version 1.223, 2016/02/19 09:23:35
|
version 1.364, 2024/06/28 12:27:05
|
Line 1
|
Line 1
|
/* $Id$ |
/* $Id$ |
$State$ |
$State$ |
$Log$ |
$Log$ |
|
Revision 1.364 2024/06/28 12:27:05 brouard |
|
* imach.c (Module): fixing some bugs in gnuplot and quantitative variables, but not completely solved |
|
|
|
Revision 1.363 2024/06/28 09:31:55 brouard |
|
Summary: Adding log lines too |
|
|
|
Revision 1.362 2024/06/28 08:00:31 brouard |
|
Summary: 0.99s6 |
|
|
|
* imach.c (Module): s6 errors with age*age (harmless). |
|
|
|
Revision 1.361 2024/05/12 20:29:32 brouard |
|
Summary: Version 0.99s5 |
|
|
|
* src/imach.c Version 0.99s5 In fact, the covariance of total life |
|
expectancy e.. with a partial life expectancy e.j is high, |
|
therefore the complete matrix of variance covariance has to be |
|
included in the formula of the standard error of the proportion of |
|
total life expectancy spent in a specific state: |
|
var(X/Y)=mu_x^2/mu_y^2*(sigma_x^2/mu_x^2 -2 |
|
sigma_xy/mu_x/mu_y+sigma^2/mu_y^2). Also an error with mle=-3 |
|
made the program core dump. It is fixed in this version. |
|
|
|
Revision 1.360 2024/04/30 10:59:22 brouard |
|
Summary: Version 0.99s4 and estimation of std of e.j/e.. |
|
|
|
Revision 1.359 2024/04/24 21:21:17 brouard |
|
Summary: First IMaCh version using Brent Praxis software based on Buckhardt and Gegenfürtner C codes |
|
|
|
Revision 1.6 2024/04/24 21:10:29 brouard |
|
Summary: First IMaCh version using Brent Praxis software based on Buckhardt and Gegenfürtner C codes |
|
|
|
Revision 1.5 2023/10/09 09:10:01 brouard |
|
Summary: trying to reconsider |
|
|
|
Revision 1.4 2023/06/22 12:50:51 brouard |
|
Summary: stil on going |
|
|
|
Revision 1.3 2023/06/22 11:28:07 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.2 2023/06/22 11:22:40 brouard |
|
Summary: with svd but not working yet |
|
|
|
Revision 1.353 2023/05/08 18:48:22 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.352 2023/04/29 10:46:21 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.351 2023/04/29 10:43:47 brouard |
|
Summary: 099r45 |
|
|
|
Revision 1.350 2023/04/24 11:38:06 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.349 2023/01/31 09:19:37 brouard |
|
Summary: Improvements in models with age*Vn*Vm |
|
|
|
Revision 1.347 2022/09/18 14:36:44 brouard |
|
Summary: version 0.99r42 |
|
|
|
Revision 1.346 2022/09/16 13:52:36 brouard |
|
* src/imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you Feinuo |
|
|
|
Revision 1.345 2022/09/16 13:40:11 brouard |
|
Summary: Version 0.99r41 |
|
|
|
* imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you Feinuo |
|
|
|
Revision 1.344 2022/09/14 19:33:30 brouard |
|
Summary: version 0.99r40 |
|
|
|
* imach.c (Module): Fixing names of variables in T_ (thanks to Feinuo) |
|
|
|
Revision 1.343 2022/09/14 14:22:16 brouard |
|
Summary: version 0.99r39 |
|
|
|
* imach.c (Module): Version 0.99r39 with colored dummy covariates |
|
(fixed or time varying), using new last columns of |
|
ILK_parameter.txt file. |
|
|
|
Revision 1.342 2022/09/11 19:54:09 brouard |
|
Summary: 0.99r38 |
|
|
|
* imach.c (Module): Adding timevarying products of any kinds, |
|
should work before shifting cotvar from ncovcol+nqv columns in |
|
order to have a correspondance between the column of cotvar and |
|
the id of column. |
|
(Module): Some cleaning and adding covariates in ILK.txt |
|
|
|
Revision 1.341 2022/09/11 07:58:42 brouard |
|
Summary: Version 0.99r38 |
|
|
|
After adding change in cotvar. |
|
|
|
Revision 1.340 2022/09/11 07:53:11 brouard |
|
Summary: Version imach 0.99r37 |
|
|
|
* imach.c (Module): Adding timevarying products of any kinds, |
|
should work before shifting cotvar from ncovcol+nqv columns in |
|
order to have a correspondance between the column of cotvar and |
|
the id of column. |
|
|
|
Revision 1.339 2022/09/09 17:55:22 brouard |
|
Summary: version 0.99r37 |
|
|
|
* imach.c (Module): Many improvements for fixing products of fixed |
|
timevarying as well as fixed * fixed, and test with quantitative |
|
covariate. |
|
|
|
Revision 1.338 2022/09/04 17:40:33 brouard |
|
Summary: 0.99r36 |
|
|
|
* imach.c (Module): Now the easy runs i.e. without result or |
|
model=1+age only did not work. The defautl combination should be 1 |
|
and not 0 because everything hasn't been tranformed yet. |
|
|
|
Revision 1.337 2022/09/02 14:26:02 brouard |
|
Summary: version 0.99r35 |
|
|
|
* src/imach.c: Version 0.99r35 because it outputs same results with |
|
1+age+V1+V1*age for females and 1+age for females only |
|
(education=1 noweight) |
|
|
|
Revision 1.336 2022/08/31 09:52:36 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.335 2022/08/31 08:23:16 brouard |
|
Summary: improvements... |
|
|
|
Revision 1.334 2022/08/25 09:08:41 brouard |
|
Summary: In progress for quantitative |
|
|
|
Revision 1.333 2022/08/21 09:10:30 brouard |
|
* src/imach.c (Module): Version 0.99r33 A lot of changes in |
|
reassigning covariates: my first idea was that people will always |
|
use the first covariate V1 into the model but in fact they are |
|
producing data with many covariates and can use an equation model |
|
with some of the covariate; it means that in a model V2+V3 instead |
|
of codtabm(k,Tvaraff[j]) which calculates for combination k, for |
|
three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact |
|
the equation model is restricted to two variables only (V2, V3) |
|
and the combination for V2 should be codtabm(k,1) instead of |
|
(codtabm(k,2), and the code should be |
|
codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been |
|
made. All of these should be simplified once a day like we did in |
|
hpxij() for example by using precov[nres] which is computed in |
|
decoderesult for each nres of each resultline. Loop should be done |
|
on the equation model globally by distinguishing only product with |
|
age (which are changing with age) and no more on type of |
|
covariates, single dummies, single covariates. |
|
|
|
Revision 1.332 2022/08/21 09:06:25 brouard |
|
Summary: Version 0.99r33 |
|
|
|
* src/imach.c (Module): Version 0.99r33 A lot of changes in |
|
reassigning covariates: my first idea was that people will always |
|
use the first covariate V1 into the model but in fact they are |
|
producing data with many covariates and can use an equation model |
|
with some of the covariate; it means that in a model V2+V3 instead |
|
of codtabm(k,Tvaraff[j]) which calculates for combination k, for |
|
three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact |
|
the equation model is restricted to two variables only (V2, V3) |
|
and the combination for V2 should be codtabm(k,1) instead of |
|
(codtabm(k,2), and the code should be |
|
codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been |
|
made. All of these should be simplified once a day like we did in |
|
hpxij() for example by using precov[nres] which is computed in |
|
decoderesult for each nres of each resultline. Loop should be done |
|
on the equation model globally by distinguishing only product with |
|
age (which are changing with age) and no more on type of |
|
covariates, single dummies, single covariates. |
|
|
|
Revision 1.331 2022/08/07 05:40:09 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.330 2022/08/06 07:18:25 brouard |
|
Summary: last 0.99r31 |
|
|
|
* imach.c (Module): Version of imach using partly decoderesult to rebuild xpxij function |
|
|
|
Revision 1.329 2022/08/03 17:29:54 brouard |
|
* imach.c (Module): Many errors in graphs fixed with Vn*age covariates. |
|
|
|
Revision 1.328 2022/07/27 17:40:48 brouard |
|
Summary: valgrind bug fixed by initializing to zero DummyV as well as Tage |
|
|
|
Revision 1.327 2022/07/27 14:47:35 brouard |
|
Summary: Still a problem for one-step probabilities in case of quantitative variables |
|
|
|
Revision 1.326 2022/07/26 17:33:55 brouard |
|
Summary: some test with nres=1 |
|
|
|
Revision 1.325 2022/07/25 14:27:23 brouard |
|
Summary: r30 |
|
|
|
* imach.c (Module): Error cptcovn instead of nsd in bmij (was |
|
coredumped, revealed by Feiuno, thank you. |
|
|
|
Revision 1.324 2022/07/23 17:44:26 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.323 2022/07/22 12:30:08 brouard |
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.322 2022/07/22 12:27:48 brouard |
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.321 2022/07/22 12:04:24 brouard |
|
Summary: r28 |
|
|
|
* imach.c (Module): Output of Wald test in the htm file and not only in the log. |
|
|
|
Revision 1.320 2022/06/02 05:10:11 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.319 2022/06/02 04:45:11 brouard |
|
* imach.c (Module): Adding the Wald tests from the log to the main |
|
htm for better display of the maximum likelihood estimators. |
|
|
|
Revision 1.318 2022/05/24 08:10:59 brouard |
|
* imach.c (Module): Some attempts to find a bug of wrong estimates |
|
of confidencce intervals with product in the equation modelC |
|
|
|
Revision 1.317 2022/05/15 15:06:23 brouard |
|
* imach.c (Module): Some minor improvements |
|
|
|
Revision 1.316 2022/05/11 15:11:31 brouard |
|
Summary: r27 |
|
|
|
Revision 1.315 2022/05/11 15:06:32 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.314 2022/04/13 17:43:09 brouard |
|
* imach.c (Module): Adding link to text data files |
|
|
|
Revision 1.313 2022/04/11 15:57:42 brouard |
|
* imach.c (Module): Error in rewriting the 'r' file with yearsfproj or yearsbproj fixed |
|
|
|
Revision 1.312 2022/04/05 21:24:39 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.311 2022/04/05 21:03:51 brouard |
|
Summary: Fixed quantitative covariates |
|
|
|
Fixed covariates (dummy or quantitative) |
|
with missing values have never been allowed but are ERRORS and |
|
program quits. Standard deviations of fixed covariates were |
|
wrongly computed. Mean and standard deviations of time varying |
|
covariates are still not computed. |
|
|
|
Revision 1.310 2022/03/17 08:45:53 brouard |
|
Summary: 99r25 |
|
|
|
Improving detection of errors: result lines should be compatible with |
|
the model. |
|
|
|
Revision 1.309 2021/05/20 12:39:14 brouard |
|
Summary: Version 0.99r24 |
|
|
|
Revision 1.308 2021/03/31 13:11:57 brouard |
|
Summary: Version 0.99r23 |
|
|
|
|
|
* imach.c (Module): Still bugs in the result loop. Thank to Holly Benett |
|
|
|
Revision 1.307 2021/03/08 18:11:32 brouard |
|
Summary: 0.99r22 fixed bug on result: |
|
|
|
Revision 1.306 2021/02/20 15:44:02 brouard |
|
Summary: Version 0.99r21 |
|
|
|
* imach.c (Module): Fix bug on quitting after result lines! |
|
(Module): Version 0.99r21 |
|
|
|
Revision 1.305 2021/02/20 15:28:30 brouard |
|
* imach.c (Module): Fix bug on quitting after result lines! |
|
|
|
Revision 1.304 2021/02/12 11:34:20 brouard |
|
* imach.c (Module): The use of a Windows BOM (huge) file is now an error |
|
|
|
Revision 1.303 2021/02/11 19:50:15 brouard |
|
* (Module): imach.c Someone entered 'results:' instead of 'result:'. Now it is an error which is printed. |
|
|
|
Revision 1.302 2020/02/22 21:00:05 brouard |
|
* (Module): imach.c Update mle=-3 (for computing Life expectancy |
|
and life table from the data without any state) |
|
|
|
Revision 1.301 2019/06/04 13:51:20 brouard |
|
Summary: Error in 'r'parameter file backcast yearsbproj instead of yearsfproj |
|
|
|
Revision 1.300 2019/05/22 19:09:45 brouard |
|
Summary: version 0.99r19 of May 2019 |
|
|
|
Revision 1.299 2019/05/22 18:37:08 brouard |
|
Summary: Cleaned 0.99r19 |
|
|
|
Revision 1.298 2019/05/22 18:19:56 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.297 2019/05/22 17:56:10 brouard |
|
Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1 |
|
|
|
Revision 1.296 2019/05/20 13:03:18 brouard |
|
Summary: Projection syntax simplified |
|
|
|
|
|
We can now start projections, forward or backward, from the mean date |
|
of inteviews up to or down to a number of years of projection: |
|
prevforecast=1 yearsfproj=15.3 mobil_average=0 |
|
or |
|
prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0 |
|
or |
|
prevbackcast=1 yearsbproj=12.3 mobil_average=1 |
|
or |
|
prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1 |
|
|
|
Revision 1.295 2019/05/18 09:52:50 brouard |
|
Summary: doxygen tex bug |
|
|
|
Revision 1.294 2019/05/16 14:54:33 brouard |
|
Summary: There was some wrong lines added |
|
|
|
Revision 1.293 2019/05/09 15:17:34 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.292 2019/05/09 14:17:20 brouard |
|
Summary: Some updates |
|
|
|
Revision 1.291 2019/05/09 13:44:18 brouard |
|
Summary: Before ncovmax |
|
|
|
Revision 1.290 2019/05/09 13:39:37 brouard |
|
Summary: 0.99r18 unlimited number of individuals |
|
|
|
The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur. |
|
|
|
Revision 1.289 2018/12/13 09:16:26 brouard |
|
Summary: Bug for young ages (<-30) will be in r17 |
|
|
|
Revision 1.288 2018/05/02 20:58:27 brouard |
|
Summary: Some bugs fixed |
|
|
|
Revision 1.287 2018/05/01 17:57:25 brouard |
|
Summary: Bug fixed by providing frequencies only for non missing covariates |
|
|
|
Revision 1.286 2018/04/27 14:27:04 brouard |
|
Summary: some minor bugs |
|
|
|
Revision 1.285 2018/04/21 21:02:16 brouard |
|
Summary: Some bugs fixed, valgrind tested |
|
|
|
Revision 1.284 2018/04/20 05:22:13 brouard |
|
Summary: Computing mean and stdeviation of fixed quantitative variables |
|
|
|
Revision 1.283 2018/04/19 14:49:16 brouard |
|
Summary: Some minor bugs fixed |
|
|
|
Revision 1.282 2018/02/27 22:50:02 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.281 2018/02/27 19:25:23 brouard |
|
Summary: Adding second argument for quitting |
|
|
|
Revision 1.280 2018/02/21 07:58:13 brouard |
|
Summary: 0.99r15 |
|
|
|
New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c |
|
|
|
Revision 1.279 2017/07/20 13:35:01 brouard |
|
Summary: temporary working |
|
|
|
Revision 1.278 2017/07/19 14:09:02 brouard |
|
Summary: Bug for mobil_average=0 and prevforecast fixed(?) |
|
|
|
Revision 1.277 2017/07/17 08:53:49 brouard |
|
Summary: BOM files can be read now |
|
|
|
Revision 1.276 2017/06/30 15:48:31 brouard |
|
Summary: Graphs improvements |
|
|
|
Revision 1.275 2017/06/30 13:39:33 brouard |
|
Summary: Saito's color |
|
|
|
Revision 1.274 2017/06/29 09:47:08 brouard |
|
Summary: Version 0.99r14 |
|
|
|
Revision 1.273 2017/06/27 11:06:02 brouard |
|
Summary: More documentation on projections |
|
|
|
Revision 1.272 2017/06/27 10:22:40 brouard |
|
Summary: Color of backprojection changed from 6 to 5(yellow) |
|
|
|
Revision 1.271 2017/06/27 10:17:50 brouard |
|
Summary: Some bug with rint |
|
|
|
Revision 1.270 2017/05/24 05:45:29 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.269 2017/05/23 08:39:25 brouard |
|
Summary: Code into subroutine, cleanings |
|
|
|
Revision 1.268 2017/05/18 20:09:32 brouard |
|
Summary: backprojection and confidence intervals of backprevalence |
|
|
|
Revision 1.267 2017/05/13 10:25:05 brouard |
|
Summary: temporary save for backprojection |
|
|
|
Revision 1.266 2017/05/13 07:26:12 brouard |
|
Summary: Version 0.99r13 (improvements and bugs fixed) |
|
|
|
Revision 1.265 2017/04/26 16:22:11 brouard |
|
Summary: imach 0.99r13 Some bugs fixed |
|
|
|
Revision 1.264 2017/04/26 06:01:29 brouard |
|
Summary: Labels in graphs |
|
|
|
Revision 1.263 2017/04/24 15:23:15 brouard |
|
Summary: to save |
|
|
|
Revision 1.262 2017/04/18 16:48:12 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.261 2017/04/05 10:14:09 brouard |
|
Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1 |
|
|
|
Revision 1.260 2017/04/04 17:46:59 brouard |
|
Summary: Gnuplot indexations fixed (humm) |
|
|
|
Revision 1.259 2017/04/04 13:01:16 brouard |
|
Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3 |
|
|
|
Revision 1.258 2017/04/03 10:17:47 brouard |
|
Summary: Version 0.99r12 |
|
|
|
Some cleanings, conformed with updated documentation. |
|
|
|
Revision 1.257 2017/03/29 16:53:30 brouard |
|
Summary: Temp |
|
|
|
Revision 1.256 2017/03/27 05:50:23 brouard |
|
Summary: Temporary |
|
|
|
Revision 1.255 2017/03/08 16:02:28 brouard |
|
Summary: IMaCh version 0.99r10 bugs in gnuplot fixed |
|
|
|
Revision 1.254 2017/03/08 07:13:00 brouard |
|
Summary: Fixing data parameter line |
|
|
|
Revision 1.253 2016/12/15 11:59:41 brouard |
|
Summary: 0.99 in progress |
|
|
|
Revision 1.252 2016/09/15 21:15:37 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.251 2016/09/15 15:01:13 brouard |
|
Summary: not working |
|
|
|
Revision 1.250 2016/09/08 16:07:27 brouard |
|
Summary: continue |
|
|
|
Revision 1.249 2016/09/07 17:14:18 brouard |
|
Summary: Starting values from frequencies |
|
|
|
Revision 1.248 2016/09/07 14:10:18 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.247 2016/09/02 11:11:21 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.246 2016/09/02 08:49:22 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.245 2016/09/02 07:25:01 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.244 2016/09/02 07:17:34 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.243 2016/09/02 06:45:35 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.242 2016/08/30 15:01:20 brouard |
|
Summary: Fixing a lots |
|
|
|
Revision 1.241 2016/08/29 17:17:25 brouard |
|
Summary: gnuplot problem in Back projection to fix |
|
|
|
Revision 1.240 2016/08/29 07:53:18 brouard |
|
Summary: Better |
|
|
|
Revision 1.239 2016/08/26 15:51:03 brouard |
|
Summary: Improvement in Powell output in order to copy and paste |
|
|
|
Author: |
|
|
|
Revision 1.238 2016/08/26 14:23:35 brouard |
|
Summary: Starting tests of 0.99 |
|
|
|
Revision 1.237 2016/08/26 09:20:19 brouard |
|
Summary: to valgrind |
|
|
|
Revision 1.236 2016/08/25 10:50:18 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.235 2016/08/25 06:59:23 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.234 2016/08/23 16:51:20 brouard |
|
*** empty log message *** |
|
|
|
Revision 1.233 2016/08/23 07:40:50 brouard |
|
Summary: not working |
|
|
|
Revision 1.232 2016/08/22 14:20:21 brouard |
|
Summary: not working |
|
|
|
Revision 1.231 2016/08/22 07:17:15 brouard |
|
Summary: not working |
|
|
|
Revision 1.230 2016/08/22 06:55:53 brouard |
|
Summary: Not working |
|
|
|
Revision 1.229 2016/07/23 09:45:53 brouard |
|
Summary: Completing for func too |
|
|
|
Revision 1.228 2016/07/22 17:45:30 brouard |
|
Summary: Fixing some arrays, still debugging |
|
|
|
Revision 1.226 2016/07/12 18:42:34 brouard |
|
Summary: temp |
|
|
|
Revision 1.225 2016/07/12 08:40:03 brouard |
|
Summary: saving but not running |
|
|
|
Revision 1.224 2016/07/01 13:16:01 brouard |
|
Summary: Fixes |
|
|
Revision 1.223 2016/02/19 09:23:35 brouard |
Revision 1.223 2016/02/19 09:23:35 brouard |
Summary: temporary |
Summary: temporary |
|
|
Line 45
|
Line 584
|
Author: Nicolas Brouard |
Author: Nicolas Brouard |
|
|
Revision 1.210 2015/11/18 17:41:20 brouard |
Revision 1.210 2015/11/18 17:41:20 brouard |
Summary: Start working on projected prevalences |
Summary: Start working on projected prevalences Revision 1.209 2015/11/17 22:12:03 brouard |
|
|
Revision 1.209 2015/11/17 22:12:03 brouard |
|
Summary: Adding ftolpl parameter |
Summary: Adding ftolpl parameter |
Author: N Brouard |
Author: N Brouard |
|
|
Line 535
|
Line 1072
|
|
|
The same imach parameter file can be used but the option for mle should be -3. |
The same imach parameter file can be used but the option for mle should be -3. |
|
|
Agnès, who wrote this part of the code, tried to keep most of the |
Agnès, who wrote this part of the code, tried to keep most of the |
former routines in order to include the new code within the former code. |
former routines in order to include the new code within the former code. |
|
|
The output is very simple: only an estimate of the intercept and of |
The output is very simple: only an estimate of the intercept and of |
Line 630
|
Line 1167
|
|
|
Short summary of the programme: |
Short summary of the programme: |
|
|
This program computes Healthy Life Expectancies from |
This program computes Healthy Life Expectancies or State-specific |
cross-longitudinal data. Cross-longitudinal data consist in: -1- a |
(if states aren't health statuses) Expectancies from |
first survey ("cross") where individuals from different ages are |
cross-longitudinal data. Cross-longitudinal data consist in: |
interviewed on their health status or degree of disability (in the |
|
case of a health survey which is our main interest) -2- at least a |
-1- a first survey ("cross") where individuals from different ages |
second wave of interviews ("longitudinal") which measure each change |
are interviewed on their health status or degree of disability (in |
(if any) in individual health status. Health expectancies are |
the case of a health survey which is our main interest) |
computed from the time spent in each health state according to a |
|
model. More health states you consider, more time is necessary to reach the |
-2- at least a second wave of interviews ("longitudinal") which |
Maximum Likelihood of the parameters involved in the model. The |
measure each change (if any) in individual health status. Health |
simplest model is the multinomial logistic model where pij is the |
expectancies are computed from the time spent in each health state |
probability to be observed in state j at the second wave |
according to a model. More health states you consider, more time is |
conditional to be observed in state i at the first wave. Therefore |
necessary to reach the Maximum Likelihood of the parameters involved |
the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where |
in the model. The simplest model is the multinomial logistic model |
'age' is age and 'sex' is a covariate. If you want to have a more |
where pij is the probability to be observed in state j at the second |
complex model than "constant and age", you should modify the program |
wave conditional to be observed in state i at the first |
where the markup *Covariates have to be included here again* invites |
wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex + |
you to do it. More covariates you add, slower the |
etc , where 'age' is age and 'sex' is a covariate. If you want to |
|
have a more complex model than "constant and age", you should modify |
|
the program where the markup *Covariates have to be included here |
|
again* invites you to do it. More covariates you add, slower the |
convergence. |
convergence. |
|
|
The advantage of this computer programme, compared to a simple |
The advantage of this computer programme, compared to a simple |
Line 669
|
Line 1209
|
of the life expectancies. It also computes the period (stable) prevalence. |
of the life expectancies. It also computes the period (stable) prevalence. |
|
|
Back prevalence and projections: |
Back prevalence and projections: |
- back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj) |
|
Computes the back prevalence limit for any combination of covariate values k |
- back_prevalence_limit(double *p, double **bprlim, double ageminpar, |
at any age between ageminpar and agemaxpar and returns it in **bprlim. In the loops, |
double agemaxpar, double ftolpl, int *ncvyearp, double |
- **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm, **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k); |
dateprev1,double dateprev2, int firstpass, int lastpass, int |
- hBijx Back Probability to be in state i at age x-h being in j at x |
mobilavproj) |
|
|
|
Computes the back prevalence limit for any combination of |
|
covariate values k at any age between ageminpar and agemaxpar and |
|
returns it in **bprlim. In the loops, |
|
|
|
- **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm, |
|
**savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k); |
|
|
|
- hBijx Back Probability to be in state i at age x-h being in j at x |
Computes for any combination of covariates k and any age between bage and fage |
Computes for any combination of covariates k and any age between bage and fage |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
- hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
|
- hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
Computes the transition matrix starting at age 'age' over |
Computes the transition matrix starting at age 'age' over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. Returns p3mat[i][j][h] after calling |
nhstepm*hstepm matrices. |
p3mat[i][j][h]=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ |
|
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); |
Returns p3mat[i][j][h] after calling |
|
p3mat[i][j][h]=matprod2(newm, |
|
bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, |
|
dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
|
oldm); |
|
|
|
Important routines |
|
|
|
- func (or funcone), computes logit (pij) distinguishing |
|
o fixed variables (single or product dummies or quantitative); |
|
o varying variables by: |
|
(1) wave (single, product dummies, quantitative), |
|
(2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be: |
|
% fixed dummy (treated) or quantitative (not done because time-consuming); |
|
% varying dummy (not done) or quantitative (not done); |
|
- Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities) |
|
and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually. |
|
- printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables |
|
o There are 2**cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, eliminating 1 1 if |
|
race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless. |
|
|
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
|
Institut national d'études démographiques, Paris. |
|
|
Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr). |
|
Institut national d'études démographiques, Paris. |
This software have been partly granted by Euro-REVES, a concerted action |
This software have been partly granted by Euro-REVES, a concerted action |
from the European Union. |
from the European Union. |
It is copyrighted identically to a GNU software product, ie programme and |
It is copyrighted identically to a GNU software product, ie programme and |
Line 745 Back prevalence and projections:
|
Line 1316 Back prevalence and projections:
|
/* #define DEBUGLINMIN */ |
/* #define DEBUGLINMIN */ |
/* #define DEBUGHESS */ |
/* #define DEBUGHESS */ |
#define DEBUGHESSIJ |
#define DEBUGHESSIJ |
/* #define LINMINORIGINAL /\* Don't use loop on scale in linmin (accepting nan)*\/ */ |
/* #define LINMINORIGINAL /\* Don't use loop on scale in linmin (accepting nan) *\/ */ |
#define POWELL /* Instead of NLOPT */ |
#define POWELL /* Instead of NLOPT */ |
#define POWELLF1F3 /* Skip test */ |
#define POWELLNOF3INFF1TEST /* Skip test */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
/* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */ |
|
/* #define FLATSUP *//* Suppresses directions where likelihood is flat */ |
|
/* #define POWELLORIGINCONJUGATE /\* Don't use conjugate but biggest decrease if valuable *\/ */ |
|
/* #define NOTMINFIT */ |
|
|
#include <math.h> |
#include <math.h> |
#include <stdio.h> |
#include <stdio.h> |
#include <stdlib.h> |
#include <stdlib.h> |
#include <string.h> |
#include <string.h> |
|
#include <ctype.h> |
|
|
#ifdef _WIN32 |
#ifdef _WIN32 |
#include <io.h> |
#include <io.h> |
Line 800 typedef struct {
|
Line 1375 typedef struct {
|
/* #include <libintl.h> */ |
/* #include <libintl.h> */ |
/* #define _(String) gettext (String) */ |
/* #define _(String) gettext (String) */ |
|
|
#define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
#define MAXLINE 16384 /* Was 256 and 1024 and 2048. Overflow with 312 with 2 states and 4 covariates. Should be ok */ |
|
|
#define GNUPLOTPROGRAM "gnuplot" |
#define GNUPLOTPROGRAM "gnuplot" |
|
#define GNUPLOTVERSION 5.1 |
|
double gnuplotversion=GNUPLOTVERSION; |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
/*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/ |
#define FILENAMELENGTH 132 |
#define FILENAMELENGTH 256 |
|
|
#define GLOCK_ERROR_NOPATH -1 /* empty path */ |
#define GLOCK_ERROR_NOPATH -1 /* empty path */ |
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
#define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */ |
|
|
#define MAXPARM 128 /**< Maximum number of parameters for the optimization */ |
#define MAXPARM 216 /**< Maximum number of parameters for the optimization was 128 */ |
#define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */ |
#define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */ |
|
|
#define NINTERVMAX 8 |
#define NINTERVMAX 8 |
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
#define NLSTATEMAX 8 /**< Maximum number of live states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NDEATHMAX 8 /**< Maximum number of dead states (for func) */ |
#define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */ |
#define NCOVMAX 30 /**< Maximum number of covariates used in the model, including generated covariates V1*V2 or V1*age */ |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
#define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
/*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/ |
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 |
#define MAXN 20000 |
/*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */ |
#define YEARM 12. /**< Number of months per year */ |
#define YEARM 12. /**< Number of months per year */ |
/* #define AGESUP 130 */ |
/* #define AGESUP 130 */ |
#define AGESUP 150 |
/* #define AGESUP 150 */ |
|
#define AGESUP 200 |
|
#define AGEINF 0 |
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */ |
#define AGEBASE 40 |
#define AGEBASE 40 |
#define AGEOVERFLOW 1.e20 |
#define AGEOVERFLOW 1.e20 |
Line 841 typedef struct {
|
Line 1420 typedef struct {
|
/* $State$ */ |
/* $State$ */ |
#include "version.h" |
#include "version.h" |
char version[]=__IMACH_VERSION__; |
char version[]=__IMACH_VERSION__; |
char copyright[]="October 2015,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015"; |
char copyright[]="April 2024,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2024"; |
char fullversion[]="$Revision$ $Date$"; |
char fullversion[]="$Revision$ $Date$"; |
char strstart[80]; |
char strstart[80]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
char optionfilext[10], optionfilefiname[FILENAMELENGTH]; |
int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ |
int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ |
|
int debugILK=0; /* debugILK is set by a #d in a comment line */ |
int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */ |
int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */ |
/* Number of covariates model=V2+V1+ V3*age+V2*V4 */ |
/* Number of covariates model (1)=V2+V1+ V3*age+V2*V4 */ |
int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */ |
/* Model(2) V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */ |
int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */ |
int cptcovn=0; /**< cptcovn decodemodel: number of covariates k of the models excluding age*products =6 and age*age but including products */ |
int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */ |
int cptcovt=0; /**< cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ |
|
int cptcovs=0; /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ |
|
int cptcovsnq=0; /**< cptcovsnq number of SIMPLE covariates in the model but non quantitative V2+V1 =2 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */ |
|
int cptcovprodage=0; /**< Number of fixed covariates with age: V3*age or V2*V3*age 1 */ |
|
int cptcovprodvage=0; /**< Number of varying covariates with age: V7*age or V7*V6*age */ |
|
int cptcovdageprod=0; /**< Number of doubleproducts with age, since 0.99r44 only: age*Vn*Vm for gnuplot printing*/ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcovprodnoage=0; /**< Number of covariate products without age */ |
int cptcoveff=0; /* Total number of covariates to vary for printing results */ |
int cptcoveff=0; /* Total number of single dummy covariates (fixed or time varying) to vary for printing results (2**cptcoveff combinations of dummies)(computed in tricode as cptcov) */ |
|
int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */ |
|
int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */ |
|
int ncovvt=0; /* Total number of effective (wave) varying covariates (dummy or quantitative or products [without age]) in the model */ |
|
int ncovvta=0; /* +age*V6 + age*V7+ age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of expandend products [with age]) in the model */ |
|
int ncovta=0; /*age*V3*V2 +age*V2+agev3+ageV4 +age*V6 + age*V7+ age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of expandend products [with age]) in the model */ |
|
int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (single or product, dummy or quantitative) in the model */ |
|
int ncovva=0; /* +age*V6 + age*V7+ge*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of effective (wave and stepm) varying with age covariates (single or product, dummy or quantitative) in the model */ |
|
int nsd=0; /**< Total number of single dummy variables (output) */ |
|
int nsq=0; /**< Total number of single quantitative variables (output) */ |
|
int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */ |
|
int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */ |
|
int ntveff=0; /**< ntveff number of effective time varying variables */ |
|
int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */ |
int cptcov=0; /* Working variable */ |
int cptcov=0; /* Working variable */ |
|
int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs+1 declared globally ;*/ |
|
int nobs=10; /* Number of observations in the data lastobs-firstobs */ |
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */ |
int npar=NPARMAX; |
int npar=NPARMAX; /* Number of parameters (nlstate+ndeath-1)*nlstate*ncovmodel; */ |
int nlstate=2; /* Number of live states */ |
int nlstate=2; /* Number of live states */ |
int ndeath=1; /* Number of dead states */ |
int ndeath=1; /* Number of dead states */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ |
int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ |
int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable*/ |
|
int ncovcolt=0; /* ncovcolt=ncovcol+nqv+ntv+nqtv; total of covariates in the data, not in the model equation*/ |
int popbased=0; |
int popbased=0; |
|
|
int *wav; /* Number of waves for this individuual 0 is possible */ |
int *wav; /* Number of waves for this individuual 0 is possible */ |
int maxwav=0; /* Maxim number of waves */ |
int maxwav=0; /* Maxim number of waves */ |
int jmin=0, jmax=0; /* min, max spacing between 2 waves */ |
int jmin=0, jmax=0; /* min, max spacing between 2 waves */ |
int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ |
int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ |
int gipmx=0, gsw=0; /* Global variables on the number of contributions |
int gipmx = 0; |
|
double gsw = 0; /* Global variables on the number of contributions |
to the likelihood and the sum of weights (done by funcone)*/ |
to the likelihood and the sum of weights (done by funcone)*/ |
int mle=1, weightopt=0; |
int mle=1, weightopt=0; |
int **mw; /* mw[mi][i] is number of the mi wave for this individual */ |
int **mw; /* mw[mi][i] is number of the mi wave for this individual */ |
Line 875 int **dh; /* dh[mi][i] is number of step
|
Line 1477 int **dh; /* dh[mi][i] is number of step
|
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between |
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
* wave mi and wave mi+1 is not an exact multiple of stepm. */ |
int countcallfunc=0; /* Count the number of calls to func */ |
int countcallfunc=0; /* Count the number of calls to func */ |
|
int selected(int kvar); /* Is covariate kvar selected for printing results */ |
|
|
double jmean=1; /* Mean space between 2 waves */ |
double jmean=1; /* Mean space between 2 waves */ |
double **matprod2(); /* test */ |
double **matprod2(); /* test */ |
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
double **oldm, **newm, **savm; /* Working pointers to matrices */ |
Line 902 FILE *ficrescveij;
|
Line 1506 FILE *ficrescveij;
|
char filerescve[FILENAMELENGTH]; |
char filerescve[FILENAMELENGTH]; |
FILE *ficresvij; |
FILE *ficresvij; |
char fileresv[FILENAMELENGTH]; |
char fileresv[FILENAMELENGTH]; |
FILE *ficresvpl; |
|
char fileresvpl[FILENAMELENGTH]; |
|
char title[MAXLINE]; |
char title[MAXLINE]; |
|
char model[MAXLINE]; /**< The model line */ |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], fileresplb[FILENAMELENGTH]; |
char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], fileresplb[FILENAMELENGTH]; |
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH]; |
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
char tmpout[FILENAMELENGTH], tmpout2[FILENAMELENGTH]; |
Line 929 extern time_t time();
|
Line 1533 extern time_t time();
|
|
|
struct tm start_time, end_time, curr_time, last_time, forecast_time; |
struct tm start_time, end_time, curr_time, last_time, forecast_time; |
time_t rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */ |
time_t rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */ |
|
time_t rlast_btime; /* raw time */ |
struct tm tm; |
struct tm tm; |
|
|
char strcurr[80], strfor[80]; |
char strcurr[80], strfor[80]; |
Line 937 char *endptr;
|
Line 1542 char *endptr;
|
long lval; |
long lval; |
double dval; |
double dval; |
|
|
|
/* This for praxis gegen */ |
|
/* int prin=1; */ |
|
double h0=0.25; |
|
double macheps; |
|
double ffmin; |
|
|
#define NR_END 1 |
#define NR_END 1 |
#define FREE_ARG char* |
#define FREE_ARG char* |
#define FTOL 1.0e-10 |
#define FTOL 1.0e-10 |
|
|
#define NRANSI |
#define NRANSI |
#define ITMAX 200 |
#define ITMAX 200 |
|
#define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ |
|
|
#define TOL 2.0e-4 |
#define TOL 2.0e-4 |
|
|
Line 990 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
Line 1602 int *ncodemaxwundef; /* ncodemax[j]= Nu
|
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint; |
double **pmmij, ***probs; /* Global pointer */ |
double **pmmij, ***probs; /* Global pointer */ |
double ***mobaverage, ***mobaverages; /* New global variable */ |
double ***mobaverage, ***mobaverages; /* New global variable */ |
|
double **precov; /* New global variable to store for each resultline, values of model covariates given by the resultlines (in order to speed up) */ |
double *ageexmed,*agecens; |
double *ageexmed,*agecens; |
double dateintmean=0; |
double dateintmean=0; |
|
double anprojd, mprojd, jprojd; /* For eventual projections */ |
|
double anprojf, mprojf, jprojf; |
|
|
|
double anbackd, mbackd, jbackd; /* For eventual backprojections */ |
|
double anbackf, mbackf, jbackf; |
|
double jintmean,mintmean,aintmean; |
double *weight; |
double *weight; |
int **s; /* Status */ |
int **s; /* Status */ |
double *agedc; |
double *agedc; |
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
double **covar; /**< covar[j,i], value of jth covariate for individual i, |
* covar=matrix(0,NCOVMAX,1,n); |
* covar=matrix(0,NCOVMAX,1,n); |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ |
double ***cotvar; /* Time varying covariate */ |
double **coqvar; /* Fixed quantitative covariate nqv */ |
double ***cotqvar; /* Time varying quantitative covariate */ |
double ***cotvar; /* Time varying covariate start at ncovcol + nqv + (1 to ntv) */ |
double **coqvar; /* Fixed quantitative covariate */ |
double ***cotqvar; /* Time varying quantitative covariate itqv */ |
double idx; |
double idx; |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ |
|
/* Some documentation */ |
|
/* Design original data |
|
* V1 V2 V3 V4 V5 V6 V7 V8 Weight ddb ddth d1st s1 V9 V10 V11 V12 s2 V9 V10 V11 V12 |
|
* < ncovcol=6 > nqv=2 (V7 V8) dv dv dv qtv dv dv dvv qtv |
|
* ntv=3 nqtv=1 |
|
* cptcovn number of covariates (not including constant and age or age*age) = number of plus sign + 1 = 10+1=11 |
|
* For time varying covariate, quanti or dummies |
|
* cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti |
|
* cotvar[wav][ncovcol+nqv+ iv(1 to nqtv)][i]= [(1 to nqtv)][i]=(V12) quanti |
|
* cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1 |
|
* cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1 |
|
* covar[Vk,i], value of the Vkth fixed covariate dummy or quanti for individual i: |
|
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
|
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 + V9 + V9*age + V10 |
|
* k= 1 2 3 4 5 6 7 8 9 10 11 |
|
*/ |
|
/* According to the model, more columns can be added to covar by the product of covariates */ |
|
/* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1 |
|
# States 1=Coresidence, 2 Living alone, 3 Institution |
|
# V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi |
|
*/ |
|
/* V5+V4+ V3+V4*V3 +V5*age+V2 +V1*V2+V1*age+V1+V4*V3*age */ |
|
/* kmodel 1 2 3 4 5 6 7 8 9 10 */ |
|
/*Typevar[k]= 0 0 0 2 1 0 2 1 0 3 *//*0 for simple covariate (dummy, quantitative,*/ |
|
/* fixed or varying), 1 for age product, 2 for*/ |
|
/* product without age, 3 for age and double product */ |
|
/*Dummy[k]= 1 0 0 1 3 1 1 2 0 3 *//*Dummy[k] 0=dummy (0 1), 1 quantitative */ |
|
/*(single or product without age), 2 dummy*/ |
|
/* with age product, 3 quant with age product*/ |
|
/*Tvar[k]= 5 4 3 6 5 2 7 1 1 6 */ |
|
/* nsd 1 2 3 */ /* Counting single dummies covar fixed or tv */ |
|
/*TnsdVar[Tvar] 1 2 3 */ |
|
/*Tvaraff[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ |
|
/*TvarsD[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ |
|
/*TvarsDind[nsd] 2 3 9 */ /* position K of single dummy cova */ |
|
/* nsq 1 2 */ /* Counting single quantit tv */ |
|
/* TvarsQ[k] 5 2 */ /* Number of single quantitative cova */ |
|
/* TvarsQind 1 6 */ /* position K of single quantitative cova */ |
|
/* Tprod[i]=k 1 2 */ /* Position in model of the ith prod without age */ |
|
/* cptcovage 1 2 3 */ /* Counting cov*age in the model equation */ |
|
/* Tage[cptcovage]=k 5 8 10 */ /* Position in the model of ith cov*age */ |
|
/* model="V2+V3+V4+V6+V7+V6*V2+V7*V2+V6*V3+V7*V3+V6*V4+V7*V4+age*V2+age*V3+age*V4+age*V6+age*V7+age*V6*V2+age*V6*V3+age*V7*V3+age*V6*V4+age*V7*V4\r"*/ |
|
/* p Tvard[1][1]@21 = {6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0}*/ |
|
/* p Tvard[2][1]@21 = {7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0 <repeats 11 times>} */ |
|
/* p Tvardk[1][1]@24 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0}*/ |
|
/* p Tvardk[1][1]@22 = {0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0} */ |
|
/* Tvard[1][1]@4={4,3,1,2} V4*V3 V1*V2 */ /* Position in model of the ith prod without age */ |
|
/* Tvardk[4][1]=4;Tvardk[4][2]=3;Tvardk[7][1]=1;Tvardk[7][2]=2 */ /* Variables of a prod at position in the model equation*/ |
|
/* TvarF TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 ID of fixed covariates or product V2, V1*V2, V1 */ |
|
/* TvarFind; TvarFind[1]=6, TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod) */ |
|
/* Type */ |
|
/* V 1 2 3 4 5 */ |
|
/* F F V V V */ |
|
/* D Q D D Q */ |
|
/* */ |
|
int *TvarsD; |
|
int *TnsdVar; |
|
int *TvarsDind; |
|
int *TvarsQ; |
|
int *TvarsQind; |
|
|
|
#define MAXRESULTLINESPONE 10+1 |
|
int nresult=0; |
|
int parameterline=0; /* # of the parameter (type) line */ |
|
int TKresult[MAXRESULTLINESPONE]; /* TKresult[nres]=k for each resultline nres give the corresponding combination of dummies */ |
|
int resultmodel[MAXRESULTLINESPONE][NCOVMAX];/* resultmodel[k1]=k3: k1th position in the model corresponds to the k3 position in the resultline */ |
|
int modelresult[MAXRESULTLINESPONE][NCOVMAX];/* modelresult[k3]=k1: k1th position in the model corresponds to the k3 position in the resultline */ |
|
int Tresult[MAXRESULTLINESPONE][NCOVMAX];/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */ |
|
int Tinvresult[MAXRESULTLINESPONE][NCOVMAX];/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line */ |
|
double TinvDoQresult[MAXRESULTLINESPONE][NCOVMAX];/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */ |
|
int Tvresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */ |
|
double Tqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */ |
|
double Tqinvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */ |
|
int Tvqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */ |
|
|
|
/* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1 |
|
# States 1=Coresidence, 2 Living alone, 3 Institution |
|
# V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi |
|
*/ |
|
/* int *TDvar; /\**< TDvar[1]=4, TDvarF[2]=3, TDvar[3]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
|
int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
int *TvarVV; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ |
|
int *TvarVVind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ |
|
int *TvarVVA; /* We count ncovvt time varying covariates (single or products with age) and put their name into TvarVVA */ |
|
int *TvarVVAind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ |
|
int *TvarAVVA; /* We count ALL ncovta time varying covariates (single or products with age) and put their name into TvarVVA */ |
|
int *TvarAVVAind; /* We count ALL ncovta time varying covariates (single or products without age) and put their name into TvarVV */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age */ |
|
/* Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
/* TvarVV={3,1,3,1,3}, for V3 and then the product V1*V3 is decomposed into V1 and V3 */ |
|
/* TvarVVind={2,5,5,6,6}, for V3 and then the product V1*V3 is decomposed into V1 and V3 and V1*V3*age into 6,6 */ |
|
int *Tvarsel; /**< Selected covariates for output */ |
|
double *Tvalsel; /**< Selected modality value of covariate for output */ |
|
int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product, 3 age*Vn*Vm */ |
|
int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
|
int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */ |
|
int *FixedV; /** FixedV[v] 0 fixed, 1 varying */ |
int *Tage; |
int *Tage; |
|
int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ |
|
int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
int *Ndum; /** Freq of modality (tricode */ |
int *Ndum; /** Freq of modality (tricode */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */ |
int **Tvard, *Tprod, cptcovprod, *Tvaraff, *invalidvarcomb; |
int **Tvard; |
|
int **Tvardk; |
|
int *Tprod;/**< Gives the k position of the k1 product */ |
|
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 */ |
|
int *Tposprod; /**< Gives the k1 product from the k position */ |
|
/* if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) */ |
|
/* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */ |
|
int cptcovprod, *Tvaraff, *invalidvarcomb; |
double *lsurv, *lpop, *tpop; |
double *lsurv, *lpop, *tpop; |
|
|
|
#define FD 1; /* Fixed dummy covariate */ |
|
#define FQ 2; /* Fixed quantitative covariate */ |
|
#define FP 3; /* Fixed product covariate */ |
|
#define FPDD 7; /* Fixed product dummy*dummy covariate */ |
|
#define FPDQ 8; /* Fixed product dummy*quantitative covariate */ |
|
#define FPQQ 9; /* Fixed product quantitative*quantitative covariate */ |
|
#define VD 10; /* Varying dummy covariate */ |
|
#define VQ 11; /* Varying quantitative covariate */ |
|
#define VP 12; /* Varying product covariate */ |
|
#define VPDD 13; /* Varying product dummy*dummy covariate */ |
|
#define VPDQ 14; /* Varying product dummy*quantitative covariate */ |
|
#define VPQQ 15; /* Varying product quantitative*quantitative covariate */ |
|
#define APFD 16; /* Age product * fixed dummy covariate */ |
|
#define APFQ 17; /* Age product * fixed quantitative covariate */ |
|
#define APVD 18; /* Age product * varying dummy covariate */ |
|
#define APVQ 19; /* Age product * varying quantitative covariate */ |
|
|
|
#define FTYPE 1; /* Fixed covariate */ |
|
#define VTYPE 2; /* Varying covariate (loop in wave) */ |
|
#define ATYPE 2; /* Age product covariate (loop in dh within wave)*/ |
|
|
|
struct kmodel{ |
|
int maintype; /* main type */ |
|
int subtype; /* subtype */ |
|
}; |
|
struct kmodel modell[NCOVMAX]; |
|
|
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
double ftol=FTOL; /**< Tolerance for computing Max Likelihood */ |
double ftolhess; /**< Tolerance for computing hessian */ |
double ftolhess; /**< Tolerance for computing hessian */ |
|
|
Line 1098 char *trimbb(char *out, char *in)
|
Line 1866 char *trimbb(char *out, char *in)
|
return s; |
return s; |
} |
} |
|
|
|
char *trimbtab(char *out, char *in) |
|
{ /* Trim blanks or tabs in line but keeps first blanks if line starts with blanks */ |
|
char *s; |
|
s=out; |
|
while (*in != '\0'){ |
|
while( (*in == ' ' || *in == '\t')){ /* && *(in+1) != '\0'){*/ |
|
in++; |
|
} |
|
*out++ = *in++; |
|
} |
|
*out='\0'; |
|
return s; |
|
} |
|
|
/* char *substrchaine(char *out, char *in, char *chain) */ |
/* char *substrchaine(char *out, char *in, char *chain) */ |
/* { */ |
/* { */ |
/* /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */ |
/* /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */ |
Line 1124 char *trimbb(char *out, char *in)
|
Line 1906 char *trimbb(char *out, char *in)
|
char *substrchaine(char *out, char *in, char *chain) |
char *substrchaine(char *out, char *in, char *chain) |
{ |
{ |
/* Substract chain 'chain' from 'in', return and output 'out' */ |
/* Substract chain 'chain' from 'in', return and output 'out' */ |
/* in="V1+V1*age+age*age+V2", chain="age*age" */ |
/* in="V1+V1*age+age*age+V2", chain="+age*age" out="V1+V1*age+V2" */ |
|
|
char *strloc; |
char *strloc; |
|
|
strcpy (out, in); |
strcpy (out, in); /* out="V1+V1*age+age*age+V2" */ |
strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */ |
strloc = strstr(out, chain); /* strloc points to out at "+age*age+V2" */ |
printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out); |
printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out); /* strloc=+age*age+V2 chain="+age*age", out="V1+V1*age+age*age+V2" */ |
if(strloc != NULL){ |
if(strloc != NULL){ |
/* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */ |
/* will affect out */ /* strloc+strlen(chain)=|+V2 = "V1+V1*age+age*age|+V2" */ /* Will also work in Unicodek */ |
memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1); |
memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1); /* move number of bytes corresponding to the length of "+V2" which is 3, plus one is 4 (including the null)*/ |
/* strcpy (strloc, strloc +strlen(chain));*/ |
/* equivalent to strcpy (strloc, strloc +strlen(chain)) if no overlap; Copies from "+V2" to V1+V1*age+ */ |
} |
} |
printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out); |
printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out); /* strloc=+V2 chain="+age*age", in="V1+V1*age+age*age+V2", out="V1+V1*age+V2" */ |
return out; |
return out; |
} |
} |
|
|
Line 1144 char *substrchaine(char *out, char *in,
|
Line 1926 char *substrchaine(char *out, char *in,
|
char *cutl(char *blocc, char *alocc, char *in, char occ) |
char *cutl(char *blocc, char *alocc, char *in, char occ) |
{ |
{ |
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
/* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' |
and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2') |
and alocc starts after first occurence of char 'occ' : ex cutl(blocc,alocc,"abcdef2ghi2j",'2') |
gives blocc="abcdef" and alocc="ghi2j". |
gives alocc="abcdef" and blocc="ghi2j". |
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
If occ is not found blocc is null and alocc is equal to in. Returns blocc |
*/ |
*/ |
char *s, *t; |
char *s, *t; |
Line 1205 int nbocc(char *s, char occ)
|
Line 1987 int nbocc(char *s, char occ)
|
i=0; |
i=0; |
lg=strlen(s); |
lg=strlen(s); |
for(i=0; i<= lg; i++) { |
for(i=0; i<= lg; i++) { |
if (s[i] == occ ) j++; |
if (s[i] == occ ) j++; |
} |
} |
return j; |
return j; |
} |
} |
|
|
|
int nboccstr(char *textin, char *chain) |
|
{ |
|
/* Counts the number of occurence of "chain" in string textin */ |
|
/* in="+V7*V4+age*V2+age*V3+age*V4" chain="age" */ |
|
char *strloc; |
|
|
|
int i,j=0; |
|
|
|
i=0; |
|
|
|
strloc=textin; /* strloc points to "^+V7*V4+age+..." in textin */ |
|
for(;;) { |
|
strloc= strstr(strloc,chain); /* strloc points to first character of chain in textin if found. Example strloc points^ to "+V7*V4+^age" in textin */ |
|
if(strloc != NULL){ |
|
strloc = strloc+strlen(chain); /* strloc points to "+V7*V4+age^" in textin */ |
|
j++; |
|
}else |
|
break; |
|
} |
|
return j; |
|
|
|
} |
/* void cutv(char *u,char *v, char*t, char occ) */ |
/* void cutv(char *u,char *v, char*t, char occ) */ |
/* { */ |
/* { */ |
/* /\* cuts string t into u and v where u ends before last occurence of char 'occ' */ |
/* /\* cuts string t into u and v where u ends before last occurence of char 'occ' */ |
Line 1427 char *subdirf(char fileres[])
|
Line 2231 char *subdirf(char fileres[])
|
/*************** function subdirf2 ***********/ |
/*************** function subdirf2 ***********/ |
char *subdirf2(char fileres[], char *preop) |
char *subdirf2(char fileres[], char *preop) |
{ |
{ |
|
/* Example subdirf2(optionfilefiname,"FB_") with optionfilefiname="texte", result="texte/FB_texte" |
|
Errors in subdirf, 2, 3 while printing tmpout is |
|
rewritten within the same printf. Workaround: many printfs */ |
/* Caution optionfilefiname is hidden */ |
/* Caution optionfilefiname is hidden */ |
strcpy(tmpout,optionfilefiname); |
strcpy(tmpout,optionfilefiname); |
strcat(tmpout,"/"); |
strcat(tmpout,"/"); |
Line 1549 double brent(double ax, double bx, doubl
|
Line 2355 double brent(double ax, double bx, doubl
|
etemp=e; |
etemp=e; |
e=d; |
e=d; |
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
else { |
else { |
d=p/q; |
d=p/q; |
u=x+d; |
u=x+d; |
if (u-a < tol2 || b-u < tol2) |
if (u-a < tol2 || b-u < tol2) |
d=SIGN(tol1,xm-x); |
d=SIGN(tol1,xm-x); |
} |
} |
} else { |
} else { |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
d=CGOLD*(e=(x >= xm ? a-x : b-x)); |
Line 1568 double brent(double ax, double bx, doubl
|
Line 2374 double brent(double ax, double bx, doubl
|
} else { |
} else { |
if (u < x) a=u; else b=u; |
if (u < x) a=u; else b=u; |
if (fu <= fw || w == x) { |
if (fu <= fw || w == x) { |
v=w; |
v=w; |
w=u; |
w=u; |
fv=fw; |
fv=fw; |
fw=fu; |
fw=fu; |
} else if (fu <= fv || v == x || v == w) { |
} else if (fu <= fv || v == x || v == w) { |
v=u; |
v=u; |
fv=fu; |
fv=fu; |
} |
} |
} |
} |
} |
} |
Line 1615 values at the three points, fa, fb , and
|
Line 2421 values at the three points, fa, fb , and
|
*cx=(*bx)+GOLD*(*bx-*ax); |
*cx=(*bx)+GOLD*(*bx-*ax); |
*fc=(*func)(*cx); |
*fc=(*func)(*cx); |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
fprintf(ficlog,"mnbrak0 *fb=%.12e *fc=%.12e\n",*fb,*fc); |
fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc); |
#endif |
#endif |
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc */ |
while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/ |
r=(*bx-*ax)*(*fb-*fc); |
r=(*bx-*ax)*(*fb-*fc); |
q=(*bx-*cx)*(*fb-*fa); |
q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */ |
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
(2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */ |
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */ |
Line 1631 values at the three points, fa, fb , and
|
Line 2437 values at the three points, fa, fb , and
|
double A, fparabu; |
double A, fparabu; |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
fparabu= *fa - A*(*ax-u)*(*ax-u); |
fparabu= *fa - A*(*ax-u)*(*ax-u); |
printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu); |
fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r); |
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
/* And thus,it can be that fu > *fc even if fparabu < *fc */ |
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
/* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489), |
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
(*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */ |
Line 1665 values at the three points, fa, fb , and
|
Line 2471 values at the three points, fa, fb , and
|
/* fu = *fc; */ |
/* fu = *fc; */ |
/* *fc =dum; */ |
/* *fc =dum; */ |
/* } */ |
/* } */ |
#ifdef DEBUG |
#ifdef DEBUGMNBRAK |
printf("mnbrak34 fu < or >= fc \n"); |
double A, fparabu; |
fprintf(ficlog, "mnbrak34 fu < fc\n"); |
A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u); |
|
fparabu= *fa - A*(*ax-u)*(*ax-u); |
|
printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
|
fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r); |
#endif |
#endif |
dum=u; /* Shifting c and u */ |
dum=u; /* Shifting c and u */ |
u = *cx; |
u = *cx; |
Line 1678 values at the three points, fa, fb , and
|
Line 2487 values at the three points, fa, fb , and
|
#endif |
#endif |
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
} else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u after c but before ulim\n"); |
printf("\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
fprintf(ficlog, "mnbrak2 u after c but before ulim\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx); |
#endif |
#endif |
fu=(*func)(u); |
fu=(*func)(u); |
if (fu < *fc) { |
if (fu < *fc) { |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u after c but before ulim AND fu < fc\n"); |
printf("\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
fprintf(ficlog, "mnbrak2 u after c but before ulim AND fu <fc \n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc); |
|
#endif |
|
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
|
SHFT(*fb,*fc,fu,(*func)(u)) |
|
#ifdef DEBUG |
|
printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx)); |
#endif |
#endif |
SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) |
|
SHFT(*fb,*fc,fu,(*func)(u)) |
|
} |
} |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
} else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
printf("\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
fprintf(ficlog, "mnbrak2 u outside ulim (verifying that ulim is beyond c)\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx); |
#endif |
#endif |
u=ulim; |
u=ulim; |
fu=(*func)(u); |
fu=(*func)(u); |
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
} else { /* u could be left to b (if r > q parabola has a maximum) */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
printf("\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
fprintf(ficlog, "mnbrak2 u could be left to b (if r > q parabola has a maximum)\n"); |
fprintf(ficlog,"\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q); |
#endif |
#endif |
u=(*cx)+GOLD*(*cx-*bx); |
u=(*cx)+GOLD*(*cx-*bx); |
fu=(*func)(u); |
fu=(*func)(u); |
|
#ifdef DEBUG |
|
printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
|
fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx); |
|
#endif |
} /* end tests */ |
} /* end tests */ |
SHFT(*ax,*bx,*cx,u) |
SHFT(*ax,*bx,*cx,u) |
SHFT(*fa,*fb,*fc,fu) |
SHFT(*fa,*fb,*fc,fu) |
#ifdef DEBUG |
#ifdef DEBUG |
printf("mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
fprintf(ficlog, "mnbrak2 (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu); |
fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc); |
#endif |
#endif |
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
} /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */ |
} |
} |
Line 1724 int ncom;
|
Line 2540 int ncom;
|
double *pcom,*xicom; |
double *pcom,*xicom; |
double (*nrfunc)(double []); |
double (*nrfunc)(double []); |
|
|
|
#ifdef LINMINORIGINAL |
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) |
|
#else |
|
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) |
|
#endif |
{ |
{ |
double brent(double ax, double bx, double cx, |
double brent(double ax, double bx, double cx, |
double (*f)(double), double tol, double *xmin); |
double (*f)(double), double tol, double *xmin); |
Line 1768 void linmin(double p[], double xi[], int
|
Line 2588 void linmin(double p[], double xi[], int
|
#ifdef LINMINORIGINAL |
#ifdef LINMINORIGINAL |
#else |
#else |
if (fx != fx){ |
if (fx != fx){ |
xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */ |
xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */ |
printf("|"); |
printf("|"); |
fprintf(ficlog,"|"); |
fprintf(ficlog,"|"); |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); |
printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx); |
#endif |
#endif |
} |
} |
}while(fx != fx); |
}while(fx != fx && xxs > 1.e-5); |
#endif |
#endif |
|
|
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb); |
#endif |
#endif |
|
#ifdef LINMINORIGINAL |
|
#else |
|
if(fb == fx){ /* Flat function in the direction */ |
|
xmin=xx; |
|
*flat=1; |
|
}else{ |
|
*flat=0; |
|
#endif |
|
/*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */ |
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
*fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/ |
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
/* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */ |
/* fmin = f(p[j] + xmin * xi[j]) */ |
/* fmin = f(p[j] + xmin * xi[j]) */ |
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
/* P+lambda n in that direction (lambdamin), with TOL between abscisses */ |
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
/* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin); |
fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin); |
|
#endif |
|
#ifdef LINMINORIGINAL |
|
#else |
|
} |
#endif |
#endif |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("linmin end "); |
printf("linmin end "); |
Line 1829 void linmin(double p[], double xi[], int
|
Line 2662 void linmin(double p[], double xi[], int
|
free_vector(pcom,1,n); |
free_vector(pcom,1,n); |
} |
} |
|
|
|
/**** praxis gegen ****/ |
|
|
/*************** powell ************************/ |
/* This has been tested by Visual C from Microsoft and works */ |
/* |
/* meaning tha valgrind could be wrong */ |
Minimization of a function func of n variables. Input consists of an initial starting point |
/*********************************************************************/ |
p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di- |
/* f u n c t i o n p r a x i s */ |
rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value |
/* */ |
such that failure to decrease by more than this amount on one iteration signals doneness. On |
/* praxis is a general purpose routine for the minimization of a */ |
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
/* function in several variables. the algorithm used is a modifi- */ |
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
/* cation of conjugate gradient search method by powell. the changes */ |
*/ |
/* are due to r.p. brent, who gives an algol-w program, which served */ |
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
/* as a basis for this function. */ |
double (*func)(double [])) |
/* */ |
{ |
/* references: */ |
void linmin(double p[], double xi[], int n, double *fret, |
/* - powell, m.j.d., 1964. an efficient method for finding */ |
double (*func)(double [])); |
/* the minimum of a function in several variables without */ |
int i,ibig,j; |
/* calculating derivatives, computer journal, 7, 155-162 */ |
double del,t,*pt,*ptt,*xit; |
/* - brent, r.p., 1973. algorithms for minimization without */ |
|
/* derivatives, prentice hall, englewood cliffs. */ |
|
/* */ |
|
/* problems, suggestions or improvements are always wellcome */ |
|
/* karl gegenfurtner 07/08/87 */ |
|
/* c - version */ |
|
/*********************************************************************/ |
|
/* */ |
|
/* usage: min = praxis(tol, macheps, h, n, prin, x, func) */ |
|
/* macheps has been suppressed because it is replaced by DBL_EPSILON */ |
|
/* and if it was an argument of praxis (as it is in original brent) */ |
|
/* it should be declared external */ |
|
/* usage: min = praxis(tol, h, n, prin, x, func) */ |
|
/* was min = praxis(fun, x, n); */ |
|
/* */ |
|
/* fun the function to be minimized. fun is called from */ |
|
/* praxis with x and n as arguments */ |
|
/* x a double array containing the initial guesses for */ |
|
/* the minimum, which will contain the solution on */ |
|
/* return */ |
|
/* n an integer specifying the number of unknown */ |
|
/* parameters */ |
|
/* min praxis returns the least calculated value of fun */ |
|
/* */ |
|
/* some additional global variables control some more aspects of */ |
|
/* the inner workings of praxis. setting them is optional, they */ |
|
/* are all set to some reasonable default values given below. */ |
|
/* */ |
|
/* prin controls the printed output from the routine. */ |
|
/* 0 -> no output */ |
|
/* 1 -> print only starting and final values */ |
|
/* 2 -> detailed map of the minimization process */ |
|
/* 3 -> print also eigenvalues and vectors of the */ |
|
/* search directions */ |
|
/* the default value is 1 */ |
|
/* tol is the tolerance allowed for the precision of the */ |
|
/* solution. praxis returns if the criterion */ |
|
/* 2 * ||x[k]-x[k-1]|| <= sqrt(macheps) * ||x[k]|| + tol */ |
|
/* is fulfilled more than ktm times. */ |
|
/* the default value depends on the machine precision */ |
|
/* ktm see just above. default is 1, and a value of 4 leads */ |
|
/* to a very(!) cautious stopping criterion. */ |
|
/* h0 or step is a steplength parameter and should be set equal */ |
|
/* to the expected distance from the solution. */ |
|
/* exceptionally small or large values of step lead to */ |
|
/* slower convergence on the first few iterations */ |
|
/* the default value for step is 1.0 */ |
|
/* scbd is a scaling parameter. 1.0 is the default and */ |
|
/* indicates no scaling. if the scales for the different */ |
|
/* parameters are very different, scbd should be set to */ |
|
/* a value of about 10.0. */ |
|
/* illc should be set to true (1) if the problem is known to */ |
|
/* be ill-conditioned. the default is false (0). this */ |
|
/* variable is automatically set, when praxis finds */ |
|
/* the problem to be ill-conditioned during iterations. */ |
|
/* maxfun is the maximum number of calls to fun allowed. praxis */ |
|
/* will return after maxfun calls to fun even when the */ |
|
/* minimum is not yet found. the default value of 0 */ |
|
/* indicates no limit on the number of calls. */ |
|
/* this return condition is only checked every n */ |
|
/* iterations. */ |
|
/* */ |
|
/*********************************************************************/ |
|
|
|
#include <math.h> |
|
#include <stdio.h> |
|
#include <stdlib.h> |
|
#include <float.h> /* for DBL_EPSILON */ |
|
/* #include "machine.h" */ |
|
|
|
|
|
/* extern void minfit(int n, double eps, double tol, double **ab, double q[]); */ |
|
/* extern void minfit(int n, double eps, double tol, double ab[N][N], double q[]); */ |
|
/* control parameters */ |
|
/* control parameters */ |
|
#define SQREPSILON 1.0e-19 |
|
/* #define EPSILON 1.0e-8 */ /* in main */ |
|
|
|
double tol = SQREPSILON, |
|
scbd = 1.0, |
|
step = 1.0; |
|
int ktm = 1, |
|
/* prin = 2, */ |
|
maxfun = 0, |
|
illc = 0; |
|
|
|
/* some global variables */ |
|
static int i, j, k, k2, nl, nf, kl, kt; |
|
/* static double s; */ |
|
double sl, dn, dmin, |
|
fx, f1, lds, ldt, sf, df, |
|
qf1, qd0, qd1, qa, qb, qc, |
|
m2, m4, small_windows, vsmall, large, |
|
vlarge, ldfac, t2; |
|
/* static double d[N], y[N], z[N], */ |
|
/* q0[N], q1[N], v[N][N]; */ |
|
|
|
static double *d, *y, *z; |
|
static double *q0, *q1, **v; |
|
double *tflin; /* used in flin: return (*fun)(tflin, n); */ |
|
double *e; /* used in minfit, don't konw how to free memory and thus made global */ |
|
/* static double s, sl, dn, dmin, */ |
|
/* fx, f1, lds, ldt, sf, df, */ |
|
/* qf1, qd0, qd1, qa, qb, qc, */ |
|
/* m2, m4, small, vsmall, large, */ |
|
/* vlarge, ldfac, t2; */ |
|
/* static double d[N], y[N], z[N], */ |
|
/* q0[N], q1[N], v[N][N]; */ |
|
|
|
/* these will be set by praxis to point to it's arguments */ |
|
static int prin; /* added */ |
|
static int n; |
|
static double *x; |
|
static double (*fun)(); |
|
/* static double (*fun)(double *x, int n); */ |
|
|
|
/* these will be set by praxis to the global control parameters */ |
|
/* static double h, macheps, t; */ |
|
extern double macheps; |
|
static double h; |
|
static double t; |
|
|
|
static double |
|
drandom() /* return random no between 0 and 1 */ |
|
{ |
|
return (double)(rand()%(8192*2))/(double)(8192*2); |
|
} |
|
|
|
static void sort() /* d and v in descending order */ |
|
{ |
|
int k, i, j; |
|
double s; |
|
|
|
for (i=1; i<=n-1; i++) { |
|
k = i; s = d[i]; |
|
for (j=i+1; j<=n; j++) { |
|
if (d[j] > s) { |
|
k = j; |
|
s = d[j]; |
|
} |
|
} |
|
if (k > i) { |
|
d[k] = d[i]; |
|
d[i] = s; |
|
for (j=1; j<=n; j++) { |
|
s = v[j][i]; |
|
v[j][i] = v[j][k]; |
|
v[j][k] = s; |
|
} |
|
} |
|
} |
|
} |
|
|
|
double randbrent ( int *naught ) |
|
{ |
|
double ran1, ran3[127], half; |
|
int ran2, q, r, i, j; |
|
int init=0; /* false */ |
|
double rr; |
|
/* REAL*8 RAN1,RAN3(127),HALF */ |
|
|
|
/* INTEGER RAN2,Q,R */ |
|
/* LOGICAL INIT */ |
|
/* DATA INIT/.FALSE./ */ |
|
/* IF (INIT) GO TO 3 */ |
|
if(!init){ |
|
/* R = MOD(NAUGHT,8190) + 1 *//* 1804289383 rand () */ |
|
r = *naught % 8190 + 1;/* printf(" naught r %d %d",*naught,r); */ |
|
ran2=127; |
|
for(i=ran2; i>0; i--){ |
|
/* RAN2 = 128 */ |
|
/* DO 2 I=1,127 */ |
|
ran2 = ran2-1; |
|
/* RAN2 = RAN2 - 1 */ |
|
ran1 = -pow(2.0,55); |
|
/* RAN1 = -2.D0**55 */ |
|
/* DO 1 J=1,7 */ |
|
for(j=1; j<=7;j++){ |
|
/* R = MOD(1756*R,8191) */ |
|
r = (1756*r) % 8191;/* printf(" i=%d (1756*r)%8191=%d",j,r); */ |
|
q=r/32; |
|
/* Q = R/32 */ |
|
/* 1 RAN1 = (RAN1 + Q)*(1.0D0/256) */ |
|
ran1 =(ran1+q)*(1.0/256); |
|
} |
|
/* 2 RAN3(RAN2) = RAN1 */ |
|
ran3[ran2] = ran1; /* printf(" ran2=%d ran1=%.7g \n",ran2,ran1); */ |
|
} |
|
/* INIT = .TRUE. */ |
|
init=1; |
|
/* 3 IF (RAN2.EQ.1) RAN2 = 128 */ |
|
} |
|
if(ran2 == 0) ran2 = 126; |
|
else ran2 = ran2 -1; |
|
/* RAN2 = RAN2 - 1 */ |
|
/* RAN1 = RAN1 + RAN3(RAN2) */ |
|
ran1 = ran1 + ran3[ran2];/* printf("BIS ran2=%d ran1=%.7g \n",ran2,ran1); */ |
|
half= 0.5; |
|
/* HALF = .5D0 */ |
|
/* IF (RAN1.GE.0.D0) HALF = -HALF */ |
|
if(ran1 >= 0.) half =-half; |
|
ran1 = ran1 +half; |
|
ran3[ran2] = ran1; |
|
rr= ran1+0.5; |
|
/* RAN1 = RAN1 + HALF */ |
|
/* RAN3(RAN2) = RAN1 */ |
|
/* RANDOM = RAN1 + .5D0 */ |
|
/* r = ( ( double ) ( *seed ) ) * 4.656612875E-10; */ |
|
return rr; |
|
} |
|
static void matprint(char *s, double **v, int m, int n) |
|
/* char *s; */ |
|
/* double v[N][N]; */ |
|
{ |
|
#define INCX 8 |
|
int i; |
|
|
|
int i2hi; |
|
int ihi; |
|
int ilo; |
|
int i2lo; |
|
int jlo=1; |
|
int j; |
|
int j2hi; |
|
int jhi; |
|
int j2lo; |
|
ilo=1; |
|
ihi=n; |
|
jlo=1; |
|
jhi=n; |
|
|
|
printf ("\n" ); |
|
printf ("%s\n", s ); |
|
for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) |
|
{ |
|
j2hi = j2lo + INCX - 1; |
|
if ( n < j2hi ) |
|
{ |
|
j2hi = n; |
|
} |
|
if ( jhi < j2hi ) |
|
{ |
|
j2hi = jhi; |
|
} |
|
|
|
/* fprintf ( ficlog, "\n" ); */ |
|
printf ("\n" ); |
|
/* |
|
For each column J in the current range... |
|
|
|
Write the header. |
|
*/ |
|
/* fprintf ( ficlog, " Col: "); */ |
|
printf ("Col:"); |
|
for ( j = j2lo; j <= j2hi; j++ ) |
|
{ |
|
/* fprintf ( ficlog, " %7d ", j - 1 ); */ |
|
/* printf (" %9d ", j - 1 ); */ |
|
printf (" %9d ", j ); |
|
} |
|
/* fprintf ( ficlog, "\n" ); */ |
|
/* fprintf ( ficlog, " Row\n" ); */ |
|
/* fprintf ( ficlog, "\n" ); */ |
|
printf ("\n" ); |
|
printf (" Row\n" ); |
|
printf ("\n" ); |
|
/* |
|
Determine the range of the rows in this strip. |
|
*/ |
|
if ( 1 < ilo ){ |
|
i2lo = ilo; |
|
}else{ |
|
i2lo = 1; |
|
} |
|
if ( m < ihi ){ |
|
i2hi = m; |
|
}else{ |
|
i2hi = ihi; |
|
} |
|
|
|
for ( i = i2lo; i <= i2hi; i++ ){ |
|
/* |
|
Print out (up to) 5 entries in row I, that lie in the current strip. |
|
*/ |
|
/* fprintf ( ficlog, "%5d:", i - 1 ); */ |
|
/* printf ("%5d:", i - 1 ); */ |
|
printf ("%5d:", i ); |
|
for ( j = j2lo; j <= j2hi; j++ ) |
|
{ |
|
/* fprintf ( ficlog, " %14g", a[i-1+(j-1)*m] ); */ |
|
/* printf ("%14.7g ", a[i-1+(j-1)*m] ); */ |
|
/* printf("%14.7f ", v[i-1][j-1]); */ |
|
printf("%14.7f ", v[i][j]); |
|
/* fprintf ( stdout, " %14g", a[i-1+(j-1)*m] ); */ |
|
} |
|
/* fprintf ( ficlog, "\n" ); */ |
|
printf ("\n" ); |
|
} |
|
} |
|
|
|
/* printf("%s\n", s); */ |
|
/* for (k=0; k<n; k++) { */ |
|
/* for (i=0; i<n; i++) { */ |
|
/* /\* printf("%20.10e ", v[k][i]); *\/ */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
#undef INCX |
|
} |
|
|
|
void vecprint(char *s, double *x, int n) |
|
/* char *s; */ |
|
/* double x[N]; */ |
|
{ |
|
int i=0; |
|
|
|
printf(" %s", s); |
|
/* for (i=0; i<n; i++) */ |
|
for (i=1; i<=n; i++) |
|
printf (" %14.7g", x[i] ); |
|
/* printf(" %8d: %14g\n", i, x[i]); */ |
|
printf ("\n" ); |
|
} |
|
|
|
static void print() /* print a line of traces */ |
|
{ |
|
|
|
|
|
printf("\n"); |
|
/* printf("... chi square reduced to ... %20.10e\n", fx); */ |
|
/* printf("... after %u function calls ...\n", nf); */ |
|
/* printf("... including %u linear searches ...\n", nl); */ |
|
printf("%10d %10d%14.7g",nl, nf, fx); |
|
vecprint("... current values of x ...", x, n); |
|
} |
|
/* static void print2(int n, double *x, int prin, double fx, int nf, int nl) */ /* print a line of traces */ |
|
static void print2() /* print a line of traces */ |
|
{ |
|
int i; double fmin=0.; |
|
|
|
/* printf("\n"); */ |
|
/* printf("... chi square reduced to ... %20.10e\n", fx); */ |
|
/* printf("... after %u function calls ...\n", nf); */ |
|
/* printf("... including %u linear searches ...\n", nl); */ |
|
/* printf("%10d %10d%14.7g",nl, nf, fx); */ |
|
/* printf ( "\n" ); */ |
|
printf ( " Linear searches %d", nl ); |
|
fprintf (ficlog, " Linear searches %d", nl ); |
|
/* printf ( " Linear searches %d\n", nl ); */ |
|
/* printf ( " Function evaluations %d\n", nf ); */ |
|
/* printf ( " Function value FX = %g\n", fx ); */ |
|
printf ( " Function evaluations %d", nf ); |
|
printf ( " Function value FX = %.12lf\n", fx ); |
|
fprintf (ficlog, " Function evaluations %d", nf ); |
|
fprintf (ficlog, " Function value FX = %.12lf\n", fx ); |
|
#ifdef DEBUGPRAX |
|
printf("n=%d prin=%d\n",n,prin); |
|
#endif |
|
/* if(fx <= fmin) printf(" UNDEFINED "); else printf("%14.7g",log(fx-fmin)); */ |
|
if ( n <= 4 || 2 < prin ) |
|
{ |
|
/* for(i=1;i<=n;i++)printf("%14.7g",x[i-1]); */ |
|
for(i=1;i<=n;i++){ |
|
printf(" %14.7g",x[i]); |
|
fprintf(ficlog," %14.7g",x[i]); |
|
} |
|
/* r8vec_print ( n, x, " X:" ); */ |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
|
|
|
|
/* #ifdef MSDOS */ |
|
/* static double tflin[N]; */ |
|
/* #endif */ |
|
|
|
static double flin(double l, int j) |
|
/* double l; */ |
|
{ |
|
int i; |
|
/* #ifndef MSDOS */ |
|
/* double tflin[N]; */ |
|
/* #endif */ |
|
/* double *tflin; */ /* Be careful to put tflin on a vector n */ |
|
|
|
/* j is used from 0 to n-1 and can be -1 for parabolic search */ |
|
|
|
/* if (j != -1) { /\* linear search *\/ */ |
|
if (j > 0) { /* linear search */ |
|
/* for (i=0; i<n; i++){ */ |
|
for (i=1; i<=n; i++){ |
|
tflin[i] = x[i] + l *v[i][j]; |
|
#ifdef DEBUGPRAX |
|
/* printf(" flin i=%14d t=%14.7f x=%14.7f l=%14.7f v[%d,%d]=%14.7f nf=%14d\n",i+1, tflin[i],x[i],l,i,j,v[i][j],nf); */ |
|
printf(" flin i=%14d t=%14.7f x=%14.7f l=%14.7f v[%d,%d]=%14.7f nf=%14d\n",i, tflin[i],x[i],l,i,j,v[i][j],nf); |
|
#endif |
|
} |
|
} |
|
else { /* search along parabolic space curve */ |
|
qa = l*(l-qd1)/(qd0*(qd0+qd1)); |
|
qb = (l+qd0)*(qd1-l)/(qd0*qd1); |
|
qc = l*(l+qd0)/(qd1*(qd0+qd1)); |
|
#ifdef DEBUGPRAX |
|
printf(" search along a parabolic space curve. j=%14d nf=%14d l=%14.7f qd0=%14.7f qd1=%14.7f\n",j,nf,l,qd0,qd1); |
|
#endif |
|
/* for (i=0; i<n; i++){ */ |
|
for (i=1; i<=n; i++){ |
|
tflin[i] = qa*q0[i]+qb*x[i]+qc*q1[i]; |
|
#ifdef DEBUGPRAX |
|
/* printf(" parabole i=%14d t(i)=%14.7f q0=%14.7f x=%14.7f q1=%14.7f\n",i+1,tflin[i],q0[i],x[i],q1[i]); */ |
|
printf(" parabole i=%14d t(i)=%14.7e q0=%14.7e x=%14.7e q1=%14.7e\n",i,tflin[i],q0[i],x[i],q1[i]); |
|
#endif |
|
} |
|
} |
|
nf++; |
|
|
|
#ifdef NR_SHIFT |
|
return (*fun)((tflin-1), n); |
|
#else |
|
/* return (*fun)(tflin, n);*/ |
|
return (*fun)(tflin); |
|
#endif |
|
} |
|
|
|
void minny(int j, int nits, double *d2, double *x1, double f1, int fk) |
|
/* double *d2, *x1, f1; */ |
|
{ |
|
/* here j is from 0 to n-1 and can be -1 for parabolic search */ |
|
/* MINIMIZES F FROM X IN THE DIRECTION V(*,J) */ |
|
/* UNLESS J<1, WHEN A QUADRATIC SEARCH IS DONE */ |
|
/* IN THE PLANE DEFINED BY Q0, Q1 AND X. */ |
|
/* D2 AN APPROXIMATION TO HALF F'' (OR ZERO), */ |
|
/* X1 AN ESTIMATE OF DISTANCE TO MINIMUM, */ |
|
/* RETURNED AS THE DISTANCE FOUND. */ |
|
/* IF FK = TRUE THEN F1 IS FLIN(X1), OTHERWISE */ |
|
/* X1 AND F1 ARE IGNORED ON ENTRY UNLESS FINAL */ |
|
/* FX > F1. NITS CONTROLS THE NUMBER OF TIMES */ |
|
/* AN ATTEMPT IS MADE TO HALVE THE INTERVAL. */ |
|
/* SIDE EFFECTS: USES AND ALTERS X, FX, NF, NL. */ |
|
/* IF J < 1 USES VARIABLES Q... . */ |
|
/* USES H, N, T, M2, M4, LDT, DMIN, MACHEPS; */ |
|
int k, i, dz; |
|
double x2, xm, f0, f2, fm, d1, t2, sf1, sx1; |
|
double s; |
|
double macheps; |
|
macheps=pow(16.0,-13.0); |
|
sf1 = f1; sx1 = *x1; |
|
k = 0; xm = 0.0; fm = f0 = fx; dz = *d2 < macheps; |
|
/* h=1.0;*/ /* To be revised */ |
|
#ifdef DEBUGPRAX |
|
/* printf("min macheps=%14g h=%14g step=%14g t=%14g fx=%14g\n",macheps,h, step,t, fx); */ |
|
/* Where is fx coming from */ |
|
printf(" min macheps=%14g h=%14g t=%14g fx=%.9lf dirj=%d\n",macheps, h, t, fx, j); |
|
matprint(" min vectors:",v,n,n); |
|
#endif |
|
/* find step size */ |
|
s = 0.; |
|
/* for (i=0; i<n; i++) s += x[i]*x[i]; */ |
|
for (i=1; i<=n; i++) s += x[i]*x[i]; |
|
s = sqrt(s); |
|
if (dz) |
|
t2 = m4*sqrt(fabs(fx)/dmin + s*ldt) + m2*ldt; |
|
else |
|
t2 = m4*sqrt(fabs(fx)/(*d2) + s*ldt) + m2*ldt; |
|
s = s*m4 + t; |
|
if (dz && t2 > s) t2 = s; |
|
if (t2 < small_windows) t2 = small_windows; |
|
if (t2 > 0.01*h) t2 = 0.01 * h; |
|
if (fk && f1 <= fm) { |
|
xm = *x1; |
|
fm = f1; |
|
} |
|
#ifdef DEBUGPRAX |
|
printf(" additional flin X1=%14.7f t2=%14.7f *f1=%14.7f fm=%14.7f fk=%d\n",*x1,t2,f1,fm,fk); |
|
#endif |
|
if (!fk || fabs(*x1) < t2) { |
|
*x1 = (*x1 >= 0 ? t2 : -t2); |
|
/* *x1 = (*x1 > 0 ? t2 : -t2); */ /* kind of error */ |
|
#ifdef DEBUGPRAX |
|
printf(" additional flin X1=%16.10e dirj=%d fk=%d\n",*x1, j, fk); |
|
#endif |
|
f1 = flin(*x1, j); |
|
#ifdef DEBUGPRAX |
|
printf(" after flin f1=%18.12e dirj=%d fk=%d\n",f1, j,fk); |
|
#endif |
|
} |
|
if (f1 <= fm) { |
|
xm = *x1; |
|
fm = f1; |
|
} |
|
L0: /*L0 loop or next */ |
|
/* |
|
Evaluate FLIN at another point and estimate the second derivative. |
|
*/ |
|
if (dz) { |
|
x2 = (f0 < f1 ? -(*x1) : 2*(*x1)); |
|
#ifdef DEBUGPRAX |
|
printf(" additional second flin x2=%14.8e x1=%14.8e f0=%14.8e f1=%18.12e dirj=%d\n",x2,*x1,f0,f1,j); |
|
#endif |
|
f2 = flin(x2, j); |
|
#ifdef DEBUGPRAX |
|
printf(" additional second flin x2=%16.10e x1=%16.10e f1=%18.12e f0=%18.10e f2=%18.10e fm=%18.10e\n",x2, *x1, f1,f0,f2,fm); |
|
#endif |
|
if (f2 <= fm) { |
|
xm = x2; |
|
fm = f2; |
|
} |
|
/* d2 is the curvature or double difference f1 doesn't seem to be accurately computed */ |
|
*d2 = (x2*(f1-f0) - (*x1)*(f2-f0))/((*x1)*x2*((*x1)-x2)); |
|
#ifdef DEBUGPRAX |
|
double d11,d12; |
|
d11=(f1-f0)/(*x1);d12=(f2-f0)/x2; |
|
printf(" d11=%18.12e d12=%18.12e d11-d12=%18.12e x1-x2=%18.12e (d11-d12)/(x2-(*x1))=%18.12e\n", d11 ,d12, d11-d12, x2-(*x1), (d11-d12)/(x2-(*x1))); |
|
printf(" original computing f1=%18.12e *d2=%16.10e f0=%18.12e f1-f0=%16.10e f2-f0=%16.10e\n",f1,*d2,f0,f1-f0, f2-f0); |
|
double ff1=7.783920622852e+04; |
|
double f1mf0=9.0344736236e-05; |
|
*d2 = (f1mf0)/ (*x1)/((*x1)-x2) - (f2-f0)/x2/((*x1)-x2); |
|
/* *d2 = (ff1-f0)/ (*x1)/((*x1)-x2) - (f2-f0)/x2/((*x1)-x2); */ |
|
printf(" simpliff computing *d2=%16.10e f1mf0=%18.12e,f1=f0+f1mf0=%18.12e\n",*d2,f1mf0,f0+f1mf0); |
|
*d2 = ((f1-f0)/ (*x1) - (f2-f0)/x2)/((*x1)-x2); |
|
printf(" overlifi computing *d2=%16.10e\n",*d2); |
|
#endif |
|
*d2 = ((f1-f0)/ (*x1) - (f2-f0)/x2)/((*x1)-x2); |
|
} |
|
#ifdef DEBUGPRAX |
|
printf(" additional second flin xm=%14.8e fm=%14.8e *d2=%14.8e\n",xm, fm,*d2); |
|
#endif |
|
/* |
|
Estimate the first derivative at 0. |
|
*/ |
|
d1 = (f1-f0)/(*x1) - *x1**d2; dz = 1; |
|
/* |
|
Predict the minimum. |
|
*/ |
|
if (*d2 <= small_windows) { |
|
x2 = (d1 < 0 ? h : -h); |
|
} |
|
else { |
|
x2 = - 0.5*d1/(*d2); |
|
} |
|
#ifdef DEBUGPRAX |
|
printf(" AT d1=%14.8e d2=%14.8e small=%14.8e dz=%d x1=%14.8e x2=%14.8e\n",d1,*d2,small_windows,dz,*x1,x2); |
|
#endif |
|
if (fabs(x2) > h) |
|
x2 = (x2 > 0 ? h : -h); |
|
L1: /* L1 or try loop */ |
|
#ifdef DEBUGPRAX |
|
printf(" AT predicted minimum flin x2=%14.8e x1=%14.8e K=%14d NITS=%14d dirj=%d\n",x2,*x1,k,nits,j); |
|
#endif |
|
f2 = flin(x2, j); /* x[i]+x2*v[i][j] */ |
|
#ifdef DEBUGPRAX |
|
printf(" after flin f0=%14.8e f1=%14.8e f2=%14.8e fm=%14.8e\n",f0,f1,f2, fm); |
|
#endif |
|
if ((k < nits) && (f2 > f0)) { |
|
#ifdef DEBUGPRAX |
|
printf(" NO SUCCESS SO TRY AGAIN;\n"); |
|
#endif |
|
k++; |
|
if ((f0 < f1) && (*x1*x2 > 0.0)) |
|
goto L0; /* or next */ |
|
x2 *= 0.5; |
|
goto L1; |
|
} |
|
nl++; |
|
#ifdef DEBUGPRAX |
|
printf(" bebeBE end of min x1=%14.8e x2=%14.8e f1=%14.8e f2=%14.8e f0=%14.8e fm=%14.8e d2=%14.8e\n",*x1, x2, f1, f2, f0, fm, *d2); |
|
#endif |
|
if (f2 > fm) x2 = xm; else fm = f2; |
|
if (fabs(x2*(x2-*x1)) > small_windows) { |
|
*d2 = (x2*(f1-f0) - *x1*(fm-f0))/(*x1*x2*(*x1-x2)); |
|
} |
|
else { |
|
if (k > 0) *d2 = 0; |
|
} |
|
#ifdef DEBUGPRAX |
|
printf(" bebe end of min x1 might be very wrong x1=%14.8e fx=%14.8e d2=%14.8e\n",*x1, fx, *d2); |
|
#endif |
|
if (*d2 <= small_windows) *d2 = small_windows; |
|
*x1 = x2; fx = fm; |
|
if (sf1 < fx) { |
|
fx = sf1; |
|
*x1 = sx1; |
|
} |
|
/* |
|
Update X for linear search. |
|
*/ |
|
#ifdef DEBUGPRAX |
|
printf(" end of min x1=%14.8e fx=%14.8e d2=%14.8e\n",*x1, fx, *d2); |
|
#endif |
|
|
|
/* if (j != -1) */ |
|
/* for (i=0; i<n; i++) */ |
|
/* x[i] += (*x1)*v[i][j]; */ |
|
if (j > 0) |
|
for (i=1; i<=n; i++) |
|
x[i] += (*x1)*v[i][j]; |
|
} |
|
|
|
void quad() /* look for a minimum along the curve q0, q1, q2 */ |
|
{ |
|
int i; |
|
double l, s; |
|
|
|
s = fx; fx = qf1; qf1 = s; qd1 = 0.0; |
|
/* for (i=0; i<n; i++) { */ |
|
for (i=1; i<=n; i++) { |
|
s = x[i]; l = q1[i]; x[i] = l; q1[i] = s; |
|
qd1 = qd1 + (s-l)*(s-l); |
|
} |
|
s = 0.0; qd1 = sqrt(qd1); l = qd1; |
|
#ifdef DEBUGPRAX |
|
printf(" QUAD after sqrt qd1=%14.8e \n",qd1); |
|
#endif |
|
|
|
if (qd0>0.0 && qd1>0.0 &&nl>=3*n*n) { |
|
#ifdef DEBUGPRAX |
|
printf(" QUAD before min value=%14.8e \n",qf1); |
|
#endif |
|
/* min(-1, 2, &s, &l, qf1, 1); */ |
|
minny(0, 2, &s, &l, qf1, 1); |
|
qa = l*(l-qd1)/(qd0*(qd0+qd1)); |
|
qb = (l+qd0)*(qd1-l)/(qd0*qd1); |
|
qc = l*(l+qd0)/(qd1*(qd0+qd1)); |
|
} |
|
else { |
|
fx = qf1; qa = qb = 0.0; qc = 1.0; |
|
} |
|
#ifdef DEBUGPRAX |
|
printf("after eventual min qd0=%14.8e qd1=%14.8e nl=%d\n",qd0, qd1,nl); |
|
#endif |
|
qd0 = qd1; |
|
/* for (i=0; i<n; i++) { */ |
|
for (i=1; i<=n; i++) { |
|
s = q0[i]; q0[i] = x[i]; |
|
x[i] = qa*s + qb*x[i] + qc*q1[i]; |
|
} |
|
#ifdef DEBUGQUAD |
|
vecprint ( " X after QUAD:" , x, n ); |
|
#endif |
|
} |
|
|
|
/* void minfit(int n, double eps, double tol, double ab[N][N], double q[]) */ |
|
void minfit(int n, double eps, double tol, double **ab, double q[]) |
|
/* int n; */ |
|
/* double eps, tol, ab[N][N], q[N]; */ |
|
{ |
|
int l, kt, l2, i, j, k; |
|
double c, f, g, h, s, x, y, z; |
|
/* double eps; */ |
|
/* #ifndef MSDOS */ |
|
/* double e[N]; /\* plenty of stack on a vax *\/ */ |
|
/* #endif */ |
|
/* double *e; */ |
|
/* e=vector(0,n-1); /\* should be freed somewhere but gotos *\/ */ |
|
|
|
/* householder's reduction to bidiagonal form */ |
|
|
|
if(n==1){ |
|
/* q[1-1]=ab[1-1][1-1]; */ |
|
/* ab[1-1][1-1]=1.0; */ |
|
q[1]=ab[1][1]; |
|
ab[1][1]=1.0; |
|
return; /* added from hardt */ |
|
} |
|
/* eps=macheps; */ /* added */ |
|
x = g = 0.0; |
|
#ifdef DEBUGPRAX |
|
matprint (" HOUSE holder:", ab, n, n); |
|
#endif |
|
|
|
/* for (i=0; i<n; i++) { /\* FOR I := 1 UNTIL N DO *\/ */ |
|
for (i=1; i<=n; i++) { /* FOR I := 1 UNTIL N DO */ |
|
e[i] = g; s = 0.0; l = i+1; |
|
/* for (j=i; j<n; j++) /\* FOR J := I UNTIL N DO S := S*AB(J,I)**2; *\/ /\* not correct *\/ */ |
|
for (j=i; j<=n; j++) /* FOR J := I UNTIL N DO S := S*AB(J,I)**2; */ /* not correct */ |
|
s += ab[j][i] * ab[j][i]; |
|
#ifdef DEBUGPRAXFIN |
|
printf("i=%d s=%d %.7g tol=%.7g",i,s,tol); |
|
#endif |
|
if (s < tol) { |
|
g = 0.0; |
|
} |
|
else { |
|
/* f = ab[i][i]; */ |
|
f = ab[i][i]; |
|
if (f < 0.0) |
|
g = sqrt(s); |
|
else |
|
g = -sqrt(s); |
|
/* h = f*g - s; ab[i][i] = f - g; */ |
|
h = f*g - s; ab[i][i] = f - g; |
|
/* for (j=l; j<n; j++) { */ /* FOR J := L UNTIL N DO */ /* wrong */ |
|
for (j=l; j<=n; j++) { |
|
f = 0.0; |
|
/* for (k=i; k<n; k++) /\* FOR K := I UNTIL N DO *\/ /\* wrong *\/ */ |
|
for (k=i; k<=n; k++) /* FOR K := I UNTIL N DO */ |
|
/* f += ab[k][i] * ab[k][j]; */ |
|
f += ab[k][i] * ab[k][j]; |
|
f /= h; |
|
for (k=i; k<=n; k++) /* FOR K := I UNTIL N DO */ |
|
/* for (k=i; k<n; k++)/\* FOR K := I UNTIL N DO *\/ /\* wrong *\/ */ |
|
ab[k][j] += f * ab[k][i]; |
|
/* ab[k][j] += f * ab[k][i]; */ |
|
#ifdef DEBUGPRAX |
|
printf("Holder J=%d F=%.7g",j,f); |
|
#endif |
|
} |
|
} /* end s */ |
|
/* q[i] = g; s = 0.0; */ |
|
q[i] = g; s = 0.0; |
|
#ifdef DEBUGPRAX |
|
printf(" I Q=%d %.7g",i,q[i]); |
|
#endif |
|
|
|
/* if (i < n) */ |
|
/* if (i <= n) /\* I is always lower or equal to n wasn't in golub reinsch*\/ */ |
|
/* for (j=l; j<n; j++) */ |
|
for (j=l; j<=n; j++) |
|
s += ab[i][j] * ab[i][j]; |
|
/* s += ab[i][j] * ab[i][j]; */ |
|
if (s < tol) { |
|
g = 0.0; |
|
} |
|
else { |
|
if(i<n) |
|
/* f = ab[i][i+1]; */ /* Brent golub overflow */ |
|
f = ab[i][i+1]; |
|
if (f < 0.0) |
|
g = sqrt(s); |
|
else |
|
g = - sqrt(s); |
|
h = f*g - s; |
|
/* h = f*g - s; ab[i][i+1] = f - g; */ /* Overflow for i=n Error in Golub too but not Burkardt*/ |
|
/* for (j=l; j<n; j++) */ |
|
/* e[j] = ab[i][j]/h; */ |
|
if(i<n){ |
|
ab[i][i+1] = f - g; |
|
for (j=l; j<=n; j++) |
|
e[j] = ab[i][j]/h; |
|
/* for (j=l; j<n; j++) { */ |
|
for (j=l; j<=n; j++) { |
|
s = 0.0; |
|
/* for (k=l; k<n; k++) s += ab[j][k]*ab[i][k]; */ |
|
for (k=l; k<=n; k++) s += ab[j][k]*ab[i][k]; |
|
/* for (k=l; k<n; k++) ab[j][k] += s * e[k]; */ |
|
for (k=l; k<=n; k++) ab[j][k] += s * e[k]; |
|
} /* END J */ |
|
} /* END i <n */ |
|
} /* end s */ |
|
/* y = fabs(q[i]) + fabs(e[i]); */ |
|
y = fabs(q[i]) + fabs(e[i]); |
|
if (y > x) x = y; |
|
#ifdef DEBUGPRAX |
|
printf(" I Y=%d %.7g",i,y); |
|
#endif |
|
#ifdef DEBUGPRAX |
|
printf(" i=%d e(i) %.7g",i,e[i]); |
|
#endif |
|
} /* end i */ |
|
/* |
|
Accumulation of right hand transformations */ |
|
/* for (i=n-1; i >= 0; i--) { */ /* FOR I := N STEP -1 UNTIL 1 DO */ |
|
/* We should avoid the overflow in Golub */ |
|
/* ab[n-1][n-1] = 1.0; */ |
|
/* g = e[n-1]; */ |
|
ab[n][n] = 1.0; |
|
g = e[n]; |
|
l = n; |
|
|
|
/* for (i=n; i >= 1; i--) { */ |
|
for (i=n-1; i >= 1; i--) { /* n-1 loops, different from brent and golub*/ |
|
if (g != 0.0) { |
|
/* h = ab[i-1][i]*g; */ |
|
h = ab[i][i+1]*g; |
|
for (j=l; j<=n; j++) ab[j][i] = ab[i][j] / h; |
|
for (j=l; j<=n; j++) { |
|
/* h = ab[i][i+1]*g; */ |
|
/* for (j=l; j<n; j++) ab[j][i] = ab[i][j] / h; */ |
|
/* for (j=l; j<n; j++) { */ |
|
s = 0.0; |
|
/* for (k=l; k<n; k++) s += ab[i][k] * ab[k][j]; */ |
|
/* for (k=l; k<n; k++) ab[k][j] += s * ab[k][i]; */ |
|
for (k=l; k<=n; k++) s += ab[i][k] * ab[k][j]; |
|
for (k=l; k<=n; k++) ab[k][j] += s * ab[k][i]; |
|
}/* END J */ |
|
}/* END G */ |
|
/* for (j=l; j<n; j++) */ |
|
/* ab[i][j] = ab[j][i] = 0.0; */ |
|
/* ab[i][i] = 1.0; g = e[i]; l = i; */ |
|
for (j=l; j<=n; j++) |
|
ab[i][j] = ab[j][i] = 0.0; |
|
ab[i][i] = 1.0; g = e[i]; l = i; |
|
}/* END I */ |
|
#ifdef DEBUGPRAX |
|
matprint (" HOUSE accumulation:",ab,n, n ); |
|
#endif |
|
|
|
/* diagonalization to bidiagonal form */ |
|
eps *= x; |
|
/* for (k=n-1; k>= 0; k--) { */ |
|
for (k=n; k>= 1; k--) { |
|
kt = 0; |
|
TestFsplitting: |
|
#ifdef DEBUGPRAX |
|
printf(" TestFsplitting: k=%d kt=%d\n",k,kt); |
|
/* for(i=1;i<=n;i++)printf(" e(%d)=%.14f",i,e[i]);printf("\n"); */ |
|
#endif |
|
kt = kt+1; |
|
/* TestFsplitting: */ |
|
/* if (++kt > 30) { */ |
|
if (kt > 30) { |
|
e[k] = 0.0; |
|
fprintf(stderr, "\n+++ MINFIT - Fatal error\n"); |
|
fprintf ( stderr, " The QR algorithm failed to converge.\n" ); |
|
} |
|
/* for (l2=k; l2>=0; l2--) { */ |
|
for (l2=k; l2>=1; l2--) { |
|
l = l2; |
|
#ifdef DEBUGPRAX |
|
printf(" l e(l)< eps %d %.7g %.7g ",l,e[l], eps); |
|
#endif |
|
/* if (fabs(e[l]) <= eps) */ |
|
if (fabs(e[l]) <= eps) |
|
goto TestFconvergence; |
|
/* if (fabs(q[l-1]) <= eps)*/ /* missing if ( 1 < l ){ *//* printf(" q(l-1)< eps %d %.7g %.7g ",l-1,q[l-2], eps); */ |
|
if (fabs(q[l-1]) <= eps) |
|
break; /* goto Cancellation; */ |
|
} |
|
Cancellation: |
|
#ifdef DEBUGPRAX |
|
printf(" Cancellation:\n"); |
|
#endif |
|
c = 0.0; s = 1.0; |
|
for (i=l; i<=k; i++) { |
|
f = s * e[i]; e[i] *= c; |
|
/* f = s * e[i]; e[i] *= c; */ |
|
if (fabs(f) <= eps) |
|
goto TestFconvergence; |
|
/* g = q[i]; */ |
|
g = q[i]; |
|
if (fabs(f) < fabs(g)) { |
|
double fg = f/g; |
|
h = fabs(g)*sqrt(1.0+fg*fg); |
|
} |
|
else { |
|
double gf = g/f; |
|
h = (f!=0.0 ? fabs(f)*sqrt(1.0+gf*gf) : 0.0); |
|
} |
|
/* COMMENT: THE ABOVE REPLACES Q(I):=H:=LONGSQRT(G*G+F*F) */ |
|
/* WHICH MAY GIVE INCORRECT RESULTS IF THE */ |
|
/* SQUARES UNDERFLOW OR IF F = G = 0; */ |
|
|
|
/* q[i] = h; */ |
|
q[i] = h; |
|
if (h == 0.0) { h = 1.0; g = 1.0; } |
|
c = g/h; s = -f/h; |
|
} |
|
TestFconvergence: |
|
#ifdef DEBUGPRAX |
|
printf(" TestFconvergence: l=%d k=%d\n",l,k); |
|
#endif |
|
/* z = q[k]; */ |
|
z = q[k]; |
|
if (l == k) |
|
goto Convergence; |
|
/* shift from bottom 2x2 minor */ |
|
/* x = q[l]; y = q[k-l]; g = e[k-1]; h = e[k]; */ /* Error */ |
|
x = q[l]; y = q[k-1]; g = e[k-1]; h = e[k]; |
|
f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2.0*h*y); |
|
g = sqrt(f*f+1.0); |
|
if (f <= 0.0) |
|
f = ((x-z)*(x+z) + h*(y/(f-g)-h))/x; |
|
else |
|
f = ((x-z)*(x+z) + h*(y/(f+g)-h))/x; |
|
/* next qr transformation */ |
|
s = c = 1.0; |
|
for (i=l+1; i<=k; i++) { |
|
#ifdef DEBUGPRAXQR |
|
printf(" Before Mid TestFconvergence: l+1=%d i=%d k=%d h=%.6e e(i)=%14.8f e(i-1)=%14.8f\n",l+1,i,k, h, e[i],e[i-1]); |
|
#endif |
|
/* g = e[i]; y = q[i]; h = s*g; g *= c; */ |
|
g = e[i]; y = q[i]; h = s*g; g *= c; |
|
if (fabs(f) < fabs(h)) { |
|
double fh = f/h; |
|
z = fabs(h) * sqrt(1.0 + fh*fh); |
|
} |
|
else { |
|
double hf = h/f; |
|
z = (f!=0.0 ? fabs(f)*sqrt(1.0+hf*hf) : 0.0); |
|
} |
|
/* e[i-1] = z; */ |
|
e[i-1] = z; |
|
#ifdef DEBUGPRAXQR |
|
printf(" Mid TestFconvergence: l+1=%d i=%d k=%d h=%.6e e(i)=%14.8f e(i-1)=%14.8f\n",l+1,i,k, h, e[i],e[i-1]); |
|
#endif |
|
if (z == 0.0) |
|
f = z = 1.0; |
|
c = f/z; s = h/z; |
|
f = x*c + g*s; g = - x*s + g*c; h = y*s; |
|
y *= c; |
|
/* for (j=0; j<n; j++) { */ |
|
/* x = ab[j][i-1]; z = ab[j][i]; */ |
|
/* ab[j][i-1] = x*c + z*s; */ |
|
/* ab[j][i] = - x*s + z*c; */ |
|
/* } */ |
|
for (j=1; j<=n; j++) { |
|
x = ab[j][i-1]; z = ab[j][i]; |
|
ab[j][i-1] = x*c + z*s; |
|
ab[j][i] = - x*s + z*c; |
|
} |
|
if (fabs(f) < fabs(h)) { |
|
double fh = f/h; |
|
z = fabs(h) * sqrt(1.0 + fh*fh); |
|
} |
|
else { |
|
double hf = h/f; |
|
z = (f!=0.0 ? fabs(f)*sqrt(1.0+hf*hf) : 0.0); |
|
} |
|
#ifdef DEBUGPRAXQR |
|
printf(" qr transformation z f h=%.7g %.7g %.7g i=%d k=%d\n",z,f,h, i, k); |
|
#endif |
|
q[i-1] = z; |
|
if (z == 0.0) |
|
z = f = 1.0; |
|
c = f/z; s = h/z; |
|
f = c*g + s*y; /* f can be very small */ |
|
x = - s*g + c*y; |
|
} |
|
/* e[l] = 0.0; e[k] = f; q[k] = x; */ |
|
e[l] = 0.0; e[k] = f; q[k] = x; |
|
#ifdef DEBUGPRAXQR |
|
printf(" aftermid loop l=%d k=%d e(l)=%7g e(k)=%.7g q(k)=%.7g x=%.7g\n",l,k,e[l],e[k],q[k],x); |
|
#endif |
|
goto TestFsplitting; |
|
Convergence: |
|
#ifdef DEBUGPRAX |
|
printf(" Convergence:\n"); |
|
#endif |
|
if (z < 0.0) { |
|
/* q[k] = - z; */ |
|
/* for (j=0; j<n; j++) ab[j][k] = - ab[j][k]; */ |
|
q[k] = - z; |
|
for (j=1; j<=n; j++) ab[j][k] = - ab[j][k]; |
|
}/* END Z */ |
|
}/* END K */ |
|
} /* END MINFIT */ |
|
|
|
|
|
double praxis(double tol, double macheps, double h0, int _n, int _prin, double *_x, double (*_fun)(double *_x)) |
|
/* double praxis(double tol, double macheps, double h0, int _n, int _prin, double *_x, double (*_fun)(double *_x, int _n)) */ |
|
/* double praxis(double (*_fun)(), double _x[], int _n) */ |
|
/* double (*_fun)(); */ |
|
/* double _x[N]; */ |
|
/* double (*_fun)(); */ |
|
/* double _x[N]; */ |
|
{ |
|
/* init global extern variables and parameters */ |
|
/* double *d, *y, *z, */ |
|
/* *q0, *q1, **v; */ |
|
/* double *tflin; /\* used in flin: return (*fun)(tflin, n); *\/ */ |
|
/* double *e; /\* used in minfit, don't konw how to free memory and thus made global *\/ */ |
|
|
|
|
|
int seed; /* added */ |
|
int biter=0; |
|
double r; |
|
double randbrent( int (*)); |
|
double s, sf; |
|
|
|
h = h0; /* step; */ |
|
t = tol; |
|
scbd = 1.0; |
|
illc = 0; |
|
ktm = 1; |
|
|
|
macheps = DBL_EPSILON; |
|
/* prin=4; */ |
|
#ifdef DEBUGPRAX |
|
printf("Praxis macheps=%14g h=%14g step=%14g tol=%14g\n",macheps,h, h0,tol); |
|
#endif |
|
n = _n; |
|
x = _x; |
|
prin = _prin; |
|
fun = _fun; |
|
d=vector(1, n); |
|
y=vector(1, n); |
|
z=vector(1, n); |
|
q0=vector(1, n); |
|
q1=vector(1, n); |
|
e=vector(1, n); |
|
tflin=vector(1, n); |
|
v=matrix(1, n, 1, n); |
|
for(i=1;i<=n;i++){d[i]=y[i]=z[i]=q0[0]=e[i]=tflin[i]=0.;} |
|
small_windows = (macheps) * (macheps); vsmall = small_windows*small_windows; |
|
large = 1.0/small_windows; vlarge = 1.0/vsmall; |
|
m2 = sqrt(macheps); m4 = sqrt(m2); |
|
seed = 123456789; /* added */ |
|
ldfac = (illc ? 0.1 : 0.01); |
|
for(i=1;i<=n;i++) z[i]=0.; /* Was missing in Gegenfurtner as well as Brent's algol or fortran */ |
|
nl = kt = 0; nf = 1; |
|
#ifdef NR_SHIFT |
|
fx = (*fun)((x-1), n); |
|
#else |
|
fx = (*fun)(x); |
|
#endif |
|
qf1 = fx; |
|
t2 = small_windows + fabs(t); t = t2; dmin = small_windows; |
|
#ifdef DEBUGPRAX |
|
printf("praxis2 macheps=%14g h=%14g step=%14g small=%14g t=%14g\n",macheps,h, h0,small_windows, t); |
|
#endif |
|
if (h < 100.0*t) h = 100.0*t; |
|
#ifdef DEBUGPRAX |
|
printf("praxis3 macheps=%14g h=%14g step=%14g small=%14g t=%14g\n",macheps,h, h0,small_windows, t); |
|
#endif |
|
ldt = h; |
|
/* for (i=0; i<n; i++) for (j=0; j<n; j++) */ |
|
for (i=1; i<=n; i++) for (j=1; j<=n; j++) |
|
v[i][j] = (i == j ? 1.0 : 0.0); |
|
d[1] = 0.0; qd0 = 0.0; |
|
/* for (i=0; i<n; i++) q1[i] = x[i]; */ |
|
for (i=1; i<=n; i++) q1[i] = x[i]; |
|
if (prin > 1) { |
|
printf("\n------------- enter function praxis -----------\n"); |
|
printf("... current parameter settings ...\n"); |
|
printf("... scaling ... %20.10e\n", scbd); |
|
printf("... tol ... %20.10e\n", t); |
|
printf("... maxstep ... %20.10e\n", h); |
|
printf("... illc ... %20u\n", illc); |
|
printf("... ktm ... %20u\n", ktm); |
|
printf("... maxfun ... %20u\n", maxfun); |
|
} |
|
if (prin) print2(); |
|
|
|
mloop: |
|
biter++; /* Added to count the loops */ |
|
/* sf = d[0]; */ |
|
/* s = d[0] = 0.0; */ |
|
printf("\n Big iteration %d \n",biter); |
|
fprintf(ficlog,"\n Big iteration %d \n",biter); |
|
sf = d[1]; |
|
s = d[1] = 0.0; |
|
|
|
/* minimize along first direction V(*,1) */ |
|
#ifdef DEBUGPRAX |
|
printf(" Minimize along the first direction V(*,1). illc=%d\n",illc); |
|
/* fprintf(ficlog," Minimize along the first direction V(*,1).\n"); */ |
|
#endif |
|
#ifdef DEBUGPRAX2 |
|
printf("praxis4 macheps=%14g h=%14g step=%14g small=%14g t=%14g\n",macheps,h, h0,small_windows, t); |
|
#endif |
|
/* min(0, 2, &d[0], &s, fx, 0); /\* mac heps not global *\/ */ |
|
minny(1, 2, &d[1], &s, fx, 0); /* mac heps not global it seems that fx doesn't correspond to f(s=*x1) */ |
|
#ifdef DEBUGPRAX |
|
printf("praxis5 macheps=%14g h=%14g looks at sign of s=%14g fx=%14g\n",macheps,h, s,fx); |
|
#endif |
|
if (s <= 0.0) |
|
/* for (i=0; i < n; i++) */ |
|
for (i=1; i <= n; i++) |
|
v[i][1] = -v[i][1]; |
|
/* if ((sf <= (0.9 * d[0])) || ((0.9 * sf) >= d[0])) */ |
|
if ((sf <= (0.9 * d[1])) || ((0.9 * sf) >= d[1])) |
|
/* for (i=1; i<n; i++) */ |
|
for (i=2; i<=n; i++) |
|
d[i] = 0.0; |
|
/* for (k=1; k<n; k++) { */ |
|
for (k=2; k<=n; k++) { |
|
/* |
|
The inner loop starts here. |
|
*/ |
|
#ifdef DEBUGPRAX |
|
printf(" The inner loop here from k=%d to n=%d.\n",k,n); |
|
/* fprintf(ficlog," The inner loop here from k=%d to n=%d.\n",k,n); */ |
|
#endif |
|
/* for (i=0; i<n; i++) */ |
|
for (i=1; i<=n; i++) |
|
y[i] = x[i]; |
|
sf = fx; |
|
#ifdef DEBUGPRAX |
|
printf(" illc=%d and kt=%d and ktm=%d\n", illc, kt, ktm); |
|
#endif |
|
illc = illc || (kt > 0); |
|
next: |
|
kl = k; |
|
df = 0.0; |
|
if (illc) { /* random step to get off resolution valley */ |
|
#ifdef DEBUGPRAX |
|
printf(" A random step follows, to avoid resolution valleys.\n"); |
|
matprint(" before rand, vectors:",v,n,n); |
|
#endif |
|
for (i=1; i<=n; i++) { |
|
#ifdef NOBRENTRAND |
|
r = drandom(); |
|
#else |
|
seed=i; |
|
/* seed=i+1; */ |
|
#ifdef DEBUGRAND |
|
printf(" Random seed=%d, brent i=%d",seed,i); /* YYYY i=5 j=1 vji= -0.0001170073 */ |
|
#endif |
|
r = randbrent ( &seed ); |
|
#endif |
|
#ifdef DEBUGRAND |
|
printf(" Random r=%.7g \n",r); |
|
#endif |
|
z[i] = (0.1 * ldt + t2 * pow(10.0,(double)kt)) * (r - 0.5); |
|
/* z[i] = (0.1 * ldt + t2 * pow(10.0,(double)kt)) * (drandom() - 0.5); */ |
|
|
|
s = z[i]; |
|
for (j=1; j <= n; j++) |
|
x[j] += s * v[j][i]; |
|
} |
|
#ifdef DEBUGRAND |
|
matprint(" after rand, vectors:",v,n,n); |
|
#endif |
|
#ifdef NR_SHIFT |
|
fx = (*fun)((x-1), n); |
|
#else |
|
fx = (*fun)(x, n); |
|
#endif |
|
/* fx = (*func) ( (x-1) ); *//* This for func which is computed from x[1] and not from x[0] xm1=(x-1)*/ |
|
nf++; |
|
} |
|
/* minimize along non-conjugate directions */ |
|
#ifdef DEBUGPRAX |
|
printf(" Minimize along the 'non-conjugate' directions (dots printed) V(*,%d),...,V(*,%d).\n",k,n); |
|
/* fprintf(ficlog," Minimize along the 'non-conjugate' directions (dots printed) V(*,%d),...,V(*,%d).\n",k,n); */ |
|
#endif |
|
/* for (k2=k; k2<n; k2++) { /\* Be careful here k2 <=n ? *\/ */ |
|
for (k2=k; k2<=n; k2++) { /* Be careful here k2 <=n ? */ |
|
sl = fx; |
|
s = 0.0; |
|
#ifdef DEBUGPRAX |
|
printf(" Minimize along the 'NON-CONJUGATE' true direction k2=%14d fx=%14.7f\n",k2, fx); |
|
matprint(" before min vectors:",v,n,n); |
|
#endif |
|
/* min(k2, 2, &d[k2], &s, fx, 0); */ |
|
/* jsearch=k2-1; */ |
|
/* min(jsearch, 2, &d[jsearch], &s, fx, 0); */ |
|
minny(k2, 2, &d[k2], &s, fx, 0); |
|
#ifdef DEBUGPRAX |
|
printf(" . D(%d)=%14.7f d[k2]=%14.7f z[k2]=%14.7f illc=%14d fx=%14.7f\n",k2,d[k2],d[k2],z[k2],illc,fx); |
|
#endif |
|
if (illc) { |
|
/* double szk = s + z[k2]; */ |
|
/* s = d[k2] * szk*szk; */ |
|
double szk = s + z[k2]; |
|
s = d[k2] * szk*szk; |
|
} |
|
else |
|
s = sl - fx; |
|
/* if (df < s) { */ |
|
if (df <= s) { |
|
df = s; |
|
kl = k2; |
|
#ifdef DEBUGPRAX |
|
printf(" df=%.7g and choose kl=%d \n",df,kl); /* UUUU */ |
|
#endif |
|
} |
|
} /* end loop k2 */ |
|
/* |
|
If there was not much improvement on the first try, set |
|
ILLC = true and start the inner loop again. |
|
*/ |
|
#ifdef DEBUGPRAX |
|
printf(" If there was not much improvement on the first try, set ILLC = true and start the inner loop again. illc=%d\n",illc); |
|
/* fprintf(ficlog," If there was not much improvement on the first try, set ILLC = true and start the inner loop again.\n"); */ |
|
#endif |
|
if (!illc && (df < fabs(100.0 * (macheps) * fx))) { |
|
#ifdef DEBUGPRAX |
|
printf("\n NO SUCCESS because DF is small, starts inner loop with same K(=%d), fabs( 100.0 * machep(=%.10e) * fx(=%.9e) )=%.9e > df(=%.9e) break illc=%d\n", k, macheps, fx, fabs ( 100.0 * macheps * fx ), df, illc); |
|
#endif |
|
illc = 1; |
|
goto next; |
|
} |
|
#ifdef DEBUGPRAX |
|
printf("\n SUCCESS, BREAKS inner loop K(=%d) because DF is big, fabs( 100.0 * machep(=%.10e) * fx(=%.9e) )=%.9e <= df(=%.9e) break illc=%d\n", k, macheps, fx, fabs ( 100.0 * macheps * fx ), df, illc); |
|
#endif |
|
|
|
/* if ((k == 1) && (prin > 1)){ /\* be careful k=2 *\/ */ |
|
if ((k == 2) && (prin > 1)){ /* be careful k=2 */ |
|
#ifdef DEBUGPRAX |
|
printf(" NEW D The second difference array d:\n" ); |
|
/* fprintf(ficlog, " NEW D The second difference array d:\n" ); */ |
|
#endif |
|
vecprint(" NEW D The second difference array d:",d,n); |
|
} |
|
/* minimize along conjugate directions */ |
|
/* |
|
Minimize along the "conjugate" directions V(*,1),...,V(*,K-1). |
|
*/ |
|
#ifdef DEBUGPRAX |
|
printf("Minimize along the 'conjugate' directions V(*,1),...,V(*,K-1=%d).\n",k-1); |
|
/* fprintf(ficlog,"Minimize along the 'conjugate' directions V(*,1),...,V(*,K-1=%d).\n",k-1); */ |
|
#endif |
|
/* for (k2=0; k2<=k-1; k2++) { */ |
|
for (k2=1; k2<=k-1; k2++) { |
|
s = 0.0; |
|
/* min(k2-1, 2, &d[k2-1], &s, fx, 0); */ |
|
minny(k2, 2, &d[k2], &s, fx, 0); |
|
} |
|
f1 = fx; |
|
fx = sf; |
|
lds = 0.0; |
|
/* for (i=0; i<n; i++) { */ |
|
for (i=1; i<=n; i++) { |
|
sl = x[i]; |
|
x[i] = y[i]; |
|
y[i] = sl - y[i]; |
|
sl = y[i]; |
|
lds = lds + sl*sl; |
|
} |
|
lds = sqrt(lds); |
|
#ifdef DEBUGPRAX |
|
printf("Minimization done 'conjugate', shifted all points, computed lds=%.8f\n",lds); |
|
#endif |
|
/* |
|
Discard direction V(*,kl). |
|
|
|
If no random step was taken, V(*,KL) is the "non-conjugate" |
|
direction along which the greatest improvement was made. |
|
*/ |
|
if (lds > small_windows) { |
|
#ifdef DEBUGPRAX |
|
printf("lds big enough to throw direction V(*,kl=%d). If no random step was taken, V(*,KL) is the 'non-conjugate' direction along which the greatest improvement was made.\n",kl); |
|
matprint(" before shift new conjugate vectors:",v,n,n); |
|
#endif |
|
for (i=kl-1; i>=k; i--) { |
|
/* for (j=0; j < n; j++) */ |
|
for (j=1; j <= n; j++) |
|
/* v[j][i+1] = v[j][i]; */ /* This is v[j][i+1]=v[j][i] i=kl-1 to k */ |
|
v[j][i+1] = v[j][i]; /* This is v[j][i+1]=v[j][i] i=kl-1 to k */ |
|
/* v[j][i+1] = v[j][i]; */ |
|
/* d[i+1] = d[i];*/ /* last is d[k+1]= d[k] */ |
|
d[i+1] = d[i]; /* last is d[k]= d[k-1] */ |
|
} |
|
#ifdef DEBUGPRAX |
|
matprint(" after shift new conjugate vectors:",v,n,n); |
|
#endif /* d[k] = 0.0; */ |
|
d[k] = 0.0; |
|
for (i=1; i <= n; i++) |
|
v[i][k] = y[i] / lds; |
|
/* v[i][k] = y[i] / lds; */ |
|
#ifdef DEBUGPRAX |
|
printf("Minimize along the new 'conjugate' direction V(*,k=%d), which is the normalized vector: (new x) - (old x). d2=%14.7g lds=%.10f\n",k,d[k],lds); |
|
/* fprintf(ficlog,"Minimize along the new 'conjugate' direction V(*,k=%d), which is the normalized vector: (new x) - (old x).\n",k); */ |
|
matprint(" before min new conjugate vectors:",v,n,n); |
|
#endif |
|
/* min(k-1, 4, &d[k-1], &lds, f1, 1); */ |
|
minny(k, 4, &d[k], &lds, f1, 1); |
|
#ifdef DEBUGPRAX |
|
printf(" after min d(k)=%d %.7g lds=%14f\n",k,d[k],lds); |
|
matprint(" after min vectors:",v,n,n); |
|
#endif |
|
if (lds <= 0.0) { |
|
lds = -lds; |
|
#ifdef DEBUGPRAX |
|
printf(" lds changed sign lds=%.14f k=%d\n",lds,k); |
|
#endif |
|
/* for (i=0; i<n; i++) */ |
|
/* v[i][k] = -v[i][k]; */ |
|
for (i=1; i<=n; i++) |
|
v[i][k] = -v[i][k]; |
|
} |
|
} |
|
ldt = ldfac * ldt; |
|
if (ldt < lds) |
|
ldt = lds; |
|
if (prin > 0){ |
|
#ifdef DEBUGPRAX |
|
printf(" k=%d",k); |
|
/* fprintf(ficlog," k=%d",k); */ |
|
#endif |
|
print2();/* n, x, prin, fx, nf, nl ); */ |
|
} |
|
t2 = 0.0; |
|
/* for (i=0; i<n; i++) */ |
|
for (i=1; i<=n; i++) |
|
t2 += x[i]*x[i]; |
|
t2 = m2 * sqrt(t2) + t; |
|
/* |
|
See whether the length of the step taken since starting the |
|
inner loop exceeds half the tolerance. |
|
*/ |
|
#ifdef DEBUGPRAX |
|
printf("See if step length exceeds half the tolerance.\n"); /* ZZZZZ */ |
|
/* fprintf(ficlog,"See if step length exceeds half the tolerance.\n"); */ |
|
#endif |
|
if (ldt > (0.5 * t2)) |
|
kt = 0; |
|
else |
|
kt++; |
|
#ifdef DEBUGPRAX |
|
printf("if kt=%d >? ktm=%d gotoL2 loop\n",kt,ktm); |
|
#endif |
|
if (kt > ktm){ |
|
if ( 0 < prin ){ |
|
/* printf("\nr8vec_print\n X:\n"); */ |
|
/* fprintf(ficlog,"\nr8vec_print\n X:\n"); */ |
|
vecprint ("END X:", x, n ); |
|
} |
|
goto fret; |
|
} |
|
#ifdef DEBUGPRAX |
|
matprint(" end of L2 loop vectors:",v,n,n); |
|
#endif |
|
|
|
} |
|
/* printf("The inner loop ends here.\n"); */ |
|
/* fprintf(ficlog,"The inner loop ends here.\n"); */ |
|
/* |
|
The inner loop ends here. |
|
|
|
Try quadratic extrapolation in case we are in a curved valley. |
|
*/ |
|
#ifdef DEBUGPRAX |
|
printf("Try QUAD ratic extrapolation in case we are in a curved valley.\n"); |
|
#endif |
|
/* try quadratic extrapolation in case */ |
|
/* we are stuck in a curved valley */ |
|
quad(); |
|
dn = 0.0; |
|
/* for (i=0; i<n; i++) { */ |
|
for (i=1; i<=n; i++) { |
|
d[i] = 1.0 / sqrt(d[i]); |
|
if (dn < d[i]) |
|
dn = d[i]; |
|
} |
|
if (prin > 2) |
|
matprint(" NEW DIRECTIONS vectors:",v,n,n); |
|
/* for (j=0; j<n; j++) { */ |
|
for (j=1; j<=n; j++) { |
|
s = d[j] / dn; |
|
/* for (i=0; i < n; i++) */ |
|
for (i=1; i <= n; i++) |
|
v[i][j] *= s; |
|
} |
|
|
|
if (scbd > 1.0) { /* scale axis to reduce condition number */ |
|
#ifdef DEBUGPRAX |
|
printf("Scale the axes to try to reduce the condition number.\n"); |
|
#endif |
|
/* fprintf(ficlog,"Scale the axes to try to reduce the condition number.\n"); */ |
|
s = vlarge; |
|
/* for (i=0; i<n; i++) { */ |
|
for (i=1; i<=n; i++) { |
|
sl = 0.0; |
|
/* for (j=0; j < n; j++) */ |
|
for (j=1; j <= n; j++) |
|
sl += v[i][j]*v[i][j]; |
|
z[i] = sqrt(sl); |
|
if (z[i] < m4) |
|
z[i] = m4; |
|
if (s > z[i]) |
|
s = z[i]; |
|
} |
|
/* for (i=0; i<n; i++) { */ |
|
for (i=1; i<=n; i++) { |
|
sl = s / z[i]; |
|
z[i] = 1.0 / sl; |
|
if (z[i] > scbd) { |
|
sl = 1.0 / scbd; |
|
z[i] = scbd; |
|
} |
|
} |
|
} |
|
for (i=1; i<=n; i++) |
|
/* for (j=0; j<=i-1; j++) { */ |
|
/* for (j=1; j<=i; j++) { */ |
|
for (j=1; j<=i-1; j++) { |
|
s = v[i][j]; |
|
v[i][j] = v[j][i]; |
|
v[j][i] = s; |
|
} |
|
#ifdef DEBUGPRAX |
|
printf(" Calculate a new set of orthogonal directions before repeating the main loop.\n Transpose V for MINFIT:...\n"); |
|
#endif |
|
/* |
|
MINFIT finds the singular value decomposition of V. |
|
|
|
This gives the principal values and principal directions of the |
|
approximating quadratic form without squaring the condition number. |
|
*/ |
|
#ifdef DEBUGPRAX |
|
printf(" MINFIT finds the singular value decomposition of V. \n This gives the principal values and principal directions of the\n approximating quadratic form without squaring the condition number...\n"); |
|
#endif |
|
|
|
minfit(n, macheps, vsmall, v, d); |
|
/* for(i=0; i<n;i++)printf(" %14.7g",d[i]); */ |
|
/* v is overwritten with R. */ |
|
/* |
|
Unscale the axes. |
|
*/ |
|
if (scbd > 1.0) { |
|
#ifdef DEBUGPRAX |
|
printf(" Unscale the axes.\n"); |
|
#endif |
|
/* for (i=0; i<n; i++) { */ |
|
for (i=1; i<=n; i++) { |
|
s = z[i]; |
|
/* for (j=0; j<n; j++) */ |
|
for (j=1; j<=n; j++) |
|
v[i][j] *= s; |
|
} |
|
/* for (i=0; i<n; i++) { */ |
|
for (i=1; i<=n; i++) { |
|
s = 0.0; |
|
/* for (j=0; j<n; j++) */ |
|
for (j=1; j<=n; j++) |
|
s += v[j][i]*v[j][i]; |
|
s = sqrt(s); |
|
d[i] *= s; |
|
s = 1.0 / s; |
|
/* for (j=0; j<n; j++) */ |
|
for (j=1; j<=n; j++) |
|
v[j][i] *= s; |
|
} |
|
} |
|
/* for (i=0; i<n; i++) { */ |
|
double dni; /* added for compatibility with buckhardt but not brent */ |
|
for (i=1; i<=n; i++) { |
|
dni=dn*d[i]; /* added for compatibility with buckhardt but not brent */ |
|
if ((dn * d[i]) > large) |
|
d[i] = vsmall; |
|
else if ((dn * d[i]) < small_windows) |
|
d[i] = vlarge; |
|
else |
|
d[i] = 1.0 / dni / dni; /* added for compatibility with buckhardt but not brent */ |
|
/* d[i] = pow(dn * d[i],-2.0); */ |
|
} |
|
#ifdef DEBUGPRAX |
|
vecprint ("\n Before sort Eigenvalues of a:",d,n ); |
|
#endif |
|
|
|
sort(); /* the new eigenvalues and eigenvectors */ |
|
#ifdef DEBUGPRAX |
|
vecprint( " After sort the eigenvalues ....\n", d, n); |
|
matprint( " After sort the eigenvectors....\n", v, n,n); |
|
#endif |
|
#ifdef DEBUGPRAX |
|
printf(" Determine the smallest eigenvalue.\n"); |
|
#endif |
|
/* dmin = d[n-1]; */ |
|
dmin = d[n]; |
|
if (dmin < small_windows) |
|
dmin = small_windows; |
|
/* |
|
The ratio of the smallest to largest eigenvalue determines whether |
|
the system is ill conditioned. |
|
*/ |
|
|
|
/* illc = (m2 * d[0]) > dmin; */ |
|
illc = (m2 * d[1]) > dmin; |
|
#ifdef DEBUGPRAX |
|
printf(" The ratio of the smallest to largest eigenvalue determines whether\n the system is ill conditioned=%d . dmin=%.10lf < m2=%.10lf * d[1]=%.10lf \n",illc, dmin,m2, d[1]); |
|
#endif |
|
|
|
if ((prin > 2) && (scbd > 1.0)) |
|
vecprint("\n The scale factors:",z,n); |
|
if (prin > 2) |
|
vecprint(" Principal values (EIGEN VALUES OF A) of the quadratic form:",d,n); |
|
if (prin > 2) |
|
matprint(" The principal axes (EIGEN VECTORS OF A:",v,n, n); |
|
|
|
if ((maxfun > 0) && (nf > maxfun)) { |
|
if (prin) |
|
printf("\n... maximum number of function calls reached ...\n"); |
|
goto fret; |
|
} |
|
#ifdef DEBUGPRAX |
|
printf("Goto main loop\n"); |
|
#endif |
|
goto mloop; /* back to main loop */ |
|
|
|
fret: |
|
if (prin > 0) { |
|
vecprint("\n X:", x, n); |
|
/* printf("\n... ChiSq reduced to %20.10e ...\n", fx); */ |
|
/* printf("... after %20u function calls.\n", nf); */ |
|
} |
|
free_vector(d, 1, n); |
|
free_vector(y, 1, n); |
|
free_vector(z, 1, n); |
|
free_vector(q0, 1, n); |
|
free_vector(q1, 1, n); |
|
free_matrix(v, 1, n, 1, n); |
|
/* double *d, *y, *z, */ |
|
/* *q0, *q1, **v; */ |
|
free_vector(tflin, 1, n); |
|
/* double *tflin; /\* used in flin: return (*fun)(tflin, n); *\/ */ |
|
free_vector(e, 1, n); |
|
/* double *e; /\* used in minfit, don't konw how to free memory and thus made global *\/ */ |
|
|
|
return(fx); |
|
} |
|
|
|
/* end praxis gegen */ |
|
|
|
/*************** powell ************************/ |
|
/* |
|
Minimization of a function func of n variables. Input consists in an initial starting point |
|
p[1..n] ; an initial matrix xi[1..n][1..n] whose columns contain the initial set of di- |
|
rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value |
|
such that failure to decrease by more than this amount in one iteration signals doneness. On |
|
output, p is set to the best point found, xi is the then-current direction set, fret is the returned |
|
function value at p , and iter is the number of iterations taken. The routine linmin is used. |
|
*/ |
|
#ifdef LINMINORIGINAL |
|
#else |
|
int *flatdir; /* Function is vanishing in that direction */ |
|
int flat=0, flatd=0; /* Function is vanishing in that direction */ |
|
#endif |
|
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, |
|
double (*func)(double [])) |
|
{ |
|
#ifdef LINMINORIGINAL |
|
void linmin(double p[], double xi[], int n, double *fret, |
|
double (*func)(double [])); |
|
#else |
|
void linmin(double p[], double xi[], int n, double *fret, |
|
double (*func)(double []),int *flat); |
|
#endif |
|
int i,ibig,j,jk,k; |
|
double del,t,*pt,*ptt,*xit; |
double directest; |
double directest; |
double fp,fptt; |
double fp,fptt; |
double *xits; |
double *xits; |
int niterf, itmp; |
int niterf, itmp; |
|
int Bigter=0, nBigterf=1; |
|
|
pt=vector(1,n); |
pt=vector(1,n); |
ptt=vector(1,n); |
ptt=vector(1,n); |
xit=vector(1,n); |
xit=vector(1,n); |
xits=vector(1,n); |
xits=vector(1,n); |
*fret=(*func)(p); |
*fret=(*func)(p); |
for (j=1;j<=n;j++) pt[j]=p[j]; |
for (j=1;j<=n;j++) pt[j]=p[j]; |
rcurr_time = time(NULL); |
rcurr_time = time(NULL); |
|
fp=(*fret); /* Initialisation */ |
for (*iter=1;;++(*iter)) { |
for (*iter=1;;++(*iter)) { |
fp=(*fret); /* From former iteration or initial value */ |
|
ibig=0; |
ibig=0; |
del=0.0; |
del=0.0; |
rlast_time=rcurr_time; |
rlast_time=rcurr_time; |
|
rlast_btime=rcurr_time; |
/* (void) gettimeofday(&curr_time,&tzp); */ |
/* (void) gettimeofday(&curr_time,&tzp); */ |
rcurr_time = time(NULL); |
rcurr_time = time(NULL); |
curr_time = *localtime(&rcurr_time); |
curr_time = *localtime(&rcurr_time); |
printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); |
/* printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); */ |
fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
/* fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); */ |
/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ |
/* Bigter=(*iter - *iter % ncovmodel)/ncovmodel +1; /\* Big iteration, i.e on ncovmodel cycle *\/ */ |
|
Bigter=(*iter - (*iter-1) % n)/n +1; /* Big iteration, i.e on ncovmodel cycle */ |
|
printf("\nPowell iter=%d Big Iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,Bigter,*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); |
|
fprintf(ficlog,"\nPowell iter=%d Big Iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,Bigter,*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); |
|
fprintf(ficrespow,"%d %d %.12f %d",*iter,Bigter, *fret,curr_time.tm_sec-start_time.tm_sec); |
|
fp=(*fret); /* From former iteration or initial value */ |
for (i=1;i<=n;i++) { |
for (i=1;i<=n;i++) { |
printf(" %d %.12f",i, p[i]); |
|
fprintf(ficlog," %d %.12lf",i, p[i]); |
|
fprintf(ficrespow," %.12lf", p[i]); |
fprintf(ficrespow," %.12lf", p[i]); |
} |
} |
|
fprintf(ficrespow,"\n");fflush(ficrespow); |
|
printf("\n#model= 1 + age "); |
|
fprintf(ficlog,"\n#model= 1 + age "); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
} |
|
for(j=1;j <=ncovmodel-2-nagesqr;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(ficlog," + V%d ",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(ficlog," + V%d*age ",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
}else if(Typevar[j]==3) { |
|
printf(" + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
printf("\n"); |
printf("\n"); |
|
/* printf("12 47.0114589 0.0154322 33.2424412 0.3279905 2.3731903 */ |
|
/* 13 -21.5392400 0.1118147 1.2680506 1.2973408 -1.0663662 */ |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficrespow,"\n");fflush(ficrespow); |
for(i=1,jk=1; i <=nlstate; i++){ |
if(*iter <=3){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f ",p[jk]); |
|
fprintf(ficlog,"%12.7f ",p[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
} |
|
if(*iter <=3 && *iter >1){ |
tml = *localtime(&rcurr_time); |
tml = *localtime(&rcurr_time); |
strcpy(strcurr,asctime(&tml)); |
strcpy(strcurr,asctime(&tml)); |
rforecast_time=rcurr_time; |
rforecast_time=rcurr_time; |
Line 1886 void powell(double p[], double **xi, int
|
Line 4285 void powell(double p[], double **xi, int
|
strcurr[itmp-1]='\0'; |
strcurr[itmp-1]='\0'; |
printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time); |
for(niterf=10;niterf<=30;niterf+=10){ |
for(nBigterf=1;nBigterf<=31;nBigterf+=10){ |
|
niterf=nBigterf*ncovmodel; |
|
/* rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); */ |
rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); |
forecast_time = *localtime(&rforecast_time); |
forecast_time = *localtime(&rforecast_time); |
strcpy(strfor,asctime(&forecast_time)); |
strcpy(strfor,asctime(&forecast_time)); |
itmp = strlen(strfor); |
itmp = strlen(strfor); |
if(strfor[itmp-1]=='\n') |
if(strfor[itmp-1]=='\n') |
strfor[itmp-1]='\0'; |
strfor[itmp-1]='\0'; |
printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
printf(" - if your program needs %d BIG iterations (%d iterations) to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",nBigterf, niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
fprintf(ficlog," - if your program needs %d BIG iterations (%d iterations) to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",nBigterf, niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr); |
} |
} |
} |
} |
for (i=1;i<=n;i++) { /* For each direction i */ |
for (i=1;i<=n;i++) { /* For each direction i, maximisation after loading directions */ |
for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */ |
for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales. xi is not changed but one dim xit */ |
fptt=(*fret); |
|
|
fptt=(*fret); /* Computes likelihood for parameters xit */ |
#ifdef DEBUG |
#ifdef DEBUG |
printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret); |
#endif |
#endif |
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
printf("%d",i);fflush(stdout); /* print direction (parameter) i */ |
fprintf(ficlog,"%d",i);fflush(ficlog); |
fprintf(ficlog,"%d",i);fflush(ficlog); |
linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
#ifdef LINMINORIGINAL |
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
linmin(p,xit,n,fret,func); /* New point i minimizing in direction xit, i has coordinates p[j].*/ |
|
/* xit[j] gives the n coordinates of direction i as input.*/ |
|
/* *fret gives the maximum value on direction xit */ |
|
#else |
|
linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/ |
|
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
|
#endif |
|
/* Outputs are fret(new point p) p is updated and xit rescaled */ |
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */ |
/* because that direction will be replaced unless the gain del is small */ |
/* because that direction will be replaced unless the gain del is small */ |
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
/* in comparison with the 'probable' gain, mu^2, with the last average direction. */ |
Line 1932 void powell(double p[], double **xi, int
|
Line 4341 void powell(double p[], double **xi, int
|
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
#endif |
#endif |
} /* end loop on each direction i */ |
} /* end loop on each direction i */ |
/* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ |
/* Convergence test will use last linmin estimation (fret) and compare to former iteration (fp) */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */ |
/* New value of last point Pn is not computed, P(n-1) */ |
/* New value of last point Pn is not computed, P(n-1) */ |
if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */ |
for(j=1;j<=n;j++) { |
|
if(flatdir[j] >0){ |
|
printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
|
fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]); |
|
} |
|
/* printf("\n"); */ |
|
/* fprintf(ficlog,"\n"); */ |
|
} |
|
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */ |
|
if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
/* By adding age*age in a model, the new -2LL should be lower and the difference follows a */ |
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
/* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */ |
Line 1943 void powell(double p[], double **xi, int
|
Line 4361 void powell(double p[], double **xi, int
|
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
/* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */ |
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
/* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */ |
/* By adding 10 parameters more the gain should be 18.31 */ |
/* By adding 10 parameters more the gain should be 18.31 */ |
|
|
/* Starting the program with initial values given by a former maximization will simply change */ |
/* Starting the program with initial values given by a former maximization will simply change */ |
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
/* the scales of the directions and the directions, because the are reset to canonical directions */ |
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
/* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */ |
Line 1971 void powell(double p[], double **xi, int
|
Line 4389 void powell(double p[], double **xi, int
|
} |
} |
#endif |
#endif |
|
|
|
|
free_vector(xit,1,n); |
free_vector(xit,1,n); |
free_vector(xits,1,n); |
free_vector(xits,1,n); |
free_vector(ptt,1,n); |
free_vector(ptt,1,n); |
free_vector(pt,1,n); |
free_vector(pt,1,n); |
return; |
return; |
} /* enough precision */ |
} /* enough precision */ |
if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); |
if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); |
for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */ |
for (j=1;j<=n;j++) { /* Computes the extrapolated point and value f3, P_0 + 2 (P_n-P_0)=2Pn-P0 and xit is direction Pn-P0 */ |
ptt[j]=2.0*p[j]-pt[j]; |
ptt[j]=2.0*p[j]-pt[j]; |
xit[j]=p[j]-pt[j]; |
xit[j]=p[j]-pt[j]; /* Coordinate j of last direction xi_n=P_n-P_0 */ |
pt[j]=p[j]; |
#ifdef DEBUG |
} |
printf("\n %d xit=%12.7g p=%12.7g pt=%12.7g ",j,xit[j],p[j],pt[j]); |
|
#endif |
|
pt[j]=p[j]; /* New P0 is Pn */ |
|
} |
|
#ifdef DEBUG |
|
printf("\n"); |
|
#endif |
fptt=(*func)(ptt); /* f_3 */ |
fptt=(*func)(ptt); /* f_3 */ |
#ifdef POWELLF1F3 |
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in directions until some iterations are done */ |
|
if (*iter <=4) { |
|
#else |
|
#endif |
|
#ifdef POWELLNOF3INFF1TEST /* skips test F3 <F1 */ |
#else |
#else |
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */ |
#endif |
#endif |
Line 1994 void powell(double p[], double **xi, int
|
Line 4421 void powell(double p[], double **xi, int
|
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
/* Let f"(x2) be the 2nd derivative equal everywhere. */ |
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
/* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */ |
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
/* will reach at f3 = fm + h^2/2 f"m ; f" = (f1 -2f2 +f3 ) / h**2 */ |
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del */ |
/* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */ |
|
/* also lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */ |
|
/* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */ |
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
/* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */ |
|
/* Even if f3 <f1, directest can be negative and t >0 */ |
|
/* mu² and del² are equal when f3=f1 */ |
|
/* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */ |
|
/* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */ |
|
/* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0 */ |
|
/* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0 */ |
#ifdef NRCORIGINAL |
#ifdef NRCORIGINAL |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/ |
#else |
#else |
Line 2015 void powell(double p[], double **xi, int
|
Line 4450 void powell(double p[], double **xi, int
|
#endif |
#endif |
#ifdef POWELLORIGINAL |
#ifdef POWELLORIGINAL |
if (t < 0.0) { /* Then we use it for new direction */ |
if (t < 0.0) { /* Then we use it for new direction */ |
#else |
#else /* Not POWELLOriginal but Brouard's */ |
if (directest*t < 0.0) { /* Contradiction between both tests */ |
if (directest*t < 0.0) { /* Contradiction between both tests */ |
printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del); |
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
fprintf(ficlog,"directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del); |
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt); |
} |
} |
if (directest < 0.0) { /* Then we use it for new direction */ |
if (directest < 0.0) { /* Then we use (P0, Pn) for new direction Xi_n or Xi_iBig */ |
#endif |
#endif |
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
printf("Before linmin in direction P%d-P0\n",n); |
printf("Before linmin in direction P%d-P0\n",n); |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
if(j % ncovmodel == 0){ |
if(j % ncovmodel == 0){ |
Line 2035 void powell(double p[], double **xi, int
|
Line 4470 void powell(double p[], double **xi, int
|
} |
} |
} |
} |
#endif |
#endif |
|
#ifdef LINMINORIGINAL |
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
|
#else |
|
linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/ |
|
flatdir[i]=flat; /* Function is vanishing in that direction i */ |
|
#endif |
|
|
#ifdef DEBUGLINMIN |
#ifdef DEBUGLINMIN |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]); |
Line 2050 void powell(double p[], double **xi, int
|
Line 4491 void powell(double p[], double **xi, int
|
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */ |
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */ |
} |
} |
|
|
|
/* #else */ |
|
/* for (i=1;i<=n-1;i++) { */ |
|
/* for (j=1;j<=n;j++) { */ |
|
/* xi[j][i]=xi[j][i+1]; /\* Standard method of conjugate directions, not Powell who changes the nth direction by p0 pn . *\/ */ |
|
/* } */ |
|
/* } */ |
|
/* for (j=1;j<=n;j++) { */ |
|
/* xi[j][n]=xit[j]; /\* and this nth direction by the by the average p_0 p_n *\/ */ |
|
/* } */ |
|
/* /\* for (j=1;j<=n-1;j++) { *\/ */ |
|
/* /\* xi[j][1]=xi[j][j+1]; /\\* Standard method of conjugate directions *\\/ *\/ */ |
|
/* /\* xi[j][n]=xit[j]; /\\* and this nth direction by the by the average p_0 p_n *\\/ *\/ */ |
|
/* /\* } *\/ */ |
|
/* #endif */ |
|
#ifdef LINMINORIGINAL |
|
#else |
|
for (j=1, flatd=0;j<=n;j++) { |
|
if(flatdir[j]>0) |
|
flatd++; |
|
} |
|
if(flatd >0){ |
|
printf("%d flat directions: ",flatd); |
|
fprintf(ficlog,"%d flat directions :",flatd); |
|
for (j=1;j<=n;j++) { |
|
if(flatdir[j]>0){ |
|
printf("%d ",j); |
|
fprintf(ficlog,"%d ",j); |
|
} |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
#ifdef FLATSUP |
|
free_vector(xit,1,n); |
|
free_vector(xits,1,n); |
|
free_vector(ptt,1,n); |
|
free_vector(pt,1,n); |
|
return; |
|
#endif |
|
} /* endif(flatd >0) */ |
|
#endif /* LINMINORIGINAL */ |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig); |
|
|
#ifdef DEBUG |
#ifdef DEBUG |
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig); |
for(j=1;j<=n;j++){ |
for(j=1;j<=n;j++){ |
printf(" %.12e",xit[j]); |
printf(" %lf",xit[j]); |
fprintf(ficlog," %.12e",xit[j]); |
fprintf(ficlog," %lf",xit[j]); |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
#endif |
#endif |
} /* end of t or directest negative */ |
} /* end of t or directest negative */ |
#ifdef POWELLF1F3 |
printf(" Directest is positive, P_n-P_0 does not increase the conjugacy. n=%d\n",n); |
|
fprintf(ficlog," Directest is positive, P_n-P_0 does not increase the conjugacy. n=%d\n",n); |
|
#ifdef POWELLNOF3INFF1TEST |
|
#else |
|
} /* end if (fptt < fp) */ |
|
#endif |
|
#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */ |
|
} /*NODIRECTIONCHANGEDUNTILNITER No change in drections until some iterations are done */ |
#else |
#else |
} /* end if (fptt < fp) */ |
|
#endif |
#endif |
} /* loop iteration */ |
} /* loop iteration */ |
} |
} |
|
|
/**** Prevalence limit (stable or period prevalence) ****************/ |
/**** Prevalence limit (stable or period prevalence) ****************/ |
|
|
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij) |
double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres) |
{ |
{ |
/* Computes the prevalence limit in each live state at age x and for covariate ij by left multiplying the unit |
/**< Computes the prevalence limit in each live state at age x and for covariate combination ij . Nicely done |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
* (and selected quantitative values in nres) |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
* by left multiplying the unit |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
* matrix by transitions matrix until convergence is reached with precision ftolpl |
/* or prevalence in state 1, prevalence in state 2, 0 */ |
* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I |
/* newm is the matrix after multiplications, its rows are identical at a factor */ |
* Wx is row vector: population in state 1, population in state 2, population dead |
/* Initial matrix pimij */ |
* or prevalence in state 1, prevalence in state 2, 0 |
|
* newm is the matrix after multiplications, its rows are identical at a factor. |
|
* Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl. |
|
* Output is prlim. |
|
* Initial matrix pimij |
|
*/ |
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
/* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */ |
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
/* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */ |
/* 0, 0 , 1} */ |
/* 0, 0 , 1} */ |
Line 2094 double **prevalim(double **prlim, int nl
|
Line 4587 double **prevalim(double **prlim, int nl
|
/* {0.51571254859325999, 0.4842874514067399, */ |
/* {0.51571254859325999, 0.4842874514067399, */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j,k, k1; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */ |
double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */ |
double **newm; |
double **newm; |
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
double agefin, delaymax=200. ; /* 100 Max number of years to converge */ |
int ncvloop=0; |
int ncvloop=0; |
|
int first=0; |
|
|
min=vector(1,nlstate); |
min=vector(1,nlstate); |
max=vector(1,nlstate); |
max=vector(1,nlstate); |
Line 2122 double **prevalim(double **prlim, int nl
|
Line 4616 double **prevalim(double **prlim, int nl
|
newm=savm; |
newm=savm; |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[2]=agefin; |
cov[2]=agefin; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin; |
for (k=1; k<=cptcovn;k++) { |
} |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
/* Model(2) V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */ |
/* Here comes the value of the covariate 'ij' */ |
/* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */ |
} |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
/*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
}else{ |
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */ |
cov[2+nagesqr+k1]=precov[nres][k1]; |
for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; |
} |
for (k=1; k<=cptcovprod;k++) /* Useless */ |
}/* End of loop on model equation */ |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* Start of old code (replaced by a loop on position in the model equation */ |
|
/* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only of the model *\/ */ |
|
/* /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; *\/ */ |
|
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])]; */ |
|
/* /\* model = 1 +age + V1*V3 + age*V1 + V2 + V1 + age*V2 + V3 + V3*age + V1*V2 */ |
|
/* * k 1 2 3 4 5 6 7 8 */ |
|
/* *cov[] 1 2 3 4 5 6 7 8 9 10 */ |
|
/* *TypeVar[k] 2 1 0 0 1 0 1 2 */ |
|
/* *Dummy[k] 0 2 0 0 2 0 2 0 */ |
|
/* *Tvar[k] 4 1 2 1 2 3 3 5 */ |
|
/* *nsd=3 (1) (2) (3) */ |
|
/* *TvarsD[nsd] [1]=2 1 3 */ |
|
/* *TnsdVar [2]=2 [1]=1 [3]=3 */ |
|
/* *TvarsDind[nsd](=k) [1]=3 [2]=4 [3]=6 */ |
|
/* *Tage[] [1]=1 [2]=2 [3]=3 */ |
|
/* *Tvard[] [1][1]=1 [2][1]=1 */ |
|
/* * [1][2]=3 [2][2]=2 */ |
|
/* *Tprod[](=k) [1]=1 [2]=8 */ |
|
/* *TvarsDp(=Tvar) [1]=1 [2]=2 [3]=3 [4]=5 */ |
|
/* *TvarD (=k) [1]=1 [2]=3 [3]=4 [3]=6 [4]=6 */ |
|
/* *TvarsDpType */ |
|
/* *si model= 1 + age + V3 + V2*age + V2 + V3*age */ |
|
/* * nsd=1 (1) (2) */ |
|
/* *TvarsD[nsd] 3 2 */ |
|
/* *TnsdVar (3)=1 (2)=2 */ |
|
/* *TvarsDind[nsd](=k) [1]=1 [2]=3 */ |
|
/* *Tage[] [1]=2 [2]= 3 */ |
|
/* *\/ */ |
|
/* /\* cov[++k1]=nbcode[TvarsD[k]][codtabm(ij,k)]; *\/ */ |
|
/* /\* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=nsq;k++) { /\* For single quantitative varying covariates only of the model *\/ */ |
|
/* /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */ |
|
/* /\* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */ |
|
/* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][resultmodel[nres][k1]] */ |
|
/* /\* cov[++k1]=Tqresult[nres][k]; *\/ */ |
|
/* /\* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* For product with age *\/ */ |
|
/* if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
/* /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */ |
|
/* /\* cov[++k1]=Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* /\* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */ |
|
/* /\* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
/* /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; *\/ */ |
|
/* } */ |
|
/* } */ |
|
/* } /\* End product without age *\/ */ |
|
/* ENd of old code */ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */ |
/* age and covariate values of ij are in 'cov' */ |
/* age and covariate values of ij are in 'cov' */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */ |
|
|
savm=oldm; |
savm=oldm; |
Line 2177 double **prevalim(double **prlim, int nl
|
Line 4740 double **prevalim(double **prlim, int nl
|
free_vector(meandiff,1,nlstate); |
free_vector(meandiff,1,nlstate); |
return prlim; |
return prlim; |
} |
} |
} /* age loop */ |
} /* agefin loop */ |
/* After some age loop it doesn't converge */ |
/* After some age loop it doesn't converge */ |
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
if(!first){ |
Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
first=1; |
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
}else if (first >=1 && first <10){ |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
first++; |
|
}else if (first ==10){ |
|
fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM), (int)(age-stepm/YEARM), (int)delaymax); |
|
printf("Warning: the stable prevalence dit not converge. This warning came too often, IMaCh will stop notifying, even in its log file. Look at the graphs to appreciate the non convergence.\n"); |
|
fprintf(ficlog,"Warning: the stable prevalence no convergence; too many cases, giving up noticing, even in log file\n"); |
|
first++; |
|
} |
|
|
|
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, |
|
* (int)age, (int)delaymax, (int)agefin, ncvloop, |
|
* (int)age-(int)agefin); */ |
free_vector(min,1,nlstate); |
free_vector(min,1,nlstate); |
free_vector(max,1,nlstate); |
free_vector(max,1,nlstate); |
free_vector(meandiff,1,nlstate); |
free_vector(meandiff,1,nlstate); |
Line 2194 Earliest age to start was %d-%d=%d, ncvl
|
Line 4771 Earliest age to start was %d-%d=%d, ncvl
|
|
|
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
/* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */ |
double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij) |
double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres) |
{ |
{ |
/* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit |
/* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
matrix by transitions matrix until convergence is reached with precision ftolpl */ |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
/* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */ |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
/* Wx is row vector: population in state 1, population in state 2, population dead */ |
Line 2216 Earliest age to start was %d-%d=%d, ncvl
|
Line 4793 Earliest age to start was %d-%d=%d, ncvl
|
/* 0.51326036147820708, 0.48673963852179264} */ |
/* 0.51326036147820708, 0.48673963852179264} */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
/* If we start from prlim again, prlim tends to a constant matrix */ |
|
|
int i, ii,j,k; |
int i, ii,j, k1; |
|
int first=0; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
double *min, *max, *meandiff, maxmax,sumnew=0.; |
/* double **matprod2(); */ /* test */ |
/* double **matprod2(); */ /* test */ |
double **out, cov[NCOVMAX+1], **bmij(); |
double **out, cov[NCOVMAX+1], **bmij(); |
Line 2231 Earliest age to start was %d-%d=%d, ncvl
|
Line 4809 Earliest age to start was %d-%d=%d, ncvl
|
max=vector(1,nlstate); |
max=vector(1,nlstate); |
meandiff=vector(1,nlstate); |
meandiff=vector(1,nlstate); |
|
|
dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms; |
dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms; |
oldm=oldms; savm=savms; |
oldm=oldms; savm=savms; |
|
|
/* Starting with matrix unity */ |
/* Starting with matrix unity */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
} |
} |
|
|
Line 2245 Earliest age to start was %d-%d=%d, ncvl
|
Line 4823 Earliest age to start was %d-%d=%d, ncvl
|
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
/* Even if hstepm = 1, at least one multiplication by the unit matrix */ |
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
/* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */ |
/* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
/* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */ |
/* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */ |
|
for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */ |
ncvloop++; |
ncvloop++; |
newm=savm; /* oldm should be kept from previous iteration or unity at start */ |
newm=savm; /* oldm should be kept from previous iteration or unity at start */ |
/* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */ |
/* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */ |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[2]=agefin; |
cov[2]=agefin; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agefin*agefin;; |
cov[3]= agefin*agefin;; |
for (k=1; k<=cptcovn;k++) { |
} |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */ |
/* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); */ |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
} |
}else{ |
/*wrong? for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
cov[2+nagesqr+k1]=precov[nres][k1]; |
/* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]*cov[2]; */ |
} |
for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; |
}/* End of loop on model equation */ |
for (k=1; k<=cptcovprod;k++) /* Useless */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
/* Old code */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; |
|
|
/* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */ |
|
/* /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; */ |
|
/* /\* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */ |
|
/* } */ |
|
/* /\* for (k=1; k<=cptcovn;k++) { *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */ |
|
/* /\* /\\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\\/ *\/ */ |
|
/* /\* } *\/ */ |
|
/* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */ |
|
/* /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; */ |
|
/* /\* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* /\* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* /\* for (k=1; k<=cptcovprod;k++) /\\* Useless *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* For product with age *\/ */ |
|
/* /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age *\\/ ERROR ???*\/ */ |
|
/* if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
/* } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */ |
|
/* } */ |
|
/* /\* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */ |
|
/* /\* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
|
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
/*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/ |
Line 2278 Earliest age to start was %d-%d=%d, ncvl
|
Line 4901 Earliest age to start was %d-%d=%d, ncvl
|
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
/* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */ |
|
/* if((int)age == 86 || (int)age == 87){ */ |
|
/* printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */ |
|
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
|
/* printf("%d newm= ",i); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",newm[i][j]); */ |
|
/* } */ |
|
/* printf("oldm * "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",oldm[i][j]); */ |
|
/* } */ |
|
/* printf(" bmmij "); */ |
|
/* for(j=1;j<=nlstate+ndeath;j++) { */ |
|
/* printf("%f ",pmmij[i][j]); */ |
|
/* } */ |
|
/* printf("\n"); */ |
|
/* } */ |
|
/* } */ |
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
|
|
for(j=1; j<=nlstate; j++){ |
for(j=1; j<=nlstate; j++){ |
max[j]=0.; |
max[j]=0.; |
min[j]=1.; |
min[j]=1.; |
} |
} |
for(j=1; j<=nlstate; j++){ |
for(j=1; j<=nlstate; j++){ |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
/* bprlim[i][j]= newm[i][j]/(1-sumnew); */ |
/* bprlim[i][j]= newm[i][j]/(1-sumnew); */ |
bprlim[i][j]= newm[i][j]; |
bprlim[i][j]= newm[i][j]; |
max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */ |
max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */ |
min[i]=FMIN(min[i],bprlim[i][j]); |
min[i]=FMIN(min[i],bprlim[i][j]); |
} |
} |
} |
} |
|
|
maxmax=0.; |
maxmax=0.; |
for(i=1; i<=nlstate; i++){ |
for(i=1; i<=nlstate; i++){ |
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */ |
meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column, could be nan! */ |
maxmax=FMAX(maxmax,meandiff[i]); |
maxmax=FMAX(maxmax,meandiff[i]); |
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
/* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */ |
} /* j loop */ |
} /* i loop */ |
*ncvyear= -( (int)age- (int)agefin); |
*ncvyear= -( (int)age- (int)agefin); |
/* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/ |
/* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
if(maxmax < ftolpl){ |
if(maxmax < ftolpl){ |
/* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
/* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */ |
free_vector(min,1,nlstate); |
free_vector(min,1,nlstate); |
Line 2308 Earliest age to start was %d-%d=%d, ncvl
|
Line 4950 Earliest age to start was %d-%d=%d, ncvl
|
free_vector(meandiff,1,nlstate); |
free_vector(meandiff,1,nlstate); |
return bprlim; |
return bprlim; |
} |
} |
} /* age loop */ |
} /* agefin loop */ |
/* After some age loop it doesn't converge */ |
/* After some age loop it doesn't converge */ |
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
if(!first){ |
|
first=1; |
|
printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\ |
|
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
|
} |
|
fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\ |
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear); |
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
/* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */ |
free_vector(min,1,nlstate); |
free_vector(min,1,nlstate); |
Line 2325 Oldest age to start was %d-%d=%d, ncvloo
|
Line 4972 Oldest age to start was %d-%d=%d, ncvloo
|
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate ) |
{ |
{ |
/* According to parameters values stored in x and the covariate's values stored in cov, |
/* According to parameters values stored in x and the covariate's values stored in cov, |
computes the probability to be observed in state j being in state i by appying the |
computes the probability to be observed in state j (after stepm years) being in state i by appying the |
model to the ncovmodel covariates (including constant and age). |
model to the ncovmodel covariates (including constant and age). |
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc] |
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
and, according on how parameters are entered, the position of the coefficient xij(nc) of the |
Line 2334 double **pmij(double **ps, double *cov,
|
Line 4981 double **pmij(double **ps, double *cov,
|
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel |
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation, |
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
sums on j different of i to get 1-pii/pii, deduces pii, and then all pij. |
Outputs ps[i][j] the probability to be observed in j being in j according to |
Outputs ps[i][j] or probability to be observed in j being in i according to |
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij] |
|
Sum on j ps[i][j] should equal to 1. |
*/ |
*/ |
double s1, lnpijopii; |
double s1, lnpijopii; |
/*double t34;*/ |
/*double t34;*/ |
Line 2349 double **pmij(double **ps, double *cov,
|
Line 4997 double **pmij(double **ps, double *cov,
|
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */ |
} |
} |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
Line 2358 double **pmij(double **ps, double *cov,
|
Line 5006 double **pmij(double **ps, double *cov,
|
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
|
/* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */ |
} |
} |
} |
} |
|
|
for(i=1; i<= nlstate; i++){ |
for(i=1; i<= nlstate; i++){ |
s1=0; |
s1=0; |
for(j=1; j<i; j++){ |
for(j=1; j<i; j++){ |
|
/* printf("debug1 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
} |
for(j=i+1; j<=nlstate+ndeath; j++){ |
for(j=i+1; j<=nlstate+ndeath; j++){ |
|
/* printf("debug2 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
|
} |
} |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
ps[i][i]=1./(s1+1.); |
ps[i][i]=1./(s1+1.); |
/* Computing other pijs */ |
/* Computing other pijs */ |
for(j=1; j<i; j++) |
for(j=1; j<i; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i];/* Bug valgrind */ |
for(j=i+1; j<=nlstate+ndeath; j++) |
for(j=i+1; j<=nlstate+ndeath; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
Line 2387 double **pmij(double **ps, double *cov,
|
Line 5036 double **pmij(double **ps, double *cov,
|
ps[ii][ii]=1; |
ps[ii][ii]=1; |
} |
} |
} |
} |
|
|
|
|
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
Line 2399 double **pmij(double **ps, double *cov,
|
Line 5048 double **pmij(double **ps, double *cov,
|
/* |
/* |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
goto end;*/ |
goto end;*/ |
return ps; |
return ps; /* Pointer is unchanged since its call */ |
} |
} |
|
|
/*************** backward transition probabilities ***************/ |
/*************** backward transition probabilities ***************/ |
Line 2408 double **pmij(double **ps, double *cov,
|
Line 5057 double **pmij(double **ps, double *cov,
|
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
/* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */ |
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate, double ***prevacurrent, int ij ) |
{ |
{ |
/* Computes the backward probability at age agefin and covariate ij |
/* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too. |
* and returns in **ps as well as **bmij. |
* Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij. |
*/ |
*/ |
int i, ii, j,k; |
int ii, j; |
|
|
double **out, **pmij(); |
double **pmij(); |
double sumnew=0.; |
double sumnew=0.; |
double agefin; |
double agefin; |
|
double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */ |
double **dnewm, **dsavm, **doldm; |
double **dnewm, **dsavm, **doldm; |
double **bbmij; |
double **bbmij; |
|
|
doldm=ddoldms; /* global pointers */ |
doldm=ddoldms; /* global pointers */ |
dnewm=ddnewms; |
dnewm=ddnewms; |
dsavm=ddsavms; |
dsavm=ddsavms; |
|
|
|
/* Debug */ |
|
/* printf("Bmij ij=%d, cov[2}=%f\n", ij, cov[2]); */ |
agefin=cov[2]; |
agefin=cov[2]; |
|
/* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */ |
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
/* bmij *//* age is cov[2], ij is included in cov, but we need for |
the observed prevalence (with this covariate ij) */ |
the observed prevalence (with this covariate ij) at beginning of transition */ |
dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); |
/* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* We do have the matrix Px in savm and we need pij */ |
|
|
/* P_x */ |
|
pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm *//* Bug valgrind */ |
|
/* outputs pmmij which is a stochastic matrix in row */ |
|
|
|
/* Diag(w_x) */ |
|
/* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */ |
|
sumnew=0.; |
|
/*for (ii=1;ii<=nlstate+ndeath;ii++){*/ |
|
for (ii=1;ii<=nlstate;ii++){ /* Only on live states */ |
|
/* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */ |
|
sumnew+=prevacurrent[(int)agefin][ii][ij]; |
|
} |
|
if(sumnew >0.01){ /* At least some value in the prevalence */ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
for (j=1;j<=nlstate+ndeath;j++) |
|
doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0); |
|
} |
|
}else{ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
for (j=1;j<=nlstate+ndeath;j++) |
|
doldm[ii][j]=(ii==j ? 1./nlstate : 0.0); |
|
} |
|
/* if(sumnew <0.9){ */ |
|
/* printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */ |
|
/* } */ |
|
} |
|
k3=0.0; /* We put the last diagonal to 0 */ |
|
for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){ |
|
doldm[ii][ii]= k3; |
|
} |
|
/* End doldm, At the end doldm is diag[(w_i)] */ |
|
|
|
/* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */ |
|
bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */ |
|
|
|
/* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */ |
|
/* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */ |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
sumnew=0.; /* w1 p11 + w2 p21 only on live states */ |
sumnew=0.; |
for (ii=1;ii<=nlstate;ii++){ |
for (ii=1;ii<=nlstate;ii++){ |
sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; |
/* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */ |
|
sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */ |
} /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */ |
} /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */ |
for (ii=1;ii<=nlstate+ndeath;ii++){ |
for (ii=1;ii<=nlstate+ndeath;ii++){ |
if(sumnew >= 1.e-10){ |
|
/* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */ |
/* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */ |
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* }else if(agefin >= agemaxpar+stepm/YEARM){ */ |
/* }else if(agefin >= agemaxpar+stepm/YEARM){ */ |
/* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */ |
/* }else */ |
/* }else */ |
doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); |
}else{ |
|
printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin); |
|
} |
|
} /*End ii */ |
} /*End ii */ |
} /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */ |
} /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */ |
/* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */ |
|
bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */ |
ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */ |
/* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */ |
/* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
/* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
|
/* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */ |
|
/* left Product of this matrix by diag matrix of prevalences (savm) */ |
|
for (j=1;j<=nlstate+ndeath;j++){ |
|
for (ii=1;ii<=nlstate+ndeath;ii++){ |
|
dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0); |
|
} |
|
} /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */ |
|
ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */ |
|
/* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */ |
|
/* end bmij */ |
/* end bmij */ |
return ps; |
return ps; /*pointer is unchanged */ |
} |
} |
/*************** transition probabilities ***************/ |
/*************** transition probabilities ***************/ |
|
|
Line 2484 double **bpmij(double **ps, double *cov,
|
Line 5160 double **bpmij(double **ps, double *cov,
|
/*double t34;*/ |
/*double t34;*/ |
int i,j, nc, ii, jj; |
int i,j, nc, ii, jj; |
|
|
for(i=1; i<= nlstate; i++){ |
for(i=1; i<= nlstate; i++){ |
for(j=1; j<i;j++){ |
for(j=1; j<i;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
/*lnpijopii += param[i][j][nc]*cov[nc];*/ |
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc]; |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
/* printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */ |
} |
} |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for(j=i+1; j<=nlstate+ndeath;j++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){ |
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
/*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/ |
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc]; |
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
/* printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */ |
} |
} |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */ |
} |
} |
} |
} |
|
|
for(i=1; i<= nlstate; i++){ |
for(i=1; i<= nlstate; i++){ |
s1=0; |
s1=0; |
for(j=1; j<i; j++){ |
for(j=1; j<i; j++){ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
/*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
} |
} |
for(j=i+1; j<=nlstate+ndeath; j++){ |
for(j=i+1; j<=nlstate+ndeath; j++){ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
s1+=exp(ps[i][j]); /* In fact sums pij/pii */ |
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
/*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */ |
} |
} |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
/* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */ |
ps[i][i]=1./(s1+1.); |
ps[i][i]=1./(s1+1.); |
/* Computing other pijs */ |
/* Computing other pijs */ |
for(j=1; j<i; j++) |
for(j=1; j<i; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
for(j=i+1; j<=nlstate+ndeath; j++) |
for(j=i+1; j<=nlstate+ndeath; j++) |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
ps[i][j]= exp(ps[i][j])*ps[i][i]; |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
/* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */ |
} /* end i */ |
} /* end i */ |
|
|
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
ps[ii][jj]=0; |
ps[ii][jj]=0; |
ps[ii][ii]=1; |
ps[ii][ii]=1; |
} |
} |
} |
} |
/* Added for backcast */ /* Transposed matrix too */ |
/* Added for prevbcast */ /* Transposed matrix too */ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
s1=0.; |
s1=0.; |
for(ii=1; ii<= nlstate+ndeath; ii++){ |
for(ii=1; ii<= nlstate+ndeath; ii++){ |
s1+=ps[ii][jj]; |
s1+=ps[ii][jj]; |
} |
} |
for(ii=1; ii<= nlstate; ii++){ |
for(ii=1; ii<= nlstate; ii++){ |
ps[ii][jj]=ps[ii][jj]/s1; |
ps[ii][jj]=ps[ii][jj]/s1; |
} |
} |
} |
} |
/* Transposition */ |
/* Transposition */ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(jj=1; jj<= nlstate+ndeath; jj++){ |
for(ii=jj; ii<= nlstate+ndeath; ii++){ |
for(ii=jj; ii<= nlstate+ndeath; ii++){ |
s1=ps[ii][jj]; |
s1=ps[ii][jj]; |
ps[ii][jj]=ps[jj][ii]; |
ps[ii][jj]=ps[jj][ii]; |
ps[jj][ii]=s1; |
ps[jj][ii]=s1; |
} |
} |
} |
} |
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(ii=1; ii<= nlstate+ndeath; ii++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* for(jj=1; jj<= nlstate+ndeath; jj++){ */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
/* printf(" pmij ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */ |
/* } */ |
/* } */ |
/* printf("\n "); */ |
/* printf("\n "); */ |
/* } */ |
/* } */ |
/* printf("\n ");printf("%lf ",cov[2]);*/ |
/* printf("\n ");printf("%lf ",cov[2]);*/ |
/* |
/* |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
for(i=1; i<= npar; i++) printf("%f ",x[i]); |
goto end;*/ |
goto end;*/ |
return ps; |
return ps; |
} |
} |
|
|
|
|
Line 2584 double **matprod2(double **out, double *
|
Line 5260 double **matprod2(double **out, double *
|
|
|
/************* Higher Matrix Product ***************/ |
/************* Higher Matrix Product ***************/ |
|
|
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres ) |
{ |
{ |
/* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over |
/* Already optimized with precov. |
|
Computes the transition matrix starting at age 'age' and dummies values in each resultline (loop on ij to find the corresponding combination) to over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. |
nhstepm*hstepm matrices. |
Line 2598 double ***hpxij(double ***po, int nhstep
|
Line 5275 double ***hpxij(double ***po, int nhstep
|
|
|
*/ |
*/ |
|
|
int i, j, d, h, k; |
int i, j, d, h, k1; |
double **out, cov[NCOVMAX+1]; |
double **out, cov[NCOVMAX+1]; |
double **newm; |
double **newm; |
double agexact; |
double agexact; |
double agebegin, ageend; |
/*double agebegin, ageend;*/ |
|
|
/* Hstepm could be zero and should return the unit matrix */ |
/* Hstepm could be zero and should return the unit matrix */ |
for (i=1;i<=nlstate+ndeath;i++) |
for (i=1;i<=nlstate+ndeath;i++) |
Line 2618 double ***hpxij(double ***po, int nhstep
|
Line 5295 double ***hpxij(double ***po, int nhstep
|
cov[1]=1.; |
cov[1]=1.; |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=cptcovn;k++) |
} |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
/* Model(2) V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
/* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */ |
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */ |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
}else{ |
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
cov[2+nagesqr+k1]=precov[nres][k1]; |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
} |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
}/* End of loop on model equation */ |
|
/* Old code */ |
|
/* if( Dummy[k1]==0 && Typevar[k1]==0 ){ /\* Single dummy *\/ */ |
|
/* /\* V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) *\/ */ |
|
/* /\* for (k=1; k<=nsd;k++) { /\\* For single dummy covariates only *\\/ *\/ */ |
|
/* /\* /\\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\\/ *\/ */ |
|
/* /\* codtabm(ij,k) (1 & (ij-1) >> (k-1))+1 *\/ */ |
|
/* /\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
|
/* /\* k 1 2 3 4 5 6 7 8 9 *\/ */ |
|
/* /\*Tvar[k]= 5 4 3 6 5 2 7 1 1 *\/ */ |
|
/* /\* nsd 1 2 3 *\/ /\* Counting single dummies covar fixed or tv *\/ */ |
|
/* /\*TvarsD[nsd] 4 3 1 *\/ /\* ID of single dummy cova fixed or timevary*\/ */ |
|
/* /\*TvarsDind[k] 2 3 9 *\/ /\* position K of single dummy cova *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];or [codtabm(ij,TnsdVar[TvarsD[k]] *\/ */ |
|
/* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */ |
|
/* /\* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,TnsdVar[TvarsD[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,TnsdVar[TvarsD[k]])); *\/ */ |
|
/* printf("hpxij Dummy combi=%d k1=%d Tvar[%d]=V%d cov[2+%d+%d]=%lf resultmodel[nres][%d]=%d nres/nresult=%d/%d \n",ij,k1,k1, Tvar[k1],nagesqr,k1,cov[2+nagesqr+k1],k1,resultmodel[nres][k1],nres,nresult); */ |
|
/* printf("hpxij new Dummy precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */ |
|
/* }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /\* Single quantitative variables *\/ */ |
|
/* /\* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline *\/ */ |
|
/* cov[2+nagesqr+k1]=Tqresult[nres][resultmodel[nres][k1]]; */ |
|
/* /\* for (k=1; k<=nsq;k++) { /\\* For single varying covariates only *\\/ *\/ */ |
|
/* /\* /\\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */ |
|
/* printf("hPxij Quantitative k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */ |
|
/* printf("hpxij new Quanti precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */ |
|
/* }else if( Dummy[k1]==2 ){ /\* For dummy with age product *\/ */ |
|
/* /\* Tvar[k1] Variable in the age product age*V1 is 1 *\/ */ |
|
/* /\* [Tinvresult[nres][V1] is its value in the resultline nres *\/ */ |
|
/* cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvar[k1]]*cov[2]; */ |
|
/* printf("DhPxij Dummy with age k1=%d Tvar[%d]=%d TinvDoQresult[nres=%d][%d]=%.f age=%.2f,cov[2+%d+%d]=%.3f\n",k1,k1,Tvar[k1],nres,TinvDoQresult[nres][Tvar[k1]],cov[2],nagesqr,k1,cov[2+nagesqr+k1]); */ |
|
/* printf("hpxij new Dummy with age product precov[nres=%d][k1=%d]=%.4f * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */ |
|
|
|
/* /\* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; *\/ */ |
|
/* /\* for (k=1; k<=cptcovage;k++){ /\\* For product with age V1+V1*age +V4 +age*V3 *\\/ *\/ */ |
|
/* /\* 1+2 Tage[1]=2 TVar[2]=1 Dummy[2]=2, Tage[2]=4 TVar[4]=3 Dummy[4]=3 quant*\/ */ |
|
/* /\* *\/ */ |
|
/* /\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */ |
|
/* /\* k 1 2 3 4 5 6 7 8 9 *\/ */ |
|
/* /\*Tvar[k]= 5 4 3 6 5 2 7 1 1 *\/ */ |
|
/* /\*cptcovage=2 1 2 *\/ */ |
|
/* /\*Tage[k]= 5 8 *\/ */ |
|
/* }else if( Dummy[k1]==3 ){ /\* For quant with age product *\/ */ |
|
/* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */ |
|
/* printf("QhPxij Quant with age k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */ |
|
/* printf("hpxij new Quanti with age product precov[nres=%d][k1=%d] * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */ |
|
/* /\* if(Dummy[Tage[k]]== 2){ /\\* dummy with age *\\/ *\/ */ |
|
/* /\* /\\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\\* dummy with age *\\\/ *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\/ */ |
|
/* /\* printf("hPxij Age combi=%d k=%d cptcovage=%d Tage[%d]=%d Tvar[Tage[%d]]=V%d nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]]])]=%d nres=%d\n",ij,k,cptcovage,k,Tage[k],k,Tvar[Tage[k]], nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]])],nres); *\/ */ |
|
/* /\* } else if(Dummy[Tage[k]]== 3){ /\\* quantitative with age *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* printf("hPxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* }else if(Typevar[k1]==2 ){ /\* For product (not with age) *\/ */ |
|
/* /\* for (k=1; k<=cptcovprod;k++){ /\\* For product without age *\\/ *\/ */ |
|
/* /\* /\\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\\/ *\/ */ |
|
/* /\* /\\* k 1 2 3 4 5 6 7 8 9 *\\/ *\/ */ |
|
/* /\* /\\*Tvar[k]= 5 4 3 6 5 2 7 1 1 *\\/ *\/ */ |
|
/* /\* /\\*cptcovprod=1 1 2 *\\/ *\/ */ |
|
/* /\* /\\*Tprod[]= 4 7 *\\/ *\/ */ |
|
/* /\* /\\*Tvard[][1] 4 1 *\\/ *\/ */ |
|
/* /\* /\\*Tvard[][2] 3 2 *\\/ *\/ */ |
|
|
|
/* /\* printf("hPxij Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]=%d nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]=%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2],nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])],nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]); *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; */ |
|
/* printf("hPxij Prod ij=%d k1=%d cov[2+%d+%d]=%.5f Tvard[%d][1]=V%d * Tvard[%d][2]=V%d ; TinvDoQresult[nres][Tvardk[k1][1]]=%.4f * TinvDoQresult[nres][Tvardk[k1][1]]=%.4f\n",ij,k1,nagesqr,k1,cov[2+nagesqr+k1],k1,Tvardk[k1][1], k1,Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][1]], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
/* printf("hpxij new Product no age product precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */ |
|
|
|
/* /\* if(Dummy[Tvardk[k1][1]]==0){ *\/ */ |
|
/* /\* if(Dummy[Tvardk[k1][2]]==0){ /\\* Product of dummies *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tinvresult[nres][Tvardk[k1][1]] * Tinvresult[nres][Tvardk[k1][2]]; *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])]; *\/ */ |
|
/* /\* }else{ /\\* Product of dummy by quantitative *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * Tqresult[nres][k]; *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]; *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* }else{ /\\* Product of quantitative by...*\\/ *\/ */ |
|
/* /\* if(Dummy[Tvard[k][2]]==0){ /\\* quant by dummy *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][Tvard[k][1]]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tresult[nres][Tinvresult[nres][Tvardk[k1][2]]] ; *\/ */ |
|
/* /\* }else{ /\\* Product of two quant *\\/ *\/ */ |
|
/* /\* /\\* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; *\\/ *\/ */ |
|
/* /\* cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]] ; *\/ */ |
|
/* /\* } *\/ */ |
|
/* /\* }/\\*end of products quantitative *\\/ *\/ */ |
|
/* }/\*end of products *\/ */ |
|
/* } /\* End of loop on model equation *\/ */ |
|
/* for (k=1; k<=cptcovn;k++) */ |
|
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */ |
|
/* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */ |
|
/* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */ |
|
|
|
|
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/* right multiplication of oldm by the current matrix */ |
/* right multiplication of oldm by the current matrix */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
pmij(pmmij,cov,ncovmodel,x,nlstate)); |
/* if((int)age == 70){ */ |
/* if((int)age == 70){ */ |
Line 2656 double ***hpxij(double ***po, int nhstep
|
Line 5430 double ***hpxij(double ***po, int nhstep
|
} |
} |
for(i=1; i<=nlstate+ndeath; i++) |
for(i=1; i<=nlstate+ndeath; i++) |
for(j=1;j<=nlstate+ndeath;j++) { |
for(j=1;j<=nlstate+ndeath;j++) { |
po[i][j][h]=newm[i][j]; |
po[i][j][h]=newm[i][j]; |
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
} |
} |
/*printf("h=%d ",h);*/ |
/*printf("h=%d ",h);*/ |
} /* end h */ |
} /* end h */ |
/* printf("\n H=%d \n",h); */ |
/* printf("\n H=%d \n",h); */ |
return po; |
return po; |
} |
} |
|
|
/************* Higher Back Matrix Product ***************/ |
/************* Higher Back Matrix Product ***************/ |
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
/* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */ |
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij ) |
double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres ) |
{ |
{ |
/* Computes the transition matrix starting at age 'age' over |
/* For dummy covariates given in each resultline (for historical, computes the corresponding combination ij), |
|
computes the transition matrix starting at age 'age' over |
'nhstepm*hstepm*stepm' months (i.e. until |
'nhstepm*hstepm*stepm' months (i.e. until |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
nhstepm*hstepm matrices. |
nhstepm*hstepm matrices. |
Line 2677 double ***hbxij(double ***po, int nhstep
|
Line 5452 double ***hbxij(double ***po, int nhstep
|
(typically every 2 years instead of every month which is too big |
(typically every 2 years instead of every month which is too big |
for the memory). |
for the memory). |
Model is determined by parameters x and covariates have to be |
Model is determined by parameters x and covariates have to be |
included manually here. |
included manually here. Then we use a call to bmij(x and cov) |
|
The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output |
*/ |
*/ |
|
|
int i, j, d, h, k; |
int i, j, d, h, k1; |
double **out, cov[NCOVMAX+1]; |
double **out, cov[NCOVMAX+1], **bmij(); |
double **newm; |
double **newm, ***newmm; |
double agexact; |
double agexact; |
double agebegin, ageend; |
/*double agebegin, ageend;*/ |
double **oldm, **savm; |
double **oldm, **savm; |
|
|
oldm=oldms;savm=savms; |
newmm=po; /* To be saved */ |
|
oldm=oldms;savm=savms; /* Global pointers */ |
/* Hstepm could be zero and should return the unit matrix */ |
/* Hstepm could be zero and should return the unit matrix */ |
for (i=1;i<=nlstate+ndeath;i++) |
for (i=1;i<=nlstate+ndeath;i++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
Line 2701 double ***hbxij(double ***po, int nhstep
|
Line 5477 double ***hbxij(double ***po, int nhstep
|
newm=savm; |
newm=savm; |
/* Covariates have to be included here again */ |
/* Covariates have to be included here again */ |
cov[1]=1.; |
cov[1]=1.; |
agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */ |
agexact=age-( (h-1)*hstepm + (d) )*stepm/YEARM; /* age just before transition, d or d-1? */ |
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
/* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */ |
|
/* Debug */ |
|
/* printf("hBxij age=%lf, agexact=%lf\n", age, agexact); */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1){ |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (k=1; k<=cptcovn;k++) |
} |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; |
/** New code */ |
/* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */ |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */ |
if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */ |
/* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
}else{ |
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
cov[2+nagesqr+k1]=precov[nres][k1]; |
for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */ |
} |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
}/* End of loop on model equation */ |
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
/** End of new code */ |
|
/** This was old code */ |
|
/* for (k=1; k<=nsd;k++){ /\* For single dummy covariates only *\//\* cptcovn error *\/ */ |
/*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/ |
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */ |
/*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/ |
/* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */ |
|
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])];/\* Bug valgrind *\/ */ |
|
/* /\* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */ |
|
/* /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; */ |
|
/* /\* printf("hPxij Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* Should start at cptcovn+1 *\//\* For product with age *\/ */ |
|
/* /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age error!!!*\\/ *\/ */ |
|
/* if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */ |
|
/* } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */ |
|
/* } */ |
|
/* /\* printf("hBxij Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){ /\* Useless because included in cptcovn *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; */ |
|
/* } */ |
|
/* } */ |
|
/* } */ |
|
/* /\*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*\/ */ |
|
/* /\*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*\/ */ |
|
/** End of old code */ |
|
|
/* Careful transposed matrix */ |
/* Careful transposed matrix */ |
/* age is in cov[2] */ |
/* age is in cov[2], prevacurrent at beginning of transition. */ |
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
/* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */ |
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
/* 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */ |
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\ |
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); |
1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);/* Bug valgrind */ |
/* if((int)age == 70){ */ |
/* if((int)age == 70){ */ |
/* printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
/* printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */ |
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
/* for(i=1; i<=nlstate+ndeath; i++) { */ |
Line 2746 double ***hbxij(double ***po, int nhstep
|
Line 5561 double ***hbxij(double ***po, int nhstep
|
for(i=1; i<=nlstate+ndeath; i++) |
for(i=1; i<=nlstate+ndeath; i++) |
for(j=1;j<=nlstate+ndeath;j++) { |
for(j=1;j<=nlstate+ndeath;j++) { |
po[i][j][h]=newm[i][j]; |
po[i][j][h]=newm[i][j]; |
/*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/ |
/* if(h==nhstepm) */ |
|
/* printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */ |
} |
} |
/*printf("h=%d ",h);*/ |
/* printf("h=%d %.1f ",h, agexact); */ |
} /* end h */ |
} /* end h */ |
/* printf("\n H=%d \n",h); */ |
/* printf("\n H=%d nhs=%d \n",h, nhstepm); */ |
return po; |
return po; |
} |
} |
|
|
Line 2778 double ***hbxij(double ***po, int nhstep
|
Line 5594 double ***hbxij(double ***po, int nhstep
|
/*************** log-likelihood *************/ |
/*************** log-likelihood *************/ |
double func( double *x) |
double func( double *x) |
{ |
{ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kk, kf=0; |
int ioffset; |
int ioffset=0; |
|
int ipos=0,iposold=0,ncovv=0; |
|
|
|
double cotvarv, cotvarvold; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double sw; /* Sum of weights */ |
|
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
int s1, s2; |
int s1, s2; |
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate */ |
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
|
|
double bbh, survp; |
double bbh, survp; |
long ipmx; |
|
double agexact; |
double agexact; |
|
double agebegin, ageend; |
/*extern weight */ |
/*extern weight */ |
/* We are differentiating ll according to initial status */ |
/* We are differentiating ll according to initial status */ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/ |
Line 2801 double func( double *x)
|
Line 5620 double func( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
|
ioffset=0; |
if(mle==1){ |
if(mle==1){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
/* Computes the values of the ncovmodel covariates of the model |
/* Computes the values of the ncovmodel covariates of the model |
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
to be observed in j being in i according to the model. |
to be observed in j being in i according to the model. |
*/ |
*/ |
ioffset=2+nagesqr; |
ioffset=2+nagesqr ; |
for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */ |
/* Fixed */ |
cov[++ioffset]=covar[Tvar[k]][i]; |
for (kf=1; kf<=ncovf;kf++){ /* For each fixed covariate dummy or quant or prod */ |
} |
/* # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi */ |
for(iqv=1; iqv <= nqv; iqv++){ /* Varying quantitatives covariates */ |
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
/* cov[2+nagesqr+cptcovn+iqv]=varq[mw[mi+1][i]][iqv][i]; */ |
/* TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 ID of fixed covariates or product V2, V1*V2, V1 */ |
|
/* TvarFind; TvarFind[1]=6, TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod) */ |
|
cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (TvarFind[1]=6)*/ |
|
/* V1*V2 (7) TvarFind[2]=7, TvarFind[3]=9 */ |
} |
} |
|
|
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] |
is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 |
has been calculated etc */ |
has been calculated etc */ |
/* For an individual i, wav[i] gives the number of effective waves */ |
/* For an individual i, wav[i] gives the number of effective waves */ |
/* We compute the contribution to Likelihood of each effective transition |
/* We compute the contribution to Likelihood of each effective transition |
mw[mi][i] is real wave of the mi th effectve wave */ |
mw[mi][i] is real wave of the mi th effectve wave */ |
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] |
And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] because now is moved after nvocol+nqv |
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
But if the variable is not in the model TTvar[iv] is the real variable effective in the model: |
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] |
*/ |
*/ |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
for(itv=1; itv <= ntv; itv++){ /* Varying dummy covariates */ |
/* Wave varying (but not age varying) */ |
cov[++ioffset]=cotvar[mw[mi+1][i]][itv][i]; |
/* for(k=1; k <= ncovv ; k++){ /\* Varying covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3) Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*\/ */ |
} |
/* /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? *\/ */ |
for(iqtv=1; iqtv <= nqtv; iqtv++){ /* Varying quantitatives covariates */ |
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */ |
/* cov[2+nagesqr+cptcovn+nqv+ntv+iqtv]=varq[mw[mi+1][i]][iqtv][i]; */ |
/* } */ |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age )*/ |
|
itv=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate */ |
|
cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i]; /* cotvar[wav][ncovcol+nqv+iv][i] */ |
|
}else{ /* fixed covariate */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
cov[ioffset+ipos]=cotvarv; |
} |
} |
ioffset=2+nagesqr+cptcovn+nqv+ntv+nqtv; |
/* for products of time varying to be done */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
savm[ii][j]=(ii==j ? 1.0 : 0.0); |
} |
} |
|
|
|
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
|
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
for(d=0; d<dh[mi][i]; d++){ |
for(d=0; d<dh[mi][i]; d++){ |
newm=savm; |
newm=savm; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; /* Should be changed here */ |
cov[3]= agexact*agexact; /* Should be changed here */ |
for (kk=1; kk<=cptcovage;kk++) { |
/* for (kk=1; kk<=cptcovage;kk++) { */ |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
/* if(!FixedV[Tvar[Tage[kk]]]) */ |
|
/* cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /\* Tage[kk] gives the data-covariate associated with age *\/ */ |
|
/* else */ |
|
/* cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/ */ |
|
/* } */ |
|
for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying covariates with age including individual from products, product is computed dynamically */ |
|
itv=TvarAVVA[ncovva]; /* TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm */ |
|
ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */ |
|
cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i]; /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ |
|
}else{ /* fixed covariate */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
cov[ioffset+ipos]=cotvarv*agexact; |
|
/* For products */ |
} |
} |
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
} /* end mult */ |
} /* end mult */ |
|
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
/* But now since version 0.9 we anticipate for bias at large stepm. |
/* But now since version 0.9 we anticipate for bias at large stepm. |
* If stepm is larger than one month (smallest stepm) and if the exact delay |
* If stepm is larger than one month (smallest stepm) and if the exact delay |
Line 2865 double func( double *x)
|
Line 5725 double func( double *x)
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
* probability in order to take into account the bias as a fraction of the way |
* probability in order to take into account the bias as a fraction of the way |
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
* -stepm/2 to stepm/2 . |
* -stepm/2 to stepm/2 . |
* For stepm=1 the results are the same as for previous versions of Imach. |
* For stepm=1 the results are the same as for previous versions of Imach. |
* For stepm > 1 the results are less biased than in previous versions. |
* For stepm > 1 the results are less biased than in previous versions. |
*/ |
*/ |
s1=s[mw[mi][i]][i]; |
s1=s[mw[mi][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
bbh=(double)bh[mi][i]/(double)stepm; |
bbh=(double)bh[mi][i]/(double)stepm; |
Line 2884 double func( double *x)
|
Line 5744 double func( double *x)
|
which is also equal to probability to die before dh |
which is also equal to probability to die before dh |
minus probability to die before dh-stepm . |
minus probability to die before dh-stepm . |
In version up to 0.92 likelihood was computed |
In version up to 0.92 likelihood was computed |
as if date of death was unknown. Death was treated as any other |
as if date of death was unknown. Death was treated as any other |
health state: the date of the interview describes the actual state |
health state: the date of the interview describes the actual state |
and not the date of a change in health state. The former idea was |
and not the date of a change in health state. The former idea was |
to consider that at each interview the state was recorded |
to consider that at each interview the state was recorded |
(healthy, disable or death) and IMaCh was corrected; but when we |
(healthy, disable or death) and IMaCh was corrected; but when we |
introduced the exact date of death then we should have modified |
introduced the exact date of death then we should have modified |
the contribution of an exact death to the likelihood. This new |
the contribution of an exact death to the likelihood. This new |
contribution is smaller and very dependent of the step unit |
contribution is smaller and very dependent of the step unit |
stepm. It is no more the probability to die between last interview |
stepm. It is no more the probability to die between last interview |
and month of death but the probability to survive from last |
and month of death but the probability to survive from last |
interview up to one month before death multiplied by the |
interview up to one month before death multiplied by the |
probability to die within a month. Thanks to Chris |
probability to die within a month. Thanks to Chris |
Jackson for correcting this bug. Former versions increased |
Jackson for correcting this bug. Former versions increased |
mortality artificially. The bad side is that we add another loop |
mortality artificially. The bad side is that we add another loop |
which slows down the processing. The difference can be up to 10% |
which slows down the processing. The difference can be up to 10% |
lower mortality. |
lower mortality. |
|
*/ |
|
/* If, at the beginning of the maximization mostly, the |
|
cumulative probability or probability to be dead is |
|
constant (ie = 1) over time d, the difference is equal to |
|
0. out[s1][3] = savm[s1][3]: probability, being at state |
|
s1 at precedent wave, to be dead a month before current |
|
wave is equal to probability, being at state s1 at |
|
precedent wave, to be dead at mont of the current |
|
wave. Then the observed probability (that this person died) |
|
is null according to current estimated parameter. In fact, |
|
it should be very low but not zero otherwise the log go to |
|
infinity. |
*/ |
*/ |
/* If, at the beginning of the maximization mostly, the |
|
cumulative probability or probability to be dead is |
|
constant (ie = 1) over time d, the difference is equal to |
|
0. out[s1][3] = savm[s1][3]: probability, being at state |
|
s1 at precedent wave, to be dead a month before current |
|
wave is equal to probability, being at state s1 at |
|
precedent wave, to be dead at mont of the current |
|
wave. Then the observed probability (that this person died) |
|
is null according to current estimated parameter. In fact, |
|
it should be very low but not zero otherwise the log go to |
|
infinity. |
|
*/ |
|
/* #ifdef INFINITYORIGINAL */ |
/* #ifdef INFINITYORIGINAL */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* lli=log(out[s1][s2] - savm[s1][s2]); */ |
/* #else */ |
/* #else */ |
Line 2929 double func( double *x)
|
Line 5789 double func( double *x)
|
/*survp += out[s1][j]; */ |
/*survp += out[s1][j]; */ |
lli= log(survp); |
lli= log(survp); |
} |
} |
else if (s2==-4) { |
/* else if (s2==-4) { */ |
for (j=3,survp=0. ; j<=nlstate; j++) |
/* for (j=3,survp=0. ; j<=nlstate; j++) */ |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
/* survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */ |
lli= log(survp); |
/* lli= log(survp); */ |
} |
/* } */ |
else if (s2==-5) { |
/* else if (s2==-5) { */ |
for (j=1,survp=0. ; j<=2; j++) |
/* for (j=1,survp=0. ; j<=2; j++) */ |
survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; |
/* survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */ |
lli= log(survp); |
/* lli= log(survp); */ |
} |
/* } */ |
else{ |
else{ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
/* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ |
} |
} |
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ |
/*if(lli ==000.0)*/ |
/*if(lli ==000.0)*/ |
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
/* printf("num[i], i=%d, bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ |
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/* if (lli < log(mytinydouble)){ */ |
/* if (lli < log(mytinydouble)){ */ |
Line 2957 double func( double *x)
|
Line 5817 double func( double *x)
|
} /* end of individual */ |
} /* end of individual */ |
} else if(mle==2){ |
} else if(mle==2){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
ioffset=2+nagesqr ; |
|
for (k=1; k<=ncovf;k++) |
|
cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i]; |
for(mi=1; mi<= wav[i]-1; mi++){ |
for(mi=1; mi<= wav[i]-1; mi++){ |
|
for(k=1; k <= ncovv ; k++){ |
|
cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
|
} |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 3004 double func( double *x)
|
Line 5869 double func( double *x)
|
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
if(!FixedV[Tvar[Tage[kk]]]) |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
} |
} |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
Line 3060 double func( double *x)
|
Line 5928 double func( double *x)
|
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/* printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
/* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ |
} /* end of wave */ |
} /* end of wave */ |
} /* end of individual */ |
} /* end of individual */ |
}else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ |
}else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ |
Line 3079 double func( double *x)
|
Line 5947 double func( double *x)
|
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for (kk=1; kk<=cptcovage;kk++) { |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
if(!FixedV[Tvar[Tage[kk]]]) |
|
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ |
|
else |
|
cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
} |
} |
|
|
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
Line 3107 double func( double *x)
|
Line 5978 double func( double *x)
|
/*************** log-likelihood *************/ |
/*************** log-likelihood *************/ |
double funcone( double *x) |
double funcone( double *x) |
{ |
{ |
/* Same as likeli but slower because of a lot of printf and if */ |
/* Same as func but slower because of a lot of printf and if */ |
int i, ii, j, k, mi, d, kk; |
int i, ii, j, k, mi, d, kv=0, kf=0; |
|
int ioffset=0; |
|
int ipos=0,iposold=0,ncovv=0; |
|
|
|
double cotvarv, cotvarvold; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; |
double **out; |
double **out; |
double lli; /* Individual log likelihood */ |
double lli; /* Individual log likelihood */ |
double llt; |
double llt; |
int s1, s2; |
int s1, s2; |
|
int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */ |
|
|
double bbh, survp; |
double bbh, survp; |
double agexact; |
double agexact; |
double agebegin, ageend; |
double agebegin, ageend; |
Line 3126 double funcone( double *x)
|
Line 6003 double funcone( double *x)
|
cov[1]=1.; |
cov[1]=1.; |
|
|
for(k=1; k<=nlstate; k++) ll[k]=0.; |
for(k=1; k<=nlstate; k++) ll[k]=0.; |
|
ioffset=0; |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; |
/* Computes the values of the ncovmodel covariates of the model |
for(mi=1; mi<= wav[i]-1; mi++){ |
depending if the covariates are fixed or varying (age dependent) and stores them in cov[] |
|
Then computes with function pmij which return a matrix p[i][j] giving the elementary probability |
|
to be observed in j being in i according to the model. |
|
*/ |
|
/* ioffset=2+nagesqr+cptcovage; */ |
|
ioffset=2+nagesqr; |
|
/* Fixed */ |
|
/* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ |
|
/* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ |
|
for (kf=1; kf<=ncovf;kf++){ /* V2 + V3 + V4 Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */ |
|
/* printf("Debug3 TvarFind[%d]=%d",kf, TvarFind[kf]); */ |
|
/* printf(" Tvar[TvarFind[kf]]=%d", Tvar[TvarFind[kf]]); */ |
|
/* printf(" i=%d covar[Tvar[TvarFind[kf]]][i]=%f\n",i,covar[Tvar[TvarFind[kf]]][i]); */ |
|
cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ |
|
/* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ |
|
/* cov[2+6]=covar[Tvar[6]][i]; */ |
|
/* cov[2+6]=covar[2][i]; V2 */ |
|
/* cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i]; */ |
|
/* cov[2+7]=covar[Tvar[7]][i]; */ |
|
/* cov[2+7]=covar[7][i]; V7=V1*V2 */ |
|
/* cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i]; */ |
|
/* cov[2+9]=covar[Tvar[9]][i]; */ |
|
/* cov[2+9]=covar[1][i]; V1 */ |
|
} |
|
/* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] |
|
is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 |
|
has been calculated etc */ |
|
/* For an individual i, wav[i] gives the number of effective waves */ |
|
/* We compute the contribution to Likelihood of each effective transition |
|
mw[mi][i] is real wave of the mi th effectve wave */ |
|
/* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; |
|
s2=s[mw[mi+1][i]][i]; |
|
And the iv th varying covariate in the DATA is the cotvar[mw[mi+1][i]][ncovcol+nqv+iv][i] |
|
*/ |
|
/* This part may be useless now because everythin should be in covar */ |
|
/* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ |
|
/* cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */ |
|
/* } */ |
|
/* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */ |
|
/* cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */ |
|
/* } */ |
|
|
|
|
|
for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ |
|
/* Wave varying (but not age varying) *//* V1+V3+age*V1+age*V3+V1*V3 with V4 tv and V5 tvq k= 1 to 5 and extra at V(5+1)=6 for V1*V3 */ |
|
/* for(k=1; k <= ncovv ; k++){ /\* Varying covariates (single and product but no age )*\/ */ |
|
/* /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; *\/ */ |
|
/* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */ |
|
/* } */ |
|
|
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
|
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
/* TvarVV[1]=V3 (first time varying in the model equation, TvarVV[2]=V1 (in V1*V3) TvarVV[3]=3(V3) */ |
|
/* We need the position of the time varying or product in the model */ |
|
/* TvarVVind={2,5,5}, for V3 at position 2 and then the product V1*V3 is decomposed into V1 and V3 but at same position 5 */ |
|
/* TvarVV gives the variable name */ |
|
/* Other example V1 + V3 + V5 + age*V1 + age*V3 + age*V5 + V1*V3 + V3*V5 + V1*V5 |
|
* k= 1 2 3 4 5 6 7 8 9 |
|
* varying 1 2 3 4 5 |
|
* ncovv 1 2 3 4 5 6 7 8 |
|
* TvarVV[ncovv] V3 5 1 3 3 5 1 5 |
|
* TvarVVind 2 3 7 7 8 8 9 9 |
|
* TvarFind[k] 1 0 0 0 0 0 0 0 0 |
|
*/ |
|
/* Other model ncovcol=5 nqv=0 ntv=3 nqtv=0 nlstate=3 |
|
* V2 V3 V4 are fixed V6 V7 are timevarying so V8 and V5 are not in the model and product column will start at 9 Tvar[(v6*V2)6]=9 |
|
* FixedV[ncovcol+qv+ntv+nqtv] V5 |
|
* 3 V1 V2 V3 V4 V5 V6 V7 V8 V3*V2 V7*V2 V6*V3 V7*V3 V6*V4 V7*V4 |
|
* 0 0 0 0 0 1 1 1 0, 0, 1,1, 1, 0, 1, 0, 1, 0, 1, 0} |
|
* 3 0 0 0 0 0 1 1 1 0, 1 1 1 1 1} |
|
* model= V2 + V3 + V4 + V6 + V7 + V6*V2 + V7*V2 + V6*V3 + V7*V3 + V6*V4 + V7*V4 |
|
* +age*V2 +age*V3 +age*V4 +age*V6 + age*V7 |
|
* +age*V6*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* model2= V2 + V3 + V4 + V6 + V7 + V3*V2 + V7*V2 + V6*V3 + V7*V3 + V6*V4 + V7*V4 |
|
* +age*V2 +age*V3 +age*V4 +age*V6 + age*V7 |
|
* +age*V3*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* model3= V2 + V3 + V4 + V6 + V7 + age*V3*V2 + V7*V2 + V6*V3 + V7*V3 + V6*V4 + V7*V4 |
|
* +age*V2 +age*V3 +age*V4 +age*V6 + age*V7 |
|
* +V3*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* kmodel 1 2 3 4 5 6 7 8 9 10 11 |
|
* 12 13 14 15 16 |
|
* 17 18 19 20 21 |
|
* Tvar[kmodel] 2 3 4 6 7 9 10 11 12 13 14 |
|
* 2 3 4 6 7 |
|
* 9 11 12 13 14 |
|
* cptcovage=5+5 total of covariates with age |
|
* Tage[cptcovage] age*V2=12 13 14 15 16 |
|
*1 17 18 19 20 21 gives the position in model of covariates associated with age |
|
*3 Tage[cptcovage] age*V3*V2=6 |
|
*3 age*V2=12 13 14 15 16 |
|
*3 age*V6*V3=18 19 20 21 |
|
* Tvar[Tage[cptcovage]] Tvar[12]=2 3 4 6 Tvar[16]=7(age*V7) |
|
* Tvar[17]age*V6*V2=9 Tvar[18]age*V6*V3=11 age*V7*V3=12 age*V6*V4=13 Tvar[21]age*V7*V4=14 |
|
* 2 Tvar[17]age*V3*V2=9 Tvar[18]age*V6*V3=11 age*V7*V3=12 age*V6*V4=13 Tvar[21]age*V7*V4=14 |
|
* 3 Tvar[Tage[cptcovage]] Tvar[6]=9 Tvar[12]=2 3 4 6 Tvar[16]=7(age*V7) |
|
* 3 Tvar[18]age*V6*V3=11 age*V7*V3=12 age*V6*V4=13 Tvar[21]age*V7*V4=14 |
|
* 3 Tage[cptcovage] age*V3*V2=6 age*V2=12 age*V3 13 14 15 16 |
|
* age*V6*V3=18 19 20 21 gives the position in model of covariates associated with age |
|
* 3 Tvar[17]age*V3*V2=9 Tvar[18]age*V6*V3=11 age*V7*V3=12 age*V6*V4=13 Tvar[21]age*V7*V4=14 |
|
* Tvar= {2, 3, 4, 6, 7, |
|
* 9, 10, 11, 12, 13, 14, |
|
* Tvar[12]=2, 3, 4, 6, 7, |
|
* Tvar[17]=9, 11, 12, 13, 14} |
|
* Typevar[1]@21 = {0, 0, 0, 0, 0, |
|
* 2, 2, 2, 2, 2, 2, |
|
* 3 3, 2, 2, 2, 2, 2, |
|
* 1, 1, 1, 1, 1, |
|
* 3, 3, 3, 3, 3} |
|
* 3 2, 3, 3, 3, 3} |
|
* p Tposprod[1]@21 {0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 1, 3, 4, 5, 6} Id of the prod at position k in the model |
|
* p Tprod[1]@21 {6, 7, 8, 9, 10, 11, 0 <repeats 15 times>} |
|
* 3 Tposprod[1]@21 {0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 1, 3, 4, 5, 6} |
|
* 3 Tprod[1]@21 {17, 7, 8, 9, 10, 11, 0 <repeats 15 times>} |
|
* cptcovprod=11 (6+5) |
|
* FixedV[Tvar[Tage[cptcovage]]]] FixedV[2]=0 FixedV[3]=0 0 1 (age*V7)Tvar[16]=1 FixedV[absolute] not [kmodel] |
|
* FixedV[Tvar[17]=FixedV[age*V6*V2]=FixedV[9]=1 1 1 1 1 |
|
* 3 FixedV[Tvar[17]=FixedV[age*V3*V2]=FixedV[9]=0 [11]=1 1 1 1 |
|
* FixedV[] V1=0 V2=0 V3=0 v4=0 V5=0 V6=1 V7=1 v8=1 OK then model dependent |
|
* 9=1 [V7*V2]=[10]=1 11=1 12=1 13=1 14=1 |
|
* 3 9=0 [V7*V2]=[10]=1 11=1 12=1 13=1 14=1 |
|
* cptcovdageprod=5 for gnuplot printing |
|
* cptcovprodvage=6 |
|
* ncova=15 1 2 3 4 5 |
|
* 6 7 8 9 10 11 12 13 14 15 |
|
* TvarA 2 3 4 6 7 |
|
* 6 2 6 7 7 3 6 4 7 4 |
|
* TvaAind 12 12 13 13 14 14 15 15 16 16 |
|
* ncovf 1 2 3 |
|
* V6 V7 V6*V2 V7*V2 V6*V3 V7*V3 V6*V4 V7*V4 |
|
* ncovvt=14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
* TvarVV[1]@14 = itv {V6=6, 7, V6*V2=6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4} |
|
* TvarVVind[1]@14= {4, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11} |
|
* 3 ncovvt=12 V6 V7 V7*V2 V6*V3 V7*V3 V6*V4 V7*V4 |
|
* 3 TvarVV[1]@12 = itv {6, 7, V7*V2=7, 2, 6, 3, 7, 3, 6, 4, 7, 4} |
|
* 3 1 2 3 4 5 6 7 8 9 10 11 12 |
|
* TvarVVind[1]@12= {V6 is in k=4, 5, 7,(4isV2)=7, 8, 8, 9, 9, 10,10, 11,11}TvarVVind[12]=k=11 |
|
* TvarV 6, 7, 9, 10, 11, 12, 13, 14 |
|
* 3 cptcovprodvage=6 |
|
* 3 ncovta=15 +age*V3*V2+age*V2+agev3+ageV4 +age*V6 + age*V7 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* 3 TvarAVVA[1]@15= itva 3 2 2 3 4 6 7 6 3 7 3 6 4 7 4 |
|
* 3 ncovta 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
*?TvarAVVAind[1]@15= V3 is in k=2 1 1 2 3 4 5 4,2 5,2, 4,3 5 3}TvarVVAind[] |
|
* TvarAVVAind[1]@15= V3 is in k=6 6 12 13 14 15 16 18 18 19,19, 20,20 21,21}TvarVVAind[] |
|
* 3 ncovvta=10 +age*V6 + age*V7 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 |
|
* 3 we want to compute =cotvar[mw[mi][i]][TvarVVA[ncovva]][i] at position TvarVVAind[ncovva] |
|
* 3 TvarVVA[1]@10= itva 6 7 6 3 7 3 6 4 7 4 |
|
* 3 ncovva 1 2 3 4 5 6 7 8 9 10 |
|
* TvarVVAind[1]@10= V6 is in k=4 5 8,8 9, 9, 10,10 11 11}TvarVVAind[] |
|
* TvarVVAind[1]@10= 15 16 18,18 19,19, 20,20 21 21}TvarVVAind[] |
|
* TvarVA V3*V2=6 6 , 1, 2, 11, 12, 13, 14 |
|
* TvarFind[1]@14= {1, 2, 3, 0 <repeats 12 times>} |
|
* Tvar[1]@21= {2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 14, |
|
* 2, 3, 4, 6, 7, |
|
* 6, 8, 9, 10, 11} |
|
* TvarFind[itv] 0 0 0 |
|
* FixedV[itv] 1 1 1 0 1 0 1 0 1 0 0 |
|
*? FixedV[itv] 1 1 1 0 1 0 1 0 1 0 1 0 1 0 |
|
* Tvar[TvarFind[ncovf]]=[1]=2 [2]=3 [4]=4 |
|
* Tvar[TvarFind[itv]] [0]=? ?ncovv 1 à ncovvt] |
|
* Not a fixed cotvar[mw][itv][i] 6 7 6 2 7, 2, 6, 3, 7, 3, 6, 4, 7, 4} |
|
* fixed covar[itv] [6] [7] [6][2] |
|
*/ |
|
|
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* V6 V7 V7*V2 V6*V3 V7*V3 V6*V4 V7*V4 Time varying covariates (single and extended product but no age) including individual from products, product is computed dynamically */ |
|
itv=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate, or fixed covariate of a varying product after exploding product Vn*Vm into Vn and then Vm */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
/* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */ |
|
/* printf("DEBUG ncovv=%d, Varying TvarVV[ncovv]=%d\n",ncovv, TvarVV[ncovv]); */ |
|
cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i]; /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ |
|
/* printf("DEBUG Varying cov[ioffset+ipos=%d]=%g \n",ioffset+ipos,cotvarv); */ |
|
}else{ /* fixed covariate */ |
|
/* cotvarv=covar[Tvar[TvarFind[itv]]][i]; /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */ |
|
/* printf("DEBUG ncovv=%d, Fixed TvarVV[ncovv]=%d\n",ncovv, TvarVV[ncovv]); */ |
|
cotvarv=covar[itv][i]; /* Good: In V6*V3, 3 is fixed at position of the data */ |
|
/* printf("DEBUG Fixed cov[ioffset+ipos=%d]=%g \n",ioffset+ipos,cotvarv); */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
cov[ioffset+ipos]=cotvarv; |
|
/* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */ |
|
/* For products */ |
|
} |
|
/* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates single *\/ */ |
|
/* iv=TvarVDind[itv]; /\* iv, position in the model equation of time varying covariate itv *\/ */ |
|
/* /\* "V1+V3+age*V1+age*V3+V1*V3" with V3 time varying *\/ */ |
|
/* /\* 1 2 3 4 5 *\/ */ |
|
/* /\*itv 1 *\/ */ |
|
/* /\* TvarVInd[1]= 2 *\/ */ |
|
/* /\* iv= Tvar[Tmodelind[itv]]-ncovcol-nqv; /\\* Counting the # varying covariate from 1 to ntveff *\\/ *\/ */ |
|
/* /\* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; *\/ */ |
|
/* /\* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; *\/ */ |
|
/* /\* k=ioffset-2-nagesqr-cptcovage+itv; /\\* position in simple model *\\/ *\/ */ |
|
/* /\* cov[ioffset+iv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; *\/ */ |
|
/* cov[ioffset+iv]=cotvar[mw[mi][i]][itv][i]; */ |
|
/* /\* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][itv][i]=%f\n", i, mi, itv, TvarVDind[itv],cotvar[mw[mi][i]][itv][i]); *\/ */ |
|
/* } */ |
|
/* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ |
|
/* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ |
|
/* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ |
|
/* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */ |
|
/* } */ |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (ii=1;ii<=nlstate+ndeath;ii++) |
for (j=1;j<=nlstate+ndeath;j++){ |
for (j=1;j<=nlstate+ndeath;j++){ |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
Line 3139 double funcone( double *x)
|
Line 6222 double funcone( double *x)
|
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */ |
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */ |
for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ |
for(d=0; d<dh[mi][i]; d++){ /* Delay between two effective waves */ |
|
/* for(d=0; d<=0; d++){ /\* Delay between two effective waves Only one matrix to speed up*\/ */ |
/*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
/*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
and mw[mi+1][i]. dh depends on stepm.*/ |
and mw[mi+1][i]. dh depends on stepm.*/ |
newm=savm; |
newm=savm; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; |
agexact=agev[mw[mi][i]][i]+d*stepm/YEARM; /* Here d is needed */ |
cov[2]=agexact; |
cov[2]=agexact; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= agexact*agexact; |
cov[3]= agexact*agexact; |
for (kk=1; kk<=cptcovage;kk++) { |
for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying covariates with age including individual from products, product is computed dynamically */ |
cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; |
itv=TvarAVVA[ncovva]; /* TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm */ |
|
ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
/* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */ |
|
/* printf("DEBUG ncovva=%d, Varying TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */ |
|
cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i]; /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ |
|
}else{ /* fixed covariate */ |
|
/* cotvarv=covar[Tvar[TvarFind[itv]]][i]; /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */ |
|
/* printf("DEBUG ncovva=%d, Fixed TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
/* printf("DEBUG * \n"); */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
iposold=ipos; |
|
/* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */ |
|
cov[ioffset+ipos]=cotvarv*agexact; |
|
/* For products */ |
} |
} |
|
|
|
/* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
/* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
Line 3158 double funcone( double *x)
|
Line 6263 double funcone( double *x)
|
savm=oldm; |
savm=oldm; |
oldm=newm; |
oldm=newm; |
} /* end mult */ |
} /* end mult */ |
|
/*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ |
|
/* But now since version 0.9 we anticipate for bias at large stepm. |
|
* If stepm is larger than one month (smallest stepm) and if the exact delay |
|
* (in months) between two waves is not a multiple of stepm, we rounded to |
|
* the nearest (and in case of equal distance, to the lowest) interval but now |
|
* we keep into memory the bias bh[mi][i] and also the previous matrix product |
|
* (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the |
|
* probability in order to take into account the bias as a fraction of the way |
|
* from savm to out if bh is negative or even beyond if bh is positive. bh varies |
|
* -stepm/2 to stepm/2 . |
|
* For stepm=1 the results are the same as for previous versions of Imach. |
|
* For stepm > 1 the results are less biased than in previous versions. |
|
*/ |
s1=s[mw[mi][i]][i]; |
s1=s[mw[mi][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
s2=s[mw[mi+1][i]][i]; |
/* if(s2==-1){ */ |
/* if(s2==-1){ */ |
/* printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */ |
/* printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */ |
/* /\* exit(1); *\/ */ |
/* /\* exit(1); *\/ */ |
/* } */ |
/* } */ |
bbh=(double)bh[mi][i]/(double)stepm; |
bbh=(double)bh[mi][i]/(double)stepm; |
Line 3190 double funcone( double *x)
|
Line 6307 double funcone( double *x)
|
ipmx +=1; |
ipmx +=1; |
sw += weight[i]; |
sw += weight[i]; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
/*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ |
/* Printing covariates values for each contribution for checking */ |
|
/* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ |
if(globpr){ |
if(globpr){ |
fprintf(ficresilk,"%9ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %11.6f %8.4f %8.3f\ |
fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ |
%11.6f %11.6f %11.6f ", \ |
%11.6f %11.6f %11.6f ", \ |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, |
2*weight[i]*lli,out[s1][s2],savm[s1][s2]); |
2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); |
|
/* printf("%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ */ |
|
/* %11.6f %11.6f %11.6f ", \ */ |
|
/* num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, */ |
|
/* 2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
for(k=1,llt=0.,l=0.; k<=nlstate; k++){ |
llt +=ll[k]*gipmx/gsw; |
llt +=ll[k]*gipmx/gsw; |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw); |
|
/* printf(" %10.6f",-ll[k]*gipmx/gsw); */ |
} |
} |
fprintf(ficresilk," %10.6f\n", -llt); |
fprintf(ficresilk," %10.6f ", -llt); |
} |
/* printf(" %10.6f\n", -llt); */ |
|
/* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */ |
|
/* fprintf(ficresilk,"%09ld ", num[i]); */ /* not necessary */ |
|
for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */ |
|
fprintf(ficresilk," %g",covar[Tvar[TvarFind[kf]]][i]); |
|
} |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age) including individual from products */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
fprintf(ficresilk," %g",cov[ioffset+ipos]); |
|
/* printf(" %g",cov[ioffset+ipos]); */ |
|
}else{ |
|
fprintf(ficresilk,"*"); |
|
/* printf("*"); */ |
|
} |
|
iposold=ipos; |
|
} |
|
/* for (kk=1; kk<=cptcovage;kk++) { */ |
|
/* if(!FixedV[Tvar[Tage[kk]]]){ */ |
|
/* fprintf(ficresilk," %g*age",covar[Tvar[Tage[kk]]][i]); */ |
|
/* /\* printf(" %g*age",covar[Tvar[Tage[kk]]][i]); *\/ */ |
|
/* }else{ */ |
|
/* fprintf(ficresilk," %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/ */ |
|
/* /\* printf(" %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/\\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\\/ *\/ */ |
|
/* } */ |
|
/* } */ |
|
for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying covariates with age including individual from products, product is computed dynamically */ |
|
itv=TvarAVVA[ncovva]; /* TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm */ |
|
ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ |
|
/* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */ |
|
if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */ |
|
/* printf("DEBUG ncovva=%d, Varying TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */ |
|
cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i]; /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ |
|
}else{ /* fixed covariate */ |
|
/* cotvarv=covar[Tvar[TvarFind[itv]]][i]; /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */ |
|
/* printf("DEBUG ncovva=%d, Fixed TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */ |
|
cotvarv=covar[itv][i]; /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */ |
|
} |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
cotvarvold=cotvarv; |
|
}else{ /* A second product */ |
|
/* printf("DEBUG * \n"); */ |
|
cotvarv=cotvarv*cotvarvold; |
|
} |
|
cotvarv=cotvarv*agexact; |
|
fprintf(ficresilk," %g*age",cotvarv); |
|
iposold=ipos; |
|
/* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */ |
|
cov[ioffset+ipos]=cotvarv; |
|
/* For products */ |
|
} |
|
/* printf("\n"); */ |
|
/* } /\* End debugILK *\/ */ |
|
fprintf(ficresilk,"\n"); |
|
} /* End if globpr */ |
} /* end of wave */ |
} /* end of wave */ |
} /* end of individual */ |
} /* end of individual */ |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
/* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
if(globpr==0){ /* First time we count the contributions and weights */ |
gipmx=ipmx; |
gipmx=ipmx; |
Line 3216 double funcone( double *x)
|
Line 6393 double funcone( double *x)
|
|
|
|
|
/*************** function likelione ***********/ |
/*************** function likelione ***********/ |
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double [])) |
void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double [])) |
{ |
{ |
/* This routine should help understanding what is done with |
/* This routine should help understanding what is done with |
the selection of individuals/waves and |
the selection of individuals/waves and |
to check the exact contribution to the likelihood. |
to check the exact contribution to the likelihood. |
Plotting could be done. |
Plotting could be done. |
*/ |
*/ |
int k; |
void pstamp(FILE *ficres); |
|
int k, kf, kk, kvar, ncovv, iposold, ipos; |
|
|
if(*globpri !=0){ /* Just counts and sums, no printings */ |
if(*globpri !=0){ /* Just counts and sums, no printings */ |
strcpy(fileresilk,"ILK_"); |
strcpy(fileresilk,"ILK_"); |
Line 3232 void likelione(FILE *ficres,double p[],
|
Line 6410 void likelione(FILE *ficres,double p[],
|
printf("Problem with resultfile: %s\n", fileresilk); |
printf("Problem with resultfile: %s\n", fileresilk); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk); |
} |
} |
|
pstamp(ficresilk);fprintf(ficresilk,"# model=1+age+%s\n",model); |
fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n"); |
fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav "); |
fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav "); |
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
/* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */ |
for(k=1; k<=nlstate; k++) |
for(k=1; k<=nlstate; k++) |
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n"); |
fprintf(ficresilk," -2*gipw/gsw*weight*ll(total) "); |
} |
|
|
/* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */ |
|
for(kf=1;kf <= ncovf; kf++){ |
|
fprintf(ficresilk,"V%d",Tvar[TvarFind[kf]]); |
|
/* printf("V%d",Tvar[TvarFind[kf]]); */ |
|
} |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
/* printf(" %d",ipos); */ |
|
fprintf(ficresilk," V%d",TvarVV[ncovv]); |
|
}else{ |
|
/* printf("*"); */ |
|
fprintf(ficresilk,"*"); |
|
} |
|
iposold=ipos; |
|
} |
|
for (kk=1; kk<=cptcovage;kk++) { |
|
if(!FixedV[Tvar[Tage[kk]]]){ |
|
/* printf(" %d*age(Fixed)",Tvar[Tage[kk]]); */ |
|
fprintf(ficresilk," %d*age(Fixed)",Tvar[Tage[kk]]); |
|
}else{ |
|
fprintf(ficresilk," %d*age(Varying)",Tvar[Tage[kk]]);/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
|
/* printf(" %d*age(Varying)",Tvar[Tage[kk]]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/ */ |
|
} |
|
} |
|
/* } /\* End if debugILK *\/ */ |
|
/* printf("\n"); */ |
|
fprintf(ficresilk,"\n"); |
|
} /* End glogpri */ |
|
|
*fretone=(*funcone)(p); |
*fretone=(*func)(p); |
if(*globpri !=0){ |
if(*globpri !=0){ |
fclose(ficresilk); |
fclose(ficresilk); |
if (mle ==0) |
if (mle ==0) |
Line 3248 void likelione(FILE *ficres,double p[],
|
Line 6456 void likelione(FILE *ficres,double p[],
|
else if(mle >=1) |
else if(mle >=1) |
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle); |
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk)); |
|
fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); |
|
|
for (k=1; k<= nlstate ; k++) { |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
|
<img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
|
} |
|
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \ |
<img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
<img src=\"%s-ori.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \ |
fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \ |
<img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
<img src=\"%s-dest.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_")); |
|
|
|
for (k=1; k<= nlstate ; k++) { |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br>\n \ |
|
<img src=\"%s-p%dj.png\">\n",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k); |
|
for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */ |
|
kvar=Tvar[TvarFind[kf]]; /* variable */ |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): ",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]]); |
|
fprintf(fichtm,"<a href=\"%s-p%dj-%d.png\">%s-p%dj-%d.png</a><br>",subdirf2(optionfilefiname,"ILK_"),k,kvar,subdirf2(optionfilefiname,"ILK_"),k,kvar); |
|
fprintf(fichtm,"<img src=\"%s-p%dj-%d.png\">",subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]); |
|
} |
|
for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Loop on the time varying extended covariates (with extension of Vn*Vm */ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */ |
|
kvar=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ |
|
/* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
/* fprintf(ficresilk," V%d",TvarVV[ncovv]); */ |
|
/* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); */ |
|
if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm) */ |
|
fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored time varying dummy covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ |
|
<img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar); |
|
} /* End only for dummies time varying (single?) */ |
|
}else{ /* Useless product */ |
|
/* printf("*"); */ |
|
/* fprintf(ficresilk,"*"); */ |
|
} |
|
iposold=ipos; |
|
} /* For each time varying covariate */ |
|
} /* End loop on states */ |
|
|
|
/* if(debugILK){ */ |
|
/* for(kf=1; kf <= ncovf; kf++){ /\* For each simple dummy covariate of the model *\/ */ |
|
/* /\* kvar=Tvar[TvarFind[kf]]; *\/ /\* variable *\/ */ |
|
/* for (k=1; k<= nlstate ; k++) { */ |
|
/* fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */ |
|
/* <img src=\"%s-p%dj-%d.png\">",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]); */ |
|
/* } */ |
|
/* } */ |
|
/* for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /\* Loop on the time varying extended covariates (with extension of Vn*Vm *\/ */ |
|
/* ipos=TvarVVind[ncovv]; /\* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate *\/ */ |
|
/* kvar=TvarVV[ncovv]; /\* TvarVV={3, 1, 3} gives the name of each varying covariate *\/ */ |
|
/* /\* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); *\/ */ |
|
/* if(ipos!=iposold){ /\* Not a product or first of a product *\/ */ |
|
/* /\* fprintf(ficresilk," V%d",TvarVV[ncovv]); *\/ */ |
|
/* /\* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); *\/ */ |
|
/* if(Dummy[ipos]==0 && Typevar[ipos]==0){ /\* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm) *\/ */ |
|
/* for (k=1; k<= nlstate ; k++) { */ |
|
/* fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */ |
|
/* <img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar); */ |
|
/* } /\* End state *\/ */ |
|
/* } /\* End only for dummies time varying (single?) *\/ */ |
|
/* }else{ /\* Useless product *\/ */ |
|
/* /\* printf("*"); *\/ */ |
|
/* /\* fprintf(ficresilk,"*"); *\/ */ |
|
/* } */ |
|
/* iposold=ipos; */ |
|
/* } /\* For each time varying covariate *\/ */ |
|
/* }/\* End debugILK *\/ */ |
fflush(fichtm); |
fflush(fichtm); |
} |
}/* End globpri */ |
return; |
return; |
} |
} |
|
|
Line 3268 void likelione(FILE *ficres,double p[],
|
Line 6529 void likelione(FILE *ficres,double p[],
|
|
|
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double [])) |
{ |
{ |
int i,j, iter=0; |
int i,j, jkk=0, iter=0; |
double **xi; |
double **xi; |
double fret; |
/*double fret;*/ |
double fretone; /* Only one call to likelihood */ |
/*double fretone;*/ /* Only one call to likelihood */ |
/* char filerespow[FILENAMELENGTH];*/ |
/* char filerespow[FILENAMELENGTH];*/ |
|
|
|
/*double * p1;*/ /* Shifted parameters from 0 instead of 1 */ |
#ifdef NLOPT |
#ifdef NLOPT |
int creturn; |
int creturn; |
nlopt_opt opt; |
nlopt_opt opt; |
/* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */ |
/* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */ |
double *lb; |
double *lb; |
double minf; /* the minimum objective value, upon return */ |
double minf; /* the minimum objective value, upon return */ |
double * p1; /* Shifted parameters from 0 instead of 1 */ |
|
myfunc_data dinst, *d = &dinst; |
myfunc_data dinst, *d = &dinst; |
#endif |
#endif |
|
|
|
|
xi=matrix(1,npar,1,npar); |
xi=matrix(1,npar,1,npar); |
for (i=1;i<=npar;i++) |
for (i=1;i<=npar;i++) /* Starting with canonical directions j=1,n xi[i=1,n][j] */ |
for (j=1;j<=npar;j++) |
for (j=1;j<=npar;j++) |
xi[i][j]=(i==j ? 1.0 : 0.0); |
xi[i][j]=(i==j ? 1.0 : 0.0); |
printf("Powell\n"); fprintf(ficlog,"Powell\n"); |
printf("Powell-prax\n"); fprintf(ficlog,"Powell-prax\n"); |
strcpy(filerespow,"POW_"); |
strcpy(filerespow,"POW_"); |
strcat(filerespow,fileres); |
strcat(filerespow,fileres); |
if((ficrespow=fopen(filerespow,"w"))==NULL) { |
if((ficrespow=fopen(filerespow,"w"))==NULL) { |
Line 3302 void mlikeli(FILE *ficres,double p[], in
|
Line 6564 void mlikeli(FILE *ficres,double p[], in
|
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
if(j!=i)fprintf(ficrespow," p%1d%1d",i,j); |
fprintf(ficrespow,"\n"); |
fprintf(ficrespow,"\n"); |
#ifdef POWELL |
#ifdef POWELL |
powell(p,xi,npar,ftol,&iter,&fret,func); |
#ifdef LINMINORIGINAL |
#endif |
#else /* LINMINORIGINAL */ |
|
|
|
flatdir=ivector(1,npar); |
|
for (j=1;j<=npar;j++) flatdir[j]=0; |
|
#endif /*LINMINORIGINAL */ |
|
|
|
#ifdef FLATSUP |
|
powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); |
|
/* reorganizing p by suppressing flat directions */ |
|
for(i=1, jk=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]); |
|
if(flatdir[jk]==1){ |
|
printf(" To be skipped %d%d flatdir[%d]=%d ",i,k,jk, flatdir[jk]); |
|
} |
|
for(j=1; j <=ncovmodel; j++){ |
|
printf("%12.7f ",p[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
} |
|
} |
|
} |
|
/* skipping */ |
|
/* for(i=1, jk=1, jkk=1;(flatdir[jk]==0)&& (i <=nlstate); i++){ */ |
|
for(i=1, jk=1, jkk=1;i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]); |
|
if(flatdir[jk]==1){ |
|
printf(" To be skipped %d%d flatdir[%d]=%d jk=%d p[%d] ",i,k,jk, flatdir[jk],jk, jk); |
|
for(j=1; j <=ncovmodel; jk++,j++){ |
|
printf(" p[%d]=%12.7f",jk, p[jk]); |
|
/*q[jjk]=p[jk];*/ |
|
} |
|
}else{ |
|
printf(" To be kept %d%d flatdir[%d]=%d jk=%d q[%d]=p[%d] ",i,k,jk, flatdir[jk],jk, jkk, jk); |
|
for(j=1; j <=ncovmodel; jk++,jkk++,j++){ |
|
printf(" p[%d]=%12.7f=q[%d]",jk, p[jk],jkk); |
|
/*q[jjk]=p[jk];*/ |
|
} |
|
} |
|
printf("\n"); |
|
} |
|
fflush(stdout); |
|
} |
|
} |
|
powell(p,xi,npar,ftol,&iter,&fret,flatdir,func); |
|
#else /* FLATSUP */ |
|
/* powell(p,xi,npar,ftol,&iter,&fret,func);*/ |
|
/* praxis ( t0, h0, n, prin, x, beale_f ); */ |
|
int prin=4; |
|
/* double h0=0.25; */ |
|
/* double macheps; */ |
|
/* double fmin; */ |
|
macheps=pow(16.0,-13.0); |
|
/* #include "praxis.h" */ |
|
/* Be careful that praxis start at x[0] and powell start at p[1] */ |
|
/* praxis ( ftol, h0, npar, prin, p, func ); */ |
|
/* p1= (p+1); */ /* p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */ |
|
printf("Praxis Gegenfurtner \n"); |
|
fprintf(ficlog, "Praxis Gegenfurtner\n");fflush(ficlog); |
|
/* praxis ( ftol, h0, npar, prin, p1, func ); */ |
|
/* fmin = praxis(1.e-5,macheps, h, n, prin, x, func); */ |
|
ffmin = praxis(ftol,macheps, h0, npar, prin, p, func); |
|
printf("End Praxis\n"); |
|
#endif /* FLATSUP */ |
|
|
|
#ifdef LINMINORIGINAL |
|
#else |
|
free_ivector(flatdir,1,npar); |
|
#endif /* LINMINORIGINAL*/ |
|
#endif /* POWELL */ |
|
|
#ifdef NLOPT |
#ifdef NLOPT |
#ifdef NEWUOA |
#ifdef NEWUOA |
Line 3331 void mlikeli(FILE *ficres,double p[], in
|
Line 6666 void mlikeli(FILE *ficres,double p[], in
|
} |
} |
nlopt_destroy(opt); |
nlopt_destroy(opt); |
#endif |
#endif |
|
#ifdef FLATSUP |
|
/* npared = npar -flatd/ncovmodel; */ |
|
/* xired= matrix(1,npared,1,npared); */ |
|
/* paramred= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ |
|
/* powell(pred,xired,npared,ftol,&iter,&fret,flatdir,func); */ |
|
/* free_matrix(xire,1,npared,1,npared); */ |
|
#else /* FLATSUP */ |
|
#endif /* FLATSUP */ |
free_matrix(xi,1,npar,1,npar); |
free_matrix(xi,1,npar,1,npar); |
fclose(ficrespow); |
fclose(ficrespow); |
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p)); |
Line 3550 double hessij( double x[], double **hess
|
Line 6893 double hessij( double x[], double **hess
|
kmax=kmax+10; |
kmax=kmax+10; |
} |
} |
if(kmax >=10 || firstime ==1){ |
if(kmax >=10 || firstime ==1){ |
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); |
/* What are the thetai and thetaj? thetai/ncovmodel thetai=(thetai-thetai%ncovmodel)/ncovmodel +thetai%ncovmodel=(line,pos) */ |
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you may increase ftol=%.2e\n",thetai,thetaj, ftol); |
printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
|
fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol); |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); |
} |
} |
Line 3640 void ludcmp(double **a, int n, int *indx
|
Line 6984 void ludcmp(double **a, int n, int *indx
|
big=0.0; |
big=0.0; |
for (j=1;j<=n;j++) |
for (j=1;j<=n;j++) |
if ((temp=fabs(a[i][j])) > big) big=temp; |
if ((temp=fabs(a[i][j])) > big) big=temp; |
if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); |
if (big == 0.0){ |
|
printf(" Singular Hessian matrix at row %d:\n",i); |
|
for (j=1;j<=n;j++) { |
|
printf(" a[%d][%d]=%f,",i,j,a[i][j]); |
|
fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]); |
|
} |
|
fflush(ficlog); |
|
fclose(ficlog); |
|
nrerror("Singular matrix in routine ludcmp"); |
|
} |
vv[i]=1.0/big; |
vv[i]=1.0/big; |
} |
} |
for (j=1;j<=n;j++) { |
for (j=1;j<=n;j++) { |
Line 3706 void pstamp(FILE *fichier)
|
Line 7059 void pstamp(FILE *fichier)
|
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart); |
} |
} |
|
|
/************ Frequencies ********************/ |
void date2dmy(double date,double *day, double *month, double *year){ |
void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
double yp=0., yp1=0., yp2=0.; |
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
|
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
yp1=modf(date,&yp);/* extracts integral of date in yp and |
{ /* Some frequencies */ |
fractional in yp1 */ |
|
*year=yp; |
int i, m, jk, j1, bool, z1,j; |
yp2=modf((yp1*12),&yp); |
int iind=0, iage=0; |
*month=yp; |
int mi; /* Effective wave */ |
yp1=modf((yp2*30.5),&yp); |
int first; |
*day=yp; |
double ***freq; /* Frequencies */ |
if(*day==0) *day=1; |
double *pp, **prop, *posprop, *pospropt; |
if(*month==0) *month=1; |
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
} |
char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH]; |
|
double agebegin, ageend; |
|
|
|
pp=vector(1,nlstate); |
|
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ |
|
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
|
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
|
strcpy(fileresp,"P_"); |
|
strcat(fileresp,fileresu); |
|
/*strcat(fileresphtm,fileresu);*/ |
|
if((ficresp=fopen(fileresp,"w"))==NULL) { |
|
printf("Problem with prevalence resultfile: %s\n", fileresp); |
|
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
|
exit(0); |
|
} |
|
|
|
strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm")); |
|
if((ficresphtm=fopen(fileresphtm,"w"))==NULL) { |
|
printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
/************ Frequencies ********************/ |
fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
void freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \ |
fflush(ficlog); |
int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \ |
exit(70); |
int firstpass, int lastpass, int stepm, int weightopt, char model[]) |
} |
{ /* Some frequencies as well as proposing some starting values */ |
else{ |
/* Frequencies of any combination of dummy covariate used in the model equation */ |
fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1; |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
int iind=0, iage=0; |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
int mi; /* Effective wave */ |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
int first; |
} |
double ***freq; /* Frequencies */ |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition</h4>\n",fileresphtm, fileresphtm); |
double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */ |
|
int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb); |
|
double *meanq, *stdq, *idq; |
|
double **meanqt; |
|
double *pp, **prop, *posprop, *pospropt; |
|
double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0; |
|
char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH]; |
|
double agebegin, ageend; |
|
|
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
pp=vector(1,nlstate); |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ |
fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ |
fflush(ficlog); |
/* prop=matrix(1,nlstate,iagemin,iagemax+3); */ |
exit(70); |
meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
} |
stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
else{ |
idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */ |
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
meanqt=matrix(1,lastpass,1,nqtveff); |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
strcpy(fileresp,"P_"); |
|
strcat(fileresp,fileresu); |
|
/*strcat(fileresphtm,fileresu);*/ |
|
if((ficresp=fopen(fileresp,"w"))==NULL) { |
|
printf("Problem with prevalence resultfile: %s\n", fileresp); |
|
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp); |
|
exit(0); |
|
} |
|
|
|
strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm")); |
|
if((ficresphtm=fopen(fileresphtm,"w"))==NULL) { |
|
printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
|
fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno)); |
|
fflush(ficlog); |
|
exit(70); |
|
} |
|
else{ |
|
fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions by age at begin of transition </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr); |
fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies (weight=%d) and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm, weightopt); |
|
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
|
j1=0; |
|
|
|
j=cptcoveff; |
strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm")); |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) { |
|
printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
first=1; |
fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno)); |
|
fflush(ficlog); |
|
exit(70); |
|
} else{ |
|
fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \ |
|
,<hr size=\"2\" color=\"#EC5E5E\"> \n \ |
|
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\ |
|
fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
|
} |
|
fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>(weight=%d) frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr,weightopt); |
|
|
|
y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
|
j1=0; |
|
|
|
/* j=ncoveff; /\* Only fixed dummy covariates *\/ */ |
|
j=cptcoveff; /* Only simple dummy covariates used in the model */ |
|
/* j=cptcovn; /\* Only dummy covariates of the model *\/ */ |
|
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
|
|
|
/* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels: |
|
reference=low_education V1=0,V2=0 |
|
med_educ V1=1 V2=0, |
|
high_educ V1=0 V2=1 |
|
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcovn |
|
*/ |
|
dateintsum=0; |
|
k2cpt=0; |
|
|
/* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels: |
if(cptcoveff == 0 ) |
reference=low_education V1=0,V2=0 |
nl=1; /* Constant and age model only */ |
med_educ V1=1 V2=0, |
else |
high_educ V1=0 V2=1 |
nl=2; |
Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff |
|
*/ |
|
|
|
for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){ /* Loop on covariates combination */ |
/* if a constant only model, one pass to compute frequency tables and to write it on ficresp */ |
posproptt=0.; |
/* Loop on nj=1 or 2 if dummy covariates j!=0 |
/*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]); |
* Loop on j1(1 to 2**cptcoveff) covariate combination |
scanf("%d", i);*/ |
* freq[s1][s2][iage] =0. |
for (i=-5; i<=nlstate+ndeath; i++) |
* Loop on iind |
for (jk=-5; jk<=nlstate+ndeath; jk++) |
* ++freq[s1][s2][iage] weighted |
for(m=iagemin; m <= iagemax+3; m++) |
* end iind |
freq[i][jk][m]=0; |
* if covariate and j!0 |
|
* headers Variable on one line |
for (i=1; i<=nlstate; i++) { |
* endif cov j!=0 |
for(m=iagemin; m <= iagemax+3; m++) |
* header of frequency table by age |
prop[i][m]=0; |
* Loop on age |
posprop[i]=0; |
* pp[s1]+=freq[s1][s2][iage] weighted |
pospropt[i]=0; |
* pos+=freq[s1][s2][iage] weighted |
} |
* Loop on s1 initial state |
|
* fprintf(ficresp |
|
* end s1 |
|
* end age |
|
* if j!=0 computes starting values |
|
* end compute starting values |
|
* end j1 |
|
* end nl |
|
*/ |
|
for (nj = 1; nj <= nl; nj++){ /* nj= 1 constant model, nl number of loops. */ |
|
if(nj==1) |
|
j=0; /* First pass for the constant */ |
|
else{ |
|
j=cptcoveff; /* Other passes for the covariate values number of simple covariates in the model V2+V1 =2 (simple dummy fixed or time varying) */ |
|
} |
|
first=1; |
|
for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all dummy covariates combination of the model, ie excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */ |
|
posproptt=0.; |
|
/*printf("cptcovn=%d Tvaraff=%d", cptcovn,Tvaraff[1]); |
|
scanf("%d", i);*/ |
|
for (i=-5; i<=nlstate+ndeath; i++) |
|
for (s2=-5; s2<=nlstate+ndeath; s2++) |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
freq[i][s2][m]=0; |
|
|
|
for (i=1; i<=nlstate; i++) { |
|
for(m=iagemin; m <= iagemax+3; m++) |
|
prop[i][m]=0; |
|
posprop[i]=0; |
|
pospropt[i]=0; |
|
} |
|
for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */ |
|
idq[z1]=0.; |
|
meanq[z1]=0.; |
|
stdq[z1]=0.; |
|
} |
|
/* for (z1=1; z1<= nqtveff; z1++) { */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* meanqt[m][z1]=0.; */ |
|
/* } */ |
|
/* } */ |
|
/* dateintsum=0; */ |
|
/* k2cpt=0; */ |
|
|
|
/* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */ |
|
for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
|
bool=1; |
|
if(j !=0){ |
|
if(anyvaryingduminmodel==0){ /* If All fixed covariates */ |
|
if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
|
for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */ |
|
/* if(Tvaraff[z1] ==-20){ */ |
|
/* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */ |
|
/* }else if(Tvaraff[z1] ==-10){ */ |
|
/* /\* sumnew+=coqvar[z1][iind]; *\/ */ |
|
/* }else */ /* TODO TODO codtabm(j1,z1) or codtabm(j1,Tvaraff[z1]]z1)*/ |
|
/* if( iind >=imx-3) printf("Searching error iind=%d Tvaraff[z1]=%d covar[Tvaraff[z1]][iind]=%.f TnsdVar[Tvaraff[z1]]=%d, cptcoveff=%d, cptcovs=%d \n",iind, Tvaraff[z1], covar[Tvaraff[z1]][iind],TnsdVar[Tvaraff[z1]],cptcoveff, cptcovs); */ |
|
if(Tvaraff[z1]<1 || Tvaraff[z1]>=NCOVMAX) |
|
printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=1+age+%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model); |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]){ /* for combination j1 of covariates */ |
|
/* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */ |
|
bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */ |
|
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", */ |
|
/* bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),*/ |
|
/* j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
|
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
|
} /* Onlyf fixed */ |
|
} /* end z1 */ |
|
} /* cptcoveff > 0 */ |
|
} /* end any */ |
|
}/* end j==0 */ |
|
if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */ |
|
/* for(m=firstpass; m<=lastpass; m++){ */ |
|
for(mi=1; mi<wav[iind];mi++){ /* For each wave */ |
|
m=mw[mi][iind]; |
|
if(j!=0){ |
|
if(anyvaryingduminmodel==1){ /* Some are varying covariates */ |
|
for (z1=1; z1<=cptcoveff; z1++) { |
|
if( Fixed[Tmodelind[z1]]==1){ |
|
/* iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; /\* Good *\/ */ |
|
iv= Tvar[Tmodelind[z1]]; /* Good *//* because cotvar starts now at first at ncovcol+nqv+ntv */ |
|
if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality. If covariate's |
|
value is -1, we don't select. It differs from the |
|
constant and age model which counts them. */ |
|
bool=0; /* not selected */ |
|
}else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */ |
|
/* i1=Tvaraff[z1]; */ |
|
/* i2=TnsdVar[i1]; */ |
|
/* i3=nbcode[i1][i2]; */ |
|
/* i4=covar[i1][iind]; */ |
|
/* if(i4 != i3){ */ |
|
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { /* Bug valgrind */ |
|
bool=0; |
|
} |
|
} |
|
} |
|
}/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */ |
|
} /* end j==0 */ |
|
/* bool =0 we keep that guy which corresponds to the combination of dummy values */ |
|
if(bool==1){ /*Selected */ |
|
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
|
and mw[mi+1][iind]. dh depends on stepm. */ |
|
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
|
ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */ |
|
if(m >=firstpass && m <=lastpass){ |
|
k2=anint[m][iind]+(mint[m][iind]/12.); |
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
|
if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
|
if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
|
if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */ |
|
prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
if (m<lastpass) { |
|
/* if(s[m][iind]==4 && s[m+1][iind]==4) */ |
|
/* printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */ |
|
if(s[m][iind]==-1) |
|
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
|
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean on known values only */ |
|
if(!isnan(covar[ncovcol+z1][iind])){ |
|
idq[z1]=idq[z1]+weight[iind]; |
|
meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind]; /* Computes mean of quantitative with selected filter */ |
|
/* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; *//*error*/ |
|
stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]; /* *weight[iind];*/ /* Computes mean of quantitative with selected filter */ |
|
} |
|
} |
|
/* if((int)agev[m][iind] == 55) */ |
|
/* printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */ |
|
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
|
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
|
} |
|
} /* end if between passes */ |
|
if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) { |
|
dateintsum=dateintsum+k2; /* on all covariates ?*/ |
|
k2cpt++; |
|
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
|
} |
|
}else{ |
|
bool=1; |
|
}/* end bool 2 */ |
|
} /* end m */ |
|
/* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */ |
|
/* idq[z1]=idq[z1]+weight[iind]; */ |
|
/* meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind]; /\* Computes mean of quantitative with selected filter *\/ */ |
|
/* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/ /\* Computes mean of quantitative with selected filter *\/ */ |
|
/* } */ |
|
} /* end bool */ |
|
} /* end iind = 1 to imx */ |
|
/* prop[s][age] is fed for any initial and valid live state as well as |
|
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
|
|
dateintsum=0; |
|
k2cpt=0; |
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
|
if(cptcoveff==0 && nj==1) /* no covariate and first pass */ |
|
pstamp(ficresp); |
|
if (cptcoveff>0 && j!=0){ |
|
pstamp(ficresp); |
|
printf( "\n#********** Variable "); |
|
fprintf(ficresp, "\n#********** Variable "); |
|
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
|
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
|
fprintf(ficlog, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++){ |
|
if(!FixedV[Tvaraff[z1]]){ |
|
printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
}else{ |
|
printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
|
} |
|
} |
|
printf( "**********\n#"); |
|
fprintf(ficresp, "**********\n#"); |
|
fprintf(ficresphtm, "**********</h3>\n"); |
|
fprintf(ficresphtmfr, "**********</h3>\n"); |
|
fprintf(ficlog, "**********\n"); |
|
} |
|
/* |
|
Printing means of quantitative variables if any |
|
*/ |
|
for (z1=1; z1<= nqfveff; z1++) { |
|
fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.3g (weighted) individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]); |
|
fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]); |
|
if(weightopt==1){ |
|
printf(" Weighted mean and standard deviation of"); |
|
fprintf(ficlog," Weighted mean and standard deviation of"); |
|
fprintf(ficresphtmfr," Weighted mean and standard deviation of"); |
|
} |
|
/* mu = \frac{w x}{\sum w} |
|
var = \frac{\sum w (x-mu)^2}{\sum w} = \frac{w x^2}{\sum w} - mu^2 |
|
*/ |
|
printf(" fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
fprintf(ficlog," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
fprintf(ficresphtmfr," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1])); |
|
} |
|
/* for (z1=1; z1<= nqtveff; z1++) { */ |
|
/* for(m=1;m<=lastpass;m++){ */ |
|
/* fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */ |
|
/* } */ |
|
/* } */ |
|
|
for (iind=1; iind<=imx; iind++) { /* For each individual iind */ |
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
bool=1; |
if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */ |
if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
fprintf(ficresp, " Age"); |
for (z1=1; z1<=cptcoveff; z1++) { |
if(nj==2) for (z1=1; z1<=cptcoveff; z1++) { |
if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){ |
printf(" V%d=%d, z1=%d, Tvaraff[z1]=%d, j1=%d, TnsdVar[Tvaraff[%d]]=%d |",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])], z1, Tvaraff[z1], j1,z1,TnsdVar[Tvaraff[z1]]); |
/* Tests if the value of each of the covariates of i is equal to filter j1 */ |
fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
bool=0; |
} |
/* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", |
for(i=1; i<=nlstate;i++) { |
bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1), |
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d) N(%d) N ",i,i); |
j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/ |
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
/* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/ |
} |
} |
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n"); |
} /* end z1 */ |
fprintf(ficresphtm, "\n"); |
} /* cptcovn > 0 */ |
|
|
|
if (bool==1){ |
|
/* for(m=firstpass; m<=lastpass; m++){ */ |
|
for(mi=1; mi<wav[iind];mi++){ |
|
m=mw[mi][iind]; |
|
/* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind] |
|
and mw[mi+1][iind]. dh depends on stepm. */ |
|
agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/ |
|
ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */ |
|
if(m >=firstpass && m <=lastpass){ |
|
k2=anint[m][iind]+(mint[m][iind]/12.); |
|
/*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/ |
|
if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */ |
|
if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */ |
|
if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */ |
|
prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
if (m<lastpass) { |
|
/* if(s[m][iind]==4 && s[m+1][iind]==4) */ |
|
/* printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */ |
|
if(s[m][iind]==-1) |
|
printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.)); |
|
freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */ |
|
/* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */ |
|
freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */ |
|
} |
|
} |
|
if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) { |
|
dateintsum=dateintsum+k2; |
|
k2cpt++; |
|
/* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */ |
|
} |
|
/*}*/ |
|
} /* end m */ |
|
} /* end bool */ |
|
} /* end iind = 1 to imx */ |
|
/* prop[s][age] is feeded for any initial and valid live state as well as |
|
freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */ |
|
|
|
|
|
/* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/ |
|
pstamp(ficresp); |
|
if (cptcovn>0) { |
|
fprintf(ficresp, "\n#********** Variable "); |
|
fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); |
|
fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++){ |
|
fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
} |
|
fprintf(ficresp, "**********\n#"); |
|
fprintf(ficresphtm, "**********</h3>\n"); |
|
fprintf(ficresphtmfr, "**********</h3>\n"); |
|
fprintf(ficlog, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficlog, "**********\n"); |
|
} |
|
fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">"); |
|
for(i=1; i<=nlstate;i++) { |
|
fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i); |
|
fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i); |
|
} |
|
fprintf(ficresp, "\n"); |
|
fprintf(ficresphtm, "\n"); |
|
|
|
/* Header of frequency table by age */ |
/* Header of frequency table by age */ |
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">"); |
fprintf(ficresphtmfr,"<th>Age</th> "); |
fprintf(ficresphtmfr,"<th>Age</th> "); |
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
for(s2=-1; s2 <=nlstate+ndeath; s2++){ |
for(m=-1; m <=nlstate+ndeath; m++){ |
for(m=-1; m <=nlstate+ndeath; m++){ |
if(jk!=0 && m!=0) |
if(s2!=0 && m!=0) |
fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m); |
fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m); |
} |
} |
} |
} |
fprintf(ficresphtmfr, "\n"); |
fprintf(ficresphtmfr, "\n"); |
|
|
|
/* For each age */ |
|
for(iage=iagemin; iage <= iagemax+3; iage++){ |
|
fprintf(ficresphtm,"<tr>"); |
|
if(iage==iagemax+1){ |
|
fprintf(ficlog,"1"); |
|
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
|
}else if(iage==iagemax+2){ |
|
fprintf(ficlog,"0"); |
|
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
|
}else if(iage==iagemax+3){ |
|
fprintf(ficlog,"Total"); |
|
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
|
}else{ |
|
if(first==1){ |
|
first=0; |
|
printf("See log file for details...\n"); |
|
} |
|
fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage); |
|
fprintf(ficlog,"Age %d", iage); |
|
} |
|
for(s1=1; s1 <=nlstate ; s1++){ |
|
for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++) |
|
pp[s1] += freq[s1][m][iage]; |
|
} |
|
for(s1=1; s1 <=nlstate ; s1++){ |
|
for(m=-1, pos=0; m <=0 ; m++) |
|
pos += freq[s1][m][iage]; |
|
if(pp[s1]>=1.e-10){ |
|
if(first==1){ |
|
printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]); |
|
} |
|
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]); |
|
}else{ |
|
if(first==1) |
|
printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1); |
|
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1); |
|
} |
|
} |
|
|
/* For each age */ |
for(s1=1; s1 <=nlstate ; s1++){ |
for(iage=iagemin; iage <= iagemax+3; iage++){ |
/* posprop[s1]=0; */ |
fprintf(ficresphtm,"<tr>"); |
for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */ |
if(iage==iagemax+1){ |
pp[s1] += freq[s1][m][iage]; |
fprintf(ficlog,"1"); |
} /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */ |
fprintf(ficresphtmfr,"<tr><th>0</th> "); |
|
}else if(iage==iagemax+2){ |
for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){ |
fprintf(ficlog,"0"); |
pos += pp[s1]; /* pos is the total number of transitions until this age */ |
fprintf(ficresphtmfr,"<tr><th>Unknown</th> "); |
posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state |
}else if(iage==iagemax+3){ |
from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
fprintf(ficlog,"Total"); |
pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state |
fprintf(ficresphtmfr,"<tr><th>Total</th> "); |
from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
}else{ |
} |
if(first==1){ |
|
first=0; |
/* Writing ficresp */ |
printf("See log file for details...\n"); |
if(cptcoveff==0 && nj==1){ /* no covariate and first pass */ |
} |
if( iage <= iagemax){ |
fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage); |
fprintf(ficresp," %d",iage); |
fprintf(ficlog,"Age %d", iage); |
} |
} |
}else if( nj==2){ |
for(jk=1; jk <=nlstate ; jk++){ |
if( iage <= iagemax){ |
for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) |
fprintf(ficresp," %d",iage); |
pp[jk] += freq[jk][m][iage]; |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); |
} |
} |
for(jk=1; jk <=nlstate ; jk++){ |
} |
for(m=-1, pos=0; m <=0 ; m++) |
for(s1=1; s1 <=nlstate ; s1++){ |
pos += freq[jk][m][iage]; |
if(pos>=1.e-5){ |
if(pp[jk]>=1.e-10){ |
if(first==1) |
if(first==1){ |
printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos); |
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos); |
} |
}else{ |
fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]); |
if(first==1) |
}else{ |
printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1); |
if(first==1) |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1); |
printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
} |
fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk); |
if( iage <= iagemax){ |
} |
if(pos>=1.e-5){ |
} |
if(cptcoveff==0 && nj==1){ /* no covariate and first pass */ |
|
fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
for(jk=1; jk <=nlstate ; jk++){ |
}else if( nj==2){ |
/* posprop[jk]=0; */ |
fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */ |
} |
pp[jk] += freq[jk][m][iage]; |
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta); |
} /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */ |
/*probs[iage][s1][j1]= pp[s1]/pos;*/ |
|
/*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/ |
for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){ |
} else{ |
pos += pp[jk]; /* pos is the total number of transitions until this age */ |
if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta); |
posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state |
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta); |
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
} |
pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state |
} |
from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */ |
pospropt[s1] +=posprop[s1]; |
} |
} /* end loop s1 */ |
for(jk=1; jk <=nlstate ; jk++){ |
/* pospropt=0.; */ |
if(pos>=1.e-5){ |
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
if(first==1) |
for(m=-1; m <=nlstate+ndeath; m++){ |
printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
if(freq[s1][m][iage] !=0 ) { /* minimizing output */ |
fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos); |
if(first==1){ |
}else{ |
printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); |
if(first==1) |
} |
printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
/* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */ |
fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk); |
fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]); |
} |
} |
if( iage <= iagemax){ |
if(s1!=0 && m!=0) |
if(pos>=1.e-5){ |
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]); |
fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
} |
fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta); |
} /* end loop s1 */ |
/*probs[iage][jk][j1]= pp[jk]/pos;*/ |
posproptt=0.; |
/*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/ |
for(s1=1; s1 <=nlstate; s1++){ |
} |
posproptt += pospropt[s1]; |
else{ |
} |
fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta); |
fprintf(ficresphtmfr,"</tr>\n "); |
fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta); |
fprintf(ficresphtm,"</tr>\n"); |
} |
if((cptcoveff==0 && nj==1)|| nj==2 ) { |
} |
if(iage <= iagemax) |
pospropt[jk] +=posprop[jk]; |
fprintf(ficresp,"\n"); |
} /* end loop jk */ |
} |
/* pospropt=0.; */ |
if(first==1) |
for(jk=-1; jk <=nlstate+ndeath; jk++){ |
printf("Others in log...\n"); |
for(m=-1; m <=nlstate+ndeath; m++){ |
fprintf(ficlog,"\n"); |
if(freq[jk][m][iage] !=0 ) { /* minimizing output */ |
} /* end loop age iage */ |
if(first==1){ |
|
printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]); |
fprintf(ficresphtm,"<tr><th>Tot</th>"); |
} |
for(s1=1; s1 <=nlstate ; s1++){ |
fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]); |
if(posproptt < 1.e-5){ |
} |
fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); |
if(jk!=0 && m!=0) |
}else{ |
fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]); |
fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt); |
} |
} |
} /* end loop jk */ |
} |
posproptt=0.; |
fprintf(ficresphtm,"</tr>\n"); |
for(jk=1; jk <=nlstate; jk++){ |
fprintf(ficresphtm,"</table>\n"); |
posproptt += pospropt[jk]; |
fprintf(ficresphtmfr,"</table>\n"); |
} |
if(posproptt < 1.e-5){ |
fprintf(ficresphtmfr,"</tr>\n "); |
fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
if(iage <= iagemax){ |
fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
fprintf(ficresp,"\n"); |
fprintf(ficlog,"# This combination (%d) is not valid and no result will be produced\n",j1); |
fprintf(ficresphtm,"</tr>\n"); |
printf("# This combination (%d) is not valid and no result will be produced\n",j1); |
} |
invalidvarcomb[j1]=1; |
if(first==1) |
}else{ |
printf("Others in log...\n"); |
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced (or no resultline).</p>",j1); |
fprintf(ficlog,"\n"); |
invalidvarcomb[j1]=0; |
} /* end loop age iage */ |
} |
fprintf(ficresphtm,"<tr><th>Tot</th>"); |
fprintf(ficresphtmfr,"</table>\n"); |
for(jk=1; jk <=nlstate ; jk++){ |
fprintf(ficlog,"\n"); |
if(posproptt < 1.e-5){ |
if(j!=0){ |
fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt); |
printf("#Freqsummary: Starting values for combination j1=%d:\n", j1); |
}else{ |
for(i=1,s1=1; i <=nlstate; i++){ |
fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt); |
for(k=1; k <=(nlstate+ndeath); k++){ |
} |
if (k != i) { |
} |
for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */ |
fprintf(ficresphtm,"</tr>\n"); |
if(jj==1){ /* Constant case (in fact cste + age) */ |
fprintf(ficresphtm,"</table>\n"); |
if(j1==1){ /* All dummy covariates to zero */ |
fprintf(ficresphtmfr,"</table>\n"); |
freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */ |
if(posproptt < 1.e-5){ |
freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */ |
fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
printf("%d%d ",i,k); |
fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1); |
fprintf(ficlog,"%d%d ",i,k); |
fprintf(ficres,"\n This combination (%d) is not valid and no result will be produced\n\n",j1); |
printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3])); |
invalidvarcomb[j1]=1; |
fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
}else{ |
pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]); |
fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1); |
} |
invalidvarcomb[j1]=0; |
}else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */ |
} |
for(iage=iagemin; iage <= iagemax+3; iage++){ |
fprintf(ficresphtmfr,"</table>\n"); |
x[iage]= (double)iage; |
} /* end selected combination of covariate j1 */ |
y[iage]= log(freq[i][k][iage]/freq[i][i][iage]); |
dateintmean=dateintsum/k2cpt; |
/* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */ |
|
} |
fclose(ficresp); |
/* Some are not finite, but linreg will ignore these ages */ |
fclose(ficresphtm); |
no=0; |
fclose(ficresphtmfr); |
linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */ |
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
pstart[s1]=b; |
free_vector(pospropt,1,nlstate); |
pstart[s1-1]=a; |
free_vector(posprop,1,nlstate); |
}else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj) && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ |
free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE); |
printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]); |
free_vector(pp,1,nlstate); |
printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]); |
/* End of Freq */ |
pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])); |
} |
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4])); |
|
}else{ /* Other cases, like quantitative fixed or varying covariates */ |
|
; |
|
} |
|
/* printf("%12.7f )", param[i][jj][k]); */ |
|
/* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */ |
|
s1++; |
|
} /* end jj */ |
|
} /* end k!= i */ |
|
} /* end k */ |
|
} /* end i, s1 */ |
|
} /* end j !=0 */ |
|
} /* end selected combination of covariate j1 */ |
|
if(j==0){ /* We can estimate starting values from the occurences in each case */ |
|
printf("#Freqsummary: Starting values for the constants:\n"); |
|
fprintf(ficlog,"\n"); |
|
for(i=1,s1=1; i <=nlstate; i++){ |
|
for(k=1; k <=(nlstate+ndeath); k++){ |
|
if (k != i) { |
|
printf("%d%d ",i,k); |
|
fprintf(ficlog,"%d%d ",i,k); |
|
for(jj=1; jj <=ncovmodel; jj++){ |
|
pstart[s1]=p[s1]; /* Setting pstart to p values by default */ |
|
if(jj==1){ /* Age has to be done */ |
|
pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]); |
|
printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
|
fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])); |
|
} |
|
/* printf("%12.7f )", param[i][jj][k]); */ |
|
/* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */ |
|
s1++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} |
|
} |
|
} /* end of state i */ |
|
printf("#Freqsummary\n"); |
|
fprintf(ficlog,"\n"); |
|
for(s1=-1; s1 <=nlstate+ndeath; s1++){ |
|
for(s2=-1; s2 <=nlstate+ndeath; s2++){ |
|
/* param[i]|j][k]= freq[s1][s2][iagemax+3] */ |
|
printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); |
|
fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); |
|
/* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */ |
|
/* printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */ |
|
/* fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */ |
|
/* } */ |
|
} |
|
} /* end loop s1 */ |
|
|
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
} /* end j=0 */ |
|
} /* end j */ |
|
|
|
if(mle == -2){ /* We want to use these values as starting values */ |
|
for(i=1, jk=1; i <=nlstate; i++){ |
|
for(j=1; j <=nlstate+ndeath; j++){ |
|
if(j!=i){ |
|
/*ca[0]= k+'a'-1;ca[1]='\0';*/ |
|
printf("%1d%1d",i,j); |
|
fprintf(ficparo,"%1d%1d",i,j); |
|
for(k=1; k<=ncovmodel;k++){ |
|
/* printf(" %lf",param[i][j][k]); */ |
|
/* fprintf(ficparo," %lf",param[i][j][k]); */ |
|
p[jk]=pstart[jk]; |
|
printf(" %f ",pstart[jk]); |
|
fprintf(ficparo," %f ",pstart[jk]); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficparo,"\n"); |
|
} |
|
} |
|
} |
|
} /* end mle=-2 */ |
|
dateintmean=dateintsum/k2cpt; |
|
date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); |
|
|
|
fclose(ficresp); |
|
fclose(ficresphtm); |
|
fclose(ficresphtmfr); |
|
free_vector(idq,1,nqfveff); |
|
free_vector(meanq,1,nqfveff); |
|
free_vector(stdq,1,nqfveff); |
|
free_matrix(meanqt,1,lastpass,1,nqtveff); |
|
free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_vector(pospropt,1,nlstate); |
|
free_vector(posprop,1,nlstate); |
|
free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE); |
|
free_vector(pp,1,nlstate); |
|
/* End of freqsummary */ |
|
} |
|
|
|
/* Simple linear regression */ |
|
int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) { |
|
|
|
/* y=a+bx regression */ |
|
double sumx = 0.0; /* sum of x */ |
|
double sumx2 = 0.0; /* sum of x**2 */ |
|
double sumxy = 0.0; /* sum of x * y */ |
|
double sumy = 0.0; /* sum of y */ |
|
double sumy2 = 0.0; /* sum of y**2 */ |
|
double sume2 = 0.0; /* sum of square or residuals */ |
|
double yhat; |
|
|
|
double denom=0; |
|
int i; |
|
int ne=*no; |
|
|
|
for ( i=ifi, ne=0;i<=ila;i++) { |
|
if(!isfinite(x[i]) || !isfinite(y[i])){ |
|
/* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */ |
|
continue; |
|
} |
|
ne=ne+1; |
|
sumx += x[i]; |
|
sumx2 += x[i]*x[i]; |
|
sumxy += x[i] * y[i]; |
|
sumy += y[i]; |
|
sumy2 += y[i]*y[i]; |
|
denom = (ne * sumx2 - sumx*sumx); |
|
/* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */ |
|
} |
|
|
|
denom = (ne * sumx2 - sumx*sumx); |
|
if (denom == 0) { |
|
// vertical, slope m is infinity |
|
*b = INFINITY; |
|
*a = 0; |
|
if (r) *r = 0; |
|
return 1; |
|
} |
|
|
|
*b = (ne * sumxy - sumx * sumy) / denom; |
|
*a = (sumy * sumx2 - sumx * sumxy) / denom; |
|
if (r!=NULL) { |
|
*r = (sumxy - sumx * sumy / ne) / /* compute correlation coeff */ |
|
sqrt((sumx2 - sumx*sumx/ne) * |
|
(sumy2 - sumy*sumy/ne)); |
|
} |
|
*no=ne; |
|
for ( i=ifi, ne=0;i<=ila;i++) { |
|
if(!isfinite(x[i]) || !isfinite(y[i])){ |
|
/* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */ |
|
continue; |
|
} |
|
ne=ne+1; |
|
yhat = y[i] - *a -*b* x[i]; |
|
sume2 += yhat * yhat ; |
|
|
|
denom = (ne * sumx2 - sumx*sumx); |
|
/* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */ |
|
} |
|
*sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne)); |
|
*sa= *sb * sqrt(sumx2/ne); |
|
|
|
return 0; |
|
} |
|
|
/************ Prevalence ********************/ |
/************ Prevalence ********************/ |
void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
{ |
{ |
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
in each health status at the date of interview (if between dateprev1 and dateprev2). |
in each health status at the date of interview (if between dateprev1 and dateprev2). |
We still use firstpass and lastpass as another selection. |
We still use firstpass and lastpass as another selection. |
*/ |
*/ |
|
|
int i, m, jk, j1, bool, z1,j; |
int i, m, jk, j1, bool, z1,j, iv; |
int mi; /* Effective wave */ |
int mi; /* Effective wave */ |
int iage; |
int iage; |
double agebegin, ageend; |
double agebegin; /*, ageend;*/ |
|
|
double **prop; |
double **prop; |
double posprop; |
double posprop; |
double y2; /* in fractional years */ |
double y2; /* in fractional years */ |
int iagemin, iagemax; |
int iagemin, iagemax; |
int first; /** to stop verbosity which is redirected to log file */ |
int first; /** to stop verbosity which is redirected to log file */ |
|
|
iagemin= (int) agemin; |
iagemin= (int) agemin; |
iagemax= (int) agemax; |
iagemax= (int) agemax; |
/*pp=vector(1,nlstate);*/ |
/*pp=vector(1,nlstate);*/ |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
/* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/ |
j1=0; |
j1=0; |
|
|
/*j=cptcoveff;*/ |
/*j=cptcoveff;*/ |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
if (cptcovn<1) {j=1;ncodemax[1]=1;} |
|
|
first=1; |
first=0; |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */ |
for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of simple dummy covariates */ |
for (i=1; i<=nlstate; i++) |
for (i=1; i<=nlstate; i++) |
for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++) |
for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++) |
prop[i][iage]=0.0; |
prop[i][iage]=0.0; |
|
printf("Prevalence combination of varying and fixed dummies %d\n",j1); |
for (i=1; i<=imx; i++) { /* Each individual */ |
/* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */ |
bool=1; |
fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1); |
if (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */ |
|
for (z1=1; z1<=cptcoveff; z1++) /* For each covariate, look at the value for individual i and checks if it is equal to the corresponding value of this covariate according to current combination j1*/ |
for (i=1; i<=imx; i++) { /* Each individual */ |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) |
bool=1; |
bool=0; |
/* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */ |
} |
for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */ |
if (bool==1) { /* For this combination of covariates values, this individual fits */ |
m=mw[mi][i]; |
/* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */ |
/* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */ |
for(mi=1; mi<wav[i];mi++){ |
/* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ |
m=mw[mi][i]; |
for (z1=1; z1<=cptcoveff; z1++){ |
agebegin=agev[m][i]; /* Age at beginning of wave before transition*/ |
if( Fixed[Tmodelind[z1]]==1){ |
/* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */ |
iv= Tvar[Tmodelind[z1]];/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ |
if(m >=firstpass && m <=lastpass){ |
if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality */ |
y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
bool=0; |
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
}else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
bool=0; |
if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){ |
} |
printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); |
} |
exit(1); |
if(bool==1){ /* Otherwise we skip that wave/person */ |
} |
agebegin=agev[m][i]; /* Age at beginning of wave before transition*/ |
if (s[m][i]>0 && s[m][i]<=nlstate) { |
/* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */ |
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
if(m >=firstpass && m <=lastpass){ |
prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */ |
y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
prop[s[m][i]][iagemax+3] += weight[i]; |
if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
} /* end valid statuses */ |
if(agev[m][i]==0) agev[m][i]=iagemax+1; |
} /* end selection of dates */ |
if(agev[m][i]==1) agev[m][i]=iagemax+2; |
} /* end selection of waves */ |
if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){ |
} /* end effective waves */ |
printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); |
} /* end bool */ |
exit(1); |
} |
} |
for(i=iagemin; i <= iagemax+3; i++){ |
if (s[m][i]>0 && s[m][i]<=nlstate) { |
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
/*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/ |
posprop += prop[jk][i]; |
prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */ |
} |
prop[s[m][i]][iagemax+3] += weight[i]; |
|
} /* end valid statuses */ |
|
} /* end selection of dates */ |
|
} /* end selection of waves */ |
|
} /* end bool */ |
|
} /* end wave */ |
|
} /* end individual */ |
|
for(i=iagemin; i <= iagemax+3; i++){ |
|
for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
|
posprop += prop[jk][i]; |
|
} |
|
|
for(jk=1; jk <=nlstate ; jk++){ |
for(jk=1; jk <=nlstate ; jk++){ |
if( i <= iagemax){ |
if( i <= iagemax){ |
if(posprop>=1.e-5){ |
if(posprop>=1.e-5){ |
probs[i][jk][j1]= prop[jk][i]/posprop; |
probs[i][jk][j1]= prop[jk][i]/posprop; |
} else{ |
} else{ |
if(first==1){ |
if(!first){ |
first=0; |
first=1; |
printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]); |
printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]); |
} |
}else{ |
} |
fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]); |
} |
} |
}/* end jk */ |
} |
}/* end i */ |
} |
|
}/* end jk */ |
|
}/* end i */ |
/*} *//* end i1 */ |
/*} *//* end i1 */ |
} /* end j1 */ |
} /* end j1 */ |
|
|
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/ |
/*free_vector(pp,1,nlstate);*/ |
/*free_vector(pp,1,nlstate);*/ |
free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE); |
free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE); |
} /* End of prevalence */ |
} /* End of prevalence */ |
|
|
/************* Waves Concatenation ***************/ |
/************* Waves Concatenation ***************/ |
|
|
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
void concatwav(int wav[], int **dh, int **bh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm) |
{ |
{ |
/* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i. |
/* Concatenates waves: wav[i] is the number of effective (useful waves in the sense that a non interview is useless) of individual i. |
Death is a valid wave (if date is known). |
Death is a valid wave (if date is known). |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i] |
and mw[mi+1][i]. dh depends on stepm. |
and mw[mi+1][i]. dh depends on stepm. s[m][i] exists for any wave from firstpass to lastpass |
*/ |
*/ |
|
|
int i, mi, m; |
int i=0, mi=0, m=0, mli=0; |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1; |
double sum=0., jmean=0.;*/ |
double sum=0., jmean=0.;*/ |
int first, firstwo, firsthree, firstfour; |
int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0; |
int j, k=0,jk, ju, jl; |
int j, k=0,jk, ju, jl; |
double sum=0.; |
double sum=0.; |
first=0; |
first=0; |
Line 4144 void concatwav(int wav[], int **dh, int
|
Line 7880 void concatwav(int wav[], int **dh, int
|
jmin=100000; |
jmin=100000; |
jmax=-1; |
jmax=-1; |
jmean=0.; |
jmean=0.; |
|
|
|
/* Treating live states */ |
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
for(i=1; i<=imx; i++){ /* For simple cases and if state is death */ |
mi=0; |
mi=0; /* First valid wave */ |
m=firstpass; |
mli=0; /* Last valid wave */ |
while(s[m][i] <= nlstate){ /* a live state */ |
m=firstpass; /* Loop on waves */ |
if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
while(s[m][i] <= nlstate){ /* a live state or unknown state */ |
mw[++mi][i]=m; |
if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */ |
} |
mli=m-1;/* mw[++mi][i]=m-1; */ |
if(m >=lastpass){ |
}else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */ |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ |
mw[++mi][i]=m; /* Valid wave: incrementing mi and updating mi; mw[mi] is the wave number of mi_th valid transition */ |
if(firsthree == 0){ |
mli=m; |
printf("Information! Unknown health status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
} /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */ |
firsthree=1; |
if(m < lastpass){ /* m < lastpass, standard case */ |
} |
m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */ |
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m); |
} |
mw[++mi][i]=m; |
else{ /* m = lastpass, eventual special issue with warning */ |
} |
#ifdef UNKNOWNSTATUSNOTCONTRIBUTING |
if(s[m][i]==-2){ /* Vital status is really unknown */ |
break; |
nbwarn++; |
#else |
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified? */ |
if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ /* no death date and known date of interview, case -2 (vital status unknown is warned later */ |
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
if(firsthree == 0){ |
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
} |
firsthree=1; |
break; |
}else if(firsthree >=1 && firsthree < 10){ |
} |
fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath); |
break; |
firsthree++; |
} |
}else if(firsthree == 10){ |
else |
printf("Information, too many Information flags: no more reported to log either\n"); |
m++; |
fprintf(ficlog,"Information, too many Information flags: no more reported to log either\n"); |
|
firsthree++; |
|
}else{ |
|
firsthree++; |
|
} |
|
mw[++mi][i]=m; /* Valid transition with unknown status */ |
|
mli=m; |
|
} |
|
if(s[m][i]==-2){ /* Vital status is really unknown */ |
|
nbwarn++; |
|
if((int)anint[m][i] == 9999){ /* Has the vital status really been verified?not a transition */ |
|
printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m); |
|
} |
|
break; |
|
} |
|
break; |
|
#endif |
|
}/* End m >= lastpass */ |
}/* end while */ |
}/* end while */ |
|
|
|
/* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */ |
/* After last pass */ |
/* After last pass */ |
|
/* Treating death states */ |
if (s[m][i] > nlstate){ /* In a death state */ |
if (s[m][i] > nlstate){ /* In a death state */ |
|
/* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */ |
|
/* } */ |
mi++; /* Death is another wave */ |
mi++; /* Death is another wave */ |
/* if(mi==0) never been interviewed correctly before death */ |
/* if(mi==0) never been interviewed correctly before death */ |
/* Only death is a correct wave */ |
/* Only death is a correct wave */ |
mw[mi][i]=m; |
mw[mi][i]=m; |
}else if ((int) andc[i] != 9999) { /* Status is either death or negative. A death occured after lastpass, we can't take it into account because of potential bias */ |
} /* else not in a death state */ |
/* m++; */ |
#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE |
/* mi++; */ |
else if ((int) andc[i] != 9999) { /* Date of death is known */ |
/* s[m][i]=nlstate+1; /\* We are setting the status to the last of non live state *\/ */ |
|
/* mw[mi][i]=m; */ |
|
nberr++; |
|
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
if ((int)anint[m][i]!= 9999) { /* date of last interview is known */ |
if(firstwo==0){ |
if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* month of death occured before last wave month and status should have been death instead of -1 */ |
printf("Error! Death for individual %ld line=%d occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
nbwarn++; |
firstwo=1; |
if(firstfiv==0){ |
} |
printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
firstfiv=1; |
}else{ /* end date of interview is known */ |
}else{ |
/* death is known but not confirmed by death status at any wave */ |
fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
if(firstfour==0){ |
} |
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
s[m][i]=nlstate+1; /* Fixing the status as death. Be careful if multiple death states */ |
firstfour=1; |
}else{ /* Month of Death occured afer last wave month, potential bias */ |
} |
nberr++; |
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m ); |
if(firstwo==0){ |
|
printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
firstwo=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
} |
|
}else{ /* if date of interview is unknown */ |
|
/* death is known but not confirmed by death status at any wave */ |
|
if(firstfour==0){ |
|
printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
|
firstfour=1; |
|
} |
|
fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m ); |
} |
} |
} |
} /* end if date of death is known */ |
wav[i]=mi; |
#endif |
|
wav[i]=mi; /* mi should be the last effective wave (or mli), */ |
|
/* wav[i]=mw[mi][i]; */ |
if(mi==0){ |
if(mi==0){ |
nbwarn++; |
nbwarn++; |
if(first==0){ |
if(first==0){ |
printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i); |
printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i); |
first=1; |
first=1; |
} |
} |
if(first==1){ |
if(first==1){ |
fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i); |
fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i); |
} |
} |
} /* end mi==0 */ |
} /* end mi==0 */ |
} /* End individuals */ |
} /* End individuals */ |
/* wav and mw are no more changed */ |
/* wav and mw are no more changed */ |
|
|
|
printf("Information, you have to check %d informations which haven't been logged!\n",firsthree); |
|
fprintf(ficlog,"Information, you have to check %d informations which haven't been logged!\n",firsthree); |
|
|
|
|
for(i=1; i<=imx; i++){ |
for(i=1; i<=imx; i++){ |
for(mi=1; mi<wav[i];mi++){ |
for(mi=1; mi<wav[i];mi++){ |
if (stepm <=0) |
if (stepm <=0) |
dh[mi][i]=1; |
dh[mi][i]=1; |
else{ |
else{ |
if (s[mw[mi+1][i]][i] > nlstate) { /* A death */ |
if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */ |
if (agedc[i] < 2*AGESUP) { |
if (agedc[i] < 2*AGESUP) { |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); |
if(j==0) j=1; /* Survives at least one month after exam */ |
if(j==0) j=1; /* Survives at least one month after exam */ |
else if(j<0){ |
else if(j<0){ |
nberr++; |
nberr++; |
printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld (around line %d) who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
j=1; /* Temporary Dangerous patch */ |
j=1; /* Temporary Dangerous patch */ |
printf(" We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
printf(" We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld (around line %d) who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
fprintf(ficlog," We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
fprintf(ficlog," We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm); |
} |
} |
k=k+1; |
k=k+1; |
if (j >= jmax){ |
if (j >= jmax){ |
jmax=j; |
jmax=j; |
ijmax=i; |
ijmax=i; |
} |
} |
if (j <= jmin){ |
if (j <= jmin){ |
jmin=j; |
jmin=j; |
ijmin=i; |
ijmin=i; |
} |
} |
sum=sum+j; |
sum=sum+j; |
/*if (j<0) printf("j=%d num=%d \n",j,i);*/ |
/*if (j<0) printf("j=%d num=%d \n",j,i);*/ |
/* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
/* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ |
} |
} |
} |
} |
else{ |
else{ |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */ |
|
|
k=k+1; |
k=k+1; |
if (j >= jmax) { |
if (j >= jmax) { |
jmax=j; |
jmax=j; |
ijmax=i; |
ijmax=i; |
} |
} |
else if (j <= jmin){ |
else if (j <= jmin){ |
jmin=j; |
jmin=j; |
ijmin=i; |
ijmin=i; |
} |
} |
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
/*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
/*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ |
if(j<0){ |
if(j<0){ |
nberr++; |
nberr++; |
printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
printf("Error! Negative delay (%d) between waves %d and %d of individual %ld (around line %d) who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld (around line %d) who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); |
} |
} |
sum=sum+j; |
sum=sum+j; |
} |
} |
jk= j/stepm; |
jk= j/stepm; |
jl= j -jk*stepm; |
jl= j -jk*stepm; |
ju= j -(jk+1)*stepm; |
ju= j -(jk+1)*stepm; |
if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */ |
if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */ |
if(jl==0){ |
if(jl==0){ |
dh[mi][i]=jk; |
dh[mi][i]=jk; |
bh[mi][i]=0; |
bh[mi][i]=0; |
}else{ /* We want a negative bias in order to only have interpolation ie |
}else{ /* We want a negative bias in order to only have interpolation ie |
* to avoid the price of an extra matrix product in likelihood */ |
* to avoid the price of an extra matrix product in likelihood */ |
dh[mi][i]=jk+1; |
dh[mi][i]=jk+1; |
bh[mi][i]=ju; |
bh[mi][i]=ju; |
} |
} |
}else{ |
}else{ |
if(jl <= -ju){ |
if(jl <= -ju){ |
dh[mi][i]=jk; |
dh[mi][i]=jk; |
bh[mi][i]=jl; /* bias is positive if real duration |
bh[mi][i]=jl; /* bias is positive if real duration |
* is higher than the multiple of stepm and negative otherwise. |
* is higher than the multiple of stepm and negative otherwise. |
*/ |
*/ |
} |
} |
else{ |
else{ |
dh[mi][i]=jk+1; |
dh[mi][i]=jk+1; |
bh[mi][i]=ju; |
bh[mi][i]=ju; |
} |
} |
if(dh[mi][i]==0){ |
if(dh[mi][i]==0){ |
dh[mi][i]=1; /* At least one step */ |
dh[mi][i]=1; /* At least one step */ |
bh[mi][i]=ju; /* At least one step */ |
bh[mi][i]=ju; /* At least one step */ |
/* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ |
/* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ |
} |
} |
} /* end if mle */ |
} /* end if mle */ |
} |
} |
} /* end wave */ |
} /* end wave */ |
} |
} |
jmean=sum/k; |
jmean=sum/k; |
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean); |
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean); |
} |
} |
|
|
/*********** Tricode ****************************/ |
/*********** Tricode ****************************/ |
void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum) |
void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum) |
{ |
{ |
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
/**< Uses cptcovn+2*cptcovprod as the number of covariates */ |
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
/* Tvar[i]=atoi(stre); find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 |
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
* Boring subroutine which should only output nbcode[Tvar[j]][k] |
* Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2) |
* Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable |
* nbcode[Tvar[5]][1]= nbcode[2][1]=0, nbcode[2][2]=1 (usually); |
* nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually); |
*/ |
*/ |
|
|
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX; |
int modmaxcovj=0; /* Modality max of covariates j */ |
int modmaxcovj=0; /* Modality max of covariates j */ |
int cptcode=0; /* Modality max of covariates j */ |
int cptcode=0; /* Modality max of covariates j */ |
int modmincovj=0; /* Modality min of covariates j */ |
int modmincovj=0; /* Modality min of covariates j */ |
|
|
|
|
/* cptcoveff=0; */ |
/* cptcoveff=0; */ |
*cptcov=0; |
/* *cptcov=0; */ |
|
|
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */ |
|
for (k=1; k <= maxncov; k++) |
/* Loop on covariates without age and products */ |
for(j=1; j<=2; j++) |
for (j=1; j<=(cptcovs); j++) { /* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only */ |
nbcode[k][j]=0; /* Valgrind */ |
for (k=-1; k < maxncov; k++) Ndum[k]=0; |
|
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the |
/* Loop on covariates without age and products and no quantitative variable */ |
modality of this covariate Vj*/ |
for (k=1; k<=cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ |
ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
for (j=-1; (j < maxncov); j++) Ndum[j]=0; |
* If product of Vn*Vm, still boolean *: |
/* printf("Testing k=%d, cptcovt=%d\n",k, cptcovt); */ |
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
if(Dummy[k]==0 && Typevar[k] !=1 && Typevar[k] != 3 && Typevar[k] != 2){ /* Dummy covariate and not age product nor fixed product */ |
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
switch(Fixed[k]) { |
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ |
modality of the nth covariate of individual i. */ |
modmaxcovj=0; |
if (ij > modmaxcovj) |
modmincovj=0; |
modmaxcovj=ij; |
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
else if (ij < modmincovj) |
/* printf("Waiting for error tricode Tvar[%d]=%d i=%d (int)(covar[Tvar[k]][i]=%d\n",k,Tvar[k], i, (int)(covar[Tvar[k]][i])); */ |
modmincovj=ij; |
ij=(int)(covar[Tvar[k]][i]); |
if ((ij < -1) && (ij > NCOVMAX)){ |
/* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
* If product of Vn*Vm, still boolean *: |
exit(1); |
* If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables |
}else |
* 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */ |
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
/* Finds for covariate j, n=Tvar[j] of Vn . ij is the |
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
modality of the nth covariate of individual i. */ |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
if (ij > modmaxcovj) |
/* getting the maximum value of the modality of the covariate |
modmaxcovj=ij; |
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
else if (ij < modmincovj) |
female is 1, then modmaxcovj=1.*/ |
modmincovj=ij; |
} /* end for loop on individuals i */ |
if (ij <0 || ij >1 ){ |
printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
printf("ERROR, IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i); |
fprintf(ficlog," Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj); |
fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i); |
cptcode=modmaxcovj; |
fflush(ficlog); |
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
exit(1); |
/*for (i=0; i<=cptcode; i++) {*/ |
} |
for (k=modmincovj; k<=modmaxcovj; k++) { /* k=-1 ? 0 and 1*//* For each value k of the modality of model-cov j */ |
if ((ij < -1) || (ij > NCOVMAX)){ |
printf("Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX ); |
fprintf(ficlog, "Frequencies of covariates %d ie V%d with value %d: %d\n", j, Tvar[j], k, Ndum[k]); |
exit(1); |
if( Ndum[k] != 0 ){ /* Counts if nobody answered modality k ie empty modality, we skip it and reorder */ |
}else |
if( k != -1){ |
Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/ |
ncodemax[j]++; /* ncodemax[j]= Number of modalities of the j th |
/* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */ |
covariate for which somebody answered excluding |
/*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/ |
undefined. Usually 2: 0 and 1. */ |
/* getting the maximum value of the modality of the covariate |
} |
(should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and |
ncodemaxwundef[j]++; /* ncodemax[j]= Number of modalities of the j th |
female ies 1, then modmaxcovj=1. |
covariate for which somebody answered including |
*/ |
undefined. Usually 3: -1, 0 and 1. */ |
} /* end for loop on individuals i */ |
} |
printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
/* In fact ncodemax[j]=2 (dichotom. variables only) but it could be more for |
fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj); |
historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
cptcode=modmaxcovj; |
} /* Ndum[-1] number of undefined modalities */ |
/* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */ |
|
/*for (i=0; i<=cptcode; i++) {*/ |
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
for (j=modmincovj; j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */ |
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. |
printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; |
fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]); |
modmincovj=3; modmaxcovj = 7; |
if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */ |
There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; |
if( j != -1){ |
which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; |
ncodemax[k]++; /* ncodemax[k]= Number of modalities of the k th |
defining two dummy variables: variables V1_1 and V1_2. |
covariate for which somebody answered excluding |
nbcode[Tvar[j]][ij]=k; |
undefined. Usually 2: 0 and 1. */ |
nbcode[Tvar[j]][1]=0; |
} |
nbcode[Tvar[j]][2]=1; |
ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th |
nbcode[Tvar[j]][3]=2; |
covariate for which somebody answered including |
To be continued (not working yet). |
undefined. Usually 3: -1, 0 and 1. */ |
*/ |
} /* In fact ncodemax[k]=2 (dichotom. variables only) but it could be more for |
ij=0; /* ij is similar to i but can jump over null modalities */ |
* historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */ |
for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
} /* Ndum[-1] number of undefined modalities */ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
|
break; |
/* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */ |
} |
/* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */ |
ij++; |
/* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */ |
nbcode[Tvar[j]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality.*/ |
/* modmincovj=3; modmaxcovj = 7; */ |
cptcode = ij; /* New max modality for covar j */ |
/* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */ |
} /* end of loop on modality i=-1 to 1 or more */ |
/* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */ |
|
/* defining two dummy variables: variables V1_1 and V1_2.*/ |
/* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */ |
/* nbcode[Tvar[j]][ij]=k; */ |
/* /\*recode from 0 *\/ */ |
/* nbcode[Tvar[j]][1]=0; */ |
/* k is a modality. If we have model=V1+V1*sex */ |
/* nbcode[Tvar[j]][2]=1; */ |
/* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */ |
/* nbcode[Tvar[j]][3]=2; */ |
/* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */ |
/* To be continued (not working yet). */ |
/* } */ |
ij=0; /* ij is similar to i but can jump over null modalities */ |
/* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */ |
|
/* if (ij > ncodemax[j]) { */ |
/* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
/* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
/* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */ |
/* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */ |
/* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of |
/* break; */ |
* nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */ |
/* } */ |
/*, could be restored in the future */ |
/* } /\* end of loop on modality k *\/ */ |
for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/ |
} /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/ |
if (Ndum[i] == 0) { /* If nobody responded to this modality k */ |
|
break; |
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
} |
|
ij++; |
|
nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/ |
|
cptcode = ij; /* New max modality for covar j */ |
|
} /* end of loop on modality i=-1 to 1 or more */ |
|
break; |
|
case 1: /* Testing on varying covariate, could be simple and |
|
* should look at waves or product of fixed * |
|
* varying. No time to test -1, assuming 0 and 1 only */ |
|
ij=0; |
|
for(i=0; i<=1;i++){ |
|
nbcode[Tvar[k]][++ij]=i; |
|
} |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
|
} /* end dummy test */ |
|
if(Dummy[k]==1 && Typevar[k] !=1 && Typevar[k] !=3 && Fixed ==0){ /* Fixed Quantitative covariate and not age product */ |
|
for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ |
|
if(Tvar[k]<=0 || Tvar[k]>=NCOVMAX){ |
|
printf("Error k=%d \n",k); |
|
exit(1); |
|
} |
|
if(isnan(covar[Tvar[k]][i])){ |
|
printf("ERROR, IMaCh doesn't treat fixed quantitative covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i); |
|
fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i); |
|
fflush(ficlog); |
|
exit(1); |
|
} |
|
} |
|
} /* end Quanti */ |
|
} /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/ |
|
|
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
for (k=-1; k< maxncov; k++) Ndum[k]=0; |
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
/* Look at fixed dummy (single or product) covariates to check empty modalities */ |
ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ |
for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ |
Ndum[ij]++; /* Might be supersed V1 + V1*age */ |
/* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ |
} |
ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ |
|
Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */ |
ij=0; |
/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, {2, 1, 1, 1, 2, 1, 1, 0, 0} */ |
for (i=0; i<= maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
} /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */ |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
if((Ndum[i]!=0) && (i<=ncovcol)){ |
ij=0; |
ij++; |
/* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
for (k=1; k<= cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ |
Tvaraff[ij]=i; /*For printing (unclear) */ |
/* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */ |
}else{ |
/*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/ |
/* Tvaraff[ij]=0; */ |
/* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */ |
} |
if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy simple and non empty in the model */ |
} |
/* Typevar[k] =0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
/* ij--; */ |
/* Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product*/ |
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
/* If product not in single variable we don't print results */ |
*cptcov=ij; /*Number of total covariates*/ |
/*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/ |
|
++ij;/* V5 + V4 + V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V1, *//* V5 quanti, V2 quanti, V4, V3, V1 dummies */ |
} |
/* k= 1 2 3 4 5 6 7 8 9 */ |
|
/* Tvar[k]= 5 4 3 6 5 2 7 1 1 */ |
|
/* ij 1 2 3 */ |
|
/* Tvaraff[ij]= 4 3 1 */ |
|
/* Tmodelind[ij]=2 3 9 */ |
|
/* TmodelInvind[ij]=2 1 1 */ |
|
Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/ |
|
Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */ |
|
TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */ |
|
if(Fixed[k]!=0) |
|
anyvaryingduminmodel=1; |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */ |
|
/* Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */ |
|
/* Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */ |
|
/* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */ |
|
/* Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */ |
|
} |
|
} /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */ |
|
/* ij--; */ |
|
/* cptcoveff=ij; /\*Number of total covariates*\/ */ |
|
*cptcov=ij; /* cptcov= Number of total real effective simple dummies (fixed or time arying) effective (used as cptcoveff in other functions) |
|
* because they can be excluded from the model and real |
|
* if in the model but excluded because missing values, but how to get k from ij?*/ |
|
for(j=ij+1; j<= cptcovt; j++){ |
|
Tvaraff[j]=0; |
|
Tmodelind[j]=0; |
|
} |
|
for(j=ntveff+1; j<= cptcovt; j++){ |
|
TmodelInvind[j]=0; |
|
} |
|
/* To be sorted */ |
|
; |
|
} |
|
|
|
|
/*********** Health Expectancies ****************/ |
/*********** Health Expectancies ****************/ |
|
|
void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] ) |
void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres ) |
|
|
{ |
{ |
/* Health expectancies, no variances */ |
/* Health expectancies, no variances */ |
|
/* cij is the combination in the list of combination of dummy covariates */ |
|
/* strstart is a string of time at start of computing */ |
int i, j, nhstepm, hstepm, h, nstepm; |
int i, j, nhstepm, hstepm, h, nstepm; |
int nhstepma, nstepma; /* Decreasing with age */ |
int nhstepma, nstepma; /* Decreasing with age */ |
double age, agelim, hf; |
double age, agelim, hf; |
double ***p3mat; |
double ***p3mat; |
double eip; |
double eip; |
|
|
pstamp(ficreseij); |
/* pstamp(ficreseij); */ |
fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n"); |
fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n"); |
fprintf(ficreseij,"# Age"); |
fprintf(ficreseij,"# Age"); |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
Line 4482 void evsij(double ***eij, double x[], in
|
Line 8323 void evsij(double ***eij, double x[], in
|
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. |
nhstepm is the number of hstepm from age to agelim |
nhstepm is the number of hstepm from age to agelim |
nstepm is the number of stepm from age to agelin. |
nstepm is the number of stepm from age to agelin. |
Look at hpijx to understand the reason of that which relies in memory size |
Look at hpijx to understand the reason which relies in memory size consideration |
and note for a fixed period like estepm months */ |
and note for a fixed period like estepm months */ |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
/* We decided (b) to get a life expectancy respecting the most precise curvature of the |
survival function given by stepm (the optimization length). Unfortunately it |
survival function given by stepm (the optimization length). Unfortunately it |
Line 4513 void evsij(double ***eij, double x[], in
|
Line 8354 void evsij(double ***eij, double x[], in
|
/* If stepm=6 months */ |
/* If stepm=6 months */ |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
/* Computed by stepm unit matrices, product of hstepma matrices, stored |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */ |
|
/* printf("HELLO evsij Entering hpxij age=%d cij=%d hstepm=%d x[1]=%f nres=%d\n",(int) age, cij, hstepm, x[1], nres); */ |
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres); |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
|
|
Line 4549 void evsij(double ***eij, double x[], in
|
Line 8390 void evsij(double ***eij, double x[], in
|
|
|
} |
} |
|
|
void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] ) |
void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres ) |
|
|
{ |
{ |
/* Covariances of health expectancies eij and of total life expectancies according |
/* Covariances of health expectancies eij and of total life expectancies according |
to initial status i, ei. . |
to initial status i, ei. . |
*/ |
*/ |
|
/* Very time consuming function, but already optimized with precov */ |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji; |
int nhstepma, nstepma; /* Decreasing with age */ |
int nhstepma, nstepma; /* Decreasing with age */ |
double age, agelim, hf; |
double age, agelim, hf; |
Line 4662 void cvevsij(double ***eij, double x[],
|
Line 8504 void cvevsij(double ***eij, double x[],
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xm[i] = x[i] - (i==theta ?delti[theta]:0); |
xm[i] = x[i] - (i==theta ?delti[theta]:0); |
} |
} |
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij); |
hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres); |
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij); |
hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres); |
|
|
for(j=1; j<= nlstate; j++){ |
for(j=1; j<= nlstate; j++){ |
for(i=1; i<=nlstate; i++){ |
for(i=1; i<=nlstate; i++){ |
Line 4702 void cvevsij(double ***eij, double x[],
|
Line 8544 void cvevsij(double ***eij, double x[],
|
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf; |
} |
} |
} |
} |
|
/* if((int)age ==50){ */ |
|
/* printf(" age=%d cij=%d nres=%d varhe[%d][%d]=%f ",(int)age, cij, nres, 1,2,varhe[1][2]); */ |
|
/* } */ |
/* Computing expectancies */ |
/* Computing expectancies */ |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij); |
hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate;j++) |
for(j=1; j<=nlstate;j++) |
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){ |
Line 4713 void cvevsij(double ***eij, double x[],
|
Line 8557 void cvevsij(double ***eij, double x[],
|
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/ |
|
|
} |
} |
|
|
|
/* Standard deviation of expectancies ij */ |
fprintf(ficresstdeij,"%3.0f",age ); |
fprintf(ficresstdeij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
eip=0.; |
eip=0.; |
Line 4728 void cvevsij(double ***eij, double x[],
|
Line 8573 void cvevsij(double ***eij, double x[],
|
} |
} |
fprintf(ficresstdeij,"\n"); |
fprintf(ficresstdeij,"\n"); |
|
|
|
/* Variance of expectancies ij */ |
fprintf(ficrescveij,"%3.0f",age ); |
fprintf(ficrescveij,"%3.0f",age ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate;j++){ |
for(j=1; j<=nlstate;j++){ |
Line 4759 void cvevsij(double ***eij, double x[],
|
Line 8605 void cvevsij(double ***eij, double x[],
|
} |
} |
|
|
/************ Variance ******************/ |
/************ Variance ******************/ |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[]) |
void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres) |
{ |
{ |
/* Variance of health expectancies */ |
/** Computes the matrix of variance covariance of health expectancies e.j= sum_i w_i e_ij where w_i depends of popbased, |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/ |
* either cross-sectional or implied. |
/* double **newm;*/ |
* return vareij[i][j][(int)age]=cov(e.i,e.j)=sum_h sum_k trgrad(h_p.i) V(theta) grad(k_p.k) Equation 20 |
/* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/ |
* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl); |
|
* double **newm; |
|
* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) |
|
*/ |
|
|
/* int movingaverage(); */ |
/* int movingaverage(); */ |
double **dnewm,**doldm; |
double **dnewm,**doldm; |
double **dnewmp,**doldmp; |
double **dnewmp,**doldmp; |
int i, j, nhstepm, hstepm, h, nstepm ; |
int i, j, nhstepm, hstepm, h, nstepm ; |
|
int first=0; |
int k; |
int k; |
double *xp; |
double *xp; |
double **gp, **gm; /* for var eij */ |
double **gp, **gm; /**< for var eij */ |
double ***gradg, ***trgradg; /*for var eij */ |
double ***gradg, ***trgradg; /**< for var eij */ |
double **gradgp, **trgradgp; /* for var p point j */ |
double **gradgp, **trgradgp; /**< for var p point j */ |
double *gpp, *gmp; /* for var p point j */ |
double *gpp, *gmp; /**< for var p point j */ |
double **varppt; /* for var p point j nlstate to nlstate+ndeath */ |
double **varppt; /**< for var p.3 p.death nlstate+1 to nlstate+ndeath */ |
double ***p3mat; |
double ***p3mat; |
double age,agelim, hf; |
double age,agelim, hf; |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
Line 4816 void cvevsij(double ***eij, double x[],
|
Line 8666 void cvevsij(double ***eij, double x[],
|
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
pstamp(ficresprobmorprev); |
pstamp(ficresprobmorprev); |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
|
fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies"); |
|
|
|
/* We use TinvDoQresult[nres][resultmodel[nres][j] we sort according to the equation model and the resultline: it is a choice */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ /\* To be done*\/ */ |
|
/* fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
|
for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ /* To be done*/ |
|
/* fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); */ |
|
fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
} |
|
/* for(j=1;j<=cptcoveff;j++) */ |
|
/* fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); */ |
|
fprintf(ficresprobmorprev,"\n"); |
|
|
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
fprintf(ficresprobmorprev," p.%-d SE",j); |
fprintf(ficresprobmorprev," p.%-d SE",j); |
Line 4829 void cvevsij(double ***eij, double x[],
|
Line 8693 void cvevsij(double ***eij, double x[],
|
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
/* fprintf(fichtm, "#Local time at start: %s", strstart);*/ |
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
/* } */ |
|
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); /* In fact, currently a double */ |
pstamp(ficresvij); |
pstamp(ficresvij); |
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are "); |
if(popbased==1) |
if(popbased==1) |
Line 4884 void cvevsij(double ***eij, double x[],
|
Line 8748 void cvevsij(double ***eij, double x[],
|
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
|
/**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
* returns into prlim . |
|
*/ |
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
|
|
|
/* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */ |
if (popbased==1) { |
if (popbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
Line 4896 void cvevsij(double ***eij, double x[],
|
Line 8763 void cvevsij(double ***eij, double x[],
|
prlim[i][i]=mobaverage[(int)age][i][ij]; |
prlim[i][i]=mobaverage[(int)age][i][ij]; |
} |
} |
} |
} |
|
/**< Computes the shifted plus (gp) transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h. |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); /* Returns p3mat[i][j][h] for h=1 to nhstepm */ |
*/ |
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); /* Returns p3mat[i][j][h] for h=0 to nhstepm */ |
|
/**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability |
|
* at horizon h in state j including mortality. |
|
*/ |
for(j=1; j<= nlstate; j++){ |
for(j=1; j<= nlstate; j++){ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
for(i=1, gp[h][j]=0.;i<=nlstate;i++) |
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
gp[h][j] += prlim[i][i]*p3mat[i][j][h]; /* gp[h][j]= w_i h_pij */ |
} |
} |
} |
} |
/* Next for computing probability of death (h=1 means |
/* Next for computing shifted+ probability of death (h=1 means |
computed over hstepm matrices product = hstepm*stepm months) |
computed over hstepm matrices product = hstepm*stepm months) |
as a weighted average of prlim. |
as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 . |
*/ |
*/ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ /* Currently only once for theta plus p.3(age) Sum_i wi pi3*/ |
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
for(i=1,gpp[j]=0.; i<= nlstate; i++) |
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
} |
} |
/* end probability of death */ |
|
|
/* Again with minus shift */ |
|
|
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
|
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres); |
|
|
if (popbased==1) { |
if (popbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
Line 4929 void cvevsij(double ***eij, double x[],
|
Line 8801 void cvevsij(double ***eij, double x[],
|
} |
} |
} |
} |
|
|
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); /* Still minus */ |
|
|
for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */ |
for(j=1; j<= nlstate; j++){ /* gm[h][j]= Sum_i of wi * pij = h_p.j */ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
for(i=1, gm[h][j]=0.;i<=nlstate;i++) |
for(i=1, gm[h][j]=0.;i<=nlstate;i++) |
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
Line 4939 void cvevsij(double ***eij, double x[],
|
Line 8811 void cvevsij(double ***eij, double x[],
|
} |
} |
/* This for computing probability of death (h=1 means |
/* This for computing probability of death (h=1 means |
computed over hstepm matrices product = hstepm*stepm months) |
computed over hstepm matrices product = hstepm*stepm months) |
as a weighted average of prlim. |
as a weighted average of prlim. j is death. gmp[3]=sum_i w_i*p_i3=p.3 minus theta |
*/ |
*/ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ /* Currently only once theta_minus p.3=Sum_i wi pi3*/ |
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
for(i=1,gmp[j]=0.; i<= nlstate; i++) |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
} |
} |
/* end probability of death */ |
/* end shifting computations */ |
|
|
for(j=1; j<= nlstate; j++) /* vareij */ |
/**< Computing gradient of p.j matrix at horizon h and still for one parameter of vector theta |
|
* equation 31 and 32 |
|
*/ |
|
for(j=1; j<= nlstate; j++) /* computes grad p.j(x, over each h) where p.j is Sum_i w_i*pij(x over h) |
|
* equation 24 */ |
for(h=0; h<=nhstepm; h++){ |
for(h=0; h<=nhstepm; h++){ |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
} |
} |
|
/**< Gradient of overall mortality p.3 (or p.death) |
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
*/ |
|
for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* computes grad of p.3 from wi+pi3 grad p.3 (theta) */ |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
} |
} |
|
|
} /* End theta */ |
} /* End theta */ |
|
|
|
/* We got the gradient matrix for each theta and each state j of gradg(h]theta][j)=grad(_hp.j(theta) */ |
|
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); |
|
|
trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */ |
for(h=0; h<=nhstepm; h++) /* veij */ /* computes the transposed of grad (_hp.j(theta)*/ |
|
|
for(h=0; h<=nhstepm; h++) /* veij */ |
|
for(j=1; j<=nlstate;j++) |
for(j=1; j<=nlstate;j++) |
for(theta=1; theta <=npar; theta++) |
for(theta=1; theta <=npar; theta++) |
trgradg[h][j][theta]=gradg[h][theta][j]; |
trgradg[h][j][theta]=gradg[h][theta][j]; |
|
|
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
for(j=nlstate+1; j<=nlstate+ndeath;j++) /* computes transposed of grad p.3 (theta)*/ |
for(theta=1; theta <=npar; theta++) |
for(theta=1; theta <=npar; theta++) |
trgradgp[j][theta]=gradgp[theta][j]; |
trgradgp[j][theta]=gradgp[theta][j]; |
|
/**< as well as its transposed matrix |
|
*/ |
|
|
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
for(j=1;j<=nlstate;j++) |
for(j=1;j<=nlstate;j++) |
vareij[i][j][(int)age] =0.; |
vareij[i][j][(int)age] =0.; |
|
|
|
/* Computing trgradg by matcov by gradg at age and summing over h |
|
* and k (nhstepm) formula 32 of article |
|
* Lievre-Brouard-Heathcote so that for each j, computes the cov(e.j,e.k) (formula 31). |
|
* for given h and k computes trgradg[h](i,j) matcov (theta) gradg(k)(i,j) into vareij[i][j] which is |
|
cov(e.i,e.j) and sums on h and k |
|
* including the covariances. |
|
*/ |
|
|
for(h=0;h<=nhstepm;h++){ |
for(h=0;h<=nhstepm;h++){ |
for(k=0;k<=nhstepm;k++){ |
for(k=0;k<=nhstepm;k++){ |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]); |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
for(j=1;j<=nlstate;j++) |
for(j=1;j<=nlstate;j++) |
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
vareij[i][j][(int)age] += doldm[i][j]*hf*hf; /* This is vareij=sum_h sum_k trgrad(h_pij) V(theta) grad(k_pij) |
|
including the covariances of e.j */ |
} |
} |
} |
} |
|
|
/* pptj */ |
/* Mortality: pptj is p.3 or p.death = trgradgp by cov by gradgp, variance of |
|
* p.3=1-p..=1-sum i p.i overall mortality computed directly because |
|
* we compute the grad (wix pijx) instead of grad (pijx),even if |
|
* wix is independent of theta. |
|
*/ |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
for(j=nlstate+1;j<=nlstate+ndeath;j++) |
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
for(i=nlstate+1;i<=nlstate+ndeath;i++) |
varppt[j][i]=doldmp[j][i]; |
varppt[j][i]=doldmp[j][i]; /* This is the variance of p.3 */ |
/* end ppptj */ |
/* end ppptj */ |
/* x centered again */ |
/* x centered again */ |
|
|
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres); |
|
|
if (popbased==1) { |
if (popbased==1) { |
if(mobilav ==0){ |
if(mobilav ==0){ |
Line 5010 void cvevsij(double ***eij, double x[],
|
Line 8902 void cvevsij(double ***eij, double x[],
|
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
computed over hstepm (estepm) matrices product = hstepm*stepm months) |
as a weighted average of prlim. |
as a weighted average of prlim. |
*/ |
*/ |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres); |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(j=nlstate+1;j<=nlstate+ndeath;j++){ |
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
for(i=1,gmp[j]=0.;i<= nlstate; i++) |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
gmp[j] += prlim[i][i]*p3mat[i][j][1]; /* gmp[j] is p.3 */ |
} |
} |
/* end probability of death */ |
/* end probability of death */ |
|
|
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j])); |
fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));/* p.3 (STD p.3) */ |
for(i=1; i<=nlstate;i++){ |
for(i=1; i<=nlstate;i++){ |
fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); |
fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]); /* wi, pi3 */ |
} |
} |
} |
} |
fprintf(ficresprobmorprev,"\n"); |
fprintf(ficresprobmorprev,"\n"); |
Line 5073 void cvevsij(double ***eij, double x[],
|
Line 8965 void cvevsij(double ***eij, double x[],
|
} /* end varevsij */ |
} /* end varevsij */ |
|
|
/************ Variance of prevlim ******************/ |
/************ Variance of prevlim ******************/ |
void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[]) |
void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres) |
{ |
{ |
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
/* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
double **dnewm,**doldm; |
double **dnewmpar,**doldm; |
int i, j, nhstepm, hstepm; |
int i, j, nhstepm, hstepm; |
double *xp; |
double *xp; |
double *gp, *gm; |
double *gp, *gm; |
Line 5088 void cvevsij(double ***eij, double x[],
|
Line 8980 void cvevsij(double ***eij, double x[],
|
int theta; |
int theta; |
|
|
pstamp(ficresvpl); |
pstamp(ficresvpl); |
fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n"); |
fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n"); |
fprintf(ficresvpl,"# Age"); |
fprintf(ficresvpl,"# Age "); |
|
if(nresult >=1) |
|
fprintf(ficresvpl," Result# "); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
fprintf(ficresvpl," %1d-%1d",i,i); |
fprintf(ficresvpl," %1d-%1d",i,i); |
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
|
|
xp=vector(1,npar); |
xp=vector(1,npar); |
dnewm=matrix(1,nlstate,1,npar); |
dnewmpar=matrix(1,nlstate,1,npar); |
doldm=matrix(1,nlstate,1,nlstate); |
doldm=matrix(1,nlstate,1,nlstate); |
|
|
hstepm=1*YEARM; /* Every year of age */ |
hstepm=1*YEARM; /* Every year of age */ |
Line 5115 void cvevsij(double ***eij, double x[],
|
Line 9009 void cvevsij(double ***eij, double x[],
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
for(i=1; i<=npar; i++){ /* Computes gradient */ |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
} |
} |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
/* prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */ |
else |
/* else */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gp[i] = prlim[i][i]; |
gp[i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
mgp[theta][i] = prlim[i][i]; |
} |
} |
for(i=1; i<=npar; i++) /* Computes gradient */ |
for(i=1; i<=npar; i++) /* Computes gradient */ |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) |
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
/* prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */ |
else |
/* else */ |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij); |
prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); |
for(i=1;i<=nlstate;i++){ |
for(i=1;i<=nlstate;i++){ |
gm[i] = prlim[i][i]; |
gm[i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
mgm[theta][i] = prlim[i][i]; |
Line 5165 void cvevsij(double ***eij, double x[],
|
Line 9059 void cvevsij(double ***eij, double x[],
|
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] =0.; |
varpl[i][(int)age] =0.; |
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
}else{ |
}else{ |
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg); |
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
} |
} |
for(i=1;i<=nlstate;i++) |
for(i=1;i<=nlstate;i++) |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
fprintf(ficresvpl,"%.0f ",age ); |
fprintf(ficresvpl,"%.0f ",age ); |
for(i=1; i<=nlstate;i++) |
if(nresult >=1) |
|
fprintf(ficresvpl,"%d ",nres ); |
|
for(i=1; i<=nlstate;i++){ |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age])); |
|
/* for(j=1;j<=nlstate;j++) */ |
|
/* fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */ |
|
} |
fprintf(ficresvpl,"\n"); |
fprintf(ficresvpl,"\n"); |
free_vector(gp,1,nlstate); |
free_vector(gp,1,nlstate); |
free_vector(gm,1,nlstate); |
free_vector(gm,1,nlstate); |
Line 5188 void cvevsij(double ***eij, double x[],
|
Line 9087 void cvevsij(double ***eij, double x[],
|
|
|
free_vector(xp,1,npar); |
free_vector(xp,1,npar); |
free_matrix(doldm,1,nlstate,1,npar); |
free_matrix(doldm,1,nlstate,1,npar); |
free_matrix(dnewm,1,nlstate,1,nlstate); |
free_matrix(dnewmpar,1,nlstate,1,nlstate); |
|
|
|
} |
|
|
|
|
|
/************ Variance of backprevalence limit ******************/ |
|
void varbrevlim(char fileresvbl[], FILE *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres) |
|
{ |
|
/* Variance of backward prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/ |
|
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/ |
|
|
|
double **dnewmpar,**doldm; |
|
int i, j, nhstepm, hstepm; |
|
double *xp; |
|
double *gp, *gm; |
|
double **gradg, **trgradg; |
|
double **mgm, **mgp; |
|
double age,agelim; |
|
int theta; |
|
|
|
pstamp(ficresvbl); |
|
fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n"); |
|
fprintf(ficresvbl,"# Age "); |
|
if(nresult >=1) |
|
fprintf(ficresvbl," Result# "); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvbl," %1d-%1d",i,i); |
|
fprintf(ficresvbl,"\n"); |
|
|
|
xp=vector(1,npar); |
|
dnewmpar=matrix(1,nlstate,1,npar); |
|
doldm=matrix(1,nlstate,1,nlstate); |
|
|
|
hstepm=1*YEARM; /* Every year of age */ |
|
hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ |
|
agelim = AGEINF; |
|
for (age=fage; age>=bage; age --){ /* If stepm=6 months */ |
|
nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
if (stepm >= YEARM) hstepm=1; |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
gradg=matrix(1,npar,1,nlstate); |
|
mgp=matrix(1,npar,1,nlstate); |
|
mgm=matrix(1,npar,1,nlstate); |
|
gp=vector(1,nlstate); |
|
gm=vector(1,nlstate); |
|
|
|
for(theta=1; theta <=npar; theta++){ |
|
for(i=1; i<=npar; i++){ /* Computes gradient */ |
|
xp[i] = x[i] + (i==theta ?delti[theta]:0); |
|
} |
|
if(mobilavproj > 0 ) |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
else |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
for(i=1;i<=nlstate;i++){ |
|
gp[i] = bprlim[i][i]; |
|
mgp[theta][i] = bprlim[i][i]; |
|
} |
|
for(i=1; i<=npar; i++) /* Computes gradient */ |
|
xp[i] = x[i] - (i==theta ?delti[theta]:0); |
|
if(mobilavproj > 0 ) |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
else |
|
bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres); |
|
for(i=1;i<=nlstate;i++){ |
|
gm[i] = bprlim[i][i]; |
|
mgm[theta][i] = bprlim[i][i]; |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta]; |
|
/* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */ |
|
} /* End theta */ |
|
|
|
trgradg =matrix(1,nlstate,1,npar); |
|
|
|
for(j=1; j<=nlstate;j++) |
|
for(theta=1; theta <=npar; theta++) |
|
trgradg[j][theta]=gradg[theta][j]; |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\nmgm mgp %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf(" %d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
/* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */ |
|
/* printf("\n gradg %d ",(int)age); */ |
|
/* for(j=1; j<=nlstate;j++){ */ |
|
/* printf("%d ",j); */ |
|
/* for(theta=1; theta <=npar; theta++) */ |
|
/* printf("%d %lf ",theta,gradg[theta][j]); */ |
|
/* printf("\n "); */ |
|
/* } */ |
|
/* } */ |
|
|
|
for(i=1;i<=nlstate;i++) |
|
varbpl[i][(int)age] =0.; |
|
if((int)age==79 ||(int)age== 80 ||(int)age== 81){ |
|
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
|
}else{ |
|
matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov); |
|
matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg); |
|
} |
|
for(i=1;i<=nlstate;i++) |
|
varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */ |
|
|
|
fprintf(ficresvbl,"%.0f ",age ); |
|
if(nresult >=1) |
|
fprintf(ficresvbl,"%d ",nres ); |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age])); |
|
fprintf(ficresvbl,"\n"); |
|
free_vector(gp,1,nlstate); |
|
free_vector(gm,1,nlstate); |
|
free_matrix(mgm,1,npar,1,nlstate); |
|
free_matrix(mgp,1,npar,1,nlstate); |
|
free_matrix(gradg,1,npar,1,nlstate); |
|
free_matrix(trgradg,1,nlstate,1,npar); |
|
} /* End age */ |
|
|
|
free_vector(xp,1,npar); |
|
free_matrix(doldm,1,nlstate,1,npar); |
|
free_matrix(dnewmpar,1,nlstate,1,nlstate); |
|
|
} |
} |
|
|
Line 5199 void varprob(char optionfilefiname[], do
|
Line 9223 void varprob(char optionfilefiname[], do
|
int k2, l2, j1, z1; |
int k2, l2, j1, z1; |
int k=0, l; |
int k=0, l; |
int first=1, first1, first2; |
int first=1, first1, first2; |
|
int nres=0; /* New */ |
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp; |
double **dnewm,**doldm; |
double **dnewm,**doldm; |
double *xp; |
double *xp; |
Line 5214 void varprob(char optionfilefiname[], do
|
Line 9239 void varprob(char optionfilefiname[], do
|
double ***varpij; |
double ***varpij; |
|
|
strcpy(fileresprob,"PROB_"); |
strcpy(fileresprob,"PROB_"); |
strcat(fileresprob,fileres); |
strcat(fileresprob,fileresu); |
if((ficresprob=fopen(fileresprob,"w"))==NULL) { |
if((ficresprob=fopen(fileresprob,"w"))==NULL) { |
printf("Problem with resultfile: %s\n", fileresprob); |
printf("Problem with resultfile: %s\n", fileresprob); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); |
fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob); |
Line 5268 void varprob(char optionfilefiname[], do
|
Line 9293 void varprob(char optionfilefiname[], do
|
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
|
|
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov); |
fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov); |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
and drawn. It helps understanding how is the covariance between two incidences.\ |
Line 5286 To be simple, these graphs help to under
|
Line 9311 To be simple, these graphs help to under
|
tj = (int) pow(2,cptcoveff); |
tj = (int) pow(2,cptcoveff); |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
if (cptcovn<1) {tj=1;ncodemax[1]=1;} |
j1=0; |
j1=0; |
for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates */ |
|
|
for(nres=1;nres <=nresult; nres++){ /* For each resultline */ |
|
for(j1=1; j1<=tj;j1++){ /* For any combination of dummy covariates, fixed and varying */ |
|
/* printf("Varprob TKresult[nres]=%d j1=%d, nres=%d, cptcovn=%d, cptcoveff=%d tj=%d cptcovs=%d\n", TKresult[nres], j1, nres, cptcovn, cptcoveff, tj, cptcovs); */ |
|
if(tj != 1 && TKresult[nres]!= j1) |
|
continue; |
|
|
|
/* for(j1=1; j1<=tj;j1++){ /\* For each valid combination of covariates or only once*\/ */ |
|
/* for(nres=1;nres <=1; nres++){ /\* For each resultline *\/ */ |
|
/* /\* for(nres=1;nres <=nresult; nres++){ /\\* For each resultline *\\/ *\/ */ |
if (cptcovn>0) { |
if (cptcovn>0) { |
fprintf(ficresprob, "\n#********** Variable "); |
fprintf(ficresprob, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprob, "**********\n#\n"); |
|
fprintf(ficresprobcov, "\n#********** Variable "); |
fprintf(ficresprobcov, "\n#********** Variable "); |
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
fprintf(ficgp, "\n#********** Variable "); |
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
fprintf(ficresprobcor, "\n#********** Variable "); |
|
|
|
/* Including quantitative variables of the resultline to be done */ |
|
for (z1=1; z1<=cptcovs; z1++){ /* Loop on each variable of this resultline */ |
|
/* printf("Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); */ |
|
fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); |
|
/* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */ |
|
if(Dummy[modelresult[nres][z1]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to z1 in resultline */ |
|
if(Fixed[modelresult[nres][z1]]==0){ /* Fixed referenced to model equation */ |
|
fprintf(ficresprob,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficresprobcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficgp,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(fichtmcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficresprobcor,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficresprob,"fixed "); |
|
fprintf(ficresprobcov,"fixed "); |
|
fprintf(ficgp,"fixed "); |
|
fprintf(fichtmcov,"fixed "); |
|
fprintf(ficresprobcor,"fixed "); |
|
}else{ |
|
fprintf(ficresprob,"varyi "); |
|
fprintf(ficresprobcov,"varyi "); |
|
fprintf(ficgp,"varyi "); |
|
fprintf(fichtmcov,"varyi "); |
|
fprintf(ficresprobcor,"varyi "); |
|
} |
|
}else if(Dummy[modelresult[nres][z1]]==1){ /* Quanti variable */ |
|
/* For each selected (single) quantitative value */ |
|
fprintf(ficresprob," V%d=%lg ",Tvqresult[nres][z1],Tqresult[nres][z1]); |
|
if(Fixed[modelresult[nres][z1]]==0){ /* Fixed */ |
|
fprintf(ficresprob,"fixed "); |
|
fprintf(ficresprobcov,"fixed "); |
|
fprintf(ficgp,"fixed "); |
|
fprintf(fichtmcov,"fixed "); |
|
fprintf(ficresprobcor,"fixed "); |
|
}else{ |
|
fprintf(ficresprob,"varyi "); |
|
fprintf(ficresprobcov,"varyi "); |
|
fprintf(ficgp,"varyi "); |
|
fprintf(fichtmcov,"varyi "); |
|
fprintf(ficresprobcor,"varyi "); |
|
} |
|
}else{ |
|
printf("Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
fprintf(ficlog,"Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
exit(1); |
|
} |
|
} /* End loop on variable of this resultline */ |
|
/* for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); */ |
|
fprintf(ficresprob, "**********\n#\n"); |
fprintf(ficresprobcov, "**********\n#\n"); |
fprintf(ficresprobcov, "**********\n#\n"); |
|
|
fprintf(ficgp, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficgp, "**********\n#\n"); |
fprintf(ficgp, "**********\n#\n"); |
|
|
|
|
fprintf(fichtmcov, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">"); |
|
|
fprintf(ficresprobcor, "\n#********** Variable "); |
|
for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]); |
|
fprintf(ficresprobcor, "**********\n#"); |
fprintf(ficresprobcor, "**********\n#"); |
if(invalidvarcomb[j1]){ |
if(invalidvarcomb[j1]){ |
fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); |
fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); |
Line 5317 To be simple, these graphs help to under
|
Line 9390 To be simple, these graphs help to under
|
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
gp=vector(1,(nlstate)*(nlstate+ndeath)); |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
gm=vector(1,(nlstate)*(nlstate+ndeath)); |
for (age=bage; age<=fage; age ++){ |
for (age=bage; age<=fage; age ++){ /* Fo each age we feed the model equation with covariates, using precov as in hpxij() ? */ |
cov[2]=age; |
cov[2]=age; |
if(nagesqr==1) |
if(nagesqr==1) |
cov[3]= age*age; |
cov[3]= age*age; |
for (k=1; k<=cptcovn;k++) { |
/* New code end of combination but for each resultline */ |
cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; |
for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ |
/*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4 |
if(Typevar[k1]==1 || Typevar[k1] ==3){ /* A product with age */ |
* 1 1 1 1 1 |
cov[2+nagesqr+k1]=precov[nres][k1]*cov[2]; |
* 2 2 1 1 1 |
}else{ |
* 3 1 2 1 1 |
cov[2+nagesqr+k1]=precov[nres][k1]; |
*/ |
} |
/* nbcode[1][1]=0 nbcode[1][2]=1;*/ |
}/* End of loop on model equation */ |
} |
/* Old code */ |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */ |
/* /\* for (k=1; k<=cptcovn;k++) { *\/ */ |
for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; |
/* /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; *\/ */ |
for (k=1; k<=cptcovprod;k++) |
/* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */ |
cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; |
/* /\* Here comes the value of the covariate 'j1' after renumbering k with single dummy covariates *\/ */ |
|
/* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(j1,TnsdVar[TvarsD[k]])]; */ |
|
/* /\*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*\//\* j1 1 2 3 4 */ |
|
/* * 1 1 1 1 1 */ |
|
/* * 2 2 1 1 1 */ |
|
/* * 3 1 2 1 1 */ |
|
/* *\/ */ |
|
/* /\* nbcode[1][1]=0 nbcode[1][2]=1;*\/ */ |
|
/* } */ |
|
/* /\* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */ |
|
/* /\* ) p nbcode[Tvar[Tage[k]]][(1 & (ij-1) >> (k-1))+1] *\/ */ |
|
/* /\*for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; *\/ */ |
|
/* for (k=1; k<=cptcovage;k++){ /\* For product with age *\/ */ |
|
/* if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */ |
|
/* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(j1,TnsdVar[Tvar[Tage[k]]])]*cov[2]; */ |
|
/* /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */ |
|
/* printf("Internal IMaCh error, don't know which value for quantitative covariate with age, Tage[k]%d, k=%d, Tvar[Tage[k]]=V%d, age=%d\n",Tage[k],k ,Tvar[Tage[k]], (int)cov[2]); */ |
|
/* /\* cov[2+nagesqr+Tage[k]]=meanq[k]/idq[k]*cov[2];/\\* Using the mean of quantitative variable Tvar[Tage[k]] /\\* Tqresult[nres][k]; *\\/ *\/ */ |
|
/* /\* exit(1); *\/ */ |
|
/* /\* cov[++k1]=Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* /\* cov[2+Tage[k]+nagesqr]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */ |
|
/* } */ |
|
/* for (k=1; k<=cptcovprod;k++){/\* For product without age *\/ */ |
|
/* if(Dummy[Tvard[k][1]]==0){ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* }else{ /\* Should we use the mean of the quantitative variables? *\/ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * Tqresult[nres][resultmodel[nres][k]]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */ |
|
/* } */ |
|
/* }else{ */ |
|
/* if(Dummy[Tvard[k][2]]==0){ */ |
|
/* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][TnsdVar[Tvard[k][1]]]; */ |
|
/* /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */ |
|
/* }else{ */ |
|
/* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][TnsdVar[Tvard[k][1]]]* Tqinvresult[nres][TnsdVar[Tvard[k][2]]]; */ |
|
/* /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]]; *\/ */ |
|
/* } */ |
|
/* } */ |
|
/* /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */ |
|
/* } */ |
|
/* For each age and combination of dummy covariates we slightly move the parameters of delti in order to get the gradient*/ |
for(theta=1; theta <=npar; theta++){ |
for(theta=1; theta <=npar; theta++){ |
for(i=1; i<=npar; i++) |
for(i=1; i<=npar; i++) |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
xp[i] = x[i] + (i==theta ?delti[theta]:(double)0); |
Line 5465 To be simple, these graphs help to under
|
Line 9580 To be simple, these graphs help to under
|
} |
} |
|
|
/* Eigen vectors */ |
/* Eigen vectors */ |
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){ |
|
printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12); |
|
fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12); |
|
v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12))); |
|
}else |
|
v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12)); |
/*v21=sqrt(1.-v11*v11); *//* error */ |
/*v21=sqrt(1.-v11*v11); *//* error */ |
v21=(lc1-v1)/cv12*v11; |
v21=(lc1-v1)/cv12*v11; |
v12=-v21; |
v12=-v21; |
Line 5485 To be simple, these graphs help to under
|
Line 9605 To be simple, these graphs help to under
|
fprintf(ficgp,"\nset parametric;unset label"); |
fprintf(ficgp,"\nset parametric;unset label"); |
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2); |
fprintf(ficgp,"\nset ter svg size 640, 480"); |
fprintf(ficgp,"\nset ter svg size 640, 480"); |
fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\ |
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\"> \ |
:<a href=\"%s_%d%1d%1d-%1d%1d.svg\"> \ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
%s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \ |
subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \ |
Line 5496 To be simple, these graphs help to under
|
Line 9616 To be simple, these graphs help to under
|
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */ |
}else{ |
}else{ |
first=0; |
first=0; |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(fichtmcov," %d (%.3f),",(int) age, c12); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2); |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \ |
mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)), \ |
mu2,std,v21,sqrt(lc1),v22,sqrt(lc2)); |
mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2))); |
}/* if first */ |
}/* if first */ |
} /* age mod 5 */ |
} /* age mod 5 */ |
} /* end loop age */ |
} /* end loop age */ |
Line 5516 To be simple, these graphs help to under
|
Line 9636 To be simple, these graphs help to under
|
} /*l1 */ |
} /*l1 */ |
}/* k1 */ |
}/* k1 */ |
} /* loop on combination of covariates j1 */ |
} /* loop on combination of covariates j1 */ |
|
} /* loop on nres */ |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
Line 5533 To be simple, these graphs help to under
|
Line 9654 To be simple, these graphs help to under
|
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \ |
int lastpass, int stepm, int weightopt, char model[],\ |
int lastpass, int stepm, int weightopt, char model[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\ |
int popforecast, int prevfcast, int backcast, int estepm , \ |
int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \ |
double jprev1, double mprev1,double anprev1, double dateprev1, \ |
double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \ |
double jprev2, double mprev2,double anprev2, double dateprev2){ |
double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){ |
int jj1, k1, i1, cpt; |
int jj1, k1, cpt, nres; |
|
/* In fact some results are already printed in fichtm which is open */ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
<li><a href='#secondorder'>Result files (second order (variance)</a>\n \ |
</ul>"); |
</ul>"); |
|
/* fprintf(fichtm,"<ul><li> model=1+age+%s\n \ */ |
|
/* </ul>", model); */ |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n"); |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n", |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm")); |
fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ", |
fprintf(fichtm,"<li> - Observed prevalence (cross-sectional prevalence) in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ", |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm")); |
jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm")); |
fprintf(fichtm,", <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
fprintf(fichtm,", <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
Line 5554 void printinghtml(char fileresu[], char
|
Line 9677 void printinghtml(char fileresu[], char
|
- Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
- Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ", |
stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_")); |
stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
- Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
- Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n", |
subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_")); |
subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
- (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \ |
Line 5569 void printinghtml(char fileresu[], char
|
Line 9692 void printinghtml(char fileresu[], char
|
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
<a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_")); |
} |
} |
|
|
fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
fprintf(fichtm," \n<ul><li><b>Graphs (first order)</b></li><p>"); |
|
|
|
jj1=0; |
|
|
|
fprintf(fichtm," \n<ul>"); |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* k1=nres; */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0)k1=1; /* To be checked for no result */ |
|
/* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescov"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
/* for (cpt=1; cpt<=cptcoveff;cpt++){ */ |
|
/* fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
|
fprintf(fichtm,"\">"); |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm,"************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
/* fprintf(fichtm,"************ Results for covariates"); */ |
|
/* for (cpt=1; cpt<=cptcoveff;cpt++){ */ |
|
/* fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
|
continue; |
|
} |
|
fprintf(fichtm,"</a></li>"); |
|
} /* cptcovn >0 */ |
|
} |
|
fprintf(fichtm," \n</ul>"); |
|
|
jj1=0; |
jj1=0; |
for(k1=1; k1<=m;k1++){ |
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* k1=nres; */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
|
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<p><a name=\"rescov"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
|
fprintf(fichtm,"\"</a>"); |
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++){ |
for (cpt=1; cpt<=cptcovs;cpt++){ |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); |
printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
|
/* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */ |
} |
} |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); |
printf("\nCombination (%d) ignored because no cases \n",k1); |
printf("\nCombination (%d) ignored because no cases \n",k1); |
Line 5593 void printinghtml(char fileresu[], char
|
Line 9781 void printinghtml(char fileresu[], char
|
} |
} |
} |
} |
/* aij, bij */ |
/* aij, bij */ |
fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1.svg\">%s_%d-1.svg</a><br> \ |
fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \ |
<img src=\"%s_%d-1.svg\">",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Pij */ |
/* Pij */ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2.svg\">%s_%d-2.svg</a><br> \ |
fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \ |
<img src=\"%s_%d-2.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Quasi-incidences */ |
/* Quasi-incidences */ |
fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \ |
before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
incidence (rates) are the limit when h tends to zero of the ratio of the probability <sub>h</sub>P<sub>ij</sub> \ |
divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3.svg\">%s_%d-3.svg</a><br> \ |
divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \ |
<img src=\"%s_%d-3.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1); |
<img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); |
/* Survival functions (period) in state j */ |
/* Survival functions (period) in state j */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. Mean times spent in state (or Life Expectancy or Health Expectancy etc.) are the areas under each curve. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
} |
} |
/* State specific survival functions (period) */ |
/* State specific survival functions (period) */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\ |
fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\ |
Or probability to survive in various states (1 to %d) being in state %d at different ages. \ |
And probability to be observed in various states (up to %d) being in state %d at different ages. Mean times spent in state (or Life Expectancy or Health Expectancy etc.) are the areas under each curve. \ |
<a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> <img src=\"%s_%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1); |
<a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> ", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
|
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
} |
} |
/* Period (stable) prevalence in each health state */ |
/* Period (forward stable) prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be alive in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
} |
} |
if(backcast==1){ |
if(prevbcast==1){ |
/* Period (stable) back prevalence in each health state */ |
/* Backward prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
<img src=\"%s_%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJB_"),subdirf2(optionfilefiname,"PIJB_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
} |
} |
} |
} |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* Projection of prevalence up to period (stable) prevalence in each health state */ |
/* Projection of prevalence up to period (forward stable) prevalence in each health state */ |
|
for(cpt=1; cpt<=nlstate;cpt++){ |
|
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
|
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"F_"),subdirf2(optionfilefiname,"F_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", |
|
subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
|
} |
|
} |
|
if(prevbcast==1){ |
|
/* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */ |
for(cpt=1; cpt<=nlstate;cpt++){ |
for(cpt=1; cpt<=nlstate;cpt++){ |
fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.svg\">%s%d_%d.svg</a><br> \ |
fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \ |
<img src=\"%s_%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1); |
from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d). Randomness in cross-sectional prevalence is not taken into \ |
|
account but can visually be appreciated. Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \ |
|
with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
|
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"FB_"),subdirf2(optionfilefiname,"FB_")); |
|
fprintf(fichtm," <img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
} |
} |
} |
} |
|
|
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d%d.svg\">%s_%d%d.svg</a> <br> \ |
fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
<img src=\"%s_%d%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\"> %s.txt</a>)\n<br>",subdirf2(optionfilefiname,"E_"),subdirf2(optionfilefiname,"E_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres ); |
} |
} |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
}/* End k1=nres */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
|
|
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
Line 5673 See page 'Matrix of variance-covariance
|
Line 9880 See page 'Matrix of variance-covariance
|
<a href=\"%s\">%s</a> <br>\n</li>", |
<a href=\"%s\">%s</a> <br>\n</li>", |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
- Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n", |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
- Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n", |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_")); |
fprintf(fichtm,"\ |
fprintf(fichtm,"\ |
- Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
- Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\ |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
|
/* if(popforecast==1) fprintf(fichtm,"\n */ |
/* if(popforecast==1) fprintf(fichtm,"\n */ |
Line 5687 See page 'Matrix of variance-covariance
|
Line 9894 See page 'Matrix of variance-covariance
|
/* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ |
/* - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */ |
/* <br>",fileres,fileres,fileres,fileres); */ |
/* <br>",fileres,fileres,fileres,fileres); */ |
/* else */ |
/* else */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=1+age+%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */ |
fflush(fichtm); |
fflush(fichtm); |
fprintf(fichtm," <ul><li><b>Graphs</b></li><p>"); |
|
|
|
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
if (cptcovn < 1) {m=1;ncodemax[1]=1;} |
|
|
|
fprintf(fichtm," <ul><li><b>Graphs (second order)</b></li><p>"); |
|
|
|
jj1=0; |
|
|
|
fprintf(fichtm," \n<ul>"); |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* k1=nres; */ |
|
k1=TKresult[nres]; |
|
/* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
jj1++; |
|
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<li><a size=\"1\" color=\"#EC5E5E\" href=\"#rescovsecond"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
fprintf(fichtm,"\">"); |
|
|
|
/* if(nqfveff+nqtveff 0) */ /* Test to be done */ |
|
fprintf(fichtm,"************ Results for covariates"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
if(invalidvarcomb[k1]){ |
|
fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); |
|
continue; |
|
} |
|
fprintf(fichtm,"</a></li>"); |
|
} /* cptcovn >0 */ |
|
} /* End nres */ |
|
fprintf(fichtm," \n</ul>"); |
|
|
jj1=0; |
jj1=0; |
for(k1=1; k1<=m;k1++){ |
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* k1=nres; */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* for(k1=1; k1<=m;k1++){ */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
/* for(i1=1; i1<=ncodemax[k1];i1++){ */ |
jj1++; |
jj1++; |
if (cptcovn > 0) { |
if (cptcovn > 0) { |
|
fprintf(fichtm,"\n<p><a name=\"rescovsecond"); |
|
for (cpt=1; cpt<=cptcovs;cpt++){ |
|
fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
} |
|
fprintf(fichtm,"\"</a>"); |
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates"); |
for (cpt=1; cpt<=cptcoveff;cpt++) |
for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcoveff number of variables */ |
fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); |
fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">"); |
printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); |
|
/* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ |
|
} |
|
|
|
fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model); |
|
|
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); |
fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); |
continue; |
continue; |
} |
} |
} |
} /* If cptcovn >0 */ |
for(cpt=1; cpt<=nlstate;cpt++) { |
for(cpt=1; cpt<=nlstate;cpt++) { |
fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \ |
fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d.svg\"> %s_%d-%d.svg</a>\n <br>\ |
prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
<img src=\"%s_%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1); |
fprintf(fichtm," (data from text file <a href=\"%s\">%s</a>)\n <br>",subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"V_"), cpt,k1,nres); |
} |
} |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
fprintf(fichtm,"\n<br>- Total life expectancy by age and \ |
health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \ |
health expectancies in each live state (1 to %d) with confidence intervals \ |
|
on left y-scale as well as proportions of time spent in each live state \ |
|
(with confidence intervals) on right y-scale 0 to 100%%.\ |
|
If popbased=1 the smooth (due to the model) \ |
true period expectancies (those weighted with period prevalences are also\ |
true period expectancies (those weighted with period prevalences are also\ |
drawn in addition to the population based expectancies computed using\ |
drawn in addition to the population based expectancies computed using\ |
observed and cahotic prevalences: <a href=\"%s_%d.svg\">%s_%d.svg</a>\n<br>\ |
observed and cahotic prevalences: <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>",nlstate, subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres); |
<img src=\"%s_%d.svg\">",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1); |
fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>) \n<br>",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_")); |
|
fprintf(fichtm,"<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres); |
/* } /\* end i1 *\/ */ |
/* } /\* end i1 *\/ */ |
}/* End k1 */ |
}/* End nres */ |
fprintf(fichtm,"</ul>"); |
fprintf(fichtm,"</ul>"); |
fflush(fichtm); |
fflush(fichtm); |
} |
} |
|
|
/******************* Gnuplot file **************/ |
/******************* Gnuplot file **************/ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){ |
void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){ |
|
|
char dirfileres[132],optfileres[132]; |
char dirfileres[256],optfileres[256]; |
char gplotcondition[132]; |
char gplotcondition[256], gplotlabel[256]; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0; |
int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,kf=0,kvar=0,kk=0,ipos=0,iposold=0,ij=0, ijp=0, l=0; |
int lv=0, vlv=0, kl=0; |
int lv=0, vlv=0, kl=0; |
int ng=0; |
int ng=0; |
int vpopbased; |
int vpopbased; |
int ioffset; /* variable offset for columns */ |
int ioffset; /* variable offset for columns */ |
|
int iyearc=1; /* variable column for year of projection */ |
|
int iagec=1; /* variable column for age of projection */ |
|
int nres=0; /* Index of resultline */ |
|
int istart=1; /* For starting graphs in projections */ |
|
|
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
/* printf("Problem with file %s",optionfilegnuplot); */ |
Line 5747 void printinggnuplot(char fileresu[], ch
|
Line 10012 void printinggnuplot(char fileresu[], ch
|
/*#endif */ |
/*#endif */ |
m=pow(2,cptcoveff); |
m=pow(2,cptcoveff); |
|
|
|
/* diagram of the model */ |
|
fprintf(ficgp,"\n#Diagram of the model \n"); |
|
fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n"); |
|
fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate); |
|
fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
|
|
fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] for [j=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate, nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
fprintf(ficgp,"\n#show arrow\nunset label\n"); |
|
fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate); |
|
fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0. font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate); |
|
fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n"); |
|
fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_")); |
|
fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n"); |
|
|
/* Contribution to likelihood */ |
/* Contribution to likelihood */ |
/* Plot the probability implied in the likelihood */ |
/* Plot the probability implied in the likelihood */ |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n"); |
Line 5776 void printinggnuplot(char fileresu[], ch
|
Line 10055 void printinggnuplot(char fileresu[], ch
|
fprintf(ficgp,"\nset out;unset log\n"); |
fprintf(ficgp,"\nset out;unset log\n"); |
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
|
/* Plot the probability implied in the likelihood by covariate value */ |
|
fprintf(ficgp,"\nset ter pngcairo size 640, 480"); |
|
/* if(debugILK==1){ */ |
|
for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */ |
|
kvar=Tvar[TvarFind[kf]]; /* variable name */ |
|
/* k=18+Tvar[TvarFind[kf]];/\*offset because there are 18 columns in the ILK_ file but could be placed else where *\/ */ |
|
/* k=18+kf;/\*offset because there are 18 columns in the ILK_ file *\/ */ |
|
/* k=19+kf;/\*offset because there are 19 columns in the ILK_ file *\/ */ |
|
k=16+nlstate+kf;/*offset because there are 19 columns in the ILK_ file, first cov Vn on col 21 with 4 living states */ |
|
for (i=1; i<= nlstate ; i ++) { |
|
fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar); |
|
fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot \"%s\"",subdirf(fileresilk)); |
|
if(gnuplotversion >=5.2){ /* Former gnuplot versions do not have variable pointsize!! */ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar); |
|
} |
|
}else{ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable \\\n",i,1,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable ",i,j,k,i,j,kvar); |
|
} |
|
} |
|
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
|
} |
|
} /* End of each covariate dummy */ |
|
for(ncovv=1, iposold=0, kk=0; ncovv <= ncovvt ; ncovv++){ |
|
/* Other example V1 + V3 + V5 + age*V1 + age*V3 + age*V5 + V1*V3 + V3*V5 + V1*V5 |
|
* kmodel = 1 2 3 4 5 6 7 8 9 |
|
* varying 1 2 3 4 5 |
|
* ncovv 1 2 3 4 5 6 7 8 |
|
* TvarVV[ncovv] V3 5 1 3 3 5 1 5 |
|
* TvarVVind[ncovv]=kmodel 2 3 7 7 8 8 9 9 |
|
* TvarFind[kmodel] 1 0 0 0 0 0 0 0 0 |
|
* kdata ncovcol=[V1 V2] nqv=0 ntv=[V3 V4] nqtv=V5 |
|
* Dummy[kmodel] 0 0 1 2 2 3 1 1 1 |
|
*/ |
|
ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */ |
|
kvar=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ |
|
/* printf("DebugILK ficgp ncovv=%d, kvar=TvarVV[ncovv]=%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */ |
|
if(ipos!=iposold){ /* Not a product or first of a product */ |
|
/* printf(" %d",ipos); */ |
|
/* fprintf(ficresilk," V%d",TvarVV[ncovv]); */ |
|
/* printf(" DebugILK ficgp suite ipos=%d != iposold=%d\n", ipos, iposold); */ |
|
kk++; /* Position of the ncovv column in ILK_ */ |
|
k=18+ncovf+kk; /*offset because there are 18 columns in the ILK_ file plus ncovf fixed covariate */ |
|
if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm) */ |
|
for (i=1; i<= nlstate ; i ++) { |
|
fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar); |
|
fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot \"%s\"",subdirf(fileresilk)); |
|
|
|
/* printf("Before DebugILK gnuplotversion=%g >=5.2\n",gnuplotversion); */ |
|
if(gnuplotversion >=5.2){ /* Former gnuplot versions do not have variable pointsize!! */ |
|
/* printf("DebugILK gnuplotversion=%g >=5.2\n",gnuplotversion); */ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar); |
|
} |
|
}else{ |
|
/* printf("DebugILK gnuplotversion=%g <5.2\n",gnuplotversion); */ |
|
fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable \\\n",i,1,k,i,1,kvar); |
|
for (j=2; j<= nlstate+ndeath ; j ++) { |
|
fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable ",i,j,k,i,j,kvar); |
|
} |
|
} |
|
fprintf(ficgp,";\nset out; unset ylabel;\n"); |
|
} |
|
}/* End if dummy varying */ |
|
}else{ /*Product */ |
|
/* printf("*"); */ |
|
/* fprintf(ficresilk,"*"); */ |
|
} |
|
iposold=ipos; |
|
} /* For each time varying covariate */ |
|
/* } /\* debugILK==1 *\/ */ |
|
/* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */ |
|
/* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */ |
|
/* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */ |
|
fprintf(ficgp,"\nset out;unset log\n"); |
|
/* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */ |
|
|
|
|
|
|
strcpy(dirfileres,optionfilefiname); |
strcpy(dirfileres,optionfilefiname); |
strcpy(optfileres,"vpl"); |
strcpy(optfileres,"vpl"); |
/* 1eme*/ |
/* 1eme*/ |
for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */ |
for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */ |
for (k1=1; k1<= m ; k1 ++) { /* For each valid combination of covariate */ |
/* for (k1=1; k1<= m ; k1 ++){ /\* For each valid combination of covariate *\/ */ |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files "); |
k1=TKresult[nres]; |
for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */ |
/* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* if(m != 1 && TKresult[nres]!= k1) */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* continue; */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* We are interested in selected combination by the resultline */ |
vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ |
/* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */ |
/* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ |
fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files and live state =%d ", cpt); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
strcpy(gplotlabel,"("); |
} |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
if(invalidvarcomb[k1]){ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate k get corresponding value lv for combination k1 *\/ */ |
} |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the value of the covariate corresponding to k1 combination *\\/ *\/ */ |
|
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1); |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
fprintf(ficgp,"set xlabel \"Age\" \n\ |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
set ylabel \"Probability\" \n \ |
/* vlv= nbcode[Tvaraff[k]][lv]; /\* vlv is the value of the covariate lv, 0 or 1 *\/ */ |
set ter svg size 640, 480\n \ |
/* /\* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv *\/ */ |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
/* /\* printf(" V%d=%d ",Tvaraff[k],vlv); *\/ */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
for (i=1; i<= nlstate ; i ++) { |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
/* } */ |
else fprintf(ficgp," %%*lf (%%*lf)"); |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
} |
/* /\* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); *\/ */ |
fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
for (i=1; i<= nlstate ; i ++) { |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
} |
else fprintf(ficgp," %%*lf (%%*lf)"); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
} |
/* printf("\n#\n"); */ |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1); |
fprintf(ficgp,"\n#\n"); |
for (i=1; i<= nlstate ; i ++) { |
if(invalidvarcomb[k1]){ |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
/*k1=k1-1;*/ /* To be checked */ |
else fprintf(ficgp," %%*lf (%%*lf)"); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
} |
continue; |
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); |
} |
if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
|
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres); |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */ |
fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres); |
if(cptcoveff ==0){ |
/* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */ |
fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ", 2+(cpt-1), cpt ); |
fprintf(ficgp,"set title \"Alive state %d %s model=1+age+%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
|
/* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */ |
|
/* k1-1 error should be nres-1*/ |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); |
|
for (i=1; i<= nlstate ; i ++) { |
|
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
/* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */ |
|
|
|
fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_")); |
|
if(cptcoveff ==0){ |
|
fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3", 2+3*(cpt-1), cpt ); |
}else{ |
}else{ |
kl=0; |
kl=0; |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */ |
|
lv=codtabm(k1,TnsdVar[Tvaraff[k]]); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
Line 5839 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
Line 10224 plot [%.f:%.f] \"%s\" every :::%d::%d u
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
if(k==cptcoveff){ |
if(k==cptcoveff){ |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' with line ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
6+(cpt-1), cpt ); |
2+cptcoveff*2+3*(cpt-1), cpt ); /* 4 or 6 ?*/ |
}else{ |
}else{ |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]); |
kl++; |
kl++; |
} |
} |
} /* end covariate */ |
} /* end covariate */ |
} /* end if no covariate */ |
} /* end if no covariate */ |
} /* end if backcast */ |
|
fprintf(ficgp,"\nset out \n"); |
|
} /* k1 */ |
|
} /* cpt */ |
|
/*2 eme*/ |
|
for (k1=1; k1<= m ; k1 ++) { |
|
|
|
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
/* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
if(cptcoveff ==0){ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3", 2+(cpt-1), cpt ); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
}else{ |
vlv= nbcode[Tvaraff[k]][lv]; |
kl=0; |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */ |
} |
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */ |
fprintf(ficgp,"\n#\n"); |
lv=codtabm(k1,TnsdVar[Tvaraff[k]]); |
if(invalidvarcomb[k1]){ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
continue; |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
} |
/* vlv= nbcode[Tvaraff[k]][lv]; */ |
|
vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; |
fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1); |
kl++; |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
if(vpopbased==0) |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage); |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
else |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
fprintf(ficgp,"\nreplot "); |
if(k==cptcoveff){ |
for (i=1; i<= nlstate+1 ; i ++) { |
fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \ |
k=2*i; |
2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/ |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased); |
}else{ |
for (j=1; j<= nlstate+1 ; j ++) { |
fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]); |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
kl++; |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
} /* end covariate */ |
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
} /* end if no covariate */ |
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); |
if(prevbcast == 1){ |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
for (j=1; j<= nlstate+1 ; j ++) { |
/* k1-1 error should be nres-1*/ |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
for (i=1; i<= nlstate ; i ++) { |
else fprintf(ficgp," %%*lf (%%*lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
} |
else fprintf(ficgp," %%*lf (%%*lf)"); |
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
} |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased); |
fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
for (j=1; j<= nlstate+1 ; j ++) { |
for (i=1; i<= nlstate ; i ++) { |
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
else fprintf(ficgp," %%*lf (%%*lf)"); |
} |
} |
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0"); |
fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); |
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
for (i=1; i<= nlstate ; i ++) { |
} /* state */ |
if (i==cpt) fprintf(ficgp," %%lf (%%lf)"); |
} /* vpopbased */ |
else fprintf(ficgp," %%*lf (%%*lf)"); |
fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */ |
} |
} /* k1 */ |
fprintf(ficgp,"\" t\"\" w l lt 4"); |
|
} /* end if backprojcast */ |
|
} /* end if prevbcast */ |
/*3eme*/ |
/* fprintf(ficgp,"\nset out ;unset label;\n"); */ |
for (k1=1; k1<= m ; k1 ++) { |
fprintf(ficgp,"\nset out ;unset title;\n"); |
|
} /* nres */ |
|
/* } /\* k1 *\/ */ |
|
} /* cpt */ |
|
|
for (cpt=1; cpt<= nlstate ; cpt ++) { |
|
fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files: cov=%d state=%d",k1, cpt); |
/*2 eme*/ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
/* for (k1=1; k1<= m ; k1 ++){ */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
k1=TKresult[nres]; |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* if(m != 1 && TKresult[nres]!= k1) */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* continue; */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); |
|
strcpy(gplotlabel,"("); |
|
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
|
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
|
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
|
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
|
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* /\* for(k=1; k <= ncovds; k++){ *\/ */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
} |
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
continue; |
continue; |
} |
} |
|
|
/* k=2+nlstate*(2*cpt-2); */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres); |
k=2+(nlstate+1)*(cpt-1); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1); |
fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel); |
fprintf(ficgp,"set ter svg size 640, 480\n\ |
if(vpopbased==0){ |
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt); |
fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nunset ytics; unset y2tics; set ytics nomirror; set y2tics 0,10,100;set y2range [0:100];\nplot [%.f:%.f] ",ageminpar,fage); |
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
}else |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
fprintf(ficgp,"\nreplot "); |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
for (i=1; i<= nlstate+1 ; i ++) { /* For state i-1=0 is LE, while i-1=1 to nlstate are origin state */ |
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
k=2*i; |
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased); /* for fixed variables age, popbased, mobilav */ |
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
for (j=1; j<= nlstate+1 ; j ++) { /* e.. e.1 e.2 again j-1 is the state of end, wlim_i eij*/ |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); /* We want to read e.. i=1,j=1, e.1 i=2,j=2, e.2 i=3,j=3 */ |
|
else fprintf(ficgp," %%*lf (%%*lf)"); /* skipping that field with a star */ |
|
} |
|
if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i); |
|
else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1); /* state=i-1=1 to nlstate */ |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 0,"); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); /* ,\\\n added for th percentage graphs */ |
|
else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n"); |
|
} /* state */ |
|
/* again for the percentag spent in state i-1=1 to i-1=nlstate */ |
|
for (i=2; i<= nlstate+1 ; i ++) { /* For state i-1=0 is LE, while i-1=1 to nlstate are origin state */ |
|
k=2*i; |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && ($4)<=1 && ($4)>=0 ?($4)*100. : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased); /* for fixed variables age, popbased, mobilav */ |
|
for (j=1; j<= nlstate ; j ++) |
|
fprintf(ficgp," %%*lf (%%*lf)"); /* Skipping TLE and LE to read %LE only */ |
|
for (j=1; j<= nlstate+1 ; j ++) { /* e.. e.1 e.2 again j-1 is the state of end, wlim_i eij*/ |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); /* We want to read e.. i=1,j=1, e.1 i=2,j=2, e.2 i=3,j=3 */ |
|
else fprintf(ficgp," %%*lf (%%*lf)"); /* skipping that field with a star */ |
|
} |
|
if (i== 1) fprintf(ficgp,"\" t\"%%TLE\" w l lt %d axis x1y2, \\\n",i); /* Not used */ |
|
else fprintf(ficgp,"\" t\"%%LE in state (%d)\" w l lw 2 lt %d axis x1y2, \\\n",i-1,i+1); /* state=i-1=1 to nlstate */ |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && ($4-$5*2)<=1 && ($4-$5*2)>=0? ($4-$5*2)*100. : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
|
for (j=1; j<= nlstate ; j ++) |
|
fprintf(ficgp," %%*lf (%%*lf)"); /* Skipping TLE and LE to read %LE only */ |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
fprintf(ficgp,"\" t\"\" w l lt 0 axis x1y2,"); |
|
fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && ($4+$5*2)<=1 && ($4+$5*2)>=0 ? ($4+$5*2)*100. : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased); |
|
for (j=1; j<= nlstate ; j ++) |
|
fprintf(ficgp," %%*lf (%%*lf)"); /* Skipping TLE and LE to read %LE only */ |
|
for (j=1; j<= nlstate+1 ; j ++) { |
|
if (j==i) fprintf(ficgp," %%lf (%%lf)"); |
|
else fprintf(ficgp," %%*lf (%%*lf)"); |
|
} |
|
if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0 axis x1y2"); |
|
else fprintf(ficgp,"\" t\"\" w l lt 0 axis x1y2,\\\n"); |
|
} /* state for percent */ |
|
} /* vpopbased */ |
|
fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ |
|
} /* end nres */ |
|
/* } /\* k1 end 2 eme*\/ */ |
|
|
|
|
|
/*3eme*/ |
|
/* for (k1=1; k1<= m ; k1 ++){ */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
|
|
for (cpt=1; cpt<= nlstate ; cpt ++) { /* Fragile no verification of covariate values */ |
|
fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files: combination=%d state=%d",k1, cpt); |
|
strcpy(gplotlabel,"("); |
|
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
|
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
|
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
|
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
/* k=2+nlstate*(2*cpt-2); */ |
|
k=2+(nlstate+1)*(cpt-1); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); |
|
fprintf(ficgp,"set ter svg size 640, 480\n\ |
|
plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt); |
|
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1); |
|
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) "); |
|
fprintf(ficgp,"\" t \"e%d1\" w l",cpt); |
|
|
*/ |
*/ |
for (i=1; i< nlstate ; i ++) { |
for (i=1; i< nlstate ; i ++) { |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1); |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1); |
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
/* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/ |
|
|
} |
} |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt); |
fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt); |
} |
} |
} |
fprintf(ficgp,"\nunset label;\n"); |
|
} /* end nres */ |
|
/* } /\* end kl 3eme *\/ */ |
|
|
/* 4eme */ |
/* 4eme */ |
/* Survival functions (period) from state i in state j by initial state i */ |
/* Survival functions (period) from state i in state j by initial state i */ |
for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */ |
/* for (k1=1; k1<=m; k1++){ /\* For each covariate and each value *\/ */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
k1=TKresult[nres]; |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
/* if(m != 1 && TKresult[nres]!= k1) */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
/* continue; */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
strcpy(gplotlabel,"("); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp,"\n#\n#\n# Survival functions in state %d : 'LIJ_' files, cov=%d state=%d", cpt, k1, cpt); |
vlv= nbcode[Tvaraff[k]][lv]; |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
} |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
fprintf(ficgp,"\n#\n"); |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
if(invalidvarcomb[k1]){ |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
continue; |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
} |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1); |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
set ter svg size 640, 480\n \ |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
unset log y\n \ |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
/* } */ |
k=3; |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
for (i=1; i<= nlstate ; i ++){ |
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
if(i==1){ |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
} |
}else{ |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,", '' "); |
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
} |
} |
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres); |
for (j=2; j<= nlstate+ndeath ; j ++) |
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
} /* nlstate */ |
k=3; |
fprintf(ficgp,"\nset out\n"); |
for (i=1; i<= nlstate ; i ++){ |
} /* end cpt state*/ |
if(i==1){ |
} /* end covariate */ |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
|
}else{ |
|
fprintf(ficgp,", '' "); |
|
} |
|
l=(nlstate+ndeath)*(i-1)+1; |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
|
for (j=2; j<= nlstate+ndeath ; j ++) |
|
fprintf(ficgp,"+$%d",k+l+j-1); |
|
fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end nres */ |
|
/* } /\* end covariate k1 *\/ */ |
|
|
/* 5eme */ |
/* 5eme */ |
/* Survival functions (period) from state i in state j by final state j */ |
/* Survival functions (period) from state i in state j by final state j */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate if any */ |
/* for (k1=1; k1<= m ; k1++){ /\* For each covariate combination if any *\/ */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k1=TKresult[nres]; |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
/* if(m != 1 && TKresult[nres]!= k1) */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
/* continue; */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
strcpy(gplotlabel,"("); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); |
vlv= nbcode[Tvaraff[k]][lv]; |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
} |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
fprintf(ficgp,"\n#\n"); |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
if(invalidvarcomb[k1]){ |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
continue; |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
} |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1); |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
set ter svg size 640, 480\n \ |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
unset log y\n \ |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
/* } */ |
k=3; |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
if(j==1) |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
} |
else |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,", '' "); |
fprintf(ficgp,"\n#\n"); |
l=(nlstate+ndeath)*(cpt-1) +j; |
if(invalidvarcomb[k1]){ |
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
/* for (i=2; i<= nlstate+ndeath ; i ++) */ |
continue; |
/* fprintf(ficgp,"+$%d",k+l+i-1); */ |
} |
fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j); |
|
} /* nlstate */ |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres); |
fprintf(ficgp,", '' "); |
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\ |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
l=(nlstate+ndeath)*(cpt-1) +j; |
k=3; |
if(j < nlstate) |
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
fprintf(ficgp,"$%d +",k+l); |
if(j==1) |
else |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
else |
} |
fprintf(ficgp,", '' "); |
fprintf(ficgp,"\nset out\n"); |
l=(nlstate+ndeath)*(cpt-1) +j; |
} /* end cpt state*/ |
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l); |
} /* end covariate */ |
/* for (i=2; i<= nlstate+ndeath ; i ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+i-1); */ |
|
fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j); |
|
} /* nlstate */ |
|
fprintf(ficgp,", '' "); |
|
fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1); |
|
for (j=1; j<= nlstate ; j ++){ /* Lived in state j */ |
|
l=(nlstate+ndeath)*(cpt-1) +j; |
|
if(j < nlstate) |
|
fprintf(ficgp,"$%d +",k+l); |
|
else |
|
fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt); |
|
} |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
/* } /\* end covariate *\/ */ |
|
} /* end nres */ |
|
|
/* 6eme */ |
/* 6eme */ |
/* CV preval stable (period) for each covariate */ |
/* CV preval stable (period) for each covariate */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k1=TKresult[nres]; |
fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
/* if(m != 1 && TKresult[nres]!= k1) */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
/* continue; */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
strcpy(gplotlabel,"("); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
vlv= nbcode[Tvaraff[k]][lv]; |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
} |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
|
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
|
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
|
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
fprintf(ficgp,"\n#\n"); |
fprintf(ficgp,"\n#\n"); |
if(invalidvarcomb[k1]){ |
if(invalidvarcomb[k1]){ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
continue; |
continue; |
} |
} |
|
|
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1); |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres); |
|
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
set ter svg size 640, 480\n \ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
unset log y\n \ |
|
plot [%.f:%.f] ", ageminpar, agemaxpar); |
|
k=3; /* Offset */ |
k=3; /* Offset */ |
for (i=1; i<= nlstate ; i ++){ |
for (i=1; i<= nlstate ; i ++){ /* State of origin */ |
if(i==1) |
if(i==1) |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_")); |
else |
else |
fprintf(ficgp,", '' "); |
fprintf(ficgp,", '' "); |
l=(nlstate+ndeath)*(i-1)+1; |
l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); |
for (j=2; j<= nlstate ; j ++) |
for (j=2; j<= nlstate ; j ++) |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,"+$%d",k+l+j-1); |
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt); |
} /* nlstate */ |
} /* nlstate */ |
fprintf(ficgp,"\nset out\n"); |
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
|
|
|
|
/* 7eme */ |
/* 7eme */ |
if(backcast == 1){ |
if(prevbcast == 1){ |
/* CV back preval stable (period) for each covariate */ |
/* CV backward prevalence for each covariate */ |
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); |
k1=TKresult[nres]; |
for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ |
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */ |
/* if(m != 1 && TKresult[nres]!= k1) */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
/* continue; */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
strcpy(gplotlabel,"("); |
vlv= nbcode[Tvaraff[k]][lv]; |
fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt); |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
} |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
fprintf(ficgp,"\n#\n"); |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
if(invalidvarcomb[k1]){ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ |
continue; |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
} |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1); |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
set ter svg size 640, 480\n \ |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
unset log y\n \ |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
k=3; /* Offset */ |
/* } */ |
for (i=1; i<= nlstate ; i ++){ |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
if(i==1) |
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_")); |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
else |
} |
fprintf(ficgp,", '' "); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
/* l=(nlstate+ndeath)*(i-1)+1; */ |
fprintf(ficgp,"\n#\n"); |
l=(nlstate+ndeath)*(cpt-1)+1; |
if(invalidvarcomb[k1]){ |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
continue; |
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */ |
} |
/* for (j=2; j<= nlstate ; j ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres); |
/* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */ |
fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt); |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\ |
} /* nlstate */ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
fprintf(ficgp,"\nset out\n"); |
k=3; /* Offset */ |
|
for (i=1; i<= nlstate ; i ++){ /* State of arrival */ |
|
if(i==1) |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_")); |
|
else |
|
fprintf(ficgp,", '' "); |
|
/* l=(nlstate+ndeath)*(i-1)+1; */ |
|
l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */ |
|
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */ |
|
/* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */ |
|
fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */ |
|
/* for (j=2; j<= nlstate ; j ++) */ |
|
/* fprintf(ficgp,"+$%d",k+l+j-1); */ |
|
/* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */ |
|
fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i); |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
} /* End if backcast */ |
} /* End if prevbcast */ |
|
|
/* 8eme */ |
/* 8eme */ |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* Projection from cross-sectional to stable (period) for each covariate */ |
/* Projection from cross-sectional to forward stable (period) prevalence for each covariate */ |
|
|
for (k1=1; k1<= m ; k1 ++) { /* For each covariate combination (1 to m=2**k), if any covariate is present */ |
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
strcpy(gplotlabel,"("); |
for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ |
fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ |
vlv= nbcode[Tvaraff[k]][lv]; |
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ |
fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
} |
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
fprintf(ficgp,"\n#\n"); |
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
if(invalidvarcomb[k1]){ |
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
continue; |
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
} |
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
/* } */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1); |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
set ter svg size 640, 480\n \ |
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
unset log y\n \ |
} |
plot [%.f:%.f] ", ageminpar, agemaxpar); |
strcpy(gplotlabel+strlen(gplotlabel),")"); |
for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
fprintf(ficgp,"\n#\n"); |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
if(invalidvarcomb[k1]){ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
continue; |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
} |
if(i==1){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n "); |
}else{ |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres); |
fprintf(ficgp,",\\\n '' "); |
fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
} |
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
if(cptcoveff ==0){ /* No covariate */ |
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
ioffset=2; /* Age is in 2 */ |
|
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
/* for (i=1; i<= nlstate+1 ; i ++){ /\* nlstate +1 p11 p21 p.1 *\/ */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */ |
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
/*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
for (i=istart; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
fprintf(ficgp," u %d:(", ioffset); |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
if(i==nlstate+1) |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ", \ |
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
else |
if(i==istart){ |
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_")); |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
}else{ |
}else{ /* more than 2 covariates */ |
fprintf(ficgp,",\\\n '' "); |
if(cptcoveff ==1){ |
} |
ioffset=4; /* Age is in 4 */ |
if(cptcoveff ==0){ /* No covariate */ |
}else{ |
ioffset=2; /* Age is in 2 */ |
ioffset=6; /* Age is in 6 */ |
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
} |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
fprintf(ficgp," u %d:(",ioffset); |
fprintf(ficgp," u %d:(", ioffset); |
kl=0; |
if(i==nlstate+1){ |
strcpy(gplotcondition,"("); |
fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ", \ |
for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */ |
fprintf(ficgp,",\\\n '' "); |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
fprintf(ficgp," u %d:(",ioffset); |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \ |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
offyear, \ |
vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate ); |
kl++; |
}else |
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); |
fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \ |
kl++; |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
if(k <cptcoveff && cptcoveff>1) |
}else{ /* more than 2 covariates */ |
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/ |
} |
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
strcpy(gplotcondition+strlen(gplotcondition),")"); |
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
iyearc=ioffset-1; |
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
iagec=ioffset; |
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
fprintf(ficgp," u %d:(",ioffset); |
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
kl=0; |
if(i==nlstate+1){ |
strcpy(gplotcondition,"("); |
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \ |
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate writing the chain of conditions *\/ */ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
}else{ |
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ |
/* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ |
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
lv=Tvresult[nres][k]; |
} |
vlv=TinvDoQresult[nres][Tvresult[nres][k]]; |
} /* end if covariate */ |
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
} /* nlstate */ |
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
fprintf(ficgp,"\nset out\n"); |
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
/* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
kl++; |
|
/* Problem with quantitative variables TinvDoQresult[nres] */ |
|
/* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */ |
|
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,lv, kl+1, vlv );/* Solved but quantitative must be shifted */ |
|
kl++; |
|
if(k <cptcovs && cptcovs>1) |
|
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
|
} |
|
strcpy(gplotcondition+strlen(gplotcondition),")"); |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(i==nlstate+1){ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",iagec); /* Below iyearc should be increades if quantitative variable in the reult line */ |
|
/* $7==6 && $8==2.47 ) && (($9-$10) == 1953 ) ? $12/(1.-$24) : 1/0):7 with labels center not */ |
|
/* but was && $7==6 && $8==2 ) && (($7-$8) == 1953 ) ? $12/(1.-$24) : 1/0):7 with labels center not */ |
|
fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \ |
|
iyearc, iagec, offyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc ); |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/ |
|
}else{ |
|
fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt ); |
|
} |
|
} /* end if covariate */ |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
} /* end cpt state*/ |
} /* end cpt state*/ |
} /* end covariate */ |
} /* end covariate */ |
} /* End if prevfcast */ |
} /* End if prevfcast */ |
|
|
|
if(prevbcast==1){ |
|
/* Back projection from cross-sectional to stable (mixed) for each covariate */ |
|
|
|
/* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ |
|
strcpy(gplotlabel,"("); |
|
fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt); |
|
for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ |
|
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
/* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ |
|
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ |
|
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
} |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
if(invalidvarcomb[k1]){ |
|
fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); |
|
continue; |
|
} |
|
|
|
fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n "); |
/* proba elementaires */ |
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres); |
fprintf(ficgp,"\n##############\n#MLE estimated parameters\n#############\n"); |
fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); |
|
fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\ |
|
set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar); |
|
|
|
/* for (i=1; i<= nlstate+1 ; i ++){ /\* nlstate +1 p11 p21 p.1 *\/ */ |
|
istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
/*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */ |
|
for (i=istart; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
/*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
if(i==istart){ |
|
fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_")); |
|
}else{ |
|
fprintf(ficgp,",\\\n '' "); |
|
} |
|
/* if(cptcoveff ==0){ /\* No covariate *\/ */ |
|
if(cptcovs ==0){ /* No covariate */ |
|
ioffset=2; /* Age is in 2 */ |
|
/*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
/*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */ |
|
fprintf(ficgp," u %d:(", ioffset); |
|
if(i==nlstate+1){ |
|
fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",ioffset); |
|
fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \ |
|
offbyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1) ); |
|
}else |
|
fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ", \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i ); |
|
}else{ /* more than 2 covariates */ |
|
ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/ |
|
/*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/ |
|
/*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */ |
|
iyearc=ioffset-1; |
|
iagec=ioffset; |
|
fprintf(ficgp," u %d:(",ioffset); |
|
kl=0; |
|
strcpy(gplotcondition,"("); |
|
for (k=1; k<=cptcovs; k++){ /* For each covariate k of the resultline, get corresponding value lv for combination k1 */ |
|
if(Dummy[modelresult[nres][k]]==0){ /* To be verified */ |
|
/* for (k=1; k<=cptcoveff; k++){ /\* For each covariate writing the chain of conditions *\/ */ |
|
/* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
lv=Tvresult[nres][k]; |
|
vlv=TinvDoQresult[nres][Tvresult[nres][k]]; |
|
/* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ |
|
/* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ |
|
/* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ |
|
/* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
kl++; |
|
/* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */ |
|
sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,Tvresult[nres][k], kl+1,TinvDoQresult[nres][Tvresult[nres][k]]); |
|
kl++; |
|
if(k <cptcovs && cptcovs>1) |
|
sprintf(gplotcondition+strlen(gplotcondition)," && "); |
|
} |
|
} |
|
strcpy(gplotcondition+strlen(gplotcondition),")"); |
|
/* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ |
|
/*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ |
|
/*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/ |
|
if(i==nlstate+1){ |
|
fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt ); |
|
fprintf(ficgp,",\\\n '' "); |
|
fprintf(ficgp," u %d:(",iagec); |
|
/* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */ |
|
fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \ |
|
iyearc,iagec,offbyear, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc ); |
|
/* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/ |
|
}else{ |
|
/* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */ |
|
fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \ |
|
ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i ); |
|
} |
|
} /* end if covariate */ |
|
} /* nlstate */ |
|
fprintf(ficgp,"\nset out; unset label;\n"); |
|
} /* end cpt state*/ |
|
} /* end covariate */ |
|
} /* End if prevbcast */ |
|
|
|
|
|
/* 9eme writing MLE parameters */ |
|
fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
fprintf(ficgp,"# initial state %d\n",i); |
fprintf(ficgp,"# initial state %d\n",i); |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
fprintf(ficgp,"# current state %d\n",k); |
fprintf(ficgp,"# current state %d\n",k); |
for(j=1; j <=ncovmodel; j++){ |
for(j=1; j <=ncovmodel; j++){ |
fprintf(ficgp,"p%d=%f; ",jk,p[jk]); |
fprintf(ficgp,"p%d=%f; ",jk,p[jk]); |
jk++; |
jk++; |
} |
} |
fprintf(ficgp,"\n"); |
fprintf(ficgp,"\n"); |
} |
} |
} |
} |
} |
} |
fprintf(ficgp,"##############\n#\n"); |
fprintf(ficgp,"##############\n#\n"); |
|
|
/*goto avoid;*/ |
/*goto avoid;*/ |
fprintf(ficgp,"\n##############\n#Graphics of probabilities or incidences\n#############\n"); |
/* 10eme Graphics of probabilities or incidences using written MLE parameters */ |
|
fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n"); |
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n"); |
fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n"); |
fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n"); |
fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n"); |
Line 6250 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 10991 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
fprintf(ficgp,"# +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n"); |
fprintf(ficgp,"#\n"); |
fprintf(ficgp,"#\n"); |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ |
fprintf(ficgp,"# ng=%d\n",ng); |
fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n"); |
fprintf(ficgp,"# jk=1 to 2^%d=%d\n",cptcoveff,m); |
fprintf(ficgp,"#model=1+age+%s \n",model); |
for(jk=1; jk <=m; jk++) { |
fprintf(ficgp,"# Type of graphic ng=%d\n",ng); |
fprintf(ficgp,"# jk=%d\n",jk); |
/* fprintf(ficgp,"# k1=1 to 2^%d=%d\n",cptcoveff,m);/\* to be checked *\/ */ |
fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng); |
fprintf(ficgp,"# k1=1 to 2^%d=%d\n",cptcovs,m);/* to be checked */ |
|
/* for(k1=1; k1 <=m; k1++) /\* For each combination of covariate *\/ */ |
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* k1=nres; */ |
|
k1=TKresult[nres]; |
|
if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ |
|
fprintf(ficgp,"\n\n# Resultline k1=%d ",k1); |
|
strcpy(gplotlabel,"("); |
|
/*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/ |
|
for (k=1; k<=cptcovs; k++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ |
|
/* for each resultline nres, and position k, Tvresult[nres][k] gives the name of the variable and |
|
TinvDoQresult[nres][Tvresult[nres][k]] gives its value double or integer) */ |
|
fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); |
|
} |
|
/* if(m != 1 && TKresult[nres]!= k1) */ |
|
/* continue; */ |
|
/* fprintf(ficgp,"\n\n# Combination of dummy k1=%d which is ",k1); */ |
|
/* strcpy(gplotlabel,"("); */ |
|
/* /\*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*\/ */ |
|
/* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ |
|
/* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ |
|
/* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ |
|
/* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ |
|
/* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ |
|
/* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ |
|
/* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ |
|
/* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ |
|
/* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ |
|
/* } */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ |
|
/* } */ |
|
strcpy(gplotlabel+strlen(gplotlabel),")"); |
|
fprintf(ficgp,"\n#\n"); |
|
fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres); |
|
fprintf(ficgp,"\nset key outside "); |
|
/* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */ |
|
fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
fprintf(ficgp,"\nset ter svg size 640, 480 "); |
if (ng==1){ |
if (ng==1){ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */ |
Line 6294 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 11075 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
break; |
break; |
} |
} |
ij=1;/* To be checked else nbcode[0][0] wrong */ |
ij=1;/* To be checked else nbcode[0][0] wrong */ |
for(j=3; j <=ncovmodel-nagesqr; j++) { |
ijp=1; /* product no age */ |
|
/* for(j=3; j <=ncovmodel-nagesqr; j++) { */ |
|
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
/* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */ |
if(ij <=cptcovage) { /* Bug valgrind */ |
switch(Typevar[j]){ |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
case 1: |
fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
if(j==Tage[ij]) { /* Product by age To be looked at!!*//* Bug valgrind */ |
ij++; |
if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */ |
|
if(DummyV[j]==0){/* Bug valgrind */ |
|
fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
ij++; |
|
} |
|
} |
} |
} |
} |
break; |
else |
case 2: |
fprintf(ficgp,"+p%d*%d",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
if(cptcovprod >0){ |
} |
if(j==Tprod[ijp]) { /* */ |
}else{ |
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
i=i-ncovmodel; |
if(ijp <=cptcovprod) { /* Product */ |
if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */ |
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
fprintf(ficgp," (1."); |
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
} |
|
}else{ /* Vn*Vm Vn is quanti */ |
|
if(DummyV[Tvard[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
} |
|
} |
|
ijp++; |
|
} |
|
} /* end Tprod */ |
|
} |
|
break; |
|
case 3: |
|
if(cptcovdageprod >0){ |
|
/* if(j==Tprod[ijp]) { */ /* not necessary */ |
|
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
|
if(ijp <=cptcovprod) { /* Product Vn*Vm and age*VN*Vm*/ |
|
if(DummyV[Tvardk[ijp][1]]==0){/* Vn is dummy */ |
|
if(DummyV[Tvardk[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]); |
|
} |
|
}else{ /* age* Vn*Vm Vn is quanti HERE */ |
|
if(DummyV[Tvard[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvardk[ijp][2]],Tqinvresult[nres][Tvardk[ijp][1]]); |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]); |
|
} |
|
} |
|
ijp++; |
|
} |
|
/* } */ /* end Tprod */ |
|
} |
|
break; |
|
case 0: |
|
/* simple covariate */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */ |
|
if(Dummy[j]==0){ |
|
fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /* */ |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
/* end simple */ |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
|
} /* end j */ |
|
}else{ /* k=k2 */ |
|
if(ng !=1 ){ /* For logit formula of log p11 is more difficult to get */ |
|
fprintf(ficgp," (1.");i=i-ncovmodel; |
|
}else |
|
i=i-ncovmodel; |
} |
} |
|
|
if(ng != 1){ |
if(ng != 1){ |
fprintf(ficgp,")/(1"); |
fprintf(ficgp,")/(1"); |
|
|
for(k1=1; k1 <=nlstate; k1++){ |
for(cpt=1; cpt <=nlstate; cpt++){ |
if(nagesqr==0) |
if(nagesqr==0) |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1); |
fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1); |
else /* nagesqr =1 */ |
else /* nagesqr =1 */ |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr); |
fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr); |
|
|
ij=1; |
ij=1; |
for(j=3; j <=ncovmodel-nagesqr; j++){ |
ijp=1; |
if(ij <=cptcovage) { /* Bug valgrind */ |
/* for(j=3; j <=ncovmodel-nagesqr; j++){ */ |
if((j-2)==Tage[ij]) { /* Bug valgrind */ |
for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */ |
fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
switch(Typevar[j]){ |
/* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */ |
case 1: |
ij++; |
if(cptcovage >0){ |
|
if(j==Tage[ij]) { /* Bug valgrind */ |
|
if(ij <=cptcovage) { /* Bug valgrind */ |
|
if(DummyV[j]==0){/* Bug valgrind */ |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); */ |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,nbcode[Tvar[j]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; */ |
|
/* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
}else{ /* quantitative */ |
|
/* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */ |
|
fprintf(ficgp,"+p%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */ |
|
/* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
ij++; |
|
} |
|
} |
} |
} |
} |
break; |
else |
case 2: |
fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]); |
if(cptcovprod >0){ |
|
if(j==Tprod[ijp]) { /* */ |
|
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
|
if(ijp <=cptcovprod) { /* Product */ |
|
if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */ |
|
if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */ |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
}else{ /* Vn*Vm Vn is quanti */ |
|
if(DummyV[Tvard[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */ |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
} |
|
ijp++; |
|
} |
|
} /* end Tprod */ |
|
} /* end if */ |
|
break; |
|
case 3: |
|
if(cptcovdageprod >0){ |
|
/* if(j==Tprod[ijp]) { /\* *\/ */ |
|
/* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */ |
|
if(ijp <=cptcovprod) { /* Product */ |
|
if(DummyV[Tvardk[ijp][1]]==0){/* Vn is dummy */ |
|
if(DummyV[Tvardk[ijp][2]]==0){/* Vn and Vm are dummy */ |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */ |
|
fprintf(ficgp,"+p%d*%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][1]],Tinvresult[nres][Tvardk[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */ |
|
}else{ /* Vn is dummy and Vm is quanti */ |
|
/* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
fprintf(ficgp,"+p%d*%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
}else{ /* Vn*Vm Vn is quanti */ |
|
if(DummyV[Tvardk[ijp][2]]==0){ |
|
fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][2]],Tqinvresult[nres][Tvardk[ijp][1]]); |
|
/* fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */ |
|
}else{ /* Both quanti */ |
|
fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]); |
|
/* fprintf(ficgp,"+p%d*%f*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */ |
|
} |
|
} |
|
ijp++; |
|
} |
|
/* } /\* end Tprod *\/ */ |
|
} /* end if */ |
|
break; |
|
case 0: |
|
/* simple covariate */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */ |
|
if(Dummy[j]==0){ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\* *\/ */ |
|
fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); /* */ |
|
/* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\* *\/ */ |
|
}else{ /* quantitative */ |
|
fprintf(ficgp,"+p%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* */ |
|
/* fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* *\/ */ |
|
/* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */ |
|
} |
|
/* end simple */ |
|
/* fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/\* Valgrind bug nbcode *\/ */ |
|
break; |
|
default: |
|
break; |
|
} /* end switch */ |
} |
} |
fprintf(ficgp,")"); |
fprintf(ficgp,")"); |
} |
} |
fprintf(ficgp,")"); |
fprintf(ficgp,")"); |
if(ng ==2) |
if(ng ==2) |
fprintf(ficgp," t \"p%d%d\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
else /* ng= 3 */ |
else /* ng= 3 */ |
fprintf(ficgp," t \"i%d%d\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
}else{ /* end ng <> 1 */ |
}else{ /* end ng <> 1 */ |
if( k !=k2) /* logit p11 is hard to draw */ |
if( k !=k2) /* logit p11 is hard to draw */ |
fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k); |
fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k); |
} |
} |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
if ((k+k2)!= (nlstate*2+ndeath) && ng != 1) |
fprintf(ficgp,","); |
fprintf(ficgp,","); |
Line 6351 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 11297 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
i=i+ncovmodel; |
i=i+ncovmodel; |
} /* end k */ |
} /* end k */ |
} /* end k2 */ |
} /* end k2 */ |
fprintf(ficgp,"\n set out\n"); |
/* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */ |
} /* end jk */ |
fprintf(ficgp,"\n set out; unset title;set key default;\n"); |
|
} /* end resultline */ |
} /* end ng */ |
} /* end ng */ |
/* avoid: */ |
/* avoid: */ |
fflush(ficgp); |
fflush(ficgp); |
Line 6367 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 11314 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
int modcovmax =1; |
int modcovmax =1; |
int mobilavrange, mob; |
int mobilavrange, mob; |
int iage=0; |
int iage=0; |
|
int firstA1=0, firstA2=0; |
|
|
double sum=0.; |
double sum=0., sumr=0.; |
double age; |
double age; |
double *sumnewp, *sumnewm; |
double *sumnewp, *sumnewm, *sumnewmr; |
double *agemingood, *agemaxgood; /* Currently identical for all covariates */ |
double *agemingood, *agemaxgood; |
|
double *agemingoodr, *agemaxgoodr; |
|
|
|
|
/* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose */ |
/* modcovmax=2*cptcoveff; Max number of modalities. We suppose */ |
/* a covariate has 2 modalities, should be equal to ncovcombmax *\/ */ |
/* a covariate has 2 modalities, should be equal to ncovcombmax */ |
|
|
sumnewp = vector(1,ncovcombmax); |
sumnewp = vector(1,ncovcombmax); |
sumnewm = vector(1,ncovcombmax); |
sumnewm = vector(1,ncovcombmax); |
|
sumnewmr = vector(1,ncovcombmax); |
agemingood = vector(1,ncovcombmax); |
agemingood = vector(1,ncovcombmax); |
|
agemingoodr = vector(1,ncovcombmax); |
agemaxgood = vector(1,ncovcombmax); |
agemaxgood = vector(1,ncovcombmax); |
|
agemaxgoodr = vector(1,ncovcombmax); |
|
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.; |
sumnewp[cptcod]=0.; |
sumnewp[cptcod]=0.; |
agemingood[cptcod]=0; |
agemingood[cptcod]=0, agemingoodr[cptcod]=0; |
agemaxgood[cptcod]=0; |
agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0; |
} |
} |
if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */ |
if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */ |
|
|
if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){ |
if(mobilav==1) mobilavrange=5; /* default */ |
if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */ |
else mobilavrange=mobilav; |
else mobilavrange=mobilav; |
for (age=bage; age<=fage; age++) |
for (age=bage; age<=fage; age++) |
for (i=1; i<=nlstate;i++) |
for (i=1; i<=nlstate;i++) |
Line 6403 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 11355 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
*/ |
*/ |
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
for (mob=3;mob <=mobilavrange;mob=mob+2){ |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ |
for (i=1; i<=nlstate;i++){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
sumnewm[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod]; |
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
for (cpt=1;cpt<=(mob-1)/2;cpt++){ |
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod]; |
} |
} |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob; |
} |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
} |
} /* end i */ |
|
if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */ |
|
} /* end cptcod */ |
}/* end age */ |
}/* end age */ |
}/* end mob */ |
}/* end mob */ |
}else |
}else{ |
|
printf("Error internal in movingaverage, mobilav=%d.\n",mobilav); |
return -1; |
return -1; |
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ |
} |
|
|
|
for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */ |
/* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */ |
/* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */ |
if(invalidvarcomb[cptcod]){ |
if(invalidvarcomb[cptcod]){ |
printf("\nCombination (%d) ignored because no cases \n",cptcod); |
printf("\nCombination (%d) ignored because no cases \n",cptcod); |
continue; |
continue; |
} |
} |
|
|
agemingood[cptcod]=fage-(mob-1)/2; |
for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */ |
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */ |
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemingoodr[cptcod]=age; |
|
} |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingood[cptcod]=age; |
|
} |
|
} /* age */ |
|
for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */ |
|
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemaxgoodr[cptcod]=age; |
|
} |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemaxgood[cptcod]=age; |
|
} |
|
} /* age */ |
|
/* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */ |
|
/* but they will change */ |
|
firstA1=0;firstA2=0; |
|
for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */ |
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(mobilav==-1){ /* Forcing raw ages if good else agemingood */ |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */ |
|
agemaxgoodr[cptcod]=age; /* age min */ |
|
for (i=1; i<=nlstate;i++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}else{ |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemaxgood[cptcod]=age; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* end else */ |
|
sum=0.;sumr=0.; |
for (i=1; i<=nlstate;i++){ |
for (i=1; i<=nlstate;i++){ |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
sum+=mobaverage[(int)age][i][cptcod]; |
|
sumr+=probs[(int)age][i][cptcod]; |
} |
} |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
agemingood[cptcod]=age; |
if(!firstA1){ |
}else{ /* bad */ |
firstA1=1; |
for (i=1; i<=nlstate;i++){ |
printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage); |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
} |
} /* i */ |
fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
|
if(!firstA2){ |
|
firstA2=1; |
|
printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage); |
|
} |
|
fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage); |
} /* end bad */ |
} /* end bad */ |
}/* age */ |
}/* age */ |
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */ |
sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod); |
|
/* for (i=1; i<=nlstate;i++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
|
/* } /\* i *\/ */ |
|
} /* end bad */ |
|
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
|
/* From youngest, finding the oldest wrong */ |
|
agemaxgood[cptcod]=bage+(mob-1)/2; |
|
for (age=bage+(mob-1)/2; age<=fage; age++){ |
|
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; |
|
sumnewmr[cptcod]=0.; |
for (i=1; i<=nlstate;i++){ |
for (i=1; i<=nlstate;i++){ |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod]; |
|
sumnewmr[cptcod]+=probs[(int)age][i][cptcod]; |
|
} |
|
if(mobilav==-1){ /* Forcing raw ages if good else agemingood */ |
|
if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingoodr[cptcod]=age; |
|
for (i=1; i<=nlstate;i++) |
|
mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod]; |
|
}else{ /* bad we change the value with the values of good ages */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}else{ |
|
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
|
agemingood[cptcod]=age; |
|
}else{ /* bad */ |
|
for (i=1; i<=nlstate;i++){ |
|
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
|
} /* i */ |
|
} /* end bad */ |
|
}/* end else */ |
|
sum=0.;sumr=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)age][i][cptcod]; |
|
sumr+=mobaverage[(int)age][i][cptcod]; |
} |
} |
if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */ |
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
agemaxgood[cptcod]=age; |
printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage); |
}else{ /* bad */ |
} /* end bad */ |
for (i=1; i<=nlstate;i++){ |
/* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
if(fabs(sumr - 1.) > 1.e-3) { /* bad */ |
} /* i */ |
printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage); |
} /* end bad */ |
} /* end bad */ |
}/* age */ |
}/* age */ |
sum=0.; |
|
for (i=1; i<=nlstate;i++){ |
|
sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
|
} |
|
if(fabs(sum - 1.) > 1.e-3) { /* bad */ |
|
printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod); |
|
/* for (i=1; i<=nlstate;i++){ */ |
|
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
|
/* } /\* i *\/ */ |
|
} /* end bad */ |
|
|
|
for (age=bage; age<=fage; age++){ |
for (age=bage; age<=fage; age++){ |
printf("%d %d ", cptcod, (int)age); |
/* printf("%d %d ", cptcod, (int)age); */ |
sumnewp[cptcod]=0.; |
sumnewp[cptcod]=0.; |
sumnewm[cptcod]=0.; |
sumnewm[cptcod]=0.; |
for (i=1; i<=nlstate;i++){ |
for (i=1; i<=nlstate;i++){ |
Line 6488 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
Line 11515 plot [%.f:%.f] ", ageminpar, agemaxpar)
|
} |
} |
/* printf("\n"); */ |
/* printf("\n"); */ |
/* } */ |
/* } */ |
|
|
/* brutal averaging */ |
/* brutal averaging */ |
for (i=1; i<=nlstate;i++){ |
/* for (i=1; i<=nlstate;i++){ */ |
for (age=1; age<=bage; age++){ |
/* for (age=1; age<=bage; age++){ */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; |
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */ |
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
/* /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */ |
} |
/* } */ |
for (age=fage; age<=AGESUP; age++){ |
/* for (age=fage; age<=AGESUP; age++){ */ |
mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; |
/* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */ |
/* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */ |
/* /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */ |
} |
/* } */ |
} /* end i status */ |
/* } /\* end i status *\/ */ |
for (i=nlstate+1; i<=nlstate+ndeath;i++){ |
/* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */ |
for (age=1; age<=AGESUP; age++){ |
/* for (age=1; age<=AGESUP; age++){ */ |
/*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/ |
/* /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */ |
mobaverage[(int)age][i][cptcod]=0.; |
/* mobaverage[(int)age][i][cptcod]=0.; */ |
} |
/* } */ |
} |
/* } */ |
}/* end cptcod */ |
}/* end cptcod */ |
free_vector(sumnewm,1, ncovcombmax); |
free_vector(agemaxgoodr,1, ncovcombmax); |
free_vector(sumnewp,1, ncovcombmax); |
|
free_vector(agemaxgood,1, ncovcombmax); |
free_vector(agemaxgood,1, ncovcombmax); |
free_vector(agemingood,1, ncovcombmax); |
free_vector(agemingood,1, ncovcombmax); |
|
free_vector(agemingoodr,1, ncovcombmax); |
|
free_vector(sumnewmr,1, ncovcombmax); |
|
free_vector(sumnewm,1, ncovcombmax); |
|
free_vector(sumnewp,1, ncovcombmax); |
return 0; |
return 0; |
}/* End movingaverage */ |
}/* End movingaverage */ |
|
|
|
|
|
|
/************** Forecasting ******************/ |
/************** Forecasting ******************/ |
void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
/* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/ |
/* proj1, year, month, day of starting projection |
void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){ |
|
/* dateintemean, mean date of interviews |
|
dateprojd, year, month, day of starting projection |
|
dateprojf date of end of projection;year of end of projection (same day and month as proj1). |
agemin, agemax range of age |
agemin, agemax range of age |
dateprev1 dateprev2 range of dates during which prevalence is computed |
dateprev1 dateprev2 range of dates during which prevalence is computed |
anproj2 year of en of projection (same day and month as proj1). |
|
*/ |
*/ |
int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; |
/* double anprojd, mprojd, jprojd; */ |
|
/* double anprojf, mprojf, jprojf; */ |
|
int yearp, stepsize, hstepm, nhstepm, j, k, i, h, nres=0; |
double agec; /* generic age */ |
double agec; /* generic age */ |
double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; |
double agelim, ppij; |
double *popeffectif,*popcount; |
/*double *popcount;*/ |
double ***p3mat; |
double ***p3mat; |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
char fileresf[FILENAMELENGTH]; |
char fileresf[FILENAMELENGTH]; |
Line 6543 void prevforecast(char fileres[], double
|
Line 11579 void prevforecast(char fileres[], double
|
printf("Problem with forecast resultfile: %s\n", fileresf); |
printf("Problem with forecast resultfile: %s\n", fileresf); |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf); |
} |
} |
printf("Computing forecasting: result on file '%s', please wait... \n", fileresf); |
printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf); |
fprintf(ficlog,"Computing forecasting: result on file '%s', please wait... \n", fileresf); |
fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf); |
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
Line 6554 void prevforecast(char fileres[], double
|
Line 11590 void prevforecast(char fileres[], double
|
if(estepm < stepm){ |
if(estepm < stepm){ |
printf ("Problem %d lower than %d\n",estepm, stepm); |
printf ("Problem %d lower than %d\n",estepm, stepm); |
} |
} |
else hstepm=estepm; |
else{ |
|
hstepm=estepm; |
|
} |
|
if(estepm > stepm){ /* Yes every two year */ |
|
stepsize=2; |
|
} |
|
hstepm=hstepm/stepm; |
|
|
hstepm=hstepm/stepm; |
|
yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
fractional in yp1 */ |
/* fractional in yp1 *\/ */ |
anprojmean=yp; |
/* aintmean=yp; */ |
yp2=modf((yp1*12),&yp); |
/* yp2=modf((yp1*12),&yp); */ |
mprojmean=yp; |
/* mintmean=yp; */ |
yp1=modf((yp2*30.5),&yp); |
/* yp1=modf((yp2*30.5),&yp); */ |
jprojmean=yp; |
/* jintmean=yp; */ |
if(jprojmean==0) jprojmean=1; |
/* if(jintmean==0) jintmean=1; */ |
if(mprojmean==0) jprojmean=1; |
/* if(mintmean==0) mintmean=1; */ |
|
|
i1=cptcoveff; |
|
if (cptcovn < 1){i1=1;} |
/* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ |
|
/* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */ |
|
/* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */ |
|
/* i1=pow(2,cptcoveff); */ |
|
/* if (cptcovn < 1){i1=1;} */ |
|
|
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
|
|
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
fprintf(ficresf,"#****** Routine prevforecast **\n"); |
|
|
/* if (h==(int)(YEARM*yearp)){ */ |
/* if (h==(int)(YEARM*yearp)){ */ |
for(cptcov=1, k=0;cptcov<=i1;cptcov++){ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
k=TKresult[nres]; |
k=k+1; |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
/* for(k=1; k<=i1;k++){ /\* We want to find the combination k corresponding to the values of the dummies given in this resut line (to be cleaned one day) *\/ */ |
for(j=1;j<=cptcoveff;j++) { |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* continue; */ |
} |
/* if(invalidvarcomb[k]){ */ |
fprintf(ficresf," yearproj age"); |
/* printf("\nCombination (%d) projection ignored because no cases \n",k); */ |
for(j=1; j<=nlstate+ndeath;j++){ |
/* continue; */ |
for(i=1; i<=nlstate;i++) |
/* } */ |
fprintf(ficresf," p%d%d",i,j); |
fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#"); |
fprintf(ficresf," wp.%d",j); |
for(j=1;j<=cptcovs;j++){ |
} |
/* for(j=1;j<=cptcoveff;j++) { */ |
for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { |
/* /\* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); *\/ */ |
fprintf(ficresf,"\n"); |
/* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
/* } */ |
for (agec=fage; agec>=(ageminpar-1); agec--){ |
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
/* fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
nhstepm = nhstepm/hstepm; |
/* } */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
fprintf(ficresf," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
oldm=oldms;savm=savms; |
} |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
|
|
fprintf(ficresf," yearproj age"); |
for (h=0; h<=nhstepm; h++){ |
for(j=1; j<=nlstate+ndeath;j++){ |
if (h*hstepm/YEARM*stepm ==yearp) { |
for(i=1; i<=nlstate;i++) |
fprintf(ficresf,"\n"); |
fprintf(ficresf," p%d%d",i,j); |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresf," wp.%d",j); |
fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
} |
fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); |
for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) { |
} |
fprintf(ficresf,"\n"); |
for(j=1; j<=nlstate+ndeath;j++) { |
fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp); |
ppij=0.; |
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
for(i=1; i<=nlstate;i++) { |
for (agec=fage; agec>=(bage); agec--){ |
if (mobilav==1) |
nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; |
nhstepm = nhstepm/hstepm; |
else { |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; |
oldm=oldms;savm=savms; |
} |
/* We compute pii at age agec over nhstepm);*/ |
if (h*hstepm/YEARM*stepm== yearp) { |
hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres); |
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
/* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */ |
} |
for (h=0; h<=nhstepm; h++){ |
} /* end i */ |
if (h*hstepm/YEARM*stepm ==yearp) { |
if (h*hstepm/YEARM*stepm==yearp) { |
break; |
fprintf(ficresf," %.3f", ppij); |
} |
} |
} |
}/* end j */ |
fprintf(ficresf,"\n"); |
} /* end h */ |
/* for(j=1;j<=cptcoveff;j++) */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
for(j=1;j<=cptcovs;j++) |
} /* end agec */ |
fprintf(ficresf,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} /* end yearp */ |
/* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Tvaraff not correct *\/ */ |
} /* end cptcod */ |
/* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* TnsdVar[Tvaraff] correct *\/ */ |
} /* end cptcov */ |
fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm); |
|
|
|
for(j=1; j<=nlstate+ndeath;j++) { |
|
ppij=0.; |
|
for(i=1; i<=nlstate;i++) { |
|
if (mobilav>=1) |
|
ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k]; |
|
else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */ |
|
ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; |
|
} |
|
fprintf(ficresf," %.3f", p3mat[i][j][h]); |
|
} /* end i */ |
|
fprintf(ficresf," %.3f", ppij); |
|
}/* end j */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
/* diffyear=(int) anproj1+yearp-ageminpar-1; */ |
|
/*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/ |
|
} /* end yearp */ |
|
} /* end k */ |
|
|
fclose(ficresf); |
fclose(ficresf); |
printf("End of Computing forecasting \n"); |
printf("End of Computing forecasting \n"); |
Line 6634 void prevforecast(char fileres[], double
|
Line 11699 void prevforecast(char fileres[], double
|
|
|
} |
} |
|
|
/* /\************** Back Forecasting ******************\/ */ |
/************** Back Forecasting ******************/ |
/* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */ |
/* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */ |
/* /\* back1, year, month, day of starting backection */ |
void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){ |
/* agemin, agemax range of age */ |
/* back1, year, month, day of starting backprojection |
/* dateprev1 dateprev2 range of dates during which prevalence is computed */ |
agemin, agemax range of age |
/* anback2 year of en of backection (same day and month as back1). */ |
dateprev1 dateprev2 range of dates during which prevalence is computed |
/* *\/ */ |
anback2 year of end of backprojection (same day and month as back1). |
/* int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */ |
prevacurrent and prev are prevalences. |
/* double agec; /\* generic age *\/ */ |
*/ |
/* double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */ |
int yearp, stepsize, hstepm, nhstepm, j, k, i, h, nres=0; |
|
double agec; /* generic age */ |
|
double agelim, ppij, ppi; /* ,jintmean,mintmean,aintmean;*/ |
|
/*double *popcount;*/ |
|
double ***p3mat; |
|
/* double ***mobaverage; */ |
|
char fileresfb[FILENAMELENGTH]; |
|
|
|
agelim=AGEINF; |
|
/* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people |
|
in each health status at the date of interview (if between dateprev1 and dateprev2). |
|
We still use firstpass and lastpass as another selection. |
|
*/ |
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */ |
|
/* firstpass, lastpass, stepm, weightopt, model); */ |
|
|
|
/*Do we need to compute prevalence again?*/ |
|
|
|
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
|
|
strcpy(fileresfb,"FB_"); |
|
strcat(fileresfb,fileresu); |
|
if((ficresfb=fopen(fileresfb,"w"))==NULL) { |
|
printf("Problem with back forecast resultfile: %s\n", fileresfb); |
|
fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); |
|
} |
|
printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb); |
|
fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb); |
|
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
if (stepm<=12) stepsize=1; |
|
if(estepm < stepm){ |
|
printf ("Problem %d lower than %d\n",estepm, stepm); |
|
} |
|
else{ |
|
hstepm=estepm; |
|
} |
|
if(estepm >= stepm){ /* Yes every two year */ |
|
stepsize=2; |
|
} |
|
|
|
hstepm=hstepm/stepm; |
|
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
|
/* fractional in yp1 *\/ */ |
|
/* aintmean=yp; */ |
|
/* yp2=modf((yp1*12),&yp); */ |
|
/* mintmean=yp; */ |
|
/* yp1=modf((yp2*30.5),&yp); */ |
|
/* jintmean=yp; */ |
|
/* if(jintmean==0) jintmean=1; */ |
|
/* if(mintmean==0) jintmean=1; */ |
|
|
|
/* i1=pow(2,cptcoveff); */ |
|
/* if (cptcovn < 1){i1=1;} */ |
|
|
|
fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
|
printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); |
|
|
|
fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k=TKresult[nres]; |
|
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* for(k=1; k<=i1;k++){ */ |
|
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
|
/* if(invalidvarcomb[k]){ */ |
|
/* printf("\nCombination (%d) projection ignored because no cases \n",k); */ |
|
/* continue; */ |
|
/* } */ |
|
fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#"); |
|
for(j=1;j<=cptcovs;j++){ |
|
/* for(j=1;j<=cptcoveff;j++) { */ |
|
/* fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* } */ |
|
fprintf(ficresfb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
} |
|
/* fprintf(ficrespij,"******\n"); */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficresfb," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
|
fprintf(ficresfb," yearbproj age"); |
|
for(j=1; j<=nlstate+ndeath;j++){ |
|
for(i=1; i<=nlstate;i++) |
|
fprintf(ficresfb," b%d%d",i,j); |
|
fprintf(ficresfb," b.%d",j); |
|
} |
|
for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) { |
|
/* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { */ |
|
fprintf(ficresfb,"\n"); |
|
fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp); |
|
/* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
|
/* for (agec=bage; agec<=agemax-1; agec++){ /\* testing *\/ */ |
|
for (agec=bage; agec<=fage; agec++){ /* testing */ |
|
/* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/ |
|
nhstepm=(int) (agec-agelim) *YEARM/stepm;/* nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/ |
|
nhstepm = nhstepm/hstepm; |
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
|
/* computes hbxij at age agec over 1 to nhstepm */ |
|
/* printf("####prevbackforecast debug agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */ |
|
hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres); |
|
/* hpxij(p3mat,nhstepm,agec,hstepm,p, nlstate,stepm,oldm,savm, k,nres); */ |
|
/* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */ |
|
/* printf(" agec=%.2f\n",agec);fflush(stdout); */ |
|
for (h=0; h<=nhstepm; h++){ |
|
if (h*hstepm/YEARM*stepm ==-yearp) { |
|
break; |
|
} |
|
} |
|
fprintf(ficresfb,"\n"); |
|
/* for(j=1;j<=cptcoveff;j++) */ |
|
for(j=1;j<=cptcovs;j++) |
|
fprintf(ficresfb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
/* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm); |
|
for(i=1; i<=nlstate+ndeath;i++) { |
|
ppij=0.;ppi=0.; |
|
for(j=1; j<=nlstate;j++) { |
|
/* if (mobilav==1) */ |
|
ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k]; |
|
ppi=ppi+prevacurrent[(int)agec][j][k]; |
|
/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */ |
|
/* ppi=ppi+mobaverage[(int)agec][j][k]; */ |
|
/* else { */ |
|
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */ |
|
/* } */ |
|
fprintf(ficresfb," %.3f", p3mat[i][j][h]); |
|
} /* end j */ |
|
if(ppi <0.99){ |
|
printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi); |
|
fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi); |
|
} |
|
fprintf(ficresfb," %.3f", ppij); |
|
}/* end j */ |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
} /* end agec */ |
|
} /* end yearp */ |
|
} /* end k */ |
|
|
|
/* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
|
|
fclose(ficresfb); |
|
printf("End of Computing Back forecasting \n"); |
|
fprintf(ficlog,"End of Computing Back forecasting\n"); |
|
|
|
} |
|
|
|
/* Variance of prevalence limit: varprlim */ |
|
void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
|
/*------- Variance of forward period (stable) prevalence------*/ |
|
|
|
char fileresvpl[FILENAMELENGTH]; |
|
FILE *ficresvpl; |
|
double **oldm, **savm; |
|
double **varpl; /* Variances of prevalence limits by age */ |
|
int i1, k, nres, j ; |
|
|
|
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of forward period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k=TKresult[nres]; |
|
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* for(k=1; k<=i1;k++){ /\* We find the combination equivalent to result line values of dummies *\/ */ |
|
if(i1 != 1 && TKresult[nres]!= k) |
|
continue; |
|
fprintf(ficresvpl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for(j=1;j<=cptcovs;j++) { |
|
fprintf(ficresvpl,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
/* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
} |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
|
fprintf(ficresvpl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvpl); |
|
printf("done variance-covariance of forward period prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog); |
|
|
|
} |
|
/* Variance of back prevalence: varbprlim */ |
|
void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){ |
|
/*------- Variance of back (stable) prevalence------*/ |
|
|
|
char fileresvbl[FILENAMELENGTH]; |
|
FILE *ficresvbl; |
|
|
|
double **oldm, **savm; |
|
double **varbpl; /* Variances of back prevalence limits by age */ |
|
int i1, k, nres, j ; |
|
|
|
strcpy(fileresvbl,"VBL_"); |
|
strcat(fileresvbl,fileresu); |
|
if((ficresvbl=fopen(fileresvbl,"w"))==NULL) { |
|
printf("Problem with variance of back (stable) prevalence resultfile: %s\n", fileresvbl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog); |
|
|
|
|
|
i1=pow(2,cptcoveff); |
|
if (cptcovn < 1){i1=1;} |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k=TKresult[nres]; |
|
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* for(k=1; k<=i1;k++){ */ |
|
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
|
fprintf(ficresvbl,"\n#****** "); |
|
printf("\n#****** "); |
|
fprintf(ficlog,"\n#****** "); |
|
for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); |
|
fprintf(ficresvbl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); |
|
fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); |
|
/* for(j=1;j<=cptcoveff;j++) { */ |
|
/* fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* } */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
} |
|
fprintf(ficresvbl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
|
|
varbpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
|
|
varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres); |
|
free_matrix(varbpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvbl); |
|
printf("done variance-covariance of back prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog); |
|
|
|
} /* End of varbprlim */ |
|
|
|
/************** Forecasting *****not tested NB*************/ |
|
/* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */ |
|
|
|
/* int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */ |
|
/* int *popage; */ |
|
/* double calagedatem, agelim, kk1, kk2; */ |
/* double *popeffectif,*popcount; */ |
/* double *popeffectif,*popcount; */ |
/* double ***p3mat; */ |
/* double ***p3mat,***tabpop,***tabpopprev; */ |
/* /\* double ***mobaverage; *\/ */ |
/* /\* double ***mobaverage; *\/ */ |
/* char fileresfb[FILENAMELENGTH]; */ |
/* char filerespop[FILENAMELENGTH]; */ |
|
|
|
/* tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
/* agelim=AGESUP; */ |
/* agelim=AGESUP; */ |
/* /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */ |
/* calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */ |
/* in each health status at the date of interview (if between dateprev1 and dateprev2). */ |
|
/* We still use firstpass and lastpass as another selection. */ |
|
/* *\/ */ |
|
/* /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */ |
|
/* /\* firstpass, lastpass, stepm, weightopt, model); *\/ */ |
|
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
|
|
/* strcpy(fileresfb,"FB_"); */ |
|
/* strcat(fileresfb,fileresu); */ |
/* strcpy(filerespop,"POP_"); */ |
/* if((ficresfb=fopen(fileresfb,"w"))==NULL) { */ |
/* strcat(filerespop,fileresu); */ |
/* printf("Problem with back forecast resultfile: %s\n", fileresfb); */ |
/* if((ficrespop=fopen(filerespop,"w"))==NULL) { */ |
/* fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */ |
/* printf("Problem with forecast resultfile: %s\n", filerespop); */ |
|
/* fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */ |
/* } */ |
/* } */ |
/* printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
/* printf("Computing forecasting: result on file '%s' \n", filerespop); */ |
/* fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */ |
/* fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */ |
|
|
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */ |
|
|
/* /\* if (mobilav!=0) { *\/ */ |
/* /\* if (mobilav!=0) { *\/ */ |
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */ |
Line 6676 void prevforecast(char fileres[], double
|
Line 12023 void prevforecast(char fileres[], double
|
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */ |
/* /\* } *\/ */ |
/* /\* } *\/ */ |
/* /\* } *\/ */ |
/* /\* } *\/ */ |
|
|
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
/* stepsize=(int) (stepm+YEARM-1)/YEARM; */ |
/* if (stepm<=12) stepsize=1; */ |
/* if (stepm<=12) stepsize=1; */ |
/* if(estepm < stepm){ */ |
|
/* printf ("Problem %d lower than %d\n",estepm, stepm); */ |
|
/* } */ |
|
/* else hstepm=estepm; */ |
|
|
|
/* hstepm=hstepm/stepm; */ |
|
/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */ |
|
/* fractional in yp1 *\/ */ |
|
/* anprojmean=yp; */ |
|
/* yp2=modf((yp1*12),&yp); */ |
|
/* mprojmean=yp; */ |
|
/* yp1=modf((yp2*30.5),&yp); */ |
|
/* jprojmean=yp; */ |
|
/* if(jprojmean==0) jprojmean=1; */ |
|
/* if(mprojmean==0) jprojmean=1; */ |
|
|
|
/* i1=cptcoveff; */ |
|
/* if (cptcovn < 1){i1=1;} */ |
|
|
|
/* fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); */ |
/* agelim=AGESUP; */ |
|
|
/* fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */ |
/* hstepm=1; */ |
|
/* hstepm=hstepm/stepm; */ |
|
|
/* /\* if (h==(int)(YEARM*yearp)){ *\/ */ |
/* if (popforecast==1) { */ |
/* for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */ |
/* if((ficpop=fopen(popfile,"r"))==NULL) { */ |
|
/* printf("Problem with population file : %s\n",popfile);exit(0); */ |
|
/* fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */ |
|
/* } */ |
|
/* popage=ivector(0,AGESUP); */ |
|
/* popeffectif=vector(0,AGESUP); */ |
|
/* popcount=vector(0,AGESUP); */ |
|
|
|
/* i=1; */ |
|
/* while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */ |
|
|
|
/* imx=i; */ |
|
/* for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */ |
|
/* } */ |
|
|
|
/* for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */ |
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */ |
/* k=k+1; */ |
/* k=k+1; */ |
/* fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */ |
/* fprintf(ficrespop,"\n#******"); */ |
/* for(j=1;j<=cptcoveff;j++) { */ |
/* for(j=1;j<=cptcoveff;j++) { */ |
/* fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
/* fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
/* } */ |
/* } */ |
/* fprintf(ficresfb," yearbproj age"); */ |
/* fprintf(ficrespop,"******\n"); */ |
/* for(j=1; j<=nlstate+ndeath;j++){ */ |
/* fprintf(ficrespop,"# Age"); */ |
/* for(i=1; i<=nlstate;i++) */ |
/* for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */ |
/* fprintf(ficresfb," p%d%d",i,j); */ |
/* if (popforecast==1) fprintf(ficrespop," [Population]"); */ |
/* fprintf(ficresfb," p.%d",j); */ |
|
/* } */ |
|
/* for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) { */ |
|
/* /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { *\/ */ |
|
/* fprintf(ficresfb,"\n"); */ |
|
/* fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */ |
|
/* for (agec=fage; agec>=(ageminpar-1); agec--){ */ |
|
/* nhstepm=(int) rint((agelim-agec)*YEARM/stepm); */ |
|
/* nhstepm = nhstepm/hstepm; */ |
|
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* oldm=oldms;savm=savms; */ |
|
/* hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k); */ |
|
/* for (h=0; h<=nhstepm; h++){ */ |
|
/* if (h*hstepm/YEARM*stepm ==yearp) { */ |
|
/* fprintf(ficresfb,"\n"); */ |
|
/* for(j=1;j<=cptcoveff;j++) */ |
|
/* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ |
|
/* fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */ |
|
/* } */ |
|
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
|
/* ppij=0.; */ |
|
/* for(i=1; i<=nlstate;i++) { */ |
|
/* if (mobilav==1) */ |
|
/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */ |
|
/* else { */ |
|
/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */ |
|
/* } */ |
|
/* if (h*hstepm/YEARM*stepm== yearp) { */ |
|
/* fprintf(ficresfb," %.3f", p3mat[i][j][h]); */ |
|
/* } */ |
|
/* } /\* end i *\/ */ |
|
/* if (h*hstepm/YEARM*stepm==yearp) { */ |
|
/* fprintf(ficresfb," %.3f", ppij); */ |
|
/* } */ |
|
/* }/\* end j *\/ */ |
|
/* } /\* end h *\/ */ |
|
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
|
/* } /\* end agec *\/ */ |
|
/* } /\* end yearp *\/ */ |
|
/* } /\* end cptcod *\/ */ |
|
/* } /\* end cptcov *\/ */ |
|
|
|
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
|
|
/* fclose(ficresfb); */ |
|
/* printf("End of Computing Back forecasting \n"); */ |
|
/* fprintf(ficlog,"End of Computing Back forecasting\n"); */ |
|
|
|
/* } */ |
|
|
|
/************** Forecasting *****not tested NB*************/ |
|
void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ |
|
|
|
int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
|
int *popage; |
|
double calagedatem, agelim, kk1, kk2; |
|
double *popeffectif,*popcount; |
|
double ***p3mat,***tabpop,***tabpopprev; |
|
/* double ***mobaverage; */ |
|
char filerespop[FILENAMELENGTH]; |
|
|
|
tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
|
agelim=AGESUP; |
|
calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; |
|
|
|
prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
|
|
|
|
|
strcpy(filerespop,"POP_"); |
|
strcat(filerespop,fileresu); |
|
if((ficrespop=fopen(filerespop,"w"))==NULL) { |
|
printf("Problem with forecast resultfile: %s\n", filerespop); |
|
fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); |
|
} |
|
printf("Computing forecasting: result on file '%s' \n", filerespop); |
|
fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); |
|
|
|
if (cptcoveff==0) ncodemax[cptcoveff]=1; |
|
|
|
/* if (mobilav!=0) { */ |
|
/* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
|
/* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ */ |
|
/* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */ |
|
/* printf(" Error in movingaverage mobilav=%d\n",mobilav); */ |
|
/* } */ |
|
/* } */ |
|
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
|
if (stepm<=12) stepsize=1; |
|
|
|
agelim=AGESUP; |
|
|
|
hstepm=1; |
|
hstepm=hstepm/stepm; |
|
|
|
if (popforecast==1) { |
|
if((ficpop=fopen(popfile,"r"))==NULL) { |
|
printf("Problem with population file : %s\n",popfile);exit(0); |
|
fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); |
|
} |
|
popage=ivector(0,AGESUP); |
|
popeffectif=vector(0,AGESUP); |
|
popcount=vector(0,AGESUP); |
|
|
|
i=1; |
|
while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; |
|
|
|
imx=i; |
|
for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; |
|
} |
|
|
|
for(cptcov=1,k=0;cptcov<=i2;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
|
k=k+1; |
|
fprintf(ficrespop,"\n#******"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficrespop,"******\n"); |
|
fprintf(ficrespop,"# Age"); |
|
for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); |
|
if (popforecast==1) fprintf(ficrespop," [Population]"); |
|
|
|
for (cpt=0; cpt<=0;cpt++) { |
/* for (cpt=0; cpt<=0;cpt++) { */ |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
|
|
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
nhstepm = nhstepm/hstepm; |
/* nhstepm = nhstepm/hstepm; */ |
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
oldm=oldms;savm=savms; |
/* oldm=oldms;savm=savms; */ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
|
|
for (h=0; h<=nhstepm; h++){ |
/* for (h=0; h<=nhstepm; h++){ */ |
if (h==(int) (calagedatem+YEARM*cpt)) { |
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
/* fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
} |
/* } */ |
for(j=1; j<=nlstate+ndeath;j++) { |
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
kk1=0.;kk2=0; |
/* kk1=0.;kk2=0; */ |
for(i=1; i<=nlstate;i++) { |
/* for(i=1; i<=nlstate;i++) { */ |
if (mobilav==1) |
/* if (mobilav==1) */ |
kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; |
/* kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */ |
else { |
/* else { */ |
kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
/* kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */ |
} |
/* } */ |
} |
/* } */ |
if (h==(int)(calagedatem+12*cpt)){ |
/* if (h==(int)(calagedatem+12*cpt)){ */ |
tabpop[(int)(agedeb)][j][cptcod]=kk1; |
/* tabpop[(int)(agedeb)][j][cptcod]=kk1; */ |
/*fprintf(ficrespop," %.3f", kk1); |
/* /\*fprintf(ficrespop," %.3f", kk1); */ |
if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ |
/* if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */ |
} |
/* } */ |
} |
/* } */ |
for(i=1; i<=nlstate;i++){ |
/* for(i=1; i<=nlstate;i++){ */ |
kk1=0.; |
/* kk1=0.; */ |
for(j=1; j<=nlstate;j++){ |
/* for(j=1; j<=nlstate;j++){ */ |
kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; |
/* kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; */ |
} |
/* } */ |
tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; |
/* tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */ |
} |
/* } */ |
|
|
if (h==(int)(calagedatem+12*cpt)) |
/* if (h==(int)(calagedatem+12*cpt)) */ |
for(j=1; j<=nlstate;j++) |
/* for(j=1; j<=nlstate;j++) */ |
fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); |
/* fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */ |
} |
/* } */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
} |
/* } */ |
} |
/* } */ |
|
|
/******/ |
/* /\******\/ */ |
|
|
for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { |
/* for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { */ |
fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */ |
for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */ |
nhstepm = nhstepm/hstepm; |
/* nhstepm = nhstepm/hstepm; */ |
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
oldm=oldms;savm=savms; |
/* oldm=oldms;savm=savms; */ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
for (h=0; h<=nhstepm; h++){ |
/* for (h=0; h<=nhstepm; h++){ */ |
if (h==(int) (calagedatem+YEARM*cpt)) { |
/* if (h==(int) (calagedatem+YEARM*cpt)) { */ |
fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
/* fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */ |
} |
/* } */ |
for(j=1; j<=nlstate+ndeath;j++) { |
/* for(j=1; j<=nlstate+ndeath;j++) { */ |
kk1=0.;kk2=0; |
/* kk1=0.;kk2=0; */ |
for(i=1; i<=nlstate;i++) { |
/* for(i=1; i<=nlstate;i++) { */ |
kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; |
/* kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; */ |
} |
/* } */ |
if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); |
/* if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); */ |
} |
/* } */ |
} |
/* } */ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */ |
} |
/* } */ |
} |
/* } */ |
} |
/* } */ |
} |
/* } */ |
|
|
/* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */ |
|
|
if (popforecast==1) { |
/* if (popforecast==1) { */ |
free_ivector(popage,0,AGESUP); |
/* free_ivector(popage,0,AGESUP); */ |
free_vector(popeffectif,0,AGESUP); |
/* free_vector(popeffectif,0,AGESUP); */ |
free_vector(popcount,0,AGESUP); |
/* free_vector(popcount,0,AGESUP); */ |
} |
/* } */ |
free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
/* free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
/* free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */ |
fclose(ficrespop); |
/* fclose(ficrespop); */ |
} /* End of popforecast */ |
/* } /\* End of popforecast *\/ */ |
|
|
int fileappend(FILE *fichier, char *optionfich) |
int fileappend(FILE *fichier, char *optionfich) |
{ |
{ |
Line 7062 void prwizard(int ncovmodel, int nlstate
|
Line 12284 void prwizard(int ncovmodel, int nlstate
|
/******************* Gompertz Likelihood ******************************/ |
/******************* Gompertz Likelihood ******************************/ |
double gompertz(double x[]) |
double gompertz(double x[]) |
{ |
{ |
double A,B,L=0.0,sump=0.,num=0.; |
double A=0.0,B=0.,L=0.0,sump=0.,num=0.; |
int i,n=0; /* n is the size of the sample */ |
int i,n=0; /* n is the size of the sample */ |
|
|
for (i=1;i<=imx ; i++) { |
for (i=1;i<=imx ; i++) { |
Line 7070 double gompertz(double x[])
|
Line 12292 double gompertz(double x[])
|
/* sump=sump+1;*/ |
/* sump=sump+1;*/ |
num=num+1; |
num=num+1; |
} |
} |
|
L=0.0; |
|
/* agegomp=AGEGOMP; */ |
/* for (i=0; i<=imx; i++) |
/* for (i=0; i<=imx; i++) |
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/ |
|
|
for (i=1;i<=imx ; i++) |
for (i=1;i<=imx ; i++) { |
{ |
/* mu(a)=mu(agecomp)*exp(teta*(age-agegomp)) |
if (cens[i] == 1 && wav[i]>1) |
mu(a)=x[1]*exp(x[2]*(age-agegomp)); x[1] and x[2] are per year. |
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
* L= Product mu(agedeces)exp(-\int_ageexam^agedc mu(u) du ) for a death between agedc (in month) |
|
* and agedc +1 month, cens[i]=0: log(x[1]/YEARM) |
if (cens[i] == 0 && wav[i]>1) |
* + |
|
* exp(-\int_ageexam^agecens mu(u) du ) when censored, cens[i]=1 |
|
*/ |
|
if (wav[i] > 1 || agedc[i] < AGESUP) { |
|
if (cens[i] == 1){ |
|
A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))); |
|
} else if (cens[i] == 0){ |
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp))) |
+log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM); |
+log(fabs(x[1])/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM); |
|
/* +log(x[1]/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM); */ /* To be seen */ |
|
} else |
|
printf("Gompertz cens[%d] neither 1 nor 0\n",i); |
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
/*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */ |
if (wav[i] > 1 ) { /* ??? */ |
L=L+A*weight[i]; |
L=L+A*weight[i]; |
|
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
/* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/ |
} |
} |
} |
} |
|
|
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
/*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/ |
|
|
return -2*L*num/sump; |
return -2*L*num/sump; |
} |
} |
Line 7100 double gompertz(double x[])
|
Line 12329 double gompertz(double x[])
|
/******************* Gompertz_f Likelihood ******************************/ |
/******************* Gompertz_f Likelihood ******************************/ |
double gompertz_f(const gsl_vector *v, void *params) |
double gompertz_f(const gsl_vector *v, void *params) |
{ |
{ |
double A,B,LL=0.0,sump=0.,num=0.; |
double A=0.,B=0.,LL=0.0,sump=0.,num=0.; |
double *x= (double *) v->data; |
double *x= (double *) v->data; |
int i,n=0; /* n is the size of the sample */ |
int i,n=0; /* n is the size of the sample */ |
|
|
Line 7166 void printinggnuplotmort(char fileresu[]
|
Line 12395 void printinggnuplotmort(char fileresu[]
|
|
|
char dirfileres[132],optfileres[132]; |
char dirfileres[132],optfileres[132]; |
|
|
int ng; |
/*int ng;*/ |
|
|
|
|
/*#ifdef windows */ |
/*#ifdef windows */ |
Line 7190 int readdata(char datafile[], int firsto
|
Line 12419 int readdata(char datafile[], int firsto
|
/*-------- data file ----------*/ |
/*-------- data file ----------*/ |
FILE *fic; |
FILE *fic; |
char dummy[]=" "; |
char dummy[]=" "; |
int i=0, j=0, n=0, iv=0; |
int i = 0, j = 0, n = 0, iv = 0;/* , v;*/ |
int lstra; |
int lstra; |
int linei, month, year,iout; |
int linei, month, year,iout; |
|
int noffset=0; /* This is the offset if BOM data file */ |
char line[MAXLINE], linetmp[MAXLINE]; |
char line[MAXLINE], linetmp[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char stra[MAXLINE], strb[MAXLINE]; |
char *stratrunc; |
char *stratrunc; |
|
|
|
/* DummyV=ivector(-1,NCOVMAX); /\* 1 to 3 *\/ */ |
|
/* FixedV=ivector(-1,NCOVMAX); /\* 1 to 3 *\/ */ |
|
|
|
ncovcolt=ncovcol+nqv+ntv+nqtv; /* total of covariates in the data, not in the model equation */ |
|
|
if((fic=fopen(datafile,"r"))==NULL) { |
if((fic=fopen(datafile,"r"))==NULL) { |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
} |
} |
|
|
i=1; |
/* Is it a BOM UTF-8 Windows file? */ |
|
/* First data line */ |
linei=0; |
linei=0; |
|
while(fgets(line, MAXLINE, fic)) { |
|
noffset=0; |
|
if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */ |
|
{ |
|
noffset=noffset+3; |
|
printf("# Data file '%s' is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Data file '%s' is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
/* else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/ |
|
else if( line[0] == (char)0xFF && line[1] == (char)0xFE) |
|
{ |
|
noffset=noffset+2; |
|
printf("# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
else if( line[0] == 0 && line[1] == 0) |
|
{ |
|
if( line[2] == (char)0xFE && line[3] == (char)0xFF){ |
|
noffset=noffset+4; |
|
printf("# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout); |
|
fprintf(ficlog,"# Error Data file '%s' is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile); |
|
fflush(ficlog); return 1; |
|
} |
|
} else{ |
|
;/*printf(" Not a BOM file\n");*/ |
|
} |
|
/* If line starts with a # it is a comment */ |
|
if (line[noffset] == '#') { |
|
linei=linei+1; |
|
break; |
|
}else{ |
|
break; |
|
} |
|
} |
|
fclose(fic); |
|
if((fic=fopen(datafile,"r"))==NULL) { |
|
printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); |
|
fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; |
|
} |
|
/* Not a Bom file */ |
|
|
|
i=1; |
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) { |
linei=linei+1; |
linei=linei+1; |
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
for(j=strlen(line); j>=0;j--){ /* Untabifies line */ |
Line 7227 int readdata(char datafile[], int firsto
|
Line 12505 int readdata(char datafile[], int firsto
|
/* Loops on waves */ |
/* Loops on waves */ |
for (j=maxwav;j>=1;j--){ |
for (j=maxwav;j>=1;j--){ |
for (iv=nqtv;iv>=1;iv--){ /* Loop on time varying quantitative variables */ |
for (iv=nqtv;iv>=1;iv--){ /* Loop on time varying quantitative variables */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
}else{ |
cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ |
errno=0; |
cotvar[j][ncovcol+nqv+ntv+iv][i]=-1; /* For performance reasons */ |
/* what_kind_of_number(strb); */ |
if(isalpha(strb[1])) { /* .m or .d Really Missing value */ |
dval=strtod(strb,&endptr); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); |
/* if( strb[0]=='\0' || (*endptr != '\0')){ */ |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); |
/* if(strb != endptr && *endptr == '\0') */ |
return 1; |
/* dval=dlval; */ |
} |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
}else{ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
errno=0; |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav); |
/* what_kind_of_number(strb); */ |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog); |
dval=strtod(strb,&endptr); |
return 1; |
/* if( strb[0]=='\0' || (*endptr != '\0')){ */ |
} |
/* if(strb != endptr && *endptr == '\0') */ |
cotqvar[j][iv][i]=dval; |
/* dval=dlval; */ |
} |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
strcpy(line,stra); |
if( strb[0]=='\0' || (*endptr != '\0')){ |
|
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav); |
|
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog); |
|
return 1; |
|
} |
|
cotqvar[j][iv][i]=dval; |
|
cotvar[j][ncovcol+nqv+ntv+iv][i]=dval; /* because cotvar starts now at first ntv */ |
|
} |
|
strcpy(line,stra); |
}/* end loop ntqv */ |
}/* end loop ntqv */ |
|
|
for (iv=ntv;iv>=1;iv--){ /* Loop on time varying dummies */ |
for (iv=ntv;iv>=1;iv--){ /* Loop on time varying dummies */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
} |
} |
if(lval <-1 || lval >1){ |
if(lval <-1 || lval >1){ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j); |
Exiting.\n",lval,linei, i,line,iv,j); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
cotvar[j][iv][i]=(double)(lval); |
cotvar[j][ncovcol+nqv+iv][i]=(double)(lval); |
strcpy(line,stra); |
strcpy(line,stra); |
}/* end loop ntv */ |
}/* end loop ntv */ |
|
|
/* Statuses at wave */ |
/* Statuses at wave */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0' )){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog); |
return 1; |
return 1; |
} |
}else if( lval==0 || lval > nlstate+ndeath){ |
|
printf("Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %ld.\n Fix your data file '%s'! Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile);fflush(stdout); |
|
fprintf(ficlog,"Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %ld.\n Fix your data file '%s'! Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile); fflush(ficlog); |
|
return 1; |
|
} |
} |
} |
|
|
s[j][i]=lval; |
s[j][i]=lval; |
|
|
/* Date of Interview */ |
/* Date of Interview */ |
strcpy(line,stra); |
strcpy(line,stra); |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
} |
} |
else if( (iout=sscanf(strb,"%s.",dummy)) != 0){ |
else if( (iout=sscanf(strb,"%s.",dummy)) != 0){ |
month=99; |
month=99; |
year=9999; |
year=9999; |
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
anint[j][i]= (double) year; |
anint[j][i]= (double) year; |
mint[j][i]= (double)month; |
mint[j][i]= (double)month; |
|
/* if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ */ |
|
/* printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */ |
|
/* fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */ |
|
/* } */ |
strcpy(line,stra); |
strcpy(line,stra); |
} /* End loop on waves */ |
} /* End loop on waves */ |
|
|
/* Date of death */ |
/* Date of death */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){ |
Line 7331 int readdata(char datafile[], int firsto
|
Line 12625 int readdata(char datafile[], int firsto
|
year=9999; |
year=9999; |
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
andc[i]=(double) year; |
andc[i]=(double) year; |
moisdc[i]=(double) month; |
moisdc[i]=(double) month; |
Line 7348 int readdata(char datafile[], int firsto
|
Line 12642 int readdata(char datafile[], int firsto
|
}else{ |
}else{ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
if (year==9999) { |
if (year==9999) { |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog); |
return 1; |
return 1; |
|
|
} |
} |
annais[i]=(double)(year); |
annais[i]=(double)(year); |
moisnais[i]=(double)(month); |
moisnais[i]=(double)(month); |
strcpy(line,stra); |
for (j=1;j<=maxwav;j++){ |
|
if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ |
|
printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j,(int)moisnais[i],(int)annais[i]); |
|
fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j, (int)moisnais[i],(int)annais[i]); |
|
} |
|
} |
|
|
|
strcpy(line,stra); |
|
|
/* Sample weight */ |
/* Sample weight */ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
errno=0; |
errno=0; |
Line 7372 int readdata(char datafile[], int firsto
|
Line 12673 int readdata(char datafile[], int firsto
|
} |
} |
weight[i]=dval; |
weight[i]=dval; |
strcpy(line,stra); |
strcpy(line,stra); |
|
|
for (iv=nqv;iv>=1;iv--){ /* Loop on fixed quantitative variables */ |
for (iv=nqv;iv>=1;iv--){ /* Loop on fixed quantitative variables */ |
cutv(stra, strb, line, ' '); |
cutv(stra, strb, line, ' '); |
if(strb[0]=='.') { /* Missing value */ |
if(strb[0]=='.') { /* Missing value */ |
lval=-1; |
lval=-1; |
|
coqvar[iv][i]=NAN; |
|
covar[ncovcol+iv][i]=NAN; /* including qvar in standard covar for performance reasons */ |
}else{ |
}else{ |
errno=0; |
errno=0; |
/* what_kind_of_number(strb); */ |
/* what_kind_of_number(strb); */ |
dval=strtod(strb,&endptr); |
dval=strtod(strb,&endptr); |
/* if(strb != endptr && *endptr == '\0') */ |
/* if(strb != endptr && *endptr == '\0') */ |
/* dval=dlval; */ |
/* dval=dlval; */ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
/* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav); |
printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
coqvar[iv][i]=dval; |
coqvar[iv][i]=dval; |
|
covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ |
} |
} |
strcpy(line,stra); |
strcpy(line,stra); |
}/* end loop nqv */ |
}/* end loop nqv */ |
Line 7398 int readdata(char datafile[], int firsto
|
Line 12702 int readdata(char datafile[], int firsto
|
for (j=ncovcol;j>=1;j--){ |
for (j=ncovcol;j>=1;j--){ |
cutv(stra, strb,line,' '); |
cutv(stra, strb,line,' '); |
if(strb[0]=='.') { /* Missing covariate value */ |
if(strb[0]=='.') { /* Missing covariate value */ |
lval=-1; |
lval=-1; |
}else{ |
}else{ |
errno=0; |
errno=0; |
lval=strtol(strb,&endptr,10); |
lval=strtol(strb,&endptr,10); |
if( strb[0]=='\0' || (*endptr != '\0')){ |
if( strb[0]=='\0' || (*endptr != '\0')){ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line); |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);fflush(ficlog); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
} |
} |
if(lval <-1 || lval >1){ |
if(lval <-1 || lval >1){ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j); |
Exiting.\n",lval,linei, i,line,j); |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
For example, for multinomial values like 1, 2 and 3,\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
build V1=0 V2=0 for the reference value (1),\n \ |
V1=1 V2=0 for (2) \n \ |
V1=1 V2=0 for (2) \n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \ |
output of IMaCh is often meaningless.\n \ |
output of IMaCh is often meaningless.\n \ |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
Exiting.\n",lval,linei, i,line,j);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
covar[j][i]=(double)(lval); |
covar[j][i]=(double)(lval); |
strcpy(line,stra); |
strcpy(line,stra); |
} |
} |
lstra=strlen(stra); |
lstra=strlen(stra); |
|
|
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */ |
stratrunc = &(stra[lstra-9]); |
stratrunc = &(stra[lstra-9]); |
num[i]=atol(stratrunc); |
num[i]=atol(stratrunc); |
Line 7445 int readdata(char datafile[], int firsto
|
Line 12749 int readdata(char datafile[], int firsto
|
|
|
i=i+1; |
i=i+1; |
} /* End loop reading data */ |
} /* End loop reading data */ |
|
|
*imax=i-1; /* Number of individuals */ |
*imax=i-1; /* Number of individuals */ |
fclose(fic); |
fclose(fic); |
|
|
return (0); |
return (0); |
/* endread: */ |
/* endread: */ |
printf("Exiting readdata: "); |
printf("Exiting readdata: "); |
fclose(fic); |
fclose(fic); |
return (1); |
return (1); |
} |
} |
|
|
void removespace(char *str) { |
void removefirstspace(char **stri){/*, char stro[]) {*/ |
char *p1 = str, *p2 = str; |
char *p1 = *stri, *p2 = *stri; |
do |
while (*p2 == ' ') |
while (*p2 == ' ') |
p2++; |
p2++; |
/* while ((*p1++ = *p2++) !=0) */ |
while (*p1++ == *p2++); |
/* ; */ |
} |
/* do */ |
|
/* while (*p2 == ' ') */ |
int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns: |
/* p2++; */ |
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
/* while (*p1++ == *p2++); */ |
* - nagesqr = 1 if age*age in the model, otherwise 0. |
*stri=p2; |
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
} |
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
|
* - cptcovage number of covariates with age*products =2 |
int decoderesult( char resultline[], int nres) |
* - cptcovs number of simple covariates |
/**< This routine decode one result line and returns the combination # of dummy covariates only **/ |
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
|
* which is a new column after the 9 (ncovcol) variables. |
|
* - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual |
|
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
|
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
|
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
|
*/ |
|
{ |
{ |
int i, j, k, ks; |
int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0; |
int j1, k1, k2; |
char resultsav[MAXLINE]; |
char modelsav[80]; |
/* int resultmodel[MAXLINE]; */ |
|
/* int modelresult[MAXLINE]; */ |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char stra[80], strb[80], strc[80], strd[80],stre[80]; |
char *strpt; |
|
|
|
|
removefirstspace(&resultline); |
|
printf("decoderesult:%s\n",resultline); |
|
|
|
strcpy(resultsav,resultline); |
|
/* printf("Decoderesult resultsav=\"%s\" resultline=\"%s\"\n", resultsav, resultline); */ |
|
if (strlen(resultsav) >1){ |
|
j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' in this resultline */ |
|
} |
|
if(j == 0 && cptcovs== 0){ /* Resultline but no = and no covariate in the model */ |
|
TKresult[nres]=0; /* Combination for the nresult and the model */ |
|
return (0); |
|
} |
|
if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */ |
|
fprintf(ficlog,"ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, 1+age+%s.\n",j, cptcovs, model);fflush(ficlog); |
|
printf("ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, 1+age+%s.\n",j, cptcovs, model);fflush(stdout); |
|
if(j==0) |
|
return 1; |
|
} |
|
for(k=1; k<=j;k++){ /* Loop on any covariate of the RESULT LINE */ |
|
if(nbocc(resultsav,'=') >1){ |
|
cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' (stra is the rest of the resultline to be analyzed in the next loop *//* resultsav= "V4=1 V5=25.1 V3=0" stra= "V5=25.1 V3=0" strb= "V4=1" */ |
|
/* If resultsav= "V4= 1 V5=25.1 V3=0" with a blank then strb="V4=" and stra="1 V5=25.1 V3=0" */ |
|
cutl(strc,strd,strb,'='); /* strb:"V4=1" strc="1" strd="V4" */ |
|
/* If a blank, then strc="V4=" and strd='\0' */ |
|
if(strc[0]=='\0'){ |
|
printf("Error in resultline, probably a blank after the \"%s\", \"result:%s\", stra=\"%s\" resultsav=\"%s\"\n",strb,resultline, stra, resultsav); |
|
fprintf(ficlog,"Error in resultline, probably a blank after the \"V%s=\", resultline=%s\n",strb,resultline); |
|
return 1; |
|
} |
|
}else |
|
cutl(strc,strd,resultsav,'='); |
|
Tvalsel[k]=atof(strc); /* 1 */ /* Tvalsel of k is the float value of the kth covariate appearing in this result line */ |
|
|
|
cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */; |
|
Tvarsel[k]=atoi(strc); /* 4 */ /* Tvarsel is the id of the kth covariate in the result line Tvarsel[1] in "V4=1.." is 4.*/ |
|
/* Typevarsel[k]=1; /\* 1 for age product *\/ */ |
|
/* cptcovsel++; */ |
|
if (nbocc(stra,'=') >0) |
|
strcpy(resultsav,stra); /* and analyzes it */ |
|
} |
|
/* Checking for missing or useless values in comparison of current model needs */ |
|
/* Feeds resultmodel[nres][k1]=k2 for k1th product covariate with age in the model equation fed by the index k2 of the resutline*/ |
|
for(k1=1; k1<= cptcovt ;k1++){ /* Loop on MODEL LINE V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
if(Typevar[k1]==0){ /* Single covariate in model */ |
|
/* 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ |
|
match=0; |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
modelresult[nres][k2]=k1;/* modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
break; |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]); |
|
fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s\n",Tvar[k1], resultline, model); |
|
return 1; |
|
} |
|
}else if(Typevar[k1]==1){ /* Product with age We want to get the position k2 in the resultline of the product k1 in the model line*/ |
|
/* We feed resultmodel[k1]=k2; */ |
|
match=0; |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. jth occurence of = signs in the result line. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
modelresult[nres][k2]=k1;/* we found a Vn=1 corrresponding to Vn*age in the model modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */ |
|
resultmodel[nres][k1]=k2; /* Added here */ |
|
/* printf("Decoderesult first modelresult[k2=%d]=%d (k1) V%d*AGE\n",k2,k1,Tvar[k1]); */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
break; |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); |
|
fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); |
|
return 1; |
|
} |
|
}else if(Typevar[k1]==2 || Typevar[k1]==3){ /* Product with or without age. We want to get the position in the resultline of the product in the model line*/ |
|
/* resultmodel[nres][of such a Vn * Vm product k1] is not unique, so can't exist, we feed Tvard[k1][1] and [2] */ |
|
match=0; |
|
/* printf("Decoderesult very first Product Tvardk[k1=%d][1]=%d Tvardk[k1=%d][2]=%d V%d * V%d\n",k1,Tvardk[k1][1],k1,Tvardk[k1][2],Tvardk[k1][1],Tvardk[k1][2]); */ |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvardk[k1][1]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
/* modelresult[k2]=k1; */ |
|
/* printf("Decoderesult first Product modelresult[k2=%d]=%d (k1) V%d * \n",k2,k1,Tvarsel[k2]); */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Product without age first variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model); |
|
fprintf(ficlog,"Error in result line (Product without age first variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model); |
|
return 1; |
|
} |
|
match=0; |
|
for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
if(Tvardk[k1][2]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5 */ |
|
/* modelresult[k2]=k1;*/ |
|
/* printf("Decoderesult second Product modelresult[k2=%d]=%d (k1) * V%d \n ",k2,k1,Tvarsel[k2]); */ |
|
match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */ |
|
break; |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line (Product without age second variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model); |
|
fprintf(ficlog,"Error in result line (Product without age second variable or double product with age): V%d is missing in result : %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model); |
|
return 1; |
|
} |
|
}/* End of testing */ |
|
}/* End loop cptcovt */ |
|
/* Checking for missing or useless values in comparison of current model needs */ |
|
/* Feeds resultmodel[nres][k1]=k2 for single covariate (k1) in the model equation */ |
|
for(k2=1; k2 <=j;k2++){ /* j or cptcovs is the number of single covariates used either in the model line as well as in the result line (dummy or quantitative) |
|
* Loop on resultline variables: result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
match=0; |
|
for(k1=1; k1<= cptcovt ;k1++){ /* loop on model: model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
if(Typevar[k1]==0){ /* Single only */ |
|
if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4 What if a product? */ |
|
resultmodel[nres][k1]=k2; /* k1th position in the model equation corresponds to k2th position in the result line. resultmodel[2]=1 resultmodel[1]=2 resultmodel[3]=3 resultmodel[6]=4 resultmodel[9]=5 */ |
|
modelresult[nres][k2]=k1; /* k1th position in the model equation corresponds to k2th position in the result line. modelresult[1]=2 modelresult[2]=1 modelresult[3]=3 remodelresult[4]=6 modelresult[5]=9 */ |
|
++match; |
|
} |
|
} |
|
} |
|
if(match == 0){ |
|
printf("Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model); |
|
fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model); |
|
return 1; |
|
}else if(match > 1){ |
|
printf("Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model); |
|
fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model); |
|
return 1; |
|
} |
|
} |
|
/* cptcovres=j /\* Number of variables in the resultline is equal to cptcovs and thus useless *\/ */ |
|
/* We need to deduce which combination number is chosen and save quantitative values */ |
|
/* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
/* nres=1st result line: V4=1 V5=25.1 V3=0 V2=8 V1=1 */ |
|
/* should correspond to the combination 6 of dummy: V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 1*1 + 0*2 + 1*4 = 5 + (1offset) = 6*/ |
|
/* nres=2nd result line: V4=1 V5=24.1 V3=1 V2=8 V1=0 */ |
|
/* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/ |
|
/* 1 0 0 0 */ |
|
/* 2 1 0 0 */ |
|
/* 3 0 1 0 */ |
|
/* 4 1 1 0 */ /* V4=1, V3=1, V1=0 (nres=2)*/ |
|
/* 5 0 0 1 */ |
|
/* 6 1 0 1 */ /* V4=1, V3=0, V1=1 (nres=1)*/ |
|
/* 7 0 1 1 */ |
|
/* 8 1 1 1 */ |
|
/* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */ |
|
/* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */ |
|
/* V5*age V5 known which value for nres? */ |
|
/* Tqinvresult[2]=8 Tqinvresult[1]=25.1 */ |
|
for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* cptcovt number of covariates (excluding 1 and age or age*age) in the MODEL equation. |
|
* loop on position k1 in the MODEL LINE */ |
|
/* k counting number of combination of single dummies in the equation model */ |
|
/* k4 counting single dummies in the equation model */ |
|
/* k4q counting single quantitatives in the equation model */ |
|
if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Dummy and Single, fixed or timevarying, k1 is sorting according to MODEL, but k3 to resultline */ |
|
/* k4+1= (not always if quant in model) position in the resultline V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) */ |
|
/* modelresult[k3]=k1: k3th position in the result line corresponds to the k1 position in the model line (doesn't work with products)*/ |
|
/* Value in the (current nres) resultline of the variable at the k1th position in the model equation resultmodel[nres][k1]= k3 */ |
|
/* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline */ |
|
/* k3 is the position in the nres result line of the k1th variable of the model equation */ |
|
/* Tvarsel[k3]: Name of the variable at the k3th position in the result line. */ |
|
/* Tvalsel[k3]: Value of the variable at the k3th position in the result line. */ |
|
/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */ |
|
/* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */ |
|
/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line */ |
|
/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */ |
|
k3= resultmodel[nres][k1]; /* From position k1 in model get position k3 in result line */ |
|
/* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/ |
|
k2=(int)Tvarsel[k3]; /* from position k3 in resultline get name k2: nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/ |
|
k+=Tvalsel[k3]*pow(2,k4); /* nres=1 k1=2 Tvalsel[1]=1 (V4=1); k1=3 k3=2 Tvalsel[2]=0 (V3=0) */ |
|
TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][Name]=Value; stores the value into the name of the variable. */ |
|
/* Tinvresult[nres][4]=1 */ |
|
/* Tresult[nres][k4+1]=Tvalsel[k3];/\* Tresult[nres=2][1]=1(V4=1) Tresult[nres=2][2]=0(V3=0) *\/ */ |
|
Tresult[nres][k3]=Tvalsel[k3];/* Tresult[nres=2][1]=1(V4=1) Tresult[nres=2][2]=0(V3=0) */ |
|
/* Tvresult[nres][k4+1]=(int)Tvarsel[k3];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */ |
|
Tvresult[nres][k3]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
|
Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */ |
|
precov[nres][k1]=Tvalsel[k3]; /* Value from resultline of the variable at the k1 position in the model */ |
|
/* printf("Decoderesult Dummy k=%d, k1=%d precov[nres=%d][k1=%d]=%.f V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k1, nres, k1,precov[nres][k1], k2, k3, (int)Tvalsel[k3], k4); */ |
|
k4++;; |
|
}else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Quantitative and single */ |
|
/* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */ |
|
/* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */ |
|
/* Tqinvresult[nres][Name of a quantitative variable]= value of the variable in the result line */ |
|
k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 5 =k3q */ |
|
k2q=(int)Tvarsel[k3q]; /* Name of variable at k3q th position in the resultline */ |
|
/* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */ |
|
/* Tqresult[nres][k4q+1]=Tvalsel[k3q]; /\* Tqresult[nres][1]=25.1 *\/ */ |
|
/* Tvresult[nres][k4q+1]=(int)Tvarsel[k3q];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */ |
|
/* Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /\* Tvqresult[nres][1]=5 *\/ */ |
|
Tqresult[nres][k3q]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */ |
|
Tvresult[nres][k3q]=(int)Tvarsel[k3q];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */ |
|
Tvqresult[nres][k3q]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */ |
|
Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
|
TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */ |
|
precov[nres][k1]=Tvalsel[k3q]; |
|
/* printf("Decoderesult Quantitative nres=%d,precov[nres=%d][k1=%d]=%.f V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, nres, k1,precov[nres][k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */ |
|
k4q++;; |
|
}else if( Dummy[k1]==2 ){ /* For dummy with age product "V2+V3+V4+V6+V7+V6*V2+V7*V2+V6*V3+V7*V3+V6*V4+V7*V4+age*V2+age*V3+age*V4+age*V6+age*V7+age*V6*V2+age*V6*V3+age*V7*V3+age*V6*V4+age*V7*V4\r"*/ |
|
/* Tvar[k1]; */ /* Age variable */ /* 17 age*V6*V2 ?*/ |
|
/* Wrong we want the value of variable name Tvar[k1] */ |
|
if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */ |
|
precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; |
|
/* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
}else{ |
|
k3= resultmodel[nres][k1]; /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/ |
|
k2=(int)Tvarsel[k3]; /* nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/ |
|
TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][4]=1 */ |
|
precov[nres][k1]=Tvalsel[k3]; |
|
} |
|
/* printf("Decoderesult Dummy with age k=%d, k1=%d precov[nres=%d][k1=%d]=%.f Tvar[%d]=V%d k2=Tvarsel[%d]=%d Tvalsel[%d]=%d\n",k, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k3,(int)Tvarsel[k3], k3, (int)Tvalsel[k3]); */ |
|
}else if( Dummy[k1]==3 ){ /* For quant with age product */ |
|
if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */ |
|
precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; |
|
/* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
}else{ |
|
k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 25.1=k3q */ |
|
k2q=(int)Tvarsel[k3q]; /* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */ |
|
TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* TinvDoQresult[nres][5]=25.1 */ |
|
precov[nres][k1]=Tvalsel[k3q]; |
|
} |
|
/* printf("Decoderesult Quantitative with age nres=%d, k1=%d, precov[nres=%d][k1=%d]=%f Tvar[%d]=V%d V(k2q=%d)= Tvarsel[%d]=%d, Tvalsel[%d]=%f\n",nres, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */ |
|
}else if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */ |
|
precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]]; |
|
/* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */ |
|
}else{ |
|
printf("Error Decoderesult probably a product Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]); |
|
fprintf(ficlog,"Error Decoderesult probably a product Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]); |
|
} |
|
} |
|
|
|
TKresult[nres]=++k; /* Number of combinations of dummies for the nresult and the model =Tvalsel[k3]*pow(2,k4) + 1*/ |
|
return (0); |
|
} |
|
|
|
int decodemodel( char model[], int lastobs) |
|
/**< This routine decodes the model and returns: |
|
* Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age |
|
* - nagesqr = 1 if age*age in the model, otherwise 0. |
|
* - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age |
|
* - cptcovn or number of covariates k of the models excluding age*products =6 and age*age |
|
* - cptcovage number of covariates with age*products =2 |
|
* - cptcovs number of simple covariates |
|
* ncovcolt=ncovcol+nqv+ntv+nqtv total of covariates in the data, not in the model equation |
|
* - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 |
|
* which is a new column after the 9 (ncovcol+nqv+ntv+nqtv) variables. |
|
* - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual |
|
* - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage |
|
* Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. |
|
* - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 . |
|
*/ |
|
/* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
|
{ |
|
int i, j, k, ks;/* , v;*/ |
|
int n,m; |
|
int j1, k1, k11, k12, k2, k3, k4; |
|
char modelsav[300]; |
|
char stra[300], strb[300], strc[300], strd[300],stre[300],strf[300]; |
|
char *strpt; |
|
int **existcomb; |
|
|
|
existcomb=imatrix(1,NCOVMAX,1,NCOVMAX); |
|
for(i=1;i<=NCOVMAX;i++) |
|
for(j=1;j<=NCOVMAX;j++) |
|
existcomb[i][j]=0; |
|
|
/*removespace(model);*/ |
/*removespace(model);*/ |
if (strlen(model) >1){ /* If there is at least 1 covariate */ |
if (strlen(model) >1){ /* If there is at least 1 covariate */ |
j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0; |
j=0, j1=0, k1=0, k12=0, k2=-1, ks=0, cptcovn=0; |
if (strstr(model,"AGE") !=0){ |
if (strstr(model,"AGE") !=0){ |
printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model); |
printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model); |
fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog); |
fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
if (strstr(model,"v") !=0){ |
if (strstr(model,"v") !=0){ |
printf("Error. 'v' must be in upper case 'V' model=%s ",model); |
printf("Error. 'v' must be in upper case 'V' model=1+age+%s ",model); |
fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog); |
fprintf(ficlog,"Error. 'v' must be in upper case model=1+age+%s ",model);fflush(ficlog); |
return 1; |
return 1; |
} |
} |
strcpy(modelsav,model); |
strcpy(modelsav,model); |
if ((strpt=strstr(model,"age*age")) !=0){ |
if ((strpt=strstr(model,"age*age")) !=0){ |
printf(" strpt=%s, model=%s\n",strpt, model); |
printf(" strpt=%s, model=1+age+%s\n",strpt, model); |
if(strpt != model){ |
if(strpt != model){ |
printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
printf("Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); |
corresponding column of parameters.\n",model); |
fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ |
fprintf(ficlog,"Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ |
corresponding column of parameters.\n",model); fflush(ficlog); |
corresponding column of parameters.\n",model); fflush(ficlog); |
return 1; |
return 1; |
} |
} |
|
|
nagesqr=1; |
nagesqr=1; |
if (strstr(model,"+age*age") !=0) |
if (strstr(model,"+age*age") !=0) |
substrchaine(modelsav, model, "+age*age"); |
substrchaine(modelsav, model, "+age*age"); |
Line 7520 int decodemodel ( char model[], int last
|
Line 13083 int decodemodel ( char model[], int last
|
substrchaine(modelsav, model, "age*age"); |
substrchaine(modelsav, model, "age*age"); |
}else |
}else |
nagesqr=0; |
nagesqr=0; |
if (strlen(modelsav) >1){ |
if (strlen(modelsav) >1){ /* V2 +V3 +V4 +V6 +V7 +V6*V2 +V7*V2 +V6*V3 +V7*V3 +V6*V4 +V7*V4 +age*V2 +age*V3 +age*V4 +age*V6 +age*V7 +age*V6*V2 +V7*V2 +age*V6*V3 +age*V7*V3 +age*V6*V4 +age*V7*V4 */ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j=nbocc(modelsav,'+'); /**< j=Number of '+' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */ |
cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =2 */ |
cptcovs=0; /**< Number of simple covariates V1 +V1*age +V3 +V3*V4 +age*age => V1 + V3 =4+1-3=2 Wrong */ |
cptcovt= j+1; /* Number of total covariates in the model, not including |
cptcovt= j+1; /* Number of total covariates in the model, not including |
* cst, age and age*age |
* cst, age and age*age |
* V1+V1*age+ V3 + V3*V4+age*age=> 4*/ |
* V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/ |
/* including age products which are counted in cptcovage. |
/* including age products which are counted in cptcovage. |
* but the covariates which are products must be treated |
* but the covariates which are products must be treated |
* separately: ncovn=4- 2=2 (V1+V3). */ |
* separately: ncovn=4- 2=2 (V1+V3). */ |
cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */ |
cptcovprod=0; /**< Number of products V1*V2 +v3*age = 2 */ |
|
cptcovdageprod=0; /* Number of doouble products with age age*Vn*VM or Vn*age*Vm or Vn*Vm*age */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */ |
|
cptcovprodage=0; |
|
/* cptcovprodage=nboccstr(modelsav,"age");*/ |
|
|
/* Design |
/* Design |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight |
* < ncovcol=8 > |
* < ncovcol=8 > |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 |
* k= 1 2 3 4 5 6 7 8 |
* k= 1 2 3 4 5 6 7 8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8 |
* covar[k,i], value of kth covariate if not including age for individual i: |
* covar[k,i], are for fixed covariates, value of kth covariate if not including age for individual i: |
* covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8) |
* covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8) |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[4]=3 Tvar[8]=8 |
* Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8 |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and |
* Tage[++cptcovage]=k |
* Tage[++cptcovage]=k |
* if products, new covar are created after ncovcol with k1 |
* if products, new covar are created after ncovcol + nqv (quanti fixed) with k1 |
* Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11 |
* Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11 |
* Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product |
* Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product |
* Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8 |
* Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8 |
* Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2]; |
* Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2]; |
* Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted |
* Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 |
* V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 |
* < ncovcol=8 > |
* < ncovcol=8 8 fixed covariate. Additional starts at 9 (V5*V6) and 10(V7*V8) > |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
* Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2 |
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
* k= 1 2 3 4 5 6 7 8 9 10 11 12 |
* Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
* Tvard[k]= 2 1 3 3 10 11 8 8 5 6 7 8 |
* p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* p Tvar[1]@12={2, 1, 3, 3, 9, 10, 8, 8} |
* p Tprod[1]@2={ 6, 5} |
* p Tprod[1]@2={ 6, 5} |
*p Tvard[1][1]@4= {7, 8, 5, 6} |
*p Tvard[1][1]@4= {7, 8, 5, 6} |
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
* covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8 |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
* cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; |
*How to reorganize? |
*How to reorganize? Tvars(orted) |
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
* Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age |
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
* {2, 1, 4, 8, 5, 6, 3, 7} |
* Struct [] |
* Struct [] |
*/ |
*/ |
|
|
/* This loop fills the array Tvar from the string 'model'.*/ |
/* This loop fills the array Tvar from the string 'model'.*/ |
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
/* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */ |
Line 7582 int decodemodel ( char model[], int last
|
Line 13147 int decodemodel ( char model[], int last
|
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
/* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */ |
/* |
/* |
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
* Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */ |
for(k=cptcovt; k>=1;k--) /**< Number of covariates */ |
for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/ |
Tvar[k]=0; |
Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0; |
|
} |
cptcovage=0; |
cptcovage=0; |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */ |
|
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' |
/* First loop in order to calculate */ |
modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ |
/* for age*VN*Vm |
if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */ |
* Provides, Typevar[k], Tage[cptcovage], existcomb[n][m], FixedV[ncovcolt+k12] |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
* Tprod[k1]=k Tposprod[k]=k1; Tvard[k1][1] =m; |
/*scanf("%d",i);*/ |
*/ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */ |
/* Needs FixedV[Tvardk[k][1]] */ |
cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */ |
/* For others: |
if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */ |
* Sets Typevar[k]; |
/* covar is not filled and then is empty */ |
* Tvar[k]=ncovcol+nqv+ntv+nqtv+k11; |
cptcovprod--; |
* Tposprod[k]=k11; |
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
* Tprod[k11]=k; |
Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
* Tvardk[k][1] =m; |
cptcovage++; /* Sums the number of covariates which include age as a product */ |
* Needs FixedV[Tvardk[k][1]] == 0 |
Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
*/ |
/*printf("stre=%s ", stre);*/ |
|
} else if (strcmp(strd,"age")==0) { /* or age*Vn */ |
for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model line */ |
cptcovprod--; |
cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' cutl from left to right |
cutl(stre,strb,strc,'V'); |
modelsav==V2+V1+V5*age+V4+V3*age strb=V3*age stra=V2+V1V5*age+V4 */ /* <model> "V5+V4+V3+V4*V3+V5*age+V1*age+V1" strb="V5" stra="V4+V3+V4*V3+V5*age+V1*age+V1" */ |
Tvar[k]=atoi(stre); |
if (nbocc(modelsav,'+')==0) |
cptcovage++; |
strcpy(strb,modelsav); /* and analyzes it */ |
Tage[cptcovage]=k; |
/* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/ |
} else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/ |
/*scanf("%d",i);*/ |
/* loops on k1=1 (V3*V2) and k1=2 V4*V3 */ |
if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V5*age+ V4+V3*age strb=V3*age OR double product with age strb=age*V6*V2 or V6*V2*age or V6*age*V2 */ |
cptcovn++; |
cutl(strc,strd,strb,'*'); /**< k=1 strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 OR strb=age*V6*V2 strc=V6*V2 strd=age OR c=V2*age OR c=age*V2 */ |
cptcovprodnoage++;k1++; |
if(strchr(strc,'*')) { /**< Model with age and DOUBLE product: allowed since 0.99r44, strc=V6*V2 or V2*age or age*V2, strd=age or V6 or V6 */ |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
Typevar[k]=3; /* 3 for age and double product age*Vn*Vm varying of fixed */ |
Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but |
if(strstr(strc,"age")!=0) { /* It means that strc=V2*age or age*V2 and thus that strd=Vn */ |
because this model-covariate is a construction we invent a new column |
cutl(stre,strf,strc,'*') ; /* strf=age or Vm, stre=Vm or age. If strc=V6*V2 then strf=V6 and stre=V2 */ |
ncovcol + k1 |
strcpy(strc,strb); /* save strb(=age*Vn*Vm) into strc */ |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2 |
/* We want strb=Vn*Vm */ |
Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */ |
if(strcmp(strf,"age")==0){ /* strf is "age" so that stre=Vm =V2 . */ |
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
strcpy(strb,strd); |
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ |
strcat(strb,"*"); |
Tvard[k1][1] =atoi(strc); /* m 1 for V1*/ |
strcat(strb,stre); |
Tvard[k1][2] =atoi(stre); /* n 4 for V4*/ |
}else{ /* strf=Vm If strf=V6 then stre=V2 */ |
k2=k2+2; |
strcpy(strb,strf); |
Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */ |
strcat(strb,"*"); |
Tvar[cptcovt+k2+1]=Tvard[k1][2]; /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */ |
strcat(strb,stre); |
for (i=1; i<=lastobs;i++){ |
strcpy(strd,strb); /* in order for strd to not be "age" for next test (will be Vn*Vm */ |
/* Computes the new covariate which is a product of |
} |
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
/* printf("DEBUG FIXED k=%d, Tage[k]=%d, Tvar[Tage[k]=%d,FixedV[Tvar[Tage[k]]]=%d\n",k,Tage[k],Tvar[Tage[k]],FixedV[Tvar[Tage[k]]]); */ |
covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
/* FixedV[Tvar[Tage[k]]]=0; /\* HERY not sure if V7*V4*age Fixed might not exist yet*\/ */ |
} |
}else{ /* strc=Vn*Vm (and strd=age) and should be strb=Vn*Vm but want to keep original strb double product */ |
} /* End age is not in the model */ |
strcpy(stre,strb); /* save full b in stre */ |
} /* End if model includes a product */ |
strcpy(strb,strc); /* save short c in new short b for next block strb=Vn*Vm*/ |
else { /* no more sum */ |
strcpy(strf,strc); /* save short c in new short f */ |
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
cutl(strc,strd,strf,'*'); /* We get strd=Vn and strc=Vm for next block (strb=Vn*Vm)*/ |
/* scanf("%d",i);*/ |
/* strcpy(strc,stre);*/ /* save full e in c for future */ |
cutl(strd,strc,strb,'V'); |
} |
ks++; /**< Number of simple covariates */ |
cptcovdageprod++; /* double product with age Which product is it? */ |
cptcovn++; |
/* strcpy(strb,strc); /\* strb was age*V6*V2 or V6*V2*age or V6*age*V2 IS now V6*V2 or V2*age or age*V2 *\/ */ |
Tvar[k]=atoi(strd); |
/* cutl(strc,strd,strb,'*'); /\* strd= V6 or V2 or age and strc= V2 or age or V2 *\/ */ |
} |
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
n=atoi(stre); |
|
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
|
m=atoi(strc); |
|
cptcovage++; /* Counts the number of covariates which include age as a product */ |
|
Tage[cptcovage]=k; /* For age*V3*V2 gives the position in model of covariates associated with age Tage[1]=6 HERY too*/ |
|
if(existcomb[n][m] == 0){ |
|
/* r /home/brouard/Documents/Recherches/REVES/Zachary/Zach-2022/Feinuo_Sun/Feinuo-threeway/femV12V15_3wayintNBe.imach */ |
|
printf("Warning in model combination V%d*V%d should exist in the model before adding V%d*V%d*age !\n",n,m,n,m); |
|
fprintf(ficlog,"Warning in model combination V%d*V%d should exist in the model before adding V%d*V%d*age !\n",n,m,n,m); |
|
fflush(ficlog); |
|
k1++; /* The combination Vn*Vm will be in the model so we create it at k1 */ |
|
k12++; |
|
existcomb[n][m]=k1; |
|
existcomb[m][n]=k1; |
|
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; |
|
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2+ age*V6*V3 Gives the k position of the k1 double product Vn*Vm or age*Vn*Vm*/ |
|
Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 Gives the k1 double product Vn*Vm or age*Vn*Vm at the k position */ |
|
Tvard[k1][1] =m; /* m 1 for V1*/ |
|
Tvardk[k][1] =m; /* m 1 for V1*/ |
|
Tvard[k1][2] =n; /* n 4 for V4*/ |
|
Tvardk[k][2] =n; /* n 4 for V4*/ |
|
/* Tvar[Tage[cptcovage]]=k1;*/ /* Tvar[6=age*V3*V2]=9 (new fixed covariate) */ /* We don't know about Fixed yet HERE */ |
|
if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */ |
|
for (i=1; i<=lastobs;i++){/* For fixed product */ |
|
/* Computes the new covariate which is a product of |
|
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
|
covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
|
} |
|
cptcovprodage++; /* Counting the number of fixed covariate with age */ |
|
FixedV[ncovcolt+k12]=0; /* We expand Vn*Vm */ |
|
k12++; |
|
FixedV[ncovcolt+k12]=0; |
|
}else{ /*End of FixedV */ |
|
cptcovprodvage++; /* Counting the number of varying covariate with age */ |
|
FixedV[ncovcolt+k12]=1; /* We expand Vn*Vm */ |
|
k12++; |
|
FixedV[ncovcolt+k12]=1; |
|
} |
|
}else{ /* k1 Vn*Vm already exists */ |
|
k11=existcomb[n][m]; |
|
Tposprod[k]=k11; /* OK */ |
|
Tvar[k]=Tvar[Tprod[k11]]; /* HERY */ |
|
Tvardk[k][1]=m; |
|
Tvardk[k][2]=n; |
|
if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */ |
|
/*cptcovage++;*/ /* Counts the number of covariates which include age as a product */ |
|
cptcovprodage++; /* Counting the number of fixed covariate with age */ |
|
/*Tage[cptcovage]=k;*/ /* For age*V3*V2 Tage[1]=V3*V3=9 HERY too*/ |
|
Tvar[Tage[cptcovage]]=k1; |
|
FixedV[ncovcolt+k12]=0; /* We expand Vn*Vm */ |
|
k12++; |
|
FixedV[ncovcolt+k12]=0; |
|
}else{ /* Already exists but time varying (and age) */ |
|
/*cptcovage++;*/ /* Counts the number of covariates which include age as a product */ |
|
/*Tage[cptcovage]=k;*/ /* For age*V3*V2 Tage[1]=V3*V3=9 HERY too*/ |
|
/* Tvar[Tage[cptcovage]]=k1; */ |
|
cptcovprodvage++; |
|
FixedV[ncovcolt+k12]=1; /* We expand Vn*Vm */ |
|
k12++; |
|
FixedV[ncovcolt+k12]=1; |
|
} |
|
} |
|
/* Tage[cptcovage]=k; /\* V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */ |
|
/* Tvar[k]=k11; /\* HERY *\/ */ |
|
} else {/* simple product strb=age*Vn so that c=Vn and d=age, or strb=Vn*age so that c=age and d=Vn, or b=Vn*Vm so that c=Vm and d=Vn */ |
|
cptcovprod++; |
|
if (strcmp(strc,"age")==0) { /**< Model includes age: strb= Vn*age c=age d=Vn*/ |
|
/* covar is not filled and then is empty */ |
|
cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */ |
|
Tvar[k]=atoi(stre); /* V2+V1+V5*age+V4+V3*age Tvar[5]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */ |
|
Typevar[k]=1; /* 1 for age product */ |
|
cptcovage++; /* Counts the number of covariates which include age as a product */ |
|
Tage[cptcovage]=k; /* V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */ |
|
if( FixedV[Tvar[k]] == 0){ |
|
cptcovprodage++; /* Counting the number of fixed covariate with age */ |
|
}else{ |
|
cptcovprodvage++; /* Counting the number of fixedvarying covariate with age */ |
|
} |
|
/*printf("stre=%s ", stre);*/ |
|
} else if (strcmp(strd,"age")==0) { /* strb= age*Vn c=Vn */ |
|
cutl(stre,strb,strc,'V'); |
|
Tvar[k]=atoi(stre); |
|
Typevar[k]=1; /* 1 for age product */ |
|
cptcovage++; |
|
Tage[cptcovage]=k; |
|
if( FixedV[Tvar[k]] == 0){ |
|
cptcovprodage++; /* Counting the number of fixed covariate with age */ |
|
}else{ |
|
cptcovprodvage++; /* Counting the number of fixedvarying covariate with age */ |
|
} |
|
}else{ /* for product Vn*Vm */ |
|
Typevar[k]=2; /* 2 for product Vn*Vm */ |
|
cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ |
|
n=atoi(stre); |
|
cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ |
|
m=atoi(strc); |
|
k1++; |
|
cptcovprodnoage++; |
|
if(existcomb[n][m] != 0 || existcomb[m][n] != 0){ |
|
printf("Warning in model combination V%d*V%d already exists in the model in position k1=%d!\n",n,m,existcomb[n][m]); |
|
fprintf(ficlog,"Warning in model combination V%d*V%d already exists in the model in position k1=%d!\n",n,m,existcomb[n][m]); |
|
fflush(ficlog); |
|
k11=existcomb[n][m]; |
|
Tvar[k]=ncovcol+nqv+ntv+nqtv+k11; |
|
Tposprod[k]=k11; |
|
Tprod[k11]=k; |
|
Tvardk[k][1] =m; /* m 1 for V1*/ |
|
/* Tvard[k11][1] =m; /\* n 4 for V4*\/ */ |
|
Tvardk[k][2] =n; /* n 4 for V4*/ |
|
/* Tvard[k11][2] =n; /\* n 4 for V4*\/ */ |
|
}else{ /* combination Vn*Vm doesn't exist we create it (no age)*/ |
|
existcomb[n][m]=k1; |
|
existcomb[m][n]=k1; |
|
Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* ncovcolt+k1; For model-covariate k tells which data-covariate to use but |
|
because this model-covariate is a construction we invent a new column |
|
which is after existing variables ncovcol+nqv+ntv+nqtv + k1 |
|
If already ncovcol=4 and model= V2 + V1 + V1*V4 + age*V3 + V3*V2 |
|
thus after V4 we invent V5 and V6 because age*V3 will be computed in 4 |
|
Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=3 etc */ |
|
/* Please remark that the new variables are model dependent */ |
|
/* If we have 4 variable but the model uses only 3, like in |
|
* model= V1 + age*V1 + V2 + V3 + age*V2 + age*V3 + V1*V2 + V1*V3 |
|
* k= 1 2 3 4 5 6 7 8 |
|
* Tvar[k]=1 1 2 3 2 3 (5 6) (and not 4 5 because of V4 missing) |
|
* Tage[kk] [1]= 2 [2]=5 [3]=6 kk=1 to cptcovage=3 |
|
* Tvar[Tage[kk]][1]=2 [2]=2 [3]=3 |
|
*/ |
|
/* We need to feed some variables like TvarVV, but later on next loop because of ncovv (k2) is not correct */ |
|
Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 +V6*V2*age */ |
|
Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */ |
|
Tvard[k1][1] =m; /* m 1 for V1*/ |
|
Tvardk[k][1] =m; /* m 1 for V1*/ |
|
Tvard[k1][2] =n; /* n 4 for V4*/ |
|
Tvardk[k][2] =n; /* n 4 for V4*/ |
|
k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */ |
|
/* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */ |
|
/* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ |
|
/*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ |
|
/* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ |
|
if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */ |
|
for (i=1; i<=lastobs;i++){/* For fixed product */ |
|
/* Computes the new covariate which is a product of |
|
covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ |
|
covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; |
|
} |
|
/* TvarVV[k2]=n; */ |
|
/* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
/* TvarVV[k2+1]=m; */ |
|
/* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
}else{ /* not FixedV */ |
|
/* TvarVV[k2]=n; */ |
|
/* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
/* TvarVV[k2+1]=m; */ |
|
/* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
} |
|
} /* End of creation of Vn*Vm if not created by age*Vn*Vm earlier */ |
|
} /* End of product Vn*Vm */ |
|
} /* End of age*double product or simple product */ |
|
}else { /* not a product */ |
|
/*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/ |
|
/* scanf("%d",i);*/ |
|
cutl(strd,strc,strb,'V'); |
|
ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */ |
|
cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */ |
|
Tvar[k]=atoi(strd); |
|
Typevar[k]=0; /* 0 for simple covariates */ |
|
} |
|
strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
/*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav); |
scanf("%d",i);*/ |
scanf("%d",i);*/ |
} /* end of loop + on total covariates */ |
} /* end of loop + on total covariates */ |
|
|
|
|
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(modelsave == 0) age*age might exist */ |
} /* end if strlen(model == 0) */ |
} /* end if strlen(model == 0) */ |
|
cptcovs=cptcovt - cptcovdageprod - cptcovprod;/**< Number of simple covariates V1 +V1*age +V3 +V3*V4 +age*age + age*v4*V3=> V1 + V3 =4+1-3=2 */ |
|
|
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products. |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/ |
|
|
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]); |
printf("cptcovprod=%d ", cptcovprod); |
printf("cptcovprod=%d ", cptcovprod); |
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
fprintf(ficlog,"cptcovprod=%d ", cptcovprod); |
|
scanf("%d ",i);*/ |
scanf("%d ",i);*/ |
|
|
|
|
/* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind |
|
of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */ |
|
/* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1 = 5 possible variables data: 2 fixed 3, varying |
|
model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place |
|
k = 1 2 3 4 5 6 7 8 9 |
|
Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5 |
|
Typevar[k]= 0 0 0 2 1 0 2 1 0 |
|
Fixed[k] 1 1 1 1 3 0 0 or 2 2 3 |
|
Dummy[k] 1 0 0 0 3 1 1 2 3 |
|
Tmodelind[combination of covar]=k; |
|
*/ |
|
/* Dispatching between quantitative and time varying covariates */ |
|
/* If Tvar[k] >ncovcol it is a product */ |
|
/* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */ |
|
/* Computing effective variables, ie used by the model, that is from the cptcovt variables */ |
|
printf("Model=1+age+%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product, 3 for double product with age \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
fprintf(ficlog,"Model=1+age+%s\n\ |
|
Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product, 3 for double product with age \n\ |
|
Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ |
|
Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); |
|
for(k=-1;k<=NCOVMAX; k++){ Fixed[k]=0; Dummy[k]=0;} |
|
for(k=1;k<=NCOVMAX; k++){TvarFind[k]=0; TvarVind[k]=0;} |
|
|
|
|
|
/* Second loop for calculating Fixed[k], Dummy[k]*/ |
|
|
|
|
|
for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0,ncovva=0,ncovvta=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0, ncovvt=0;k<=cptcovt; k++){ /* or cptocvt loop on k from model */ |
|
if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
nsd++; |
|
modell[k].maintype= FTYPE; |
|
TvarsD[nsd]=Tvar[k]; |
|
TvarsDind[nsd]=k; |
|
TnsdVar[Tvar[k]]=nsd; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
/* }else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /\* Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */ |
|
Fixed[k]= 0; |
|
Dummy[k]= 1; |
|
nqfveff++; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FQ; |
|
nsq++; |
|
TvarsQ[nsq]=Tvar[k]; /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary see below */ |
|
TvarsQind[nsq]=k; /* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */ |
|
ncovf++; |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
|
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvar[k]; /* TvarVV[1]=V3 (first time varying in the model equation */ |
|
TvarVVind[ncovvt]=k; /* TvarVVind[1]=2 (second position in the model equation */ |
|
|
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
ntveff++; /* Only simple time varying dummy variable */ |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VD; |
|
nsd++; |
|
TvarsD[nsd]=Tvar[k]; |
|
TvarsDind[nsd]=k; |
|
TnsdVar[Tvar[k]]=nsd; /* To be verified */ |
|
ncovv++; /* Only simple time varying variables */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; /* TvarVind[2]=2 TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
|
TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4 TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */ |
|
printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); |
|
printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 */ |
|
/* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvar[k]; /* TvarVV[1]=V3 (first time varying in the model equation */ |
|
TvarVVind[ncovvt]=k; /* TvarVV[1]=V3 (first time varying in the model equation */ |
|
|
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
nqtveff++; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VQ; |
|
ncovv++; /* Only simple time varying variables */ |
|
nsq++; |
|
TvarsQ[nsq]=Tvar[k]; /* k=1 Tvar=5 nsq=1 TvarsQ[1]=5 */ /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary here) */ |
|
TvarsQind[nsq]=k; /* For single quantitative covariate gives the model position of each single quantitative covariate *//* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */ |
|
TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ |
|
TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */ |
|
/* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */ |
|
/* printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%Ad,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); */ |
|
/* printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); */ |
|
}else if (Typevar[k] == 1) { /* product with age */ |
|
ncova++; |
|
TvarA[ncova]=Tvar[k]; |
|
TvarAind[ncova]=k; |
|
/** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
/** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
|
if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */ |
|
Fixed[k]= 2; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFD; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvar[k]; /* (2)age*V3 */ |
|
TvarAVVAind[ncovta]=k; |
|
/* ncoveff++; */ |
|
}else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/ |
|
Fixed[k]= 2; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APFQ; /* Product age * fixed quantitative */ |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvar[k]; /* */ |
|
TvarAVVAind[ncovta]=k; |
|
/* nqfveff++; /\* Only simple fixed quantitative variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv ){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 2; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVD; /* Product age * varying dummy */ |
|
ncovva++; |
|
TvarVVA[ncovva]=Tvar[k]; /* (1)+age*V6 + (2)age*V7 */ |
|
TvarVVAind[ncovva]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvar[k]; /* */ |
|
TvarAVVAind[ncovta]=k; |
|
/* ntveff++; /\* Only simple time varying dummy variable *\/ */ |
|
}else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 3; |
|
modell[k].maintype= ATYPE; |
|
modell[k].subtype= APVQ; /* Product age * varying quantitative */ |
|
ncovva++; |
|
TvarVVA[ncovva]=Tvar[k]; /* */ |
|
TvarVVAind[ncovva]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvar[k]; /* (1)+age*V6 + (2)age*V7 */ |
|
TvarAVVAind[ncovta]=k; |
|
/* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ |
|
} |
|
}else if( Tposprod[k]>0 && Typevar[k]==2){ /* Detects if fixed product no age Vm*Vn */ |
|
printf("MEMORY ERRORR k=%d Tposprod[k]=%d, Typevar[k]=%d\n ",k, Tposprod[k], Typevar[k]); |
|
if(FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* Needs a fixed product Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol V3*V2 */ |
|
printf("MEMORY ERRORR k=%d Tvardk[k][1]=%d, Tvardk[k][2]=%d, FixedV[Tvardk[k][1]]=%d,FixedV[Tvardk[k][2]]=%d\n ",k,Tvardk[k][1],Tvardk[k][2],FixedV[Tvardk[k][1]],FixedV[Tvardk[k][2]]); |
|
Fixed[k]= 0; |
|
Dummy[k]= 0; |
|
ncoveff++; |
|
ncovf++; |
|
/* ncovv++; */ |
|
/* TvarVV[ncovv]=Tvardk[k][1]; */ |
|
/* FixedV[ncovcolt+ncovv]=0; /\* or FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
/* ncovv++; */ |
|
/* TvarVV[ncovv]=Tvardk[k][2]; */ |
|
/* FixedV[ncovcolt+ncovv]=0; /\* or FixedV[TvarVV[ncovv]]=0 HERE *\/ */ |
|
modell[k].maintype= FTYPE; |
|
TvarF[ncovf]=Tvar[k]; |
|
/* TnsdVar[Tvar[k]]=nsd; */ /* To be done */ |
|
TvarFind[ncovf]=k; |
|
TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ |
|
}else{/* product varying Vn * Vm without age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age*/ |
|
/* Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
k1=Tposprod[k]; /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1, 1} k1=1 first product but second time varying because of V3 */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvard[k1][1]; /* TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */ |
|
TvarVVind[ncovvt]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
ncovvt++; |
|
TvarVV[ncovvt]=Tvard[k1][2]; /* TvarVV[3]=V3 */ |
|
TvarVVind[ncovvt]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
|
|
/** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
/** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
|
|
|
if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */ |
|
if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */ |
|
Fixed[k]= 0; /* Fixed product */ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
|
ncovf++; /* Varying variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; /* TvarV[1]=Tvar[5]=5 because there is a V4 */ |
|
TvarVind[ncovv]=k;/* TvarVind[1]=5 */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti */ |
|
if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */ |
|
Fixed[k]= 0; /* Fixed product */ |
|
Dummy[k]= 1; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
|
ncovf++; /* Fixed variables without age */ |
|
TvarF[ncovf]=Tvar[k]; |
|
TvarFind[ncovf]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 0; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 1; |
|
Dummy[k]= 1; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */ |
|
ncovv++; /* Varying variables without age */ |
|
TvarV[ncovv]=Tvar[k]; |
|
TvarVind[ncovv]=k; |
|
} |
|
}else{ |
|
printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
} /*end k1*/ |
|
} |
|
}else if(Typevar[k] == 3){ /* product Vn * Vm with age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product */ |
|
/*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ |
|
/* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age*/ |
|
/* Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ |
|
k1=Tposprod[k]; /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1, 1} k1=1 first product but second time varying because of V3 */ |
|
ncova++; |
|
TvarA[ncova]=Tvard[k1][1]; /* TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */ |
|
TvarAind[ncova]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
ncova++; |
|
TvarA[ncova]=Tvard[k1][2]; /* TvarVV[3]=V3 */ |
|
TvarAind[ncova]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ |
|
|
|
/** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ |
|
/** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ |
|
if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvard[k1][1]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarAVVAind[ncovta]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvard[k1][2]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarAVVAind[ncovta]=k; |
|
}else{ |
|
ncovva++; /* HERY reached */ |
|
TvarVVA[ncovva]=Tvard[k1][1]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarVVAind[ncovva]=k; |
|
ncovva++; |
|
TvarVVA[ncovva]=Tvard[k1][2]; /* */ |
|
TvarVVAind[ncovva]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvard[k1][1]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarAVVAind[ncovta]=k; |
|
ncovta++; |
|
TvarAVVA[ncovta]=Tvard[k1][2]; /* age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */ |
|
TvarAVVAind[ncovta]=k; |
|
} |
|
if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */ |
|
if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */ |
|
Fixed[k]= 2; |
|
Dummy[k]= 2; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */ |
|
/* TvarF[ncova]=Tvar[k]; /\* Problem to solve *\/ */ |
|
/* TvarFind[ncova]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */ |
|
Fixed[k]= 2; /* Fixed product */ |
|
Dummy[k]= 3; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ |
|
/* TvarF[ncova]=Tvar[k]; */ |
|
/* TvarFind[ncova]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */ |
|
Fixed[k]= 3; |
|
Dummy[k]= 2; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ |
|
TvarV[ncova]=Tvar[k]; /* TvarV[1]=Tvar[5]=5 because there is a V4 */ |
|
TvarVind[ncova]=k;/* TvarVind[1]=5 */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */ |
|
Fixed[k]= 3; |
|
Dummy[k]= 3; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */ |
|
/* ncovv++; /\* Varying variables without age *\/ */ |
|
/* TvarV[ncovv]=Tvar[k]; */ |
|
/* TvarVind[ncovv]=k; */ |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti */ |
|
if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */ |
|
Fixed[k]= 2; /* Fixed product */ |
|
Dummy[k]= 2; |
|
modell[k].maintype= FTYPE; |
|
modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ |
|
/* ncova++; /\* Fixed variables with age *\/ */ |
|
/* TvarF[ncovf]=Tvar[k]; */ |
|
/* TvarFind[ncovf]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */ |
|
Fixed[k]= 2; |
|
Dummy[k]= 3; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */ |
|
/* ncova++; /\* Varying variables with age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */ |
|
Fixed[k]= 3; |
|
Dummy[k]= 2; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */ |
|
ncova++; /* Varying variables without age */ |
|
TvarV[ncova]=Tvar[k]; |
|
TvarVind[ncova]=k; |
|
/* ncova++; /\* Varying variables without age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 2; |
|
Dummy[k]= 2; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */ |
|
/* ncova++; /\* Varying variables with age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 2; |
|
Dummy[k]= 3; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */ |
|
/* ncova++; /\* Varying variables with age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 2; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */ |
|
/* ncova++; /\* Varying variables with age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 3; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */ |
|
/* ncova++; /\* Varying variables with age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
} |
|
}else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */ |
|
if(Tvard[k1][2] <=ncovcol){ |
|
Fixed[k]= 2; |
|
Dummy[k]= 2; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */ |
|
/* ncova++; /\* Varying variables with age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv){ |
|
Fixed[k]= 2; |
|
Dummy[k]= 3; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */ |
|
/* ncova++; /\* Varying variables with age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 2; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */ |
|
/* ncova++; /\* Varying variables with age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
}else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ |
|
Fixed[k]= 3; |
|
Dummy[k]= 3; |
|
modell[k].maintype= VTYPE; |
|
modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */ |
|
/* ncova++; /\* Varying variables with age *\/ */ |
|
/* TvarV[ncova]=Tvar[k]; */ |
|
/* TvarVind[ncova]=k; */ |
|
} |
|
}else{ |
|
printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]); |
|
} /*end k1*/ |
|
} else{ |
|
printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]); |
|
} |
|
/* printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); */ |
|
/* printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); */ |
|
fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); |
|
} |
|
ncovvta=ncovva; |
|
/* Searching for doublons in the model */ |
|
for(k1=1; k1<= cptcovt;k1++){ |
|
for(k2=1; k2 <k1;k2++){ |
|
/* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */ |
|
if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){ |
|
if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ |
|
if(Tvar[k1]==Tvar[k2]){ |
|
printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); |
|
fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog); |
|
return(1); |
|
} |
|
}else if (Typevar[k1] ==2){ |
|
k3=Tposprod[k1]; |
|
k4=Tposprod[k2]; |
|
if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ |
|
printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); |
|
fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); |
|
return(1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn); |
|
printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq); |
|
fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq); |
|
|
|
free_imatrix(existcomb,1,NCOVMAX,1,NCOVMAX); |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
return (0); /* with covar[new additional covariate if product] and Tage if age */ |
/*endread:*/ |
/*endread:*/ |
printf("Exiting decodemodel: "); |
printf("Exiting decodemodel: "); |
return (1); |
return (1); |
} |
} |
|
|
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn ) |
{ |
{/* Check ages at death */ |
int i, m; |
int i, m; |
int firstone=0; |
int firstone=0; |
|
|
Line 7678 int calandcheckages(int imx, int maxwav,
|
Line 13947 int calandcheckages(int imx, int maxwav,
|
*nberr = *nberr + 1; |
*nberr = *nberr + 1; |
if(firstone == 0){ |
if(firstone == 0){ |
firstone=1; |
firstone=1; |
printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m); |
} |
} |
fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m); |
fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m); |
s[m][i]=-1; |
s[m][i]=-1; /* Droping the death status */ |
} |
} |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){ |
(*nberr)++; |
(*nberr)++; |
printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); |
printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m); |
fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); |
fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m); |
s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */ |
} |
} |
} |
} |
} |
} |
Line 7809 BOOL IsWow64()
|
Line 14078 BOOL IsWow64()
|
#endif |
#endif |
|
|
void syscompilerinfo(int logged) |
void syscompilerinfo(int logged) |
{ |
{ |
/* #include "syscompilerinfo.h"*/ |
#include <stdint.h> |
|
|
|
/* #include "syscompilerinfo.h"*/ |
/* command line Intel compiler 32bit windows, XP compatible:*/ |
/* command line Intel compiler 32bit windows, XP compatible:*/ |
/* /GS /W3 /Gy |
/* /GS /W3 /Gy |
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
/Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D |
Line 7845 void syscompilerinfo(int logged)
|
Line 14116 void syscompilerinfo(int logged)
|
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
/ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF |
/NOLOGO /TLBID:1 |
/NOLOGO /TLBID:1 |
*/ |
*/ |
|
|
|
|
#if defined __INTEL_COMPILER |
#if defined __INTEL_COMPILER |
#if defined(__GNUC__) |
#if defined(__GNUC__) |
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
struct utsname sysInfo; /* For Intel on Linux and OS/X */ |
Line 7861 void syscompilerinfo(int logged)
|
Line 14134 void syscompilerinfo(int logged)
|
} |
} |
#endif |
#endif |
|
|
#include <stdint.h> |
|
|
|
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:"); |
#if defined(__clang__) |
#if defined(__clang__) |
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */ |
Line 7948 void syscompilerinfo(int logged)
|
Line 14219 void syscompilerinfo(int logged)
|
#endif |
#endif |
#endif |
#endif |
|
|
// void main() |
// void main () |
// { |
// { |
#if defined(_MSC_VER) |
#if defined(_MSC_VER) |
if (IsWow64()){ |
if (IsWow64()){ |
Line 7969 void syscompilerinfo(int logged)
|
Line 14240 void syscompilerinfo(int logged)
|
} |
} |
|
|
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (forward period or forward stable prevalence) --------------*/ |
int i, j, k, i1 ; |
/* Computes the prevalence limit for each combination of the dummy covariates */ |
|
int i, j, k, i1, k4=0, nres=0 ; |
/* double ftolpl = 1.e-10; */ |
/* double ftolpl = 1.e-10; */ |
double age, agebase, agelim; |
double age, agebase, agelim; |
double tot; |
double tot; |
Line 7978 int prevalence_limit(double *p, double *
|
Line 14250 int prevalence_limit(double *p, double *
|
strcpy(filerespl,"PL_"); |
strcpy(filerespl,"PL_"); |
strcat(filerespl,fileresu); |
strcat(filerespl,fileresu); |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
if((ficrespl=fopen(filerespl,"w"))==NULL) { |
printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1; |
} |
} |
printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl); |
fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl); |
pstamp(ficrespl); |
pstamp(ficrespl); |
fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficrespl,"#Age "); |
fprintf(ficrespl,"#Age "); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i); |
fprintf(ficrespl,"\n"); |
fprintf(ficrespl,"\n"); |
Line 7994 int prevalence_limit(double *p, double *
|
Line 14266 int prevalence_limit(double *p, double *
|
agebase=ageminpar; |
agebase=ageminpar; |
agelim=agemaxpar; |
agelim=agemaxpar; |
|
|
i1=pow(2,cptcoveff); |
/* i1=pow(2,ncoveff); */ |
|
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(k=1; k<=i1;k++){ |
/* for(k=1; k<=i1;k++){ /\* For each combination k of dummy covariates in the model *\/ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
k=TKresult[nres]; |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
/* k=k+1; */ |
/* if(i1 != 1 && TKresult[nres]!= k) /\* We found the combination k corresponding to the resultline value of dummies *\/ */ |
/* to clean */ |
/* continue; */ |
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
|
fprintf(ficrespl,"#******"); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
printf("#******"); |
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
fprintf(ficlog,"#******"); |
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
for(j=1;j<=cptcoveff;j++) { |
/* k=k+1; */ |
fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* to clean */ |
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*/ |
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespl,"#******"); |
} |
printf("#******"); |
fprintf(ficrespl,"******\n"); |
fprintf(ficlog,"#******"); |
printf("******\n"); |
for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */ |
fprintf(ficlog,"******\n"); |
/* fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Here problem for varying dummy*\/ */ |
if(invalidvarcomb[k]){ |
/* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
printf("\nCombination (%d) ignored because no cases \n",k); |
/* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
fprintf(ficrespl,"#Combination (%d) ignored because no cases \n",k); |
fprintf(ficrespl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); |
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
continue; |
fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} |
} |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* } */ |
|
fprintf(ficrespl,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) ignored because no case \n",k); |
|
fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); |
|
continue; |
|
} |
|
|
fprintf(ficrespl,"#Age "); |
fprintf(ficrespl,"#Age "); |
for(j=1;j<=cptcoveff;j++) { |
/* for(j=1;j<=cptcoveff;j++) { */ |
fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
/* } */ |
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
for(j=1;j<=cptcovs;j++) { /* New the quanti variable is added */ |
fprintf(ficrespl,"Total Years_to_converge\n"); |
fprintf(ficrespl,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
} |
for (age=agebase; age<=agelim; age++){ |
for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); |
/* for (age=agebase; age<=agebase; age++){ */ |
fprintf(ficrespl,"Total Years_to_converge\n"); |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k); |
|
fprintf(ficrespl,"%.0f ",age ); |
for (age=agebase; age<=agelim; age++){ |
for(j=1;j<=cptcoveff;j++) |
/* for (age=agebase; age<=agebase; age++){ */ |
fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/**< Computes the prevalence limit in each live state at age x and for covariate combination (k and) nres */ |
tot=0.; |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); /* Nicely done */ |
for(i=1; i<=nlstate;i++){ |
fprintf(ficrespl,"%.0f ",age ); |
tot += prlim[i][i]; |
/* for(j=1;j<=cptcoveff;j++) */ |
fprintf(ficrespl," %.5f", prlim[i][i]); |
/* fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
for(j=1;j<=cptcovs;j++) |
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
fprintf(ficrespl,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
} /* Age */ |
tot=0.; |
/* was end of cptcod */ |
for(i=1; i<=nlstate;i++){ |
} /* cptcov */ |
tot += prlim[i][i]; |
|
fprintf(ficrespl," %.5f", prlim[i][i]); |
|
} |
|
fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
} /* nres */ |
|
/* } /\* for each combination *\/ */ |
return 0; |
return 0; |
} |
} |
|
|
int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){ |
int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){ |
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Back Prevalence limit (backward stable prevalence) --------------*/ |
|
|
/* Computes the back prevalence limit for any combination of covariate values |
/* Computes the back prevalence limit for any combination of covariate values |
* at any age between ageminpar and agemaxpar |
* at any age between ageminpar and agemaxpar |
*/ |
*/ |
int i, j, k, i1 ; |
int i, j, k, i1, nres=0 ; |
/* double ftolpl = 1.e-10; */ |
/* double ftolpl = 1.e-10; */ |
double age, agebase, agelim; |
double age, agebase, agelim; |
double tot; |
double tot; |
Line 8063 int back_prevalence_limit(double *p, dou
|
Line 14357 int back_prevalence_limit(double *p, dou
|
strcpy(fileresplb,"PLB_"); |
strcpy(fileresplb,"PLB_"); |
strcat(fileresplb,fileresu); |
strcat(fileresplb,fileresu); |
if((ficresplb=fopen(fileresplb,"w"))==NULL) { |
if((ficresplb=fopen(fileresplb,"w"))==NULL) { |
printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1; |
fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1; |
fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1; |
} |
} |
printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
printf("Computing backward prevalence: result on file '%s' \n", fileresplb); |
fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb); |
fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb); |
pstamp(ficresplb); |
pstamp(ficresplb); |
fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl); |
fprintf(ficresplb,"#Age "); |
fprintf(ficresplb,"#Age "); |
for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i); |
for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i); |
fprintf(ficresplb,"\n"); |
fprintf(ficresplb,"\n"); |
Line 8083 int back_prevalence_limit(double *p, dou
|
Line 14377 int back_prevalence_limit(double *p, dou
|
|
|
i1=pow(2,cptcoveff); |
i1=pow(2,cptcoveff); |
if (cptcovn < 1){i1=1;} |
if (cptcovn < 1){i1=1;} |
|
|
for(k=1; k<=i1;k++){ |
|
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
|
/* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ |
|
//for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
|
/* k=k+1; */ |
|
/* to clean */ |
|
//printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov)); |
|
fprintf(ficresplb,"#******"); |
|
printf("#******"); |
|
fprintf(ficlog,"#******"); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
fprintf(ficresplb,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) ignored because no cases \n",k); |
|
fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
|
fprintf(ficresplb,"#Age "); |
|
for(j=1;j<=cptcoveff;j++) { |
|
fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
} |
|
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
|
fprintf(ficresplb,"Total Years_to_converge\n"); |
|
|
|
|
|
for (age=agebase; age<=agelim; age++){ |
|
/* for (age=agebase; age<=agebase; age++){ */ |
|
if(mobilavproj > 0){ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k); |
|
}else if (mobilavproj == 0){ |
|
printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
exit(1); |
|
}else{ |
|
/* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k); |
|
} |
|
fprintf(ficresplb,"%.0f ",age ); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
tot=0.; |
|
for(i=1; i<=nlstate;i++){ |
|
tot += bprlim[i][i]; |
|
fprintf(ficresplb," %.5f", bprlim[i][i]); |
|
} |
|
fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
} /* cptcov */ |
|
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ |
|
k=TKresult[nres]; |
|
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
|
/* /\*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*\/ */ |
|
fprintf(ficresplb,"#******"); |
|
printf("#******"); |
|
fprintf(ficlog,"#******"); |
|
for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */ |
|
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
fprintf(ficresplb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
} |
|
/* for(j=1;j<=cptcoveff ;j++) {/\* all covariates *\/ */ |
|
/* fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* } */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
|
fprintf(ficresplb,"******\n"); |
|
printf("******\n"); |
|
fprintf(ficlog,"******\n"); |
|
if(invalidvarcomb[k]){ |
|
printf("\nCombination (%d) ignored because no cases \n",k); |
|
fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); |
|
fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); |
|
continue; |
|
} |
|
|
|
fprintf(ficresplb,"#Age "); |
|
for(j=1;j<=cptcovs;j++) { |
|
fprintf(ficresplb,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
} |
|
for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); |
|
fprintf(ficresplb,"Total Years_to_converge\n"); |
|
|
|
|
|
for (age=agebase; age<=agelim; age++){ |
|
/* for (age=agebase; age<=agebase; age++){ */ |
|
if(mobilavproj > 0){ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
/* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres); |
|
}else if (mobilavproj == 0){ |
|
printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj); |
|
exit(1); |
|
}else{ |
|
/* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */ |
|
bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres); |
|
/* printf("TOTOT\n"); */ |
|
/* exit(1); */ |
|
} |
|
fprintf(ficresplb,"%.0f ",age ); |
|
for(j=1;j<=cptcovs;j++) |
|
fprintf(ficresplb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
tot=0.; |
|
for(i=1; i<=nlstate;i++){ |
|
tot += bprlim[i][i]; |
|
fprintf(ficresplb," %.5f", bprlim[i][i]); |
|
} |
|
fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp); |
|
} /* Age */ |
|
/* was end of cptcod */ |
|
/*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */ |
|
/* } /\* end of any combination *\/ */ |
|
} /* end of nres */ |
/* hBijx(p, bage, fage); */ |
/* hBijx(p, bage, fage); */ |
/* fclose(ficrespijb); */ |
/* fclose(ficrespijb); */ |
|
|
Line 8152 int back_prevalence_limit(double *p, dou
|
Line 14459 int back_prevalence_limit(double *p, dou
|
|
|
int hPijx(double *p, int bage, int fage){ |
int hPijx(double *p, int bage, int fage){ |
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
|
/* to be optimized with precov */ |
int stepsize; |
int stepsize; |
int agelim; |
int agelim; |
int hstepm; |
int hstepm; |
int nhstepm; |
int nhstepm; |
int h, i, i1, j, k; |
int h, i, i1, j, k, nres=0; |
|
|
double agedeb; |
double agedeb; |
double ***p3mat; |
double ***p3mat; |
|
|
strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); |
strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); |
if((ficrespij=fopen(filerespij,"w"))==NULL) { |
if((ficrespij=fopen(filerespij,"w"))==NULL) { |
printf("Problem with Pij resultfile: %s\n", filerespij); return 1; |
printf("Problem with Pij resultfile: %s\n", filerespij); return 1; |
fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; |
fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; |
} |
} |
printf("Computing pij: result on file '%s' \n", filerespij); |
printf("Computing pij: result on file '%s' \n", filerespij); |
fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); |
fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); |
|
|
stepsize=(int) (stepm+YEARM-1)/YEARM; |
stepsize=(int) (stepm+YEARM-1)/YEARM; |
/*if (stepm<=24) stepsize=2;*/ |
/*if (stepm<=24) stepsize=2;*/ |
|
|
agelim=AGESUP; |
agelim=AGESUP; |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
/* hstepm=1; aff par mois*/ |
/* hstepm=1; aff par mois*/ |
pstamp(ficrespij); |
pstamp(ficrespij); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); |
i1= pow(2,cptcoveff); |
i1= pow(2,cptcoveff); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
fprintf(ficrespij,"\n#****** "); |
k=TKresult[nres]; |
for(j=1;j<=cptcoveff;j++) |
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* for(k=1; k<=i1;k++){ */ |
fprintf(ficrespij,"******\n"); |
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
|
fprintf(ficrespij,"\n#****** "); |
|
for(j=1;j<=cptcovs;j++){ |
|
fprintf(ficrespij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
/* fprintf(ficrespij,"@wV%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
/* fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ |
|
} |
|
fprintf(ficrespij,"******\n"); |
|
|
|
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
|
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
|
|
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
|
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
oldm=oldms;savm=savms; |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); |
|
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
for(i=1; i<=nlstate;i++) |
oldm=oldms;savm=savms; |
for(j=1; j<=nlstate+ndeath;j++) |
hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
fprintf(ficrespij," %1d-%1d",i,j); |
fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
fprintf(ficrespij,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespij," %1d-%1d",i,j); |
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
fprintf(ficrespij,"\n"); |
|
for (h=0; h<=nhstepm; h++){ |
|
/*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ |
|
fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); |
|
for(i=1; i<=nlstate;i++) |
|
for(j=1; j<=nlstate+ndeath;j++) |
|
fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
|
fprintf(ficrespij,"\n"); |
|
} |
|
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespij,"\n"); |
fprintf(ficrespij,"\n"); |
} |
} |
/*}*/ |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
|
fprintf(ficrespij,"\n"); |
} |
} |
return 0; |
} |
|
/*}*/ |
|
return 0; |
} |
} |
|
|
int hBijx(double *p, int bage, int fage, double ***prevacurrent){ |
int hBijx(double *p, int bage, int fage, double ***prevacurrent){ |
/*------------- h Bij x at various ages ------------*/ |
/*------------- h Bij x at various ages ------------*/ |
|
/* To be optimized with precov */ |
int stepsize; |
int stepsize; |
/* int agelim; */ |
/* int agelim; */ |
int ageminl; |
int ageminl; |
int hstepm; |
int hstepm; |
int nhstepm; |
int nhstepm; |
int h, i, i1, j, k; |
int h, i, i1, j, k, nres; |
|
|
double agedeb; |
double agedeb; |
double ***p3mat; |
double ***p3mat; |
Line 8245 int hPijx(double *p, int bage, int fage)
|
Line 14562 int hPijx(double *p, int bage, int fage)
|
/*if (stepm<=24) stepsize=2;*/ |
/*if (stepm<=24) stepsize=2;*/ |
|
|
/* agelim=AGESUP; */ |
/* agelim=AGESUP; */ |
ageminl=30; |
ageminl=AGEINF; /* was 30 */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=stepsize*YEARM; /* Every year of age */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ |
|
|
/* hstepm=1; aff par mois*/ |
/* hstepm=1; aff par mois*/ |
pstamp(ficrespijb); |
pstamp(ficrespijb); |
fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x "); |
fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 "); |
i1= pow(2,cptcoveff); |
i1= pow(2,cptcoveff); |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ |
/* k=k+1; */ |
/* k=k+1; */ |
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
k=TKresult[nres]; |
|
if(TKresult[nres]==0) k=1; /* To be checked for noresult */ |
|
/* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ |
|
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
fprintf(ficrespijb,"\n#****** "); |
fprintf(ficrespijb,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcovs;j++){ |
fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficrespijb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
/* for(j=1;j<=cptcoveff;j++) */ |
|
/* fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
} |
fprintf(ficrespijb,"******\n"); |
fprintf(ficrespijb,"******\n"); |
if(invalidvarcomb[k]){ |
if(invalidvarcomb[k]){ /* Is it necessary here? */ |
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); |
continue; |
continue; |
} |
} |
Line 8269 int hPijx(double *p, int bage, int fage)
|
Line 14596 int hPijx(double *p, int bage, int fage)
|
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
/* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ |
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ |
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ |
nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */ |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */ |
nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/ |
|
|
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
/* nhstepm=nhstepm*YEARM; aff par mois*/ |
|
|
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */ |
|
/* and memory limitations if stepm is small */ |
|
|
/* oldm=oldms;savm=savms; */ |
/* oldm=oldms;savm=savms; */ |
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ |
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k); |
hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */ |
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
/* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ |
fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j="); |
fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j="); |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespijb," %1d-%1d",i,j); |
fprintf(ficrespijb," %1d-%1d",i,j); |
Line 8290 int hPijx(double *p, int bage, int fage)
|
Line 14619 int hPijx(double *p, int bage, int fage)
|
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
/* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ |
for(i=1; i<=nlstate;i++) |
for(i=1; i<=nlstate;i++) |
for(j=1; j<=nlstate+ndeath;j++) |
for(j=1; j<=nlstate+ndeath;j++) |
fprintf(ficrespijb," %.5f", p3mat[i][j][h]); |
fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */ |
fprintf(ficrespijb,"\n"); |
fprintf(ficrespijb,"\n"); |
} |
} |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
fprintf(ficrespijb,"\n"); |
fprintf(ficrespijb,"\n"); |
} |
} /* end age deb */ |
/*}*/ |
/* } /\* end combination *\/ */ |
} |
} /* end nres */ |
return 0; |
return 0; |
} /* hBijx */ |
} /* hBijx */ |
|
|
Line 8316 int main(int argc, char *argv[])
|
Line 14645 int main(int argc, char *argv[])
|
double ssval; |
double ssval; |
#endif |
#endif |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); |
int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; |
int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */ |
|
/* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */ |
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
int ncvyear=0; /* Number of years needed for the period prevalence to converge */ |
int jj, ll, li, lj, lk; |
int jj, ll, li, lj, lk; |
int numlinepar=0; /* Current linenumber of parameter file */ |
int numlinepar=0; /* Current linenumber of parameter file */ |
Line 8324 int main(int argc, char *argv[])
|
Line 14654 int main(int argc, char *argv[])
|
int itimes; |
int itimes; |
int NDIM=2; |
int NDIM=2; |
int vpopbased=0; |
int vpopbased=0; |
|
int nres=0; |
|
int endishere=0; |
|
int noffset=0; |
|
int ncurrv=0; /* Temporary variable */ |
|
|
char ca[32], cb[32]; |
char ca[32], cb[32]; |
/* FILE *fichtm; *//* Html File */ |
/* FILE *fichtm; *//* Html File */ |
/* FILE *ficgp;*/ /*Gnuplot File */ |
/* FILE *ficgp;*/ /*Gnuplot File */ |
Line 8334 int main(int argc, char *argv[])
|
Line 14668 int main(int argc, char *argv[])
|
double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW; |
double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW; |
double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */ |
double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */ |
|
|
|
double stdpercent; /* for computing the std error of percent e.i: e.i/e.. */ |
double fret; |
double fret; |
double dum=0.; /* Dummy variable */ |
double dum=0.; /* Dummy variable */ |
double ***p3mat; |
/* double*** p3mat;*/ |
/* double ***mobaverage; */ |
/* double ***mobaverage; */ |
|
double wald; |
|
|
char line[MAXLINE]; |
char line[MAXLINE], linetmp[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE]; |
|
|
char model[MAXLINE], modeltemp[MAXLINE]; |
char modeltemp[MAXLINE]; |
|
char resultline[MAXLINE], resultlineori[MAXLINE]; |
|
|
char pathr[MAXLINE], pathimach[MAXLINE]; |
char pathr[MAXLINE], pathimach[MAXLINE]; |
char *tok, *val; /* pathtot */ |
char *tok, *val; /* pathtot */ |
int firstobs=1, lastobs=10; |
/* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */ |
int c, h , cpt, c2; |
int c, h; /* c2; */ |
int jl=0; |
int jl=0; |
int i1, j1, jk, stepsize=0; |
int i1, j1, jk, stepsize=0; |
int count=0; |
int count=0; |
|
|
int *tab; |
int *tab; |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ |
int backcast=0; |
/* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */ |
|
/* double anprojf, mprojf, jprojf; */ |
|
/* double jintmean,mintmean,aintmean; */ |
|
int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */ |
|
int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */ |
|
double yrfproj= 10.0; /* Number of years of forward projections */ |
|
double yrbproj= 10.0; /* Number of years of backward projections */ |
|
int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */ |
int mobilav=0,popforecast=0; |
int mobilav=0,popforecast=0; |
int hstepm=0, nhstepm=0; |
int hstepm=0, nhstepm=0; |
int agemortsup; |
int agemortsup; |
Line 8365 int main(int argc, char *argv[])
|
Line 14710 int main(int argc, char *argv[])
|
double ftolpl=FTOL; |
double ftolpl=FTOL; |
double **prlim; |
double **prlim; |
double **bprlim; |
double **bprlim; |
double ***param; /* Matrix of parameters */ |
double ***param; /* Matrix of parameters, param[i][j][k] param=ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel) |
double *p; |
state of origin, state of destination including death, for each covariate: constante, age, and V1 V2 etc. */ |
|
double ***paramstart; /* Matrix of starting parameter values */ |
|
double *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */ |
double **matcov; /* Matrix of covariance */ |
double **matcov; /* Matrix of covariance */ |
double **hess; /* Hessian matrix */ |
double **hess; /* Hessian matrix */ |
double ***delti3; /* Scale */ |
double ***delti3; /* Scale */ |
double *delti; /* Scale */ |
double *delti; /* Scale */ |
double ***eij, ***vareij; |
double ***eij, ***vareij; |
double **varpl; /* Variances of prevalence limits by age */ |
//double **varpl; /* Variances of prevalence limits by age */ |
|
|
double *epj, vepp; |
double *epj, vepp; |
|
|
double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000; |
double dateprev1, dateprev2; |
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000; |
double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0; |
|
double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0; |
|
|
|
|
double **ximort; |
double **ximort; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
char *alph[]={"a","a","b","c","d","e"}, str[4]="1234"; |
Line 8427 int main(int argc, char *argv[])
|
Line 14777 int main(int argc, char *argv[])
|
getcwd(pathcd, size); |
getcwd(pathcd, size); |
#endif |
#endif |
syscompilerinfo(0); |
syscompilerinfo(0); |
printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion); |
printf("\nIMaCh prax version %s, %s\n%s",version, copyright, fullversion); |
if(argc <=1){ |
if(argc <=1){ |
printf("\nEnter the parameter file name: "); |
printf("\nEnter the parameter file name: "); |
if(!fgets(pathr,FILENAMELENGTH,stdin)){ |
if(!fgets(pathr,FILENAMELENGTH,stdin)){ |
Line 8454 int main(int argc, char *argv[])
|
Line 14804 int main(int argc, char *argv[])
|
if(pathr[0] == '\0') break; /* Dirty */ |
if(pathr[0] == '\0') break; /* Dirty */ |
} |
} |
} |
} |
|
else if (argc<=2){ |
|
strcpy(pathtot,argv[1]); |
|
} |
else{ |
else{ |
strcpy(pathtot,argv[1]); |
strcpy(pathtot,argv[1]); |
|
strcpy(z,argv[2]); |
|
printf("\nargv[2]=%s z=%c\n",argv[2],z[0]); |
} |
} |
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
/*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/ |
/*cygwin_split_path(pathtot,path,optionfile); |
/*cygwin_split_path(pathtot,path,optionfile); |
Line 8533 int main(int argc, char *argv[])
|
Line 14888 int main(int argc, char *argv[])
|
exit(70); |
exit(70); |
} |
} |
|
|
|
|
|
|
strcpy(filereso,"o"); |
strcpy(filereso,"o"); |
strcat(filereso,fileresu); |
strcat(filereso,fileresu); |
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */ |
Line 8543 int main(int argc, char *argv[])
|
Line 14896 int main(int argc, char *argv[])
|
fflush(ficlog); |
fflush(ficlog); |
goto end; |
goto end; |
} |
} |
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name */ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fflush(ficlog); |
|
goto end; |
|
} |
|
fprintf(ficres,"#IMaCh %s\n",version); |
|
|
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
numlinepar=0; |
numlinepar=0; |
|
/* Is it a BOM UTF-8 Windows file? */ |
/* First parameter line */ |
/* First parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
|
noffset=0; |
|
if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */ |
|
{ |
|
noffset=noffset+3; |
|
printf("# File is an UTF8 Bom.\n"); // 0xBF |
|
} |
|
/* else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/ |
|
else if( line[0] == (char)0xFF && line[1] == (char)0xFE) |
|
{ |
|
noffset=noffset+2; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
else if( line[0] == 0 && line[1] == 0) |
|
{ |
|
if( line[2] == (char)0xFE && line[3] == (char)0xFF){ |
|
noffset=noffset+4; |
|
printf("# File is an UTF16BE BOM file\n"); |
|
} |
|
} else{ |
|
;/*printf(" Not a BOM file\n");*/ |
|
} |
|
|
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[noffset] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
|
fputs(line,ficres); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
continue; |
}else |
}else |
Line 8563 int main(int argc, char *argv[])
|
Line 14952 int main(int argc, char *argv[])
|
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){ |
if (num_filled != 5) { |
if (num_filled != 5) { |
printf("Should be 5 parameters\n"); |
printf("Should be 5 parameters\n"); |
|
fprintf(ficlog,"Should be 5 parameters\n"); |
} |
} |
numlinepar++; |
numlinepar++; |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
|
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass); |
} |
} |
/* Second parameter line */ |
/* Second parameter line */ |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
/* If line starts with a # it is a comment */ |
/* while(fscanf(ficpar,"%[^\n]", line)) { */ |
|
/* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
printf("%s",line); |
fputs(line,ficparo); |
fprintf(ficres,"%s",line); |
fputs(line,ficlog); |
fprintf(ficparo,"%s",line); |
|
fprintf(ficlog,"%s",line); |
continue; |
continue; |
}else |
}else |
break; |
break; |
Line 8584 int main(int argc, char *argv[])
|
Line 14979 int main(int argc, char *argv[])
|
if (num_filled != 11) { |
if (num_filled != 11) { |
printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
printf("but line=%s\n",line); |
printf("but line=%s\n",line); |
|
fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n"); |
|
fprintf(ficlog,"but line=%s\n",line); |
|
} |
|
if( lastpass > maxwav){ |
|
printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav); |
|
fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav); |
|
fflush(ficlog); |
|
goto end; |
} |
} |
printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
|
fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
|
fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt); |
|
fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt); |
} |
} |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
/*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
Line 8594 int main(int argc, char *argv[])
|
Line 15000 int main(int argc, char *argv[])
|
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
printf("%s",line); |
fputs(line,ficparo); |
fprintf(ficres,"%s",line); |
fputs(line,ficlog); |
fprintf(ficparo,"%s",line); |
|
fprintf(ficlog,"%s",line); |
continue; |
continue; |
}else |
}else |
break; |
break; |
} |
} |
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ |
if((num_filled=sscanf(line,"model=%[^.\n]", model)) !=EOF){ /* Every character after model but dot and return */ |
if (num_filled == 0) |
if (num_filled != 1){ |
model[0]='\0'; |
printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
else if (num_filled != 1){ |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
model[0]='\0'; |
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line); |
goto end; |
|
}else{ |
|
trimbtab(linetmp,line); /* Trims multiple blanks in line */ |
|
strcpy(line, linetmp); |
|
} |
|
} |
|
if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ /* Every character after 1+age but dot and return */ |
|
if (num_filled != 1){ |
|
printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
|
fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line); |
model[0]='\0'; |
model[0]='\0'; |
goto end; |
goto end; |
} |
} |
Line 8617 int main(int argc, char *argv[])
|
Line 15033 int main(int argc, char *argv[])
|
strcpy(model,modeltemp); |
strcpy(model,modeltemp); |
} |
} |
} |
} |
/* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ |
/* printf(" model=1+age%s modeltemp= %s, model=1+age+%s\n",model, modeltemp, model);fflush(stdout); */ |
printf("model=1+age+%s\n",model);fflush(stdout); |
printf("model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout); |
|
fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout); |
} |
} |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* numlinepar=numlinepar+3; /\* In general *\/ */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
/* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */ |
fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
/* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */ |
fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); |
/* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */ |
fflush(ficlog); |
fflush(ficlog); |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
/* if(model[0]=='#'|| model[0]== '\0'){ */ |
if(model[0]=='#'){ |
if(model[0]=='#'){ |
printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \ |
printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \ |
'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \ |
'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \ |
'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n"); \ |
'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n"); \ |
if(mle != -1){ |
if(mle != -1){ |
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n"); |
printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n"); |
exit(1); |
exit(1); |
} |
} |
} |
} |
Line 8642 int main(int argc, char *argv[])
|
Line 15061 int main(int argc, char *argv[])
|
numlinepar++; |
numlinepar++; |
if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */ |
if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */ |
z[0]=line[1]; |
z[0]=line[1]; |
|
}else if(line[1]=='d'){ /* For debugging individual values of covariates in ficresilk */ |
|
debugILK=1;printf("DebugILK\n"); |
} |
} |
/* printf("****line [1] = %c \n",line[1]); */ |
/* printf("****line [1] = %c \n",line[1]); */ |
fputs(line, stdout); |
fputs(line, stdout); |
Line 8652 int main(int argc, char *argv[])
|
Line 15073 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
|
|
covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */ |
covar=matrix(0,NCOVMAX,firstobs,lastobs); /**< used in readdata */ |
coqvar=matrix(1,nqv,1,n); /**< used in readdata */ |
if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs); /**< Fixed quantitative covariate */ |
cotvar=ma3x(1,maxwav,1,ntv,1,n); /**< used in readdata */ |
if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs); /**< Time varying quantitative covariate */ |
cotqvar=ma3x(1,maxwav,1,ntqv,1,n); /**< used in readdata */ |
/* if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs); /\**< Time varying covariate (dummy and quantitative)*\/ */ |
|
if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs); /**< Might be better */ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
/* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
v1+v2*age+v2*v3 makes cptcovn = 3 |
Line 8677 int main(int argc, char *argv[])
|
Line 15099 int main(int argc, char *argv[])
|
delti=delti3[1][1]; |
delti=delti3[1][1]; |
/*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ |
/*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/ |
if(mle==-1){ /* Print a wizard for help writing covariance matrix */ |
if(mle==-1){ /* Print a wizard for help writing covariance matrix */ |
|
/* We could also provide initial parameters values giving by simple logistic regression |
|
* only one way, that is without matrix product. We will have nlstate maximizations */ |
|
/* for(i=1;i<nlstate;i++){ */ |
|
/* /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */ |
|
/* mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */ |
|
/* } */ |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
prwizard(ncovmodel, nlstate, ndeath, model, ficparo); |
printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso); |
Line 8706 int main(int argc, char *argv[])
|
Line 15134 int main(int argc, char *argv[])
|
ungetc(c,ficpar); |
ungetc(c,ficpar); |
|
|
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
|
paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); |
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
j=0; |
j=0; |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
for(jj=1; jj <=nlstate+ndeath; jj++){ |
if(jj==i) continue; |
if(jj==i) continue; |
j++; |
j++; |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
while((c=getc(ficpar))=='#' && c!= EOF){ |
if ((i1 != i) || (j1 != jj)){ |
ungetc(c,ficpar); |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
fgets(line, MAXLINE, ficpar); |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
} |
|
ungetc(c,ficpar); |
|
fscanf(ficpar,"%1d%1d",&i1,&j1); |
|
if ((i1 != i) || (j1 != jj)){ |
|
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \ |
It might be a problem of design; if ncovcol and the model are correct\n \ |
It might be a problem of design; if ncovcol and the model are correct\n \ |
run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1); |
run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1); |
exit(1); |
exit(1); |
} |
} |
fprintf(ficparo,"%1d%1d",i1,j1); |
fprintf(ficparo,"%1d%1d",i1,j1); |
if(mle==1) |
if(mle==1) |
printf("%1d%1d",i,jj); |
printf("%1d%1d",i,jj); |
fprintf(ficlog,"%1d%1d",i,jj); |
fprintf(ficlog,"%1d%1d",i,jj); |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
fscanf(ficpar," %lf",¶m[i][j][k]); |
fscanf(ficpar," %lf",¶m[i][j][k]); |
if(mle==1){ |
if(mle==1){ |
printf(" %lf",param[i][j][k]); |
printf(" %lf",param[i][j][k]); |
fprintf(ficlog," %lf",param[i][j][k]); |
fprintf(ficlog," %lf",param[i][j][k]); |
} |
} |
else |
else |
fprintf(ficlog," %lf",param[i][j][k]); |
fprintf(ficlog," %lf",param[i][j][k]); |
fprintf(ficparo," %lf",param[i][j][k]); |
fprintf(ficparo," %lf",param[i][j][k]); |
} |
} |
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
if(mle==1) |
if(mle==1) |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficparo,"\n"); |
} |
} |
} |
} |
fflush(ficlog); |
fflush(ficlog); |
|
|
/* Reads scales values */ |
/* Reads parameters values */ |
p=param[1][1]; |
p=param[1][1]; |
|
pstart=paramstart[1][1]; |
|
|
/* Reads comments: lines beginning with '#' */ |
/* Reads comments: lines beginning with '#' */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
Line 8758 run imach with mle=-1 to get a correct t
|
Line 15197 run imach with mle=-1 to get a correct t
|
|
|
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
for(j=1; j <=nlstate+ndeath-1; j++){ |
for(j=1; j <=nlstate+ndeath-1; j++){ |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
fscanf(ficpar,"%1d%1d",&i1,&j1); |
if ( (i1-i) * (j1-j) != 0){ |
if ( (i1-i) * (j1-j) != 0){ |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); |
printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1); |
exit(1); |
exit(1); |
} |
} |
printf("%1d%1d",i,j); |
printf("%1d%1d",i,j); |
fprintf(ficparo,"%1d%1d",i1,j1); |
fprintf(ficparo,"%1d%1d",i1,j1); |
fprintf(ficlog,"%1d%1d",i1,j1); |
fprintf(ficlog,"%1d%1d",i1,j1); |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
fscanf(ficpar,"%le",&delti3[i][j][k]); |
fscanf(ficpar,"%le",&delti3[i][j][k]); |
printf(" %le",delti3[i][j][k]); |
printf(" %le",delti3[i][j][k]); |
fprintf(ficparo," %le",delti3[i][j][k]); |
fprintf(ficparo," %le",delti3[i][j][k]); |
fprintf(ficlog," %le",delti3[i][j][k]); |
fprintf(ficlog," %le",delti3[i][j][k]); |
} |
} |
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
printf("\n"); |
printf("\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficparo,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
} |
} |
} |
} |
fflush(ficlog); |
fflush(ficlog); |
|
|
/* Reads covariance matrix */ |
/* Reads covariance matrix */ |
delti=delti3[1][1]; |
delti=delti3[1][1]; |
|
|
Line 8805 run imach with mle=-1 to get a correct t
|
Line 15244 run imach with mle=-1 to get a correct t
|
|
|
/* Scans npar lines */ |
/* Scans npar lines */ |
for(i=1; i <=npar; i++){ |
for(i=1; i <=npar; i++){ |
count=fscanf(ficpar,"%1d%1d%1d",&i1,&j1,&jk); |
count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk); |
if(count != 3){ |
if(count != 3){ |
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
This is probably because your covariance matrix doesn't \n contain exactly %d lines corresponding to your model line '1+age+%s'.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model); |
exit(1); |
exit(1); |
}else{ |
}else{ |
if(mle==1) |
if(mle==1) |
printf("%1d%1d%1d",i1,j1,jk); |
printf("%1d%1d%d",i1,j1,jk); |
} |
} |
fprintf(ficlog,"%1d%1d%1d",i1,j1,jk); |
fprintf(ficlog,"%1d%1d%d",i1,j1,jk); |
fprintf(ficparo,"%1d%1d%1d",i1,j1,jk); |
fprintf(ficparo,"%1d%1d%d",i1,j1,jk); |
for(j=1; j <=i; j++){ |
for(j=1; j <=i; j++){ |
fscanf(ficpar," %le",&matcov[i][j]); |
fscanf(ficpar," %le",&matcov[i][j]); |
if(mle==1){ |
if(mle==1){ |
printf(" %.5le",matcov[i][j]); |
printf(" %.5le",matcov[i][j]); |
} |
} |
fprintf(ficlog," %.5le",matcov[i][j]); |
fprintf(ficlog," %.5le",matcov[i][j]); |
fprintf(ficparo," %.5le",matcov[i][j]); |
fprintf(ficparo," %.5le",matcov[i][j]); |
} |
} |
fscanf(ficpar,"\n"); |
fscanf(ficpar,"\n"); |
numlinepar++; |
numlinepar++; |
Line 8838 Please run with mle=-1 to get a correct
|
Line 15277 Please run with mle=-1 to get a correct
|
/* End of read covariance matrix npar lines */ |
/* End of read covariance matrix npar lines */ |
for(i=1; i <=npar; i++) |
for(i=1; i <=npar; i++) |
for(j=i+1;j<=npar;j++) |
for(j=i+1;j<=npar;j++) |
matcov[i][j]=matcov[j][i]; |
matcov[i][j]=matcov[j][i]; |
|
|
if(mle==1) |
if(mle==1) |
printf("\n"); |
printf("\n"); |
Line 8846 Please run with mle=-1 to get a correct
|
Line 15285 Please run with mle=-1 to get a correct
|
|
|
fflush(ficlog); |
fflush(ficlog); |
|
|
/*-------- Rewriting parameter file ----------*/ |
|
strcpy(rfileres,"r"); /* "Rparameterfile */ |
|
strcat(rfileres,optionfilefiname); /* Parameter file first name*/ |
|
strcat(rfileres,"."); /* */ |
|
strcat(rfileres,optionfilext); /* Other files have txt extension */ |
|
if((ficres =fopen(rfileres,"w"))==NULL) { |
|
printf("Problem writing new parameter file: %s\n", rfileres);goto end; |
|
fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end; |
|
} |
|
fprintf(ficres,"#%s\n",version); |
|
} /* End of mle != -3 */ |
} /* End of mle != -3 */ |
|
|
/* Main data |
/* Main data |
*/ |
*/ |
n= lastobs; |
nobs=lastobs-firstobs+1; /* was = lastobs;*/ |
num=lvector(1,n); |
/* num=lvector(1,n); */ |
moisnais=vector(1,n); |
/* moisnais=vector(1,n); */ |
annais=vector(1,n); |
/* annais=vector(1,n); */ |
moisdc=vector(1,n); |
/* moisdc=vector(1,n); */ |
andc=vector(1,n); |
/* andc=vector(1,n); */ |
weight=vector(1,n); |
/* weight=vector(1,n); */ |
agedc=vector(1,n); |
/* agedc=vector(1,n); */ |
cod=ivector(1,n); |
/* cod=ivector(1,n); */ |
for(i=1;i<=n;i++){ |
/* for(i=1;i<=n;i++){ */ |
num[i]=0; |
num=lvector(firstobs,lastobs); |
moisnais[i]=0; |
moisnais=vector(firstobs,lastobs); |
annais[i]=0; |
annais=vector(firstobs,lastobs); |
moisdc[i]=0; |
moisdc=vector(firstobs,lastobs); |
andc[i]=0; |
andc=vector(firstobs,lastobs); |
agedc[i]=0; |
weight=vector(firstobs,lastobs); |
cod[i]=0; |
agedc=vector(firstobs,lastobs); |
weight[i]=1.0; /* Equal weights, 1 by default */ |
cod=ivector(firstobs,lastobs); |
} |
for(i=firstobs;i<=lastobs;i++){ |
mint=matrix(1,maxwav,1,n); |
num[i]=0; |
anint=matrix(1,maxwav,1,n); |
moisnais[i]=0; |
s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ |
annais[i]=0; |
|
moisdc[i]=0; |
|
andc[i]=0; |
|
agedc[i]=0; |
|
cod[i]=0; |
|
weight[i]=1.0; /* Equal weights, 1 by default */ |
|
} |
|
mint=matrix(1,maxwav,firstobs,lastobs); |
|
anint=matrix(1,maxwav,firstobs,lastobs); |
|
s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */ |
|
/* printf("BUG ncovmodel=%d NCOVMAX=%d 2**ncovmodel=%f BUG\n",ncovmodel,NCOVMAX,pow(2,ncovmodel)); */ |
tab=ivector(1,NCOVMAX); |
tab=ivector(1,NCOVMAX); |
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */ |
Line 8891 Please run with mle=-1 to get a correct
|
Line 15330 Please run with mle=-1 to get a correct
|
goto end; |
goto end; |
|
|
/* Calculation of the number of parameters from char model */ |
/* Calculation of the number of parameters from char model */ |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 |
/* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 |
k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4 |
k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4 |
k=3 V4 Tvar[k=3]= 4 (from V4) |
k=3 V4 Tvar[k=3]= 4 (from V4) |
k=2 V1 Tvar[k=2]= 1 (from V1) |
k=2 V1 Tvar[k=2]= 1 (from V1) |
k=1 Tvar[1]=2 (from V2) |
k=1 Tvar[1]=2 (from V2) |
*/ |
*/ |
|
|
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */ |
|
TvarsDind=ivector(1,NCOVMAX); /* */ |
|
TnsdVar=ivector(1,NCOVMAX); /* */ |
|
/* for(i=1; i<=NCOVMAX;i++) TnsdVar[i]=3; */ |
|
TvarsD=ivector(1,NCOVMAX); /* */ |
|
TvarsQind=ivector(1,NCOVMAX); /* */ |
|
TvarsQ=ivector(1,NCOVMAX); /* */ |
|
TvarF=ivector(1,NCOVMAX); /* */ |
|
TvarFind=ivector(1,NCOVMAX); /* */ |
|
TvarV=ivector(1,NCOVMAX); /* */ |
|
TvarVind=ivector(1,NCOVMAX); /* */ |
|
TvarA=ivector(1,NCOVMAX); /* */ |
|
TvarAind=ivector(1,NCOVMAX); /* */ |
|
TvarFD=ivector(1,NCOVMAX); /* */ |
|
TvarFDind=ivector(1,NCOVMAX); /* */ |
|
TvarFQ=ivector(1,NCOVMAX); /* */ |
|
TvarFQind=ivector(1,NCOVMAX); /* */ |
|
TvarVD=ivector(1,NCOVMAX); /* */ |
|
TvarVDind=ivector(1,NCOVMAX); /* */ |
|
TvarVQ=ivector(1,NCOVMAX); /* */ |
|
TvarVQind=ivector(1,NCOVMAX); /* */ |
|
TvarVV=ivector(1,NCOVMAX); /* */ |
|
TvarVVind=ivector(1,NCOVMAX); /* */ |
|
TvarVVA=ivector(1,NCOVMAX); /* */ |
|
TvarVVAind=ivector(1,NCOVMAX); /* */ |
|
TvarAVVA=ivector(1,NCOVMAX); /* */ |
|
TvarAVVAind=ivector(1,NCOVMAX); /* */ |
|
|
|
Tvalsel=vector(1,NCOVMAX); /* */ |
|
Tvarsel=ivector(1,NCOVMAX); /* */ |
|
Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */ |
|
Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */ |
|
Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */ |
|
DummyV=ivector(-1,NCOVMAX); /* 1 to 3 */ |
|
FixedV=ivector(-1,NCOVMAX); /* 1 to 3 */ |
|
|
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
/* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Tvar[4=age*V3] is 3 and 'age' is recorded in Tage. |
Line 8907 Please run with mle=-1 to get a correct
|
Line 15382 Please run with mle=-1 to get a correct
|
ncovcol + k1 |
ncovcol + k1 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
If already ncovcol=4 and model=V2+V1+V1*V4+age*V3 |
Tvar[3=V1*V4]=4+1 etc */ |
Tvar[3=V1*V4]=4+1 etc */ |
Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */ |
Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */ |
|
Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */ |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 |
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) |
|
Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 |
*/ |
*/ |
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
Tvaraff=ivector(1,NCOVMAX); /* Unclear */ |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm |
* For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. |
* For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. |
* Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */ |
* Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */ |
|
Tvardk=imatrix(0,NCOVMAX,1,2); |
Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age |
Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age |
4 covariates (3 plus signs) |
4 covariates (3 plus signs) |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
Tage[1=V3*age]= 4; Tage[2=age*V4] = 3 |
*/ |
*/ |
|
for(i=1;i<NCOVMAX;i++) |
|
Tage[i]=0; |
|
Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual dummy, fixed or varying: |
|
* Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , |
|
* V1 df, V2 qf, V3 & V4 dv, V5 qv |
|
* Tmodelind[1]@9={9,0,3,2,}*/ |
|
TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/ |
|
TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an |
|
* individual quantitative, fixed or varying: |
|
* Tmodelqind[1]=1,Tvaraff[1]@9={4, |
|
* 3, 1, 0, 0, 0, 0, 0, 0}, |
|
* model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ |
|
|
|
/* Probably useless zeroes */ |
|
for(i=1;i<NCOVMAX;i++){ |
|
DummyV[i]=0; |
|
FixedV[i]=0; |
|
} |
|
|
|
for(i=1; i <=ncovcol;i++){ |
|
DummyV[i]=0; |
|
FixedV[i]=0; |
|
} |
|
for(i=ncovcol+1; i <=ncovcol+nqv;i++){ |
|
DummyV[i]=1; |
|
FixedV[i]=0; |
|
} |
|
for(i=ncovcol+nqv+1; i <=ncovcol+nqv+ntv;i++){ |
|
DummyV[i]=0; |
|
FixedV[i]=1; |
|
} |
|
for(i=ncovcol+nqv+ntv+1; i <=ncovcol+nqv+ntv+nqtv;i++){ |
|
DummyV[i]=1; |
|
FixedV[i]=1; |
|
} |
|
for(i=1; i <=ncovcol+nqv+ntv+nqtv;i++){ |
|
printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",i,i,DummyV[i],i,FixedV[i]); |
|
fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",i,i,DummyV[i],i,FixedV[i]); |
|
} |
|
|
|
|
|
|
/* Main decodemodel */ |
/* Main decodemodel */ |
|
|
Line 8944 Please run with mle=-1 to get a correct
|
Line 15466 Please run with mle=-1 to get a correct
|
|
|
|
|
agegomp=(int)agemin; |
agegomp=(int)agemin; |
free_vector(moisnais,1,n); |
free_vector(moisnais,firstobs,lastobs); |
free_vector(annais,1,n); |
free_vector(annais,firstobs,lastobs); |
/* free_matrix(mint,1,maxwav,1,n); |
/* free_matrix(mint,1,maxwav,1,n); |
free_matrix(anint,1,maxwav,1,n);*/ |
free_matrix(anint,1,maxwav,1,n);*/ |
/* free_vector(moisdc,1,n); */ |
/* free_vector(moisdc,1,n); */ |
Line 8969 Please run with mle=-1 to get a correct
|
Line 15491 Please run with mle=-1 to get a correct
|
*/ |
*/ |
|
|
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm); |
/* */ |
/* Concatenates waves */ |
|
|
free_vector(moisdc,1,n); |
free_vector(moisdc,firstobs,lastobs); |
free_vector(andc,1,n); |
free_vector(andc,firstobs,lastobs); |
|
|
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
/* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */ |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); |
ncodemax[1]=1; |
ncodemax[1]=1; |
Ndum =ivector(-1,NCOVMAX); |
Ndum =ivector(-1,NCOVMAX); |
cptcoveff=0; |
cptcoveff=0; |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */ |
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */ |
tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; as well as calculate cptcoveff or number of total effective dummy covariates*/ |
} |
} |
|
|
ncovcombmax=pow(2,cptcoveff); |
ncovcombmax=pow(2,cptcoveff); |
invalidvarcomb=ivector(1, ncovcombmax); |
invalidvarcomb=ivector(0, ncovcombmax); |
for(i=1;i<ncovcombmax;i++) |
for(i=0;i<ncovcombmax;i++) |
invalidvarcomb[i]=0; |
invalidvarcomb[i]=0; |
|
|
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
/* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/ |
/* 1 to ncodemax[j] which is the maximum value of this jth covariate */ |
/* 1 to ncodemax[j] which is the maximum value of this jth covariate */ |
|
|
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/* codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
/* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/ |
Line 9010 Please run with mle=-1 to get a correct
|
Line 15532 Please run with mle=-1 to get a correct
|
* For k=4 covariates, h goes from 1 to m=2**k |
* For k=4 covariates, h goes from 1 to m=2**k |
* codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1; |
* codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1; |
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
* #define codtabm(h,k) (1 & (h-1) >> (k-1))+1 |
* h\k 1 2 3 4 |
* h\k 1 2 3 4 * h-1\k-1 4 3 2 1 |
*______________________________ |
*______________________________ *______________________ |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 |
* 1 i=1 1 i=1 1 i=1 1 i=1 1 * 0 0 0 0 0 |
* 2 2 1 1 1 |
* 2 2 1 1 1 * 1 0 0 0 1 |
* 3 i=2 1 2 1 1 |
* 3 i=2 1 2 1 1 * 2 0 0 1 0 |
* 4 2 2 1 1 |
* 4 2 2 1 1 * 3 0 0 1 1 |
* 5 i=3 1 i=2 1 2 1 |
* 5 i=3 1 i=2 1 2 1 * 4 0 1 0 0 |
* 6 2 1 2 1 |
* 6 2 1 2 1 * 5 0 1 0 1 |
* 7 i=4 1 2 2 1 |
* 7 i=4 1 2 2 1 * 6 0 1 1 0 |
* 8 2 2 2 1 |
* 8 2 2 2 1 * 7 0 1 1 1 |
* 9 i=5 1 i=3 1 i=2 1 2 |
* 9 i=5 1 i=3 1 i=2 1 2 * 8 1 0 0 0 |
* 10 2 1 1 2 |
* 10 2 1 1 2 * 9 1 0 0 1 |
* 11 i=6 1 2 1 2 |
* 11 i=6 1 2 1 2 * 10 1 0 1 0 |
* 12 2 2 1 2 |
* 12 2 2 1 2 * 11 1 0 1 1 |
* 13 i=7 1 i=4 1 2 2 |
* 13 i=7 1 i=4 1 2 2 * 12 1 1 0 0 |
* 14 2 1 2 2 |
* 14 2 1 2 2 * 13 1 1 0 1 |
* 15 i=8 1 2 2 2 |
* 15 i=8 1 2 2 2 * 14 1 1 1 0 |
* 16 2 2 2 2 |
* 16 2 2 2 2 * 15 1 1 1 1 |
*/ |
*/ |
/* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */ |
/* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */ |
/* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4 |
/* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4 |
* and the value of each covariate? |
* and the value of each covariate? |
Line 9119 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 15641 Title=%s <br>Datafile=%s Firstpass=%d La
|
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model); |
} |
} |
|
|
fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C) 2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \ |
fprintf(fichtm,"<html><head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n\ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<title>IMaCh %s</title></head>\n\ |
|
<body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n\ |
|
<font size=\"3\">Sponsored by Copyright (C) 2002-2015 <a href=http://www.ined.fr>INED</a>\ |
|
-EUROREVES-Institut de longévité-2013-2022-Japan Society for the Promotion of Sciences 日本学術振興会 \ |
|
(<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - \ |
|
<a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \n", optionfilehtm); |
|
|
|
fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<font size=\"2\">IMaCh-%s <br> %s</font> \ |
<font size=\"2\">IMaCh-%s <br> %s</font> \ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
<hr size=\"2\" color=\"#EC5E5E\"> \n\ |
Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\ |
This file: <a href=\"%s\">%s</a></br>Title=%s <br>Datafile=<a href=\"%s\">%s</a> Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\ |
\n\ |
\n\ |
<hr size=\"2\" color=\"#EC5E5E\">\ |
<hr size=\"2\" color=\"#EC5E5E\">\ |
<ul><li><h4>Parameter files</h4>\n\ |
<ul><li><h4>Parameter files</h4>\n\ |
Line 9132 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 15661 Title=%s <br>Datafile=%s Firstpass=%d La
|
- Log file of the run: <a href=\"%s\">%s</a><br>\n\ |
- Log file of the run: <a href=\"%s\">%s</a><br>\n\ |
- Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ |
- Gnuplot file name: <a href=\"%s\">%s</a><br>\n\ |
- Date and time at start: %s</ul>\n",\ |
- Date and time at start: %s</ul>\n",\ |
optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\ |
version,fullversion,optionfilehtm,optionfilehtm,title,datafile,datafile,firstpass,lastpass,stepm, weightopt, model, \ |
optionfilefiname,optionfilext,optionfilefiname,optionfilext,\ |
optionfilefiname,optionfilext,optionfilefiname,optionfilext,\ |
fileres,fileres,\ |
fileres,fileres,\ |
filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); |
filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart); |
Line 9150 Title=%s <br>Datafile=%s Firstpass=%d La
|
Line 15679 Title=%s <br>Datafile=%s Firstpass=%d La
|
/* Calculates basic frequencies. Computes observed prevalence at single age |
/* Calculates basic frequencies. Computes observed prevalence at single age |
and for any valid combination of covariates |
and for any valid combination of covariates |
and prints on file fileres'p'. */ |
and prints on file fileres'p'. */ |
freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
freqsummary(fileres, p, pstart, (double)agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \ |
firstpass, lastpass, stepm, weightopt, model); |
firstpass, lastpass, stepm, weightopt, model); |
|
|
fprintf(fichtm,"\n"); |
fprintf(fichtm,"\n"); |
fprintf(fichtm,"<br>Total number of observations=%d <br>\n\ |
fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\ |
|
ftol, stepm); |
|
fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol); |
|
ncurrv=1; |
|
for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li>Number of time varying quantitative covariates: nqtv=%d ", nqtv); |
|
ncurrv=i; |
|
for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i); |
|
fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \ |
|
nlstate, ndeath, maxwav, mle, weightopt); |
|
|
|
fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\ |
|
<img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_")); |
|
|
|
|
|
fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Number of (used) observations=%d <br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\ |
imx,agemin,agemax,jmin,jmax,jmean); |
imx,agemin,agemax,jmin,jmax,jmean); |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ |
|
|
/* For Powell, parameters are in a vector p[] starting at p[1] |
/* For Powell, parameters are in a vector p[] starting at p[1] |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
Line 9172 Interval (in months) between two waves:
|
Line 15722 Interval (in months) between two waves:
|
/* For mortality only */ |
/* For mortality only */ |
if (mle==-3){ |
if (mle==-3){ |
ximort=matrix(1,NDIM,1,NDIM); |
ximort=matrix(1,NDIM,1,NDIM); |
for(i=1;i<=NDIM;i++) |
for(i=1;i<=NDIM;i++) |
for(j=1;j<=NDIM;j++) |
for(j=1;j<=NDIM;j++) |
ximort[i][j]=0.; |
ximort[i][j]=0.; |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
/* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */ |
cens=ivector(1,n); |
cens=ivector(firstobs,lastobs); |
ageexmed=vector(1,n); |
ageexmed=vector(firstobs,lastobs); |
agecens=vector(1,n); |
agecens=vector(firstobs,lastobs); |
dcwave=ivector(1,n); |
dcwave=ivector(firstobs,lastobs); |
|
|
for (i=1; i<=imx; i++){ |
for (i=1; i<=imx; i++){ |
dcwave[i]=-1; |
dcwave[i]=-1; |
for (m=firstpass; m<=lastpass; m++) |
for (m=firstpass; m<=lastpass; m++) |
if (s[m][i]>nlstate) { |
if (s[m][i]>nlstate) { |
dcwave[i]=m; |
dcwave[i]=m; |
/* printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/ |
/* printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/ |
break; |
break; |
} |
} |
} |
} |
|
|
for (i=1; i<=imx; i++) { |
for (i=1; i<=imx; i++) { |
if (wav[i]>0){ |
if (wav[i]>0){ |
ageexmed[i]=agev[mw[1][i]][i]; |
ageexmed[i]=agev[mw[1][i]][i]; |
j=wav[i]; |
j=wav[i]; |
agecens[i]=1.; |
agecens[i]=1.; |
|
|
if (ageexmed[i]> 1 && wav[i] > 0){ |
if (ageexmed[i]> 1 && wav[i] > 0){ |
agecens[i]=agev[mw[j][i]][i]; |
agecens[i]=agev[mw[j][i]][i]; |
cens[i]= 1; |
cens[i]= 1; |
}else if (ageexmed[i]< 1) |
}else if (ageexmed[i]< 1) |
cens[i]= -1; |
cens[i]= -1; |
if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass) |
if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass) |
cens[i]=0 ; |
cens[i]=0 ; |
} |
} |
else cens[i]=-1; |
else cens[i]=-1; |
} |
} |
|
|
for (i=1;i<=NDIM;i++) { |
for (i=1;i<=NDIM;i++) { |
for (j=1;j<=NDIM;j++) |
for (j=1;j<=NDIM;j++) |
ximort[i][j]=(i == j ? 1.0 : 0.0); |
ximort[i][j]=(i == j ? 1.0 : 0.0); |
} |
} |
|
|
/*p[1]=0.0268; p[NDIM]=0.083;*/ |
p[1]=0.0268; p[NDIM]=0.083; |
/*printf("%lf %lf", p[1], p[2]);*/ |
/* printf("%lf %lf", p[1], p[2]); */ |
|
|
|
|
#ifdef GSL |
#ifdef GSL |
printf("GSL optimization\n"); fprintf(ficlog,"Powell\n"); |
printf("GSL optimization\n"); fprintf(ficlog,"Powell\n"); |
#else |
#else |
printf("Powell\n"); fprintf(ficlog,"Powell\n"); |
printf("Powell-mort\n"); fprintf(ficlog,"Powell-mort\n"); |
#endif |
#endif |
strcpy(filerespow,"POW-MORT_"); |
strcpy(filerespow,"POW-MORT_"); |
strcat(filerespow,fileresu); |
strcat(filerespow,fileresu); |
Line 9315 Interval (in months) between two waves:
|
Line 15865 Interval (in months) between two waves:
|
gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1) */ |
gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1) */ |
#endif |
#endif |
#ifdef POWELL |
#ifdef POWELL |
powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz); |
#ifdef LINMINORIGINAL |
#endif |
#else /* LINMINORIGINAL */ |
|
|
|
flatdir=ivector(1,npar); |
|
for (j=1;j<=npar;j++) flatdir[j]=0; |
|
#endif /*LINMINORIGINAL */ |
|
/* powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz); */ |
|
/* double h0=0.25; */ |
|
macheps=pow(16.0,-13.0); |
|
printf("Praxis Gegenfurtner mle=%d\n",mle); |
|
fprintf(ficlog, "Praxis Gegenfurtner mle=%d\n", mle);fflush(ficlog); |
|
/* ffmin = praxis(ftol,macheps, h0, npar, prin, p, gompertz); */ |
|
/* For the Gompertz we use only two parameters */ |
|
int _npar=2; |
|
ffmin = praxis(ftol,macheps, h0, _npar, 4, p, gompertz); |
|
printf("End Praxis\n"); |
fclose(ficrespow); |
fclose(ficrespow); |
|
#ifdef LINMINORIGINAL |
|
#else |
|
free_ivector(flatdir,1,npar); |
|
#endif /* LINMINORIGINAL*/ |
|
#endif /* POWELL */ |
hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); |
hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); |
|
|
for(i=1; i <=NDIM; i++) |
for(i=1; i <=NDIM; i++) |
for(j=i+1;j<=NDIM;j++) |
for(j=i+1;j<=NDIM;j++) |
matcov[i][j]=matcov[j][i]; |
matcov[i][j]=matcov[j][i]; |
|
|
printf("\nCovariance matrix\n "); |
printf("\nCovariance matrix\n "); |
fprintf(ficlog,"\nCovariance matrix\n "); |
fprintf(ficlog,"\nCovariance matrix\n "); |
Line 9340 Interval (in months) between two waves:
|
Line 15908 Interval (in months) between two waves:
|
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i])); |
} |
} |
lsurv=vector(1,AGESUP); |
lsurv=vector(agegomp,AGESUP); |
lpop=vector(1,AGESUP); |
lpop=vector(agegomp,AGESUP); |
tpop=vector(1,AGESUP); |
tpop=vector(agegomp,AGESUP); |
lsurv[agegomp]=100000; |
lsurv[agegomp]=100000; |
|
|
for (k=agegomp;k<=AGESUP;k++) { |
for (k=agegomp;k<=AGESUP;k++) { |
Line 9389 Please run with mle=-1 to get a correct
|
Line 15957 Please run with mle=-1 to get a correct
|
stepm, weightopt,\ |
stepm, weightopt,\ |
model,imx,p,matcov,agemortsup); |
model,imx,p,matcov,agemortsup); |
|
|
free_vector(lsurv,1,AGESUP); |
free_vector(lsurv,agegomp,AGESUP); |
free_vector(lpop,1,AGESUP); |
free_vector(lpop,agegomp,AGESUP); |
free_vector(tpop,1,AGESUP); |
free_vector(tpop,agegomp,AGESUP); |
free_matrix(ximort,1,NDIM,1,NDIM); |
free_matrix(ximort,1,NDIM,1,NDIM); |
free_ivector(cens,1,n); |
free_ivector(dcwave,firstobs,lastobs); |
free_vector(agecens,1,n); |
free_vector(agecens,firstobs,lastobs); |
free_ivector(dcwave,1,n); |
free_vector(ageexmed,firstobs,lastobs); |
|
free_ivector(cens,firstobs,lastobs); |
#ifdef GSL |
#ifdef GSL |
#endif |
#endif |
} /* Endof if mle==-3 mortality only */ |
} /* Endof if mle==-3 mortality only */ |
Line 9410 Please run with mle=-1 to get a correct
|
Line 15979 Please run with mle=-1 to get a correct
|
printf("\n"); |
printf("\n"); |
if(mle>=1){ /* Could be 1 or 2, Real Maximization */ |
if(mle>=1){ /* Could be 1 or 2, Real Maximization */ |
/* mlikeli uses func not funcone */ |
/* mlikeli uses func not funcone */ |
|
/* for(i=1;i<nlstate;i++){ */ |
|
/* /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */ |
|
/* mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */ |
|
/* } */ |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
} |
} |
if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ |
if(mle==0) {/* No optimization, will print the likelihoods for the datafile */ |
Line 9420 Please run with mle=-1 to get a correct
|
Line 15993 Please run with mle=-1 to get a correct
|
globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */ |
globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */ |
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw); |
|
/* exit(0); */ |
for (k=1; k<=npar;k++) |
for (k=1; k<=npar;k++) |
printf(" %d %8.5f",k,p[k]); |
printf(" %d %8.5f",k,p[k]); |
printf("\n"); |
printf("\n"); |
|
|
/*--------- results files --------------*/ |
/*--------- results files --------------*/ |
fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model); |
/* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */ |
|
|
|
|
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); /* Printing model equation */ |
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); |
|
|
|
printf("#model= 1 + age "); |
|
fprintf(ficres,"#model= 1 + age "); |
|
fprintf(ficlog,"#model= 1 + age "); |
|
fprintf(fichtm,"\n<ul><li> model=1+age+%s\n \ |
|
</ul>", model); |
|
|
|
fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">\n"); |
|
fprintf(fichtm, "<tr><th>Model=</th><th>1</th><th>+ age</th>"); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficres," + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
fprintf(fichtm, "<th>+ age*age</th>"); |
|
} |
|
for(j=1;j <=ncovmodel-2-nagesqr;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(ficres," + V%d ",Tvar[j]); |
|
fprintf(ficlog," + V%d ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(ficres," + V%d*age ",Tvar[j]); |
|
fprintf(ficlog," + V%d*age ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d*age</th>",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficres," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(fichtm, "<th>+ V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
}else if(Typevar[j]==3) { /* TO VERIFY */ |
|
printf(" + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficres," + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(ficlog," + V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
fprintf(fichtm, "<th>+ V%d*V%d*age</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
|
printf("\n"); |
|
fprintf(ficres,"\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(fichtm, "</tr>"); |
|
fprintf(fichtm, "\n"); |
|
|
|
|
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
printf("%d%d ",i,k); |
fprintf(fichtm, "<tr>"); |
fprintf(ficlog,"%d%d ",i,k); |
printf("%d%d ",i,k); |
fprintf(ficres,"%1d%1d ",i,k); |
fprintf(ficlog,"%d%d ",i,k); |
for(j=1; j <=ncovmodel; j++){ |
fprintf(ficres,"%1d%1d ",i,k); |
printf("%12.7f ",p[jk]); |
fprintf(fichtm, "<td>%1d%1d</td>",i,k); |
fprintf(ficlog,"%12.7f ",p[jk]); |
for(j=1; j <=ncovmodel; j++){ |
fprintf(ficres,"%12.7f ",p[jk]); |
printf("%12.7f ",p[jk]); |
jk++; |
fprintf(ficlog,"%12.7f ",p[jk]); |
} |
fprintf(ficres,"%12.7f ",p[jk]); |
printf("\n"); |
fprintf(fichtm, "<td>%12.7f</td>",p[jk]); |
fprintf(ficlog,"\n"); |
jk++; |
fprintf(ficres,"\n"); |
} |
} |
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(ficres,"\n"); |
|
fprintf(fichtm, "</tr>\n"); |
|
} |
} |
} |
} |
} |
|
/* fprintf(fichtm,"</tr>\n"); */ |
|
fprintf(fichtm,"</table>\n"); |
|
fprintf(fichtm, "\n"); |
|
|
if(mle != 0){ |
if(mle != 0){ |
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
/* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */ |
ftolhess=ftol; /* Usually correct */ |
ftolhess=ftol; /* Usually correct */ |
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
hesscov(matcov, hess, p, npar, delti, ftolhess, func); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n"); |
|
fprintf(fichtm, "\n<p>The Wald test results are output only if the maximimzation of the Likelihood is performed (mle=1)\n</br>Parameters, Wald tests and Wald-based confidence intervals\n</br> W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n</br> And Wald-based confidence intervals plus and minus 1.96 * W \n </br> It might be better to visualize the covariance matrix. See the page '<a href=\"%s\">Matrix of variance-covariance of one-step probabilities and its graphs</a>'.\n</br>",optionfilehtmcov); |
|
fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">"); |
|
fprintf(fichtm, "\n<tr><th>Model=</th><th>1</th><th>+ age</th>"); |
|
if(nagesqr==1){ |
|
printf(" + age*age "); |
|
fprintf(ficres," + age*age "); |
|
fprintf(ficlog," + age*age "); |
|
fprintf(fichtm, "<th>+ age*age</th>"); |
|
} |
|
for(j=1;j <=ncovmodel-2-nagesqr;j++){ |
|
if(Typevar[j]==0) { |
|
printf(" + V%d ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]); |
|
}else if(Typevar[j]==1) { |
|
printf(" + V%d*age ",Tvar[j]); |
|
fprintf(fichtm, "<th>+ V%d*age</th>",Tvar[j]); |
|
}else if(Typevar[j]==2) { |
|
fprintf(fichtm, "<th>+ V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
}else if(Typevar[j]==3) { /* TO VERIFY */ |
|
fprintf(fichtm, "<th>+ V%d*V%d*age</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]); |
|
} |
|
} |
|
fprintf(fichtm, "</tr>\n"); |
|
|
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
for(k=1; k <=(nlstate+ndeath); k++){ |
if (k != i) { |
if (k != i) { |
printf("%d%d ",i,k); |
fprintf(fichtm, "<tr valign=top>"); |
fprintf(ficlog,"%d%d ",i,k); |
printf("%d%d ",i,k); |
for(j=1; j <=ncovmodel; j++){ |
fprintf(ficlog,"%d%d ",i,k); |
printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
fprintf(fichtm, "<td>%1d%1d</td>",i,k); |
fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
for(j=1; j <=ncovmodel; j++){ |
jk++; |
wald=p[jk]/sqrt(matcov[jk][jk]); |
} |
printf("%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
printf("\n"); |
fprintf(ficlog,"%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
fprintf(ficlog,"\n"); |
if(fabs(wald) > 1.96){ |
} |
fprintf(fichtm, "<td><b>%12.7f</b></br> (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk])); |
} |
}else{ |
|
fprintf(fichtm, "<td>%12.7f (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk])); |
|
} |
|
fprintf(fichtm,"W=%8.3f</br>",wald); |
|
fprintf(fichtm,"[%12.7f;%12.7f]</br></td>", p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk])); |
|
jk++; |
|
} |
|
printf("\n"); |
|
fprintf(ficlog,"\n"); |
|
fprintf(fichtm, "</tr>\n"); |
|
} |
|
} |
} |
} |
} /* end of hesscov and Wald tests */ |
} /* end of hesscov and Wald tests */ |
|
fprintf(fichtm,"</table>\n"); |
|
|
/* */ |
/* */ |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficres,"# Scales (for hessian or gradient estimation)\n"); |
printf("# Scales (for hessian or gradient estimation)\n"); |
printf("# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); |
fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n"); |
for(i=1,jk=1; i <=nlstate; i++){ |
for(i=1,jk=1; i <=nlstate; i++){ |
for(j=1; j <=nlstate+ndeath; j++){ |
for(j=1; j <=nlstate+ndeath; j++){ |
if (j!=i) { |
if (j!=i) { |
fprintf(ficres,"%1d%1d",i,j); |
fprintf(ficres,"%1d%1d",i,j); |
printf("%1d%1d",i,j); |
printf("%1d%1d",i,j); |
fprintf(ficlog,"%1d%1d",i,j); |
fprintf(ficlog,"%1d%1d",i,j); |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
printf(" %.5e",delti[jk]); |
printf(" %.5e",delti[jk]); |
fprintf(ficlog," %.5e",delti[jk]); |
fprintf(ficlog," %.5e",delti[jk]); |
fprintf(ficres," %.5e",delti[jk]); |
fprintf(ficres," %.5e",delti[jk]); |
jk++; |
jk++; |
} |
} |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficres,"\n"); |
fprintf(ficres,"\n"); |
} |
} |
} |
} |
} |
} |
|
|
fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
if(mle >= 1) /* To big for the screen */ |
if(mle >= 1) /* Too big for the screen */ |
printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n"); |
/* # 121 Var(a12)\n\ */ |
/* # 121 Var(a12)\n\ */ |
Line 9515 Please run with mle=-1 to get a correct
|
Line 16178 Please run with mle=-1 to get a correct
|
for(itimes=1;itimes<=2;itimes++){ |
for(itimes=1;itimes<=2;itimes++){ |
jj=0; |
jj=0; |
for(i=1; i <=nlstate; i++){ |
for(i=1; i <=nlstate; i++){ |
for(j=1; j <=nlstate+ndeath; j++){ |
for(j=1; j <=nlstate+ndeath; j++){ |
if(j==i) continue; |
if(j==i) continue; |
for(k=1; k<=ncovmodel;k++){ |
for(k=1; k<=ncovmodel;k++){ |
jj++; |
jj++; |
ca[0]= k+'a'-1;ca[1]='\0'; |
ca[0]= k+'a'-1;ca[1]='\0'; |
if(itimes==1){ |
if(itimes==1){ |
if(mle>=1) |
if(mle>=1) |
printf("#%1d%1d%d",i,j,k); |
printf("#%1d%1d%d",i,j,k); |
fprintf(ficlog,"#%1d%1d%d",i,j,k); |
fprintf(ficlog,"#%1d%1d%d",i,j,k); |
fprintf(ficres,"#%1d%1d%d",i,j,k); |
fprintf(ficres,"#%1d%1d%d",i,j,k); |
}else{ |
}else{ |
if(mle>=1) |
if(mle>=1) |
printf("%1d%1d%d",i,j,k); |
printf("%1d%1d%d",i,j,k); |
fprintf(ficlog,"%1d%1d%d",i,j,k); |
fprintf(ficlog,"%1d%1d%d",i,j,k); |
fprintf(ficres,"%1d%1d%d",i,j,k); |
fprintf(ficres,"%1d%1d%d",i,j,k); |
} |
} |
ll=0; |
ll=0; |
for(li=1;li <=nlstate; li++){ |
for(li=1;li <=nlstate; li++){ |
for(lj=1;lj <=nlstate+ndeath; lj++){ |
for(lj=1;lj <=nlstate+ndeath; lj++){ |
if(lj==li) continue; |
if(lj==li) continue; |
for(lk=1;lk<=ncovmodel;lk++){ |
for(lk=1;lk<=ncovmodel;lk++){ |
ll++; |
ll++; |
if(ll<=jj){ |
if(ll<=jj){ |
cb[0]= lk +'a'-1;cb[1]='\0'; |
cb[0]= lk +'a'-1;cb[1]='\0'; |
if(ll<jj){ |
if(ll<jj){ |
if(itimes==1){ |
if(itimes==1){ |
if(mle>=1) |
if(mle>=1) |
printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj); |
}else{ |
}else{ |
if(mle>=1) |
if(mle>=1) |
printf(" %.5e",matcov[jj][ll]); |
printf(" %.5e",matcov[jj][ll]); |
fprintf(ficlog," %.5e",matcov[jj][ll]); |
fprintf(ficlog," %.5e",matcov[jj][ll]); |
fprintf(ficres," %.5e",matcov[jj][ll]); |
fprintf(ficres," %.5e",matcov[jj][ll]); |
} |
} |
}else{ |
}else{ |
if(itimes==1){ |
if(itimes==1){ |
if(mle>=1) |
if(mle>=1) |
printf(" Var(%s%1d%1d)",ca,i,j); |
printf(" Var(%s%1d%1d)",ca,i,j); |
fprintf(ficlog," Var(%s%1d%1d)",ca,i,j); |
fprintf(ficlog," Var(%s%1d%1d)",ca,i,j); |
fprintf(ficres," Var(%s%1d%1d)",ca,i,j); |
fprintf(ficres," Var(%s%1d%1d)",ca,i,j); |
}else{ |
}else{ |
if(mle>=1) |
if(mle>=1) |
printf(" %.7e",matcov[jj][ll]); |
printf(" %.7e",matcov[jj][ll]); |
fprintf(ficlog," %.7e",matcov[jj][ll]); |
fprintf(ficlog," %.7e",matcov[jj][ll]); |
fprintf(ficres," %.7e",matcov[jj][ll]); |
fprintf(ficres," %.7e",matcov[jj][ll]); |
} |
} |
} |
} |
} |
} |
} /* end lk */ |
} /* end lk */ |
} /* end lj */ |
} /* end lj */ |
} /* end li */ |
} /* end li */ |
if(mle>=1) |
if(mle>=1) |
printf("\n"); |
printf("\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficlog,"\n"); |
fprintf(ficres,"\n"); |
fprintf(ficres,"\n"); |
numlinepar++; |
numlinepar++; |
} /* end k*/ |
} /* end k*/ |
} /*end j */ |
} /*end j */ |
} /* end i */ |
} /* end i */ |
} /* end itimes */ |
} /* end itimes */ |
|
|
fflush(ficlog); |
fflush(ficlog); |
fflush(ficres); |
fflush(ficres); |
while(fgets(line, MAXLINE, ficpar)) { |
while(fgets(line, MAXLINE, ficpar)) { |
/* If line starts with a # it is a comment */ |
/* If line starts with a # it is a comment */ |
if (line[0] == '#') { |
if (line[0] == '#') { |
numlinepar++; |
numlinepar++; |
fputs(line,stdout); |
fputs(line,stdout); |
fputs(line,ficparo); |
fputs(line,ficparo); |
fputs(line,ficlog); |
fputs(line,ficlog); |
continue; |
fputs(line,ficres); |
}else |
continue; |
break; |
}else |
} |
break; |
|
} |
|
|
/* while((c=getc(ficpar))=='#' && c!= EOF){ */ |
/* while((c=getc(ficpar))=='#' && c!= EOF){ */ |
/* ungetc(c,ficpar); */ |
/* ungetc(c,ficpar); */ |
/* fgets(line, MAXLINE, ficpar); */ |
/* fgets(line, MAXLINE, ficpar); */ |
Line 9602 Please run with mle=-1 to get a correct
|
Line 16266 Please run with mle=-1 to get a correct
|
|
|
estepm=0; |
estepm=0; |
if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){ |
if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){ |
|
|
if (num_filled != 6) { |
if (num_filled != 6) { |
printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line); |
goto end; |
goto end; |
} |
} |
printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl); |
printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl); |
} |
} |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */ |
/*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
/*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */ |
|
|
/* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */ |
/* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */ |
if (estepm==0 || estepm < stepm) estepm=stepm; |
if (estepm==0 || estepm < stepm) estepm=stepm; |
if (fage <= 2) { |
if (fage <= 2) { |
Line 9625 Please run with mle=-1 to get a correct
|
Line 16289 Please run with mle=-1 to get a correct
|
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl); |
|
|
/* Other stuffs, more or less useful */ |
/* Other stuffs, more or less useful */ |
while((c=getc(ficpar))=='#' && c!= EOF){ |
while(fgets(line, MAXLINE, ficpar)) { |
ungetc(c,ficpar); |
/* If line starts with a # it is a comment */ |
fgets(line, MAXLINE, ficpar); |
if (line[0] == '#') { |
fputs(line,stdout); |
numlinepar++; |
fputs(line,ficparo); |
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
fputs(line,ficres); |
|
continue; |
|
}else |
|
break; |
} |
} |
ungetc(c,ficpar); |
|
|
if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){ |
fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); |
|
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
if (num_filled != 7) { |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004 mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
goto end; |
|
} |
while((c=getc(ficpar))=='#' && c!= EOF){ |
printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
ungetc(c,ficpar); |
fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fgets(line, MAXLINE, ficpar); |
fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fputs(line,stdout); |
fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
fputs(line,ficparo); |
} |
|
|
|
while(fgets(line, MAXLINE, ficpar)) { |
|
/* If line starts with a # it is a comment */ |
|
if (line[0] == '#') { |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
fputs(line,ficres); |
|
continue; |
|
}else |
|
break; |
} |
} |
ungetc(c,ficpar); |
|
|
|
|
|
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
|
|
fscanf(ficpar,"pop_based=%d\n",&popbased); |
if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){ |
fprintf(ficlog,"pop_based=%d\n",popbased); |
if (num_filled != 1) { |
fprintf(ficparo,"pop_based=%d\n",popbased); |
printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
fprintf(ficres,"pop_based=%d\n",popbased); |
fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line); |
|
goto end; |
while((c=getc(ficpar))=='#' && c!= EOF){ |
} |
ungetc(c,ficpar); |
printf("pop_based=%d\n",popbased); |
fgets(line, MAXLINE, ficpar); |
fprintf(ficlog,"pop_based=%d\n",popbased); |
fputs(line,stdout); |
fprintf(ficparo,"pop_based=%d\n",popbased); |
fputs(line,ficparo); |
fprintf(ficres,"pop_based=%d\n",popbased); |
} |
|
ungetc(c,ficpar); |
|
|
|
fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
|
|
while((c=getc(ficpar))=='#' && c!= EOF){ |
|
ungetc(c,ficpar); |
|
fgets(line, MAXLINE, ficpar); |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
} |
} |
ungetc(c,ficpar); |
|
|
/* Results */ |
fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj); |
/* Value of covariate in each resultine will be computed (if product) and sorted according to model rank */ |
fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
/* It is precov[] because we need the varying age in order to compute the real cov[] of the model equation */ |
fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
precov=matrix(1,MAXRESULTLINESPONE,1,NCOVMAX+1); |
fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
endishere=0; |
/* day and month of proj2 are not used but only year anproj2.*/ |
nresult=0; |
|
parameterline=0; |
|
do{ |
|
if(!fgets(line, MAXLINE, ficpar)){ |
|
endishere=1; |
|
parameterline=15; |
|
}else if (line[0] == '#') { |
|
/* If line starts with a # it is a comment */ |
|
numlinepar++; |
|
fputs(line,stdout); |
|
fputs(line,ficparo); |
|
fputs(line,ficlog); |
|
fputs(line,ficres); |
|
continue; |
|
}else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp)) |
|
parameterline=11; |
|
else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp)) |
|
parameterline=12; |
|
else if(sscanf(line,"result:%[^\n]\n",modeltemp)){ |
|
parameterline=13; |
|
} |
|
else{ |
|
parameterline=14; |
|
} |
|
switch (parameterline){ /* =0 only if only comments */ |
|
case 11: |
|
if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){ |
|
fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
|
/* day and month of proj2 are not used but only year anproj2.*/ |
|
dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.; |
|
dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.; |
|
prvforecast = 1; |
|
} |
|
else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/ |
|
printf("prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
fprintf(ficlog,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
fprintf(ficres,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj); |
|
prvforecast = 2; |
|
} |
|
else { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
goto end; |
|
} |
|
break; |
|
case 12: |
|
if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){ |
|
fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj); |
|
/* day and month of back2 are not used but only year anback2.*/ |
|
dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.; |
|
dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.; |
|
prvbackcast = 1; |
|
} |
|
else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/ |
|
printf("prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
fprintf(ficlog,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
fprintf(ficres,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj); |
|
prvbackcast = 2; |
|
} |
|
else { |
|
printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line); |
|
goto end; |
|
} |
|
break; |
|
case 13: |
|
num_filled=sscanf(line,"result:%[^\n]\n",resultlineori); |
|
nresult++; /* Sum of resultlines */ |
|
/* printf("Result %d: result:%s\n",nresult, resultlineori); */ |
|
/* removefirstspace(&resultlineori); */ |
|
|
|
if(strstr(resultlineori,"v") !=0){ |
|
printf("Error. 'v' must be in upper case 'V' result: %s ",resultlineori); |
|
fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultlineori);fflush(ficlog); |
|
return 1; |
|
} |
|
trimbb(resultline, resultlineori); /* Suppressing double blank in the resultline */ |
|
/* printf("Decoderesult resultline=\"%s\" resultlineori=\"%s\"\n", resultline, resultlineori); */ |
|
if(nresult > MAXRESULTLINESPONE-1){ |
|
printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres); |
|
fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres); |
|
goto end; |
|
} |
|
|
|
if(!decoderesult(resultline, nresult)){ /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */ |
|
fprintf(ficparo,"result: %s\n",resultline); |
|
fprintf(ficres,"result: %s\n",resultline); |
|
fprintf(ficlog,"result: %s\n",resultline); |
|
} else |
|
goto end; |
|
break; |
|
case 14: |
|
printf("Error: Unknown command '%s'\n",line); |
|
fprintf(ficlog,"Error: Unknown command '%s'\n",line); |
|
if(line[0] == ' ' || line[0] == '\n'){ |
|
printf("It should not be an empty line '%s'\n",line); |
|
fprintf(ficlog,"It should not be an empty line '%s'\n",line); |
|
} |
|
if(ncovmodel >=2 && nresult==0 ){ |
|
printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
|
fprintf(ficlog,"ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line); |
|
} |
|
/* goto end; */ |
|
break; |
|
case 15: |
|
printf("End of resultlines.\n"); |
|
fprintf(ficlog,"End of resultlines.\n"); |
|
break; |
|
default: /* parameterline =0 */ |
|
nresult=1; |
|
decoderesult(".",nresult ); /* No covariate */ |
|
} /* End switch parameterline */ |
|
}while(endishere==0); /* End do */ |
|
|
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
/* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */ |
|
|
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\ |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar); |
}else{ |
}else{ |
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p); |
/* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */ |
|
/* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */ |
|
/* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */ |
|
if(prvforecast==1){ |
|
dateprojd=(jproj1+12*mproj1+365*anproj1)/365; |
|
jprojd=jproj1; |
|
mprojd=mproj1; |
|
anprojd=anproj1; |
|
dateprojf=(jproj2+12*mproj2+365*anproj2)/365; |
|
jprojf=jproj2; |
|
mprojf=mproj2; |
|
anprojf=anproj2; |
|
} else if(prvforecast == 2){ |
|
dateprojd=dateintmean; |
|
date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); |
|
dateprojf=dateintmean+yrfproj; |
|
date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); |
|
} |
|
if(prvbackcast==1){ |
|
datebackd=(jback1+12*mback1+365*anback1)/365; |
|
jbackd=jback1; |
|
mbackd=mback1; |
|
anbackd=anback1; |
|
datebackf=(jback2+12*mback2+365*anback2)/365; |
|
jbackf=jback2; |
|
mbackf=mback2; |
|
anbackf=anback2; |
|
} else if(prvbackcast == 2){ |
|
datebackd=dateintmean; |
|
date2dmy(datebackd,&jbackd, &mbackd, &anbackd); |
|
datebackf=dateintmean-yrbproj; |
|
date2dmy(datebackf,&jbackf, &mbackf, &anbackf); |
|
} |
|
|
|
printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage);/* HERE valgrind Tvard*/ |
} |
} |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \ |
model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \ |
jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2); |
jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf); |
|
|
/*------------ free_vector -------------*/ |
/*------------ free_vector -------------*/ |
/* chdir(path); */ |
/* chdir(path); */ |
|
|
/* free_ivector(wav,1,imx); */ /* Moved after last prevalence call */ |
/* free_ivector(wav,1,imx); */ /* Moved after last prevalence call */ |
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
/* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */ |
free_lvector(num,1,n); |
free_lvector(num,firstobs,lastobs); |
free_vector(agedc,1,n); |
free_vector(agedc,firstobs,lastobs); |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,0,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
/*free_matrix(covar,1,NCOVMAX,1,n);*/ |
fclose(ficparo); |
fclose(ficparo); |
Line 9725 Please run with mle=-1 to get a correct
|
Line 16542 Please run with mle=-1 to get a correct
|
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Prevalence limit (period or stable prevalence) --------------*/ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
/*#include "prevlim.h"*/ /* Use ficrespl, ficlog */ |
prlim=matrix(1,nlstate,1,nlstate); |
prlim=matrix(1,nlstate,1,nlstate); |
|
/* Computes the prevalence limit for each combination k of the dummy covariates by calling prevalim(k) */ |
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear); |
fclose(ficrespl); |
fclose(ficrespl); |
|
|
/*------------- h Pij x at various ages ------------*/ |
/*------------- h Pij x at various ages ------------*/ |
/*#include "hpijx.h"*/ |
/*#include "hpijx.h"*/ |
|
/** h Pij x Probability to be in state j at age x+h being in i at x, for each combination k of dummies in the model line or to nres?*/ |
|
/* calls hpxij with combination k */ |
hPijx(p, bage, fage); |
hPijx(p, bage, fage); |
fclose(ficrespij); |
fclose(ficrespij); |
|
|
/* ncovcombmax= pow(2,cptcoveff); */ |
/* ncovcombmax= pow(2,cptcoveff); */ |
/*-------------- Variance of one-step probabilities---*/ |
/*-------------- Variance of one-step probabilities for a combination ij or for nres ?---*/ |
k=1; |
k=1; |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart); |
|
|
/* Prevalence for each covariates in probs[age][status][cov] */ |
/* Prevalence for each covariate combination in probs[age][status][cov] */ |
probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
for(i=1;i<=AGESUP;i++) |
for(i=AGEINF;i<=AGESUP;i++) |
for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */ |
for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */ |
for(k=1;k<=ncovcombmax;k++) |
for(k=1;k<=ncovcombmax;k++) |
probs[i][j][k]=0.; |
probs[i][j][k]=0.; |
prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, |
|
ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
if (mobilav!=0 ||mobilavproj !=0 ) { |
if (mobilav!=0 ||mobilavproj !=0 ) { |
mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
for(i=1;i<=AGESUP;i++) |
for(i=AGEINF;i<=AGESUP;i++) |
for(j=1;j<=nlstate;j++) |
for(j=1;j<=nlstate+ndeath;j++) |
for(k=1;k<=ncovcombmax;k++) |
for(k=1;k<=ncovcombmax;k++) |
mobaverages[i][j][k]=0.; |
mobaverages[i][j][k]=0.; |
mobaverage=mobaverages; |
mobaverage=mobaverages; |
if (mobilav!=0) { |
if (mobilav!=0) { |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){ |
printf("Movingaveraging observed prevalence\n"); |
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
fprintf(ficlog,"Movingaveraging observed prevalence\n"); |
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){ |
} |
fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); |
} |
printf(" Error in movingaverage mobilav=%d\n",mobilav); |
/* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */ |
} |
/* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */ |
} else if (mobilavproj !=0) { |
else if (mobilavproj !=0) { |
printf("Movingaveraging projected observed prevalence\n"); |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){ |
fprintf(ficlog,"Movingaveraging projected observed prevalence\n"); |
fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj); |
if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){ |
printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj); |
fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj); |
} |
printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj); |
|
} |
|
}else{ |
|
printf("Internal error moving average\n"); |
|
fflush(stdout); |
|
exit(1); |
} |
} |
}/* end if moving average */ |
}/* end if moving average */ |
|
|
/*---------- Forecasting ------------------*/ |
/*---------- Forecasting ------------------*/ |
/*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
if(prevfcast==1){ |
if(prevfcast==1){ |
/* /\* if(stepm ==1){*\/ */ |
/* if(stepm ==1){*/ |
/* /\* anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */ |
prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
/*This done previously after freqsummary.*/ |
|
/* dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */ |
|
/* dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */ |
|
|
|
/* } else if (prvforecast==2){ */ |
|
/* /\* if(stepm ==1){*\/ */ |
|
/* /\* anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */ |
|
/* } */ |
|
/*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/ |
|
prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff); |
} |
} |
if(backcast==1){ |
|
|
/* Prevbcasting */ |
|
if(prevbcast==1){ |
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath); |
Line 9782 Please run with mle=-1 to get a correct
|
Line 16619 Please run with mle=-1 to get a correct
|
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
/*--------------- Back Prevalence limit (period or stable prevalence) --------------*/ |
|
|
bprlim=matrix(1,nlstate,1,nlstate); |
bprlim=matrix(1,nlstate,1,nlstate); |
|
|
back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj); |
back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj); |
fclose(ficresplb); |
fclose(ficresplb); |
|
|
hBijx(p, bage, fage, mobaverage); |
hBijx(p, bage, fage, mobaverage); |
fclose(ficrespijb); |
fclose(ficrespijb); |
free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
|
|
|
/* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj, |
/* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */ |
bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */ |
/* /\* mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */ |
|
/* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */ |
|
/* mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */ |
|
prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, |
|
mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff); |
|
|
|
|
|
varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
|
|
|
|
|
free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath); |
} |
} /* end Prevbcasting */ |
|
|
|
|
/* ------ Other prevalence ratios------------ */ |
/* ------ Other prevalence ratios------------ */ |
|
|
Line 9815 Please run with mle=-1 to get a correct
|
Line 16662 Please run with mle=-1 to get a correct
|
} |
} |
printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout); |
printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout); |
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog); |
fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog); |
|
|
|
pstamp(ficreseij); |
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
/* i1=pow(2,cptcoveff); /\* Number of combination of dummy covariates *\/ */ |
|
/* if (cptcovn < 1){i1=1;} */ |
|
|
|
for(nres=1; nres <= nresult; nres++){ /* For each resultline */ |
|
/* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ |
|
/* if(i1 != 1 && TKresult[nres]!= k) */ |
|
/* continue; */ |
fprintf(ficreseij,"\n#****** "); |
fprintf(ficreseij,"\n#****** "); |
for(j=1;j<=cptcoveff;j++) { |
printf("\n#****** "); |
fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
for(j=1;j<=cptcovs;j++){ |
|
/* for(j=1;j<=cptcoveff;j++) { */ |
|
/* fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
fprintf(ficreseij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); |
|
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
printf(" V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */ |
|
fprintf(ficreseij,"V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); |
} |
} |
fprintf(ficreseij,"******\n"); |
fprintf(ficreseij,"******\n"); |
|
printf("******\n"); |
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart); |
/* printf("HELLO Entering evsij bage=%d fage=%d k=%d estepm=%d nres=%d\n",(int) bage, (int)fage, k, estepm, nres); */ |
|
evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres); |
|
|
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
} |
} |
fclose(ficreseij); |
fclose(ficreseij); |
printf("done evsij\n");fflush(stdout); |
printf("done evsij\n");fflush(stdout); |
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
fprintf(ficlog,"done evsij\n");fflush(ficlog); |
|
|
|
|
/*---------- Health expectancies and variances ------------*/ |
/*---------- State-specific expectancies and variances ------------*/ |
|
/* Should be moved in a function */ |
|
|
strcpy(filerest,"T_"); |
strcpy(filerest,"T_"); |
strcat(filerest,fileresu); |
strcat(filerest,fileresu); |
if((ficrest=fopen(filerest,"w"))==NULL) { |
if((ficrest=fopen(filerest,"w"))==NULL) { |
Line 9844 Please run with mle=-1 to get a correct
|
Line 16710 Please run with mle=-1 to get a correct
|
} |
} |
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog); |
|
|
|
|
strcpy(fileresstde,"STDE_"); |
strcpy(fileresstde,"STDE_"); |
strcat(fileresstde,fileresu); |
strcat(fileresstde,fileresu); |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
if((ficresstdeij=fopen(fileresstde,"w"))==NULL) { |
printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0); |
} |
} |
printf(" Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
printf(" Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
fprintf(ficlog," Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde); |
fprintf(ficlog," Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde); |
|
|
strcpy(filerescve,"CVE_"); |
strcpy(filerescve,"CVE_"); |
strcat(filerescve,fileresu); |
strcat(filerescve,fileresu); |
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
if((ficrescveij=fopen(filerescve,"w"))==NULL) { |
printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0); |
fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0); |
} |
} |
printf(" Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
printf(" Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
fprintf(ficlog," Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve); |
fprintf(ficlog," Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve); |
|
|
strcpy(fileresv,"V_"); |
strcpy(fileresv,"V_"); |
strcat(fileresv,fileresu); |
strcat(fileresv,fileresu); |
Line 9870 Please run with mle=-1 to get a correct
|
Line 16734 Please run with mle=-1 to get a correct
|
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
printf("Problem with variance resultfile: %s\n", fileresv);exit(0); |
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0); |
} |
} |
printf(" Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(stdout); |
printf(" Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout); |
fprintf(ficlog," Computing Variance-covariance of DFLEs: file '%s' ... ", fileresv);fflush(ficlog); |
fprintf(ficlog," Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog); |
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ |
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
if (cptcovn < 1){i1=1;} |
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
for(nres=1; nres <= nresult; nres++) /* For each resultline, find the combination and output results according to the values of dummies and then quanti. */ |
fprintf(ficrest,"\n#****** "); |
for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying. For each nres and each value at position k |
for(j=1;j<=cptcoveff;j++) |
* we know Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline |
fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline |
|
* and Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */ |
|
/* */ |
|
if(i1 != 1 && TKresult[nres]!= k) /* TKresult[nres] is the combination of this nres resultline. All the i1 combinations are not output */ |
|
continue; |
|
printf("\n# model=1+age+%s \n#****** Result for:", model); /* HERE model is empty */ |
|
fprintf(ficrest,"\n# model=1+age+%s \n#****** Result for:", model); |
|
fprintf(ficlog,"\n# model=1+age+%s \n#****** Result for:", model); |
|
/* It might not be a good idea to mix dummies and quantitative */ |
|
/* for(j=1;j<=cptcoveff;j++){ /\* j=resultpos. Could be a loop on cptcovs: number of single dummy covariate in the result line as well as in the model *\/ */ |
|
for(j=1;j<=cptcovs;j++){ /* j=resultpos. Could be a loop on cptcovs: number of single covariate (dummy or quantitative) in the result line as well as in the model */ |
|
/* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* Output by variables in the resultline *\/ */ |
|
/* Tvaraff[j] is the name of the dummy variable in position j in the equation model: |
|
* Tvaraff[1]@9={4, 3, 0, 0, 0, 0, 0, 0, 0}, in model=V5+V4+V3+V4*V3+V5*age |
|
* (V5 is quanti) V4 and V3 are dummies |
|
* TnsdVar[4] is the position 1 and TnsdVar[3]=2 in codtabm(k,l)(V4 V3)=V4 V3 |
|
* l=1 l=2 |
|
* k=1 1 1 0 0 |
|
* k=2 2 1 1 0 |
|
* k=3 [1] [2] 0 1 |
|
* k=4 2 2 1 1 |
|
* If nres=1 result: V3=1 V4=0 then k=3 and outputs |
|
* If nres=2 result: V4=1 V3=0 then k=2 and outputs |
|
* nres=1 =>k=3 j=1 V4= nbcode[4][codtabm(3,1)=1)=0; j=2 V3= nbcode[3][codtabm(3,2)=2]=1 |
|
* nres=2 =>k=2 j=1 V4= nbcode[4][codtabm(2,1)=2)=1; j=2 V3= nbcode[3][codtabm(2,2)=1]=0 |
|
*/ |
|
/* Tvresult[nres][j] Name of the variable at position j in this resultline */ |
|
/* Tresult[nres][j] Value of this variable at position j could be a float if quantitative */ |
|
/* We give up with the combinations!! */ |
|
/* if(debugILK) */ |
|
/* printf("\n j=%d In computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d Fixed[modelresult[nres][j]]=%d\n", j, nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff,Fixed[modelresult[nres][j]]); /\* end if dummy or quanti *\/ */ |
|
|
|
if(Dummy[modelresult[nres][j]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to j in resultline */ |
|
/* printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /\* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline *\/ */ /* TinvDoQresult[nres][Name of the variable] */ |
|
printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordered by the covariate values in the resultline */ |
|
fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
fprintf(ficrest,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ |
|
if(Fixed[modelresult[nres][j]]==0){ /* Fixed */ |
|
printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed "); |
|
}else{ |
|
printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi "); |
|
} |
|
/* fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
/* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
}else if(Dummy[modelresult[nres][j]]==1){ /* Quanti variable */ |
|
/* For each selected (single) quantitative value */ |
|
printf(" V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficlog," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
fprintf(ficrest," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); |
|
if(Fixed[modelresult[nres][j]]==0){ /* Fixed */ |
|
printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed "); |
|
}else{ |
|
printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi "); |
|
} |
|
}else{ |
|
printf("Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
fprintf(ficlog,"Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff); /* end if dummy or quanti */ |
|
exit(1); |
|
} |
|
} /* End loop for each variable in the resultline */ |
|
/* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ |
|
/* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /\* Wrong j is not in the equation model *\/ */ |
|
/* fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ |
|
/* } */ |
fprintf(ficrest,"******\n"); |
fprintf(ficrest,"******\n"); |
|
fprintf(ficlog,"******\n"); |
|
printf("******\n"); |
|
|
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficresstdeij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
fprintf(ficrescveij,"\n#****** "); |
|
/* It could have been: for(j=1;j<=cptcoveff;j++) {printf("V=%d=%lg",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);} */ |
|
/* But it won't be sorted and depends on how the resultline is ordered */ |
for(j=1;j<=cptcoveff;j++) { |
for(j=1;j<=cptcoveff;j++) { |
fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresstdeij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); |
fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
/* fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
} |
/* fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ |
|
} |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value, TvarsQind gives the position of a quantitative in model equation */ |
|
fprintf(ficresstdeij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); |
|
fprintf(ficrescveij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); |
|
} |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficresstdeij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
fprintf(ficrescveij,"******\n"); |
|
|
fprintf(ficresvij,"\n#****** "); |
fprintf(ficresvij,"\n#****** "); |
|
/* pstamp(ficresvij); */ |
for(j=1;j<=cptcoveff;j++) |
for(j=1;j<=cptcoveff;j++) |
fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
fprintf(ficresvij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); |
|
/* fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[TnsdVar[Tvaraff[j]]])]); */ |
|
for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ |
|
/* fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); /\* To solve *\/ */ |
|
fprintf(ficresvij," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */ |
|
} |
fprintf(ficresvij,"******\n"); |
fprintf(ficresvij,"******\n"); |
|
|
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
oldm=oldms;savm=savms; |
oldm=oldms;savm=savms; |
printf(" cvevsij %d, ",k); |
printf(" cvevsij "); |
fprintf(ficlog, " cvevsij %d, ",k); |
fprintf(ficlog, " cvevsij "); |
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart); |
cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres); |
printf(" end cvevsij \n "); |
printf(" end cvevsij \n "); |
fprintf(ficlog, " end cvevsij \n "); |
fprintf(ficlog, " end cvevsij \n "); |
|
|
Line 9911 Please run with mle=-1 to get a correct
|
Line 16854 Please run with mle=-1 to get a correct
|
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage); |
pstamp(ficrest); |
pstamp(ficrest); |
|
|
|
epj=vector(1,nlstate+1); |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/ |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
oldm=oldms;savm=savms; /* ZZ Segmentation fault */ |
cptcod= 0; /* To be deleted */ |
cptcod= 0; /* To be deleted */ |
printf("varevsij %d \n",vpopbased); |
printf("varevsij vpopbased=%d popbased=%d \n",vpopbased,popbased); |
fprintf(ficlog, "varevsij %d \n",vpopbased); |
fprintf(ficlog, "varevsij vpopbased=%d popbased=%d \n",vpopbased,popbased); |
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */ |
/* Call to varevsij to get cov(e.i, e.j)= vareij[i][j][(int)age]=sum_h sum_k trgrad(h_p.i) V(theta) grad(k_p.k) Equation 20 */ |
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are "); |
/* Depending of popbased which changes the prevalences, either cross-sectional or period */ |
if(vpopbased==1) |
varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */ |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each state\n\ |
else |
# (these are weighted average of eij where weights are "); |
fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n"); |
if(vpopbased==1) |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); |
fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally)\n in each health state (popbased=1) (mobilav=%d)\n",mobilav); |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
else |
fprintf(ficrest,"\n"); |
fprintf(ficrest,"the age specific forward period (stable) prevalences in each state) \n"); |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
fprintf(ficrest,"# with proportions of time spent in each state with standard error (on the right of the table.\n "); |
epj=vector(1,nlstate+1); |
fprintf(ficrest,"# Age popbased mobilav e.. (std) "); /* Adding covariate values? */ |
printf("Computing age specific period (stable) prevalences in each health state \n"); |
for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i); |
fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n"); |
for (i=1;i<=nlstate;i++) fprintf(ficrest," %% e.%d/e.. (std) ",i); |
for(age=bage; age <=fage ;age++){ |
fprintf(ficrest,"\n"); |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k); /*ZZ Is it the correct prevalim */ |
/* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */ |
if (vpopbased==1) { |
printf("Computing age specific forward period (stable) prevalences in each health state \n"); |
if(mobilav ==0){ |
fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n"); |
for(i=1; i<=nlstate;i++) |
for(age=bage; age <=fage ;age++){ |
prlim[i][i]=probs[(int)age][i][k]; |
prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */ |
}else{ /* mobilav */ |
if (vpopbased==1) { |
for(i=1; i<=nlstate;i++) |
if(mobilav ==0){ |
prlim[i][i]=mobaverage[(int)age][i][k]; |
for(i=1; i<=nlstate;i++) |
} |
prlim[i][i]=probs[(int)age][i][k]; |
} |
}else{ /* mobilav */ |
|
for(i=1; i<=nlstate;i++) |
|
prlim[i][i]=mobaverage[(int)age][i][k]; |
|
} |
|
} |
|
|
fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav); |
fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav); |
/* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */ |
/* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */ |
/* printf(" age %4.0f ",age); */ |
/* printf(" age %4.0f ",age); */ |
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ |
for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){ |
for(i=1, epj[j]=0.;i <=nlstate;i++) { |
for(i=1, epj[j]=0.;i <=nlstate;i++) { |
epj[j] += prlim[i][i]*eij[i][j][(int)age]; |
epj[j] += prlim[i][i]*eij[i][j][(int)age]; |
/*ZZZ printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ |
/*ZZZ printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/ |
/* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */ |
/* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */ |
} |
} |
epj[nlstate+1] +=epj[j]; |
epj[nlstate+1] +=epj[j]; /* epp=sum_j epj = sum_j sum_i w_i e_ij */ |
} |
} |
/* printf(" age %4.0f \n",age); */ |
/* printf(" age %4.0f \n",age); */ |
|
|
for(i=1, vepp=0.;i <=nlstate;i++) |
for(i=1, vepp=0.;i <=nlstate;i++) /* Variance of total life expectancy e.. */ |
for(j=1;j <=nlstate;j++) |
for(j=1;j <=nlstate;j++) |
vepp += vareij[i][j][(int)age]; |
vepp += vareij[i][j][(int)age]; /* sum_i sum_j cov(e.i, e.j) = var(e..) */ |
fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); |
fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp)); |
for(j=1;j <=nlstate;j++){ |
/* vareij[i][j] is the covariance cov(e.i, e.j) and vareij[j][j] is the variance of e.j */ |
fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); |
for(j=1;j <=nlstate;j++){ |
} |
fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age])); |
fprintf(ficrest,"\n"); |
} |
} |
/* And proportion of time spent in state j */ |
|
/* $$ E[r(X,Y)-E(r(X,Y))]^2=[\frac{1}{\mu_y} -\frac{\mu_x}{{\mu_y}^2}]' Var(X,Y)[\frac{1}{\mu_y} -\frac{\mu_x}{{\mu_y}^2}]$$ */ |
|
/* \frac{\mu_x^2}{\mu_y^2} ( \frac{\sigma^2_x}{\mu_x^2}-2\frac{\sigma_{xy}}{\mu_x\mu_y} +\frac{\sigma^2_y}{\mu_y^2}) */ |
|
/* \frac{e_{.i}^2}{e_{..}^2} ( \frac{\Var e_{.i}}{e_{.i}^2}-2\frac{\Var e_{.i} + \sum_{j\ne i} \Cov e_{.j},e_{.i}}{e_{.i}e_{..}} +\frac{\Var e_{..}}{e_{..}^2})*/ |
|
/*\mu_x = epj[j], \sigma^2_x = vareij[j][j][(int)age] and \mu_y=epj[nlstate+1], \sigma^2_y=vepp \sigmaxy= */ |
|
/* vareij[j][j][(int)age]/epj[nlstate+1]^2 + vepp/epj[nlstate+1]^4 */ |
|
for(j=1;j <=nlstate;j++){ |
|
/* fprintf(ficrest," %7.3f (%7.3f)", epj[j]/epj[nlstate+1], sqrt( vareij[j][j][(int)age]/epj[j]/epj[j] + vepp/epj[j]/epj[j]/epj[j]/epj[j] )); */ |
|
/* fprintf(ficrest," %7.3f (%7.3f)", epj[j]/epj[nlstate+1], sqrt( vareij[j][j][(int)age]/epj[j]/epj[j] + vepp/epj[j]/epj[j]/epj[j]/epj[j] )); */ |
|
|
|
for(i=1,stdpercent=0.;i<=nlstate;i++){ /* Computing cov(e..,e.j)=cov(sum_i e.i,e.j)=sum_i cov(e.i, e.j) */ |
|
stdpercent += vareij[i][j][(int)age]; |
|
} |
|
stdpercent= epj[j]*epj[j]/epj[nlstate+1]/epj[nlstate+1]* (vareij[j][j][(int)age]/epj[j]/epj[j]-2.*stdpercent/epj[j]/epj[nlstate+1]+ vepp/epj[nlstate+1]/epj[nlstate+1]); |
|
/* stdpercent= epj[j]*epj[j]/epj[nlstate+1]/epj[nlstate+1]*(vareij[j][j][(int)age]/epj[j]/epj[j] + vepp/epj[nlstate+1]/epj[nlstate+1]); */ /* Without covariance */ |
|
/* fprintf(ficrest," %7.3f (%7.3f)", epj[j]/epj[nlstate+1], sqrt( vareij[j][j][(int)age]/epj[nlstate+1]/epj[nlstate+1] + epj[j]*epj[j]*vepp/epj[nlstate+1]/epj[nlstate+1]/epj[nlstate+1]/epj[nlstate+1] )); */ |
|
fprintf(ficrest," %7.3f (%7.3f)", epj[j]/epj[nlstate+1], sqrt(stdpercent)); |
|
} |
|
fprintf(ficrest,"\n"); |
|
} |
} /* End vpopbased */ |
} /* End vpopbased */ |
|
free_vector(epj,1,nlstate+1); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage); |
free_vector(epj,1,nlstate+1); |
printf("done selection\n");fflush(stdout); |
printf("done \n");fflush(stdout); |
fprintf(ficlog,"done selection\n");fflush(ficlog); |
fprintf(ficlog,"done\n");fflush(ficlog); |
|
|
|
/*}*/ |
} /* End k selection or end covariate selection for nres */ |
} /* End k */ |
|
free_vector(weight,1,n); |
printf("done State-specific expectancies\n");fflush(stdout); |
|
fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog); |
|
|
|
/* variance-covariance of forward period prevalence */ |
|
varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff); |
|
|
|
|
|
free_vector(weight,firstobs,lastobs); |
|
free_imatrix(Tvardk,0,NCOVMAX,1,2); |
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(Tvard,1,NCOVMAX,1,2); |
free_imatrix(s,1,maxwav+1,1,n); |
free_imatrix(s,1,maxwav+1,firstobs,lastobs); |
free_matrix(anint,1,maxwav,1,n); |
free_matrix(anint,1,maxwav,firstobs,lastobs); |
free_matrix(mint,1,maxwav,1,n); |
free_matrix(mint,1,maxwav,firstobs,lastobs); |
free_ivector(cod,1,n); |
free_ivector(cod,firstobs,lastobs); |
free_ivector(tab,1,NCOVMAX); |
free_ivector(tab,1,NCOVMAX); |
fclose(ficresstdeij); |
fclose(ficresstdeij); |
fclose(ficrescveij); |
fclose(ficrescveij); |
fclose(ficresvij); |
fclose(ficresvij); |
fclose(ficrest); |
fclose(ficrest); |
printf("done Health expectancies\n");fflush(stdout); |
|
fprintf(ficlog,"done Health expectancies\n");fflush(ficlog); |
|
fclose(ficpar); |
fclose(ficpar); |
|
|
/*------- Variance of period (stable) prevalence------*/ |
|
|
|
strcpy(fileresvpl,"VPL_"); |
|
strcat(fileresvpl,fileresu); |
|
if((ficresvpl=fopen(fileresvpl,"w"))==NULL) { |
|
printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl); |
|
exit(0); |
|
} |
|
printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout); |
|
fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog); |
|
|
|
/*for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
|
for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/ |
|
|
|
for (k=1; k <= (int) pow(2,cptcoveff); k++){ |
|
fprintf(ficresvpl,"\n#****** "); |
|
for(j=1;j<=cptcoveff;j++) |
|
fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); |
|
fprintf(ficresvpl,"******\n"); |
|
|
|
varpl=matrix(1,nlstate,(int) bage, (int) fage); |
|
oldm=oldms;savm=savms; |
|
varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart); |
|
free_matrix(varpl,1,nlstate,(int) bage, (int)fage); |
|
/*}*/ |
|
} |
|
|
|
fclose(ficresvpl); |
|
printf("done variance-covariance of period prevalence\n");fflush(stdout); |
|
fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog); |
|
|
|
/*---------- End : free ----------------*/ |
/*---------- End : free ----------------*/ |
if (mobilav!=0 ||mobilavproj !=0) |
if (mobilav!=0 ||mobilavproj !=0) |
free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */ |
free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */ |
free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax); |
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */ |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath); |
} /* mle==-3 arrives here for freeing */ |
} /* mle==-3 arrives here for freeing */ |
/* endfree:*/ |
/* endfree:*/ |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
if(mle!=-3) free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /* Could be elsewhere ?*/ |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_ma3x(cotqvar,1,maxwav,1,ntqv,1,n); |
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
free_ma3x(cotvar,1,maxwav,1,ntv,1,n); |
/* if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs); */ |
free_matrix(coqvar,1,maxwav,1,n); |
if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs); |
free_matrix(covar,0,NCOVMAX,1,n); |
if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs); |
free_matrix(matcov,1,npar,1,npar); |
if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs); |
free_matrix(hess,1,npar,1,npar); |
free_matrix(covar,0,NCOVMAX,firstobs,lastobs); |
/*free_vector(delti,1,npar);*/ |
free_matrix(matcov,1,npar,1,npar); |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_matrix(hess,1,npar,1,npar); |
free_matrix(agev,1,maxwav,1,imx); |
/*free_vector(delti,1,npar);*/ |
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
free_matrix(agev,1,maxwav,1,imx); |
|
free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); |
|
|
|
free_ivector(ncodemax,1,NCOVMAX); |
|
free_ivector(ncodemaxwundef,1,NCOVMAX); |
|
free_ivector(Dummy,-1,NCOVMAX); |
|
free_ivector(Fixed,-1,NCOVMAX); |
|
free_ivector(DummyV,-1,NCOVMAX); |
|
free_ivector(FixedV,-1,NCOVMAX); |
|
free_ivector(Typevar,-1,NCOVMAX); |
|
free_ivector(Tvar,1,NCOVMAX); |
|
free_ivector(TvarsQ,1,NCOVMAX); |
|
free_ivector(TvarsQind,1,NCOVMAX); |
|
free_ivector(TvarsD,1,NCOVMAX); |
|
free_ivector(TnsdVar,1,NCOVMAX); |
|
free_ivector(TvarsDind,1,NCOVMAX); |
|
free_ivector(TvarFD,1,NCOVMAX); |
|
free_ivector(TvarFDind,1,NCOVMAX); |
|
free_ivector(TvarF,1,NCOVMAX); |
|
free_ivector(TvarFind,1,NCOVMAX); |
|
free_ivector(TvarV,1,NCOVMAX); |
|
free_ivector(TvarVind,1,NCOVMAX); |
|
free_ivector(TvarA,1,NCOVMAX); |
|
free_ivector(TvarAind,1,NCOVMAX); |
|
free_ivector(TvarFQ,1,NCOVMAX); |
|
free_ivector(TvarFQind,1,NCOVMAX); |
|
free_ivector(TvarVD,1,NCOVMAX); |
|
free_ivector(TvarVDind,1,NCOVMAX); |
|
free_ivector(TvarVQ,1,NCOVMAX); |
|
free_ivector(TvarVQind,1,NCOVMAX); |
|
free_ivector(TvarAVVA,1,NCOVMAX); |
|
free_ivector(TvarAVVAind,1,NCOVMAX); |
|
free_ivector(TvarVVA,1,NCOVMAX); |
|
free_ivector(TvarVVAind,1,NCOVMAX); |
|
free_ivector(TvarVV,1,NCOVMAX); |
|
free_ivector(TvarVVind,1,NCOVMAX); |
|
|
|
free_ivector(Tvarsel,1,NCOVMAX); |
|
free_vector(Tvalsel,1,NCOVMAX); |
|
free_ivector(Tposprod,1,NCOVMAX); |
|
free_ivector(Tprod,1,NCOVMAX); |
|
free_ivector(Tvaraff,1,NCOVMAX); |
|
free_ivector(invalidvarcomb,0,ncovcombmax); |
|
free_ivector(Tage,1,NCOVMAX); |
|
free_ivector(Tmodelind,1,NCOVMAX); |
|
free_ivector(TmodelInvind,1,NCOVMAX); |
|
free_ivector(TmodelInvQind,1,NCOVMAX); |
|
|
free_ivector(ncodemax,1,NCOVMAX); |
/* free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /\* Could be elsewhere ?*\/ */ |
free_ivector(ncodemaxwundef,1,NCOVMAX); |
|
free_ivector(Tvar,1,NCOVMAX); |
|
free_ivector(Tprod,1,NCOVMAX); |
|
free_ivector(Tvaraff,1,NCOVMAX); |
|
free_ivector(invalidvarcomb,1,ncovcombmax); |
|
free_ivector(Tage,1,NCOVMAX); |
|
|
|
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX); |
/* free_imatrix(codtab,1,100,1,10); */ |
/* free_imatrix(codtab,1,100,1,10); */ |
fflush(fichtm); |
fflush(fichtm); |
fflush(ficgp); |
fflush(ficgp); |
|
|
|
|
if((nberr >0) || (nbwarn>0)){ |
if((nberr >0) || (nbwarn>0)){ |
printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn); |
printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn); |
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn); |
fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn); |
Line 10072 Please run with mle=-1 to get a correct
|
Line 17056 Please run with mle=-1 to get a correct
|
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
printf("Local time at start %s\nLocal time at end %s",strstart, strtend); |
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend); |
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
|
|
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout)); |
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time)); |
Line 10085 Please run with mle=-1 to get a correct
|
Line 17069 Please run with mle=-1 to get a correct
|
fclose(ficgp); |
fclose(ficgp); |
fclose(ficlog); |
fclose(ficlog); |
/*------ End -----------*/ |
/*------ End -----------*/ |
|
|
|
|
|
/* Executes gnuplot */ |
printf("Before Current directory %s!\n",pathcd); |
|
|
printf("Before Current directory %s!\n",pathcd); |
#ifdef WIN32 |
#ifdef WIN32 |
if (_chdir(pathcd) != 0) |
if (_chdir(pathcd) != 0) |
printf("Can't move to directory %s!\n",path); |
printf("Can't move to directory %s!\n",path); |
if(_getcwd(pathcd,MAXLINE) > 0) |
if(_getcwd(pathcd,MAXLINE) > 0) |
#else |
#else |
if(chdir(pathcd) != 0) |
if(chdir(pathcd) != 0) |
printf("Can't move to directory %s!\n", path); |
printf("Can't move to directory %s!\n", path); |
if (getcwd(pathcd, MAXLINE) > 0) |
if (getcwd(pathcd, MAXLINE) > 0) |
#endif |
#endif |
printf("Current directory %s!\n",pathcd); |
printf("Current directory %s!\n",pathcd); |
/*strcat(plotcmd,CHARSEPARATOR);*/ |
/*strcat(plotcmd,CHARSEPARATOR);*/ |
Line 10121 Please run with mle=-1 to get a correct
|
Line 17107 Please run with mle=-1 to get a correct
|
|
|
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout); |
|
strcpy(pplotcmd,plotcmd); |
|
|
if((outcmd=system(plotcmd)) != 0){ |
if((outcmd=system(plotcmd)) != 0){ |
printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
printf("\n Trying if gnuplot resides on the same directory that IMaCh\n"); |
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot); |
if((outcmd=system(plotcmd)) != 0) |
if((outcmd=system(plotcmd)) != 0){ |
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd); |
|
strcpy(plotcmd,pplotcmd); |
|
} |
} |
} |
printf(" Successful, please wait..."); |
printf(" Successful, please wait..."); |
while (z[0] != 'q') { |
while (z[0] != 'q') { |
Line 10149 Please run with mle=-1 to get a correct
|
Line 17138 Please run with mle=-1 to get a correct
|
else if (z[0] == 'g') system(plotcmd); |
else if (z[0] == 'g') system(plotcmd); |
else if (z[0] == 'q') exit(0); |
else if (z[0] == 'q') exit(0); |
} |
} |
end: |
end: |
while (z[0] != 'q') { |
while (z[0] != 'q') { |
printf("\nType q for exiting: "); fflush(stdout); |
printf("\nType q for exiting: "); fflush(stdout); |
scanf("%s",z); |
scanf("%s",z); |
} |
} |
|
printf("End\n"); |
|
exit(0); |
} |
} |