Diff for /imach/src/imach.c between versions 1.41.2.2 and 1.121

version 1.41.2.2, 2003/06/13 07:45:28 version 1.121, 2006/03/16 17:45:01
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.121  2006/03/16 17:45:01  lievre
      * imach.c (Module): Comments concerning covariates added
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    * imach.c (Module): refinements in the computation of lli if
   first survey ("cross") where individuals from different ages are    status=-2 in order to have more reliable computation if stepm is
   interviewed on their health status or degree of disability (in the    not 1 month. Version 0.98f
   case of a health survey which is our main interest) -2- at least a  
   second wave of interviews ("longitudinal") which measure each change    Revision 1.120  2006/03/16 15:10:38  lievre
   (if any) in individual health status.  Health expectancies are    (Module): refinements in the computation of lli if
   computed from the time spent in each health state according to a    status=-2 in order to have more reliable computation if stepm is
   model. More health states you consider, more time is necessary to reach the    not 1 month. Version 0.98f
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.119  2006/03/15 17:42:26  brouard
   probability to be observed in state j at the second wave    (Module): Bug if status = -2, the loglikelihood was
   conditional to be observed in state i at the first wave. Therefore    computed as likelihood omitting the logarithm. Version O.98e
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where  
   'age' is age and 'sex' is a covariate. If you want to have a more    Revision 1.118  2006/03/14 18:20:07  brouard
   complex model than "constant and age", you should modify the program    (Module): varevsij Comments added explaining the second
   where the markup *Covariates have to be included here again* invites    table of variances if popbased=1 .
   you to do it.  More covariates you add, slower the    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
   convergence.    (Module): Function pstamp added
     (Module): Version 0.98d
   The advantage of this computer programme, compared to a simple  
   multinomial logistic model, is clear when the delay between waves is not    Revision 1.117  2006/03/14 17:16:22  brouard
   identical for each individual. Also, if a individual missed an    (Module): varevsij Comments added explaining the second
   intermediate interview, the information is lost, but taken into    table of variances if popbased=1 .
   account using an interpolation or extrapolation.      (Module): Covariances of eij, ekl added, graphs fixed, new html link.
     (Module): Function pstamp added
   hPijx is the probability to be observed in state i at age x+h    (Module): Version 0.98d
   conditional to the observed state i at age x. The delay 'h' can be  
   split into an exact number (nh*stepm) of unobserved intermediate    Revision 1.116  2006/03/06 10:29:27  brouard
   states. This elementary transition (by month or quarter trimester,    (Module): Variance-covariance wrong links and
   semester or year) is model as a multinomial logistic.  The hPx    varian-covariance of ej. is needed (Saito).
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Revision 1.115  2006/02/27 12:17:45  brouard
   hPijx.    (Module): One freematrix added in mlikeli! 0.98c
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.114  2006/02/26 12:57:58  brouard
   of the life expectancies. It also computes the prevalence limits.    (Module): Some improvements in processing parameter
      filename with strsep.
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).  
            Institut national d'études démographiques, Paris.    Revision 1.113  2006/02/24 14:20:24  brouard
   This software have been partly granted by Euro-REVES, a concerted action    (Module): Memory leaks checks with valgrind and:
   from the European Union.    datafile was not closed, some imatrix were not freed and on matrix
   It is copyrighted identically to a GNU software product, ie programme and    allocation too.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.112  2006/01/30 09:55:26  brouard
   **********************************************************************/    (Module): Back to gnuplot.exe instead of wgnuplot.exe
    
 #include <math.h>    Revision 1.111  2006/01/25 20:38:18  brouard
 #include <stdio.h>    (Module): Lots of cleaning and bugs added (Gompertz)
 #include <stdlib.h>    (Module): Comments can be added in data file. Missing date values
 #include <unistd.h>    can be a simple dot '.'.
   
 #define MAXLINE 256    Revision 1.110  2006/01/25 00:51:50  brouard
 #define GNUPLOTPROGRAM "wgnuplot"    (Module): Lots of cleaning and bugs added (Gompertz)
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.109  2006/01/24 19:37:15  brouard
 /*#define DEBUG*/    (Module): Comments (lines starting with a #) are allowed in data.
   
 /*#define windows*/    Revision 1.108  2006/01/19 18:05:42  lievre
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Gnuplot problem appeared...
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    To be fixed
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.107  2006/01/19 16:20:37  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Test existence of gnuplot in imach path
   
 #define NINTERVMAX 8    Revision 1.106  2006/01/19 13:24:36  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    Some cleaning and links added in html output
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */  
 #define NCOVMAX 8 /* Maximum number of covariates */    Revision 1.105  2006/01/05 20:23:19  lievre
 #define MAXN 20000    *** empty log message ***
 #define YEARM 12. /* Number of months per year */  
 #define AGESUP 130    Revision 1.104  2005/09/30 16:11:43  lievre
 #define AGEBASE 40    (Module): sump fixed, loop imx fixed, and simplifications.
     (Module): If the status is missing at the last wave but we know
     that the person is alive, then we can code his/her status as -2
 int erreur; /* Error number */    (instead of missing=-1 in earlier versions) and his/her
 int nvar;    contributions to the likelihood is 1 - Prob of dying from last
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 int npar=NPARMAX;    the healthy state at last known wave). Version is 0.98
 int nlstate=2; /* Number of live states */  
 int ndeath=1; /* Number of dead states */    Revision 1.103  2005/09/30 15:54:49  lievre
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    (Module): sump fixed, loop imx fixed, and simplifications.
 int popbased=0;  
     Revision 1.102  2004/09/15 17:31:30  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    Add the possibility to read data file including tab characters.
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.101  2004/09/15 10:38:38  brouard
 int mle, weightopt;    Fix on curr_time
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.100  2004/07/12 18:29:06  brouard
 double jmean; /* Mean space between 2 waves */    Add version for Mac OS X. Just define UNIX in Makefile
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.99  2004/06/05 08:57:40  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    *** empty log message ***
 FILE *ficgp,*ficresprob,*ficpop;  
 FILE *ficreseij;    Revision 1.98  2004/05/16 15:05:56  brouard
   char filerese[FILENAMELENGTH];    New version 0.97 . First attempt to estimate force of mortality
  FILE  *ficresvij;    directly from the data i.e. without the need of knowing the health
   char fileresv[FILENAMELENGTH];    state at each age, but using a Gompertz model: log u =a + b*age .
  FILE  *ficresvpl;    This is the basic analysis of mortality and should be done before any
   char fileresvpl[FILENAMELENGTH];    other analysis, in order to test if the mortality estimated from the
     cross-longitudinal survey is different from the mortality estimated
 #define NR_END 1    from other sources like vital statistic data.
 #define FREE_ARG char*  
 #define FTOL 1.0e-10    The same imach parameter file can be used but the option for mle should be -3.
   
 #define NRANSI    Agnès, who wrote this part of the code, tried to keep most of the
 #define ITMAX 200    former routines in order to include the new code within the former code.
   
 #define TOL 2.0e-4    The output is very simple: only an estimate of the intercept and of
     the slope with 95% confident intervals.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Current limitations:
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    A) Even if you enter covariates, i.e. with the
     model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 #define GOLD 1.618034    B) There is no computation of Life Expectancy nor Life Table.
 #define GLIMIT 100.0  
 #define TINY 1.0e-20    Revision 1.97  2004/02/20 13:25:42  lievre
     Version 0.96d. Population forecasting command line is (temporarily)
 static double maxarg1,maxarg2;    suppressed.
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    rewritten within the same printf. Workaround: many printfs.
 #define rint(a) floor(a+0.5)  
     Revision 1.95  2003/07/08 07:54:34  brouard
 static double sqrarg;    * imach.c (Repository):
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    (Repository): Using imachwizard code to output a more meaningful covariance
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    matrix (cov(a12,c31) instead of numbers.
   
 int imx;    Revision 1.94  2003/06/27 13:00:02  brouard
 int stepm;    Just cleaning
 /* Stepm, step in month: minimum step interpolation*/  
     Revision 1.93  2003/06/25 16:33:55  brouard
 int estepm;    (Module): On windows (cygwin) function asctime_r doesn't
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/    exist so I changed back to asctime which exists.
     (Module): Version 0.96b
 int m,nb;  
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    Revision 1.92  2003/06/25 16:30:45  brouard
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    (Module): On windows (cygwin) function asctime_r doesn't
 double **pmmij, ***probs, ***mobaverage;    exist so I changed back to asctime which exists.
 double dateintmean=0;  
     Revision 1.91  2003/06/25 15:30:29  brouard
 double *weight;    * imach.c (Repository): Duplicated warning errors corrected.
 int **s; /* Status */    (Repository): Elapsed time after each iteration is now output. It
 double *agedc, **covar, idx;    helps to forecast when convergence will be reached. Elapsed time
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    is stamped in powell.  We created a new html file for the graphs
     concerning matrix of covariance. It has extension -cov.htm.
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.90  2003/06/24 12:34:15  brouard
     (Module): Some bugs corrected for windows. Also, when
 /**************** split *************************/    mle=-1 a template is output in file "or"mypar.txt with the design
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )    of the covariance matrix to be input.
 {  
    char *s;                             /* pointer */    Revision 1.89  2003/06/24 12:30:52  brouard
    int  l1, l2;                         /* length counters */    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
    l1 = strlen( path );                 /* length of path */    of the covariance matrix to be input.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
 #ifdef windows    Revision 1.88  2003/06/23 17:54:56  brouard
    s = strrchr( path, '\\' );           /* find last / */    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 #else  
    s = strrchr( path, '/' );            /* find last / */    Revision 1.87  2003/06/18 12:26:01  brouard
 #endif    Version 0.96
    if ( s == NULL ) {                   /* no directory, so use current */  
 #if     defined(__bsd__)                /* get current working directory */    Revision 1.86  2003/06/17 20:04:08  brouard
       extern char       *getwd( );    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
       if ( getwd( dirc ) == NULL ) {  
 #else    Revision 1.85  2003/06/17 13:12:43  brouard
       extern char       *getcwd( );    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    prior to the death. In this case, dh was negative and likelihood
 #endif    was wrong (infinity). We still send an "Error" but patch by
          return( GLOCK_ERROR_GETCWD );    assuming that the date of death was just one stepm after the
       }    interview.
       strcpy( name, path );             /* we've got it */    (Repository): Because some people have very long ID (first column)
    } else {                             /* strip direcotry from path */    we changed int to long in num[] and we added a new lvector for
       s++;                              /* after this, the filename */    memory allocation. But we also truncated to 8 characters (left
       l2 = strlen( s );                 /* length of filename */    truncation)
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Repository): No more line truncation errors.
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Revision 1.84  2003/06/13 21:44:43  brouard
       dirc[l1-l2] = 0;                  /* add zero */    * imach.c (Repository): Replace "freqsummary" at a correct
    }    place. It differs from routine "prevalence" which may be called
    l1 = strlen( dirc );                 /* length of directory */    many times. Probs is memory consuming and must be used with
 #ifdef windows    parcimony.
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #else  
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    Revision 1.83  2003/06/10 13:39:11  lievre
 #endif    *** empty log message ***
    s = strrchr( name, '.' );            /* find last / */  
    s++;    Revision 1.82  2003/06/05 15:57:20  brouard
    strcpy(ext,s);                       /* save extension */    Add log in  imach.c and  fullversion number is now printed.
    l1= strlen( name);  
    l2= strlen( s)+1;  */
    strncpy( finame, name, l1-l2);  /*
    finame[l1-l2]= 0;     Interpolated Markov Chain
    return( 0 );                         /* we're done */  
 }    Short summary of the programme:
     
     This program computes Healthy Life Expectancies from
 /******************************************/    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
     first survey ("cross") where individuals from different ages are
 void replace(char *s, char*t)    interviewed on their health status or degree of disability (in the
 {    case of a health survey which is our main interest) -2- at least a
   int i;    second wave of interviews ("longitudinal") which measure each change
   int lg=20;    (if any) in individual health status.  Health expectancies are
   i=0;    computed from the time spent in each health state according to a
   lg=strlen(t);    model. More health states you consider, more time is necessary to reach the
   for(i=0; i<= lg; i++) {    Maximum Likelihood of the parameters involved in the model.  The
     (s[i] = t[i]);    simplest model is the multinomial logistic model where pij is the
     if (t[i]== '\\') s[i]='/';    probability to be observed in state j at the second wave
   }    conditional to be observed in state i at the first wave. Therefore
 }    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
 int nbocc(char *s, char occ)    complex model than "constant and age", you should modify the program
 {    where the markup *Covariates have to be included here again* invites
   int i,j=0;    you to do it.  More covariates you add, slower the
   int lg=20;    convergence.
   i=0;  
   lg=strlen(s);    The advantage of this computer programme, compared to a simple
   for(i=0; i<= lg; i++) {    multinomial logistic model, is clear when the delay between waves is not
   if  (s[i] == occ ) j++;    identical for each individual. Also, if a individual missed an
   }    intermediate interview, the information is lost, but taken into
   return j;    account using an interpolation or extrapolation.  
 }  
     hPijx is the probability to be observed in state i at age x+h
 void cutv(char *u,char *v, char*t, char occ)    conditional to the observed state i at age x. The delay 'h' can be
 {    split into an exact number (nh*stepm) of unobserved intermediate
   int i,lg,j,p=0;    states. This elementary transition (by month, quarter,
   i=0;    semester or year) is modelled as a multinomial logistic.  The hPx
   for(j=0; j<=strlen(t)-1; j++) {    matrix is simply the matrix product of nh*stepm elementary matrices
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    and the contribution of each individual to the likelihood is simply
   }    hPijx.
   
   lg=strlen(t);    Also this programme outputs the covariance matrix of the parameters but also
   for(j=0; j<p; j++) {    of the life expectancies. It also computes the period (stable) prevalence. 
     (u[j] = t[j]);    
   }    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
      u[p]='\0';             Institut national d'études démographiques, Paris.
     This software have been partly granted by Euro-REVES, a concerted action
    for(j=0; j<= lg; j++) {    from the European Union.
     if (j>=(p+1))(v[j-p-1] = t[j]);    It is copyrighted identically to a GNU software product, ie programme and
   }    software can be distributed freely for non commercial use. Latest version
 }    can be accessed at http://euroreves.ined.fr/imach .
   
 /********************** nrerror ********************/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
     or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 void nrerror(char error_text[])    
 {    **********************************************************************/
   fprintf(stderr,"ERREUR ...\n");  /*
   fprintf(stderr,"%s\n",error_text);    main
   exit(1);    read parameterfile
 }    read datafile
 /*********************** vector *******************/    concatwav
 double *vector(int nl, int nh)    freqsummary
 {    if (mle >= 1)
   double *v;      mlikeli
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    print results files
   if (!v) nrerror("allocation failure in vector");    if mle==1 
   return v-nl+NR_END;       computes hessian
 }    read end of parameter file: agemin, agemax, bage, fage, estepm
         begin-prev-date,...
 /************************ free vector ******************/    open gnuplot file
 void free_vector(double*v, int nl, int nh)    open html file
 {    period (stable) prevalence
   free((FREE_ARG)(v+nl-NR_END));     for age prevalim()
 }    h Pij x
     variance of p varprob
 /************************ivector *******************************/    forecasting if prevfcast==1 prevforecast call prevalence()
 int *ivector(long nl,long nh)    health expectancies
 {    Variance-covariance of DFLE
   int *v;    prevalence()
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));     movingaverage()
   if (!v) nrerror("allocation failure in ivector");    varevsij() 
   return v-nl+NR_END;    if popbased==1 varevsij(,popbased)
 }    total life expectancies
     Variance of period (stable) prevalence
 /******************free ivector **************************/   end
 void free_ivector(int *v, long nl, long nh)  */
 {  
   free((FREE_ARG)(v+nl-NR_END));  
 }  
    
 /******************* imatrix *******************************/  #include <math.h>
 int **imatrix(long nrl, long nrh, long ncl, long nch)  #include <stdio.h>
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  #include <stdlib.h>
 {  #include <string.h>
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  #include <unistd.h>
   int **m;  
    #include <limits.h>
   /* allocate pointers to rows */  #include <sys/types.h>
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  #include <sys/stat.h>
   if (!m) nrerror("allocation failure 1 in matrix()");  #include <errno.h>
   m += NR_END;  extern int errno;
   m -= nrl;  
    /* #include <sys/time.h> */
    #include <time.h>
   /* allocate rows and set pointers to them */  #include "timeval.h"
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  /* #include <libintl.h> */
   m[nrl] += NR_END;  /* #define _(String) gettext (String) */
   m[nrl] -= ncl;  
    #define MAXLINE 256
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  
    #define GNUPLOTPROGRAM "gnuplot"
   /* return pointer to array of pointers to rows */  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   return m;  #define FILENAMELENGTH 132
 }  
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 /****************** free_imatrix *************************/  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 void free_imatrix(m,nrl,nrh,ncl,nch)  
       int **m;  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
       long nch,ncl,nrh,nrl;  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
      /* free an int matrix allocated by imatrix() */  
 {  #define NINTERVMAX 8
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   free((FREE_ARG) (m+nrl-NR_END));  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
 }  #define NCOVMAX 8 /* Maximum number of covariates */
   #define MAXN 20000
 /******************* matrix *******************************/  #define YEARM 12. /* Number of months per year */
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define AGESUP 130
 {  #define AGEBASE 40
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
   double **m;  #ifdef UNIX
   #define DIRSEPARATOR '/'
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define CHARSEPARATOR "/"
   if (!m) nrerror("allocation failure 1 in matrix()");  #define ODIRSEPARATOR '\\'
   m += NR_END;  #else
   m -= nrl;  #define DIRSEPARATOR '\\'
   #define CHARSEPARATOR "\\"
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define ODIRSEPARATOR '/'
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #endif
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /* $Id$ */
   /* $State$ */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  char version[]="Imach version 0.98f, March 2006, INED-EUROREVES-Institut de longevite ";
 }  char fullversion[]="$Revision$ $Date$"; 
   char strstart[80];
 /*************************free matrix ************************/  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
 {  int nvar;
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
   free((FREE_ARG)(m+nrl-NR_END));  int npar=NPARMAX;
 }  int nlstate=2; /* Number of live states */
   int ndeath=1; /* Number of dead states */
 /******************* ma3x *******************************/  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  int popbased=0;
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int *wav; /* Number of waves for this individuual 0 is possible */
   double ***m;  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int ijmin, ijmax; /* Individuals having jmin and jmax */ 
   if (!m) nrerror("allocation failure 1 in matrix()");  int gipmx, gsw; /* Global variables on the number of contributions 
   m += NR_END;                     to the likelihood and the sum of weights (done by funcone)*/
   m -= nrl;  int mle, weightopt;
   int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   m[nrl] += NR_END;             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   m[nrl] -= ncl;  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
   FILE *fic,*ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  FILE *ficlog, *ficrespow;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int globpr; /* Global variable for printing or not */
   m[nrl][ncl] += NR_END;  double fretone; /* Only one call to likelihood */
   m[nrl][ncl] -= nll;  long ipmx; /* Number of contributions */
   for (j=ncl+1; j<=nch; j++)  double sw; /* Sum of weights */
     m[nrl][j]=m[nrl][j-1]+nlay;  char filerespow[FILENAMELENGTH];
    char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   for (i=nrl+1; i<=nrh; i++) {  FILE *ficresilk;
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     for (j=ncl+1; j<=nch; j++)  FILE *ficresprobmorprev;
       m[i][j]=m[i][j-1]+nlay;  FILE *fichtm, *fichtmcov; /* Html File */
   }  FILE *ficreseij;
   return m;  char filerese[FILENAMELENGTH];
 }  FILE *ficresstdeij;
   char fileresstde[FILENAMELENGTH];
 /*************************free ma3x ************************/  FILE *ficrescveij;
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)  char filerescve[FILENAMELENGTH];
 {  FILE  *ficresvij;
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  char fileresv[FILENAMELENGTH];
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  FILE  *ficresvpl;
   free((FREE_ARG)(m+nrl-NR_END));  char fileresvpl[FILENAMELENGTH];
 }  char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 /***************** f1dim *************************/  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
 extern int ncom;  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 extern double *pcom,*xicom;  char command[FILENAMELENGTH];
 extern double (*nrfunc)(double []);  int  outcmd=0;
    
 double f1dim(double x)  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
 {  
   int j;  char filelog[FILENAMELENGTH]; /* Log file */
   double f;  char filerest[FILENAMELENGTH];
   double *xt;  char fileregp[FILENAMELENGTH];
    char popfile[FILENAMELENGTH];
   xt=vector(1,ncom);  
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
   f=(*nrfunc)(xt);  
   free_vector(xt,1,ncom);  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
   return f;  struct timezone tzp;
 }  extern int gettimeofday();
   struct tm tmg, tm, tmf, *gmtime(), *localtime();
 /*****************brent *************************/  long time_value;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)  extern long time();
 {  char strcurr[80], strfor[80];
   int iter;  
   double a,b,d,etemp;  char *endptr;
   double fu,fv,fw,fx;  long lval;
   double ftemp;  
   double p,q,r,tol1,tol2,u,v,w,x,xm;  #define NR_END 1
   double e=0.0;  #define FREE_ARG char*
    #define FTOL 1.0e-10
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  #define NRANSI 
   x=w=v=bx;  #define ITMAX 200 
   fw=fv=fx=(*f)(x);  
   for (iter=1;iter<=ITMAX;iter++) {  #define TOL 2.0e-4 
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);  #define CGOLD 0.3819660 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  #define ZEPS 1.0e-10 
     printf(".");fflush(stdout);  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 #ifdef DEBUG  
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  #define GOLD 1.618034 
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  #define GLIMIT 100.0 
 #endif  #define TINY 1.0e-20 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  
       *xmin=x;  static double maxarg1,maxarg2;
       return fx;  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     }  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     ftemp=fu;    
     if (fabs(e) > tol1) {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       r=(x-w)*(fx-fv);  #define rint(a) floor(a+0.5)
       q=(x-v)*(fx-fw);  
       p=(x-v)*q-(x-w)*r;  static double sqrarg;
       q=2.0*(q-r);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       if (q > 0.0) p = -p;  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       q=fabs(q);  int agegomp= AGEGOMP;
       etemp=e;  
       e=d;  int imx; 
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  int stepm=1;
         d=CGOLD*(e=(x >= xm ? a-x : b-x));  /* Stepm, step in month: minimum step interpolation*/
       else {  
         d=p/q;  int estepm;
         u=x+d;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);  int m,nb;
       }  long *num;
     } else {  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
       d=CGOLD*(e=(x >= xm ? a-x : b-x));  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
     }  double **pmmij, ***probs;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  double *ageexmed,*agecens;
     fu=(*f)(u);  double dateintmean=0;
     if (fu <= fx) {  
       if (u >= x) a=x; else b=x;  double *weight;
       SHFT(v,w,x,u)  int **s; /* Status */
         SHFT(fv,fw,fx,fu)  double *agedc, **covar, idx;
         } else {  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
           if (u < x) a=u; else b=u;  double *lsurv, *lpop, *tpop;
           if (fu <= fw || w == x) {  
             v=w;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
             w=u;  double ftolhess; /* Tolerance for computing hessian */
             fv=fw;  
             fw=fu;  /**************** split *************************/
           } else if (fu <= fv || v == x || v == w) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
             v=u;  {
             fv=fu;    /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
           }       the name of the file (name), its extension only (ext) and its first part of the name (finame)
         }    */ 
   }    char  *ss;                            /* pointer */
   nrerror("Too many iterations in brent");    int   l1, l2;                         /* length counters */
   *xmin=x;  
   return fx;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /****************** mnbrak ***********************/    if ( ss == NULL ) {                   /* no directory, so determine current directory */
       strcpy( name, path );               /* we got the fullname name because no directory */
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
             double (*func)(double))        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
 {      /* get current working directory */
   double ulim,u,r,q, dum;      /*    extern  char* getcwd ( char *buf , int len);*/
   double fu;      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
          return( GLOCK_ERROR_GETCWD );
   *fa=(*func)(*ax);      }
   *fb=(*func)(*bx);      /* got dirc from getcwd*/
   if (*fb > *fa) {      printf(" DIRC = %s \n",dirc);
     SHFT(dum,*ax,*bx,dum)    } else {                              /* strip direcotry from path */
       SHFT(dum,*fb,*fa,dum)      ss++;                               /* after this, the filename */
       }      l2 = strlen( ss );                  /* length of filename */
   *cx=(*bx)+GOLD*(*bx-*ax);      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
   *fc=(*func)(*cx);      strcpy( name, ss );         /* save file name */
   while (*fb > *fc) {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     r=(*bx-*ax)*(*fb-*fc);      dirc[l1-l2] = 0;                    /* add zero */
     q=(*bx-*cx)*(*fb-*fa);      printf(" DIRC2 = %s \n",dirc);
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    }
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    /* We add a separator at the end of dirc if not exists */
     ulim=(*bx)+GLIMIT*(*cx-*bx);    l1 = strlen( dirc );                  /* length of directory */
     if ((*bx-u)*(u-*cx) > 0.0) {    if( dirc[l1-1] != DIRSEPARATOR ){
       fu=(*func)(u);      dirc[l1] =  DIRSEPARATOR;
     } else if ((*cx-u)*(u-ulim) > 0.0) {      dirc[l1+1] = 0; 
       fu=(*func)(u);      printf(" DIRC3 = %s \n",dirc);
       if (fu < *fc) {    }
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    ss = strrchr( name, '.' );            /* find last / */
           SHFT(*fb,*fc,fu,(*func)(u))    if (ss >0){
           }      ss++;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {      strcpy(ext,ss);                     /* save extension */
       u=ulim;      l1= strlen( name);
       fu=(*func)(u);      l2= strlen(ss)+1;
     } else {      strncpy( finame, name, l1-l2);
       u=(*cx)+GOLD*(*cx-*bx);      finame[l1-l2]= 0;
       fu=(*func)(u);    }
     }  
     SHFT(*ax,*bx,*cx,u)    return( 0 );                          /* we're done */
       SHFT(*fa,*fb,*fc,fu)  }
       }  
 }  
   /******************************************/
 /*************** linmin ************************/  
   void replace_back_to_slash(char *s, char*t)
 int ncom;  {
 double *pcom,*xicom;    int i;
 double (*nrfunc)(double []);    int lg=0;
      i=0;
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   double brent(double ax, double bx, double cx,      (s[i] = t[i]);
                double (*f)(double), double tol, double *xmin);      if (t[i]== '\\') s[i]='/';
   double f1dim(double x);    }
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  }
               double *fc, double (*func)(double));  
   int j;  int nbocc(char *s, char occ)
   double xx,xmin,bx,ax;  {
   double fx,fb,fa;    int i,j=0;
      int lg=20;
   ncom=n;    i=0;
   pcom=vector(1,n);    lg=strlen(s);
   xicom=vector(1,n);    for(i=0; i<= lg; i++) {
   nrfunc=func;    if  (s[i] == occ ) j++;
   for (j=1;j<=n;j++) {    }
     pcom[j]=p[j];    return j;
     xicom[j]=xi[j];  }
   }  
   ax=0.0;  void cutv(char *u,char *v, char*t, char occ)
   xx=1.0;  {
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);    /* cuts string t into u and v where u ends before first occurence of char 'occ' 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);       and v starts after first occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2')
 #ifdef DEBUG       gives u="abcedf" and v="ghi2j" */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    int i,lg,j,p=0;
 #endif    i=0;
   for (j=1;j<=n;j++) {    for(j=0; j<=strlen(t)-1; j++) {
     xi[j] *= xmin;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
     p[j] += xi[j];    }
   }  
   free_vector(xicom,1,n);    lg=strlen(t);
   free_vector(pcom,1,n);    for(j=0; j<p; j++) {
 }      (u[j] = t[j]);
     }
 /*************** powell ************************/       u[p]='\0';
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))     for(j=0; j<= lg; j++) {
 {      if (j>=(p+1))(v[j-p-1] = t[j]);
   void linmin(double p[], double xi[], int n, double *fret,    }
               double (*func)(double []));  }
   int i,ibig,j;  
   double del,t,*pt,*ptt,*xit;  /********************** nrerror ********************/
   double fp,fptt;  
   double *xits;  void nrerror(char error_text[])
   pt=vector(1,n);  {
   ptt=vector(1,n);    fprintf(stderr,"ERREUR ...\n");
   xit=vector(1,n);    fprintf(stderr,"%s\n",error_text);
   xits=vector(1,n);    exit(EXIT_FAILURE);
   *fret=(*func)(p);  }
   for (j=1;j<=n;j++) pt[j]=p[j];  /*********************** vector *******************/
   for (*iter=1;;++(*iter)) {  double *vector(int nl, int nh)
     fp=(*fret);  {
     ibig=0;    double *v;
     del=0.0;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);    if (!v) nrerror("allocation failure in vector");
     for (i=1;i<=n;i++)    return v-nl+NR_END;
       printf(" %d %.12f",i, p[i]);  }
     printf("\n");  
     for (i=1;i<=n;i++) {  /************************ free vector ******************/
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  void free_vector(double*v, int nl, int nh)
       fptt=(*fret);  {
 #ifdef DEBUG    free((FREE_ARG)(v+nl-NR_END));
       printf("fret=%lf \n",*fret);  }
 #endif  
       printf("%d",i);fflush(stdout);  /************************ivector *******************************/
       linmin(p,xit,n,fret,func);  int *ivector(long nl,long nh)
       if (fabs(fptt-(*fret)) > del) {  {
         del=fabs(fptt-(*fret));    int *v;
         ibig=i;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       }    if (!v) nrerror("allocation failure in ivector");
 #ifdef DEBUG    return v-nl+NR_END;
       printf("%d %.12e",i,(*fret));  }
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /******************free ivector **************************/
         printf(" x(%d)=%.12e",j,xit[j]);  void free_ivector(int *v, long nl, long nh)
       }  {
       for(j=1;j<=n;j++)    free((FREE_ARG)(v+nl-NR_END));
         printf(" p=%.12e",p[j]);  }
       printf("\n");  
 #endif  /************************lvector *******************************/
     }  long *lvector(long nl,long nh)
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  {
 #ifdef DEBUG    long *v;
       int k[2],l;    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
       k[0]=1;    if (!v) nrerror("allocation failure in ivector");
       k[1]=-1;    return v-nl+NR_END;
       printf("Max: %.12e",(*func)(p));  }
       for (j=1;j<=n;j++)  
         printf(" %.12e",p[j]);  /******************free lvector **************************/
       printf("\n");  void free_lvector(long *v, long nl, long nh)
       for(l=0;l<=1;l++) {  {
         for (j=1;j<=n;j++) {    free((FREE_ARG)(v+nl-NR_END));
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  }
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  /******************* imatrix *******************************/
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int **imatrix(long nrl, long nrh, long ncl, long nch) 
       }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
 #endif  { 
     long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
       free_vector(xit,1,n);    
       free_vector(xits,1,n);    /* allocate pointers to rows */ 
       free_vector(ptt,1,n);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
       free_vector(pt,1,n);    if (!m) nrerror("allocation failure 1 in matrix()"); 
       return;    m += NR_END; 
     }    m -= nrl; 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    
     for (j=1;j<=n;j++) {    
       ptt[j]=2.0*p[j]-pt[j];    /* allocate rows and set pointers to them */ 
       xit[j]=p[j]-pt[j];    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
       pt[j]=p[j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
     }    m[nrl] += NR_END; 
     fptt=(*func)(ptt);    m[nrl] -= ncl; 
     if (fptt < fp) {    
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       if (t < 0.0) {    
         linmin(p,xit,n,fret,func);    /* return pointer to array of pointers to rows */ 
         for (j=1;j<=n;j++) {    return m; 
           xi[j][ibig]=xi[j][n];  } 
           xi[j][n]=xit[j];  
         }  /****************** free_imatrix *************************/
 #ifdef DEBUG  void free_imatrix(m,nrl,nrh,ncl,nch)
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);        int **m;
         for(j=1;j<=n;j++)        long nch,ncl,nrh,nrl; 
           printf(" %.12e",xit[j]);       /* free an int matrix allocated by imatrix() */ 
         printf("\n");  { 
 #endif    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
       }    free((FREE_ARG) (m+nrl-NR_END)); 
     }  } 
   }  
 }  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
 /**** Prevalence limit ****************/  {
     long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double **m;
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
      matrix by transitions matrix until convergence is reached */    if (!m) nrerror("allocation failure 1 in matrix()");
     m += NR_END;
   int i, ii,j,k;    m -= nrl;
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   double **out, cov[NCOVMAX], **pmij();    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double **newm;    m[nrl] += NR_END;
   double agefin, delaymax=50 ; /* Max number of years to converge */    m[nrl] -= ncl;
   
   for (ii=1;ii<=nlstate+ndeath;ii++)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
     for (j=1;j<=nlstate+ndeath;j++){    return m;
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
     }     */
   }
    cov[1]=1.;  
    /*************************free matrix ************************/
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  {
     newm=savm;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     /* Covariates have to be included here again */    free((FREE_ARG)(m+nrl-NR_END));
      cov[2]=agefin;  }
    
       for (k=1; k<=cptcovn;k++) {  /******************* ma3x *******************************/
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  {
       }    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    double ***m;
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/    m += NR_END;
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/    m -= nrl;
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     savm=oldm;    m[nrl] += NR_END;
     oldm=newm;    m[nrl] -= ncl;
     maxmax=0.;  
     for(j=1;j<=nlstate;j++){    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       min=1.;  
       max=0.;    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       for(i=1; i<=nlstate; i++) {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
         sumnew=0;    m[nrl][ncl] += NR_END;
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    m[nrl][ncl] -= nll;
         prlim[i][j]= newm[i][j]/(1-sumnew);    for (j=ncl+1; j<=nch; j++) 
         max=FMAX(max,prlim[i][j]);      m[nrl][j]=m[nrl][j-1]+nlay;
         min=FMIN(min,prlim[i][j]);    
       }    for (i=nrl+1; i<=nrh; i++) {
       maxmin=max-min;      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
       maxmax=FMAX(maxmax,maxmin);      for (j=ncl+1; j<=nch; j++) 
     }        m[i][j]=m[i][j-1]+nlay;
     if(maxmax < ftolpl){    }
       return prlim;    return m; 
     }    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
   }             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
 }    */
   }
 /*************** transition probabilities ***************/  
   /*************************free ma3x ************************/
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
 {  {
   double s1, s2;    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   /*double t34;*/    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   int i,j,j1, nc, ii, jj;    free((FREE_ARG)(m+nrl-NR_END));
   }
     for(i=1; i<= nlstate; i++){  
     for(j=1; j<i;j++){  /*************** function subdirf ***********/
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *subdirf(char fileres[])
         /*s2 += param[i][j][nc]*cov[nc];*/  {
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    /* Caution optionfilefiname is hidden */
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    strcpy(tmpout,optionfilefiname);
       }    strcat(tmpout,"/"); /* Add to the right */
       ps[i][j]=s2;    strcat(tmpout,fileres);
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    return tmpout;
     }  }
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  /*************** function subdirf2 ***********/
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  char *subdirf2(char fileres[], char *preop)
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  {
       }    
       ps[i][j]=s2;    /* Caution optionfilefiname is hidden */
     }    strcpy(tmpout,optionfilefiname);
   }    strcat(tmpout,"/");
     /*ps[3][2]=1;*/    strcat(tmpout,preop);
     strcat(tmpout,fileres);
   for(i=1; i<= nlstate; i++){    return tmpout;
      s1=0;  }
     for(j=1; j<i; j++)  
       s1+=exp(ps[i][j]);  /*************** function subdirf3 ***********/
     for(j=i+1; j<=nlstate+ndeath; j++)  char *subdirf3(char fileres[], char *preop, char *preop2)
       s1+=exp(ps[i][j]);  {
     ps[i][i]=1./(s1+1.);    
     for(j=1; j<i; j++)    /* Caution optionfilefiname is hidden */
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcpy(tmpout,optionfilefiname);
     for(j=i+1; j<=nlstate+ndeath; j++)    strcat(tmpout,"/");
       ps[i][j]= exp(ps[i][j])*ps[i][i];    strcat(tmpout,preop);
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */    strcat(tmpout,preop2);
   } /* end i */    strcat(tmpout,fileres);
     return tmpout;
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){  }
     for(jj=1; jj<= nlstate+ndeath; jj++){  
       ps[ii][jj]=0;  /***************** f1dim *************************/
       ps[ii][ii]=1;  extern int ncom; 
     }  extern double *pcom,*xicom;
   }  extern double (*nrfunc)(double []); 
    
   double f1dim(double x) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){  { 
     for(jj=1; jj<= nlstate+ndeath; jj++){    int j; 
      printf("%lf ",ps[ii][jj]);    double f;
    }    double *xt; 
     printf("\n ");   
     }    xt=vector(1,ncom); 
     printf("\n ");printf("%lf ",cov[2]);*/    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
 /*    f=(*nrfunc)(xt); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    free_vector(xt,1,ncom); 
   goto end;*/    return f; 
     return ps;  } 
 }  
   /*****************brent *************************/
 /**************** Product of 2 matrices ******************/  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    int iter; 
 {    double a,b,d,etemp;
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double fu,fv,fw,fx;
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double ftemp;
   /* in, b, out are matrice of pointers which should have been initialized    double p,q,r,tol1,tol2,u,v,w,x,xm; 
      before: only the contents of out is modified. The function returns    double e=0.0; 
      a pointer to pointers identical to out */   
   long i, j, k;    a=(ax < cx ? ax : cx); 
   for(i=nrl; i<= nrh; i++)    b=(ax > cx ? ax : cx); 
     for(k=ncolol; k<=ncoloh; k++)    x=w=v=bx; 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    fw=fv=fx=(*f)(x); 
         out[i][k] +=in[i][j]*b[j][k];    for (iter=1;iter<=ITMAX;iter++) { 
       xm=0.5*(a+b); 
   return out;      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 }      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 /************* Higher Matrix Product ***************/  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 {      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month  #endif
      duration (i.e. until      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        *xmin=x; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        return fx; 
      (typically every 2 years instead of every month which is too big).      } 
      Model is determined by parameters x and covariates have to be      ftemp=fu;
      included manually here.      if (fabs(e) > tol1) { 
         r=(x-w)*(fx-fv); 
      */        q=(x-v)*(fx-fw); 
         p=(x-v)*q-(x-w)*r; 
   int i, j, d, h, k;        q=2.0*(q-r); 
   double **out, cov[NCOVMAX];        if (q > 0.0) p = -p; 
   double **newm;        q=fabs(q); 
         etemp=e; 
   /* Hstepm could be zero and should return the unit matrix */        e=d; 
   for (i=1;i<=nlstate+ndeath;i++)        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
     for (j=1;j<=nlstate+ndeath;j++){          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       oldm[i][j]=(i==j ? 1.0 : 0.0);        else { 
       po[i][j][0]=(i==j ? 1.0 : 0.0);          d=p/q; 
     }          u=x+d; 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */          if (u-a < tol2 || b-u < tol2) 
   for(h=1; h <=nhstepm; h++){            d=SIGN(tol1,xm-x); 
     for(d=1; d <=hstepm; d++){        } 
       newm=savm;      } else { 
       /* Covariates have to be included here again */        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       cov[1]=1.;      } 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      fu=(*f)(u); 
       for (k=1; k<=cptcovage;k++)      if (fu <= fx) { 
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        if (u >= x) a=x; else b=x; 
       for (k=1; k<=cptcovprod;k++)        SHFT(v,w,x,u) 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];          SHFT(fv,fw,fx,fu) 
           } else { 
             if (u < x) a=u; else b=u; 
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/            if (fu <= fw || w == x) { 
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/              v=w; 
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,              w=u; 
                    pmij(pmmij,cov,ncovmodel,x,nlstate));              fv=fw; 
       savm=oldm;              fw=fu; 
       oldm=newm;            } else if (fu <= fv || v == x || v == w) { 
     }              v=u; 
     for(i=1; i<=nlstate+ndeath; i++)              fv=fu; 
       for(j=1;j<=nlstate+ndeath;j++) {            } 
         po[i][j][h]=newm[i][j];          } 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    } 
          */    nrerror("Too many iterations in brent"); 
       }    *xmin=x; 
   } /* end h */    return fx; 
   return po;  } 
 }  
   /****************** mnbrak ***********************/
   
 /*************** log-likelihood *************/  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
 double func( double *x)              double (*func)(double)) 
 {  { 
   int i, ii, j, k, mi, d, kk;    double ulim,u,r,q, dum;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double fu; 
   double **out;   
   double sw; /* Sum of weights */    *fa=(*func)(*ax); 
   double lli; /* Individual log likelihood */    *fb=(*func)(*bx); 
   int s1, s2;    if (*fb > *fa) { 
   long ipmx;      SHFT(dum,*ax,*bx,dum) 
   /*extern weight */        SHFT(dum,*fb,*fa,dum) 
   /* We are differentiating ll according to initial status */        } 
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    *cx=(*bx)+GOLD*(*bx-*ax); 
   /*for(i=1;i<imx;i++)    *fc=(*func)(*cx); 
     printf(" %d\n",s[4][i]);    while (*fb > *fc) { 
   */      r=(*bx-*ax)*(*fb-*fc); 
   cov[1]=1.;      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for(k=1; k<=nlstate; k++) ll[k]=0.;        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];      if ((*bx-u)*(u-*cx) > 0.0) { 
     for(mi=1; mi<= wav[i]-1; mi++){        fu=(*func)(u); 
       for (ii=1;ii<=nlstate+ndeath;ii++)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         for (j=1;j<=nlstate+ndeath;j++){        fu=(*func)(u); 
           oldm[ii][j]=(ii==j ? 1.0 : 0.0);        if (fu < *fc) { 
           savm[ii][j]=(ii==j ? 1.0 : 0.0);          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
         }            SHFT(*fb,*fc,fu,(*func)(u)) 
       for(d=0; d<dh[mi][i]; d++){            } 
         newm=savm;      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;        u=ulim; 
         for (kk=1; kk<=cptcovage;kk++) {        fu=(*func)(u); 
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];      } else { 
         }        u=(*cx)+GOLD*(*cx-*bx); 
                fu=(*func)(u); 
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,      } 
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      SHFT(*ax,*bx,*cx,u) 
         savm=oldm;        SHFT(*fa,*fb,*fc,fu) 
         oldm=newm;        } 
          } 
          
       } /* end mult */  /*************** linmin ************************/
        
       s1=s[mw[mi][i]][i];  int ncom; 
       s2=s[mw[mi+1][i]][i];  double *pcom,*xicom;
       if( s2 > nlstate){  double (*nrfunc)(double []); 
         /* i.e. if s2 is a death state and if the date of death is known then the contribution   
            to the likelihood is the probability to die between last step unit time and current  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
            step unit time, which is also the differences between probability to die before dh  { 
            and probability to die before dh-stepm .    double brent(double ax, double bx, double cx, 
            In version up to 0.92 likelihood was computed                 double (*f)(double), double tol, double *xmin); 
            as if date of death was unknown. Death was treated as any other    double f1dim(double x); 
            health state: the date of the interview describes the actual state    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
            and not the date of a change in health state. The former idea was                double *fc, double (*func)(double)); 
            to consider that at each interview the state was recorded    int j; 
            (healthy, disable or death) and IMaCh was corrected; but when we    double xx,xmin,bx,ax; 
            introduced the exact date of death then we should have modified    double fx,fb,fa;
            the contribution of an exact death to the likelihood. This new   
            contribution is smaller and very dependent of the step unit    ncom=n; 
            stepm. It is no more the probability to die between last interview    pcom=vector(1,n); 
            and month of death but the probability to survive from last    xicom=vector(1,n); 
            interview up to one month before death multiplied by the    nrfunc=func; 
            probability to die within a month. Thanks to Chris    for (j=1;j<=n;j++) { 
            Jackson for correcting this bug.  Former versions increased      pcom[j]=p[j]; 
            mortality artificially. The bad side is that we add another loop      xicom[j]=xi[j]; 
            which slows down the processing. The difference can be up to 10%    } 
            lower mortality.    ax=0.0; 
         */    xx=1.0; 
         lli=log(out[s1][s2] - savm[s1][s2]);    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
       }else{    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
         lli=log(out[s1][s2]); /* or     lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); */  #ifdef DEBUG
         /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       }    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       ipmx +=1;  #endif
       sw += weight[i];    for (j=1;j<=n;j++) { 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;      xi[j] *= xmin; 
       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d lli=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],lli,weight[i],out[s1][s2],savm[s1][s2]);*/      p[j] += xi[j]; 
     } /* end of wave */    } 
   } /* end of individual */    free_vector(xicom,1,n); 
     free_vector(pcom,1,n); 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  } 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  char *asc_diff_time(long time_sec, char ascdiff[])
   /*exit(0);*/  {
   return -l;    long sec_left, days, hours, minutes;
 }    days = (time_sec) / (60*60*24);
     sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
 /*********** Maximum Likelihood Estimation ***************/    sec_left = (sec_left) %(60*60);
     minutes = (sec_left) /60;
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    sec_left = (sec_left) % (60);
 {    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
   int i,j, iter;    return ascdiff;
   double **xi,*delti;  }
   double fret;  
   xi=matrix(1,npar,1,npar);  /*************** powell ************************/
   for (i=1;i<=npar;i++)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
     for (j=1;j<=npar;j++)              double (*func)(double [])) 
       xi[i][j]=(i==j ? 1.0 : 0.0);  { 
   printf("Powell\n");    void linmin(double p[], double xi[], int n, double *fret, 
   powell(p,xi,npar,ftol,&iter,&fret,func);                double (*func)(double [])); 
     int i,ibig,j; 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));    double del,t,*pt,*ptt,*xit;
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    double fp,fptt;
     double *xits;
 }    int niterf, itmp;
   
 /**** Computes Hessian and covariance matrix ***/    pt=vector(1,n); 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))    ptt=vector(1,n); 
 {    xit=vector(1,n); 
   double  **a,**y,*x,pd;    xits=vector(1,n); 
   double **hess;    *fret=(*func)(p); 
   int i, j,jk;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   int *indx;    for (*iter=1;;++(*iter)) { 
       fp=(*fret); 
   double hessii(double p[], double delta, int theta, double delti[]);      ibig=0; 
   double hessij(double p[], double delti[], int i, int j);      del=0.0; 
   void lubksb(double **a, int npar, int *indx, double b[]) ;      last_time=curr_time;
   void ludcmp(double **a, int npar, int *indx, double *d) ;      (void) gettimeofday(&curr_time,&tzp);
       printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
   hess=matrix(1,npar,1,npar);      /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
   printf("\nCalculation of the hessian matrix. Wait...\n");      */
   for (i=1;i<=npar;i++){     for (i=1;i<=n;i++) {
     printf("%d",i);fflush(stdout);        printf(" %d %.12f",i, p[i]);
     hess[i][i]=hessii(p,ftolhess,i,delti);        fprintf(ficlog," %d %.12lf",i, p[i]);
     /*printf(" %f ",p[i]);*/        fprintf(ficrespow," %.12lf", p[i]);
     /*printf(" %lf ",hess[i][i]);*/      }
   }      printf("\n");
        fprintf(ficlog,"\n");
   for (i=1;i<=npar;i++) {      fprintf(ficrespow,"\n");fflush(ficrespow);
     for (j=1;j<=npar;j++)  {      if(*iter <=3){
       if (j>i) {        tm = *localtime(&curr_time.tv_sec);
         printf(".%d%d",i,j);fflush(stdout);        strcpy(strcurr,asctime(&tm));
         hess[i][j]=hessij(p,delti,i,j);  /*       asctime_r(&tm,strcurr); */
         hess[j][i]=hess[i][j];            forecast_time=curr_time; 
         /*printf(" %lf ",hess[i][j]);*/        itmp = strlen(strcurr);
       }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     }          strcurr[itmp-1]='\0';
   }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   printf("\n");        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
         for(niterf=10;niterf<=30;niterf+=10){
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
            tmf = *localtime(&forecast_time.tv_sec);
   a=matrix(1,npar,1,npar);  /*      asctime_r(&tmf,strfor); */
   y=matrix(1,npar,1,npar);          strcpy(strfor,asctime(&tmf));
   x=vector(1,npar);          itmp = strlen(strfor);
   indx=ivector(1,npar);          if(strfor[itmp-1]=='\n')
   for (i=1;i<=npar;i++)          strfor[itmp-1]='\0';
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   ludcmp(a,npar,indx,&pd);          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
         }
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;      for (i=1;i<=n;i++) { 
     x[j]=1;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
     lubksb(a,npar,indx,x);        fptt=(*fret); 
     for (i=1;i<=npar;i++){  #ifdef DEBUG
       matcov[i][j]=x[i];        printf("fret=%lf \n",*fret);
     }        fprintf(ficlog,"fret=%lf \n",*fret);
   }  #endif
         printf("%d",i);fflush(stdout);
   printf("\n#Hessian matrix#\n");        fprintf(ficlog,"%d",i);fflush(ficlog);
   for (i=1;i<=npar;i++) {        linmin(p,xit,n,fret,func); 
     for (j=1;j<=npar;j++) {        if (fabs(fptt-(*fret)) > del) { 
       printf("%.3e ",hess[i][j]);          del=fabs(fptt-(*fret)); 
     }          ibig=i; 
     printf("\n");        } 
   }  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
   /* Recompute Inverse */        fprintf(ficlog,"%d %.12e",i,(*fret));
   for (i=1;i<=npar;i++)        for (j=1;j<=n;j++) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
   ludcmp(a,npar,indx,&pd);          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
   /*  printf("\n#Hessian matrix recomputed#\n");        }
         for(j=1;j<=n;j++) {
   for (j=1;j<=npar;j++) {          printf(" p=%.12e",p[j]);
     for (i=1;i<=npar;i++) x[i]=0;          fprintf(ficlog," p=%.12e",p[j]);
     x[j]=1;        }
     lubksb(a,npar,indx,x);        printf("\n");
     for (i=1;i<=npar;i++){        fprintf(ficlog,"\n");
       y[i][j]=x[i];  #endif
       printf("%.3e ",y[i][j]);      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     printf("\n");  #ifdef DEBUG
   }        int k[2],l;
   */        k[0]=1;
         k[1]=-1;
   free_matrix(a,1,npar,1,npar);        printf("Max: %.12e",(*func)(p));
   free_matrix(y,1,npar,1,npar);        fprintf(ficlog,"Max: %.12e",(*func)(p));
   free_vector(x,1,npar);        for (j=1;j<=n;j++) {
   free_ivector(indx,1,npar);          printf(" %.12e",p[j]);
   free_matrix(hess,1,npar,1,npar);          fprintf(ficlog," %.12e",p[j]);
         }
         printf("\n");
 }        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
 /*************** hessian matrix ****************/          for (j=1;j<=n;j++) {
 double hessii( double x[], double delta, int theta, double delti[])            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
 {            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int i;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int l=1, lmax=20;          }
   double k1,k2;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double p2[NPARMAX+1];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   double res;        }
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;  #endif
   double fx;  
   int k=0,kmax=10;  
   double l1;        free_vector(xit,1,n); 
         free_vector(xits,1,n); 
   fx=func(x);        free_vector(ptt,1,n); 
   for (i=1;i<=npar;i++) p2[i]=x[i];        free_vector(pt,1,n); 
   for(l=0 ; l <=lmax; l++){        return; 
     l1=pow(10,l);      } 
     delts=delt;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     for(k=1 ; k <kmax; k=k+1){      for (j=1;j<=n;j++) { 
       delt = delta*(l1*k);        ptt[j]=2.0*p[j]-pt[j]; 
       p2[theta]=x[theta] +delt;        xit[j]=p[j]-pt[j]; 
       k1=func(p2)-fx;        pt[j]=p[j]; 
       p2[theta]=x[theta]-delt;      } 
       k2=func(p2)-fx;      fptt=(*func)(ptt); 
       /*res= (k1-2.0*fx+k2)/delt/delt; */      if (fptt < fp) { 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
              if (t < 0.0) { 
 #ifdef DEBUG          linmin(p,xit,n,fret,func); 
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          for (j=1;j<=n;j++) { 
 #endif            xi[j][ibig]=xi[j][n]; 
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */            xi[j][n]=xit[j]; 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          }
         k=kmax;  #ifdef DEBUG
       }          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         k=kmax; l=lmax*10.;          for(j=1;j<=n;j++){
       }            printf(" %.12e",xit[j]);
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){            fprintf(ficlog," %.12e",xit[j]);
         delts=delt;          }
       }          printf("\n");
     }          fprintf(ficlog,"\n");
   }  #endif
   delti[theta]=delts;        }
   return res;      } 
      } 
 }  } 
   
 double hessij( double x[], double delti[], int thetai,int thetaj)  /**** Prevalence limit (stable or period prevalence)  ****************/
 {  
   int i;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   int l=1, l1, lmax=20;  {
   double k1,k2,k3,k4,res,fx;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   double p2[NPARMAX+1];       matrix by transitions matrix until convergence is reached */
   int k;  
     int i, ii,j,k;
   fx=func(x);    double min, max, maxmin, maxmax,sumnew=0.;
   for (k=1; k<=2; k++) {    double **matprod2();
     for (i=1;i<=npar;i++) p2[i]=x[i];    double **out, cov[NCOVMAX], **pmij();
     p2[thetai]=x[thetai]+delti[thetai]/k;    double **newm;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    double agefin, delaymax=50 ; /* Max number of years to converge */
     k1=func(p2)-fx;  
      for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]+delti[thetai]/k;      for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k2=func(p2)-fx;      }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;     cov[1]=1.;
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;   
     k3=func(p2)-fx;   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
      for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     p2[thetai]=x[thetai]-delti[thetai]/k;      newm=savm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      /* Covariates have to be included here again */
     k4=func(p2)-fx;       cov[2]=agefin;
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    
 #ifdef DEBUG        for (k=1; k<=cptcovn;k++) {
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 #endif          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   }        }
   return res;        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 }        for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /************** Inverse of matrix **************/  
 void ludcmp(double **a, int n, int *indx, double *d)        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 {        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
   int i,imax,j,k;        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
   double big,dum,sum,temp;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   double *vv;  
        savm=oldm;
   vv=vector(1,n);      oldm=newm;
   *d=1.0;      maxmax=0.;
   for (i=1;i<=n;i++) {      for(j=1;j<=nlstate;j++){
     big=0.0;        min=1.;
     for (j=1;j<=n;j++)        max=0.;
       if ((temp=fabs(a[i][j])) > big) big=temp;        for(i=1; i<=nlstate; i++) {
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          sumnew=0;
     vv[i]=1.0/big;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   }          prlim[i][j]= newm[i][j]/(1-sumnew);
   for (j=1;j<=n;j++) {          max=FMAX(max,prlim[i][j]);
     for (i=1;i<j;i++) {          min=FMIN(min,prlim[i][j]);
       sum=a[i][j];        }
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];        maxmin=max-min;
       a[i][j]=sum;        maxmax=FMAX(maxmax,maxmin);
     }      }
     big=0.0;      if(maxmax < ftolpl){
     for (i=j;i<=n;i++) {        return prlim;
       sum=a[i][j];      }
       for (k=1;k<j;k++)    }
         sum -= a[i][k]*a[k][j];  }
       a[i][j]=sum;  
       if ( (dum=vv[i]*fabs(sum)) >= big) {  /*************** transition probabilities ***************/ 
         big=dum;  
         imax=i;  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
       }  {
     }    double s1, s2;
     if (j != imax) {    /*double t34;*/
       for (k=1;k<=n;k++) {    int i,j,j1, nc, ii, jj;
         dum=a[imax][k];  
         a[imax][k]=a[j][k];      for(i=1; i<= nlstate; i++){
         a[j][k]=dum;        for(j=1; j<i;j++){
       }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
       *d = -(*d);            /*s2 += param[i][j][nc]*cov[nc];*/
       vv[imax]=vv[j];            s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
     }  /*       printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
     indx[j]=imax;          }
     if (a[j][j] == 0.0) a[j][j]=TINY;          ps[i][j]=s2;
     if (j != n) {  /*      printf("s1=%.17e, s2=%.17e\n",s1,s2); */
       dum=1.0/(a[j][j]);        }
       for (i=j+1;i<=n;i++) a[i][j] *= dum;        for(j=i+1; j<=nlstate+ndeath;j++){
     }          for (nc=1, s2=0.;nc <=ncovmodel; nc++){
   }            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
   free_vector(vv,1,n);  /* Doesn't work */  /*        printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
 ;          }
 }          ps[i][j]=s2;
         }
 void lubksb(double **a, int n, int *indx, double b[])      }
 {      /*ps[3][2]=1;*/
   int i,ii=0,ip,j;      
   double sum;      for(i=1; i<= nlstate; i++){
          s1=0;
   for (i=1;i<=n;i++) {        for(j=1; j<i; j++)
     ip=indx[i];          s1+=exp(ps[i][j]);
     sum=b[ip];        for(j=i+1; j<=nlstate+ndeath; j++)
     b[ip]=b[i];          s1+=exp(ps[i][j]);
     if (ii)        ps[i][i]=1./(s1+1.);
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        for(j=1; j<i; j++)
     else if (sum) ii=i;          ps[i][j]= exp(ps[i][j])*ps[i][i];
     b[i]=sum;        for(j=i+1; j<=nlstate+ndeath; j++)
   }          ps[i][j]= exp(ps[i][j])*ps[i][i];
   for (i=n;i>=1;i--) {        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     sum=b[i];      } /* end i */
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      
     b[i]=sum/a[i][i];      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
   }        for(jj=1; jj<= nlstate+ndeath; jj++){
 }          ps[ii][jj]=0;
           ps[ii][ii]=1;
 /************ Frequencies ********************/        }
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      }
 {  /* Some frequencies */      
    
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;  /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
   double ***freq; /* Frequencies */  /*       for(jj=1; jj<= nlstate+ndeath; jj++){ */
   double *pp;  /*         printf("ddd %lf ",ps[ii][jj]); */
   double pos, k2, dateintsum=0,k2cpt=0;  /*       } */
   FILE *ficresp;  /*       printf("\n "); */
   char fileresp[FILENAMELENGTH];  /*        } */
    /*        printf("\n ");printf("%lf ",cov[2]); */
   pp=vector(1,nlstate);         /*
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        for(i=1; i<= npar; i++) printf("%f ",x[i]);
   strcpy(fileresp,"p");        goto end;*/
   strcat(fileresp,fileres);      return ps;
   if((ficresp=fopen(fileresp,"w"))==NULL) {  }
     printf("Problem with prevalence resultfile: %s\n", fileresp);  
     exit(0);  /**************** Product of 2 matrices ******************/
   }  
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   j1=0;  {
      /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
   j=cptcoveff;       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /* in, b, out are matrice of pointers which should have been initialized 
         before: only the contents of out is modified. The function returns
   for(k1=1; k1<=j;k1++){       a pointer to pointers identical to out */
     for(i1=1; i1<=ncodemax[k1];i1++){    long i, j, k;
       j1++;    for(i=nrl; i<= nrh; i++)
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      for(k=ncolol; k<=ncoloh; k++)
         scanf("%d", i);*/        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       for (i=-1; i<=nlstate+ndeath; i++)            out[i][k] +=in[i][j]*b[j][k];
         for (jk=-1; jk<=nlstate+ndeath; jk++)    
           for(m=agemin; m <= agemax+3; m++)    return out;
             freq[i][jk][m]=0;  }
        
       dateintsum=0;  
       k2cpt=0;  /************* Higher Matrix Product ***************/
       for (i=1; i<=imx; i++) {  
         bool=1;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         if  (cptcovn>0) {  {
           for (z1=1; z1<=cptcoveff; z1++)    /* Computes the transition matrix starting at age 'age' over 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])       'nhstepm*hstepm*stepm' months (i.e. until
               bool=0;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
         }       nhstepm*hstepm matrices. 
         if (bool==1) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
           for(m=firstpass; m<=lastpass; m++){       (typically every 2 years instead of every month which is too big 
             k2=anint[m][i]+(mint[m][i]/12.);       for the memory).
             if ((k2>=dateprev1) && (k2<=dateprev2)) {       Model is determined by parameters x and covariates have to be 
               if(agev[m][i]==0) agev[m][i]=agemax+1;       included manually here. 
               if(agev[m][i]==1) agev[m][i]=agemax+2;  
               if (m<lastpass) {       */
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    int i, j, d, h, k;
               }    double **out, cov[NCOVMAX];
                  double **newm;
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {  
                 dateintsum=dateintsum+k2;    /* Hstepm could be zero and should return the unit matrix */
                 k2cpt++;    for (i=1;i<=nlstate+ndeath;i++)
               }      for (j=1;j<=nlstate+ndeath;j++){
             }        oldm[i][j]=(i==j ? 1.0 : 0.0);
           }        po[i][j][0]=(i==j ? 1.0 : 0.0);
         }      }
       }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
            for(h=1; h <=nhstepm; h++){
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      for(d=1; d <=hstepm; d++){
         newm=savm;
       if  (cptcovn>0) {        /* Covariates have to be included here again */
         fprintf(ficresp, "\n#********** Variable ");        cov[1]=1.;
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         fprintf(ficresp, "**********\n#");        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       }        for (k=1; k<=cptcovage;k++)
       for(i=1; i<=nlstate;i++)          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        for (k=1; k<=cptcovprod;k++)
       fprintf(ficresp, "\n");          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
        
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3)        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
           printf("Total");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         else        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
           printf("Age %d", i);                     pmij(pmmij,cov,ncovmodel,x,nlstate));
         for(jk=1; jk <=nlstate ; jk++){        savm=oldm;
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        oldm=newm;
             pp[jk] += freq[jk][m][i];      }
         }      for(i=1; i<=nlstate+ndeath; i++)
         for(jk=1; jk <=nlstate ; jk++){        for(j=1;j<=nlstate+ndeath;j++) {
           for(m=-1, pos=0; m <=0 ; m++)          po[i][j][h]=newm[i][j];
             pos += freq[jk][m][i];          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
           if(pp[jk]>=1.e-10)           */
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);        }
           else    } /* end h */
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    return po;
         }  }
   
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)  /*************** log-likelihood *************/
             pp[jk] += freq[jk][m][i];  double func( double *x)
         }  {
     int i, ii, j, k, mi, d, kk;
         for(jk=1,pos=0; jk <=nlstate ; jk++)    double l, ll[NLSTATEMAX], cov[NCOVMAX];
           pos += pp[jk];    double **out;
         for(jk=1; jk <=nlstate ; jk++){    double sw; /* Sum of weights */
           if(pos>=1.e-5)    double lli; /* Individual log likelihood */
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    int s1, s2;
           else    double bbh, survp;
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    long ipmx;
           if( i <= (int) agemax){    /*extern weight */
             if(pos>=1.e-5){    /* We are differentiating ll according to initial status */
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
               probs[i][jk][j1]= pp[jk]/pos;    /*for(i=1;i<imx;i++) 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/      printf(" %d\n",s[4][i]);
             }    */
             else    cov[1]=1.;
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);  
           }    for(k=1; k<=nlstate; k++) ll[k]=0.;
         }  
            if(mle==1){
         for(jk=-1; jk <=nlstate+ndeath; jk++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           for(m=-1; m <=nlstate+ndeath; m++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        for(mi=1; mi<= wav[i]-1; mi++){
         if(i <= (int) agemax)          for (ii=1;ii<=nlstate+ndeath;ii++)
           fprintf(ficresp,"\n");            for (j=1;j<=nlstate+ndeath;j++){
         printf("\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     }            }
   }          for(d=0; d<dh[mi][i]; d++){
   dateintmean=dateintsum/k2cpt;            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fclose(ficresp);            for (kk=1; kk<=cptcovage;kk++) {
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_vector(pp,1,nlstate);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* End of Freq */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
 /************ Prevalence ********************/          } /* end mult */
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)        
 {  /* Some frequencies */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
            /* But now since version 0.9 we anticipate for bias at large stepm.
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   double ***freq; /* Frequencies */           * (in months) between two waves is not a multiple of stepm, we rounded to 
   double *pp;           * the nearest (and in case of equal distance, to the lowest) interval but now
   double pos, k2;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   pp=vector(1,nlstate);           * probability in order to take into account the bias as a fraction of the way
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
             * -stepm/2 to stepm/2 .
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);           * For stepm=1 the results are the same as for previous versions of Imach.
   j1=0;           * For stepm > 1 the results are less biased than in previous versions. 
             */
   j=cptcoveff;          s1=s[mw[mi][i]][i];
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          s2=s[mw[mi+1][i]][i];
            bbh=(double)bh[mi][i]/(double)stepm; 
  for(k1=1; k1<=j;k1++){          /* bias bh is positive if real duration
     for(i1=1; i1<=ncodemax[k1];i1++){           * is higher than the multiple of stepm and negative otherwise.
       j1++;           */
            /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       for (i=-1; i<=nlstate+ndeath; i++)            if( s2 > nlstate){ 
         for (jk=-1; jk<=nlstate+ndeath; jk++)              /* i.e. if s2 is a death state and if the date of death is known 
           for(m=agemin; m <= agemax+3; m++)               then the contribution to the likelihood is the probability to 
             freq[i][jk][m]=0;               die between last step unit time and current  step unit time, 
                     which is also equal to probability to die before dh 
       for (i=1; i<=imx; i++) {               minus probability to die before dh-stepm . 
         bool=1;               In version up to 0.92 likelihood was computed
         if  (cptcovn>0) {          as if date of death was unknown. Death was treated as any other
           for (z1=1; z1<=cptcoveff; z1++)          health state: the date of the interview describes the actual state
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])          and not the date of a change in health state. The former idea was
               bool=0;          to consider that at each interview the state was recorded
         }          (healthy, disable or death) and IMaCh was corrected; but when we
         if (bool==1) {          introduced the exact date of death then we should have modified
           for(m=firstpass; m<=lastpass; m++){          the contribution of an exact death to the likelihood. This new
             k2=anint[m][i]+(mint[m][i]/12.);          contribution is smaller and very dependent of the step unit
             if ((k2>=dateprev1) && (k2<=dateprev2)) {          stepm. It is no more the probability to die between last interview
               if(agev[m][i]==0) agev[m][i]=agemax+1;          and month of death but the probability to survive from last
               if(agev[m][i]==1) agev[m][i]=agemax+2;          interview up to one month before death multiplied by the
               if (m<lastpass)          probability to die within a month. Thanks to Chris
                 if (calagedate>0) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          Jackson for correcting this bug.  Former versions increased
               else          mortality artificially. The bad side is that we add another loop
                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          which slows down the processing. The difference can be up to 10%
                freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          lower mortality.
             }            */
           }            lli=log(out[s1][s2] - savm[s1][s2]);
         }  
       }  
         for(i=(int)agemin; i <= (int)agemax+3; i++){          } else if  (s2==-2) {
           for(jk=1; jk <=nlstate ; jk++){            for (j=1,survp=0. ; j<=nlstate; j++) 
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
               pp[jk] += freq[jk][m][i];            /*survp += out[s1][j]; */
           }            lli= log(survp);
           for(jk=1; jk <=nlstate ; jk++){          }
             for(m=-1, pos=0; m <=0 ; m++)          
             pos += freq[jk][m][i];          else if  (s2==-4) { 
         }            for (j=3,survp=0. ; j<=nlstate; j++)  
                      survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
          for(jk=1; jk <=nlstate ; jk++){            lli= log(survp); 
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)          } 
              pp[jk] += freq[jk][m][i];  
          }          else if  (s2==-5) { 
                      for (j=1,survp=0. ; j<=2; j++)  
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
          for(jk=1; jk <=nlstate ; jk++){                    } 
            if( i <= (int) agemax){          
              if(pos>=1.e-5){          else{
                probs[i][jk][j1]= pp[jk]/pos;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
              }            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            }          } 
          }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                    /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     }          ipmx +=1;
   }          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
          } /* end of wave */
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);      } /* end of individual */
   free_vector(pp,1,nlstate);    }  else if(mle==2){
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 }  /* End of Freq */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 /************* Waves Concatenation ***************/          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
 {              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.            }
      Death is a valid wave (if date is known).          for(d=0; d<=dh[mi][i]; d++){
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            newm=savm;
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
      and mw[mi+1][i]. dh depends on stepm.            for (kk=1; kk<=cptcovage;kk++) {
      */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   int i, mi, m;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
      double sum=0., jmean=0.;*/            savm=oldm;
             oldm=newm;
   int j, k=0,jk, ju, jl;          } /* end mult */
   double sum=0.;        
   jmin=1e+5;          s1=s[mw[mi][i]][i];
   jmax=-1;          s2=s[mw[mi+1][i]][i];
   jmean=0.;          bbh=(double)bh[mi][i]/(double)stepm; 
   for(i=1; i<=imx; i++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     mi=0;          ipmx +=1;
     m=firstpass;          sw += weight[i];
     while(s[m][i] <= nlstate){          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       if(s[m][i]>=1)        } /* end of wave */
         mw[++mi][i]=m;      } /* end of individual */
       if(m >=lastpass)    }  else if(mle==3){  /* exponential inter-extrapolation */
         break;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       else        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         m++;        for(mi=1; mi<= wav[i]-1; mi++){
     }/* end while */          for (ii=1;ii<=nlstate+ndeath;ii++)
     if (s[m][i] > nlstate){            for (j=1;j<=nlstate+ndeath;j++){
       mi++;     /* Death is another wave */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       /* if(mi==0)  never been interviewed correctly before death */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
          /* Only death is a correct wave */            }
       mw[mi][i]=m;          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     wav[i]=mi;            for (kk=1; kk<=cptcovage;kk++) {
     if(mi==0)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=imx; i++){            savm=oldm;
     for(mi=1; mi<wav[i];mi++){            oldm=newm;
       if (stepm <=0)          } /* end mult */
         dh[mi][i]=1;        
       else{          s1=s[mw[mi][i]][i];
         if (s[mw[mi+1][i]][i] > nlstate) {          s2=s[mw[mi+1][i]][i];
           if (agedc[i] < 2*AGESUP) {          bbh=(double)bh[mi][i]/(double)stepm; 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           if(j==0) j=1;  /* Survives at least one month after exam */          ipmx +=1;
           k=k+1;          sw += weight[i];
           if (j >= jmax) jmax=j;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           if (j <= jmin) jmin=j;        } /* end of wave */
           sum=sum+j;      } /* end of individual */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */    }else if (mle==4){  /* ml=4 no inter-extrapolation */
           }      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         }        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         else{        for(mi=1; mi<= wav[i]-1; mi++){
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));          for (ii=1;ii<=nlstate+ndeath;ii++)
           k=k+1;            for (j=1;j<=nlstate+ndeath;j++){
           if (j >= jmax) jmax=j;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           else if (j <= jmin)jmin=j;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            }
           sum=sum+j;          for(d=0; d<dh[mi][i]; d++){
         }            newm=savm;
         jk= j/stepm;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         jl= j -jk*stepm;            for (kk=1; kk<=cptcovage;kk++) {
         ju= j -(jk+1)*stepm;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         if(jl <= -ju)            }
           dh[mi][i]=jk;          
         else            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           dh[mi][i]=jk+1;                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         if(dh[mi][i]==0)            savm=oldm;
           dh[mi][i]=1; /* At least one step */            oldm=newm;
       }          } /* end mult */
     }        
   }          s1=s[mw[mi][i]][i];
   jmean=sum/k;          s2=s[mw[mi+1][i]][i];
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          if( s2 > nlstate){ 
  }            lli=log(out[s1][s2] - savm[s1][s2]);
 /*********** Tricode ****************************/          }else{
 void tricode(int *Tvar, int **nbcode, int imx)            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 {          }
   int Ndum[20],ij=1, k, j, i;          ipmx +=1;
   int cptcode=0;          sw += weight[i];
   cptcoveff=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   for (k=0; k<19; k++) Ndum[k]=0;        } /* end of wave */
   for (k=1; k<=7; k++) ncodemax[k]=0;      } /* end of individual */
     }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for (i=1; i<=imx; i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       ij=(int)(covar[Tvar[j]][i]);        for(mi=1; mi<= wav[i]-1; mi++){
       Ndum[ij]++;          for (ii=1;ii<=nlstate+ndeath;ii++)
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/            for (j=1;j<=nlstate+ndeath;j++){
       if (ij > cptcode) cptcode=ij;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
     for (i=0; i<=cptcode; i++) {          for(d=0; d<dh[mi][i]; d++){
       if(Ndum[i]!=0) ncodemax[j]++;            newm=savm;
     }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     ij=1;            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
     for (i=1; i<=ncodemax[j]; i++) {          
       for (k=0; k<=19; k++) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         if (Ndum[k] != 0) {                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           nbcode[Tvar[j]][ij]=k;            savm=oldm;
                      oldm=newm;
           ij++;          } /* end mult */
         }        
         if (ij > ncodemax[j]) break;          s1=s[mw[mi][i]][i];
       }            s2=s[mw[mi+1][i]][i];
     }          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   }            ipmx +=1;
           sw += weight[i];
  for (k=0; k<19; k++) Ndum[k]=0;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
           /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
  for (i=1; i<=ncovmodel-2; i++) {        } /* end of wave */
       ij=Tvar[i];      } /* end of individual */
       Ndum[ij]++;    } /* End of if */
     }    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
  ij=1;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
  for (i=1; i<=10; i++) {    return -l;
    if((Ndum[i]!=0) && (i<=ncovcol)){  }
      Tvaraff[ij]=i;  
      ij++;  /*************** log-likelihood *************/
    }  double funcone( double *x)
  }  {
      /* Same as likeli but slower because of a lot of printf and if */
     cptcoveff=ij-1;    int i, ii, j, k, mi, d, kk;
 }    double l, ll[NLSTATEMAX], cov[NCOVMAX];
     double **out;
 /*********** Health Expectancies ****************/    double lli; /* Individual log likelihood */
     double llt;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )    int s1, s2;
     double bbh, survp;
 {    /*extern weight */
   /* Health expectancies */    /* We are differentiating ll according to initial status */
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   double age, agelim, hf;    /*for(i=1;i<imx;i++) 
   double ***p3mat,***varhe;      printf(" %d\n",s[4][i]);
   double **dnewm,**doldm;    */
   double *xp;    cov[1]=1.;
   double **gp, **gm;  
   double ***gradg, ***trgradg;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   int theta;  
     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);      for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   xp=vector(1,npar);      for(mi=1; mi<= wav[i]-1; mi++){
   dnewm=matrix(1,nlstate*2,1,npar);        for (ii=1;ii<=nlstate+ndeath;ii++)
   doldm=matrix(1,nlstate*2,1,nlstate*2);          for (j=1;j<=nlstate+ndeath;j++){
              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Health expectancies\n");            savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficreseij,"# Age");          }
   for(i=1; i<=nlstate;i++)        for(d=0; d<dh[mi][i]; d++){
     for(j=1; j<=nlstate;j++)          newm=savm;
       fprintf(ficreseij," %1d-%1d (SE)",i,j);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficreseij,"\n");          for (kk=1; kk<=cptcovage;kk++) {
             cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   if(estepm < stepm){          }
     printf ("Problem %d lower than %d\n",estepm, stepm);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   else  hstepm=estepm;            savm=oldm;
   /* We compute the life expectancy from trapezoids spaced every estepm months          oldm=newm;
    * This is mainly to measure the difference between two models: for example        } /* end mult */
    * if stepm=24 months pijx are given only every 2 years and by summing them        
    * we are calculating an estimate of the Life Expectancy assuming a linear        s1=s[mw[mi][i]][i];
    * progression inbetween and thus overestimating or underestimating according        s2=s[mw[mi+1][i]][i];
    * to the curvature of the survival function. If, for the same date, we        bbh=(double)bh[mi][i]/(double)stepm; 
    * estimate the model with stepm=1 month, we can keep estepm to 24 months        /* bias is positive if real duration
    * to compare the new estimate of Life expectancy with the same linear         * is higher than the multiple of stepm and negative otherwise.
    * hypothesis. A more precise result, taking into account a more precise         */
    * curvature will be obtained if estepm is as small as stepm. */        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
   /* For example we decided to compute the life expectancy with the smallest unit */        } else if  (s2==-2) {
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.          for (j=1,survp=0. ; j<=nlstate; j++) 
      nhstepm is the number of hstepm from age to agelim            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
      nstepm is the number of stepm from age to agelin.          lli= log(survp);
      Look at hpijx to understand the reason of that which relies in memory size        }else if (mle==1){
      and note for a fixed period like estepm months */          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the        } else if(mle==2){
      survival function given by stepm (the optimization length). Unfortunately it          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
      means that if the survival funtion is printed only each two years of age and if        } else if(mle==3){  /* exponential inter-extrapolation */
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
      results. So we changed our mind and took the option of the best precision.        } else if (mle==4){  /* mle=4 no inter-extrapolation */
   */          lli=log(out[s1][s2]); /* Original formula */
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
           lli=log(out[s1][s2]); /* Original formula */
   agelim=AGESUP;        } /* End of if */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        ipmx +=1;
     /* nhstepm age range expressed in number of stepm */        sw += weight[i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     /* if (stepm >= YEARM) hstepm=1;*/        if(globpr){
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          fprintf(ficresilk,"%9d %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);   %11.6f %11.6f %11.6f ", \
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     gp=matrix(0,nhstepm,1,nlstate*2);                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     gm=matrix(0,nhstepm,1,nlstate*2);          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
             llt +=ll[k]*gipmx/gsw;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            fprintf(ficresilk," %10.6f\n", -llt);
          }
       } /* end of wave */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */    } /* end of individual */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     /* Computing Variances of health expectancies */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      for(theta=1; theta <=npar; theta++){    if(globpr==0){ /* First time we count the contributions and weights */
       for(i=1; i<=npar; i++){      gipmx=ipmx;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      gsw=sw;
       }    }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      return -l;
    }
       cptj=0;  
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){  /*************** function likelione ***********/
           cptj=cptj+1;  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  {
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;    /* This routine should help understanding what is done with 
           }       the selection of individuals/waves and
         }       to check the exact contribution to the likelihood.
       }       Plotting could be done.
           */
          int k;
       for(i=1; i<=npar; i++)  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    if(*globpri !=0){ /* Just counts and sums, no printings */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        strcpy(fileresilk,"ilk"); 
            strcat(fileresilk,fileres);
       cptj=0;      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
       for(j=1; j<= nlstate; j++){        printf("Problem with resultfile: %s\n", fileresilk);
         for(i=1;i<=nlstate;i++){        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
           cptj=cptj+1;      }
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
           }      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         }      for(k=1; k<=nlstate; k++) 
       }        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
            fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
        }
   
       for(j=1; j<= nlstate*2; j++)    *fretone=(*funcone)(p);
         for(h=0; h<=nhstepm-1; h++){    if(*globpri !=0){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];      fclose(ficresilk);
         }      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
      }    } 
        return;
 /* End theta */  }
   
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);  
   /*********** Maximum Likelihood Estimation ***************/
      for(h=0; h<=nhstepm-1; h++)  
       for(j=1; j<=nlstate*2;j++)  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         for(theta=1; theta <=npar; theta++)  {
         trgradg[h][j][theta]=gradg[h][theta][j];    int i,j, iter;
     double **xi;
     double fret;
      for(i=1;i<=nlstate*2;i++)    double fretone; /* Only one call to likelihood */
       for(j=1;j<=nlstate*2;j++)    /*  char filerespow[FILENAMELENGTH];*/
         varhe[i][j][(int)age] =0.;    xi=matrix(1,npar,1,npar);
     for (i=1;i<=npar;i++)
     for(h=0;h<=nhstepm-1;h++){      for (j=1;j<=npar;j++)
       for(k=0;k<=nhstepm-1;k++){        xi[i][j]=(i==j ? 1.0 : 0.0);
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    printf("Powell\n");  fprintf(ficlog,"Powell\n");
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    strcpy(filerespow,"pow"); 
         for(i=1;i<=nlstate*2;i++)    strcat(filerespow,fileres);
           for(j=1;j<=nlstate*2;j++)    if((ficrespow=fopen(filerespow,"w"))==NULL) {
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;      printf("Problem with resultfile: %s\n", filerespow);
       }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }    }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
          for (i=1;i<=nlstate;i++)
     /* Computing expectancies */      for(j=1;j<=nlstate+ndeath;j++)
     for(i=1; i<=nlstate;i++)        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       for(j=1; j<=nlstate;j++)    fprintf(ficrespow,"\n");
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){  
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;    powell(p,xi,npar,ftol,&iter,&fret,func);
            
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/    free_matrix(xi,1,npar,1,npar);
     fclose(ficrespow);
         }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
     fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficreseij,"%3.0f",age );    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     cptj=0;  
     for(i=1; i<=nlstate;i++)  }
       for(j=1; j<=nlstate;j++){  
         cptj++;  /**** Computes Hessian and covariance matrix ***/
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
     fprintf(ficreseij,"\n");    double  **a,**y,*x,pd;
        double **hess;
     free_matrix(gm,0,nhstepm,1,nlstate*2);    int i, j,jk;
     free_matrix(gp,0,nhstepm,1,nlstate*2);    int *indx;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
   }    void lubksb(double **a, int npar, int *indx, double b[]) ;
   free_vector(xp,1,npar);    void ludcmp(double **a, int npar, int *indx, double *d) ;
   free_matrix(dnewm,1,nlstate*2,1,npar);    double gompertz(double p[]);
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    hess=matrix(1,npar,1,npar);
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);  
 }    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
 /************ Variance ******************/    for (i=1;i<=npar;i++){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)      printf("%d",i);fflush(stdout);
 {      fprintf(ficlog,"%d",i);fflush(ficlog);
   /* Variance of health expectancies */     
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
   double **newm;      
   double **dnewm,**doldm;      /*  printf(" %f ",p[i]);
   int i, j, nhstepm, hstepm, h, nstepm ;          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
   int k, cptcode;    }
   double *xp;    
   double **gp, **gm;    for (i=1;i<=npar;i++) {
   double ***gradg, ***trgradg;      for (j=1;j<=npar;j++)  {
   double ***p3mat;        if (j>i) { 
   double age,agelim, hf;          printf(".%d%d",i,j);fflush(stdout);
   int theta;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
           hess[i][j]=hessij(p,delti,i,j,func,npar);
    fprintf(ficresvij,"# Covariances of life expectancies\n");          
   fprintf(ficresvij,"# Age");          hess[j][i]=hess[i][j];    
   for(i=1; i<=nlstate;i++)          /*printf(" %lf ",hess[i][j]);*/
     for(j=1; j<=nlstate;j++)        }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      }
   fprintf(ficresvij,"\n");    }
     printf("\n");
   xp=vector(1,npar);    fprintf(ficlog,"\n");
   dnewm=matrix(1,nlstate,1,npar);  
   doldm=matrix(1,nlstate,1,nlstate);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   if(estepm < stepm){    
     printf ("Problem %d lower than %d\n",estepm, stepm);    a=matrix(1,npar,1,npar);
   }    y=matrix(1,npar,1,npar);
   else  hstepm=estepm;      x=vector(1,npar);
   /* For example we decided to compute the life expectancy with the smallest unit */    indx=ivector(1,npar);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.    for (i=1;i<=npar;i++)
      nhstepm is the number of hstepm from age to agelim      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
      nstepm is the number of stepm from age to agelin.    ludcmp(a,npar,indx,&pd);
      Look at hpijx to understand the reason of that which relies in memory size  
      and note for a fixed period like k years */    for (j=1;j<=npar;j++) {
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the      for (i=1;i<=npar;i++) x[i]=0;
      survival function given by stepm (the optimization length). Unfortunately it      x[j]=1;
      means that if the survival funtion is printed only each two years of age and if      lubksb(a,npar,indx,x);
      you sum them up and add 1 year (area under the trapezoids) you won't get the same      for (i=1;i<=npar;i++){ 
      results. So we changed our mind and took the option of the best precision.        matcov[i][j]=x[i];
   */      }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */    }
   agelim = AGESUP;  
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    printf("\n#Hessian matrix#\n");
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    fprintf(ficlog,"\n#Hessian matrix#\n");
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */    for (i=1;i<=npar;i++) { 
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      for (j=1;j<=npar;j++) { 
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        printf("%.3e ",hess[i][j]);
     gp=matrix(0,nhstepm,1,nlstate);        fprintf(ficlog,"%.3e ",hess[i][j]);
     gm=matrix(0,nhstepm,1,nlstate);      }
       printf("\n");
     for(theta=1; theta <=npar; theta++){      fprintf(ficlog,"\n");
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    /* Recompute Inverse */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      for (i=1;i<=npar;i++)
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     ludcmp(a,npar,indx,&pd);
       if (popbased==1) {  
         for(i=1; i<=nlstate;i++)    /*  printf("\n#Hessian matrix recomputed#\n");
           prlim[i][i]=probs[(int)age][i][ij];  
       }    for (j=1;j<=npar;j++) {
        for (i=1;i<=npar;i++) x[i]=0;
       for(j=1; j<= nlstate; j++){      x[j]=1;
         for(h=0; h<=nhstepm; h++){      lubksb(a,npar,indx,x);
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      for (i=1;i<=npar;i++){ 
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];        y[i][j]=x[i];
         }        printf("%.3e ",y[i][j]);
       }        fprintf(ficlog,"%.3e ",y[i][j]);
          }
       for(i=1; i<=npar; i++) /* Computes gradient */      printf("\n");
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficlog,"\n");
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    */
    
       if (popbased==1) {    free_matrix(a,1,npar,1,npar);
         for(i=1; i<=nlstate;i++)    free_matrix(y,1,npar,1,npar);
           prlim[i][i]=probs[(int)age][i][ij];    free_vector(x,1,npar);
       }    free_ivector(indx,1,npar);
     free_matrix(hess,1,npar,1,npar);
       for(j=1; j<= nlstate; j++){  
         for(h=0; h<=nhstepm; h++){  
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)  }
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  
         }  /*************** hessian matrix ****************/
       }  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
   {
       for(j=1; j<= nlstate; j++)    int i;
         for(h=0; h<=nhstepm; h++){    int l=1, lmax=20;
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    double k1,k2;
         }    double p2[NPARMAX+1];
     } /* End theta */    double res;
     double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);    double fx;
     int k=0,kmax=10;
     for(h=0; h<=nhstepm; h++)    double l1;
       for(j=1; j<=nlstate;j++)  
         for(theta=1; theta <=npar; theta++)    fx=func(x);
           trgradg[h][j][theta]=gradg[h][theta][j];    for (i=1;i<=npar;i++) p2[i]=x[i];
     for(l=0 ; l <=lmax; l++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      l1=pow(10,l);
     for(i=1;i<=nlstate;i++)      delts=delt;
       for(j=1;j<=nlstate;j++)      for(k=1 ; k <kmax; k=k+1){
         vareij[i][j][(int)age] =0.;        delt = delta*(l1*k);
         p2[theta]=x[theta] +delt;
     for(h=0;h<=nhstepm;h++){        k1=func(p2)-fx;
       for(k=0;k<=nhstepm;k++){        p2[theta]=x[theta]-delt;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        k2=func(p2)-fx;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        /*res= (k1-2.0*fx+k2)/delt/delt; */
         for(i=1;i<=nlstate;i++)        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
           for(j=1;j<=nlstate;j++)        
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;  #ifdef DEBUG
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
     }        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
   #endif
     fprintf(ficresvij,"%.0f ",age );        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     for(i=1; i<=nlstate;i++)        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       for(j=1; j<=nlstate;j++){          k=kmax;
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        }
       }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
     fprintf(ficresvij,"\n");          k=kmax; l=lmax*10.;
     free_matrix(gp,0,nhstepm,1,nlstate);        }
     free_matrix(gm,0,nhstepm,1,nlstate);        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          delts=delt;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);        }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      }
   } /* End age */    }
      delti[theta]=delts;
   free_vector(xp,1,npar);    return res; 
   free_matrix(doldm,1,nlstate,1,npar);    
   free_matrix(dnewm,1,nlstate,1,nlstate);  }
   
 }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
   {
 /************ Variance of prevlim ******************/    int i;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    int l=1, l1, lmax=20;
 {    double k1,k2,k3,k4,res,fx;
   /* Variance of prevalence limit */    double p2[NPARMAX+1];
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    int k;
   double **newm;  
   double **dnewm,**doldm;    fx=func(x);
   int i, j, nhstepm, hstepm;    for (k=1; k<=2; k++) {
   int k, cptcode;      for (i=1;i<=npar;i++) p2[i]=x[i];
   double *xp;      p2[thetai]=x[thetai]+delti[thetai]/k;
   double *gp, *gm;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   double **gradg, **trgradg;      k1=func(p2)-fx;
   double age,agelim;    
   int theta;      p2[thetai]=x[thetai]+delti[thetai]/k;
          p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");      k2=func(p2)-fx;
   fprintf(ficresvpl,"# Age");    
   for(i=1; i<=nlstate;i++)      p2[thetai]=x[thetai]-delti[thetai]/k;
       fprintf(ficresvpl," %1d-%1d",i,i);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fprintf(ficresvpl,"\n");      k3=func(p2)-fx;
     
   xp=vector(1,npar);      p2[thetai]=x[thetai]-delti[thetai]/k;
   dnewm=matrix(1,nlstate,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   doldm=matrix(1,nlstate,1,nlstate);      k4=func(p2)-fx;
        res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   hstepm=1*YEARM; /* Every year of age */  #ifdef DEBUG
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   agelim = AGESUP;      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  #endif
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    }
     if (stepm >= YEARM) hstepm=1;    return res;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  }
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);  /************** Inverse of matrix **************/
     gm=vector(1,nlstate);  void ludcmp(double **a, int n, int *indx, double *d) 
   { 
     for(theta=1; theta <=npar; theta++){    int i,imax,j,k; 
       for(i=1; i<=npar; i++){ /* Computes gradient */    double big,dum,sum,temp; 
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double *vv; 
       }   
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    vv=vector(1,n); 
       for(i=1;i<=nlstate;i++)    *d=1.0; 
         gp[i] = prlim[i][i];    for (i=1;i<=n;i++) { 
          big=0.0; 
       for(i=1; i<=npar; i++) /* Computes gradient */      for (j=1;j<=n;j++) 
         xp[i] = x[i] - (i==theta ?delti[theta]:0);        if ((temp=fabs(a[i][j])) > big) big=temp; 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
       for(i=1;i<=nlstate;i++)      vv[i]=1.0/big; 
         gm[i] = prlim[i][i];    } 
     for (j=1;j<=n;j++) { 
       for(i=1;i<=nlstate;i++)      for (i=1;i<j;i++) { 
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        sum=a[i][j]; 
     } /* End theta */        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
         a[i][j]=sum; 
     trgradg =matrix(1,nlstate,1,npar);      } 
       big=0.0; 
     for(j=1; j<=nlstate;j++)      for (i=j;i<=n;i++) { 
       for(theta=1; theta <=npar; theta++)        sum=a[i][j]; 
         trgradg[j][theta]=gradg[theta][j];        for (k=1;k<j;k++) 
           sum -= a[i][k]*a[k][j]; 
     for(i=1;i<=nlstate;i++)        a[i][j]=sum; 
       varpl[i][(int)age] =0.;        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          big=dum; 
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);          imax=i; 
     for(i=1;i<=nlstate;i++)        } 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */      } 
       if (j != imax) { 
     fprintf(ficresvpl,"%.0f ",age );        for (k=1;k<=n;k++) { 
     for(i=1; i<=nlstate;i++)          dum=a[imax][k]; 
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));          a[imax][k]=a[j][k]; 
     fprintf(ficresvpl,"\n");          a[j][k]=dum; 
     free_vector(gp,1,nlstate);        } 
     free_vector(gm,1,nlstate);        *d = -(*d); 
     free_matrix(gradg,1,npar,1,nlstate);        vv[imax]=vv[j]; 
     free_matrix(trgradg,1,nlstate,1,npar);      } 
   } /* End age */      indx[j]=imax; 
       if (a[j][j] == 0.0) a[j][j]=TINY; 
   free_vector(xp,1,npar);      if (j != n) { 
   free_matrix(doldm,1,nlstate,1,npar);        dum=1.0/(a[j][j]); 
   free_matrix(dnewm,1,nlstate,1,nlstate);        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       } 
 }    } 
     free_vector(vv,1,n);  /* Doesn't work */
 /************ Variance of one-step probabilities  ******************/  ;
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)  } 
 {  
   int i, j, i1, k1, j1, z1;  void lubksb(double **a, int n, int *indx, double b[]) 
   int k=0, cptcode;  { 
   double **dnewm,**doldm;    int i,ii=0,ip,j; 
   double *xp;    double sum; 
   double *gp, *gm;   
   double **gradg, **trgradg;    for (i=1;i<=n;i++) { 
   double age,agelim, cov[NCOVMAX];      ip=indx[i]; 
   int theta;      sum=b[ip]; 
   char fileresprob[FILENAMELENGTH];      b[ip]=b[i]; 
       if (ii) 
   strcpy(fileresprob,"prob");        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
   strcat(fileresprob,fileres);      else if (sum) ii=i; 
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {      b[i]=sum; 
     printf("Problem with resultfile: %s\n", fileresprob);    } 
   }    for (i=n;i>=1;i--) { 
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);      sum=b[i]; 
        for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
 fprintf(ficresprob,"#One-step probabilities and standard deviation in parentheses\n");      b[i]=sum/a[i][i]; 
   fprintf(ficresprob,"# Age");    } 
   for(i=1; i<=nlstate;i++)  } 
     for(j=1; j<=(nlstate+ndeath);j++)  
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);  void pstamp(FILE *fichier)
   {
     fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
   fprintf(ficresprob,"\n");  }
   
   /************ Frequencies ********************/
   xp=vector(1,npar);  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);  {  /* Some frequencies */
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));    
      int i, m, jk, k1,i1, j1, bool, z1,z2,j;
   cov[1]=1;    int first;
   j=cptcoveff;    double ***freq; /* Frequencies */
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    double *pp, **prop;
   j1=0;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
   for(k1=1; k1<=1;k1++){    char fileresp[FILENAMELENGTH];
     for(i1=1; i1<=ncodemax[k1];i1++){    
     j1++;    pp=vector(1,nlstate);
     prop=matrix(1,nlstate,iagemin,iagemax+3);
     if  (cptcovn>0) {    strcpy(fileresp,"p");
       fprintf(ficresprob, "\n#********** Variable ");    strcat(fileresp,fileres);
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    if((ficresp=fopen(fileresp,"w"))==NULL) {
       fprintf(ficresprob, "**********\n#");      printf("Problem with prevalence resultfile: %s\n", fileresp);
     }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
          exit(0);
       for (age=bage; age<=fage; age ++){    }
         cov[2]=age;    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
         for (k=1; k<=cptcovn;k++) {    j1=0;
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];    
              j=cptcoveff;
         }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  
         for (k=1; k<=cptcovprod;k++)    first=1;
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
            for(k1=1; k1<=j;k1++){
         gradg=matrix(1,npar,1,9);      for(i1=1; i1<=ncodemax[k1];i1++){
         trgradg=matrix(1,9,1,npar);        j1++;
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));          scanf("%d", i);*/
            for (i=-5; i<=nlstate+ndeath; i++)  
         for(theta=1; theta <=npar; theta++){          for (jk=-5; jk<=nlstate+ndeath; jk++)  
           for(i=1; i<=npar; i++)            for(m=iagemin; m <= iagemax+3; m++)
             xp[i] = x[i] + (i==theta ?delti[theta]:0);              freq[i][jk][m]=0;
            
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      for (i=1; i<=nlstate; i++)  
                  for(m=iagemin; m <= iagemax+3; m++)
           k=0;          prop[i][m]=0;
           for(i=1; i<= (nlstate+ndeath); i++){        
             for(j=1; j<=(nlstate+ndeath);j++){        dateintsum=0;
               k=k+1;        k2cpt=0;
               gp[k]=pmmij[i][j];        for (i=1; i<=imx; i++) {
             }          bool=1;
           }          if  (cptcovn>0) {
                      for (z1=1; z1<=cptcoveff; z1++) 
           for(i=1; i<=npar; i++)              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
             xp[i] = x[i] - (i==theta ?delti[theta]:0);                bool=0;
              }
           pmij(pmmij,cov,ncovmodel,xp,nlstate);          if (bool==1){
           k=0;            for(m=firstpass; m<=lastpass; m++){
           for(i=1; i<=(nlstate+ndeath); i++){              k2=anint[m][i]+(mint[m][i]/12.);
             for(j=1; j<=(nlstate+ndeath);j++){              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
               k=k+1;                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               gm[k]=pmmij[i][j];                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             }                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
           }                if (m<lastpass) {
                        freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];                  }
         }                
                 if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)                  dateintsum=dateintsum+k2;
           for(theta=1; theta <=npar; theta++)                  k2cpt++;
             trgradg[j][theta]=gradg[theta][j];                }
                        /*}*/
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);            }
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);          }
                }
         pmij(pmmij,cov,ncovmodel,x,nlstate);         
                /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         k=0;        pstamp(ficresp);
         for(i=1; i<=(nlstate+ndeath); i++){        if  (cptcovn>0) {
           for(j=1; j<=(nlstate+ndeath);j++){          fprintf(ficresp, "\n#********** Variable "); 
             k=k+1;          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             gm[k]=pmmij[i][j];          fprintf(ficresp, "**********\n#");
           }        }
         }        for(i=1; i<=nlstate;i++) 
                fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
      /*printf("\n%d ",(int)age);        fprintf(ficresp, "\n");
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){        
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));        for(i=iagemin; i <= iagemax+3; i++){
      }*/          if(i==iagemax+3){
             fprintf(ficlog,"Total");
         fprintf(ficresprob,"\n%d ",(int)age);          }else{
             if(first==1){
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)              first=0;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],sqrt(doldm[i][i]));              printf("See log file for details...\n");
              }
       }            fprintf(ficlog,"Age %d", i);
     }          }
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));          for(jk=1; jk <=nlstate ; jk++){
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);              pp[jk] += freq[jk][m][i]; 
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);          }
   }          for(jk=1; jk <=nlstate ; jk++){
   free_vector(xp,1,npar);            for(m=-1, pos=0; m <=0 ; m++)
   fclose(ficresprob);              pos += freq[jk][m][i];
              if(pp[jk]>=1.e-10){
 }              if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 /******************* Printing html file ***********/              }
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
  int lastpass, int stepm, int weightopt, char model[],\            }else{
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \              if(first==1)
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  char version[], int popforecast, int estepm ){              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int jj1, k1, i1, cpt;            }
   FILE *fichtm;          }
   /*char optionfilehtm[FILENAMELENGTH];*/  
           for(jk=1; jk <=nlstate ; jk++){
   strcpy(optionfilehtm,optionfile);            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   strcat(optionfilehtm,".htm");              pp[jk] += freq[jk][m][i];
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {          }       
     printf("Problem with %s \n",optionfilehtm), exit(0);          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
   }            pos += pp[jk];
             posprop += prop[jk][i];
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n          }
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n          for(jk=1; jk <=nlstate ; jk++){
 \n            if(pos>=1.e-5){
 Total number of observations=%d <br>\n              if(first==1)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 <hr  size=\"2\" color=\"#EC5E5E\">              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
  <ul><li>Outputs files<br>\n            }else{
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n              if(first==1)
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n            }
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n            if( i <= iagemax){
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);              if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
  fprintf(fichtm,"\n                /*probs[i][jk][j1]= pp[jk]/pos;*/
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n              }
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n              else
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);            }
           }
  if(popforecast==1) fprintf(fichtm,"\n          
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n          for(jk=-1; jk <=nlstate+ndeath; jk++)
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n            for(m=-1; m <=nlstate+ndeath; m++)
         <br>",fileres,fileres,fileres,fileres);              if(freq[jk][m][i] !=0 ) {
  else              if(first==1)
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
 fprintf(fichtm," <li>Graphs</li><p>");                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
  m=cptcoveff;          if(i <= iagemax)
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}            fprintf(ficresp,"\n");
           if(first==1)
  jj1=0;            printf("Others in log...\n");
  for(k1=1; k1<=m;k1++){          fprintf(ficlog,"\n");
    for(i1=1; i1<=ncodemax[k1];i1++){        }
        jj1++;      }
        if (cptcovn > 0) {    }
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");    dateintmean=dateintsum/k2cpt; 
          for (cpt=1; cpt<=cptcoveff;cpt++)   
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);    fclose(ficresp);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
        }    free_vector(pp,1,nlstate);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        /* End of Freq */
        for(cpt=1; cpt<nlstate;cpt++){  }
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>  
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  /************ Prevalence ********************/
        }  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
     for(cpt=1; cpt<=nlstate;cpt++) {  {  
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
 interval) in state (%d): v%s%d%d.gif <br>       in each health status at the date of interview (if between dateprev1 and dateprev2).
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);         We still use firstpass and lastpass as another selection.
      }    */
      for(cpt=1; cpt<=nlstate;cpt++) {   
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);    double ***freq; /* Frequencies */
      }    double *pp, **prop;
      fprintf(fichtm,"\n<br>- Total life expectancy by age and    double pos,posprop; 
 health expectancies in states (1) and (2): e%s%d.gif<br>    double  y2; /* in fractional years */
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);    int iagemin, iagemax;
 fprintf(fichtm,"\n</body>");  
    }    iagemin= (int) agemin;
    }    iagemax= (int) agemax;
 fclose(fichtm);    /*pp=vector(1,nlstate);*/
 }    prop=matrix(1,nlstate,iagemin,iagemax+3); 
     /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 /******************* Gnuplot file **************/    j1=0;
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    
     j=cptcoveff;
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
   strcpy(optionfilegnuplot,optionfilefiname);    for(k1=1; k1<=j;k1++){
   strcat(optionfilegnuplot,".gp.txt");      for(i1=1; i1<=ncodemax[k1];i1++){
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        j1++;
     printf("Problem with file %s",optionfilegnuplot);        
   }        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
 #ifdef windows            prop[i][m]=0.0;
     fprintf(ficgp,"cd \"%s\" \n",pathc);       
 #endif        for (i=1; i<=imx; i++) { /* Each individual */
 m=pow(2,cptcoveff);          bool=1;
            if  (cptcovn>0) {
  /* 1eme*/            for (z1=1; z1<=cptcoveff; z1++) 
   for (cpt=1; cpt<= nlstate ; cpt ++) {              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    for (k1=1; k1<= m ; k1 ++) {                bool=0;
           } 
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 for (i=1; i<= nlstate ; i ++) {              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if(agev[m][i]==0) agev[m][i]=iagemax+1;
 }                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
     for (i=1; i<= nlstate ; i ++) {                if (s[m][i]>0 && s[m][i]<=nlstate) { 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   else fprintf(ficgp," \%%*lf (\%%*lf)");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
 }                  prop[s[m][i]][iagemax+3] += weight[i]; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);                } 
      for (i=1; i<= nlstate ; i ++) {              }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            } /* end selection of waves */
   else fprintf(ficgp," \%%*lf (\%%*lf)");          }
 }          }
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));        for(i=iagemin; i <= iagemax+3; i++){  
           
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
    }            posprop += prop[jk][i]; 
   }          } 
   /*2 eme*/  
           for(jk=1; jk <=nlstate ; jk++){     
   for (k1=1; k1<= m ; k1 ++) {            if( i <=  iagemax){ 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);              if(posprop>=1.e-5){ 
                    probs[i][jk][j1]= prop[jk][i]/posprop;
     for (i=1; i<= nlstate+1 ; i ++) {              } 
       k=2*i;            } 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);          }/* end jk */ 
       for (j=1; j<= nlstate+1 ; j ++) {        }/* end i */ 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      } /* end i1 */
   else fprintf(ficgp," \%%*lf (\%%*lf)");    } /* end k1 */
 }      
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);    /*free_vector(pp,1,nlstate);*/
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
       for (j=1; j<= nlstate+1 ; j ++) {  }  /* End of prevalence */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");  /************* Waves Concatenation ***************/
 }    
       fprintf(ficgp,"\" t\"\" w l 0,");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  {
       for (j=1; j<= nlstate+1 ; j ++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");       Death is a valid wave (if date is known).
   else fprintf(ficgp," \%%*lf (\%%*lf)");       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 }         dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");       and mw[mi+1][i]. dh depends on stepm.
       else fprintf(ficgp,"\" t\"\" w l 0,");       */
     }  
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    int i, mi, m;
   }    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
         double sum=0., jmean=0.;*/
   /*3eme*/    int first;
     int j, k=0,jk, ju, jl;
   for (k1=1; k1<= m ; k1 ++) {    double sum=0.;
     for (cpt=1; cpt<= nlstate ; cpt ++) {    first=0;
       k=2+nlstate*(2*cpt-2);    jmin=1e+5;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    jmax=-1;
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);    jmean=0.;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");    for(i=1; i<=imx; i++){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);      mi=0;
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);      m=firstpass;
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");      while(s[m][i] <= nlstate){
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
           mw[++mi][i]=m;
 */        if(m >=lastpass)
       for (i=1; i< nlstate ; i ++) {          break;
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);        else
           m++;
       }      }/* end while */
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      if (s[m][i] > nlstate){
     }        mi++;     /* Death is another wave */
     }        /* if(mi==0)  never been interviewed correctly before death */
             /* Only death is a correct wave */
   /* CV preval stat */        mw[mi][i]=m;
     for (k1=1; k1<= m ; k1 ++) {      }
     for (cpt=1; cpt<nlstate ; cpt ++) {  
       k=3;      wav[i]=mi;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      if(mi==0){
         nbwarn++;
       for (i=1; i< nlstate ; i ++)        if(first==0){
         fprintf(ficgp,"+$%d",k+i+1);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);          first=1;
              }
       l=3+(nlstate+ndeath)*cpt;        if(first==1){
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       for (i=1; i< nlstate ; i ++) {        }
         l=3+(nlstate+ndeath)*cpt;      } /* end mi==0 */
         fprintf(ficgp,"+$%d",l+i+1);    } /* End individuals */
       }  
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);      for(i=1; i<=imx; i++){
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      for(mi=1; mi<wav[i];mi++){
     }        if (stepm <=0)
   }            dh[mi][i]=1;
          else{
   /* proba elementaires */          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
    for(i=1,jk=1; i <=nlstate; i++){            if (agedc[i] < 2*AGESUP) {
     for(k=1; k <=(nlstate+ndeath); k++){              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       if (k != i) {              if(j==0) j=1;  /* Survives at least one month after exam */
         for(j=1; j <=ncovmodel; j++){              else if(j<0){
                        nberr++;
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           jk++;                j=1; /* Temporary Dangerous patch */
           fprintf(ficgp,"\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
         }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
     }              }
     }              k=k+1;
               if (j >= jmax){
     for(jk=1; jk <=m; jk++) {                jmax=j;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);                ijmax=i;
    i=1;              }
    for(k2=1; k2<=nlstate; k2++) {              if (j <= jmin){
      k3=i;                jmin=j;
      for(k=1; k<=(nlstate+ndeath); k++) {                ijmin=i;
        if (k != k2){              }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);              sum=sum+j;
 ij=1;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
         for(j=3; j <=ncovmodel; j++) {              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {            }
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);          }
             ij++;          else{
           }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           else  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);  
         }            k=k+1;
           fprintf(ficgp,")/(1");            if (j >= jmax) {
                      jmax=j;
         for(k1=1; k1 <=nlstate; k1++){                ijmax=i;
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);            }
 ij=1;            else if (j <= jmin){
           for(j=3; j <=ncovmodel; j++){              jmin=j;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {              ijmin=i;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);            }
             ij++;            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           }            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
           else            if(j<0){
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);              nberr++;
           }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
           fprintf(ficgp,")");              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }            }
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);            sum=sum+j;
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");          }
         i=i+ncovmodel;          jk= j/stepm;
        }          jl= j -jk*stepm;
      }          ju= j -(jk+1)*stepm;
    }          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);            if(jl==0){
    }              dh[mi][i]=jk;
                  bh[mi][i]=0;
   fclose(ficgp);            }else{ /* We want a negative bias in order to only have interpolation ie
 }  /* end gnuplot */                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
 /*************** Moving average **************/            }
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){          }else{
             if(jl <= -ju){
   int i, cpt, cptcod;              dh[mi][i]=jk;
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)              bh[mi][i]=jl;       /* bias is positive if real duration
       for (i=1; i<=nlstate;i++)                                   * is higher than the multiple of stepm and negative otherwise.
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)                                   */
           mobaverage[(int)agedeb][i][cptcod]=0.;            }
                else{
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){              dh[mi][i]=jk+1;
       for (i=1; i<=nlstate;i++){              bh[mi][i]=ju;
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){            }
           for (cpt=0;cpt<=4;cpt++){            if(dh[mi][i]==0){
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];              dh[mi][i]=1; /* At least one step */
           }              bh[mi][i]=ju; /* At least one step */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
         }            }
       }          } /* end if mle */
     }        }
          } /* end wave */
 }    }
     jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
 /************** Forecasting ******************/    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){   }
    
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;  /*********** Tricode ****************************/
   int *popage;  void tricode(int *Tvar, int **nbcode, int imx)
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;  {
   double *popeffectif,*popcount;    
   double ***p3mat;    int Ndum[20],ij=1, k, j, i, maxncov=19;
   char fileresf[FILENAMELENGTH];    int cptcode=0;
     cptcoveff=0; 
  agelim=AGESUP;   
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;    for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);  
      for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
        for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
   strcpy(fileresf,"f");                                 modality*/ 
   strcat(fileresf,fileres);        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
   if((ficresf=fopen(fileresf,"w"))==NULL) {        Ndum[ij]++; /*store the modality */
     printf("Problem with forecast resultfile: %s\n", fileresf);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
   }        if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
   printf("Computing forecasting: result on file '%s' \n", fileresf);                                         Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      }
   
   if (mobilav==1) {      for (i=0; i<=cptcode; i++) {
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
     movingaverage(agedeb, fage, ageminpar, mobaverage);      }
   }  
       ij=1; 
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for (i=1; i<=ncodemax[j]; i++) {
   if (stepm<=12) stepsize=1;        for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
   agelim=AGESUP;            nbcode[Tvar[j]][ij]=k; 
              /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   hstepm=1;            
   hstepm=hstepm/stepm;            ij++;
   yp1=modf(dateintmean,&yp);          }
   anprojmean=yp;          if (ij > ncodemax[j]) break; 
   yp2=modf((yp1*12),&yp);        }  
   mprojmean=yp;      } 
   yp1=modf((yp2*30.5),&yp);    }  
   jprojmean=yp;  
   if(jprojmean==0) jprojmean=1;   for (k=0; k< maxncov; k++) Ndum[k]=0;
   if(mprojmean==0) jprojmean=1;  
     for (i=1; i<=ncovmodel-2; i++) { 
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
       ij=Tvar[i];
   for(cptcov=1;cptcov<=i2;cptcov++){     Ndum[ij]++;
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){   }
       k=k+1;  
       fprintf(ficresf,"\n#******");   ij=1;
       for(j=1;j<=cptcoveff;j++) {   for (i=1; i<= maxncov; i++) {
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);     if((Ndum[i]!=0) && (i<=ncovcol)){
       }       Tvaraff[ij]=i; /*For printing */
       fprintf(ficresf,"******\n");       ij++;
       fprintf(ficresf,"# StartingAge FinalAge");     }
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);   }
         
         cptcoveff=ij-1; /*Number of simple covariates*/
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {  }
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);    /*********** Health Expectancies ****************/
   
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  {
              /* Health expectancies, no variances */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
           oldm=oldms;savm=savms;    double age, agelim, hf;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      double ***p3mat;
            double eip;
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {    pstamp(ficreseij);
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
             }    fprintf(ficreseij,"# Age");
             for(j=1; j<=nlstate+ndeath;j++) {    for(i=1; i<=nlstate;i++){
               kk1=0.;kk2=0;      for(j=1; j<=nlstate;j++){
               for(i=1; i<=nlstate;i++) {                      fprintf(ficreseij," e%1d%1d ",i,j);
                 if (mobilav==1)      }
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      fprintf(ficreseij," e%1d. ",i);
                 else {    }
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    fprintf(ficreseij,"\n");
                 }  
                    
               }    if(estepm < stepm){
               if (h==(int)(calagedate+12*cpt)){      printf ("Problem %d lower than %d\n",estepm, stepm);
                 fprintf(ficresf," %.3f", kk1);    }
                            else  hstepm=estepm;   
               }    /* We compute the life expectancy from trapezoids spaced every estepm months
             }     * This is mainly to measure the difference between two models: for example
           }     * if stepm=24 months pijx are given only every 2 years and by summing them
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * we are calculating an estimate of the Life Expectancy assuming a linear 
         }     * progression in between and thus overestimating or underestimating according
       }     * to the curvature of the survival function. If, for the same date, we 
     }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
             * hypothesis. A more precise result, taking into account a more precise
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);     * curvature will be obtained if estepm is as small as stepm. */
   
   fclose(ficresf);    /* For example we decided to compute the life expectancy with the smallest unit */
 }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 /************** Forecasting ******************/       nhstepm is the number of hstepm from age to agelim 
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;       and note for a fixed period like estepm months */
   int *popage;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;       survival function given by stepm (the optimization length). Unfortunately it
   double *popeffectif,*popcount;       means that if the survival funtion is printed only each two years of age and if
   double ***p3mat,***tabpop,***tabpopprev;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   char filerespop[FILENAMELENGTH];       results. So we changed our mind and took the option of the best precision.
     */
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
   agelim=AGESUP;    agelim=AGESUP;
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;    /* nhstepm age range expressed in number of stepm */
      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
      /* if (stepm >= YEARM) hstepm=1;*/
      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   strcpy(filerespop,"pop");    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     printf("Problem with forecast resultfile: %s\n", filerespop);      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   printf("Computing forecasting: result on file '%s' \n", filerespop);      
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   if (cptcoveff==0) ncodemax[cptcoveff]=1;      
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if (mobilav==1) {      
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      printf("%d|",(int)age);fflush(stdout);
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   }      
       /* Computing expectancies */
   stepsize=(int) (stepm+YEARM-1)/YEARM;      for(i=1; i<=nlstate;i++)
   if (stepm<=12) stepsize=1;        for(j=1; j<=nlstate;j++)
            for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   agelim=AGESUP;            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
              
   hstepm=1;            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   hstepm=hstepm/stepm;  
            }
   if (popforecast==1) {  
     if((ficpop=fopen(popfile,"r"))==NULL) {      fprintf(ficreseij,"%3.0f",age );
       printf("Problem with population file : %s\n",popfile);exit(0);      for(i=1; i<=nlstate;i++){
     }        eip=0;
     popage=ivector(0,AGESUP);        for(j=1; j<=nlstate;j++){
     popeffectif=vector(0,AGESUP);          eip +=eij[i][j][(int)age];
     popcount=vector(0,AGESUP);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
            }
     i=1;          fprintf(ficreseij,"%9.4f", eip );
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;      }
          fprintf(ficreseij,"\n");
     imx=i;      
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    }
   }    free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
   for(cptcov=1;cptcov<=i2;cptcov++){    fprintf(ficlog,"\n");
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    
       k=k+1;  }
       fprintf(ficrespop,"\n#******");  
       for(j=1;j<=cptcoveff;j++) {  void cvevsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       }  {
       fprintf(ficrespop,"******\n");    /* Covariances of health expectancies eij and of total life expectancies according
       fprintf(ficrespop,"# Age");     to initial status i, ei. .
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    */
       if (popforecast==1)  fprintf(ficrespop," [Population]");    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
          double age, agelim, hf;
       for (cpt=0; cpt<=0;cpt++) {    double ***p3matp, ***p3matm, ***varhe;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      double **dnewm,**doldm;
            double *xp, *xm;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    double **gp, **gm;
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    double ***gradg, ***trgradg;
           nhstepm = nhstepm/hstepm;    int theta;
            
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double eip, vip;
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
            xp=vector(1,npar);
           for (h=0; h<=nhstepm; h++){    xm=vector(1,npar);
             if (h==(int) (calagedate+YEARM*cpt)) {    dnewm=matrix(1,nlstate*nlstate,1,npar);
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
             }    
             for(j=1; j<=nlstate+ndeath;j++) {    pstamp(ficresstdeij);
               kk1=0.;kk2=0;    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
               for(i=1; i<=nlstate;i++) {                  fprintf(ficresstdeij,"# Age");
                 if (mobilav==1)    for(i=1; i<=nlstate;i++){
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(j=1; j<=nlstate;j++)
                 else {        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];      fprintf(ficresstdeij," e%1d. ",i);
                 }    }
               }    fprintf(ficresstdeij,"\n");
               if (h==(int)(calagedate+12*cpt)){  
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    pstamp(ficrescveij);
                   /*fprintf(ficrespop," %.3f", kk1);    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    fprintf(ficrescveij,"# Age");
               }    for(i=1; i<=nlstate;i++)
             }      for(j=1; j<=nlstate;j++){
             for(i=1; i<=nlstate;i++){        cptj= (j-1)*nlstate+i;
               kk1=0.;        for(i2=1; i2<=nlstate;i2++)
                 for(j=1; j<=nlstate;j++){          for(j2=1; j2<=nlstate;j2++){
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];            cptj2= (j2-1)*nlstate+i2;
                 }            if(cptj2 <= cptj)
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
             }          }
       }
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    fprintf(ficrescveij,"\n");
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    
           }    if(estepm < stepm){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      printf ("Problem %d lower than %d\n",estepm, stepm);
         }    }
       }    else  hstepm=estepm;   
      /* We compute the life expectancy from trapezoids spaced every estepm months
   /******/     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {     * we are calculating an estimate of the Life Expectancy assuming a linear 
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);       * progression in between and thus overestimating or underestimating according
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){     * to the curvature of the survival function. If, for the same date, we 
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
           nhstepm = nhstepm/hstepm;     * to compare the new estimate of Life expectancy with the same linear 
               * hypothesis. A more precise result, taking into account a more precise
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);     * curvature will be obtained if estepm is as small as stepm. */
           oldm=oldms;savm=savms;  
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /* For example we decided to compute the life expectancy with the smallest unit */
           for (h=0; h<=nhstepm; h++){    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             if (h==(int) (calagedate+YEARM*cpt)) {       nhstepm is the number of hstepm from age to agelim 
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);       nstepm is the number of stepm from age to agelin. 
             }       Look at hpijx to understand the reason of that which relies in memory size
             for(j=1; j<=nlstate+ndeath;j++) {       and note for a fixed period like estepm months */
               kk1=0.;kk2=0;    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
               for(i=1; i<=nlstate;i++) {                     survival function given by stepm (the optimization length). Unfortunately it
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];           means that if the survival funtion is printed only each two years of age and if
               }       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);       results. So we changed our mind and took the option of the best precision.
             }    */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
         }    /* If stepm=6 months */
       }    /* nhstepm age range expressed in number of stepm */
    }    agelim=AGESUP;
   }    nstepm=(int) rint((agelim-age)*YEARM/stepm); 
      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   if (popforecast==1) {    
     free_ivector(popage,0,AGESUP);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(popeffectif,0,AGESUP);    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_vector(popcount,0,AGESUP);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
   }    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gp=matrix(0,nhstepm,1,nlstate*nlstate);
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);    gm=matrix(0,nhstepm,1,nlstate*nlstate);
   fclose(ficrespop);  
 }    for (age=bage; age<=fage; age ++){ 
   
 /***********************************************/      /* Computed by stepm unit matrices, product of hstepm matrices, stored
 /**************** Main Program *****************/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
 /***********************************************/   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
 int main(int argc, char *argv[])  
 {      /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;         decrease memory allocation */
   double agedeb, agefin,hf;      for(theta=1; theta <=npar; theta++){
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;        for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
   double fret;          xm[i] = x[i] - (i==theta ?delti[theta]:0);
   double **xi,tmp,delta;        }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
   double dum; /* Dummy variable */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
   double ***p3mat;    
   int *indx;        for(j=1; j<= nlstate; j++){
   char line[MAXLINE], linepar[MAXLINE];          for(i=1; i<=nlstate; i++){
   char title[MAXLINE];            for(h=0; h<=nhstepm-1; h++){
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];              gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
              }
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];          }
         }
   char filerest[FILENAMELENGTH];       
   char fileregp[FILENAMELENGTH];        for(ij=1; ij<= nlstate*nlstate; ij++)
   char popfile[FILENAMELENGTH];          for(h=0; h<=nhstepm-1; h++){
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
   int firstobs=1, lastobs=10;          }
   int sdeb, sfin; /* Status at beginning and end */      }/* End theta */
   int c,  h , cpt,l;      
   int ju,jl, mi;      
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;      for(h=0; h<=nhstepm-1; h++)
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;        for(j=1; j<=nlstate*nlstate;j++)
   int mobilav=0,popforecast=0;          for(theta=1; theta <=npar; theta++)
   int hstepm, nhstepm;            trgradg[h][j][theta]=gradg[h][theta][j];
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;      
   
   double bage, fage, age, agelim, agebase;       for(ij=1;ij<=nlstate*nlstate;ij++)
   double ftolpl=FTOL;        for(ji=1;ji<=nlstate*nlstate;ji++)
   double **prlim;          varhe[ij][ji][(int)age] =0.;
   double *severity;  
   double ***param; /* Matrix of parameters */       printf("%d|",(int)age);fflush(stdout);
   double  *p;       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
   double **matcov; /* Matrix of covariance */       for(h=0;h<=nhstepm-1;h++){
   double ***delti3; /* Scale */        for(k=0;k<=nhstepm-1;k++){
   double *delti; /* Scale */          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   double ***eij, ***vareij;          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   double **varpl; /* Variances of prevalence limits by age */          for(ij=1;ij<=nlstate*nlstate;ij++)
   double *epj, vepp;            for(ji=1;ji<=nlstate*nlstate;ji++)
   double kk1, kk2;              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;        }
        }
       /* Computing expectancies */
   char version[80]="Imach version 0.8a1, June 2003, INED-EUROREVES ";      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   char z[1]="c", occ;            eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
 #include <sys/time.h>            
 #include <time.h>            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
            }
   /* long total_usecs;  
   struct timeval start_time, end_time;      fprintf(ficresstdeij,"%3.0f",age );
        for(i=1; i<=nlstate;i++){
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */        eip=0.;
   getcwd(pathcd, size);        vip=0.;
         for(j=1; j<=nlstate;j++){
   printf("\n%s",version);          eip += eij[i][j][(int)age];
   if(argc <=1){          for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
     printf("\nEnter the parameter file name: ");            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
     scanf("%s",pathtot);          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
   }        }
   else{        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
     strcpy(pathtot,argv[1]);      }
   }      fprintf(ficresstdeij,"\n");
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);      fprintf(ficrescveij,"%3.0f",age );
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/      for(i=1; i<=nlstate;i++)
   /* cutv(path,optionfile,pathtot,'\\');*/        for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);          for(i2=1; i2<=nlstate;i2++)
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);            for(j2=1; j2<=nlstate;j2++){
   chdir(path);              cptj2= (j2-1)*nlstate+i2;
   replace(pathc,path);              if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
 /*-------- arguments in the command line --------*/            }
         }
   strcpy(fileres,"r");      fprintf(ficrescveij,"\n");
   strcat(fileres, optionfilefiname);     
   strcat(fileres,".txt");    /* Other files have txt extension */    }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   /*---------arguments file --------*/    free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     printf("Problem with optionfile %s\n",optionfile);    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     goto end;    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    printf("\n");
     fprintf(ficlog,"\n");
   strcpy(filereso,"o");  
   strcat(filereso,fileres);    free_vector(xm,1,npar);
   if((ficparo=fopen(filereso,"w"))==NULL) {    free_vector(xp,1,npar);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
   }    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   /* Reads comments: lines beginning with '#' */  }
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);  /************ Variance ******************/
     fgets(line, MAXLINE, ficpar);  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
     puts(line);  {
     fputs(line,ficparo);    /* Variance of health expectancies */
   }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   ungetc(c,ficpar);    /* double **newm;*/
     double **dnewm,**doldm;
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    double **dnewmp,**doldmp;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);    int i, j, nhstepm, hstepm, h, nstepm ;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);    int k, cptcode;
 while((c=getc(ficpar))=='#' && c!= EOF){    double *xp;
     ungetc(c,ficpar);    double **gp, **gm;  /* for var eij */
     fgets(line, MAXLINE, ficpar);    double ***gradg, ***trgradg; /*for var eij */
     puts(line);    double **gradgp, **trgradgp; /* for var p point j */
     fputs(line,ficparo);    double *gpp, *gmp; /* for var p point j */
   }    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   ungetc(c,ficpar);    double ***p3mat;
      double age,agelim, hf;
        double ***mobaverage;
   covar=matrix(0,NCOVMAX,1,n);    int theta;
   cptcovn=0;    char digit[4];
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    char digitp[25];
   
   ncovmodel=2+cptcovn;    char fileresprobmorprev[FILENAMELENGTH];
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  
      if(popbased==1){
   /* Read guess parameters */      if(mobilav!=0)
   /* Reads comments: lines beginning with '#' */        strcpy(digitp,"-populbased-mobilav-");
   while((c=getc(ficpar))=='#' && c!= EOF){      else strcpy(digitp,"-populbased-nomobil-");
     ungetc(c,ficpar);    }
     fgets(line, MAXLINE, ficpar);    else 
     puts(line);      strcpy(digitp,"-stablbased-");
     fputs(line,ficparo);  
   }    if (mobilav!=0) {
   ungetc(c,ficpar);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
        if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     for(i=1; i <=nlstate; i++)        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(j=1; j <=nlstate+ndeath-1; j++){      }
       fscanf(ficpar,"%1d%1d",&i1,&j1);    }
       fprintf(ficparo,"%1d%1d",i1,j1);  
       printf("%1d%1d",i,j);    strcpy(fileresprobmorprev,"prmorprev"); 
       for(k=1; k<=ncovmodel;k++){    sprintf(digit,"%-d",ij);
         fscanf(ficpar," %lf",&param[i][j][k]);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
         printf(" %lf",param[i][j][k]);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
         fprintf(ficparo," %lf",param[i][j][k]);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
       }    strcat(fileresprobmorprev,fileres);
       fscanf(ficpar,"\n");    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("\n");      printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficparo,"\n");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }    }
      printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;   
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
   p=param[1][1];    pstamp(ficresprobmorprev);
      fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   /* Reads comments: lines beginning with '#' */    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   while((c=getc(ficpar))=='#' && c!= EOF){    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     ungetc(c,ficpar);      fprintf(ficresprobmorprev," p.%-d SE",j);
     fgets(line, MAXLINE, ficpar);      for(i=1; i<=nlstate;i++)
     puts(line);        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     fputs(line,ficparo);    }  
   }    fprintf(ficresprobmorprev,"\n");
   ungetc(c,ficpar);    fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   for(i=1; i <=nlstate; i++){  /*   } */
     for(j=1; j <=nlstate+ndeath-1; j++){    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
       fscanf(ficpar,"%1d%1d",&i1,&j1);    pstamp(ficresvij);
       printf("%1d%1d",i,j);    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       fprintf(ficparo,"%1d%1d",i1,j1);    if(popbased==1)
       for(k=1; k<=ncovmodel;k++){      fprintf(ficresvij,"the age specific prevalence observed in the population i.e cross-sectionally\n in each health state (popbased=1)");
         fscanf(ficpar,"%le",&delti3[i][j][k]);    else
         printf(" %le",delti3[i][j][k]);      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
         fprintf(ficparo," %le",delti3[i][j][k]);    fprintf(ficresvij,"# Age");
       }    for(i=1; i<=nlstate;i++)
       fscanf(ficpar,"\n");      for(j=1; j<=nlstate;j++)
       printf("\n");        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
       fprintf(ficparo,"\n");    fprintf(ficresvij,"\n");
     }  
   }    xp=vector(1,npar);
   delti=delti3[1][1];    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   /* Reads comments: lines beginning with '#' */    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   while((c=getc(ficpar))=='#' && c!= EOF){    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     ungetc(c,ficpar);  
     fgets(line, MAXLINE, ficpar);    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     puts(line);    gpp=vector(nlstate+1,nlstate+ndeath);
     fputs(line,ficparo);    gmp=vector(nlstate+1,nlstate+ndeath);
   }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   ungetc(c,ficpar);    
      if(estepm < stepm){
   matcov=matrix(1,npar,1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
   for(i=1; i <=npar; i++){    }
     fscanf(ficpar,"%s",&str);    else  hstepm=estepm;   
     printf("%s",str);    /* For example we decided to compute the life expectancy with the smallest unit */
     fprintf(ficparo,"%s",str);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
     for(j=1; j <=i; j++){       nhstepm is the number of hstepm from age to agelim 
       fscanf(ficpar," %le",&matcov[i][j]);       nstepm is the number of stepm from age to agelin. 
       printf(" %.5le",matcov[i][j]);       Look at hpijx to understand the reason of that which relies in memory size
       fprintf(ficparo," %.5le",matcov[i][j]);       and note for a fixed period like k years */
     }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     fscanf(ficpar,"\n");       survival function given by stepm (the optimization length). Unfortunately it
     printf("\n");       means that if the survival funtion is printed every two years of age and if
     fprintf(ficparo,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
   }       results. So we changed our mind and took the option of the best precision.
   for(i=1; i <=npar; i++)    */
     for(j=i+1;j<=npar;j++)    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
       matcov[i][j]=matcov[j][i];    agelim = AGESUP;
        for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   printf("\n");      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     /*-------- Rewriting paramater file ----------*/      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
      strcpy(rfileres,"r");    /* "Rparameterfile */      gp=matrix(0,nhstepm,1,nlstate);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/      gm=matrix(0,nhstepm,1,nlstate);
      strcat(rfileres,".");    /* */  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */  
     if((ficres =fopen(rfileres,"w"))==NULL) {      for(theta=1; theta <=npar; theta++){
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     fprintf(ficres,"#%s\n",version);        }
            hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     /*-------- data file ----------*/        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     if((fic=fopen(datafile,"r"))==NULL)    {  
       printf("Problem with datafile: %s\n", datafile);goto end;        if (popbased==1) {
     }          if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
     n= lastobs;              prlim[i][i]=probs[(int)age][i][ij];
     severity = vector(1,maxwav);          }else{ /* mobilav */ 
     outcome=imatrix(1,maxwav+1,1,n);            for(i=1; i<=nlstate;i++)
     num=ivector(1,n);              prlim[i][i]=mobaverage[(int)age][i][ij];
     moisnais=vector(1,n);          }
     annais=vector(1,n);        }
     moisdc=vector(1,n);    
     andc=vector(1,n);        for(j=1; j<= nlstate; j++){
     agedc=vector(1,n);          for(h=0; h<=nhstepm; h++){
     cod=ivector(1,n);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
     weight=vector(1,n);              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */          }
     mint=matrix(1,maxwav,1,n);        }
     anint=matrix(1,maxwav,1,n);        /* This for computing probability of death (h=1 means
     s=imatrix(1,maxwav+1,1,n);           computed over hstepm matrices product = hstepm*stepm months) 
     adl=imatrix(1,maxwav+1,1,n);               as a weighted average of prlim.
     tab=ivector(1,NCOVMAX);        */
     ncodemax=ivector(1,8);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
     i=1;            gpp[j] += prlim[i][i]*p3mat[i][j][1];
     while (fgets(line, MAXLINE, fic) != NULL)    {        }    
       if ((i >= firstobs) && (i <=lastobs)) {        /* end probability of death */
          
         for (j=maxwav;j>=1;j--){        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
           strcpy(line,stra);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);   
         }        if (popbased==1) {
                  if(mobilav ==0){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);        }
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<= nlstate; j++){
         }          for(h=0; h<=nhstepm; h++){
         num[i]=atol(stra);            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                      gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){          }
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/        }
         /* This for computing probability of death (h=1 means
         i=i+1;           computed over hstepm matrices product = hstepm*stepm months) 
       }           as a weighted average of prlim.
     }        */
     /* printf("ii=%d", ij);        for(j=nlstate+1;j<=nlstate+ndeath;j++){
        scanf("%d",i);*/          for(i=1,gmp[j]=0.; i<= nlstate; i++)
   imx=i-1; /* Number of individuals */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
   /* for (i=1; i<=imx; i++){        /* end probability of death */
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;  
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(j=1; j<= nlstate; j++) /* vareij */
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          for(h=0; h<=nhstepm; h++){
     }*/            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
    /*  for (i=1; i<=imx; i++){          }
      if (s[4][i]==9)  s[4][i]=-1;  
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
            gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
          }
   /* Calculation of the number of parameter from char model*/  
   Tvar=ivector(1,15);      } /* End theta */
   Tprod=ivector(1,15);  
   Tvaraff=ivector(1,15);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   Tvard=imatrix(1,15,1,2);  
   Tage=ivector(1,15);            for(h=0; h<=nhstepm; h++) /* veij */
            for(j=1; j<=nlstate;j++)
   if (strlen(model) >1){          for(theta=1; theta <=npar; theta++)
     j=0, j1=0, k1=1, k2=1;            trgradg[h][j][theta]=gradg[h][theta][j];
     j=nbocc(model,'+');  
     j1=nbocc(model,'*');      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
     cptcovn=j+1;        for(theta=1; theta <=npar; theta++)
     cptcovprod=j1;          trgradgp[j][theta]=gradgp[theta][j];
        
     strcpy(modelsav,model);  
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       printf("Error. Non available option model=%s ",model);      for(i=1;i<=nlstate;i++)
       goto end;        for(j=1;j<=nlstate;j++)
     }          vareij[i][j][(int)age] =0.;
      
     for(i=(j+1); i>=1;i--){      for(h=0;h<=nhstepm;h++){
       cutv(stra,strb,modelsav,'+');        for(k=0;k<=nhstepm;k++){
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       /*scanf("%d",i);*/          for(i=1;i<=nlstate;i++)
       if (strchr(strb,'*')) {            for(j=1;j<=nlstate;j++)
         cutv(strd,strc,strb,'*');              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         if (strcmp(strc,"age")==0) {        }
           cptcovprod--;      }
           cutv(strb,stre,strd,'V');    
           Tvar[i]=atoi(stre);      /* pptj */
           cptcovage++;      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
             Tage[cptcovage]=i;      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
             /*printf("stre=%s ", stre);*/      for(j=nlstate+1;j<=nlstate+ndeath;j++)
         }        for(i=nlstate+1;i<=nlstate+ndeath;i++)
         else if (strcmp(strd,"age")==0) {          varppt[j][i]=doldmp[j][i];
           cptcovprod--;      /* end ppptj */
           cutv(strb,stre,strc,'V');      /*  x centered again */
           Tvar[i]=atoi(stre);      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
           cptcovage++;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
           Tage[cptcovage]=i;   
         }      if (popbased==1) {
         else {        if(mobilav ==0){
           cutv(strb,stre,strc,'V');          for(i=1; i<=nlstate;i++)
           Tvar[i]=ncovcol+k1;            prlim[i][i]=probs[(int)age][i][ij];
           cutv(strb,strc,strd,'V');        }else{ /* mobilav */ 
           Tprod[k1]=i;          for(i=1; i<=nlstate;i++)
           Tvard[k1][1]=atoi(strc);            prlim[i][i]=mobaverage[(int)age][i][ij];
           Tvard[k1][2]=atoi(stre);        }
           Tvar[cptcovn+k2]=Tvard[k1][1];      }
           Tvar[cptcovn+k2+1]=Tvard[k1][2];               
           for (k=1; k<=lastobs;k++)      /* This for computing probability of death (h=1 means
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
           k1++;         as a weighted average of prlim.
           k2=k2+2;      */
         }      for(j=nlstate+1;j<=nlstate+ndeath;j++){
       }        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
       else {          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/      }    
        /*  scanf("%d",i);*/      /* end probability of death */
       cutv(strd,strc,strb,'V');  
       Tvar[i]=atoi(strc);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       strcpy(modelsav,stra);          fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);        for(i=1; i<=nlstate;i++){
         scanf("%d",i);*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
     }        }
 }      } 
        fprintf(ficresprobmorprev,"\n");
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);  
   printf("cptcovprod=%d ", cptcovprod);      fprintf(ficresvij,"%.0f ",age );
   scanf("%d ",i);*/      for(i=1; i<=nlstate;i++)
     fclose(fic);        for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
     /*  if(mle==1){*/        }
     if (weightopt != 1) { /* Maximisation without weights*/      fprintf(ficresvij,"\n");
       for(i=1;i<=n;i++) weight[i]=1.0;      free_matrix(gp,0,nhstepm,1,nlstate);
     }      free_matrix(gm,0,nhstepm,1,nlstate);
     /*-calculation of age at interview from date of interview and age at death -*/      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
     agev=matrix(1,maxwav,1,imx);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for (i=1; i<=imx; i++) {    } /* End age */
       for(m=2; (m<= maxwav); m++) {    free_vector(gpp,nlstate+1,nlstate+ndeath);
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    free_vector(gmp,nlstate+1,nlstate+ndeath);
          anint[m][i]=9999;    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
          s[m][i]=-1;    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
        }    fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
       }    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     }  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
     for (i=1; i<=imx; i++)  {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
       for(m=1; (m<= maxwav); m++){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
         if(s[m][i] >0){    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
           if (s[m][i] >= nlstate+1) {    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
             if(agedc[i]>0)    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
               if(moisdc[i]!=99 && andc[i]!=9999)    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                 agev[m][i]=agedc[i];  */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
            else {    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    free_vector(xp,1,npar);
               agev[m][i]=-1;    free_matrix(doldm,1,nlstate,1,nlstate);
               }    free_matrix(dnewm,1,nlstate,1,npar);
             }    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           else if(s[m][i] !=9){ /* Should no more exist */    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
             if(mint[m][i]==99 || anint[m][i]==9999)    fclose(ficresprobmorprev);
               agev[m][i]=1;    fflush(ficgp);
             else if(agev[m][i] <agemin){    fflush(fichtm); 
               agemin=agev[m][i];  }  /* end varevsij */
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }  /************ Variance of prevlim ******************/
             else if(agev[m][i] >agemax){  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
               agemax=agev[m][i];  {
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /* Variance of prevalence limit */
             }    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
             /*agev[m][i]=anint[m][i]-annais[i];*/    double **newm;
             /*   agev[m][i] = age[i]+2*m;*/    double **dnewm,**doldm;
           }    int i, j, nhstepm, hstepm;
           else { /* =9 */    int k, cptcode;
             agev[m][i]=1;    double *xp;
             s[m][i]=-1;    double *gp, *gm;
           }    double **gradg, **trgradg;
         }    double age,agelim;
         else /*= 0 Unknown */    int theta;
           agev[m][i]=1;    
       }    pstamp(ficresvpl);
        fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     }    fprintf(ficresvpl,"# Age");
     for (i=1; i<=imx; i++)  {    for(i=1; i<=nlstate;i++)
       for(m=1; (m<= maxwav); m++){        fprintf(ficresvpl," %1d-%1d",i,i);
         if (s[m][i] > (nlstate+ndeath)) {    fprintf(ficresvpl,"\n");
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;    xp=vector(1,npar);
         }    dnewm=matrix(1,nlstate,1,npar);
       }    doldm=matrix(1,nlstate,1,nlstate);
     }    
     hstepm=1*YEARM; /* Every year of age */
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     free_vector(severity,1,maxwav);    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     free_imatrix(outcome,1,maxwav+1,1,n);      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     free_vector(moisnais,1,n);      if (stepm >= YEARM) hstepm=1;
     free_vector(annais,1,n);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     /* free_matrix(mint,1,maxwav,1,n);      gradg=matrix(1,npar,1,nlstate);
        free_matrix(anint,1,maxwav,1,n);*/      gp=vector(1,nlstate);
     free_vector(moisdc,1,n);      gm=vector(1,nlstate);
     free_vector(andc,1,n);  
       for(theta=1; theta <=npar; theta++){
            for(i=1; i<=npar; i++){ /* Computes gradient */
     wav=ivector(1,imx);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);        }
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
            for(i=1;i<=nlstate;i++)
     /* Concatenates waves */          gp[i] = prlim[i][i];
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);      
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
       Tcode=ivector(1,100);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        for(i=1;i<=nlstate;i++)
       ncodemax[1]=1;          gm[i] = prlim[i][i];
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);  
              for(i=1;i<=nlstate;i++)
    codtab=imatrix(1,100,1,10);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
    h=0;      } /* End theta */
    m=pow(2,cptcoveff);  
        trgradg =matrix(1,nlstate,1,npar);
    for(k=1;k<=cptcoveff; k++){  
      for(i=1; i <=(m/pow(2,k));i++){      for(j=1; j<=nlstate;j++)
        for(j=1; j <= ncodemax[k]; j++){        for(theta=1; theta <=npar; theta++)
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){          trgradg[j][theta]=gradg[theta][j];
            h++;  
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;      for(i=1;i<=nlstate;i++)
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        varpl[i][(int)age] =0.;
          }      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
        }      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
      }      for(i=1;i<=nlstate;i++)
    }        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);  
       codtab[1][2]=1;codtab[2][2]=2; */      fprintf(ficresvpl,"%.0f ",age );
    /* for(i=1; i <=m ;i++){      for(i=1; i<=nlstate;i++)
       for(k=1; k <=cptcovn; k++){        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);      fprintf(ficresvpl,"\n");
       }      free_vector(gp,1,nlstate);
       printf("\n");      free_vector(gm,1,nlstate);
       }      free_matrix(gradg,1,npar,1,nlstate);
       scanf("%d",i);*/      free_matrix(trgradg,1,nlstate,1,npar);
        } /* End age */
    /* Calculates basic frequencies. Computes observed prevalence at single age  
        and prints on file fileres'p'. */    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
        free_matrix(dnewm,1,nlstate,1,nlstate);
      
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  /************ Variance of one-step probabilities  ******************/
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  {
          int i, j=0,  i1, k1, l1, t, tj;
     /* For Powell, parameters are in a vector p[] starting at p[1]    int k2, l2, j1,  z1;
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    int k=0,l, cptcode;
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     if(mle==1){    double **dnewm,**doldm;
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);    double *xp;
     }    double *gp, *gm;
        double **gradg, **trgradg;
     /*--------- results files --------------*/    double **mu;
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);    double age,agelim, cov[NCOVMAX];
      double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
    jk=1;    char fileresprob[FILENAMELENGTH];
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    char fileresprobcov[FILENAMELENGTH];
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    char fileresprobcor[FILENAMELENGTH];
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){    double ***varpij;
        if (k != i)  
          {    strcpy(fileresprob,"prob"); 
            printf("%d%d ",i,k);    strcat(fileresprob,fileres);
            fprintf(ficres,"%1d%1d ",i,k);    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
            for(j=1; j <=ncovmodel; j++){      printf("Problem with resultfile: %s\n", fileresprob);
              printf("%f ",p[jk]);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
              fprintf(ficres,"%f ",p[jk]);    }
              jk++;    strcpy(fileresprobcov,"probcov"); 
            }    strcat(fileresprobcov,fileres);
            printf("\n");    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
            fprintf(ficres,"\n");      printf("Problem with resultfile: %s\n", fileresprobcov);
          }      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
      }    }
    }    strcpy(fileresprobcor,"probcor"); 
  if(mle==1){    strcat(fileresprobcor,fileres);
     /* Computing hessian and covariance matrix */    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
     ftolhess=ftol; /* Usually correct */      printf("Problem with resultfile: %s\n", fileresprobcor);
     hesscov(matcov, p, npar, delti, ftolhess, func);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
  }    }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("# Scales (for hessian or gradient estimation)\n");    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      for(i=1,jk=1; i <=nlstate; i++){    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
       for(j=1; j <=nlstate+ndeath; j++){    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         if (j!=i) {    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           fprintf(ficres,"%1d%1d",i,j);    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
           printf("%1d%1d",i,j);    pstamp(ficresprob);
           for(k=1; k<=ncovmodel;k++){    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
             printf(" %.5e",delti[jk]);    fprintf(ficresprob,"# Age");
             fprintf(ficres," %.5e",delti[jk]);    pstamp(ficresprobcov);
             jk++;    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           }    fprintf(ficresprobcov,"# Age");
           printf("\n");    pstamp(ficresprobcor);
           fprintf(ficres,"\n");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         }    fprintf(ficresprobcor,"# Age");
       }  
      }  
        for(i=1; i<=nlstate;i++)
     k=1;      for(j=1; j<=(nlstate+ndeath);j++){
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");        fprintf(ficresprobcov," p%1d-%1d ",i,j);
     for(i=1;i<=npar;i++){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
       /*  if (k>nlstate) k=1;      }  
       i1=(i-1)/(ncovmodel*nlstate)+1;   /* fprintf(ficresprob,"\n");
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);    fprintf(ficresprobcov,"\n");
       printf("%s%d%d",alph[k],i1,tab[i]);*/    fprintf(ficresprobcor,"\n");
       fprintf(ficres,"%3d",i);   */
       printf("%3d",i);   xp=vector(1,npar);
       for(j=1; j<=i;j++){    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         fprintf(ficres," %.5e",matcov[i][j]);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
         printf(" %.5e",matcov[i][j]);    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
       }    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
       fprintf(ficres,"\n");    first=1;
       printf("\n");    fprintf(ficgp,"\n# Routine varprob");
       k++;    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     }    fprintf(fichtm,"\n");
      
     while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
       ungetc(c,ficpar);    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
       fgets(line, MAXLINE, ficpar);    file %s<br>\n",optionfilehtmcov);
       puts(line);    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       fputs(line,ficparo);  and drawn. It helps understanding how is the covariance between two incidences.\
     }   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     ungetc(c,ficpar);    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
     estepm=0;  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
     if (estepm==0 || estepm < stepm) estepm=stepm;  standard deviations wide on each axis. <br>\
     if (fage <= 2) {   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
       bage = ageminpar;   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
       fage = agemaxpar;  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
     }  
        cov[1]=1;
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");    tj=cptcoveff;
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    j1=0;
      for(t=1; t<=tj;t++){
     while((c=getc(ficpar))=='#' && c!= EOF){      for(i1=1; i1<=ncodemax[t];i1++){ 
     ungetc(c,ficpar);        j1++;
     fgets(line, MAXLINE, ficpar);        if  (cptcovn>0) {
     puts(line);          fprintf(ficresprob, "\n#********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(ficresprob, "**********\n#\n");
   ungetc(c,ficpar);          fprintf(ficresprobcov, "\n#********** Variable "); 
            for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);          fprintf(ficresprobcov, "**********\n#\n");
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);          fprintf(ficgp, "\n#********** Variable "); 
                for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficgp, "**********\n#\n");
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          
     puts(line);          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
     fputs(line,ficparo);          for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   }          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   ungetc(c,ficpar);          
            fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
    dateprev1=anprev1+mprev1/12.+jprev1/365.;          fprintf(ficresprobcor, "**********\n#");    
    dateprev2=anprev2+mprev2/12.+jprev2/365.;        }
         
   fscanf(ficpar,"pop_based=%d\n",&popbased);        for (age=bage; age<=fage; age ++){ 
   fprintf(ficparo,"pop_based=%d\n",popbased);            cov[2]=age;
   fprintf(ficres,"pop_based=%d\n",popbased);            for (k=1; k<=cptcovn;k++) {
              cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
   while((c=getc(ficpar))=='#' && c!= EOF){          }
     ungetc(c,ficpar);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fgets(line, MAXLINE, ficpar);          for (k=1; k<=cptcovprod;k++)
     puts(line);            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
     fputs(line,ficparo);          
   }          gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   ungetc(c,ficpar);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);          gm=vector(1,(nlstate)*(nlstate+ndeath));
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);      
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
 while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     fgets(line, MAXLINE, ficpar);            
     puts(line);            k=0;
     fputs(line,ficparo);            for(i=1; i<= (nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   ungetc(c,ficpar);                k=k+1;
                 gp[k]=pmmij[i][j];
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);              }
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            }
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);            
             for(i=1; i<=npar; i++)
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
 /*------------ gnuplot -------------*/            pmij(pmmij,cov,ncovmodel,xp,nlstate);
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);            k=0;
              for(i=1; i<=(nlstate); i++){
 /*------------ free_vector  -------------*/              for(j=1; j<=(nlstate+ndeath);j++){
  chdir(path);                k=k+1;
                  gm[k]=pmmij[i][j];
  free_ivector(wav,1,imx);              }
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);            }
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);         
  free_ivector(num,1,n);            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
  free_vector(agedc,1,n);              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/          }
  fclose(ficparo);  
  fclose(ficres);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
 /*--------- index.htm --------*/              trgradg[j][theta]=gradg[theta][j];
           
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
            free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
   /*--------------- Prevalence limit --------------*/          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
            free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcpy(filerespl,"pl");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   strcat(filerespl,fileres);  
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          pmij(pmmij,cov,ncovmodel,x,nlstate);
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;          
   }          k=0;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);          for(i=1; i<=(nlstate); i++){
   fprintf(ficrespl,"#Prevalence limit\n");            for(j=1; j<=(nlstate+ndeath);j++){
   fprintf(ficrespl,"#Age ");              k=k+1;
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);              mu[k][(int) age]=pmmij[i][j];
   fprintf(ficrespl,"\n");            }
            }
   prlim=matrix(1,nlstate,1,nlstate);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              varpij[i][j][(int)age] = doldm[i][j];
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */          /*printf("\n%d ",(int)age);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   k=0;            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   agebase=ageminpar;            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
   agelim=agemaxpar;            }*/
   ftolpl=1.e-10;  
   i1=cptcoveff;          fprintf(ficresprob,"\n%d ",(int)age);
   if (cptcovn < 1){i1=1;}          fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         k=k+1;            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
         fprintf(ficrespl,"\n#******");            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         for(j=1;j<=cptcoveff;j++)            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
         fprintf(ficrespl,"******\n");          i=0;
                  for (k=1; k<=(nlstate);k++){
         for (age=agebase; age<=agelim; age++){            for (l=1; l<=(nlstate+ndeath);l++){ 
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);              i=i++;
           fprintf(ficrespl,"%.0f",age );              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           for(i=1; i<=nlstate;i++)              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           fprintf(ficrespl," %.5f", prlim[i][i]);              for (j=1; j<=i;j++){
           fprintf(ficrespl,"\n");                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         }                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
       }              }
     }            }
   fclose(ficrespl);          }/* end of loop for state */
         } /* end of loop for age */
   /*------------- h Pij x at various ages ------------*/  
          /* Confidence intervalle of pij  */
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        /*
   if((ficrespij=fopen(filerespij,"w"))==NULL) {          fprintf(ficgp,"\nset noparametric;unset label");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   }          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   printf("Computing pij: result on file '%s' \n", filerespij);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
            fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   stepsize=(int) (stepm+YEARM-1)/YEARM;          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   /*if (stepm<=24) stepsize=2;*/          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   agelim=AGESUP;  
   hstepm=stepsize*YEARM; /* Every year of age */        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        first1=1;
          for (k2=1; k2<=(nlstate);k2++){
   k=0;          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
   for(cptcov=1;cptcov<=i1;cptcov++){            if(l2==k2) continue;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            j=(k2-1)*(nlstate+ndeath)+l2;
       k=k+1;            for (k1=1; k1<=(nlstate);k1++){
         fprintf(ficrespij,"\n#****** ");              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
         for(j=1;j<=cptcoveff;j++)                if(l1==k1) continue;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                i=(k1-1)*(nlstate+ndeath)+l1;
         fprintf(ficrespij,"******\n");                if(i<=j) continue;
                        for (age=bage; age<=fage; age ++){ 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                  if ((int)age %5==0){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
           oldm=oldms;savm=savms;                    mu1=mu[i][(int) age]/stepm*YEARM ;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                      mu2=mu[j][(int) age]/stepm*YEARM;
           fprintf(ficrespij,"# Age");                    c12=cv12/sqrt(v1*v2);
           for(i=1; i<=nlstate;i++)                    /* Computing eigen value of matrix of covariance */
             for(j=1; j<=nlstate+ndeath;j++)                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
               fprintf(ficrespij," %1d-%1d",i,j);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           fprintf(ficrespij,"\n");                    /* Eigen vectors */
            for (h=0; h<=nhstepm; h++){                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                    /*v21=sqrt(1.-v11*v11); *//* error */
             for(i=1; i<=nlstate;i++)                    v21=(lc1-v1)/cv12*v11;
               for(j=1; j<=nlstate+ndeath;j++)                    v12=-v21;
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                    v22=v11;
             fprintf(ficrespij,"\n");                    tnalp=v21/v11;
              }                    if(first1==1){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                      first1=0;
           fprintf(ficrespij,"\n");                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         }                    }
     }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   }                    /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
   fclose(ficrespij);                      first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   /*---------- Forecasting ------------------*/                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   if((stepm == 1) && (strcmp(model,".")==0)){                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   }                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   else{                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     erreur=108;                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);                      fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   /*---------- Health expectancies and variances ------------*/                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcpy(filerest,"t");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcat(filerest,fileres);                    }else{
   if((ficrest=fopen(filerest,"w"))==NULL) {                      first=0;
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
   }                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
   printf("Computing Total LEs with variances: file '%s' \n", filerest);                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   strcpy(filerese,"e");                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   strcat(filerese,fileres);                    }/* if first */
   if((ficreseij=fopen(filerese,"w"))==NULL) {                  } /* age mod 5 */
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);                } /* end loop age */
   }                fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                first=1;
               } /*l12 */
  strcpy(fileresv,"v");            } /* k12 */
   strcat(fileresv,fileres);          } /*l1 */
   if((ficresvij=fopen(fileresv,"w"))==NULL) {        }/* k1 */
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      } /* loop covariates */
   }    }
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
   calagedate=-1;    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
 prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
   k=0;    free_vector(xp,1,npar);
   for(cptcov=1;cptcov<=i1;cptcov++){    fclose(ficresprob);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fclose(ficresprobcov);
       k=k+1;    fclose(ficresprobcor);
       fprintf(ficrest,"\n#****** ");    fflush(ficgp);
       for(j=1;j<=cptcoveff;j++)    fflush(fichtmcov);
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  }
       fprintf(ficrest,"******\n");  
   
       fprintf(ficreseij,"\n#****** ");  /******************* Printing html file ***********/
       for(j=1;j<=cptcoveff;j++)  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    int lastpass, int stepm, int weightopt, char model[],\
       fprintf(ficreseij,"******\n");                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
       fprintf(ficresvij,"\n#****** ");                    double jprev1, double mprev1,double anprev1, \
       for(j=1;j<=cptcoveff;j++)                    double jprev2, double mprev2,double anprev2){
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int jj1, k1, i1, cpt;
       fprintf(ficresvij,"******\n");  
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
       oldm=oldms;savm=savms;  </ul>");
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);       fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
     - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);             jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
       oldm=oldms;savm=savms;     fprintf(fichtm,"\
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);   - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                 stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
     - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");             subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);     fprintf(fichtm,"\
       fprintf(ficrest,"\n");   - (a) Life expectancies by health status at initial age, (b) health expectancies by health status at initial age:  ei., eij . If one or more covariate are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
       epj=vector(1,nlstate+1);             estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
         if (popbased==1) {  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           for(i=1; i<=nlstate;i++)  
             prlim[i][i]=probs[(int)age][i][k];   m=cptcoveff;
         }   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
          
         fprintf(ficrest," %4.0f",age);   jj1=0;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){   for(k1=1; k1<=m;k1++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {     for(i1=1; i1<=ncodemax[k1];i1++){
             epj[j] += prlim[i][i]*eij[i][j][(int)age];       jj1++;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/       if (cptcovn > 0) {
           }         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
           epj[nlstate+1] +=epj[j];         for (cpt=1; cpt<=cptcoveff;cpt++) 
         }           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
         for(i=1, vepp=0.;i <=nlstate;i++)       }
           for(j=1;j <=nlstate;j++)       /* Pij */
             vepp += vareij[i][j][(int)age];       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d1.png\">%s%d1.png</a><br> \
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));  <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
         for(j=1;j <=nlstate;j++){       /* Quasi-incidences */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
         }   before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d2.png\">%s%d2.png</a><br> \
         fprintf(ficrest,"\n");  <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
       }         /* Period (stable) prevalence in each health state */
     }         for(cpt=1; cpt<nlstate;cpt++){
   }           fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d%d.png\">%s%d%d.png</a><br> \
 free_matrix(mint,1,maxwav,1,n);  <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);         }
     free_vector(weight,1,n);       for(cpt=1; cpt<=nlstate;cpt++) {
   fclose(ficreseij);          fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   fclose(ficresvij);  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
   fclose(ficrest);       }
   fclose(ficpar);     } /* end i1 */
   free_vector(epj,1,nlstate+1);   }/* End k1 */
     fprintf(fichtm,"</ul>");
   /*------- Variance limit prevalence------*/    
   
   strcpy(fileresvpl,"vpl");   fprintf(fichtm,"\
   strcat(fileresvpl,fileres);  \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);   fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   }           subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);   fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
   k=0;           subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){   fprintf(fichtm,"\
       k=k+1;   - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
       fprintf(ficresvpl,"\n#****** ");           subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
       for(j=1;j<=cptcoveff;j++)   fprintf(fichtm,"\
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);   - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
       fprintf(ficresvpl,"******\n");     <a href=\"%s\">%s</a> <br>\n</li>",
                   estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
       varpl=matrix(1,nlstate,(int) bage, (int) fage);   fprintf(fichtm,"\
       oldm=oldms;savm=savms;   - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);     <a href=\"%s\">%s</a> <br>\n</li>",
     }             estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
  }   fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences (i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
   fclose(ficresvpl);           estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
   /*---------- End : free ----------------*/   - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors: <a href=\"%s\">%s</a> <br>\n",
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);           subdirf2(fileres,"t"),subdirf2(fileres,"t"));
     fprintf(fichtm,"\
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);   - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);           subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
    
    /*  if(popforecast==1) fprintf(fichtm,"\n */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*      <br>",fileres,fileres,fileres,fileres); */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);  /*  else  */
    /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   free_matrix(matcov,1,npar,1,npar);   fflush(fichtm);
   free_vector(delti,1,npar);   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   free_matrix(agev,1,maxwav,1,imx);  
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);   m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   if(erreur >0)  
     printf("End of Imach with error or warning %d\n",erreur);   jj1=0;
   else   printf("End of Imach\n");   for(k1=1; k1<=m;k1++){
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */     for(i1=1; i1<=ncodemax[k1];i1++){
         jj1++;
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       if (cptcovn > 0) {
   /*printf("Total time was %d uSec.\n", total_usecs);*/         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
   /*------ End -----------*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
  end:       }
   /* chdir(pathcd);*/       for(cpt=1; cpt<=nlstate;cpt++) {
  /*system("wgnuplot graph.plt");*/         fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
  /*system("../gp37mgw/wgnuplot graph.plt");*/  prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
  /*system("cd ../gp37mgw");*/  <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/       }
  strcpy(plotcmd,GNUPLOTPROGRAM);       fprintf(fichtm,"\n<br>- Total life expectancy by age and \
  strcat(plotcmd," ");  health expectancies in states (1) and (2): %s%d.png<br>\
  strcat(plotcmd,optionfilegnuplot);  <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
  system(plotcmd);     } /* end i1 */
    }/* End k1 */
  /*#ifdef windows*/   fprintf(fichtm,"</ul>");
   while (z[0] != 'q') {   fflush(fichtm);
     /* chdir(path); */  }
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);  /******************* Gnuplot file **************/
     if (z[0] == 'c') system("./imach");  void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    char dirfileres[132],optfileres[132];
     else if (z[0] == 'q') exit(0);    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
   }    int ng;
   /*#endif */  /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
 }  /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small\n set log y\n"); 
     fprintf(ficgp, "set size 0.65,0.65\n");
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   
   
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
   
     char ca[32], cb[32], cc[32];
     char dummy[]="                         ";
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4];
     int *dcwave;
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char  *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guess parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         puts(line);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",&str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %d %s for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
           exit(1);
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.") != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           exit(1);
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         exit(1);
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.") != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %ld %s for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line,j);
         exit(1);
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       lval=strtol(strb,&endptr,10); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%d' at line number %ld %s for individual %d\nShould be a weight.  Exiting.\n",lval, i,line,linei);
         exit(1);
       }
       weight[i]=(double)(lval); 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         errno=0;
         lval=strtol(strb,&endptr,10); 
         if( strb[0]=='\0' || (*endptr != '\0')){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a covar (meaning 0 for the reference or 1).  Exiting.\n",lval, linei,i, line);
           exit(1);
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%d' at line number %ld %s for individual %d, '%s'\nShould be a value of the %d covar (meaning 0 for the reference or 1. IMaCh does not build design variables, do it your self).  Exiting.\n",lval,linei, i,line,j);
           exit(1);
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       } 
       lstra=strlen(stra);
       
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
     fclose(fic);
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
     /* for (i=1; i<=imx; i++) */
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameters from char model */
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     agegomp=(int)agemin;
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM);
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       p[1]=0.0268; p[NDIM]=0.083;
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
       
       powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
     
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         puts(line);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
       /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
       /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
     
       strcpy(filerespl,"pl");
       strcat(filerespl,fileres);
       if((ficrespl=fopen(filerespl,"w"))==NULL) {
         printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
         fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);goto end;
       }
       printf("Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       fprintf(ficlog,"Computing period (stable) prevalence: result on file '%s' \n", filerespl);
       pstamp(ficrespl);
       fprintf(ficrespl,"# Period (stable) prevalence \n");
       fprintf(ficrespl,"#Age ");
       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
       fprintf(ficrespl,"\n");
     
       prlim=matrix(1,nlstate,1,nlstate);
   
       agebase=ageminpar;
       agelim=agemaxpar;
       ftolpl=1.e-10;
       i1=cptcoveff;
       if (cptcovn < 1){i1=1;}
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
           fprintf(ficrespl,"\n#******");
           printf("\n#******");
           fprintf(ficlog,"\n#******");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficrespl,"******\n");
           printf("******\n");
           fprintf(ficlog,"******\n");
           
           for (age=agebase; age<=agelim; age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             fprintf(ficrespl,"%.0f ",age );
             for(j=1;j<=cptcoveff;j++)
               fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             for(i=1; i<=nlstate;i++)
               fprintf(ficrespl," %.5f", prlim[i][i]);
             fprintf(ficrespl,"\n");
           }
         }
       }
       fclose(ficrespl);
   
       /*------------- h Pij x at various ages ------------*/
     
       strcpy(filerespij,"pij");  strcat(filerespij,fileres);
       if((ficrespij=fopen(filerespij,"w"))==NULL) {
         printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
         fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
       }
       printf("Computing pij: result on file '%s' \n", filerespij);
       fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
       stepsize=(int) (stepm+YEARM-1)/YEARM;
       /*if (stepm<=24) stepsize=2;*/
   
       agelim=AGESUP;
       hstepm=stepsize*YEARM; /* Every year of age */
       hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
       /* hstepm=1;   aff par mois*/
       pstamp(ficrespij);
       fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficrespij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrespij,"******\n");
           
           for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
             nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
             /*      nhstepm=nhstepm*YEARM; aff par mois*/
   
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %1d-%1d",i,j);
             fprintf(ficrespij,"\n");
             for (h=0; h<=nhstepm; h++){
               fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
               for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate+ndeath;j++)
                   fprintf(ficrespij," %.5f", p3mat[i][j][h]);
               fprintf(ficrespij,"\n");
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             fprintf(ficrespij,"\n");
           }
         }
       }
   
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
       fclose(ficrespij);
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /*---------- Health expectancies and variances ------------*/
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1; 
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficreseij,"\n#****** ");
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
           cvevsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav, strstart);
           if(popbased==1){
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav, strstart);
           }
   
           pstamp(ficrest);
           fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# Age ( e.. (std) ");
           for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
           fprintf(ficrest,"\n");
   
           epj=vector(1,nlstate+1);
           for(age=bage; age <=fage ;age++){
             prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
             if (popbased==1) {
               if(mobilav ==0){
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=probs[(int)age][i][k];
               }else{ /* mobilav */ 
                 for(i=1; i<=nlstate;i++)
                   prlim[i][i]=mobaverage[(int)age][i][k];
               }
             }
           
             fprintf(ficrest," %4.0f",age);
             for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
               for(i=1, epj[j]=0.;i <=nlstate;i++) {
                 epj[j] += prlim[i][i]*eij[i][j][(int)age];
                 /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
               }
               epj[nlstate+1] +=epj[j];
             }
   
             for(i=1, vepp=0.;i <=nlstate;i++)
               for(j=1;j <=nlstate;j++)
                 vepp += vareij[i][j][(int)age];
             fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
             for(j=1;j <=nlstate;j++){
               fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
             }
             fprintf(ficrest,"\n");
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         }
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,15,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficreseij);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
           k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         }
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     }  /* mle==-3 arrives here for freeing */
     free_matrix(prlim,1,nlstate,1,nlstate);
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,8);
       free_ivector(Tvar,1,15);
       free_ivector(Tprod,1,15);
       free_ivector(Tvaraff,1,15);
       free_ivector(Tage,1,15);
       free_ivector(Tcode,1,100);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.41.2.2  
changed lines
  Added in v.1.121


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>