: |
|
/* simple covariate */ |
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */ |
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */ |
if(Dummy[j]==0){ |
if(Dummy[j]==0){ |
fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /* */ |
fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /* */ |
Line 7862 set ter svg size 640, 480\nunset log y\n
|
Line 9248 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */ |
fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */ |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
} |
} |
} /* end simple */ |
/* end simple */ |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
} /* end j */ |
} /* end j */ |
}else{ |
}else{ /* k=k2 */ |
i=i-ncovmodel; |
if(ng !=1 ){ /* For logit formula of log p11 is more difficult to get */ |
if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */ |
fprintf(ficgp," (1.");i=i-ncovmodel; |
fprintf(ficgp," (1."); |
}else |
|
i=i-ncovmodel; |
} |
} |
|
|
if(ng != 1){ |
if(ng != 1){ |
Line 7880 set ter svg size 640, 480\nunset log y\n
|
Line 9271 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr); |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr); |
|
|
ij=1; |
ij=1; |
for(j=3; j <=ncovmodel-nagesqr; j++){ |
ijp=1; |
if(cptcovage >0){ |
/* for(j=3; j <=ncovmodel-nagesqr; j++){ */ |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
if(ij <=cptcovage) { /* Bug valgrind */ |
switch(Typevar[j]){ |
fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); |
case 1: |
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
if(cptcovage >0){ |
ij++; |
if(j==Tage[ij]) { /* Bug valgrind */ |
} |
if(ij <=cptcovage) { /* Bug valgrind */ |
} |
if(DummyV[j]==0){/* Bug valgrind */ |
}else |
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); */ |
fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/* Valgrind bug nbcode */ |
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,nbcode[Tvar[j]][codtabm(k1,j)]); */ |
} |
fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); |
fprintf(ficgp,")"); |
/* fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; */ |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
}else{ /* quantitative */ |
|
/* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */ |
|
fprintf(ficgp,"+p%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
|
/* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
ij++; |
|
} |
|
} |
|
} |
|
break; |
|
case 2: |
|
if(cptcovprod >0){ |
|
if(j==Tprod[ijp]) { /* */ |
|
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
|
if(ijp <=cptcovprod) { /* Product */ |
|
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
|
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */ |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
}else{ /* Vn*Vm Vn is quanti */ |
|
if(DummyV[Tvard[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */ |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
} |
|
ijp++; |
|
} |
|
} /* end Tprod */ |
|
} /* end if */ |
|
break; |
|
case 0: |
|
/* simple covariate */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */ |
|
if(Dummy[j]==0){ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\* *\/ */ |
|
fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); /* */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\* *\/ */ |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* */ |
|
/* fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* *\/ */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
/* end simple */ |
|
/* fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/\* Valgrind bug nbcode *\/ */ |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
|
} |
|
fprintf(ficgp,")"); |
} |
} |
fprintf(ficgp,")"); |
fprintf(ficgp,")"); |
if(ng ==2) |
if(ng ==2) |
fprintf(ficgp," w l lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
else /* ng= 3 */ |
else /* ng= 3 */ |
fprintf(ficgp," w l lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
}else{ /* end ng <> 1 */ |
}else{ /* end ng <> 1 */ |
if( k !=k2) /* logit p11 is hard to draw */ |
if( k !=k2) /* logit p11 is hard to draw */ |
fprintf(ficgp," w l lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
} |
} |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
fprintf(ficgp,","); |
fprintf(ficgp,","); |
Line 7910 set ter svg size 640, 480\nunset log y\n
|
Line 9362 set ter svg size 640, 480\nunset log y\n
|
i=i+ncovmodel; |
i=i+ncovmodel; |
} /* end k */ |
} /* end k */ |
} /* end k2 */ |
} /* end k2 */ |
fprintf(ficgp,"\n set out; unset label;\n"); |
/* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */ |
} /* end k1 */ |
fprintf(ficgp,"\n set out; unset title;set key default;\n"); |
|
} /* end resultline */ |
} /* end ng */ |
} /* end ng */ |
/* avoid: */ |
/* avoid: */ |
fflush(ficgp); |
fflush(ficgp); |
Line 7926 set ter svg size 640, 480\nunset log y\n
|
Line 9379 set ter svg size 640, 480\nunset log y\n
|
int modcovmax =1; |
int modcovmax =1; |
int mobilavrange, mob; |
int mobilavrange, mob; |
int iage=0; |
int iage=0; |
|
int firstA1=0, firstA2=0; |
|
|
double sum=0., sumr=0.; |
double sum=0., sumr=0.; |
double age; |
double age; |
Line 7934 set ter svg size 640, 480\nunset log y\n
|
Line 9388 set ter svg size 640, 480\nunset log y\n
|
double *agemingoodr, *agemaxgoodr; |
double *agemingoodr, *agemaxgoodr; |
|
|
|
|
/* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose */ |
/* modcovmax=2*cptcoveff; Max number of modalities. We suppose */ |
/* a covariate has 2 modalities, should be equal to ncovcombmax *\/ */ |
/* a covariate has 2 modalities, should be equal to ncovcombmax */ |
|
|
sumnewp = vector(1,ncovcombmax); |
sumnewp = vector(1,ncovcombmax); |
sumnewm = vector(1,ncovcombmax); |
sumnewm = vector(1,ncovcombmax); |
Line 8023 set ter svg size 640, 480\nunset log y\n
|
Line 9477 set ter svg size 640, 480\nunset log y\n
|
} /* age */ |
} /* age */ |
/* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */ |
/* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */ |
/* but they will change */ |
/* but they will change */ |
|
firstA1=0;firstA2=0; |
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */ |
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */ |
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; |
sumnewmr[cptcod]=0.; |
sumnewmr[cptcod]=0.; |
Line 8055 set ter svg size 640, 480\nunset log y\n
|
Line 9510 set ter svg size 640, 480\nunset log y\n
|
sumr+=probs[(int)age][i][cptcod]; |
sumr+=probs[(int)age][i][cptcod]; |
} |
} |
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
if(!firstA1){ |
|
firstA1=1; |
|
printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage); |
|
} |
|
fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
} /* end bad */ |
} /* end bad */ |
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
if(!firstA2){ |
|
firstA2=1; |
|
printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage); |
|
} |
|
fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
} /* end bad */ |
} /* end bad */ |
}/* age */ |
}/* age */ |
|
|
Line 8147 set ter svg size 640, 480\nunset log y\n
|
Line 9610 set ter svg size 640, 480\nunset log y\n
|
}/* End movingaverage */ |
}/* End movingaverage */ |
|
|
|
|
|
|
/************** Forecasting ******************/ |
/************** Forecasting ******************/ |
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
/* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/ |
/* proj1, year, month, day of starting projection |
void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){ |
|
/* dateintemean, mean date of interviews |
|
dateprojd, year, month, day of starting projection |
|
dateprojf date of end of projection;year of end of projection (same day and month as proj1). |
agemin, agemax range of age |
agemin, agemax range of age |
dateprev1 dateprev2 range of dates during which prevalence is computed |
dateprev1 dateprev2 range of dates during which prevalence is computed |
anproj2 year of en of projection (same day and month as proj1). |
|
*/ |
*/ |
|
/* double anprojd, mprojd, jprojd; */ |
|
/* double anprojf, mprojf, jprojf; */ |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
double agec; /* generic age */ |
double agec; /* generic age */ |
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double agelim, ppij, yp,yp1,yp2; |
double *popeffectif,*popcount; |
double *popeffectif,*popcount; |
double ***p3mat; |
double ***p3mat; |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
Line 8193 set ter svg size 640, 480\nunset log y\n
|
Line 9661 set ter svg size 640, 480\nunset log y\n
|
if(estepm > stepm){ /* Yes every two year */ |
if(estepm > stepm){ /* Yes every two year */ |
stepsize=2; |
stepsize=2; |
} |
} |
|
hstepm=hstepm/stepm; |
|
|
hstepm=hstepm/stepm; |
|
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
fractional in yp1 */ |
/* fractional in yp1 *\/ */ |
anprojmean=yp; |
/* aintmean=yp; */ |
yp2=modf((yp1*12),&yp); |
/* yp2=modf((yp1*12),&yp); */ |
mprojmean=yp; |
/* mintmean=yp; */ |
yp1=modf((yp2*30.5),&yp); |
/* yp1=modf((yp2*30.5),&yp); */ |
jprojmean=yp; |
/* jintmean=yp; */ |
if(jprojmean==0) jprojmean=1; |
/* if(jintmean==0) jintmean=1; */ |
if(mprojmean==0) jprojmean=1; |
/* if(mintmean==0) mintmean=1; */ |
|
|
|
|
|
/* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ |
|
/* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */ |
|
/* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */ |
i1=pow(2,cptcoveff); |
i1=pow(2,cptcoveff); |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
|
|
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
|
|
/* if (h==(int)(YEARM*yearp)){ */ |
/* if (h==(int)(YEARM*yearp)){ */ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(k=1; k<=i1;k++){ |
for(k=1; k<=i1;k++){ /* We want to find the combination k corresponding to the values of the dummies given in this resut line (to be cleaned one day) */ |
if(i1 != 1 && TKresult[nres]!= k) |
if(i1 != 1 && TKresult[nres]!= k) |
continue; |
continue; |
if(invalidvarcomb[k]){ |
if(invalidvarcomb[k]){ |
Line 8223 set ter svg size 640, 480\nunset log y\n
|
Line 9696 set ter svg size 640, 480\nunset log y\n
|
} |
} |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); */ |
|
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); |
} |
} |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
Line 8234 set ter svg size 640, 480\nunset log y\n
|
Line 9708 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficresf," p%d%d",i,j); |
fprintf(ficresf," p%d%d",i,j); |
fprintf(ficresf," wp.%d",j); |
fprintf(ficresf," wp.%d",j); |
} |
} |
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) { |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp); |
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
for (agec=fage; agec>=(bage); agec--){ |
for (agec=fage; agec>=(bage); agec--){ |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
Line 8253 set ter svg size 640, 480\nunset log y\n
|
Line 9727 set ter svg size 640, 480\nunset log y\n
|
} |
} |
fprintf(ficresf,"\n"); |
fprintf(ficresf,"\n"); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Tvaraff not correct *\/ */ |
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /* TnsdVar[Tvaraff] correct */ |
|
fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm); |
|
|
for(j=1; j<=nlstate+ndeath;j++) { |
for(j=1; j<=nlstate+ndeath;j++) { |
ppij=0.; |
ppij=0.; |
for(i=1; i<=nlstate;i++) { |
for(i=1; i<=nlstate;i++) { |
/* if (mobilav>=1) */ |
if (mobilav>=1) |
ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k]; |
ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k]; |
/* else { */ /* even if mobilav==-1 we use mobaverage */ |
else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */ |
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */ |
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; |
/* } */ |
} |
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
} /* end i */ |
} /* end i */ |
fprintf(ficresf," %.3f", ppij); |
fprintf(ficresf," %.3f", ppij); |
Line 8282 set ter svg size 640, 480\nunset log y\n
|
Line 9757 set ter svg size 640, 480\nunset log y\n
|
} |
} |
|
|
/************** Back Forecasting ******************/ |
/************** Back Forecasting ******************/ |
void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ |
/* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */ |
/* back1, year, month, day of starting backection |
void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){ |
|
/* back1, year, month, day of starting backprojection |
agemin, agemax range of age |
agemin, agemax range of age |
dateprev1 dateprev2 range of dates during which prevalence is computed |
dateprev1 dateprev2 range of dates during which prevalence is computed |
anback2 year of end of backprojection (same day and month as back1). |
anback2 year of end of backprojection (same day and month as back1). |
Line 8291 set ter svg size 640, 480\nunset log y\n
|
Line 9767 set ter svg size 640, 480\nunset log y\n
|
*/ |
*/ |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0; |
double agec; /* generic age */ |
double agec; /* generic age */ |
double agelim, ppij, ppi, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double agelim, ppij, ppi, yp,yp1,yp2; /* ,jintmean,mintmean,aintmean;*/ |
double *popeffectif,*popcount; |
double *popeffectif,*popcount; |
double ***p3mat; |
double ***p3mat; |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
Line 8334 set ter svg size 640, 480\nunset log y\n
|
Line 9810 set ter svg size 640, 480\nunset log y\n
|
} |
} |
|
|
hstepm=hstepm/stepm; |
hstepm=hstepm/stepm; |
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
fractional in yp1 */ |
/* fractional in yp1 *\/ */ |
anprojmean=yp; |
/* aintmean=yp; */ |
yp2=modf((yp1*12),&yp); |
/* yp2=modf((yp1*12),&yp); */ |
mprojmean=yp; |
/* mintmean=yp; */ |
yp1=modf((yp2*30.5),&yp); |
/* yp1=modf((yp2*30.5),&yp); */ |
jprojmean=yp; |
/* jintmean=yp; */ |
if(jprojmean==0) jprojmean=1; |
/* if(jintmean==0) jintmean=1; */ |
if(mprojmean==0) jprojmean=1; |
/* if(mintmean==0) jintmean=1; */ |
|
|
i1=pow(2,cptcoveff); |
i1=pow(2,cptcoveff); |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
|
|
fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); |
fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); |
|
|
Line 8362 set ter svg size 640, 480\nunset log y\n
|
Line 9838 set ter svg size 640, 480\nunset log y\n
|
} |
} |
fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#"); |
fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#"); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); |
} |
} |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
Line 8373 set ter svg size 640, 480\nunset log y\n
|
Line 9849 set ter svg size 640, 480\nunset log y\n
|
fprintf(ficresfb," b%d%d",i,j); |
fprintf(ficresfb," b%d%d",i,j); |
fprintf(ficresfb," b.%d",j); |
fprintf(ficresfb," b.%d",j); |
} |
} |
for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) { |
for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) { |
/* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { */ |
/* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { */ |
fprintf(ficresfb,"\n"); |
fprintf(ficresfb,"\n"); |
fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); |
fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp); |
/* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
/* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
/* for (agec=bage; agec<=agemax-1; agec++){ /\* testing *\/ */ |
/* for (agec=bage; agec<=agemax-1; agec++){ /\* testing *\/ */ |
for (agec=bage; agec<=fage; agec++){ /* testing */ |
for (agec=bage; agec<=fage; agec++){ /* testing */ |
Line 8398 set ter svg size 640, 480\nunset log y\n
|
Line 9874 set ter svg size 640, 480\nunset log y\n
|
} |
} |
fprintf(ficresfb,"\n"); |
fprintf(ficresfb,"\n"); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); |
fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec-h*hstepm/YEARM*stepm); |
fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm); |
for(i=1; i<=nlstate+ndeath;i++) { |
for(i=1; i<=nlstate+ndeath;i++) { |
ppij=0.;ppi=0.; |
ppij=0.;ppi=0.; |
for(j=1; j<=nlstate;j++) { |
for(j=1; j<=nlstate;j++) { |
Line 8434 set ter svg size 640, 480\nunset log y\n
|
Line 9910 set ter svg size 640, 480\nunset log y\n
|
|
|
/* Variance of prevalence limit: varprlim */ |
/* Variance of prevalence limit: varprlim */ |
void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
/*------- Variance of period (stable) prevalence------*/ |
/*------- Variance of forward period (stable) prevalence------*/ |
|
|
char fileresvpl[FILENAMELENGTH]; |
char fileresvpl[FILENAMELENGTH]; |
FILE *ficresvpl; |
FILE *ficresvpl; |
Line 8445 set ter svg size 640, 480\nunset log y\n
|
Line 9921 set ter svg size 640, 480\nunset log y\n
|
strcpy(fileresvpl,"VPL_"); |
strcpy(fileresvpl,"VPL_"); |
strcat(fileresvpl,fileresu); |
strcat(fileresvpl,fileresu); |
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
printf("Problem with variance of forward period (stable) prevalence resultfile: %s\n", fileresvpl); |
exit(0); |
exit(0); |
} |
} |
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
Line 8457 set ter svg size 640, 480\nunset log y\n
|
Line 9933 set ter svg size 640, 480\nunset log y\n
|
i1=pow(2,cptcoveff); |
i1=pow(2,cptcoveff); |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ |
k=TKresult[nres]; |
|
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* for(k=1; k<=i1;k++){ /\* We find the combination equivalent to result line values of dummies *\/ */ |
if(i1 != 1 && TKresult[nres]!= k) |
if(i1 != 1 && TKresult[nres]!= k) |
continue; |
continue; |
fprintf(ficresvpl,"\n#****** "); |
fprintf(ficresvpl,"\n#****** "); |
printf("\n#****** "); |
printf("\n#****** "); |
fprintf(ficlog,"\n#****** "); |
fprintf(ficlog,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcovs;j++) { |
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresvpl,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
/* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
} |
fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
} |
/* fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
fprintf(ficresvpl,"******\n"); |
fprintf(ficresvpl,"******\n"); |
printf("******\n"); |
printf("******\n"); |
fprintf(ficlog,"******\n"); |
fprintf(ficlog,"******\n"); |
Line 8486 set ter svg size 640, 480\nunset log y\n
|
Line 9966 set ter svg size 640, 480\nunset log y\n
|
} |
} |
|
|
fclose(ficresvpl); |
fclose(ficresvpl); |
printf("done variance-covariance of period prevalence\n");fflush(stdout); |
printf("done variance-covariance of forward period prevalence\n");fflush(stdout); |
fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog); |
fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog); |
|
|
} |
} |
/* Variance of back prevalence: varbprlim */ |
/* Variance of back prevalence: varbprlim */ |
Line 8514 set ter svg size 640, 480\nunset log y\n
|
Line 9994 set ter svg size 640, 480\nunset log y\n
|
i1=pow(2,cptcoveff); |
i1=pow(2,cptcoveff); |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ |
k=TKresult[nres]; |
if(i1 != 1 && TKresult[nres]!= k) |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
continue; |
/* for(k=1; k<=i1;k++){ */ |
|
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
fprintf(ficresvbl,"\n#****** "); |
fprintf(ficresvbl,"\n#****** "); |
printf("\n#****** "); |
printf("\n#****** "); |
fprintf(ficlog,"\n#****** "); |
fprintf(ficlog,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) { |
for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ |
fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); |
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresvbl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); |
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); |
} |
/* for(j=1;j<=cptcoveff;j++) { */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
/* fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* } */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
} |
} |
fprintf(ficresvbl,"******\n"); |
fprintf(ficresvbl,"******\n"); |
printf("******\n"); |
printf("******\n"); |
Line 8847 void prwizard(int ncovmodel, int nlstate
|
Line 10333 void prwizard(int ncovmodel, int nlstate
|
/******************* Gompertz Likelihood ******************************/ |
/******************* Gompertz Likelihood ******************************/ |
double gompertz(double x[]) |
double gompertz(double x[]) |
{ |
{ |
double A,B,L=0.0,sump=0.,num=0.; |
double A=0.0,B=0.,L=0.0,sump=0.,num=0.; |
int i,n=0; /* n is the size of the sample */ |
int i,n=0; /* n is the size of the sample */ |
|
|
for (i=1;i<=imx ; i++) { |
for (i=1;i<=imx ; i++) { |
Line 8855 double gompertz(double x[])
|
Line 10341 double gompertz(double x[])
|
/* sump=sump+1;*/ |
/* sump=sump+1;*/ |
num=num+1; |
num=num+1; |
} |
} |
|
L=0.0; |
|
/* agegomp=AGEGOMP; */ |
/* for (i=0; i<=imx; i++) |
/* for (i=0; i<=imx; i++) |
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
|
|
for (i=1;i<=imx ; i++) |
for (i=1;i<=imx ; i++) { |
{ |
/* mu(a)=mu(agecomp)*exp(teta*(age-agegomp)) |
if (cens[i] == 1 && wav[i]>1) |
mu(a)=x[1]*exp(x[2]*(age-agegomp)); x[1] and x[2] are per year. |
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
* L= Product mu(agedeces)exp(-\int_ageexam^agedc mu(u) du ) for a death between agedc (in month) |
|
* and agedc +1 month, cens[i]=0: log(x[1]/YEARM) |
if (cens[i] == 0 && wav[i]>1) |
* + |
|
* exp(-\int_ageexam^agecens mu(u) du ) when censored, cens[i]=1 |
|
*/ |
|
if (wav[i] > 1 || agedc[i] < AGESUP) { |
|
if (cens[i] == 1){ |
|
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
|
} else if (cens[i] == 0){ |
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
+log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM); |
+log(x[1]/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM); |
|
} else |
|
printf("Gompertz cens[%d] neither 1 nor 0\n",i); |
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
if (wav[i] > 1 ) { /* ??? */ |
L=L+A*weight[i]; |
L=L+A*weight[i]; |
|
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
} |
} |
} |
} |
|
|
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
|
|
return -2*L*num/sump; |
return -2*L*num/sump; |
} |
} |
Line 8885 double gompertz(double x[])
|
Line 10377 double gompertz(double x[])
|
/******************* Gompertz_f Likelihood ******************************/ |
/******************* Gompertz_f Likelihood ******************************/ |
double gompertz_f(const gsl_vector *v, void *params) |
double gompertz_f(const gsl_vector *v, void *params) |
{ |
{ |
double A,B,LL=0.0,sump=0.,num=0.; |
double A=0.,B=0.,LL=0.0,sump=0.,num=0.; |
double *x= (double *) v->data; |
double *x= (double *) v->data; |
int i,n=0; /* n is the size of the sample */ |
int i,n=0; /* n is the size of the sample */ |
|
|
Line 8978 int readdata(char datafile[], int firsto
|
Line 10470 int readdata(char datafile[], int firsto
|
int i=0, j=0, n=0, iv=0, v; |
int i=0, j=0, n=0, iv=0, v; |
int lstra; |
int lstra; |
int linei, month, year,iout; |
int linei, month, year,iout; |
|
int noffset=0; /* This is the offset if BOM data file */ |
char line[MAXLINE], linetmp[MAXLINE]; |
char line[MAXLINE], linetmp[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char *stratrunc; |
char *stratrunc; |
|
|
DummyV=ivector(1,NCOVMAX); /* 1 to 3 */ |
DummyV=ivector(1,NCOVMAX); /* 1 to 3 */ |
FixedV=ivector(1,NCOVMAX); /* 1 to 3 */ |
FixedV=ivector(1,NCOVMAX); /* 1 to 3 */ |
|
for(v=1;v<NCOVMAX;v++){ |
|
DummyV[v]=0; |
|
FixedV[v]=0; |
|
} |
|
|
for(v=1; v <=ncovcol;v++){ |
for(v=1; v <=ncovcol;v++){ |
DummyV[v]=0; |
DummyV[v]=0; |
Line 9005 int readdata(char datafile[], int firsto
|
Line 10502 int readdata(char datafile[], int firsto
|
printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); |
} |
} |
|
|
|
ncovcolt=ncovcol+nqv+ntv+nqtv; /* total of covariates in the data, not in the model equation */ |
|
|
if((fic=fopen(datafile,"r"))==NULL) { |
if((fic=fopen(datafile,"r"))==NULL) { |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
} |
} |
|
|
i=1; |
/* Is it a BOM UTF-8 Windows file? */ |
|
/* First data line */ |
linei=0; |
linei=0; |
|
while(fgets(line, MAXLINE, fic)) { |
|
noffset=0; |
|
if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */ |
|
{ |
|
noffset=noffset+3; |
|
printf("# Data file '%s' is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Data file '%s' is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
/* else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/ |
|
else if( line[0] == (char)0xFF && line[1] == (char)0xFE) |
|
{ |
|
noffset=noffset+2; |
|
printf("# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
else if( line[0] == 0 && line[1] == 0) |
|
{ |
|
if( line[2] == (char)0xFE && line[3] == (char)0xFF){ |
|
noffset=noffset+4; |
|
printf("# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
} else{ |
|
;/*printf(" Not a BOM file\n");*/ |
|
} |
|
/* If line starts with a # it is a comment */ |
|
if (line[noffset] == '#') { |
|
linei=linei+1; |
|
break; |
|
}else{ |
|
break; |
|
} |
|
} |
|
fclose(fic); |
|
if((fic=fopen(datafile,"r"))==NULL) { |
|
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
|
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
|
} |
|
/* Not a Bom file */ |
|
|
|
i=1; |
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
linei=linei+1; |
linei=linei+1; |
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
Line 9038 int readdata(char datafile[], int firsto
|
Line 10582 int readdata(char datafile[], int firsto
|
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ |
cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ |
cotvar[j][ntv+iv][i]=-1; /* For performance reasons */ |
cotvar[j][ncovcol+nqv+ntv+iv][i]=-1; /* For performance reasons */ |
if(isalpha(strb[1])) { /* .m or .d Really Missing value */ |
if(isalpha(strb[1])) { /* .m or .d Really Missing value */ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); |
Line 9058 int readdata(char datafile[], int firsto
|
Line 10602 int readdata(char datafile[], int firsto
|
return 1; |
return 1; |
} |
} |
cotqvar[j][iv][i]=dval; |
cotqvar[j][iv][i]=dval; |
cotvar[j][ntv+iv][i]=dval; |
cotvar[j][ncovcol+nqv+ntv+iv][i]=dval; /* because cotvar starts now at first ntv */ |
} |
} |
strcpy(line,stra); |
strcpy(line,stra); |
}/* end loop ntqv */ |
}/* end loop ntqv */ |
Line 9079 int readdata(char datafile[], int firsto
|
Line 10623 int readdata(char datafile[], int firsto
|
} |
} |
if(lval <-1 || lval >1){ |
if(lval <-1 || lval >1){ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j); |
Exiting.\n",lval,linei, i,line,iv,j); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
cotvar[j][iv][i]=(double)(lval); |
cotvar[j][ncovcol+nqv+iv][i]=(double)(lval); |
strcpy(line,stra); |
strcpy(line,stra); |
}/* end loop ntv */ |
}/* end loop ntv */ |
|
|
Line 9110 int readdata(char datafile[], int firsto
|
Line 10654 int readdata(char datafile[], int firsto
|
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0' )){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
|
return 1; |
|
}else if( lval==0 || lval > nlstate+ndeath){ |
|
printf("Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %d.\n Fix your data file '%s'! Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile);fflush(stdout); |
|
fprintf(ficlog,"Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %d.\n Fix your data file '%s'! Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile); fflush(ficlog); |
return 1; |
return 1; |
} |
} |
} |
} |
Line 9133 int readdata(char datafile[], int firsto
|
Line 10681 int readdata(char datafile[], int firsto
|
return 1; |
return 1; |
} |
} |
anint[j][i]= (double) year; |
anint[j][i]= (double) year; |
mint[j][i]= (double)month; |
mint[j][i]= (double)month; |
|
/* if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ */ |
|
/* printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */ |
|
/* fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */ |
|
/* } */ |
strcpy(line,stra); |
strcpy(line,stra); |
} /* End loop on waves */ |
} /* End loop on waves */ |
|
|
Line 9172 int readdata(char datafile[], int firsto
|
Line 10724 int readdata(char datafile[], int firsto
|
|
|
} |
} |
annais[i]=(double)(year); |
annais[i]=(double)(year); |
moisnais[i]=(double)(month); |
moisnais[i]=(double)(month); |
|
for (j=1;j<=maxwav;j++){ |
|
if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ |
|
printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j,(int)moisnais[i],(int)annais[i]); |
|
fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j, (int)moisnais[i],(int)annais[i]); |
|
} |
|
} |
|
|
strcpy(line,stra); |
strcpy(line,stra); |
|
|
/* Sample weight */ |
/* Sample weight */ |
Line 9192 int readdata(char datafile[], int firsto
|
Line 10751 int readdata(char datafile[], int firsto
|
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
|
coqvar[iv][i]=NAN; |
|
covar[ncovcol+iv][i]=NAN; /* including qvar in standard covar for performance reasons */ |
}else{ |
}else{ |
errno=0; |
errno=0; |
/* what_kind_of_number(strb); */ |
/* what_kind_of_number(strb); */ |
Line 9285 void removefirstspace(char **stri){/*, c
|
Line 10846 void removefirstspace(char **stri){/*, c
|
*stri=p2; |
*stri=p2; |
} |
} |
|
|
int decoderesult ( char resultline[], int nres) |
int decoderesult( char resultline[], int nres) |
/**< This routine decode one result line and returns the combination # of dummy covariates only **/ |
/**< This routine decode one result line and returns the combination # of dummy covariates only **/ |
{ |
{ |
int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0; |
int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0; |
char resultsav[MAXLINE]; |
char resultsav[MAXLINE]; |
int resultmodel[MAXLINE]; |
/* int resultmodel[MAXLINE]; */ |
int modelresult[MAXLINE]; |
/* int modelresult[MAXLINE]; */ |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
|
|
removefirstspace(&resultline); |
removefirstspace(&resultline); |
printf("decoderesult:%s\n",resultline); |
printf("decoderesult:%s\n",resultline); |
|
|
if (strstr(resultline,"v") !=0){ |
strcpy(resultsav,resultline); |
printf("Error. 'v' must be in upper case 'V' result: %s ",resultline); |
/* printf("Decoderesult resultsav=\"%s\" resultline=\"%s\"\n", resultsav, resultline); */ |
fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog); |
|
return 1; |
|
} |
|
trimbb(resultsav, resultline); |
|
if (strlen(resultsav) >1){ |
if (strlen(resultsav) >1){ |
j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */ |
j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' in this resultline */ |
} |
} |
if(j == 0){ /* Resultline but no = */ |
if(j == 0){ /* Resultline but no = */ |
TKresult[nres]=0; /* Combination for the nresult and the model */ |
TKresult[nres]=0; /* Combination for the nresult and the model */ |
return (0); |
return (0); |
} |
} |
|
|
if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */ |
if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */ |
printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs); |
printf("ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, %s.\n",j, cptcovs, model); |
fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs); |
fprintf(ficlog,"ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, %s.\n",j, cptcovs, model); |
|
/* return 1;*/ |
} |
} |
for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */ |
for(k=1; k<=j;k++){ /* Loop on any covariate of the RESULT LINE */ |
if(nbocc(resultsav,'=') >1){ |
if(nbocc(resultsav,'=') >1){ |
cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' |
cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' (stra is the rest of the resultline to be analyzed in the next loop *//* resultsav= "V4=1 V5=25.1 V3=0" stra= "V5=25.1 V3=0" strb= "V4=1" */ |
resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */ |
/* If resultsav= "V4= 1 V5=25.1 V3=0" with a blank then strb="V4=" and stra="1 V5=25.1 V3=0" */ |
cutl(strc,strd,strb,'='); /* strb:V4=1 strc=1 strd=V4 */ |
cutl(strc,strd,strb,'='); /* strb:"V4=1" strc="1" strd="V4" */ |
|
/* If a blank, then strc="V4=" and strd='\0' */ |
|
if(strc[0]=='\0'){ |
|
printf("Error in resultline, probably a blank after the \"%s\", \"result:%s\", stra=\"%s\" resultsav=\"%s\"\n",strb,resultline, stra, resultsav); |
|
fprintf(ficlog,"Error in resultline, probably a blank after the \"V%s=\", resultline=%s\n",strb,resultline); |
|
return 1; |
|
} |
}else |
}else |
cutl(strc,strd,resultsav,'='); |
cutl(strc,strd,resultsav,'='); |
Tvalsel[k]=atof(strc); /* 1 */ |
Tvalsel[k]=atof(strc); /* 1 */ /* Tvalsel of k is the float value of the kth covariate appearing in this result line */ |
|
|
cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */; |
cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */; |
Tvarsel[k]=atoi(strc); |
Tvarsel[k]=atoi(strc); /* 4 */ /* Tvarsel is the id of the kth covariate in the result line Tvarsel[1] in "V4=1.." is 4.*/ |
/* Typevarsel[k]=1; /\* 1 for age product *\/ */ |
/* Typevarsel[k]=1; /\* 1 for age product *\/ */ |
/* cptcovsel++; */ |
/* cptcovsel++; */ |
if (nbocc(stra,'=') >0) |
if (nbocc(stra,'=') >0) |
strcpy(resultsav,stra); /* and analyzes it */ |
strcpy(resultsav,stra); /* and analyzes it */ |
} |
} |
/* Checking for missing or useless values in comparison of current model needs */ |
/* Checking for missing or useless values in comparison of current model needs */ |
for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
/* Feeds resultmodel[nres][k1]=k2 for k1th product covariate with age in the model equation fed by the index k2 of the resutline*/ |
|
for(k1=1; k1<= cptcovt ;k1++){ /* Loop on MODEL LINE V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
if(Typevar[k1]==0){ /* Single covariate in model */ |
if(Typevar[k1]==0){ /* Single covariate in model */ |
|
/* 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
match=0; |
match=0; |
for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5 */ |
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
modelresult[nres][k2]=k1;/* modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
match=1; |
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
break; |
break; |
} |
} |
} |
} |
if(match == 0){ |
if(match == 0){ |
printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model); |
printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]); |
|
fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s\n",Tvar[k1], resultline, model); |
|
return 1; |
} |
} |
} |
}else if(Typevar[k1]==1){ /* Product with age We want to get the position k2 in the resultline of the product k1 in the model line*/ |
} |
/* We feed resultmodel[k1]=k2; */ |
|
match=0; |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. jth occurence of = signs in the result line. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
modelresult[nres][k2]=k1;/* we found a Vn=1 corrresponding to Vn*age in the model modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
|
resultmodel[nres][k1]=k2; /* Added here */ |
|
/* printf("Decoderesult first modelresult[k2=%d]=%d (k1) V%d*AGE\n",k2,k1,Tvar[k1]); */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
break; |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); |
|
fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); |
|
return 1; |
|
} |
|
}else if(Typevar[k1]==2){ /* Product No age We want to get the position in the resultline of the product in the model line*/ |
|
/* resultmodel[nres][of such a Vn * Vm product k1] is not unique, so can't exist, we feed Tvard[k1][1] and [2] */ |
|
match=0; |
|
/* printf("Decoderesult very first Product Tvardk[k1=%d][1]=%d Tvardk[k1=%d][2]=%d V%d * V%d\n",k1,Tvardk[k1][1],k1,Tvardk[k1][2],Tvardk[k1][1],Tvardk[k1][2]); */ |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvardk[k1][1]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
/* modelresult[k2]=k1; */ |
|
/* printf("Decoderesult first Product modelresult[k2=%d]=%d (k1) V%d * \n",k2,k1,Tvarsel[k2]); */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model); |
|
fprintf(ficlog,"Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model); |
|
return 1; |
|
} |
|
match=0; |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvardk[k1][2]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
/* modelresult[k2]=k1;*/ |
|
/* printf("Decoderesult second Product modelresult[k2=%d]=%d (k1) * V%d \n ",k2,k1,Tvarsel[k2]); */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
break; |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Product without age second variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model); |
|
fprintf(ficlog,"Error in result line (Product without age second variable): V%d is missing in result : %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model); |
|
return 1; |
|
} |
|
}/* End of testing */ |
|
}/* End loop cptcovt */ |
/* Checking for missing or useless values in comparison of current model needs */ |
/* Checking for missing or useless values in comparison of current model needs */ |
for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
/* Feeds resultmodel[nres][k1]=k2 for single covariate (k1) in the model equation */ |
|
for(k2=1; k2 <=j;k2++){ /* j or cptcovs is the number of single covariates used either in the model line as well as in the result line (dummy or quantitative) |
|
* Loop on resultline variables: result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
match=0; |
match=0; |
for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
for(k1=1; k1<= cptcovt ;k1++){ /* loop on model: model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
if(Typevar[k1]==0){ /* Single */ |
if(Typevar[k1]==0){ /* Single only */ |
if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4 */ |
if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4 */ |
resultmodel[k1]=k2; /* resultmodel[2]=1 resultmodel[1]=2 resultmodel[3]=3 resultmodel[6]=4 resultmodel[9]=5 */ |
resultmodel[nres][k1]=k2; /* k1th position in the model equation corresponds to k2th position in the result line. resultmodel[2]=1 resultmodel[1]=2 resultmodel[3]=3 resultmodel[6]=4 resultmodel[9]=5 */ |
|
modelresult[nres][k2]=k1; /* k1th position in the model equation corresponds to k2th position in the result line. modelresult[1]=2 modelresult[2]=1 modelresult[3]=3 remodelresult[4]=6 modelresult[5]=9 */ |
++match; |
++match; |
} |
} |
} |
} |
} |
} |
if(match == 0){ |
if(match == 0){ |
printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model); |
printf("Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model); |
|
fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model); |
|
return 1; |
}else if(match > 1){ |
}else if(match > 1){ |
printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model); |
printf("Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model); |
|
fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model); |
|
return 1; |
} |
} |
} |
} |
|
/* cptcovres=j /\* Number of variables in the resultline is equal to cptcovs and thus useless *\/ */ |
/* We need to deduce which combination number is chosen and save quantitative values */ |
/* We need to deduce which combination number is chosen and save quantitative values */ |
/* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
/* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
/* result line V4=1 V5=25.1 V3=0 V2=8 V1=1 */ |
/* nres=1st result line: V4=1 V5=25.1 V3=0 V2=8 V1=1 */ |
/* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/ |
/* should correspond to the combination 6 of dummy: V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 1*1 + 0*2 + 1*4 = 5 + (1offset) = 6*/ |
/* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
/* nres=2nd result line: V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
/* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/ |
/* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/ |
/* 1 0 0 0 */ |
/* 1 0 0 0 */ |
/* 2 1 0 0 */ |
/* 2 1 0 0 */ |
/* 3 0 1 0 */ |
/* 3 0 1 0 */ |
/* 4 1 1 0 */ /* V4=1, V3=1, V1=0 */ |
/* 4 1 1 0 */ /* V4=1, V3=1, V1=0 (nres=2)*/ |
/* 5 0 0 1 */ |
/* 5 0 0 1 */ |
/* 6 1 0 1 */ /* V4=1, V3=0, V1=1 */ |
/* 6 1 0 1 */ /* V4=1, V3=0, V1=1 (nres=1)*/ |
/* 7 0 1 1 */ |
/* 7 0 1 1 */ |
/* 8 1 1 1 */ |
/* 8 1 1 1 */ |
/* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */ |
/* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */ |
/* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */ |
/* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */ |
/* V5*age V5 known which value for nres? */ |
/* V5*age V5 known which value for nres? */ |
/* Tqinvresult[2]=8 Tqinvresult[1]=25.1 */ |
/* Tqinvresult[2]=8 Tqinvresult[1]=25.1 */ |
for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */ |
for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* cptcovt number of covariates (excluding 1 and age or age*age) in the MODEL equation. |
if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */ |
* loop on position k1 in the MODEL LINE */ |
k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */ |
/* k counting number of combination of single dummies in the equation model */ |
k2=(int)Tvarsel[k3]; /* Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */ |
/* k4 counting single dummies in the equation model */ |
k+=Tvalsel[k3]*pow(2,k4); /* Tvalsel[1]=1 */ |
/* k4q counting single quantitatives in the equation model */ |
Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1) Tresult[nres][2]=0(V3=0) */ |
if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Dummy and Single, fixed or timevarying, k1 is sorting according to MODEL, but k3 to resultline */ |
Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
/* k4+1= (not always if quant in model) position in the resultline V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) */ |
|
/* modelresult[k3]=k1: k3th position in the result line corresponds to the k1 position in the model line (doesn't work with products)*/ |
|
/* Value in the (current nres) resultline of the variable at the k1th position in the model equation resultmodel[nres][k1]= k3 */ |
|
/* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline */ |
|
/* k3 is the position in the nres result line of the k1th variable of the model equation */ |
|
/* Tvarsel[k3]: Name of the variable at the k3th position in the result line. */ |
|
/* Tvalsel[k3]: Value of the variable at the k3th position in the result line. */ |
|
/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */ |
|
/* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */ |
|
/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line */ |
|
/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */ |
|
k3= resultmodel[nres][k1]; /* From position k1 in model get position k3 in result line */ |
|
/* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/ |
|
k2=(int)Tvarsel[k3]; /* from position k3 in resultline get name k2: nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/ |
|
k+=Tvalsel[k3]*pow(2,k4); /* nres=1 k1=2 Tvalsel[1]=1 (V4=1); k1=3 k3=2 Tvalsel[2]=0 (V3=0) */ |
|
TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][Name]=Value; stores the value into the name of the variable. */ |
|
/* Tinvresult[nres][4]=1 */ |
|
/* Tresult[nres][k4+1]=Tvalsel[k3];/\* Tresult[nres=2][1]=1(V4=1) Tresult[nres=2][2]=0(V3=0) *\/ */ |
|
Tresult[nres][k3]=Tvalsel[k3];/* Tresult[nres=2][1]=1(V4=1) Tresult[nres=2][2]=0(V3=0) */ |
|
/* Tvresult[nres][k4+1]=(int)Tvarsel[k3];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */ |
|
Tvresult[nres][k3]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */ |
Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */ |
printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4); |
precov[nres][k1]=Tvalsel[k3]; /* Value from resultline of the variable at the k1 position in the model */ |
|
/* printf("Decoderesult Dummy k=%d, k1=%d precov[nres=%d][k1=%d]=%.f V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k1, nres, k1,precov[nres][k1], k2, k3, (int)Tvalsel[k3], k4); */ |
k4++;; |
k4++;; |
} else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */ |
}else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Quantitative and single */ |
k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */ |
/* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */ |
k2q=(int)Tvarsel[k3q]; /* Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */ |
/* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */ |
Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */ |
/* Tqinvresult[nres][Name of a quantitative variable]= value of the variable in the result line */ |
Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */ |
k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 5 =k3q */ |
|
k2q=(int)Tvarsel[k3q]; /* Name of variable at k3q th position in the resultline */ |
|
/* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */ |
|
/* Tqresult[nres][k4q+1]=Tvalsel[k3q]; /\* Tqresult[nres][1]=25.1 *\/ */ |
|
/* Tvresult[nres][k4q+1]=(int)Tvarsel[k3q];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */ |
|
/* Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /\* Tvqresult[nres][1]=5 *\/ */ |
|
Tqresult[nres][k3q]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */ |
|
Tvresult[nres][k3q]=(int)Tvarsel[k3q];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
|
Tvqresult[nres][k3q]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */ |
Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); |
TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
|
precov[nres][k1]=Tvalsel[k3q]; |
|
/* printf("Decoderesult Quantitative nres=%d,precov[nres=%d][k1=%d]=%.f V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, nres, k1,precov[nres][k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */ |
k4q++;; |
k4q++;; |
|
}else if( Dummy[k1]==2 ){ /* For dummy with age product */ |
|
/* Tvar[k1]; */ /* Age variable */ |
|
/* Wrong we want the value of variable name Tvar[k1] */ |
|
|
|
k3= resultmodel[nres][k1]; /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/ |
|
k2=(int)Tvarsel[k3]; /* nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/ |
|
TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][4]=1 */ |
|
precov[nres][k1]=Tvalsel[k3]; |
|
/* printf("Decoderesult Dummy with age k=%d, k1=%d precov[nres=%d][k1=%d]=%.f Tvar[%d]=V%d k2=Tvarsel[%d]=%d Tvalsel[%d]=%d\n",k, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k3,(int)Tvarsel[k3], k3, (int)Tvalsel[k3]); */ |
|
}else if( Dummy[k1]==3 ){ /* For quant with age product */ |
|
k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 25.1=k3q */ |
|
k2q=(int)Tvarsel[k3q]; /* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */ |
|
TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* TinvDoQresult[nres][5]=25.1 */ |
|
precov[nres][k1]=Tvalsel[k3q]; |
|
/* printf("Decoderesult Quantitative with age nres=%d, k1=%d, precov[nres=%d][k1=%d]=%f Tvar[%d]=V%d V(k2q=%d)= Tvarsel[%d]=%d, Tvalsel[%d]=%f\n",nres, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */ |
|
}else if(Typevar[k1]==2 ){ /* For product quant or dummy (not with age) */ |
|
precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; |
|
/* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
}else{ |
|
printf("Error Decoderesult probably a product Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]); |
|
fprintf(ficlog,"Error Decoderesult probably a product Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]); |
} |
} |
} |
} |
|
|
TKresult[nres]=++k; /* Combination for the nresult and the model */ |
TKresult[nres]=++k; /* Number of combinations of dummies for the nresult and the model =Tvalsel[k3]*pow(2,k4) + 1*/ |
return (0); |
return (0); |
} |
} |
|
|
Line 9416 int decodemodel( char model[], int lasto
|
Line 11089 int decodemodel( char model[], int lasto
|
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
* - cptcovage number of covariates with age*products =2 |
* - cptcovage number of covariates with age*products =2 |
* - cptcovs number of simple covariates |
* - cptcovs number of simple covariates |
|
* ncovcolt=ncovcol+nqv+ntv+nqtv total of covariates in the data, not in the model equation |
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
* which is a new column after the 9 (ncovcol) variables. |
* which is a new column after the 9 (ncovcol+nqv+ntv+nqtv) variables. |
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
* - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual |
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
*/ |
*/ |
|
/* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
{ |
{ |
int i, j, k, ks, v; |
int i, j, k, ks, v; |
int j1, k1, k2, k3, k4; |
int j1, k1, k2, k3, k4; |
Line 9439 int decodemodel( char model[], int lasto
|
Line 11114 int decodemodel( char model[], int lasto
|
return 1; |
return 1; |
} |
} |
if (strstr(model,"v") !=0){ |
if (strstr(model,"v") !=0){ |
printf("Error. 'v' must be in upper case 'V' model=%s ",model); |
printf("Error. 'v' must be in upper case 'V' model=1+age+%s ",model); |
fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog); |
fprintf(ficlog,"Error. 'v' must be in upper case model=1+age+%s ",model);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
strcpy(modelsav,model); |
strcpy(modelsav,model); |
if ((strpt=strstr(model,"age*age")) !=0){ |
if ((strpt=strstr(model,"age*age")) !=0){ |
printf(" strpt=%s, model=%s\n",strpt, model); |
printf(" strpt=%s, model=1+age+%s\n",strpt, model); |
if(strpt != model){ |
if(strpt != model){ |
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
printf("Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); |
corresponding column of parameters.\n",model); |
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
fprintf(ficlog,"Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); fflush(ficlog); |
corresponding column of parameters.\n",model); fflush(ficlog); |
return 1; |
return 1; |
Line 9484 int decodemodel( char model[], int lasto
|
Line 11159 int decodemodel( char model[], int lasto
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 |
* k= 1 2 3 4 5 6 7 8 |
* k= 1 2 3 4 5 6 7 8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* covar[k,i], value of kth covariate if not including age for individual i: |
* covar[k,i], are for fixed covariates, value of kth covariate if not including age for individual i: |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8 |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8 |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* Tage[++cptcovage]=k |
* Tage[++cptcovage]=k |
* if products, new covar are created after ncovcol with k1 |
* if products, new covar are created after ncovcol + nqv (quanti fixed) with k1 |
* Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11 |
* Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11 |
* Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product |
* Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product |
* Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8 |
* Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8 |
* Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2]; |
* Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2]; |
* Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted |
* Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 |
* < ncovcol=8 > |
* < ncovcol=8 8 fixed covariate. Additional starts at 9 (V5*V6) and 10(V7*V8) > |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
* Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
* Tvard[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
* p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* p Tvar[1]@12={2, 1, 3, 3, 9, 10, 8, 8} |
* p Tprod[1]@2={ 6, 5} |
* p Tprod[1]@2={ 6, 5} |
*p Tvard[1][1]@4= {7, 8, 5, 6} |
*p Tvard[1][1]@4= {7, 8, 5, 6} |
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
*How to reorganize? |
*How to reorganize? Tvars(orted) |
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
Line 9530 int decodemodel( char model[], int lasto
|
Line 11205 int decodemodel( char model[], int lasto
|
Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0; |
Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0; |
} |
} |
cptcovage=0; |
cptcovage=0; |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model line */ |
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' cutl from left to right |
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
modelsav==V2+V1+V5*age+V4+V3*age strb=V3*age stra=V2+V1V5*age+V4 */ /* <model> "V5+V4+V3+V4*V3+V5*age+V1*age+V1" strb="V5" stra="V4+V3+V4*V3+V5*age+V1*age+V1" */ |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
if (nbocc(modelsav,'+')==0) |
|
strcpy(strb,modelsav); /* and analyzes it */ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
/*scanf("%d",i);*/ |
/*scanf("%d",i);*/ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V5*age+ V4+V3*age strb=V3*age */ |
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
cutl(strc,strd,strb,'*'); /**< k=1 strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
/* covar is not filled and then is empty */ |
/* covar is not filled and then is empty */ |
cptcovprod--; |
cptcovprod--; |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
Tvar[k]=atoi(stre); /* V2+V1+V5*age+V4+V3*age Tvar[5]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
Typevar[k]=1; /* 1 for age product */ |
Typevar[k]=1; /* 1 for age product */ |
cptcovage++; /* Sums the number of covariates which include age as a product */ |
cptcovage++; /* Counts the number of covariates which include age as a product */ |
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
Tage[cptcovage]=k; /* V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
/*printf("stre=%s ", stre);*/ |
/*printf("stre=%s ", stre);*/ |
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
cptcovprod--; |
cptcovprod--; |
Line 9559 int decodemodel( char model[], int lasto
|
Line 11235 int decodemodel( char model[], int lasto
|
cptcovn++; |
cptcovn++; |
cptcovprodnoage++;k1++; |
cptcovprodnoage++;k1++; |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but |
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* ncovcolt+k1; For model-covariate k tells which data-covariate to use but |
because this model-covariate is a construction we invent a new column |
because this model-covariate is a construction we invent a new column |
which is after existing variables ncovcol+nqv+ntv+nqtv + k1 |
which is after existing variables ncovcol+nqv+ntv+nqtv + k1 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
If already ncovcol=4 and model= V2 + V1 + V1*V4 + age*V3 + V3*V2 |
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
thus after V4 we invent V5 and V6 because age*V3 will be computed in 4 |
Typevar[k]=2; /* 2 for double fixed dummy covariates */ |
Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=3 etc */ |
|
/* Please remark that the new variables are model dependent */ |
|
/* If we have 4 variable but the model uses only 3, like in |
|
* model= V1 + age*V1 + V2 + V3 + age*V2 + age*V3 + V1*V2 + V1*V3 |
|
* k= 1 2 3 4 5 6 7 8 |
|
* Tvar[k]=1 1 2 3 2 3 (5 6) (and not 4 5 because of V4 missing) |
|
* Tage[kk] [1]= 2 [2]=5 [3]=6 kk=1 to cptcovage=3 |
|
* Tvar[Tage[kk]][1]=2 [2]=2 [3]=3 |
|
*/ |
|
Typevar[k]=2; /* 2 for product */ |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */ |
Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */ |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
|
Tvardk[k][1] =atoi(strc); /* m 1 for V1*/ |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
|
Tvardk[k][2] =atoi(stre); /* n 4 for V4*/ |
k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */ |
k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */ |
/* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */ |
/* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */ |
/* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ |
/* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ |
/*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ |
/*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ |
/* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ |
/* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ |
for (i=1; i<=lastobs;i++){ |
if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */ |
|
for (i=1; i<=lastobs;i++){/* For fixed product */ |
/* Computes the new covariate which is a product of |
/* Computes the new covariate which is a product of |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
} |
} |
|
} /*End of FixedV */ |
} /* End age is not in the model */ |
} /* End age is not in the model */ |
} /* End if model includes a product */ |
} /* End if model includes a product */ |
else { /* no more sum */ |
else { /* not a product */ |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
/* scanf("%d",i);*/ |
/* scanf("%d",i);*/ |
cutl(strd,strc,strb,'V'); |
cutl(strd,strc,strb,'V'); |
Line 9613 int decodemodel( char model[], int lasto
|
Line 11302 int decodemodel( char model[], int lasto
|
model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place |
model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place |
k = 1 2 3 4 5 6 7 8 9 |
k = 1 2 3 4 5 6 7 8 9 |
Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5 |
Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5 |
Typevar[k]= 0 0 0 2 1 0 2 1 1 |
Typevar[k]= 0 0 0 2 1 0 2 1 0 |
Fixed[k] 1 1 1 1 3 0 0 or 2 2 3 |
Fixed[k] 1 1 1 1 3 0 0 or 2 2 3 |
Dummy[k] 1 0 0 0 3 1 1 2 3 |
Dummy[k] 1 0 0 0 3 1 1 2 3 |
Tmodelind[combination of covar]=k; |
Tmodelind[combination of covar]=k; |
Line 9622 int decodemodel( char model[], int lasto
|
Line 11311 int decodemodel( char model[], int lasto
|
/* If Tvar[k] >ncovcol it is a product */ |
/* If Tvar[k] >ncovcol it is a product */ |
/* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */ |
/* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */ |
/* Computing effective variables, ie used by the model, that is from the cptcovt variables */ |
/* Computing effective variables, ie used by the model, that is from the cptcovt variables */ |
printf("Model=%s\n\ |
printf("Model=1+age+%s\n\ |
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
fprintf(ficlog,"Model=%s\n\ |
fprintf(ficlog,"Model=1+age+%s\n\ |
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\ |
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
for(k=1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;} |
for(k=-1;k<=NCOVMAX; k++){ Fixed[k]=0; Dummy[k]=0;} |
for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */ |
for(k=1;k<=NCOVMAX; k++){TvarFind[k]=0; TvarVind[k]=0;} |
|
for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0, ncovvt=0;k<=cptcovt; k++){ /* or cptocvt loop on k from model */ |
if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */ |
if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */ |
Fixed[k]= 0; |
Fixed[k]= 0; |
Dummy[k]= 0; |
Dummy[k]= 0; |
Line 9641 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11331 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
TvarsD[nsd]=Tvar[k]; |
TvarsD[nsd]=Tvar[k]; |
TvarsDind[nsd]=k; |
TvarsDind[nsd]=k; |
|
TnsdVar[Tvar[k]]=nsd; |
TvarF[ncovf]=Tvar[k]; |
TvarF[ncovf]=Tvar[k]; |
TvarFind[ncovf]=k; |
TvarFind[ncovf]=k; |
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
}else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */ |
/* }else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /\* Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol *\/ */ |
|
}else if( Tposprod[k]>0 && Typevar[k]==2 && FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* Needs a fixed product Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol */ |
Fixed[k]= 0; |
Fixed[k]= 0; |
Dummy[k]= 0; |
Dummy[k]= 0; |
ncoveff++; |
ncoveff++; |
ncovf++; |
ncovf++; |
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
TvarF[ncovf]=Tvar[k]; |
TvarF[ncovf]=Tvar[k]; |
|
/* TnsdVar[Tvar[k]]=nsd; */ /* To be done */ |
TvarFind[ncovf]=k; |
TvarFind[ncovf]=k; |
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
Line 9662 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11355 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
modell[k].subtype= FQ; |
modell[k].subtype= FQ; |
nsq++; |
nsq++; |
TvarsQ[nsq]=Tvar[k]; |
TvarsQ[nsq]=Tvar[k]; /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary see below */ |
TvarsQind[nsq]=k; |
TvarsQind[nsq]=k; /* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */ |
ncovf++; |
ncovf++; |
TvarF[ncovf]=Tvar[k]; |
TvarF[ncovf]=Tvar[k]; |
TvarFind[ncovf]=k; |
TvarFind[ncovf]=k; |
TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
}else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */ |
}else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
|
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvar[k]; /* TvarVV[1]=V3 (first time varying in the model equation */ |
|
TvarVVind[ncovvt]=k; /* TvarVVind[1]=2 (second position in the model equation */ |
|
|
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 0; |
Dummy[k]= 0; |
ntveff++; /* Only simple time varying dummy variable */ |
ntveff++; /* Only simple time varying dummy variable */ |
Line 9678 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11378 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
nsd++; |
nsd++; |
TvarsD[nsd]=Tvar[k]; |
TvarsD[nsd]=Tvar[k]; |
TvarsDind[nsd]=k; |
TvarsDind[nsd]=k; |
|
TnsdVar[Tvar[k]]=nsd; /* To be verified */ |
ncovv++; /* Only simple time varying variables */ |
ncovv++; /* Only simple time varying variables */ |
TvarV[ncovv]=Tvar[k]; |
TvarV[ncovv]=Tvar[k]; |
TvarVind[ncovv]=k; /* TvarVind[2]=2 TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
TvarVind[ncovv]=k; /* TvarVind[2]=2 TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
Line 9686 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11387 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); |
printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); |
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ |
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
|
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvar[k]; /* TvarVV[1]=V3 (first time varying in the model equation */ |
|
TvarVVind[ncovvt]=k; /* TvarVV[1]=V3 (first time varying in the model equation */ |
|
|
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 1; |
Dummy[k]= 1; |
nqtveff++; |
nqtveff++; |
Line 9693 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11401 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
modell[k].subtype= VQ; |
modell[k].subtype= VQ; |
ncovv++; /* Only simple time varying variables */ |
ncovv++; /* Only simple time varying variables */ |
nsq++; |
nsq++; |
TvarsQ[nsq]=Tvar[k]; |
TvarsQ[nsq]=Tvar[k]; /* k=1 Tvar=5 nsq=1 TvarsQ[1]=5 */ /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary here) */ |
TvarsQind[nsq]=k; |
TvarsQind[nsq]=k; /* For single quantitative covariate gives the model position of each single quantitative covariate *//* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */ |
TvarV[ncovv]=Tvar[k]; |
TvarV[ncovv]=Tvar[k]; |
TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
/* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */ |
/* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */ |
printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); |
/* printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); */ |
printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); |
/* printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); */ |
}else if (Typevar[k] == 1) { /* product with age */ |
}else if (Typevar[k] == 1) { /* product with age */ |
ncova++; |
ncova++; |
TvarA[ncova]=Tvar[k]; |
TvarA[ncova]=Tvar[k]; |
Line 9732 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11440 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
modell[k].subtype= APVQ; /* Product age * varying quantitative */ |
modell[k].subtype= APVQ; /* Product age * varying quantitative */ |
/* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ |
/* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ |
} |
} |
}else if (Typevar[k] == 2) { /* product without age */ |
}else if (Typevar[k] == 2) { /* product Vn * Vm without age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product */ |
k1=Tposprod[k]; |
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
if(Tvard[k1][1] <=ncovcol){ |
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
if(Tvard[k1][2] <=ncovcol){ |
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
k1=Tposprod[k]; /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1} k1=1 first product but second time varying because of V3 */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvard[k1][1]; /* TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */ |
|
TvarVVind[ncovvt]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvard[k1][2]; /* TvarVV[3]=V3 */ |
|
TvarVVind[ncovvt]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
|
|
|
|
if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */ |
|
if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */ |
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 0; |
Dummy[k]= 0; |
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
Line 9743 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11462 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
ncovf++; /* Fixed variables without age */ |
ncovf++; /* Fixed variables without age */ |
TvarF[ncovf]=Tvar[k]; |
TvarF[ncovf]=Tvar[k]; |
TvarFind[ncovf]=k; |
TvarFind[ncovf]=k; |
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */ |
Fixed[k]= 0; /* or 2 ?*/ |
Fixed[k]= 0; /* Fixed product */ |
Dummy[k]= 1; |
Dummy[k]= 1; |
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
ncovf++; /* Varying variables without age */ |
ncovf++; /* Varying variables without age */ |
TvarF[ncovf]=Tvar[k]; |
TvarF[ncovf]=Tvar[k]; |
TvarFind[ncovf]=k; |
TvarFind[ncovf]=k; |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */ |
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 0; |
Dummy[k]= 0; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
ncovv++; /* Varying variables without age */ |
ncovv++; /* Varying variables without age */ |
TvarV[ncovv]=Tvar[k]; |
TvarV[ncovv]=Tvar[k]; /* TvarV[1]=Tvar[5]=5 because there is a V4 */ |
TvarVind[ncovv]=k; |
TvarVind[ncovv]=k;/* TvarVind[1]=5 */ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */ |
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 1; |
Dummy[k]= 1; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
Line 9768 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11487 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
TvarV[ncovv]=Tvar[k]; |
TvarV[ncovv]=Tvar[k]; |
TvarVind[ncovv]=k; |
TvarVind[ncovv]=k; |
} |
} |
}else if(Tvard[k1][1] <=ncovcol+nqv){ |
}else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti */ |
if(Tvard[k1][2] <=ncovcol){ |
if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */ |
Fixed[k]= 0; /* or 2 ?*/ |
Fixed[k]= 0; /* Fixed product */ |
Dummy[k]= 1; |
Dummy[k]= 1; |
modell[k].maintype= FTYPE; |
modell[k].maintype= FTYPE; |
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
ncovf++; /* Fixed variables without age */ |
ncovf++; /* Fixed variables without age */ |
TvarF[ncovf]=Tvar[k]; |
TvarF[ncovf]=Tvar[k]; |
TvarFind[ncovf]=k; |
TvarFind[ncovf]=k; |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */ |
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 1; |
Dummy[k]= 1; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
Line 9785 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11504 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
ncovv++; /* Varying variables without age */ |
ncovv++; /* Varying variables without age */ |
TvarV[ncovv]=Tvar[k]; |
TvarV[ncovv]=Tvar[k]; |
TvarVind[ncovv]=k; |
TvarVind[ncovv]=k; |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */ |
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 1; |
Dummy[k]= 1; |
modell[k].maintype= VTYPE; |
modell[k].maintype= VTYPE; |
Line 9797 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11516 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
TvarV[ncovv]=Tvar[k]; |
TvarV[ncovv]=Tvar[k]; |
TvarVind[ncovv]=k; |
TvarVind[ncovv]=k; |
} |
} |
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ |
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */ |
if(Tvard[k1][2] <=ncovcol){ |
if(Tvard[k1][2] <=ncovcol){ |
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 1; |
Dummy[k]= 1; |
Line 9831 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11550 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
TvarV[ncovv]=Tvar[k]; |
TvarV[ncovv]=Tvar[k]; |
TvarVind[ncovv]=k; |
TvarVind[ncovv]=k; |
} |
} |
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ |
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */ |
if(Tvard[k1][2] <=ncovcol){ |
if(Tvard[k1][2] <=ncovcol){ |
Fixed[k]= 1; |
Fixed[k]= 1; |
Dummy[k]= 1; |
Dummy[k]= 1; |
Line 9873 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
Line 11592 Dummy[k] 0=dummy (0 1), 1 quantitative (
|
printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
} |
} |
printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
/* printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); */ |
printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); |
/* printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); */ |
fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
} |
} |
/* Searching for doublons in the model */ |
/* Searching for doublons in the model */ |
for(k1=1; k1<= cptcovt;k1++){ |
for(k1=1; k1<= cptcovt;k1++){ |
for(k2=1; k2 <k1;k2++){ |
for(k2=1; k2 <k1;k2++){ |
if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ |
/* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */ |
|
if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){ |
if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ |
if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ |
if(Tvar[k1]==Tvar[k2]){ |
if(Tvar[k1]==Tvar[k2]){ |
printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); |
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog); |
return(1); |
return(1); |
} |
} |
}else if (Typevar[k1] ==2){ |
}else if (Typevar[k1] ==2){ |
k3=Tposprod[k1]; |
k3=Tposprod[k1]; |
k4=Tposprod[k2]; |
k4=Tposprod[k2]; |
if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ |
if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ |
printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
return(1); |
return(1); |
} |
} |
} |
} |
Line 10056 BOOL IsWow64()
|
Line 11776 BOOL IsWow64()
|
#endif |
#endif |
|
|
void syscompilerinfo(int logged) |
void syscompilerinfo(int logged) |
{ |
{ |
/* #include "syscompilerinfo.h"*/ |
#include <stdint.h> |
|
|
|
/* #include "syscompilerinfo.h"*/ |
/* command line Intel compiler 32bit windows, XP compatible:*/ |
/* command line Intel compiler 32bit windows, XP compatible:*/ |
/* /GS /W3 /Gy |
/* /GS /W3 /Gy |
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
Line 10092 void syscompilerinfo(int logged)
|
Line 11814 void syscompilerinfo(int logged)
|
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
/NOLOGO /TLBID:1 |
/NOLOGO /TLBID:1 |
*/ |
*/ |
|
|
|
|
#if defined __INTEL_COMPILER |
#if defined __INTEL_COMPILER |
#if defined(__GNUC__) |
#if defined(__GNUC__) |
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
Line 10108 void syscompilerinfo(int logged)
|
Line 11832 void syscompilerinfo(int logged)
|
} |
} |
#endif |
#endif |
|
|
#include <stdint.h> |
|
|
|
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
#if defined(__clang__) |
#if defined(__clang__) |
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
Line 10195 void syscompilerinfo(int logged)
|
Line 11917 void syscompilerinfo(int logged)
|
#endif |
#endif |
#endif |
#endif |
|
|
// void main() |
// void main () |
// { |
// { |
#if defined(_MSC_VER) |
#if defined(_MSC_VER) |
if (IsWow64()){ |
if (IsWow64()){ |
Line 10216 void syscompilerinfo(int logged)
|
Line 11938 void syscompilerinfo(int logged)
|
} |
} |
|
|
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (forward period or forward stable prevalence) --------------*/ |
|
/* Computes the prevalence limit for each combination of the dummy covariates */ |
int i, j, k, i1, k4=0, nres=0 ; |
int i, j, k, i1, k4=0, nres=0 ; |
/* double ftolpl = 1.e-10; */ |
/* double ftolpl = 1.e-10; */ |
double age, agebase, agelim; |
double age, agebase, agelim; |
Line 10225 int prevalence_limit(double *p, double *
|
Line 11948 int prevalence_limit(double *p, double *
|
strcpy(filerespl,"PL_"); |
strcpy(filerespl,"PL_"); |
strcat(filerespl,fileresu); |
strcat(filerespl,fileresu); |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
} |
} |
printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl); |
pstamp(ficrespl); |
pstamp(ficrespl); |
fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"#Age "); |
fprintf(ficrespl,"#Age "); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
fprintf(ficrespl,"\n"); |
fprintf(ficrespl,"\n"); |
Line 10245 int prevalence_limit(double *p, double *
|
Line 11968 int prevalence_limit(double *p, double *
|
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */ |
/* for(k=1; k<=i1;k++){ /\* For each combination k of dummy covariates in the model *\/ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
if(i1 != 1 && TKresult[nres]!= k) |
k=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* if(i1 != 1 && TKresult[nres]!= k) /\* We found the combination k corresponding to the resultline value of dummies *\/ */ |
|
/* continue; */ |
|
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
/* k=k+1; */ |
/* k=k+1; */ |
/* to clean */ |
/* to clean */ |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
/*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*/ |
fprintf(ficrespl,"#******"); |
fprintf(ficrespl,"#******"); |
printf("#******"); |
printf("#******"); |
fprintf(ficlog,"#******"); |
fprintf(ficlog,"#******"); |
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */ |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/ |
/* fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Here problem for varying dummy*\/ */ |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
fprintf(ficrespl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
} |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
} |
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
fprintf(ficrespl,"******\n"); |
fprintf(ficrespl,"******\n"); |
printf("******\n"); |
printf("******\n"); |
fprintf(ficlog,"******\n"); |
fprintf(ficlog,"******\n"); |
Line 10280 int prevalence_limit(double *p, double *
|
Line 12008 int prevalence_limit(double *p, double *
|
} |
} |
|
|
fprintf(ficrespl,"#Age "); |
fprintf(ficrespl,"#Age "); |
for(j=1;j<=cptcoveff;j++) { |
/* for(j=1;j<=cptcoveff;j++) { */ |
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* } */ |
|
for(j=1;j<=cptcovs;j++) { /* New the quanti variable is added */ |
|
fprintf(ficrespl,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
fprintf(ficrespl,"Total Years_to_converge\n"); |
fprintf(ficrespl,"Total Years_to_converge\n"); |
|
|
for (age=agebase; age<=agelim; age++){ |
for (age=agebase; age<=agelim; age++){ |
/* for (age=agebase; age<=agebase; age++){ */ |
/* for (age=agebase; age<=agebase; age++){ */ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); |
/**< Computes the prevalence limit in each live state at age x and for covariate combination (k and) nres */ |
|
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); /* Nicely done */ |
fprintf(ficrespl,"%.0f ",age ); |
fprintf(ficrespl,"%.0f ",age ); |
for(j=1;j<=cptcoveff;j++) |
/* for(j=1;j<=cptcoveff;j++) */ |
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
for(j=1;j<=cptcovs;j++) |
|
fprintf(ficrespl,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
tot=0.; |
tot=0.; |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
tot += prlim[i][i]; |
tot += prlim[i][i]; |
Line 10300 int prevalence_limit(double *p, double *
|
Line 12034 int prevalence_limit(double *p, double *
|
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
} /* Age */ |
} /* Age */ |
/* was end of cptcod */ |
/* was end of cptcod */ |
} /* cptcov */ |
} /* nres */ |
} /* nres */ |
/* } /\* for each combination *\/ */ |
return 0; |
return 0; |
} |
} |
|
|
int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){ |
int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){ |
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Back Prevalence limit (backward stable prevalence) --------------*/ |
|
|
/* Computes the back prevalence limit for any combination of covariate values |
/* Computes the back prevalence limit for any combination of covariate values |
* at any age between ageminpar and agemaxpar |
* at any age between ageminpar and agemaxpar |
Line 10321 int back_prevalence_limit(double *p, dou
|
Line 12055 int back_prevalence_limit(double *p, dou
|
strcpy(fileresplb,"PLB_"); |
strcpy(fileresplb,"PLB_"); |
strcat(fileresplb,fileresu); |
strcat(fileresplb,fileresu); |
if((ficresplb=fopen(fileresplb,"w"))==NULL) { |
if((ficresplb=fopen(fileresplb,"w"))==NULL) { |
printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1; |
fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1; |
} |
} |
printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
printf("Computing backward prevalence: result on file '%s' \n", fileresplb); |
fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb); |
pstamp(ficresplb); |
pstamp(ficresplb); |
fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficresplb,"#Age "); |
fprintf(ficresplb,"#Age "); |
for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i); |
fprintf(ficresplb,"\n"); |
fprintf(ficresplb,"\n"); |
Line 10343 int back_prevalence_limit(double *p, dou
|
Line 12077 int back_prevalence_limit(double *p, dou
|
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
/* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ |
if(i1 != 1 && TKresult[nres]!= k) |
k=TKresult[nres]; |
continue; |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
|
/* /\*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*\/ */ |
fprintf(ficresplb,"#******"); |
fprintf(ficresplb,"#******"); |
printf("#******"); |
printf("#******"); |
fprintf(ficlog,"#******"); |
fprintf(ficlog,"#******"); |
for(j=1;j<=cptcoveff ;j++) {/* all covariates */ |
for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */ |
fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresplb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
/* for(j=1;j<=cptcoveff ;j++) {/\* all covariates *\/ */ |
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
/* } */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
fprintf(ficresplb,"******\n"); |
fprintf(ficresplb,"******\n"); |
printf("******\n"); |
printf("******\n"); |
fprintf(ficlog,"******\n"); |
fprintf(ficlog,"******\n"); |
Line 10371 int back_prevalence_limit(double *p, dou
|
Line 12112 int back_prevalence_limit(double *p, dou
|
} |
} |
|
|
fprintf(ficresplb,"#Age "); |
fprintf(ficresplb,"#Age "); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcovs;j++) { |
fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresplb,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
fprintf(ficresplb,"Total Years_to_converge\n"); |
fprintf(ficresplb,"Total Years_to_converge\n"); |
Line 10395 int back_prevalence_limit(double *p, dou
|
Line 12136 int back_prevalence_limit(double *p, dou
|
/* exit(1); */ |
/* exit(1); */ |
} |
} |
fprintf(ficresplb,"%.0f ",age ); |
fprintf(ficresplb,"%.0f ",age ); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcovs;j++) |
fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresplb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
tot=0.; |
tot=0.; |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
tot += bprlim[i][i]; |
tot += bprlim[i][i]; |
Line 10406 int back_prevalence_limit(double *p, dou
|
Line 12147 int back_prevalence_limit(double *p, dou
|
} /* Age */ |
} /* Age */ |
/* was end of cptcod */ |
/* was end of cptcod */ |
/*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */ |
/*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */ |
} /* end of any combination */ |
/* } /\* end of any combination *\/ */ |
} /* end of nres */ |
} /* end of nres */ |
/* hBijx(p, bage, fage); */ |
/* hBijx(p, bage, fage); */ |
/* fclose(ficrespijb); */ |
/* fclose(ficrespijb); */ |
Line 10416 int back_prevalence_limit(double *p, dou
|
Line 12157 int back_prevalence_limit(double *p, dou
|
|
|
int hPijx(double *p, int bage, int fage){ |
int hPijx(double *p, int bage, int fage){ |
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
|
/* to be optimized with precov */ |
int stepsize; |
int stepsize; |
int agelim; |
int agelim; |
int hstepm; |
int hstepm; |
Line 10426 int hPijx(double *p, int bage, int fage)
|
Line 12167 int hPijx(double *p, int bage, int fage)
|
double agedeb; |
double agedeb; |
double ***p3mat; |
double ***p3mat; |
|
|
strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); |
strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); |
if((ficrespij=fopen(filerespij,"w"))==NULL) { |
if((ficrespij=fopen(filerespij,"w"))==NULL) { |
printf("Problem with Pij resultfile: %s\n", filerespij); return 1; |
printf("Problem with Pij resultfile: %s\n", filerespij); return 1; |
fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; |
fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; |
} |
} |
printf("Computing pij: result on file '%s' \n", filerespij); |
printf("Computing pij: result on file '%s' \n", filerespij); |
fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); |
fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); |
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
stepsize=(int) (stepm+YEARM-1)/YEARM; |
/*if (stepm<=24) stepsize=2;*/ |
/*if (stepm<=24) stepsize=2;*/ |
|
|
agelim=AGESUP; |
agelim=AGESUP; |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
/* hstepm=1; aff par mois*/ |
/* hstepm=1; aff par mois*/ |
pstamp(ficrespij); |
pstamp(ficrespij); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
i1= pow(2,cptcoveff); |
i1= pow(2,cptcoveff); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ |
k=TKresult[nres]; |
if(i1 != 1 && TKresult[nres]!= k) |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
continue; |
/* for(k=1; k<=i1;k++){ */ |
fprintf(ficrespij,"\n#****** "); |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
for(j=1;j<=cptcoveff;j++) |
/* continue; */ |
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespij,"\n#****** "); |
for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ |
for(j=1;j<=cptcovs;j++){ |
printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
fprintf(ficrespij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); |
/* fprintf(ficrespij,"@wV%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
fprintf(ficrespij,"******\n"); |
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
} |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
fprintf(ficrespij,"******\n"); |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
|
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
|
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
|
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespij," %1d-%1d",i,j); |
|
fprintf(ficrespij,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespij," %1d-%1d",i,j); |
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
fprintf(ficrespij,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespij,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespij,"\n"); |
fprintf(ficrespij,"\n"); |
} |
} |
/*}*/ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespij,"\n"); |
} |
} |
return 0; |
} |
|
/*}*/ |
|
return 0; |
} |
} |
|
|
int hBijx(double *p, int bage, int fage, double ***prevacurrent){ |
int hBijx(double *p, int bage, int fage, double ***prevacurrent){ |
/*------------- h Bij x at various ages ------------*/ |
/*------------- h Bij x at various ages ------------*/ |
|
/* To be optimized with precov */ |
int stepsize; |
int stepsize; |
/* int agelim; */ |
/* int agelim; */ |
int ageminl; |
int ageminl; |
Line 10516 int hPijx(double *p, int bage, int fage)
|
Line 12260 int hPijx(double *p, int bage, int fage)
|
/*if (stepm<=24) stepsize=2;*/ |
/*if (stepm<=24) stepsize=2;*/ |
|
|
/* agelim=AGESUP; */ |
/* agelim=AGESUP; */ |
ageminl=30; |
ageminl=AGEINF; /* was 30 */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
Line 10528 int hPijx(double *p, int bage, int fage)
|
Line 12272 int hPijx(double *p, int bage, int fage)
|
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
k=TKresult[nres]; |
if(i1 != 1 && TKresult[nres]!= k) |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
continue; |
/* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ |
fprintf(ficrespijb,"\n#****** "); |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
for(j=1;j<=cptcoveff;j++) |
/* continue; */ |
fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespijb,"\n#****** "); |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
for(j=1;j<=cptcovs;j++){ |
fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
fprintf(ficrespijb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
/* for(j=1;j<=cptcoveff;j++) */ |
fprintf(ficrespijb,"******\n"); |
/* fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
if(invalidvarcomb[k]){ /* Is it necessary here? */ |
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
/* fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
continue; |
} |
} |
fprintf(ficrespijb,"******\n"); |
|
if(invalidvarcomb[k]){ /* Is it necessary here? */ |
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
continue; |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
} |
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */ |
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
|
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
|
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */ |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/ |
/* and memory limitations if stepm is small */ |
|
|
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */ |
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres); |
/* and memory limitations if stepm is small */ |
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j="); |
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */ |
|
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j="); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %1d-%1d",i,j); |
|
fprintf(ficrespijb,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); |
|
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespijb," %1d-%1d",i,j); |
fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */ |
fprintf(ficrespijb,"\n"); |
fprintf(ficrespijb,"\n"); |
for (h=0; h<=nhstepm; h++){ |
} |
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); |
fprintf(ficrespijb,"\n"); |
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
} /* end age deb */ |
for(i=1; i<=nlstate;i++) |
/* } /\* end combination *\/ */ |
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespijb," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespijb,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespijb,"\n"); |
|
} /* end age deb */ |
|
} /* end combination */ |
|
} /* end nres */ |
} /* end nres */ |
return 0; |
return 0; |
} /* hBijx */ |
} /* hBijx */ |
Line 10595 int main(int argc, char *argv[])
|
Line 12343 int main(int argc, char *argv[])
|
double ssval; |
double ssval; |
#endif |
#endif |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; |
int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */ |
|
/* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */ |
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
int jj, ll, li, lj, lk; |
int jj, ll, li, lj, lk; |
int numlinepar=0; /* Current linenumber of parameter file */ |
int numlinepar=0; /* Current linenumber of parameter file */ |
Line 10605 int main(int argc, char *argv[])
|
Line 12354 int main(int argc, char *argv[])
|
int vpopbased=0; |
int vpopbased=0; |
int nres=0; |
int nres=0; |
int endishere=0; |
int endishere=0; |
|
int noffset=0; |
int ncurrv=0; /* Temporary variable */ |
int ncurrv=0; /* Temporary variable */ |
|
|
char ca[32], cb[32]; |
char ca[32], cb[32]; |
Line 10621 int main(int argc, char *argv[])
|
Line 12370 int main(int argc, char *argv[])
|
double dum=0.; /* Dummy variable */ |
double dum=0.; /* Dummy variable */ |
double ***p3mat; |
double ***p3mat; |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
|
double wald; |
|
|
char line[MAXLINE]; |
char line[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
|
|
char modeltemp[MAXLINE]; |
char modeltemp[MAXLINE]; |
char resultline[MAXLINE]; |
char resultline[MAXLINE], resultlineori[MAXLINE]; |
|
|
char pathr[MAXLINE], pathimach[MAXLINE]; |
char pathr[MAXLINE], pathimach[MAXLINE]; |
char *tok, *val; /* pathtot */ |
char *tok, *val; /* pathtot */ |
int firstobs=1, lastobs=10; |
/* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */ |
int c, h , cpt, c2; |
int c, h , cpt, c2; |
int jl=0; |
int jl=0; |
int i1, j1, jk, stepsize=0; |
int i1, j1, jk, stepsize=0; |
Line 10638 int main(int argc, char *argv[])
|
Line 12388 int main(int argc, char *argv[])
|
|
|
int *tab; |
int *tab; |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
int backcast=0; |
/* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */ |
|
/* double anprojf, mprojf, jprojf; */ |
|
/* double jintmean,mintmean,aintmean; */ |
|
int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */ |
|
int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */ |
|
double yrfproj= 10.0; /* Number of years of forward projections */ |
|
double yrbproj= 10.0; /* Number of years of backward projections */ |
|
int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */ |
int mobilav=0,popforecast=0; |
int mobilav=0,popforecast=0; |
int hstepm=0, nhstepm=0; |
int hstepm=0, nhstepm=0; |
int agemortsup; |
int agemortsup; |
Line 10650 int main(int argc, char *argv[])
|
Line 12407 int main(int argc, char *argv[])
|
double ftolpl=FTOL; |
double ftolpl=FTOL; |
double **prlim; |
double **prlim; |
double **bprlim; |
double **bprlim; |
double ***param; /* Matrix of parameters */ |
double ***param; /* Matrix of parameters, param[i][j][k] param=ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel) |
|
state of origin, state of destination including death, for each covariate: constante, age, and V1 V2 etc. */ |
double ***paramstart; /* Matrix of starting parameter values */ |
double ***paramstart; /* Matrix of starting parameter values */ |
double *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */ |
double *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */ |
double **matcov; /* Matrix of covariance */ |
double **matcov; /* Matrix of covariance */ |
Line 10663 int main(int argc, char *argv[])
|
Line 12421 int main(int argc, char *argv[])
|
double *epj, vepp; |
double *epj, vepp; |
|
|
double dateprev1, dateprev2; |
double dateprev1, dateprev2; |
double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0; |
double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0; |
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0; |
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0; |
|
|
|
|
double **ximort; |
double **ximort; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
Line 10742 int main(int argc, char *argv[])
|
Line 12501 int main(int argc, char *argv[])
|
if(pathr[0] == '\0') break; /* Dirty */ |
if(pathr[0] == '\0') break; /* Dirty */ |
} |
} |
} |
} |
|
else if (argc<=2){ |
|
strcpy(pathtot,argv[1]); |
|
} |
else{ |
else{ |
strcpy(pathtot,argv[1]); |
strcpy(pathtot,argv[1]); |
|
strcpy(z,argv[2]); |
|
printf("\nargv[2]=%s z=%c\n",argv[2],z[0]); |
} |
} |
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
/*cygwin_split_path(pathtot,path,optionfile); |
/*cygwin_split_path(pathtot,path,optionfile); |
Line 10821 int main(int argc, char *argv[])
|
Line 12585 int main(int argc, char *argv[])
|
exit(70); |
exit(70); |
} |
} |
|
|
|
|
|
|
strcpy(filereso,"o"); |
strcpy(filereso,"o"); |
strcat(filereso,fileresu); |
strcat(filereso,fileresu); |
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
Line 10831 int main(int argc, char *argv[])
|
Line 12593 int main(int argc, char *argv[])
|
fflush(ficlog); |
fflush(ficlog); |
goto end; |
goto end; |
} |
} |
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name */ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fflush(ficlog); |
|
goto end; |
|
} |
|
fprintf(ficres,"#IMaCh %s\n",version); |
|
|
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
numlinepar=0; |
numlinepar=0; |
|
/* Is it a BOM UTF-8 Windows file? */ |
/* First parameter line */ |
/* First parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
|
noffset=0; |
|
if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */ |
|
{ |
|
noffset=noffset+3; |
|
printf("# File is an UTF8 Bom.\n"); // 0xBF |
|
} |
|
/* else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/ |
|
else if( line[0] == (char)0xFF && line[1] == (char)0xFE) |
|
{ |
|
noffset=noffset+2; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
else if( line[0] == 0 && line[1] == 0) |
|
{ |
|
if( line[2] == (char)0xFE && line[3] == (char)0xFF){ |
|
noffset=noffset+4; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
} else{ |
|
;/*printf(" Not a BOM file\n");*/ |
|
} |
|
|
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[noffset] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
|
fputs(line,ficres); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
continue; |
}else |
}else |
Line 10851 int main(int argc, char *argv[])
|
Line 12649 int main(int argc, char *argv[])
|
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
if (num_filled != 5) { |
if (num_filled != 5) { |
printf("Should be 5 parameters\n"); |
printf("Should be 5 parameters\n"); |
|
fprintf(ficlog,"Should be 5 parameters\n"); |
} |
} |
numlinepar++; |
numlinepar++; |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
} |
} |
/* Second parameter line */ |
/* Second parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
/* If line starts with a # it is a comment */ |
/* while(fscanf(ficpar,"%[^\n]", line)) { */ |
|
/* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
printf("%s",line); |
fputs(line,ficparo); |
fprintf(ficres,"%s",line); |
fputs(line,ficlog); |
fprintf(ficparo,"%s",line); |
|
fprintf(ficlog,"%s",line); |
continue; |
continue; |
}else |
}else |
break; |
break; |
Line 10872 int main(int argc, char *argv[])
|
Line 12676 int main(int argc, char *argv[])
|
if (num_filled != 11) { |
if (num_filled != 11) { |
printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
printf("but line=%s\n",line); |
printf("but line=%s\n",line); |
|
fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
|
fprintf(ficlog,"but line=%s\n",line); |
|
} |
|
if( lastpass > maxwav){ |
|
printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav); |
|
fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav); |
|
fflush(ficlog); |
|
goto end; |
} |
} |
printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
|
fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
|
fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt); |
|
fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
} |
} |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
Line 10882 int main(int argc, char *argv[])
|
Line 12697 int main(int argc, char *argv[])
|
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
printf("%s",line); |
fputs(line,ficparo); |
fprintf(ficres,"%s",line); |
fputs(line,ficlog); |
fprintf(ficparo,"%s",line); |
|
fprintf(ficlog,"%s",line); |
continue; |
continue; |
}else |
}else |
break; |
break; |
} |
} |
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
if (num_filled == 0){ |
if (num_filled != 1){ |
printf("ERROR %d: Model should be at minimum 'model=1+age.' WITHOUT space:'%s'\n",num_filled, line); |
printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' WITHOUT space:'%s'\n",num_filled, line); |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
model[0]='\0'; |
|
goto end; |
|
} else if (num_filled != 1){ |
|
printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
|
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
|
model[0]='\0'; |
model[0]='\0'; |
goto end; |
goto end; |
} |
} |
Line 10908 int main(int argc, char *argv[])
|
Line 12719 int main(int argc, char *argv[])
|
strcpy(model,modeltemp); |
strcpy(model,modeltemp); |
} |
} |
} |
} |
/* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ |
/* printf(" model=1+age%s modeltemp= %s, model=1+age+%s\n",model, modeltemp, model);fflush(stdout); */ |
printf("model=1+age+%s\n",model);fflush(stdout); |
printf("model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout); |
} |
} |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
/* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */ |
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
/* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */ |
fflush(ficlog); |
fflush(ficlog); |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
if(model[0]=='#'){ |
if(model[0]=='#'){ |
printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \ |
printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \ |
'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \ |
'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \ |
'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n"); \ |
'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n"); \ |
if(mle != -1){ |
if(mle != -1){ |
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n"); |
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n"); |
exit(1); |
exit(1); |
} |
} |
} |
} |
Line 10933 int main(int argc, char *argv[])
|
Line 12747 int main(int argc, char *argv[])
|
numlinepar++; |
numlinepar++; |
if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */ |
if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */ |
z[0]=line[1]; |
z[0]=line[1]; |
|
}else if(line[1]=='d'){ /* For debugging individual values of covariates in ficresilk */ |
|
debugILK=1;printf("DebugILK\n"); |
} |
} |
/* printf("****line [1] = %c \n",line[1]); */ |
/* printf("****line [1] = %c \n",line[1]); */ |
fputs(line, stdout); |
fputs(line, stdout); |
Line 10943 int main(int argc, char *argv[])
|
Line 12759 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
|
|
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
covar=matrix(0,NCOVMAX,firstobs,lastobs); /**< used in readdata */ |
if(nqv>=1)coqvar=matrix(1,nqv,1,n); /**< Fixed quantitative covariate */ |
if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs); /**< Fixed quantitative covariate */ |
if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,1,n); /**< Time varying quantitative covariate */ |
if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs); /**< Time varying quantitative covariate */ |
if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n); /**< Time varying covariate (dummy and quantitative)*/ |
/* if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs); /\**< Time varying covariate (dummy and quantitative)*\/ */ |
|
if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs); /**< Might be better */ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
Line 11009 int main(int argc, char *argv[])
|
Line 12826 int main(int argc, char *argv[])
|
for(jj=1; jj <=nlstate+ndeath; jj++){ |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
if(jj==i) continue; |
if(jj==i) continue; |
j++; |
j++; |
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
if ((i1 != i) || (j1 != jj)){ |
if ((i1 != i) || (j1 != jj)){ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
Line 11145 Please run with mle=-1 to get a correct
|
Line 12971 Please run with mle=-1 to get a correct
|
|
|
fflush(ficlog); |
fflush(ficlog); |
|
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name*/ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
} |
|
fprintf(ficres,"#%s\n",version); |
|
} /* End of mle != -3 */ |
} /* End of mle != -3 */ |
|
|
/* Main data |
/* Main data |
*/ |
*/ |
n= lastobs; |
nobs=lastobs-firstobs+1; /* was = lastobs;*/ |
num=lvector(1,n); |
/* num=lvector(1,n); */ |
moisnais=vector(1,n); |
/* moisnais=vector(1,n); */ |
annais=vector(1,n); |
/* annais=vector(1,n); */ |
moisdc=vector(1,n); |
/* moisdc=vector(1,n); */ |
andc=vector(1,n); |
/* andc=vector(1,n); */ |
weight=vector(1,n); |
/* weight=vector(1,n); */ |
agedc=vector(1,n); |
/* agedc=vector(1,n); */ |
cod=ivector(1,n); |
/* cod=ivector(1,n); */ |
for(i=1;i<=n;i++){ |
/* for(i=1;i<=n;i++){ */ |
|
num=lvector(firstobs,lastobs); |
|
moisnais=vector(firstobs,lastobs); |
|
annais=vector(firstobs,lastobs); |
|
moisdc=vector(firstobs,lastobs); |
|
andc=vector(firstobs,lastobs); |
|
weight=vector(firstobs,lastobs); |
|
agedc=vector(firstobs,lastobs); |
|
cod=ivector(firstobs,lastobs); |
|
for(i=firstobs;i<=lastobs;i++){ |
num[i]=0; |
num[i]=0; |
moisnais[i]=0; |
moisnais[i]=0; |
annais[i]=0; |
annais[i]=0; |
Line 11178 Please run with mle=-1 to get a correct
|
Line 13003 Please run with mle=-1 to get a correct
|
cod[i]=0; |
cod[i]=0; |
weight[i]=1.0; /* Equal weights, 1 by default */ |
weight[i]=1.0; /* Equal weights, 1 by default */ |
} |
} |
mint=matrix(1,maxwav,1,n); |
mint=matrix(1,maxwav,firstobs,lastobs); |
anint=matrix(1,maxwav,1,n); |
anint=matrix(1,maxwav,firstobs,lastobs); |
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */ |
|
/* printf("BUG ncovmodel=%d NCOVMAX=%d 2**ncovmodel=%f BUG\n",ncovmodel,NCOVMAX,pow(2,ncovmodel)); */ |
tab=ivector(1,NCOVMAX); |
tab=ivector(1,NCOVMAX); |
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
Line 11199 Please run with mle=-1 to get a correct
|
Line 13025 Please run with mle=-1 to get a correct
|
|
|
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
TvarsDind=ivector(1,NCOVMAX); /* */ |
TvarsDind=ivector(1,NCOVMAX); /* */ |
|
TnsdVar=ivector(1,NCOVMAX); /* */ |
|
/* for(i=1; i<=NCOVMAX;i++) TnsdVar[i]=3; */ |
TvarsD=ivector(1,NCOVMAX); /* */ |
TvarsD=ivector(1,NCOVMAX); /* */ |
TvarsQind=ivector(1,NCOVMAX); /* */ |
TvarsQind=ivector(1,NCOVMAX); /* */ |
TvarsQ=ivector(1,NCOVMAX); /* */ |
TvarsQ=ivector(1,NCOVMAX); /* */ |
Line 11216 Please run with mle=-1 to get a correct
|
Line 13044 Please run with mle=-1 to get a correct
|
TvarVDind=ivector(1,NCOVMAX); /* */ |
TvarVDind=ivector(1,NCOVMAX); /* */ |
TvarVQ=ivector(1,NCOVMAX); /* */ |
TvarVQ=ivector(1,NCOVMAX); /* */ |
TvarVQind=ivector(1,NCOVMAX); /* */ |
TvarVQind=ivector(1,NCOVMAX); /* */ |
|
TvarVV=ivector(1,NCOVMAX); /* */ |
|
TvarVVind=ivector(1,NCOVMAX); /* */ |
|
|
Tvalsel=vector(1,NCOVMAX); /* */ |
Tvalsel=vector(1,NCOVMAX); /* */ |
Tvarsel=ivector(1,NCOVMAX); /* */ |
Tvarsel=ivector(1,NCOVMAX); /* */ |
Line 11241 Please run with mle=-1 to get a correct
|
Line 13071 Please run with mle=-1 to get a correct
|
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
* For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. |
* For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. |
* Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */ |
* Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */ |
|
Tvardk=imatrix(1,NCOVMAX,1,2); |
Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age |
Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age |
4 covariates (3 plus signs) |
4 covariates (3 plus signs) |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
*/ |
*/ |
|
for(i=1;i<NCOVMAX;i++) |
|
Tage[i]=0; |
Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an |
Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an |
* individual dummy, fixed or varying: |
* individual dummy, fixed or varying: |
* Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, |
* Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, |
Line 11282 Please run with mle=-1 to get a correct
|
Line 13115 Please run with mle=-1 to get a correct
|
|
|
|
|
agegomp=(int)agemin; |
agegomp=(int)agemin; |
free_vector(moisnais,1,n); |
free_vector(moisnais,firstobs,lastobs); |
free_vector(annais,1,n); |
free_vector(annais,firstobs,lastobs); |
/* free_matrix(mint,1,maxwav,1,n); |
/* free_matrix(mint,1,maxwav,1,n); |
free_matrix(anint,1,maxwav,1,n);*/ |
free_matrix(anint,1,maxwav,1,n);*/ |
/* free_vector(moisdc,1,n); */ |
/* free_vector(moisdc,1,n); */ |
Line 11309 Please run with mle=-1 to get a correct
|
Line 13142 Please run with mle=-1 to get a correct
|
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
/* Concatenates waves */ |
/* Concatenates waves */ |
|
|
free_vector(moisdc,1,n); |
free_vector(moisdc,firstobs,lastobs); |
free_vector(andc,1,n); |
free_vector(andc,firstobs,lastobs); |
|
|
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
Line 11318 Please run with mle=-1 to get a correct
|
Line 13151 Please run with mle=-1 to get a correct
|
Ndum =ivector(-1,NCOVMAX); |
Ndum =ivector(-1,NCOVMAX); |
cptcoveff=0; |
cptcoveff=0; |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; as well as calculate cptcoveff or number of total effective dummy covariates*/ |
} |
} |
|
|
ncovcombmax=pow(2,cptcoveff); |
ncovcombmax=pow(2,cptcoveff); |
invalidvarcomb=ivector(1, ncovcombmax); |
invalidvarcomb=ivector(0, ncovcombmax); |
for(i=1;i<ncovcombmax;i++) |
for(i=0;i<ncovcombmax;i++) |
invalidvarcomb[i]=0; |
invalidvarcomb[i]=0; |
|
|
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
Line 11348 Please run with mle=-1 to get a correct
|
Line 13181 Please run with mle=-1 to get a correct
|
* For k=4 covariates, h goes from 1 to m=2**k |
* For k=4 covariates, h goes from 1 to m=2**k |
* codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1; |
* codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1; |
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
* h\k 1 2 3 4 |
* h\k 1 2 3 4 * h-1\k-1 4 3 2 1 |
*______________________________ |
*______________________________ *______________________ |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 * 0 0 0 0 0 |
* 2 2 1 1 1 |
* 2 2 1 1 1 * 1 0 0 0 1 |
* 3 i=2 1 2 1 1 |
* 3 i=2 1 2 1 1 * 2 0 0 1 0 |
* 4 2 2 1 1 |
* 4 2 2 1 1 * 3 0 0 1 1 |
* 5 i=3 1 i=2 1 2 1 |
* 5 i=3 1 i=2 1 2 1 * 4 0 1 0 0 |
* 6 2 1 2 1 |
* 6 2 1 2 1 * 5 0 1 0 1 |
* 7 i=4 1 2 2 1 |
* 7 i=4 1 2 2 1 * 6 0 1 1 0 |
* 8 2 2 2 1 |
* 8 2 2 2 1 * 7 0 1 1 1 |
* 9 i=5 1 i=3 1 i=2 1 2 |
* 9 i=5 1 i=3 1 i=2 1 2 * 8 1 0 0 0 |
* 10 2 1 1 2 |
* 10 2 1 1 2 * 9 1 0 0 1 |
* 11 i=6 1 2 1 2 |
* 11 i=6 1 2 1 2 * 10 1 0 1 0 |
* 12 2 2 1 2 |
* 12 2 2 1 2 * 11 1 0 1 1 |
* 13 i=7 1 i=4 1 2 2 |
* 13 i=7 1 i=4 1 2 2 * 12 1 1 0 0 |
* 14 2 1 2 2 |
* 14 2 1 2 2 * 13 1 1 0 1 |
* 15 i=8 1 2 2 2 |
* 15 i=8 1 2 2 2 * 14 1 1 1 0 |
* 16 2 2 2 2 |
* 16 2 2 2 2 * 15 1 1 1 1 |
*/ |
*/ |
/* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */ |
/* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */ |
/* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4 |
/* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4 |
* and the value of each covariate? |
* and the value of each covariate? |
Line 11457 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 13290 Title=%s <br>Datafile=%s Firstpass=%d La
|
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
|
|
fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C) 2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \ |
fprintf(fichtm,"<html><head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n\ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<title>IMaCh %s</title></head>\n\ |
|
<body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n\ |
|
<font size=\"3\">Sponsored by Copyright (C) 2002-2015 <a href=http://www.ined.fr>INED</a>\ |
|
-EUROREVES-Institut de longévité-2013-2022-Japan Society for the Promotion of Sciences 日本学術振興会 \ |
|
(<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - \ |
|
<a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \n", optionfilehtm); |
|
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<font size=\"2\">IMaCh-%s <br> %s</font> \ |
<font size=\"2\">IMaCh-%s <br> %s</font> \ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\ |
This file: <a href=\"%s\">%s</a></br>Title=%s <br>Datafile=<a href=\"%s\">%s</a> Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\ |
\n\ |
\n\ |
<hr size=\"2\" color=\"#EC5E5E\">\ |
<hr size=\"2\" color=\"#EC5E5E\">\ |
<ul><li><h4>Parameter files</h4>\n\ |
<ul><li><h4>Parameter files</h4>\n\ |
Line 11470 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 13310 Title=%s <br>Datafile=%s Firstpass=%d La
|
- Log file of the run: <a href=\"%s\">%s</a><br>\n\ |
- Log file of the run: <a href=\"%s\">%s</a><br>\n\ |
- Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ |
- Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ |
- Date and time at start: %s</ul>\n",\ |
- Date and time at start: %s</ul>\n",\ |
optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\ |
version,fullversion,optionfilehtm,optionfilehtm,title,datafile,datafile,firstpass,lastpass,stepm, weightopt, model, \ |
optionfilefiname,optionfilext,optionfilefiname,optionfilext,\ |
optionfilefiname,optionfilext,optionfilefiname,optionfilext,\ |
fileres,fileres,\ |
fileres,fileres,\ |
filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); |
filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); |
Line 11492 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 13332 Title=%s <br>Datafile=%s Firstpass=%d La
|
firstpass, lastpass, stepm, weightopt, model); |
firstpass, lastpass, stepm, weightopt, model); |
|
|
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%f \n<li>Interval for the elementary matrix (in month): stepm=%d",\ |
fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\ |
ftol, stepm); |
ftol, stepm); |
fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol); |
fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol); |
ncurrv=1; |
ncurrv=1; |
Line 11500 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 13340 Title=%s <br>Datafile=%s Firstpass=%d La
|
fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); |
fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); |
ncurrv=i; |
ncurrv=i; |
for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i); |
for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i); |
fprintf(fichtm,"\n<li> Number of time varying (wave varying) covariates: ntv=%d ", ntv); |
fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv); |
ncurrv=i; |
ncurrv=i; |
for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i); |
for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i); |
fprintf(fichtm,"\n<li>Number of quantitative time varying covariates: nqtv=%d ", nqtv); |
fprintf(fichtm,"\n<li>Number of time varying quantitative covariates: nqtv=%d ", nqtv); |
ncurrv=i; |
ncurrv=i; |
for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i); |
for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i); |
fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \ |
fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \ |
Line 11513 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 13353 Title=%s <br>Datafile=%s Firstpass=%d La
|
<img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_")); |
<img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_")); |
|
|
|
|
fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Total number of observations=%d <br>\n\ |
fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Number of (used) observations=%d <br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
imx,agemin,agemax,jmin,jmax,jmean); |
imx,agemin,agemax,jmin,jmax,jmean); |
Line 11535 Interval (in months) between two waves:
|
Line 13375 Interval (in months) between two waves:
|
for(j=1;j<=NDIM;j++) |
for(j=1;j<=NDIM;j++) |
ximort[i][j]=0.; |
ximort[i][j]=0.; |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
cens=ivector(1,n); |
cens=ivector(firstobs,lastobs); |
ageexmed=vector(1,n); |
ageexmed=vector(firstobs,lastobs); |
agecens=vector(1,n); |
agecens=vector(firstobs,lastobs); |
dcwave=ivector(1,n); |
dcwave=ivector(firstobs,lastobs); |
|
|
for (i=1; i<=imx; i++){ |
for (i=1; i<=imx; i++){ |
dcwave[i]=-1; |
dcwave[i]=-1; |
Line 11572 Interval (in months) between two waves:
|
Line 13412 Interval (in months) between two waves:
|
ximort[i][j]=(i == j ? 1.0 : 0.0); |
ximort[i][j]=(i == j ? 1.0 : 0.0); |
} |
} |
|
|
/*p[1]=0.0268; p[NDIM]=0.083;*/ |
p[1]=0.0268; p[NDIM]=0.083; |
/*printf("%lf %lf", p[1], p[2]);*/ |
/* printf("%lf %lf", p[1], p[2]); */ |
|
|
|
|
#ifdef GSL |
#ifdef GSL |
Line 11699 Interval (in months) between two waves:
|
Line 13539 Interval (in months) between two waves:
|
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
} |
} |
lsurv=vector(1,AGESUP); |
lsurv=vector(agegomp,AGESUP); |
lpop=vector(1,AGESUP); |
lpop=vector(agegomp,AGESUP); |
tpop=vector(1,AGESUP); |
tpop=vector(agegomp,AGESUP); |
lsurv[agegomp]=100000; |
lsurv[agegomp]=100000; |
|
|
for (k=agegomp;k<=AGESUP;k++) { |
for (k=agegomp;k<=AGESUP;k++) { |
Line 11748 Please run with mle=-1 to get a correct
|
Line 13588 Please run with mle=-1 to get a correct
|
stepm, weightopt,\ |
stepm, weightopt,\ |
model,imx,p,matcov,agemortsup); |
model,imx,p,matcov,agemortsup); |
|
|
free_vector(lsurv,1,AGESUP); |
free_vector(lsurv,agegomp,AGESUP); |
free_vector(lpop,1,AGESUP); |
free_vector(lpop,agegomp,AGESUP); |
free_vector(tpop,1,AGESUP); |
free_vector(tpop,agegomp,AGESUP); |
free_matrix(ximort,1,NDIM,1,NDIM); |
free_matrix(ximort,1,NDIM,1,NDIM); |
free_ivector(cens,1,n); |
free_ivector(dcwave,firstobs,lastobs); |
free_vector(agecens,1,n); |
free_vector(agecens,firstobs,lastobs); |
free_ivector(dcwave,1,n); |
free_vector(ageexmed,firstobs,lastobs); |
|
free_ivector(cens,firstobs,lastobs); |
#ifdef GSL |
#ifdef GSL |
#endif |
#endif |
} /* Endof if mle==-3 mortality only */ |
} /* Endof if mle==-3 mortality only */ |
Line 11783 Please run with mle=-1 to get a correct
|
Line 13624 Please run with mle=-1 to get a correct
|
globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */ |
globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
|
/* exit(0); */ |
for (k=1; k<=npar;k++) |
for (k=1; k<=npar;k++) |
printf(" %d %8.5f",k,p[k]); |
printf(" %d %8.5f",k,p[k]); |
printf("\n"); |
printf("\n"); |
|
|
/*--------- results files --------------*/ |
/*--------- results files --------------*/ |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); |
/* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */ |
|
|
|
|
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); /* Printing model equation */ |
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
|
|
printf("#model= 1 + age "); |
|
fprintf(ficres,"#model= 1 + age "); |
|
fprintf(ficlog,"#model= 1 + age "); |
|
fprintf(fichtm,"\n<ul><li> model=1+age+%s\n \ |
|
</ul>", model); |
|
|
|
fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">\n"); |
|
fprintf(fichtm, "<tr><th>Model=</th><th>1</th><th>+ age</th>"); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficres," + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
fprintf(fichtm, "<th>+ age*age</th>"); |
|
} |
|
for(j=1;j <=ncovmodel-2;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(ficres," + V%d ",Tvar[j]); |
|
fprintf(ficlog," + V%d ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(ficres," + V%d*age ",Tvar[j]); |
|
fprintf(ficlog," + V%d*age ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d*age</th>",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficres," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(fichtm, "<th>+ V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
|
printf("\n"); |
|
fprintf(ficres,"\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(fichtm, "</tr>"); |
|
fprintf(fichtm, "\n"); |
|
|
|
|
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
|
fprintf(fichtm, "<tr>"); |
printf("%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficres,"%1d%1d ",i,k); |
fprintf(ficres,"%1d%1d ",i,k); |
|
fprintf(fichtm, "<td>%1d%1d</td>",i,k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
printf("%12.7f ",p[jk]); |
printf("%12.7f ",p[jk]); |
fprintf(ficlog,"%12.7f ",p[jk]); |
fprintf(ficlog,"%12.7f ",p[jk]); |
fprintf(ficres,"%12.7f ",p[jk]); |
fprintf(ficres,"%12.7f ",p[jk]); |
|
fprintf(fichtm, "<td>%12.7f</td>",p[jk]); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficres,"\n"); |
fprintf(ficres,"\n"); |
|
fprintf(fichtm, "</tr>\n"); |
} |
} |
} |
} |
} |
} |
|
/* fprintf(fichtm,"</tr>\n"); */ |
|
fprintf(fichtm,"</table>\n"); |
|
fprintf(fichtm, "\n"); |
|
|
if(mle != 0){ |
if(mle != 0){ |
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
ftolhess=ftol; /* Usually correct */ |
ftolhess=ftol; /* Usually correct */ |
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
|
fprintf(fichtm, "\n<p>The Wald test results are output only if the maximimzation of the Likelihood is performed (mle=1)\n</br>Parameters, Wald tests and Wald-based confidence intervals\n</br> W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n</br> And Wald-based confidence intervals plus and minus 1.96 * W \n </br> It might be better to visualize the covariance matrix. See the page '<a href=\"%s\">Matrix of variance-covariance of one-step probabilities and its graphs</a>'.\n</br>",optionfilehtmcov); |
|
fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">"); |
|
fprintf(fichtm, "\n<tr><th>Model=</th><th>1</th><th>+ age</th>"); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficres," + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
fprintf(fichtm, "<th>+ age*age</th>"); |
|
} |
|
for(j=1;j <=ncovmodel-2;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d*age</th>",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
fprintf(fichtm, "<th>+ V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
|
fprintf(fichtm, "</tr>\n"); |
|
|
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
|
fprintf(fichtm, "<tr valign=top>"); |
printf("%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
|
fprintf(fichtm, "<td>%1d%1d</td>",i,k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
wald=p[jk]/sqrt(matcov[jk][jk]); |
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
printf("%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
fprintf(ficlog,"%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
if(fabs(wald) > 1.96){ |
|
fprintf(fichtm, "<td><b>%12.7f</b></br> (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk])); |
|
}else{ |
|
fprintf(fichtm, "<td>%12.7f (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk])); |
|
} |
|
fprintf(fichtm,"W=%8.3f</br>",wald); |
|
fprintf(fichtm,"[%12.7f;%12.7f]</br></td>", p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
|
fprintf(fichtm, "</tr>\n"); |
} |
} |
} |
} |
} |
} |
} /* end of hesscov and Wald tests */ |
} /* end of hesscov and Wald tests */ |
|
fprintf(fichtm,"</table>\n"); |
|
|
/* */ |
/* */ |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
Line 11950 Please run with mle=-1 to get a correct
|
Line 13874 Please run with mle=-1 to get a correct
|
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
fputs(line,ficlog); |
fputs(line,ficlog); |
|
fputs(line,ficres); |
continue; |
continue; |
}else |
}else |
break; |
break; |
Line 11995 Please run with mle=-1 to get a correct
|
Line 13920 Please run with mle=-1 to get a correct
|
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
fputs(line,ficlog); |
fputs(line,ficlog); |
|
fputs(line,ficres); |
continue; |
continue; |
}else |
}else |
break; |
break; |
Line 12020 Please run with mle=-1 to get a correct
|
Line 13946 Please run with mle=-1 to get a correct
|
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
fputs(line,ficlog); |
fputs(line,ficlog); |
|
fputs(line,ficres); |
continue; |
continue; |
}else |
}else |
break; |
break; |
Line 12042 Please run with mle=-1 to get a correct
|
Line 13969 Please run with mle=-1 to get a correct
|
} |
} |
|
|
/* Results */ |
/* Results */ |
|
/* Value of covariate in each resultine will be compututed (if product) and sorted according to model rank */ |
|
/* It is precov[] because we need the varying age in order to compute the real cov[] of the model equation */ |
|
precov=matrix(1,MAXRESULTLINESPONE,1,NCOVMAX+1); |
|
endishere=0; |
nresult=0; |
nresult=0; |
|
parameterline=0; |
do{ |
do{ |
if(!fgets(line, MAXLINE, ficpar)){ |
if(!fgets(line, MAXLINE, ficpar)){ |
endishere=1; |
endishere=1; |
parameterline=14; |
parameterline=15; |
}else if (line[0] == '#') { |
}else if (line[0] == '#') { |
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
fputs(line,ficlog); |
fputs(line,ficlog); |
|
fputs(line,ficres); |
continue; |
continue; |
}else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp)) |
}else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp)) |
parameterline=11; |
parameterline=11; |
else if(sscanf(line,"backcast=%[^\n]\n",modeltemp)) |
else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp)) |
parameterline=12; |
parameterline=12; |
else if(sscanf(line,"result:%[^\n]\n",modeltemp)) |
else if(sscanf(line,"result:%[^\n]\n",modeltemp)){ |
parameterline=13; |
parameterline=13; |
|
} |
else{ |
else{ |
parameterline=14; |
parameterline=14; |
} |
} |
switch (parameterline){ |
switch (parameterline){ /* =0 only if only comments */ |
case 11: |
case 11: |
if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF){ |
if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){ |
if (num_filled != 8) { |
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
|
goto end; |
|
} |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
/* day and month of proj2 are not used but only year anproj2.*/ |
/* day and month of proj2 are not used but only year anproj2.*/ |
dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.; |
dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.; |
dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.; |
dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.; |
|
prvforecast = 1; |
|
} |
|
else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/ |
|
printf("prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
prvforecast = 2; |
|
} |
|
else { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
goto end; |
} |
} |
break; |
break; |
case 12: |
case 12: |
/*fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);*/ |
if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){ |
if((num_filled=sscanf(line,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF){ |
fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
if (num_filled != 8) { |
printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
printf("Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:backcast=1 starting-back-date=1/1/1990 final-back-date=1/1/1970 mobil_average=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
goto end; |
/* day and month of back2 are not used but only year anback2.*/ |
} |
|
printf("backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.; |
dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.; |
dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.; |
dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.; |
|
prvbackcast = 1; |
|
} |
|
else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/ |
|
printf("prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
fprintf(ficlog,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
fprintf(ficres,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
prvbackcast = 2; |
|
} |
|
else { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
goto end; |
} |
} |
break; |
break; |
case 13: |
case 13: |
if((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){ |
num_filled=sscanf(line,"result:%[^\n]\n",resultlineori); |
if (num_filled == 0){ |
nresult++; /* Sum of resultlines */ |
resultline[0]='\0'; |
/* printf("Result %d: result:%s\n",nresult, resultlineori); */ |
printf("Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line); |
/* removefirstspace(&resultlineori); */ |
fprintf(ficlog,"Warning %d: no result line! It should be at minimum 'result: V2=0 V1=1 or result:.\n%s\n", num_filled, line); |
|
break; |
if(strstr(resultlineori,"v") !=0){ |
} else if (num_filled != 1){ |
printf("Error. 'v' must be in upper case 'V' result: %s ",resultlineori); |
printf("ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line); |
fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultlineori);fflush(ficlog); |
fprintf(ficlog,"ERROR %d: result line! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",num_filled, line); |
return 1; |
} |
} |
nresult++; /* Sum of resultlines */ |
trimbb(resultline, resultlineori); /* Suppressing double blank in the resultline */ |
printf("Result %d: result=%s\n",nresult, resultline); |
/* printf("Decoderesult resultline=\"%s\" resultlineori=\"%s\"\n", resultline, resultlineori); */ |
if(nresult > MAXRESULTLINES){ |
if(nresult > MAXRESULTLINESPONE-1){ |
printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult); |
printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres); |
fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult); |
fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres); |
goto end; |
goto end; |
} |
} |
decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */ |
|
|
if(!decoderesult(resultline, nresult)){ /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */ |
fprintf(ficparo,"result: %s\n",resultline); |
fprintf(ficparo,"result: %s\n",resultline); |
fprintf(ficres,"result: %s\n",resultline); |
fprintf(ficres,"result: %s\n",resultline); |
fprintf(ficlog,"result: %s\n",resultline); |
fprintf(ficlog,"result: %s\n",resultline); |
break; |
} else |
case 14: |
goto end; |
if(ncovmodel >2 && nresult==0 ){ |
break; |
printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
case 14: |
goto end; |
printf("Error: Unknown command '%s'\n",line); |
} |
fprintf(ficlog,"Error: Unknown command '%s'\n",line); |
break; |
if(line[0] == ' ' || line[0] == '\n'){ |
default: |
printf("It should not be an empty line '%s'\n",line); |
nresult=1; |
fprintf(ficlog,"It should not be an empty line '%s'\n",line); |
decoderesult(".",nresult ); /* No covariate */ |
} |
|
if(ncovmodel >=2 && nresult==0 ){ |
|
printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
|
fprintf(ficlog,"ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
} |
} |
|
/* goto end; */ |
|
break; |
|
case 15: |
|
printf("End of resultlines.\n"); |
|
fprintf(ficlog,"End of resultlines.\n"); |
|
break; |
|
default: /* parameterline =0 */ |
|
nresult=1; |
|
decoderesult(".",nresult ); /* No covariate */ |
} /* End switch parameterline */ |
} /* End switch parameterline */ |
}while(endishere==0); /* End do */ |
}while(endishere==0); /* End do */ |
|
|
Line 12147 This is probably because your parameter
|
Line 14106 This is probably because your parameter
|
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
}else{ |
}else{ |
/* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */ |
/* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */ |
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, backcast, pathc,p, (int)anproj1-bage, (int)anback1-fage); |
/* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */ |
|
/* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */ |
|
if(prvforecast==1){ |
|
dateprojd=(jproj1+12*mproj1+365*anproj1)/365; |
|
jprojd=jproj1; |
|
mprojd=mproj1; |
|
anprojd=anproj1; |
|
dateprojf=(jproj2+12*mproj2+365*anproj2)/365; |
|
jprojf=jproj2; |
|
mprojf=mproj2; |
|
anprojf=anproj2; |
|
} else if(prvforecast == 2){ |
|
dateprojd=dateintmean; |
|
date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); |
|
dateprojf=dateintmean+yrfproj; |
|
date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); |
|
} |
|
if(prvbackcast==1){ |
|
datebackd=(jback1+12*mback1+365*anback1)/365; |
|
jbackd=jback1; |
|
mbackd=mback1; |
|
anbackd=anback1; |
|
datebackf=(jback2+12*mback2+365*anback2)/365; |
|
jbackf=jback2; |
|
mbackf=mback2; |
|
anbackf=anback2; |
|
} else if(prvbackcast == 2){ |
|
datebackd=dateintmean; |
|
date2dmy(datebackd,&jbackd, &mbackd, &anbackd); |
|
datebackf=dateintmean-yrbproj; |
|
date2dmy(datebackf,&jbackf, &mbackf, &anbackf); |
|
} |
|
|
|
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage); |
} |
} |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,backcast, estepm, \ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \ |
jprev1,mprev1,anprev1,dateprev1, dateproj1, dateback1,jprev2,mprev2,anprev2,dateprev2,dateproj2, dateback2); |
jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf); |
|
|
/*------------ free_vector -------------*/ |
/*------------ free_vector -------------*/ |
/* chdir(path); */ |
/* chdir(path); */ |
Line 12160 Please run with mle=-1 to get a correct
|
Line 14152 Please run with mle=-1 to get a correct
|
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
free_lvector(num,1,n); |
free_lvector(num,firstobs,lastobs); |
free_vector(agedc,1,n); |
free_vector(agedc,firstobs,lastobs); |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
fclose(ficparo); |
fclose(ficparo); |
Line 12174 Please run with mle=-1 to get a correct
|
Line 14166 Please run with mle=-1 to get a correct
|
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
prlim=matrix(1,nlstate,1,nlstate); |
prlim=matrix(1,nlstate,1,nlstate); |
|
/* Computes the prevalence limit for each combination k of the dummy covariates by calling prevalim(k) */ |
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
fclose(ficrespl); |
fclose(ficrespl); |
|
|
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
/*#include "hpijx.h"*/ |
/*#include "hpijx.h"*/ |
|
/** h Pij x Probability to be in state j at age x+h being in i at x, for each combination k of dummies in the model line or to nres?*/ |
|
/* calls hpxij with combination k */ |
hPijx(p, bage, fage); |
hPijx(p, bage, fage); |
fclose(ficrespij); |
fclose(ficrespij); |
|
|
/* ncovcombmax= pow(2,cptcoveff); */ |
/* ncovcombmax= pow(2,cptcoveff); */ |
/*-------------- Variance of one-step probabilities---*/ |
/*-------------- Variance of one-step probabilities for a combination ij or for nres ?---*/ |
k=1; |
k=1; |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
|
|
Line 12224 Please run with mle=-1 to get a correct
|
Line 14219 Please run with mle=-1 to get a correct
|
}/* end if moving average */ |
}/* end if moving average */ |
|
|
/*---------- Forecasting ------------------*/ |
/*---------- Forecasting ------------------*/ |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* if(stepm ==1){*/ |
/* /\* if(stepm ==1){*\/ */ |
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
/* /\* anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */ |
|
/*This done previously after freqsummary.*/ |
|
/* dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */ |
|
/* dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */ |
|
|
|
/* } else if (prvforecast==2){ */ |
|
/* /\* if(stepm ==1){*\/ */ |
|
/* /\* anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */ |
|
/* } */ |
|
/*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/ |
|
prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff); |
} |
} |
|
|
/* Backcasting */ |
/* Prevbcasting */ |
if(backcast==1){ |
if(prevbcast==1){ |
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
Line 12245 Please run with mle=-1 to get a correct
|
Line 14250 Please run with mle=-1 to get a correct
|
hBijx(p, bage, fage, mobaverage); |
hBijx(p, bage, fage, mobaverage); |
fclose(ficrespijb); |
fclose(ficrespijb); |
|
|
prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, |
/* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */ |
mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); |
/* /\* mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */ |
|
/* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */ |
|
/* mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */ |
|
prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, |
|
mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff); |
|
|
|
|
varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
|
|
|
|
Line 12254 Please run with mle=-1 to get a correct
|
Line 14265 Please run with mle=-1 to get a correct
|
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
} /* end Backcasting */ |
} /* end Prevbcasting */ |
|
|
|
|
/* ------ Other prevalence ratios------------ */ |
/* ------ Other prevalence ratios------------ */ |
Line 12288 Please run with mle=-1 to get a correct
|
Line 14299 Please run with mle=-1 to get a correct
|
fprintf(ficreseij,"\n#****** "); |
fprintf(ficreseij,"\n#****** "); |
printf("\n#****** "); |
printf("\n#****** "); |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); |
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); |
} |
} |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
printf(" V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */ |
fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
fprintf(ficreseij,"V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); |
} |
} |
fprintf(ficreseij,"******\n"); |
fprintf(ficreseij,"******\n"); |
printf("******\n"); |
printf("******\n"); |
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
|
/* printf("HELLO Entering evsij bage=%d fage=%d k=%d estepm=%d nres=%d\n",(int) bage, (int)fage, k, estepm, nres); */ |
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres); |
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres); |
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
Line 12310 Please run with mle=-1 to get a correct
|
Line 14322 Please run with mle=-1 to get a correct
|
|
|
|
|
/*---------- State-specific expectancies and variances ------------*/ |
/*---------- State-specific expectancies and variances ------------*/ |
|
/* Should be moved in a function */ |
strcpy(filerest,"T_"); |
strcpy(filerest,"T_"); |
strcat(filerest,fileresu); |
strcat(filerest,fileresu); |
if((ficrest=fopen(filerest,"w"))==NULL) { |
if((ficrest=fopen(filerest,"w"))==NULL) { |
Line 12349 Please run with mle=-1 to get a correct
|
Line 14361 Please run with mle=-1 to get a correct
|
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(nres=1; nres <= nresult; nres++) /* For each resultline */ |
for(nres=1; nres <= nresult; nres++) /* For each resultline, find the combination and output results according to the values of dummies and then quanti. */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying. For each nres and each value at position k |
if(i1 != 1 && TKresult[nres]!= k) |
* we know Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline |
|
* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline |
|
* and Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */ |
|
/* */ |
|
if(i1 != 1 && TKresult[nres]!= k) /* TKresult[nres] is the combination of this nres resultline. All the i1 combinations are not output */ |
continue; |
continue; |
printf("\n#****** Result for:"); |
printf("\n# model %s \n#****** Result for:", model); |
fprintf(ficrest,"\n#****** Result for:"); |
fprintf(ficrest,"\n# model %s \n#****** Result for:", model); |
fprintf(ficlog,"\n#****** Result for:"); |
fprintf(ficlog,"\n# model %s \n#****** Result for:", model); |
for(j=1;j<=cptcoveff;j++){ |
/* It might not be a good idea to mix dummies and quantitative */ |
printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* for(j=1;j<=cptcoveff;j++){ /\* j=resultpos. Could be a loop on cptcovs: number of single dummy covariate in the result line as well as in the model *\/ */ |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
for(j=1;j<=cptcovs;j++){ /* j=resultpos. Could be a loop on cptcovs: number of single covariate (dummy or quantitative) in the result line as well as in the model */ |
fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* Output by variables in the resultline *\/ */ |
} |
/* Tvaraff[j] is the name of the dummy variable in position j in the equation model: |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
* Tvaraff[1]@9={4, 3, 0, 0, 0, 0, 0, 0, 0}, in model=V5+V4+V3+V4*V3+V5*age |
printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
* (V5 is quanti) V4 and V3 are dummies |
fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
* TnsdVar[4] is the position 1 and TnsdVar[3]=2 in codtabm(k,l)(V4 V3)=V4 V3 |
fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
* l=1 l=2 |
} |
* k=1 1 1 0 0 |
|
* k=2 2 1 1 0 |
|
* k=3 [1] [2] 0 1 |
|
* k=4 2 2 1 1 |
|
* If nres=1 result: V3=1 V4=0 then k=3 and outputs |
|
* If nres=2 result: V4=1 V3=0 then k=2 and outputs |
|
* nres=1 =>k=3 j=1 V4= nbcode[4][codtabm(3,1)=1)=0; j=2 V3= nbcode[3][codtabm(3,2)=2]=1 |
|
* nres=2 =>k=2 j=1 V4= nbcode[4][codtabm(2,1)=2)=1; j=2 V3= nbcode[3][codtabm(2,2)=1]=0 |
|
*/ |
|
/* Tvresult[nres][j] Name of the variable at position j in this resultline */ |
|
/* Tresult[nres][j] Value of this variable at position j could be a float if quantitative */ |
|
/* We give up with the combinations!! */ |
|
/* if(debugILK) */ |
|
/* printf("\n j=%d In computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d Fixed[modelresult[nres][j]]=%d\n", j, nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff,Fixed[modelresult[nres][j]]); /\* end if dummy or quanti *\/ */ |
|
|
|
if(Dummy[modelresult[nres][j]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to j in resultline */ |
|
/* printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /\* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline *\/ */ /* TinvDoQresult[nres][Name of the variable] */ |
|
printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordered by the covariate values in the resultline */ |
|
fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficrest,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
if(Fixed[modelresult[nres][j]]==0){ /* Fixed */ |
|
printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed "); |
|
}else{ |
|
printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi "); |
|
} |
|
/* fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
}else if(Dummy[modelresult[nres][j]]==1){ /* Quanti variable */ |
|
/* For each selected (single) quantitative value */ |
|
printf(" V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficrest," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
if(Fixed[modelresult[nres][j]]==0){ /* Fixed */ |
|
printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed "); |
|
}else{ |
|
printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi "); |
|
} |
|
}else{ |
|
printf("Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
fprintf(ficlog,"Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
exit(1); |
|
} |
|
} /* End loop for each variable in the resultline */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /\* Wrong j is not in the equation model *\/ */ |
|
/* fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
fprintf(ficrest,"******\n"); |
fprintf(ficrest,"******\n"); |
fprintf(ficlog,"******\n"); |
fprintf(ficlog,"******\n"); |
printf("******\n"); |
printf("******\n"); |
|
|
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
|
/* It could have been: for(j=1;j<=cptcoveff;j++) {printf("V=%d=%lg",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);} */ |
|
/* But it won't be sorted and depends on how the resultline is ordered */ |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresstdeij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); |
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
/* fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
} |
fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value, TvarsQind gives the position of a quantitative in model equation */ |
fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
fprintf(ficresstdeij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); |
|
fprintf(ficrescveij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); |
} |
} |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
Line 12386 Please run with mle=-1 to get a correct
|
Line 14452 Please run with mle=-1 to get a correct
|
fprintf(ficresvij,"\n#****** "); |
fprintf(ficresvij,"\n#****** "); |
/* pstamp(ficresvij); */ |
/* pstamp(ficresvij); */ |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresvij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); |
|
/* fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[TnsdVar[Tvaraff[j]]])]); */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); |
/* fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); /\* To solve *\/ */ |
|
fprintf(ficresvij," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */ |
} |
} |
fprintf(ficresvij,"******\n"); |
fprintf(ficresvij,"******\n"); |
|
|
Line 12418 Please run with mle=-1 to get a correct
|
Line 14486 Please run with mle=-1 to get a correct
|
if(vpopbased==1) |
if(vpopbased==1) |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
else |
else |
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n"); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); /* Adding covariate values? */ |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
fprintf(ficrest,"\n"); |
fprintf(ficrest,"\n"); |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
printf("Computing age specific period (stable) prevalences in each health state \n"); |
printf("Computing age specific forward period (stable) prevalences in each health state \n"); |
fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n"); |
fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n"); |
for(age=bage; age <=fage ;age++){ |
for(age=bage; age <=fage ;age++){ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */ |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */ |
if (vpopbased==1) { |
if (vpopbased==1) { |
Line 12466 Please run with mle=-1 to get a correct
|
Line 14534 Please run with mle=-1 to get a correct
|
printf("done selection\n");fflush(stdout); |
printf("done selection\n");fflush(stdout); |
fprintf(ficlog,"done selection\n");fflush(ficlog); |
fprintf(ficlog,"done selection\n");fflush(ficlog); |
|
|
} /* End k selection */ |
} /* End k selection or end covariate selection for nres */ |
|
|
printf("done State-specific expectancies\n");fflush(stdout); |
printf("done State-specific expectancies\n");fflush(stdout); |
fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog); |
fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog); |
|
|
/* variance-covariance of period prevalence*/ |
/* variance-covariance of forward period prevalence */ |
varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
|
|
|
|
free_vector(weight,1,n); |
free_vector(weight,firstobs,lastobs); |
|
free_imatrix(Tvardk,1,NCOVMAX,1,2); |
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(s,1,maxwav+1,1,n); |
free_imatrix(s,1,maxwav+1,firstobs,lastobs); |
free_matrix(anint,1,maxwav,1,n); |
free_matrix(anint,1,maxwav,firstobs,lastobs); |
free_matrix(mint,1,maxwav,1,n); |
free_matrix(mint,1,maxwav,firstobs,lastobs); |
free_ivector(cod,1,n); |
free_ivector(cod,firstobs,lastobs); |
free_ivector(tab,1,NCOVMAX); |
free_ivector(tab,1,NCOVMAX); |
fclose(ficresstdeij); |
fclose(ficresstdeij); |
fclose(ficrescveij); |
fclose(ficrescveij); |
Line 12500 Please run with mle=-1 to get a correct
|
Line 14569 Please run with mle=-1 to get a correct
|
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n); |
/* if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs); */ |
if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n); |
if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs); |
if(nqv>=1)free_matrix(coqvar,1,nqv,1,n); |
if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs); |
free_matrix(covar,0,NCOVMAX,1,n); |
if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs); |
|
free_matrix(covar,0,NCOVMAX,firstobs,lastobs); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(matcov,1,npar,1,npar); |
free_matrix(hess,1,npar,1,npar); |
free_matrix(hess,1,npar,1,npar); |
/*free_vector(delti,1,npar);*/ |
/*free_vector(delti,1,npar);*/ |
Line 12523 Please run with mle=-1 to get a correct
|
Line 14593 Please run with mle=-1 to get a correct
|
free_ivector(TvarsQ,1,NCOVMAX); |
free_ivector(TvarsQ,1,NCOVMAX); |
free_ivector(TvarsQind,1,NCOVMAX); |
free_ivector(TvarsQind,1,NCOVMAX); |
free_ivector(TvarsD,1,NCOVMAX); |
free_ivector(TvarsD,1,NCOVMAX); |
|
free_ivector(TnsdVar,1,NCOVMAX); |
free_ivector(TvarsDind,1,NCOVMAX); |
free_ivector(TvarsDind,1,NCOVMAX); |
free_ivector(TvarFD,1,NCOVMAX); |
free_ivector(TvarFD,1,NCOVMAX); |
free_ivector(TvarFDind,1,NCOVMAX); |
free_ivector(TvarFDind,1,NCOVMAX); |
Line 12538 Please run with mle=-1 to get a correct
|
Line 14609 Please run with mle=-1 to get a correct
|
free_ivector(TvarVDind,1,NCOVMAX); |
free_ivector(TvarVDind,1,NCOVMAX); |
free_ivector(TvarVQ,1,NCOVMAX); |
free_ivector(TvarVQ,1,NCOVMAX); |
free_ivector(TvarVQind,1,NCOVMAX); |
free_ivector(TvarVQind,1,NCOVMAX); |
|
free_ivector(TvarVV,1,NCOVMAX); |
|
free_ivector(TvarVVind,1,NCOVMAX); |
|
|
free_ivector(Tvarsel,1,NCOVMAX); |
free_ivector(Tvarsel,1,NCOVMAX); |
free_vector(Tvalsel,1,NCOVMAX); |
free_vector(Tvalsel,1,NCOVMAX); |
free_ivector(Tposprod,1,NCOVMAX); |
free_ivector(Tposprod,1,NCOVMAX); |
free_ivector(Tprod,1,NCOVMAX); |
free_ivector(Tprod,1,NCOVMAX); |
free_ivector(Tvaraff,1,NCOVMAX); |
free_ivector(Tvaraff,1,NCOVMAX); |
free_ivector(invalidvarcomb,1,ncovcombmax); |
free_ivector(invalidvarcomb,0,ncovcombmax); |
free_ivector(Tage,1,NCOVMAX); |
free_ivector(Tage,1,NCOVMAX); |
free_ivector(Tmodelind,1,NCOVMAX); |
free_ivector(Tmodelind,1,NCOVMAX); |
free_ivector(TmodelInvind,1,NCOVMAX); |
free_ivector(TmodelInvind,1,NCOVMAX); |
free_ivector(TmodelInvQind,1,NCOVMAX); |
free_ivector(TmodelInvQind,1,NCOVMAX); |
|
|
|
free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /* Could be elsewhere ?*/ |
|
|
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
/* free_imatrix(codtab,1,100,1,10); */ |
/* free_imatrix(codtab,1,100,1,10); */ |
fflush(fichtm); |
fflush(fichtm); |
Line 12586 Please run with mle=-1 to get a correct
|
Line 14662 Please run with mle=-1 to get a correct
|
fclose(ficlog); |
fclose(ficlog); |
/*------ End -----------*/ |
/*------ End -----------*/ |
|
|
|
|
|
/* Executes gnuplot */ |
|
|
printf("Before Current directory %s!\n",pathcd); |
printf("Before Current directory %s!\n",pathcd); |
#ifdef WIN32 |
#ifdef WIN32 |
Line 12621 Please run with mle=-1 to get a correct
|
Line 14699 Please run with mle=-1 to get a correct
|
|
|
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
|
strcpy(pplotcmd,plotcmd); |
|
|
if((outcmd=system(plotcmd)) != 0){ |
if((outcmd=system(plotcmd)) != 0){ |
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
if((outcmd=system(plotcmd)) != 0) |
if((outcmd=system(plotcmd)) != 0){ |
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
|
strcpy(plotcmd,pplotcmd); |
|
} |
} |
} |
printf(" Successful, please wait..."); |
printf(" Successful, please wait..."); |
while (z[0] != 'q') { |
while (z[0] != 'q') { |
Line 12654 end:
|
Line 14735 end:
|
printf("\nType q for exiting: "); fflush(stdout); |
printf("\nType q for exiting: "); fflush(stdout); |
scanf("%s",z); |
scanf("%s",z); |
} |
} |
|
printf("End\n"); |
|
exit(0); |
} |
} |