Diff for /imach/src/imach.c between versions 1.51 and 1.178

version 1.51, 2002/07/19 12:22:25 version 1.178, 2015/01/04 09:35:48
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.178  2015/01/04 09:35:48  brouard
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.177  2015/01/03 18:40:56  brouard
   first survey ("cross") where individuals from different ages are    Summary: Still testing ilc32 on OSX
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a    Revision 1.176  2015/01/03 16:45:04  brouard
   second wave of interviews ("longitudinal") which measure each change    *** empty log message ***
   (if any) in individual health status.  Health expectancies are  
   computed from the time spent in each health state according to a    Revision 1.175  2015/01/03 16:33:42  brouard
   model. More health states you consider, more time is necessary to reach the    *** empty log message ***
   Maximum Likelihood of the parameters involved in the model.  The  
   simplest model is the multinomial logistic model where pij is the    Revision 1.174  2015/01/03 16:15:49  brouard
   probability to be observed in state j at the second wave    Summary: Still in cross-compilation
   conditional to be observed in state i at the first wave. Therefore  
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    Revision 1.173  2015/01/03 12:06:26  brouard
   'age' is age and 'sex' is a covariate. If you want to have a more    Summary: trying to detect cross-compilation
   complex model than "constant and age", you should modify the program  
   where the markup *Covariates have to be included here again* invites    Revision 1.172  2014/12/27 12:07:47  brouard
   you to do it.  More covariates you add, slower the    Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
   convergence.  
     Revision 1.171  2014/12/23 13:26:59  brouard
   The advantage of this computer programme, compared to a simple    Summary: Back from Visual C
   multinomial logistic model, is clear when the delay between waves is not  
   identical for each individual. Also, if a individual missed an    Still problem with utsname.h on Windows
   intermediate interview, the information is lost, but taken into  
   account using an interpolation or extrapolation.      Revision 1.170  2014/12/23 11:17:12  brouard
     Summary: Cleaning some \%% back to %%
   hPijx is the probability to be observed in state i at age x+h  
   conditional to the observed state i at age x. The delay 'h' can be    The escape was mandatory for a specific compiler (which one?), but too many warnings.
   split into an exact number (nh*stepm) of unobserved intermediate  
   states. This elementary transition (by month or quarter trimester,    Revision 1.169  2014/12/22 23:08:31  brouard
   semester or year) is model as a multinomial logistic.  The hPx    Summary: 0.98p
   matrix is simply the matrix product of nh*stepm elementary matrices  
   and the contribution of each individual to the likelihood is simply    Outputs some informations on compiler used, OS etc. Testing on different platforms.
   hPijx.  
     Revision 1.168  2014/12/22 15:17:42  brouard
   Also this programme outputs the covariance matrix of the parameters but also    Summary: update
   of the life expectancies. It also computes the prevalence limits.  
      Revision 1.167  2014/12/22 13:50:56  brouard
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Summary: Testing uname and compiler version and if compiled 32 or 64
            Institut national d'études démographiques, Paris.  
   This software have been partly granted by Euro-REVES, a concerted action    Testing on Linux 64
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.166  2014/12/22 11:40:47  brouard
   software can be distributed freely for non commercial use. Latest version    *** empty log message ***
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Revision 1.165  2014/12/16 11:20:36  brouard
      Summary: After compiling on Visual C
 #include <math.h>  
 #include <stdio.h>    * imach.c (Module): Merging 1.61 to 1.162
 #include <stdlib.h>  
 #include <unistd.h>    Revision 1.164  2014/12/16 10:52:11  brouard
     Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
 #define MAXLINE 256  
 #define GNUPLOTPROGRAM "gnuplot"    * imach.c (Module): Merging 1.61 to 1.162
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/  
 #define FILENAMELENGTH 80    Revision 1.163  2014/12/16 10:30:11  brouard
 /*#define DEBUG*/    * imach.c (Module): Merging 1.61 to 1.162
 #define windows  
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    Revision 1.162  2014/09/25 11:43:39  brouard
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    Summary: temporary backup 0.99!
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.1  2014/09/16 11:06:58  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    Summary: With some code (wrong) for nlopt
   
 #define NINTERVMAX 8    Author:
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.161  2014/09/15 20:41:41  brouard
 #define NCOVMAX 8 /* Maximum number of covariates */    Summary: Problem with macro SQR on Intel compiler
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.160  2014/09/02 09:24:05  brouard
 #define AGESUP 130    *** empty log message ***
 #define AGEBASE 40  
 #ifdef windows    Revision 1.159  2014/09/01 10:34:10  brouard
 #define DIRSEPARATOR '\\'    Summary: WIN32
 #define ODIRSEPARATOR '/'    Author: Brouard
 #else  
 #define DIRSEPARATOR '/'    Revision 1.158  2014/08/27 17:11:51  brouard
 #define ODIRSEPARATOR '\\'    *** empty log message ***
 #endif  
     Revision 1.157  2014/08/27 16:26:55  brouard
 char version[80]="Imach version 0.8i, June 2002, INED-EUROREVES ";    Summary: Preparing windows Visual studio version
 int erreur; /* Error number */    Author: Brouard
 int nvar;  
 int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;    In order to compile on Visual studio, time.h is now correct and time_t
 int npar=NPARMAX;    and tm struct should be used. difftime should be used but sometimes I
 int nlstate=2; /* Number of live states */    just make the differences in raw time format (time(&now).
 int ndeath=1; /* Number of dead states */    Trying to suppress #ifdef LINUX
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Add xdg-open for __linux in order to open default browser.
 int popbased=0;  
     Revision 1.156  2014/08/25 20:10:10  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    *** empty log message ***
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.155  2014/08/25 18:32:34  brouard
 int mle, weightopt;    Summary: New compile, minor changes
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    Author: Brouard
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  
 double jmean; /* Mean space between 2 waves */    Revision 1.154  2014/06/20 17:32:08  brouard
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Summary: Outputs now all graphs of convergence to period prevalence
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;    Revision 1.153  2014/06/20 16:45:46  brouard
 FILE *ficlog;    Summary: If 3 live state, convergence to period prevalence on same graph
 FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;    Author: Brouard
 FILE *ficresprobmorprev;  
 FILE *fichtm; /* Html File */    Revision 1.152  2014/06/18 17:54:09  brouard
 FILE *ficreseij;    Summary: open browser, use gnuplot on same dir than imach if not found in the path
 char filerese[FILENAMELENGTH];  
 FILE  *ficresvij;    Revision 1.151  2014/06/18 16:43:30  brouard
 char fileresv[FILENAMELENGTH];    *** empty log message ***
 FILE  *ficresvpl;  
 char fileresvpl[FILENAMELENGTH];    Revision 1.150  2014/06/18 16:42:35  brouard
 char title[MAXLINE];    Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
 char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    Author: brouard
 char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];  
     Revision 1.149  2014/06/18 15:51:14  brouard
 char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    Summary: Some fixes in parameter files errors
 char filelog[FILENAMELENGTH]; /* Log file */    Author: Nicolas Brouard
 char filerest[FILENAMELENGTH];  
 char fileregp[FILENAMELENGTH];    Revision 1.148  2014/06/17 17:38:48  brouard
 char popfile[FILENAMELENGTH];    Summary: Nothing new
     Author: Brouard
 char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];  
     Just a new packaging for OS/X version 0.98nS
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.147  2014/06/16 10:33:11  brouard
 #define FTOL 1.0e-10    *** empty log message ***
   
 #define NRANSI    Revision 1.146  2014/06/16 10:20:28  brouard
 #define ITMAX 200    Summary: Merge
     Author: Brouard
 #define TOL 2.0e-4  
     Merge, before building revised version.
 #define CGOLD 0.3819660  
 #define ZEPS 1.0e-10    Revision 1.145  2014/06/10 21:23:15  brouard
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    Summary: Debugging with valgrind
     Author: Nicolas Brouard
 #define GOLD 1.618034  
 #define GLIMIT 100.0    Lot of changes in order to output the results with some covariates
 #define TINY 1.0e-20    After the Edimburgh REVES conference 2014, it seems mandatory to
     improve the code.
 static double maxarg1,maxarg2;    No more memory valgrind error but a lot has to be done in order to
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    continue the work of splitting the code into subroutines.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Also, decodemodel has been improved. Tricode is still not
      optimal. nbcode should be improved. Documentation has been added in
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    the source code.
 #define rint(a) floor(a+0.5)  
     Revision 1.143  2014/01/26 09:45:38  brouard
 static double sqrarg;    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
     (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
 int imx;  
 int stepm;    Revision 1.142  2014/01/26 03:57:36  brouard
 /* Stepm, step in month: minimum step interpolation*/    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
   
 int estepm;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  
     Revision 1.141  2014/01/26 02:42:01  brouard
 int m,nb;    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Revision 1.140  2011/09/02 10:37:54  brouard
 double **pmmij, ***probs, ***mobaverage;    Summary: times.h is ok with mingw32 now.
 double dateintmean=0;  
     Revision 1.139  2010/06/14 07:50:17  brouard
 double *weight;    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 int **s; /* Status */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
 double *agedc, **covar, idx;  
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    Revision 1.138  2010/04/30 18:19:40  brouard
     *** empty log message ***
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  
 double ftolhess; /* Tolerance for computing hessian */    Revision 1.137  2010/04/29 18:11:38  brouard
     (Module): Checking covariates for more complex models
 /**************** split *************************/    than V1+V2. A lot of change to be done. Unstable.
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  
 {    Revision 1.136  2010/04/26 20:30:53  brouard
    char *s;                             /* pointer */    (Module): merging some libgsl code. Fixing computation
    int  l1, l2;                         /* length counters */    of likelione (using inter/intrapolation if mle = 0) in order to
     get same likelihood as if mle=1.
    l1 = strlen( path );                 /* length of path */    Some cleaning of code and comments added.
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s= strrchr( path, DIRSEPARATOR );            /* find last / */    Revision 1.135  2009/10/29 15:33:14  brouard
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
      /*if(strrchr(path, ODIRSEPARATOR )==NULL)  
        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/    Revision 1.134  2009/10/29 13:18:53  brouard
 #if     defined(__bsd__)                /* get current working directory */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
       extern char       *getwd( );  
     Revision 1.133  2009/07/06 10:21:25  brouard
       if ( getwd( dirc ) == NULL ) {    just nforces
 #else  
       extern char       *getcwd( );    Revision 1.132  2009/07/06 08:22:05  brouard
     Many tings
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif    Revision 1.131  2009/06/20 16:22:47  brouard
          return( GLOCK_ERROR_GETCWD );    Some dimensions resccaled
       }  
       strcpy( name, path );             /* we've got it */    Revision 1.130  2009/05/26 06:44:34  brouard
    } else {                             /* strip direcotry from path */    (Module): Max Covariate is now set to 20 instead of 8. A
       s++;                              /* after this, the filename */    lot of cleaning with variables initialized to 0. Trying to make
       l2 = strlen( s );                 /* length of filename */    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  
       strcpy( name, s );                /* save file name */    Revision 1.129  2007/08/31 13:49:27  lievre
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
       dirc[l1-l2] = 0;                  /* add zero */  
    }    Revision 1.128  2006/06/30 13:02:05  brouard
    l1 = strlen( dirc );                 /* length of directory */    (Module): Clarifications on computing e.j
 #ifdef windows  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.127  2006/04/28 18:11:50  brouard
 #else    (Module): Yes the sum of survivors was wrong since
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }    imach-114 because nhstepm was no more computed in the age
 #endif    loop. Now we define nhstepma in the age loop.
    s = strrchr( name, '.' );            /* find last / */    (Module): In order to speed up (in case of numerous covariates) we
    s++;    compute health expectancies (without variances) in a first step
    strcpy(ext,s);                       /* save extension */    and then all the health expectancies with variances or standard
    l1= strlen( name);    deviation (needs data from the Hessian matrices) which slows the
    l2= strlen( s)+1;    computation.
    strncpy( finame, name, l1-l2);    In the future we should be able to stop the program is only health
    finame[l1-l2]= 0;    expectancies and graph are needed without standard deviations.
    return( 0 );                         /* we're done */  
 }    Revision 1.126  2006/04/28 17:23:28  brouard
     (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 /******************************************/    loop. Now we define nhstepma in the age loop.
     Version 0.98h
 void replace(char *s, char*t)  
 {    Revision 1.125  2006/04/04 15:20:31  lievre
   int i;    Errors in calculation of health expectancies. Age was not initialized.
   int lg=20;    Forecasting file added.
   i=0;  
   lg=strlen(t);    Revision 1.124  2006/03/22 17:13:53  lievre
   for(i=0; i<= lg; i++) {    Parameters are printed with %lf instead of %f (more numbers after the comma).
     (s[i] = t[i]);    The log-likelihood is printed in the log file
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.123  2006/03/20 10:52:43  brouard
 }    * imach.c (Module): <title> changed, corresponds to .htm file
     name. <head> headers where missing.
 int nbocc(char *s, char occ)  
 {    * imach.c (Module): Weights can have a decimal point as for
   int i,j=0;    English (a comma might work with a correct LC_NUMERIC environment,
   int lg=20;    otherwise the weight is truncated).
   i=0;    Modification of warning when the covariates values are not 0 or
   lg=strlen(s);    1.
   for(i=0; i<= lg; i++) {    Version 0.98g
   if  (s[i] == occ ) j++;  
   }    Revision 1.122  2006/03/20 09:45:41  brouard
   return j;    (Module): Weights can have a decimal point as for
 }    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 void cutv(char *u,char *v, char*t, char occ)    Modification of warning when the covariates values are not 0 or
 {    1.
   /* cuts string t into u and v where u is ended by char occ excluding it    Version 0.98g
      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)  
      gives u="abcedf" and v="ghi2j" */    Revision 1.121  2006/03/16 17:45:01  lievre
   int i,lg,j,p=0;    * imach.c (Module): Comments concerning covariates added
   i=0;  
   for(j=0; j<=strlen(t)-1; j++) {    * imach.c (Module): refinements in the computation of lli if
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    status=-2 in order to have more reliable computation if stepm is
   }    not 1 month. Version 0.98f
   
   lg=strlen(t);    Revision 1.120  2006/03/16 15:10:38  lievre
   for(j=0; j<p; j++) {    (Module): refinements in the computation of lli if
     (u[j] = t[j]);    status=-2 in order to have more reliable computation if stepm is
   }    not 1 month. Version 0.98f
      u[p]='\0';  
     Revision 1.119  2006/03/15 17:42:26  brouard
    for(j=0; j<= lg; j++) {    (Module): Bug if status = -2, the loglikelihood was
     if (j>=(p+1))(v[j-p-1] = t[j]);    computed as likelihood omitting the logarithm. Version O.98e
   }  
 }    Revision 1.118  2006/03/14 18:20:07  brouard
     (Module): varevsij Comments added explaining the second
 /********************** nrerror ********************/    table of variances if popbased=1 .
     (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 void nrerror(char error_text[])    (Module): Function pstamp added
 {    (Module): Version 0.98d
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.117  2006/03/14 17:16:22  brouard
   exit(1);    (Module): varevsij Comments added explaining the second
 }    table of variances if popbased=1 .
 /*********************** vector *******************/    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
 double *vector(int nl, int nh)    (Module): Function pstamp added
 {    (Module): Version 0.98d
   double *v;  
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Revision 1.116  2006/03/06 10:29:27  brouard
   if (!v) nrerror("allocation failure in vector");    (Module): Variance-covariance wrong links and
   return v-nl+NR_END;    varian-covariance of ej. is needed (Saito).
 }  
     Revision 1.115  2006/02/27 12:17:45  brouard
 /************************ free vector ******************/    (Module): One freematrix added in mlikeli! 0.98c
 void free_vector(double*v, int nl, int nh)  
 {    Revision 1.114  2006/02/26 12:57:58  brouard
   free((FREE_ARG)(v+nl-NR_END));    (Module): Some improvements in processing parameter
 }    filename with strsep.
   
 /************************ivector *******************************/    Revision 1.113  2006/02/24 14:20:24  brouard
 int *ivector(long nl,long nh)    (Module): Memory leaks checks with valgrind and:
 {    datafile was not closed, some imatrix were not freed and on matrix
   int *v;    allocation too.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Revision 1.112  2006/01/30 09:55:26  brouard
   return v-nl+NR_END;    (Module): Back to gnuplot.exe instead of wgnuplot.exe
 }  
     Revision 1.111  2006/01/25 20:38:18  brouard
 /******************free ivector **************************/    (Module): Lots of cleaning and bugs added (Gompertz)
 void free_ivector(int *v, long nl, long nh)    (Module): Comments can be added in data file. Missing date values
 {    can be a simple dot '.'.
   free((FREE_ARG)(v+nl-NR_END));  
 }    Revision 1.110  2006/01/25 00:51:50  brouard
     (Module): Lots of cleaning and bugs added (Gompertz)
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.109  2006/01/24 19:37:15  brouard
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    (Module): Comments (lines starting with a #) are allowed in data.
 {  
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    Revision 1.108  2006/01/19 18:05:42  lievre
   int **m;    Gnuplot problem appeared...
      To be fixed
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));    Revision 1.107  2006/01/19 16:20:37  brouard
   if (!m) nrerror("allocation failure 1 in matrix()");    Test existence of gnuplot in imach path
   m += NR_END;  
   m -= nrl;    Revision 1.106  2006/01/19 13:24:36  brouard
      Some cleaning and links added in html output
    
   /* allocate rows and set pointers to them */    Revision 1.105  2006/01/05 20:23:19  lievre
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    *** empty log message ***
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.104  2005/09/30 16:11:43  lievre
   m[nrl] -= ncl;    (Module): sump fixed, loop imx fixed, and simplifications.
      (Module): If the status is missing at the last wave but we know
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    that the person is alive, then we can code his/her status as -2
      (instead of missing=-1 in earlier versions) and his/her
   /* return pointer to array of pointers to rows */    contributions to the likelihood is 1 - Prob of dying from last
   return m;    health status (= 1-p13= p11+p12 in the easiest case of somebody in
 }    the healthy state at last known wave). Version is 0.98
   
 /****************** free_imatrix *************************/    Revision 1.103  2005/09/30 15:54:49  lievre
 void free_imatrix(m,nrl,nrh,ncl,nch)    (Module): sump fixed, loop imx fixed, and simplifications.
       int **m;  
       long nch,ncl,nrh,nrl;    Revision 1.102  2004/09/15 17:31:30  brouard
      /* free an int matrix allocated by imatrix() */    Add the possibility to read data file including tab characters.
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));    Revision 1.101  2004/09/15 10:38:38  brouard
   free((FREE_ARG) (m+nrl-NR_END));    Fix on curr_time
 }  
     Revision 1.100  2004/07/12 18:29:06  brouard
 /******************* matrix *******************************/    Add version for Mac OS X. Just define UNIX in Makefile
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.99  2004/06/05 08:57:40  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    *** empty log message ***
   double **m;  
     Revision 1.98  2004/05/16 15:05:56  brouard
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    New version 0.97 . First attempt to estimate force of mortality
   if (!m) nrerror("allocation failure 1 in matrix()");    directly from the data i.e. without the need of knowing the health
   m += NR_END;    state at each age, but using a Gompertz model: log u =a + b*age .
   m -= nrl;    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    cross-longitudinal survey is different from the mortality estimated
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");    from other sources like vital statistic data.
   m[nrl] += NR_END;  
   m[nrl] -= ncl;    The same imach parameter file can be used but the option for mle should be -3.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Agnès, who wrote this part of the code, tried to keep most of the
   return m;    former routines in order to include the new code within the former code.
 }  
     The output is very simple: only an estimate of the intercept and of
 /*************************free matrix ************************/    the slope with 95% confident intervals.
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)  
 {    Current limitations:
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    A) Even if you enter covariates, i.e. with the
   free((FREE_ARG)(m+nrl-NR_END));    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
 }    B) There is no computation of Life Expectancy nor Life Table.
   
 /******************* ma3x *******************************/    Revision 1.97  2004/02/20 13:25:42  lievre
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    Version 0.96d. Population forecasting command line is (temporarily)
 {    suppressed.
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  
   double ***m;    Revision 1.96  2003/07/15 15:38:55  brouard
     * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    rewritten within the same printf. Workaround: many printfs.
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;    Revision 1.95  2003/07/08 07:54:34  brouard
   m -= nrl;    * imach.c (Repository):
     (Repository): Using imachwizard code to output a more meaningful covariance
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    matrix (cov(a12,c31) instead of numbers.
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.94  2003/06/27 13:00:02  brouard
   m[nrl] -= ncl;    Just cleaning
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;    Revision 1.93  2003/06/25 16:33:55  brouard
     (Module): On windows (cygwin) function asctime_r doesn't
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));    exist so I changed back to asctime which exists.
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");    (Module): Version 0.96b
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;    Revision 1.92  2003/06/25 16:30:45  brouard
   for (j=ncl+1; j<=nch; j++)    (Module): On windows (cygwin) function asctime_r doesn't
     m[nrl][j]=m[nrl][j-1]+nlay;    exist so I changed back to asctime which exists.
    
   for (i=nrl+1; i<=nrh; i++) {    Revision 1.91  2003/06/25 15:30:29  brouard
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    * imach.c (Repository): Duplicated warning errors corrected.
     for (j=ncl+1; j<=nch; j++)    (Repository): Elapsed time after each iteration is now output. It
       m[i][j]=m[i][j-1]+nlay;    helps to forecast when convergence will be reached. Elapsed time
   }    is stamped in powell.  We created a new html file for the graphs
   return m;    concerning matrix of covariance. It has extension -cov.htm.
 }  
     Revision 1.90  2003/06/24 12:34:15  brouard
 /*************************free ma3x ************************/    (Module): Some bugs corrected for windows. Also, when
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    mle=-1 a template is output in file "or"mypar.txt with the design
 {    of the covariance matrix to be input.
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));  
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    Revision 1.89  2003/06/24 12:30:52  brouard
   free((FREE_ARG)(m+nrl-NR_END));    (Module): Some bugs corrected for windows. Also, when
 }    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
 /***************** f1dim *************************/  
 extern int ncom;    Revision 1.88  2003/06/23 17:54:56  brouard
 extern double *pcom,*xicom;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
 extern double (*nrfunc)(double []);  
      Revision 1.87  2003/06/18 12:26:01  brouard
 double f1dim(double x)    Version 0.96
 {  
   int j;    Revision 1.86  2003/06/17 20:04:08  brouard
   double f;    (Module): Change position of html and gnuplot routines and added
   double *xt;    routine fileappend.
    
   xt=vector(1,ncom);    Revision 1.85  2003/06/17 13:12:43  brouard
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    * imach.c (Repository): Check when date of death was earlier that
   f=(*nrfunc)(xt);    current date of interview. It may happen when the death was just
   free_vector(xt,1,ncom);    prior to the death. In this case, dh was negative and likelihood
   return f;    was wrong (infinity). We still send an "Error" but patch by
 }    assuming that the date of death was just one stepm after the
     interview.
 /*****************brent *************************/    (Repository): Because some people have very long ID (first column)
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    we changed int to long in num[] and we added a new lvector for
 {    memory allocation. But we also truncated to 8 characters (left
   int iter;    truncation)
   double a,b,d,etemp;    (Repository): No more line truncation errors.
   double fu,fv,fw,fx;  
   double ftemp;    Revision 1.84  2003/06/13 21:44:43  brouard
   double p,q,r,tol1,tol2,u,v,w,x,xm;    * imach.c (Repository): Replace "freqsummary" at a correct
   double e=0.0;    place. It differs from routine "prevalence" which may be called
      many times. Probs is memory consuming and must be used with
   a=(ax < cx ? ax : cx);    parcimony.
   b=(ax > cx ? ax : cx);    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    Revision 1.83  2003/06/10 13:39:11  lievre
   for (iter=1;iter<=ITMAX;iter++) {    *** empty log message ***
     xm=0.5*(a+b);  
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    Revision 1.82  2003/06/05 15:57:20  brouard
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    Add log in  imach.c and  fullversion number is now printed.
     printf(".");fflush(stdout);  
     fprintf(ficlog,".");fflush(ficlog);  */
 #ifdef DEBUG  /*
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);     Interpolated Markov Chain
     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    Short summary of the programme:
 #endif    
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    This program computes Healthy Life Expectancies from
       *xmin=x;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
       return fx;    first survey ("cross") where individuals from different ages are
     }    interviewed on their health status or degree of disability (in the
     ftemp=fu;    case of a health survey which is our main interest) -2- at least a
     if (fabs(e) > tol1) {    second wave of interviews ("longitudinal") which measure each change
       r=(x-w)*(fx-fv);    (if any) in individual health status.  Health expectancies are
       q=(x-v)*(fx-fw);    computed from the time spent in each health state according to a
       p=(x-v)*q-(x-w)*r;    model. More health states you consider, more time is necessary to reach the
       q=2.0*(q-r);    Maximum Likelihood of the parameters involved in the model.  The
       if (q > 0.0) p = -p;    simplest model is the multinomial logistic model where pij is the
       q=fabs(q);    probability to be observed in state j at the second wave
       etemp=e;    conditional to be observed in state i at the first wave. Therefore
       e=d;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    'age' is age and 'sex' is a covariate. If you want to have a more
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    complex model than "constant and age", you should modify the program
       else {    where the markup *Covariates have to be included here again* invites
         d=p/q;    you to do it.  More covariates you add, slower the
         u=x+d;    convergence.
         if (u-a < tol2 || b-u < tol2)  
           d=SIGN(tol1,xm-x);    The advantage of this computer programme, compared to a simple
       }    multinomial logistic model, is clear when the delay between waves is not
     } else {    identical for each individual. Also, if a individual missed an
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    intermediate interview, the information is lost, but taken into
     }    account using an interpolation or extrapolation.  
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));  
     fu=(*f)(u);    hPijx is the probability to be observed in state i at age x+h
     if (fu <= fx) {    conditional to the observed state i at age x. The delay 'h' can be
       if (u >= x) a=x; else b=x;    split into an exact number (nh*stepm) of unobserved intermediate
       SHFT(v,w,x,u)    states. This elementary transition (by month, quarter,
         SHFT(fv,fw,fx,fu)    semester or year) is modelled as a multinomial logistic.  The hPx
         } else {    matrix is simply the matrix product of nh*stepm elementary matrices
           if (u < x) a=u; else b=u;    and the contribution of each individual to the likelihood is simply
           if (fu <= fw || w == x) {    hPijx.
             v=w;  
             w=u;    Also this programme outputs the covariance matrix of the parameters but also
             fv=fw;    of the life expectancies. It also computes the period (stable) prevalence. 
             fw=fu;    
           } else if (fu <= fv || v == x || v == w) {    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
             v=u;             Institut national d'études démographiques, Paris.
             fv=fu;    This software have been partly granted by Euro-REVES, a concerted action
           }    from the European Union.
         }    It is copyrighted identically to a GNU software product, ie programme and
   }    software can be distributed freely for non commercial use. Latest version
   nrerror("Too many iterations in brent");    can be accessed at http://euroreves.ined.fr/imach .
   *xmin=x;  
   return fx;    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 }    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
     
 /****************** mnbrak ***********************/    **********************************************************************/
   /*
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,    main
             double (*func)(double))    read parameterfile
 {    read datafile
   double ulim,u,r,q, dum;    concatwav
   double fu;    freqsummary
      if (mle >= 1)
   *fa=(*func)(*ax);      mlikeli
   *fb=(*func)(*bx);    print results files
   if (*fb > *fa) {    if mle==1 
     SHFT(dum,*ax,*bx,dum)       computes hessian
       SHFT(dum,*fb,*fa,dum)    read end of parameter file: agemin, agemax, bage, fage, estepm
       }        begin-prev-date,...
   *cx=(*bx)+GOLD*(*bx-*ax);    open gnuplot file
   *fc=(*func)(*cx);    open html file
   while (*fb > *fc) {    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
     r=(*bx-*ax)*(*fb-*fc);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
     q=(*bx-*cx)*(*fb-*fa);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/      freexexit2 possible for memory heap.
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  
     ulim=(*bx)+GLIMIT*(*cx-*bx);    h Pij x                         | pij_nom  ficrestpij
     if ((*bx-u)*(u-*cx) > 0.0) {     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       fu=(*func)(u);         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
     } else if ((*cx-u)*(u-ulim) > 0.0) {         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       fu=(*func)(u);  
       if (fu < *fc) {         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
           SHFT(*fb,*fc,fu,(*func)(u))    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
           }     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
       u=ulim;  
       fu=(*func)(u);    forecasting if prevfcast==1 prevforecast call prevalence()
     } else {    health expectancies
       u=(*cx)+GOLD*(*cx-*bx);    Variance-covariance of DFLE
       fu=(*func)(u);    prevalence()
     }     movingaverage()
     SHFT(*ax,*bx,*cx,u)    varevsij() 
       SHFT(*fa,*fb,*fc,fu)    if popbased==1 varevsij(,popbased)
       }    total life expectancies
 }    Variance of period (stable) prevalence
    end
 /*************** linmin ************************/  */
   
 int ncom;  #define POWELL /* Instead of NLOPT */
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  #include <math.h>
    #include <stdio.h>
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  #include <stdlib.h>
 {  #include <string.h>
   double brent(double ax, double bx, double cx,  
                double (*f)(double), double tol, double *xmin);  #ifdef _WIN32
   double f1dim(double x);  #include <io.h>
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  #include <windows.h>
               double *fc, double (*func)(double));  #include <tchar.h>
   int j;  #else
   double xx,xmin,bx,ax;  #include <unistd.h>
   double fx,fb,fa;  #endif
    
   ncom=n;  #include <limits.h>
   pcom=vector(1,n);  #include <sys/types.h>
   xicom=vector(1,n);  
   nrfunc=func;  #if defined(__GNUC__)
   for (j=1;j<=n;j++) {  #include <sys/utsname.h> /* Doesn't work on Windows */
     pcom[j]=p[j];  #endif
     xicom[j]=xi[j];  
   }  #include <sys/stat.h>
   ax=0.0;  #include <errno.h>
   xx=1.0;  /* extern int errno; */
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  /* #ifdef LINUX */
 #ifdef DEBUG  /* #include <time.h> */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /* #include "timeval.h" */
   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  /* #else */
 #endif  /* #include <sys/time.h> */
   for (j=1;j<=n;j++) {  /* #endif */
     xi[j] *= xmin;  
     p[j] += xi[j];  #include <time.h>
   }  
   free_vector(xicom,1,n);  #ifdef GSL
   free_vector(pcom,1,n);  #include <gsl/gsl_errno.h>
 }  #include <gsl/gsl_multimin.h>
   #endif
 /*************** powell ************************/  
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  
             double (*func)(double []))  #ifdef NLOPT
 {  #include <nlopt.h>
   void linmin(double p[], double xi[], int n, double *fret,  typedef struct {
               double (*func)(double []));    double (* function)(double [] );
   int i,ibig,j;  } myfunc_data ;
   double del,t,*pt,*ptt,*xit;  #endif
   double fp,fptt;  
   double *xits;  /* #include <libintl.h> */
   pt=vector(1,n);  /* #define _(String) gettext (String) */
   ptt=vector(1,n);  
   xit=vector(1,n);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   xits=vector(1,n);  
   *fret=(*func)(p);  #define GNUPLOTPROGRAM "gnuplot"
   for (j=1;j<=n;j++) pt[j]=p[j];  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
   for (*iter=1;;++(*iter)) {  #define FILENAMELENGTH 132
     fp=(*fret);  
     ibig=0;  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     del=0.0;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     for (i=1;i<=n;i++)  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       printf(" %d %.12f",i, p[i]);  
     fprintf(ficlog," %d %.12f",i, p[i]);  #define NINTERVMAX 8
     printf("\n");  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
     fprintf(ficlog,"\n");  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
     for (i=1;i<=n;i++) {  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       fptt=(*fret);  #define MAXN 20000
 #ifdef DEBUG  #define YEARM 12. /**< Number of months per year */
       printf("fret=%lf \n",*fret);  #define AGESUP 130
       fprintf(ficlog,"fret=%lf \n",*fret);  #define AGEBASE 40
 #endif  #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
       printf("%d",i);fflush(stdout);  #ifdef _WIN32
       fprintf(ficlog,"%d",i);fflush(ficlog);  #define DIRSEPARATOR '\\'
       linmin(p,xit,n,fret,func);  #define CHARSEPARATOR "\\"
       if (fabs(fptt-(*fret)) > del) {  #define ODIRSEPARATOR '/'
         del=fabs(fptt-(*fret));  #else
         ibig=i;  #define DIRSEPARATOR '/'
       }  #define CHARSEPARATOR "/"
 #ifdef DEBUG  #define ODIRSEPARATOR '\\'
       printf("%d %.12e",i,(*fret));  #endif
       fprintf(ficlog,"%d %.12e",i,(*fret));  
       for (j=1;j<=n;j++) {  /* $Id$ */
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  /* $State$ */
         printf(" x(%d)=%.12e",j,xit[j]);  
         fprintf(ficlog," x(%d)=%.12e",j,xit[j]);  char version[]="Imach version 0.98p, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
       }  char fullversion[]="$Revision$ $Date$"; 
       for(j=1;j<=n;j++) {  char strstart[80];
         printf(" p=%.12e",p[j]);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
         fprintf(ficlog," p=%.12e",p[j]);  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
       }  int nvar=0, nforce=0; /* Number of variables, number of forces */
       printf("\n");  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
       fprintf(ficlog,"\n");  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
 #endif  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
     }  int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
 #ifdef DEBUG  int cptcovprodnoage=0; /**< Number of covariate products without age */   
       int k[2],l;  int cptcoveff=0; /* Total number of covariates to vary for printing results */
       k[0]=1;  int cptcov=0; /* Working variable */
       k[1]=-1;  int npar=NPARMAX;
       printf("Max: %.12e",(*func)(p));  int nlstate=2; /* Number of live states */
       fprintf(ficlog,"Max: %.12e",(*func)(p));  int ndeath=1; /* Number of dead states */
       for (j=1;j<=n;j++) {  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
         printf(" %.12e",p[j]);  int popbased=0;
         fprintf(ficlog," %.12e",p[j]);  
       }  int *wav; /* Number of waves for this individuual 0 is possible */
       printf("\n");  int maxwav=0; /* Maxim number of waves */
       fprintf(ficlog,"\n");  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
       for(l=0;l<=1;l++) {  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
         for (j=1;j<=n;j++) {  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];                     to the likelihood and the sum of weights (done by funcone)*/
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int mle=1, weightopt=0;
           fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
         }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
         fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));             * wave mi and wave mi+1 is not an exact multiple of stepm. */
       }  int countcallfunc=0;  /* Count the number of calls to func */
 #endif  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
       free_vector(xit,1,n);  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
       free_vector(xits,1,n);  /*FILE *fic ; */ /* Used in readdata only */
       free_vector(ptt,1,n);  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
       free_vector(pt,1,n);  FILE *ficlog, *ficrespow;
       return;  int globpr=0; /* Global variable for printing or not */
     }  double fretone; /* Only one call to likelihood */
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  long ipmx=0; /* Number of contributions */
     for (j=1;j<=n;j++) {  double sw; /* Sum of weights */
       ptt[j]=2.0*p[j]-pt[j];  char filerespow[FILENAMELENGTH];
       xit[j]=p[j]-pt[j];  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
       pt[j]=p[j];  FILE *ficresilk;
     }  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
     fptt=(*func)(ptt);  FILE *ficresprobmorprev;
     if (fptt < fp) {  FILE *fichtm, *fichtmcov; /* Html File */
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  FILE *ficreseij;
       if (t < 0.0) {  char filerese[FILENAMELENGTH];
         linmin(p,xit,n,fret,func);  FILE *ficresstdeij;
         for (j=1;j<=n;j++) {  char fileresstde[FILENAMELENGTH];
           xi[j][ibig]=xi[j][n];  FILE *ficrescveij;
           xi[j][n]=xit[j];  char filerescve[FILENAMELENGTH];
         }  FILE  *ficresvij;
 #ifdef DEBUG  char fileresv[FILENAMELENGTH];
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  FILE  *ficresvpl;
         fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  char fileresvpl[FILENAMELENGTH];
         for(j=1;j<=n;j++){  char title[MAXLINE];
           printf(" %.12e",xit[j]);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
           fprintf(ficlog," %.12e",xit[j]);  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
         }  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
         printf("\n");  char command[FILENAMELENGTH];
         fprintf(ficlog,"\n");  int  outcmd=0;
 #endif  
       }  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
     }  
   }  char filelog[FILENAMELENGTH]; /* Log file */
 }  char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
 /**** Prevalence limit ****************/  char popfile[FILENAMELENGTH];
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
 {  
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit  /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
      matrix by transitions matrix until convergence is reached */  /* struct timezone tzp; */
   /* extern int gettimeofday(); */
   int i, ii,j,k;  struct tm tml, *gmtime(), *localtime();
   double min, max, maxmin, maxmax,sumnew=0.;  
   double **matprod2();  extern time_t time();
   double **out, cov[NCOVMAX], **pmij();  
   double **newm;  struct tm start_time, end_time, curr_time, last_time, forecast_time;
   double agefin, delaymax=50 ; /* Max number of years to converge */  time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
   struct tm tm;
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  char strcurr[80], strfor[80];
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  
     }  char *endptr;
   long lval;
    cov[1]=1.;  double dval;
    
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */  #define NR_END 1
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){  #define FREE_ARG char*
     newm=savm;  #define FTOL 1.0e-10
     /* Covariates have to be included here again */  
      cov[2]=agefin;  #define NRANSI 
    #define ITMAX 200 
       for (k=1; k<=cptcovn;k++) {  
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  #define TOL 2.0e-4 
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/  
       }  #define CGOLD 0.3819660 
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  #define ZEPS 1.0e-10 
       for (k=1; k<=cptcovprod;k++)  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  
   #define GOLD 1.618034 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/  #define GLIMIT 100.0 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/  #define TINY 1.0e-20 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/  
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     savm=oldm;  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     oldm=newm;    
     maxmax=0.;  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
     for(j=1;j<=nlstate;j++){  #define rint(a) floor(a+0.5)
       min=1.;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
       max=0.;  /* #define mytinydouble 1.0e-16 */
       for(i=1; i<=nlstate; i++) {  /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
         sumnew=0;  /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];  /* static double dsqrarg; */
         prlim[i][j]= newm[i][j]/(1-sumnew);  /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
         max=FMAX(max,prlim[i][j]);  static double sqrarg;
         min=FMIN(min,prlim[i][j]);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
       }  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       maxmin=max-min;  int agegomp= AGEGOMP;
       maxmax=FMAX(maxmax,maxmin);  
     }  int imx; 
     if(maxmax < ftolpl){  int stepm=1;
       return prlim;  /* Stepm, step in month: minimum step interpolation*/
     }  
   }  int estepm;
 }  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 /*************** transition probabilities ***************/  int m,nb;
   long *num;
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 {  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   double s1, s2;  double **pmmij, ***probs;
   /*double t34;*/  double *ageexmed,*agecens;
   int i,j,j1, nc, ii, jj;  double dateintmean=0;
   
     for(i=1; i<= nlstate; i++){  double *weight;
     for(j=1; j<i;j++){  int **s; /* Status */
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double *agedc;
         /*s2 += param[i][j][nc]*cov[nc];*/  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];                    * covar=matrix(0,NCOVMAX,1,n); 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
       }  double  idx; 
       ps[i][j]=s2;  int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  int *Ndum; /** Freq of modality (tricode */
     }  int **codtab; /**< codtab=imatrix(1,100,1,10); */
     for(j=i+1; j<=nlstate+ndeath;j++){  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  double *lsurv, *lpop, *tpop;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
       }  double ftolhess; /**< Tolerance for computing hessian */
       ps[i][j]=s2;  
     }  /**************** split *************************/
   }  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     /*ps[3][2]=1;*/  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
   for(i=1; i<= nlstate; i++){       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      s1=0;    */ 
     for(j=1; j<i; j++)    char  *ss;                            /* pointer */
       s1+=exp(ps[i][j]);    int   l1, l2;                         /* length counters */
     for(j=i+1; j<=nlstate+ndeath; j++)  
       s1+=exp(ps[i][j]);    l1 = strlen(path );                   /* length of path */
     ps[i][i]=1./(s1+1.);    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     for(j=1; j<i; j++)    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       ps[i][j]= exp(ps[i][j])*ps[i][i];    if ( ss == NULL ) {                   /* no directory, so determine current directory */
     for(j=i+1; j<=nlstate+ndeath; j++)      strcpy( name, path );               /* we got the fullname name because no directory */
       ps[i][j]= exp(ps[i][j])*ps[i][i];      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   } /* end i */      /* get current working directory */
       /*    extern  char* getcwd ( char *buf , int len);*/
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
     for(jj=1; jj<= nlstate+ndeath; jj++){        return( GLOCK_ERROR_GETCWD );
       ps[ii][jj]=0;      }
       ps[ii][ii]=1;      /* got dirc from getcwd*/
     }      printf(" DIRC = %s \n",dirc);
   }    } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     for(jj=1; jj<= nlstate+ndeath; jj++){      strcpy( name, ss );         /* save file name */
      printf("%lf ",ps[ii][jj]);      strncpy( dirc, path, l1 - l2 );     /* now the directory */
    }      dirc[l1-l2] = 0;                    /* add zero */
     printf("\n ");      printf(" DIRC2 = %s \n",dirc);
     }    }
     printf("\n ");printf("%lf ",cov[2]);*/    /* We add a separator at the end of dirc if not exists */
 /*    l1 = strlen( dirc );                  /* length of directory */
   for(i=1; i<= npar; i++) printf("%f ",x[i]);    if( dirc[l1-1] != DIRSEPARATOR ){
   goto end;*/      dirc[l1] =  DIRSEPARATOR;
     return ps;      dirc[l1+1] = 0; 
 }      printf(" DIRC3 = %s \n",dirc);
     }
 /**************** Product of 2 matrices ******************/    ss = strrchr( name, '.' );            /* find last / */
     if (ss >0){
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)      ss++;
 {      strcpy(ext,ss);                     /* save extension */
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times      l1= strlen( name);
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      l2= strlen(ss)+1;
   /* in, b, out are matrice of pointers which should have been initialized      strncpy( finame, name, l1-l2);
      before: only the contents of out is modified. The function returns      finame[l1-l2]= 0;
      a pointer to pointers identical to out */    }
   long i, j, k;  
   for(i=nrl; i<= nrh; i++)    return( 0 );                          /* we're done */
     for(k=ncolol; k<=ncoloh; k++)  }
       for(j=ncl,out[i][k]=0.; j<=nch; j++)  
         out[i][k] +=in[i][j]*b[j][k];  
   /******************************************/
   return out;  
 }  void replace_back_to_slash(char *s, char*t)
   {
     int i;
 /************* Higher Matrix Product ***************/    int lg=0;
     i=0;
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    lg=strlen(t);
 {    for(i=0; i<= lg; i++) {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      (s[i] = t[i]);
      duration (i.e. until      if (t[i]== '\\') s[i]='/';
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.    }
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step  }
      (typically every 2 years instead of every month which is too big).  
      Model is determined by parameters x and covariates have to be  char *trimbb(char *out, char *in)
      included manually here.  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
     char *s;
      */    s=out;
     while (*in != '\0'){
   int i, j, d, h, k;      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   double **out, cov[NCOVMAX];        in++;
   double **newm;      }
       *out++ = *in++;
   /* Hstepm could be zero and should return the unit matrix */    }
   for (i=1;i<=nlstate+ndeath;i++)    *out='\0';
     for (j=1;j<=nlstate+ndeath;j++){    return s;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  }
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  char *cutl(char *blocc, char *alocc, char *in, char occ)
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  {
   for(h=1; h <=nhstepm; h++){    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
     for(d=1; d <=hstepm; d++){       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
       newm=savm;       gives blocc="abcdef2ghi" and alocc="j".
       /* Covariates have to be included here again */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
       cov[1]=1.;    */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    char *s, *t;
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];    t=in;s=in;
       for (k=1; k<=cptcovage;k++)    while ((*in != occ) && (*in != '\0')){
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      *alocc++ = *in++;
       for (k=1; k<=cptcovprod;k++)    }
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    if( *in == occ){
       *(alocc)='\0';
       s=++in;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    }
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/   
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,    if (s == t) {/* occ not found */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      *(alocc-(in-s))='\0';
       savm=oldm;      in=s;
       oldm=newm;    }
     }    while ( *in != '\0'){
     for(i=1; i<=nlstate+ndeath; i++)      *blocc++ = *in++;
       for(j=1;j<=nlstate+ndeath;j++) {    }
         po[i][j][h]=newm[i][j];  
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);    *blocc='\0';
          */    return t;
       }  }
   } /* end h */  char *cutv(char *blocc, char *alocc, char *in, char occ)
   return po;  {
 }    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
        and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
        gives blocc="abcdef2ghi" and alocc="j".
 /*************** log-likelihood *************/       If occ is not found blocc is null and alocc is equal to in. Returns alocc
 double func( double *x)    */
 {    char *s, *t;
   int i, ii, j, k, mi, d, kk;    t=in;s=in;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    while (*in != '\0'){
   double **out;      while( *in == occ){
   double sw; /* Sum of weights */        *blocc++ = *in++;
   double lli; /* Individual log likelihood */        s=in;
   long ipmx;      }
   /*extern weight */      *blocc++ = *in++;
   /* We are differentiating ll according to initial status */    }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    if (s == t) /* occ not found */
   /*for(i=1;i<imx;i++)      *(blocc-(in-s))='\0';
     printf(" %d\n",s[4][i]);    else
   */      *(blocc-(in-s)-1)='\0';
   cov[1]=1.;    in=s;
     while ( *in != '\0'){
   for(k=1; k<=nlstate; k++) ll[k]=0.;      *alocc++ = *in++;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    }
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  
     for(mi=1; mi<= wav[i]-1; mi++){    *alocc='\0';
       for (ii=1;ii<=nlstate+ndeath;ii++)    return s;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  }
       for(d=0; d<dh[mi][i]; d++){  
         newm=savm;  int nbocc(char *s, char occ)
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  {
         for (kk=1; kk<=cptcovage;kk++) {    int i,j=0;
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    int lg=20;
         }    i=0;
            lg=strlen(s);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    for(i=0; i<= lg; i++) {
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    if  (s[i] == occ ) j++;
         savm=oldm;    }
         oldm=newm;    return j;
          }
          
       } /* end mult */  /* void cutv(char *u,char *v, char*t, char occ) */
        /* { */
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       ipmx +=1;  /*      gives u="abcdef2ghi" and v="j" *\/ */
       sw += weight[i];  /*   int i,lg,j,p=0; */
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /*   i=0; */
     } /* end of wave */  /*   lg=strlen(t); */
   } /* end of individual */  /*   for(j=0; j<=lg-1; j++) { */
   /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  /*   } */
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */  
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */  /*   for(j=0; j<p; j++) { */
   return -l;  /*     (u[j] = t[j]); */
 }  /*   } */
   /*      u[p]='\0'; */
   
 /*********** Maximum Likelihood Estimation ***************/  /*    for(j=0; j<= lg; j++) { */
   /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))  /*   } */
 {  /* } */
   int i,j, iter;  
   double **xi,*delti;  #ifdef _WIN32
   double fret;  char * strsep(char **pp, const char *delim)
   xi=matrix(1,npar,1,npar);  {
   for (i=1;i<=npar;i++)    char *p, *q;
     for (j=1;j<=npar;j++)           
       xi[i][j]=(i==j ? 1.0 : 0.0);    if ((p = *pp) == NULL)
   printf("Powell\n");  fprintf(ficlog,"Powell\n");      return 0;
   powell(p,xi,npar,ftol,&iter,&fret,func);    if ((q = strpbrk (p, delim)) != NULL)
     {
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));      *pp = q + 1;
   fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));      *q = '\0';
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));    }
     else
 }      *pp = 0;
     return p;
 /**** Computes Hessian and covariance matrix ***/  }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  #endif
 {  
   double  **a,**y,*x,pd;  /********************** nrerror ********************/
   double **hess;  
   int i, j,jk;  void nrerror(char error_text[])
   int *indx;  {
     fprintf(stderr,"ERREUR ...\n");
   double hessii(double p[], double delta, int theta, double delti[]);    fprintf(stderr,"%s\n",error_text);
   double hessij(double p[], double delti[], int i, int j);    exit(EXIT_FAILURE);
   void lubksb(double **a, int npar, int *indx, double b[]) ;  }
   void ludcmp(double **a, int npar, int *indx, double *d) ;  /*********************** vector *******************/
   double *vector(int nl, int nh)
   hess=matrix(1,npar,1,npar);  {
     double *v;
   printf("\nCalculation of the hessian matrix. Wait...\n");    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");    if (!v) nrerror("allocation failure in vector");
   for (i=1;i<=npar;i++){    return v-nl+NR_END;
     printf("%d",i);fflush(stdout);  }
     fprintf(ficlog,"%d",i);fflush(ficlog);  
     hess[i][i]=hessii(p,ftolhess,i,delti);  /************************ free vector ******************/
     /*printf(" %f ",p[i]);*/  void free_vector(double*v, int nl, int nh)
     /*printf(" %lf ",hess[i][i]);*/  {
   }    free((FREE_ARG)(v+nl-NR_END));
    }
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++)  {  /************************ivector *******************************/
       if (j>i) {  int *ivector(long nl,long nh)
         printf(".%d%d",i,j);fflush(stdout);  {
         fprintf(ficlog,".%d%d",i,j);fflush(ficlog);    int *v;
         hess[i][j]=hessij(p,delti,i,j);    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
         hess[j][i]=hess[i][j];        if (!v) nrerror("allocation failure in ivector");
         /*printf(" %lf ",hess[i][j]);*/    return v-nl+NR_END;
       }  }
     }  
   }  /******************free ivector **************************/
   printf("\n");  void free_ivector(int *v, long nl, long nh)
   fprintf(ficlog,"\n");  {
     free((FREE_ARG)(v+nl-NR_END));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");  }
   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");  
    /************************lvector *******************************/
   a=matrix(1,npar,1,npar);  long *lvector(long nl,long nh)
   y=matrix(1,npar,1,npar);  {
   x=vector(1,npar);    long *v;
   indx=ivector(1,npar);    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
   for (i=1;i<=npar;i++)    if (!v) nrerror("allocation failure in ivector");
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    return v-nl+NR_END;
   ludcmp(a,npar,indx,&pd);  }
   
   for (j=1;j<=npar;j++) {  /******************free lvector **************************/
     for (i=1;i<=npar;i++) x[i]=0;  void free_lvector(long *v, long nl, long nh)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    free((FREE_ARG)(v+nl-NR_END));
     for (i=1;i<=npar;i++){  }
       matcov[i][j]=x[i];  
     }  /******************* imatrix *******************************/
   }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
        /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   printf("\n#Hessian matrix#\n");  { 
   fprintf(ficlog,"\n#Hessian matrix#\n");    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for (i=1;i<=npar;i++) {    int **m; 
     for (j=1;j<=npar;j++) {    
       printf("%.3e ",hess[i][j]);    /* allocate pointers to rows */ 
       fprintf(ficlog,"%.3e ",hess[i][j]);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     }    if (!m) nrerror("allocation failure 1 in matrix()"); 
     printf("\n");    m += NR_END; 
     fprintf(ficlog,"\n");    m -= nrl; 
   }    
     
   /* Recompute Inverse */    /* allocate rows and set pointers to them */ 
   for (i=1;i<=npar;i++)    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   ludcmp(a,npar,indx,&pd);    m[nrl] += NR_END; 
     m[nrl] -= ncl; 
   /*  printf("\n#Hessian matrix recomputed#\n");    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   for (j=1;j<=npar;j++) {    
     for (i=1;i<=npar;i++) x[i]=0;    /* return pointer to array of pointers to rows */ 
     x[j]=1;    return m; 
     lubksb(a,npar,indx,x);  } 
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /****************** free_imatrix *************************/
       printf("%.3e ",y[i][j]);  void free_imatrix(m,nrl,nrh,ncl,nch)
       fprintf(ficlog,"%.3e ",y[i][j]);        int **m;
     }        long nch,ncl,nrh,nrl; 
     printf("\n");       /* free an int matrix allocated by imatrix() */ 
     fprintf(ficlog,"\n");  { 
   }    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   */    free((FREE_ARG) (m+nrl-NR_END)); 
   } 
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /******************* matrix *******************************/
   free_vector(x,1,npar);  double **matrix(long nrl, long nrh, long ncl, long nch)
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
     double **m;
   
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** hessian matrix ****************/    m += NR_END;
 double hessii( double x[], double delta, int theta, double delti[])    m -= nrl;
 {  
   int i;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   int l=1, lmax=20;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   double k1,k2;    m[nrl] += NR_END;
   double p2[NPARMAX+1];    m[nrl] -= ncl;
   double res;  
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double fx;    return m;
   int k=0,kmax=10;    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
   double l1;  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
   that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
   fx=func(x);     */
   for (i=1;i<=npar;i++) p2[i]=x[i];  }
   for(l=0 ; l <=lmax; l++){  
     l1=pow(10,l);  /*************************free matrix ************************/
     delts=delt;  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     for(k=1 ; k <kmax; k=k+1){  {
       delt = delta*(l1*k);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       p2[theta]=x[theta] +delt;    free((FREE_ARG)(m+nrl-NR_END));
       k1=func(p2)-fx;  }
       p2[theta]=x[theta]-delt;  
       k2=func(p2)-fx;  /******************* ma3x *******************************/
       /*res= (k1-2.0*fx+k2)/delt/delt; */  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  {
          long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
 #ifdef DEBUG    double ***m;
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  
       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
 #endif    if (!m) nrerror("allocation failure 1 in matrix()");
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    m += NR_END;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){    m -= nrl;
         k=kmax;  
       }    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         k=kmax; l=lmax*10.;    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  
         delts=delt;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       }  
     }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
   }    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
   delti[theta]=delts;    m[nrl][ncl] += NR_END;
   return res;    m[nrl][ncl] -= nll;
      for (j=ncl+1; j<=nch; j++) 
 }      m[nrl][j]=m[nrl][j-1]+nlay;
     
 double hessij( double x[], double delti[], int thetai,int thetaj)    for (i=nrl+1; i<=nrh; i++) {
 {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   int i;      for (j=ncl+1; j<=nch; j++) 
   int l=1, l1, lmax=20;        m[i][j]=m[i][j-1]+nlay;
   double k1,k2,k3,k4,res,fx;    }
   double p2[NPARMAX+1];    return m; 
   int k;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
              &(m[i][j][k]) <=> *((*(m+i) + j)+k)
   fx=func(x);    */
   for (k=1; k<=2; k++) {  }
     for (i=1;i<=npar;i++) p2[i]=x[i];  
     p2[thetai]=x[thetai]+delti[thetai]/k;  /*************************free ma3x ************************/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     k1=func(p2)-fx;  {
      free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
     p2[thetai]=x[thetai]+delti[thetai]/k;    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    free((FREE_ARG)(m+nrl-NR_END));
     k2=func(p2)-fx;  }
    
     p2[thetai]=x[thetai]-delti[thetai]/k;  /*************** function subdirf ***********/
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;  char *subdirf(char fileres[])
     k3=func(p2)-fx;  {
      /* Caution optionfilefiname is hidden */
     p2[thetai]=x[thetai]-delti[thetai]/k;    strcpy(tmpout,optionfilefiname);
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    strcat(tmpout,"/"); /* Add to the right */
     k4=func(p2)-fx;    strcat(tmpout,fileres);
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */    return tmpout;
 #ifdef DEBUG  }
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  
     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);  /*************** function subdirf2 ***********/
 #endif  char *subdirf2(char fileres[], char *preop)
   }  {
   return res;    
 }    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
 /************** Inverse of matrix **************/    strcat(tmpout,"/");
 void ludcmp(double **a, int n, int *indx, double *d)    strcat(tmpout,preop);
 {    strcat(tmpout,fileres);
   int i,imax,j,k;    return tmpout;
   double big,dum,sum,temp;  }
   double *vv;  
    /*************** function subdirf3 ***********/
   vv=vector(1,n);  char *subdirf3(char fileres[], char *preop, char *preop2)
   *d=1.0;  {
   for (i=1;i<=n;i++) {    
     big=0.0;    /* Caution optionfilefiname is hidden */
     for (j=1;j<=n;j++)    strcpy(tmpout,optionfilefiname);
       if ((temp=fabs(a[i][j])) > big) big=temp;    strcat(tmpout,"/");
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");    strcat(tmpout,preop);
     vv[i]=1.0/big;    strcat(tmpout,preop2);
   }    strcat(tmpout,fileres);
   for (j=1;j<=n;j++) {    return tmpout;
     for (i=1;i<j;i++) {  }
       sum=a[i][j];  
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];  char *asc_diff_time(long time_sec, char ascdiff[])
       a[i][j]=sum;  {
     }    long sec_left, days, hours, minutes;
     big=0.0;    days = (time_sec) / (60*60*24);
     for (i=j;i<=n;i++) {    sec_left = (time_sec) % (60*60*24);
       sum=a[i][j];    hours = (sec_left) / (60*60) ;
       for (k=1;k<j;k++)    sec_left = (sec_left) %(60*60);
         sum -= a[i][k]*a[k][j];    minutes = (sec_left) /60;
       a[i][j]=sum;    sec_left = (sec_left) % (60);
       if ( (dum=vv[i]*fabs(sum)) >= big) {    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
         big=dum;    return ascdiff;
         imax=i;  }
       }  
     }  /***************** f1dim *************************/
     if (j != imax) {  extern int ncom; 
       for (k=1;k<=n;k++) {  extern double *pcom,*xicom;
         dum=a[imax][k];  extern double (*nrfunc)(double []); 
         a[imax][k]=a[j][k];   
         a[j][k]=dum;  double f1dim(double x) 
       }  { 
       *d = -(*d);    int j; 
       vv[imax]=vv[j];    double f;
     }    double *xt; 
     indx[j]=imax;   
     if (a[j][j] == 0.0) a[j][j]=TINY;    xt=vector(1,ncom); 
     if (j != n) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
       dum=1.0/(a[j][j]);    f=(*nrfunc)(xt); 
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    free_vector(xt,1,ncom); 
     }    return f; 
   }  } 
   free_vector(vv,1,n);  /* Doesn't work */  
 ;  /*****************brent *************************/
 }  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
   { 
 void lubksb(double **a, int n, int *indx, double b[])    int iter; 
 {    double a,b,d,etemp;
   int i,ii=0,ip,j;    double fu=0,fv,fw,fx;
   double sum;    double ftemp=0.;
      double p,q,r,tol1,tol2,u,v,w,x,xm; 
   for (i=1;i<=n;i++) {    double e=0.0; 
     ip=indx[i];   
     sum=b[ip];    a=(ax < cx ? ax : cx); 
     b[ip]=b[i];    b=(ax > cx ? ax : cx); 
     if (ii)    x=w=v=bx; 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];    fw=fv=fx=(*f)(x); 
     else if (sum) ii=i;    for (iter=1;iter<=ITMAX;iter++) { 
     b[i]=sum;      xm=0.5*(a+b); 
   }      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
   for (i=n;i>=1;i--) {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     sum=b[i];      printf(".");fflush(stdout);
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];      fprintf(ficlog,".");fflush(ficlog);
     b[i]=sum/a[i][i];  #ifdef DEBUGBRENT
   }      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
 }      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 /************ Frequencies ********************/  #endif
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 {  /* Some frequencies */        *xmin=x; 
          return fx; 
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;      } 
   int first;      ftemp=fu;
   double ***freq; /* Frequencies */      if (fabs(e) > tol1) { 
   double *pp;        r=(x-w)*(fx-fv); 
   double pos, k2, dateintsum=0,k2cpt=0;        q=(x-v)*(fx-fw); 
   FILE *ficresp;        p=(x-v)*q-(x-w)*r; 
   char fileresp[FILENAMELENGTH];        q=2.0*(q-r); 
          if (q > 0.0) p = -p; 
   pp=vector(1,nlstate);        q=fabs(q); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);        etemp=e; 
   strcpy(fileresp,"p");        e=d; 
   strcat(fileresp,fileres);        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   if((ficresp=fopen(fileresp,"w"))==NULL) {          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);        else { 
     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);          d=p/q; 
     exit(0);          u=x+d; 
   }          if (u-a < tol2 || b-u < tol2) 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);            d=SIGN(tol1,xm-x); 
   j1=0;        } 
        } else { 
   j=cptcoveff;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      } 
       u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   first=1;      fu=(*f)(u); 
       if (fu <= fx) { 
   for(k1=1; k1<=j;k1++){        if (u >= x) a=x; else b=x; 
     for(i1=1; i1<=ncodemax[k1];i1++){        SHFT(v,w,x,u) 
       j1++;          SHFT(fv,fw,fx,fu) 
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);          } else { 
         scanf("%d", i);*/            if (u < x) a=u; else b=u; 
       for (i=-1; i<=nlstate+ndeath; i++)              if (fu <= fw || w == x) { 
         for (jk=-1; jk<=nlstate+ndeath; jk++)                v=w; 
           for(m=agemin; m <= agemax+3; m++)              w=u; 
             freq[i][jk][m]=0;              fv=fw; 
                    fw=fu; 
       dateintsum=0;            } else if (fu <= fv || v == x || v == w) { 
       k2cpt=0;              v=u; 
       for (i=1; i<=imx; i++) {              fv=fu; 
         bool=1;            } 
         if  (cptcovn>0) {          } 
           for (z1=1; z1<=cptcoveff; z1++)    } 
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    nrerror("Too many iterations in brent"); 
               bool=0;    *xmin=x; 
         }    return fx; 
         if (bool==1) {  } 
           for(m=firstpass; m<=lastpass; m++){  
             k2=anint[m][i]+(mint[m][i]/12.);  /****************** mnbrak ***********************/
             if ((k2>=dateprev1) && (k2<=dateprev2)) {  
               if(agev[m][i]==0) agev[m][i]=agemax+1;  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
               if(agev[m][i]==1) agev[m][i]=agemax+2;              double (*func)(double)) 
               if (m<lastpass) {  { 
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];    double ulim,u,r,q, dum;
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];    double fu; 
               }   
                  *fa=(*func)(*ax); 
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    *fb=(*func)(*bx); 
                 dateintsum=dateintsum+k2;    if (*fb > *fa) { 
                 k2cpt++;      SHFT(dum,*ax,*bx,dum) 
               }        SHFT(dum,*fb,*fa,dum) 
             }        } 
           }    *cx=(*bx)+GOLD*(*bx-*ax); 
         }    *fc=(*func)(*cx); 
       }    while (*fb > *fc) { /* Declining fa, fb, fc */
              r=(*bx-*ax)*(*fb-*fc); 
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);      q=(*bx-*cx)*(*fb-*fa); 
       u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       if  (cptcovn>0) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
         fprintf(ficresp, "\n#********** Variable ");      ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);      if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
         fprintf(ficresp, "**********\n#");        fu=(*func)(u); 
       }  #ifdef DEBUG
       for(i=1; i<=nlstate;i++)        /* f(x)=A(x-u)**2+f(u) */
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        double A, fparabu; 
       fprintf(ficresp, "\n");        A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
              fparabu= *fa - A*(*ax-u)*(*ax-u);
       for(i=(int)agemin; i <= (int)agemax+3; i++){        printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
         if(i==(int)agemax+3){        fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
           fprintf(ficlog,"Total");  #endif 
         }else{      } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
           if(first==1){        fu=(*func)(u); 
             first=0;        if (fu < *fc) { 
             printf("See log file for details...\n");          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
           }            SHFT(*fb,*fc,fu,(*func)(u)) 
           fprintf(ficlog,"Age %d", i);            } 
         }      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
         for(jk=1; jk <=nlstate ; jk++){        u=ulim; 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        fu=(*func)(u); 
             pp[jk] += freq[jk][m][i];      } else { 
         }        u=(*cx)+GOLD*(*cx-*bx); 
         for(jk=1; jk <=nlstate ; jk++){        fu=(*func)(u); 
           for(m=-1, pos=0; m <=0 ; m++)      } 
             pos += freq[jk][m][i];      SHFT(*ax,*bx,*cx,u) 
           if(pp[jk]>=1.e-10){        SHFT(*fa,*fb,*fc,fu) 
             if(first==1){        } 
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  } 
             }  
             fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);  /*************** linmin ************************/
           }else{  /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
             if(first==1)  resets p to where the function func(p) takes on a minimum along the direction xi from p ,
               printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  and replaces xi by the actual vector displacement that p was moved. Also returns as fret
             fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);  the value of func at the returned location p . This is actually all accomplished by calling the
           }  routines mnbrak and brent .*/
         }  int ncom; 
   double *pcom,*xicom;
         for(jk=1; jk <=nlstate ; jk++){  double (*nrfunc)(double []); 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)   
             pp[jk] += freq[jk][m][i];  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         }  { 
     double brent(double ax, double bx, double cx, 
         for(jk=1,pos=0; jk <=nlstate ; jk++)                 double (*f)(double), double tol, double *xmin); 
           pos += pp[jk];    double f1dim(double x); 
         for(jk=1; jk <=nlstate ; jk++){    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
           if(pos>=1.e-5){                double *fc, double (*func)(double)); 
             if(first==1)    int j; 
               printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double xx,xmin,bx,ax; 
             fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);    double fx,fb,fa;
           }else{   
             if(first==1)    ncom=n; 
               printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    pcom=vector(1,n); 
             fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    xicom=vector(1,n); 
           }    nrfunc=func; 
           if( i <= (int) agemax){    for (j=1;j<=n;j++) { 
             if(pos>=1.e-5){      pcom[j]=p[j]; 
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);      xicom[j]=xi[j]; 
               probs[i][jk][j1]= pp[jk]/pos;    } 
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    ax=0.0; 
             }    xx=1.0; 
             else    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
           }  #ifdef DEBUG
         }    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         for(jk=-1; jk <=nlstate+ndeath; jk++)  #endif
           for(m=-1; m <=nlstate+ndeath; m++)    for (j=1;j<=n;j++) { 
             if(freq[jk][m][i] !=0 ) {      xi[j] *= xmin; 
             if(first==1)      p[j] += xi[j]; 
               printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    } 
               fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);    free_vector(xicom,1,n); 
             }    free_vector(pcom,1,n); 
         if(i <= (int) agemax)  } 
           fprintf(ficresp,"\n");  
         if(first==1)  
           printf("Others in log...\n");  /*************** powell ************************/
         fprintf(ficlog,"\n");  /*
       }  Minimization of a function func of n variables. Input consists of an initial starting point
     }  p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
   }  rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
   dateintmean=dateintsum/k2cpt;  such that failure to decrease by more than this amount on one iteration signals doneness. On
    output, p is set to the best point found, xi is the then-current direction set, fret is the returned
   fclose(ficresp);  function value at p , and iter is the number of iterations taken. The routine linmin is used.
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);   */
   free_vector(pp,1,nlstate);  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                double (*func)(double [])) 
   /* End of Freq */  { 
 }    void linmin(double p[], double xi[], int n, double *fret, 
                 double (*func)(double [])); 
 /************ Prevalence ********************/    int i,ibig,j; 
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)    double del,t,*pt,*ptt,*xit;
 {  /* Some frequencies */    double fp,fptt;
      double *xits;
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    int niterf, itmp;
   double ***freq; /* Frequencies */  
   double *pp;    pt=vector(1,n); 
   double pos, k2;    ptt=vector(1,n); 
     xit=vector(1,n); 
   pp=vector(1,nlstate);    xits=vector(1,n); 
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);    *fret=(*func)(p); 
      for (j=1;j<=n;j++) pt[j]=p[j]; 
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      rcurr_time = time(NULL);  
   j1=0;    for (*iter=1;;++(*iter)) { 
        fp=(*fret); 
   j=cptcoveff;      ibig=0; 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}      del=0.0; 
        rlast_time=rcurr_time;
   for(k1=1; k1<=j;k1++){      /* (void) gettimeofday(&curr_time,&tzp); */
     for(i1=1; i1<=ncodemax[k1];i1++){      rcurr_time = time(NULL);  
       j1++;      curr_time = *localtime(&rcurr_time);
            printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
       for (i=-1; i<=nlstate+ndeath; i++)        fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
         for (jk=-1; jk<=nlstate+ndeath; jk++)    /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
           for(m=agemin; m <= agemax+3; m++)     for (i=1;i<=n;i++) {
             freq[i][jk][m]=0;        printf(" %d %.12f",i, p[i]);
              fprintf(ficlog," %d %.12lf",i, p[i]);
       for (i=1; i<=imx; i++) {        fprintf(ficrespow," %.12lf", p[i]);
         bool=1;      }
         if  (cptcovn>0) {      printf("\n");
           for (z1=1; z1<=cptcoveff; z1++)      fprintf(ficlog,"\n");
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])      fprintf(ficrespow,"\n");fflush(ficrespow);
               bool=0;      if(*iter <=3){
         }        tml = *localtime(&rcurr_time);
         if (bool==1) {        strcpy(strcurr,asctime(&tml));
           for(m=firstpass; m<=lastpass; m++){        rforecast_time=rcurr_time; 
             k2=anint[m][i]+(mint[m][i]/12.);        itmp = strlen(strcurr);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
               if(agev[m][i]==0) agev[m][i]=agemax+1;          strcurr[itmp-1]='\0';
               if(agev[m][i]==1) agev[m][i]=agemax+2;        printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
               if (m<lastpass) {        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
                 if (calagedate>0)        for(niterf=10;niterf<=30;niterf+=10){
                   freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];          rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
                 else          forecast_time = *localtime(&rforecast_time);
                   freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];          strcpy(strfor,asctime(&forecast_time));
                 freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];          itmp = strlen(strfor);
               }          if(strfor[itmp-1]=='\n')
             }          strfor[itmp-1]='\0';
           }          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
         }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
       }        }
       for(i=(int)agemin; i <= (int)agemax+3; i++){      }
         for(jk=1; jk <=nlstate ; jk++){      for (i=1;i<=n;i++) { 
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
             pp[jk] += freq[jk][m][i];        fptt=(*fret); 
         }  #ifdef DEBUG
         for(jk=1; jk <=nlstate ; jk++){            printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
           for(m=-1, pos=0; m <=0 ; m++)            fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
             pos += freq[jk][m][i];  #endif
         }        printf("%d",i);fflush(stdout);
                fprintf(ficlog,"%d",i);fflush(ficlog);
         for(jk=1; jk <=nlstate ; jk++){        linmin(p,xit,n,fret,func); 
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        if (fabs(fptt-(*fret)) > del) { 
             pp[jk] += freq[jk][m][i];          del=fabs(fptt-(*fret)); 
         }          ibig=i; 
                } 
         for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  #ifdef DEBUG
                printf("%d %.12e",i,(*fret));
         for(jk=1; jk <=nlstate ; jk++){            fprintf(ficlog,"%d %.12e",i,(*fret));
           if( i <= (int) agemax){        for (j=1;j<=n;j++) {
             if(pos>=1.e-5){          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
               probs[i][jk][j1]= pp[jk]/pos;          printf(" x(%d)=%.12e",j,xit[j]);
             }          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
           }        }
         }/* end jk */        for(j=1;j<=n;j++) {
       }/* end i */          printf(" p(%d)=%.12e",j,p[j]);
     } /* end i1 */          fprintf(ficlog," p(%d)=%.12e",j,p[j]);
   } /* end k1 */        }
         printf("\n");
          fprintf(ficlog,"\n");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);  #endif
   free_vector(pp,1,nlstate);      } /* end i */
        if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
 }  /* End of Freq */  #ifdef DEBUG
         int k[2],l;
 /************* Waves Concatenation ***************/        k[0]=1;
         k[1]=-1;
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)        printf("Max: %.12e",(*func)(p));
 {        fprintf(ficlog,"Max: %.12e",(*func)(p));
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        for (j=1;j<=n;j++) {
      Death is a valid wave (if date is known).          printf(" %.12e",p[j]);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i          fprintf(ficlog," %.12e",p[j]);
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        }
      and mw[mi+1][i]. dh depends on stepm.        printf("\n");
      */        fprintf(ficlog,"\n");
         for(l=0;l<=1;l++) {
   int i, mi, m;          for (j=1;j<=n;j++) {
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
      double sum=0., jmean=0.;*/            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int first;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   int j, k=0,jk, ju, jl;          }
   double sum=0.;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   first=0;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   jmin=1e+5;        }
   jmax=-1;  #endif
   jmean=0.;  
   for(i=1; i<=imx; i++){  
     mi=0;        free_vector(xit,1,n); 
     m=firstpass;        free_vector(xits,1,n); 
     while(s[m][i] <= nlstate){        free_vector(ptt,1,n); 
       if(s[m][i]>=1)        free_vector(pt,1,n); 
         mw[++mi][i]=m;        return; 
       if(m >=lastpass)      } 
         break;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       else      for (j=1;j<=n;j++) { /* Computes an extrapolated point */
         m++;        ptt[j]=2.0*p[j]-pt[j]; 
     }/* end while */        xit[j]=p[j]-pt[j]; 
     if (s[m][i] > nlstate){        pt[j]=p[j]; 
       mi++;     /* Death is another wave */      } 
       /* if(mi==0)  never been interviewed correctly before death */      fptt=(*func)(ptt); 
          /* Only death is a correct wave */      if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
       mw[mi][i]=m;        /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
     }        /* From x1 (P0) distance of x2 is at h and x3 is 2h */
         /* Let f"(x2) be the 2nd derivative equal everywhere.  */
     wav[i]=mi;        /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
     if(mi==0){        /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
       if(first==0){        /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
         printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);        /* Thus we compare delta(2h) with observed f1-f3 */
         first=1;        /* or best gain on one ancient line 'del' with total  */
       }        /* gain f1-f2 = f1 - f2 - 'del' with del  */
       if(first==1){        /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
         fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);  
       }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
     } /* end mi==0 */        t= t- del*SQR(fp-fptt);
   }        printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
         fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
   for(i=1; i<=imx; i++){  #ifdef DEBUG
     for(mi=1; mi<wav[i];mi++){        printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       if (stepm <=0)               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         dh[mi][i]=1;        fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
       else{               (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
         if (s[mw[mi+1][i]][i] > nlstate) {        printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           if (agedc[i] < 2*AGESUP) {        fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);  #endif
           if(j==0) j=1;  /* Survives at least one month after exam */        if (t < 0.0) { /* Then we use it for last direction */
           k=k+1;          linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
           if (j >= jmax) jmax=j;          for (j=1;j<=n;j++) { 
           if (j <= jmin) jmin=j;            xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
           sum=sum+j;            xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
           /*if (j<0) printf("j=%d num=%d \n",j,i); */          }
           }          printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         }          fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
         else{  
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  #ifdef DEBUG
           k=k+1;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           if (j >= jmax) jmax=j;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           else if (j <= jmin)jmin=j;          for(j=1;j<=n;j++){
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */            printf(" %.12e",xit[j]);
           sum=sum+j;            fprintf(ficlog," %.12e",xit[j]);
         }          }
         jk= j/stepm;          printf("\n");
         jl= j -jk*stepm;          fprintf(ficlog,"\n");
         ju= j -(jk+1)*stepm;  #endif
         if(jl <= -ju)        } /* end of t negative */
           dh[mi][i]=jk;      } /* end if (fptt < fp)  */
         else    } 
           dh[mi][i]=jk+1;  } 
         if(dh[mi][i]==0)  
           dh[mi][i]=1; /* At least one step */  /**** Prevalence limit (stable or period prevalence)  ****************/
       }  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   }  {
   jmean=sum/k;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);       matrix by transitions matrix until convergence is reached */
   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);    
  }    int i, ii,j,k;
     double min, max, maxmin, maxmax,sumnew=0.;
 /*********** Tricode ****************************/    /* double **matprod2(); */ /* test */
 void tricode(int *Tvar, int **nbcode, int imx)    double **out, cov[NCOVMAX+1], **pmij();
 {    double **newm;
   int Ndum[20],ij=1, k, j, i;    double agefin, delaymax=50 ; /* Max number of years to converge */
   int cptcode=0;    
   cptcoveff=0;    for (ii=1;ii<=nlstate+ndeath;ii++)
        for (j=1;j<=nlstate+ndeath;j++){
   for (k=0; k<19; k++) Ndum[k]=0;        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (k=1; k<=7; k++) ncodemax[k]=0;      }
     
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    cov[1]=1.;
     for (i=1; i<=imx; i++) {    
       ij=(int)(covar[Tvar[j]][i]);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       Ndum[ij]++;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      newm=savm;
       if (ij > cptcode) cptcode=ij;      /* Covariates have to be included here again */
     }      cov[2]=agefin;
       
     for (i=0; i<=cptcode; i++) {      for (k=1; k<=cptcovn;k++) {
       if(Ndum[i]!=0) ncodemax[j]++;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     }        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
     ij=1;      }
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
     for (i=1; i<=ncodemax[j]; i++) {      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
       for (k=0; k<=19; k++) {      
         if (Ndum[k] != 0) {      /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
           nbcode[Tvar[j]][ij]=k;      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
           ij++;      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         }      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
         if (ij > ncodemax[j]) break;      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
       }        
     }      savm=oldm;
   }        oldm=newm;
       maxmax=0.;
  for (k=0; k<19; k++) Ndum[k]=0;      for(j=1;j<=nlstate;j++){
         min=1.;
  for (i=1; i<=ncovmodel-2; i++) {        max=0.;
    ij=Tvar[i];        for(i=1; i<=nlstate; i++) {
    Ndum[ij]++;          sumnew=0;
  }          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
  ij=1;          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
  for (i=1; i<=10; i++) {          max=FMAX(max,prlim[i][j]);
    if((Ndum[i]!=0) && (i<=ncovcol)){          min=FMIN(min,prlim[i][j]);
      Tvaraff[ij]=i;        }
      ij++;        maxmin=max-min;
    }        maxmax=FMAX(maxmax,maxmin);
  }      } /* j loop */
        if(maxmax < ftolpl){
  cptcoveff=ij-1;        return prlim;
 }      }
     } /* age loop */
 /*********** Health Expectancies ****************/    return prlim; /* should not reach here */
   }
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )  
   /*************** transition probabilities ***************/ 
 {  
   /* Health expectancies */  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;  {
   double age, agelim, hf;    /* According to parameters values stored in x and the covariate's values stored in cov,
   double ***p3mat,***varhe;       computes the probability to be observed in state j being in state i by appying the
   double **dnewm,**doldm;       model to the ncovmodel covariates (including constant and age).
   double *xp;       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
   double **gp, **gm;       and, according on how parameters are entered, the position of the coefficient xij(nc) of the
   double ***gradg, ***trgradg;       ncth covariate in the global vector x is given by the formula:
   int theta;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
        j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
   varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
   xp=vector(1,npar);       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
   dnewm=matrix(1,nlstate*2,1,npar);       Outputs ps[i][j] the probability to be observed in j being in j according to
   doldm=matrix(1,nlstate*2,1,nlstate*2);       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
      */
   fprintf(ficreseij,"# Health expectancies\n");    double s1, lnpijopii;
   fprintf(ficreseij,"# Age");    /*double t34;*/
   for(i=1; i<=nlstate;i++)    int i,j, nc, ii, jj;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d (SE)",i,j);      for(i=1; i<= nlstate; i++){
   fprintf(ficreseij,"\n");        for(j=1; j<i;j++){
           for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   if(estepm < stepm){            /*lnpijopii += param[i][j][nc]*cov[nc];*/
     printf ("Problem %d lower than %d\n",estepm, stepm);            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   }  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   else  hstepm=estepm;            }
   /* We compute the life expectancy from trapezoids spaced every estepm months          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
    * This is mainly to measure the difference between two models: for example  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
    * if stepm=24 months pijx are given only every 2 years and by summing them        }
    * we are calculating an estimate of the Life Expectancy assuming a linear        for(j=i+1; j<=nlstate+ndeath;j++){
    * progression inbetween and thus overestimating or underestimating according          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
    * to the curvature of the survival function. If, for the same date, we            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
    * estimate the model with stepm=1 month, we can keep estepm to 24 months            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
    * to compare the new estimate of Life expectancy with the same linear  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
    * hypothesis. A more precise result, taking into account a more precise          }
    * curvature will be obtained if estepm is as small as stepm. */          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
         }
   /* For example we decided to compute the life expectancy with the smallest unit */      }
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.      
      nhstepm is the number of hstepm from age to agelim      for(i=1; i<= nlstate; i++){
      nstepm is the number of stepm from age to agelin.        s1=0;
      Look at hpijx to understand the reason of that which relies in memory size        for(j=1; j<i; j++){
      and note for a fixed period like estepm months */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
      survival function given by stepm (the optimization length). Unfortunately it        }
      means that if the survival funtion is printed only each two years of age and if        for(j=i+1; j<=nlstate+ndeath; j++){
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
      results. So we changed our mind and took the option of the best precision.          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
         ps[i][i]=1./(s1+1.);
   agelim=AGESUP;        /* Computing other pijs */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        for(j=1; j<i; j++)
     /* nhstepm age range expressed in number of stepm */          ps[i][j]= exp(ps[i][j])*ps[i][i];
     nstepm=(int) rint((agelim-age)*YEARM/stepm);        for(j=i+1; j<=nlstate+ndeath; j++)
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */          ps[i][j]= exp(ps[i][j])*ps[i][i];
     /* if (stepm >= YEARM) hstepm=1;*/        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */      } /* end i */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     gp=matrix(0,nhstepm,1,nlstate*2);        for(jj=1; jj<= nlstate+ndeath; jj++){
     gm=matrix(0,nhstepm,1,nlstate*2);          ps[ii][jj]=0;
           ps[ii][ii]=1;
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */      }
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);        
        
       /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
     /* Computing Variances of health expectancies */      /*   } */
       /*   printf("\n "); */
      for(theta=1; theta <=npar; theta++){      /* } */
       for(i=1; i<=npar; i++){      /* printf("\n ");printf("%lf ",cov[2]);*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      /*
       }        for(i=1; i<= npar; i++) printf("%f ",x[i]);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);          goto end;*/
        return ps;
       cptj=0;  }
       for(j=1; j<= nlstate; j++){  
         for(i=1; i<=nlstate; i++){  /**************** Product of 2 matrices ******************/
           cptj=cptj+1;  
           for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
             gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  {
           }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
         }       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       }    /* in, b, out are matrice of pointers which should have been initialized 
             before: only the contents of out is modified. The function returns
             a pointer to pointers identical to out */
       for(i=1; i<=npar; i++)    int i, j, k;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    for(i=nrl; i<= nrh; i++)
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for(k=ncolol; k<=ncoloh; k++){
              out[i][k]=0.;
       cptj=0;        for(j=ncl; j<=nch; j++)
       for(j=1; j<= nlstate; j++){          out[i][k] +=in[i][j]*b[j][k];
         for(i=1;i<=nlstate;i++){      }
           cptj=cptj+1;    return out;
           for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){  }
             gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;  
           }  
         }  /************* Higher Matrix Product ***************/
       }  
       for(j=1; j<= nlstate*2; j++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
         for(h=0; h<=nhstepm-1; h++){  {
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];    /* Computes the transition matrix starting at age 'age' over 
         }       'nhstepm*hstepm*stepm' months (i.e. until
      }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
           nhstepm*hstepm matrices. 
 /* End theta */       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
        (typically every 2 years instead of every month which is too big 
      trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);       for the memory).
        Model is determined by parameters x and covariates have to be 
      for(h=0; h<=nhstepm-1; h++)       included manually here. 
       for(j=1; j<=nlstate*2;j++)  
         for(theta=1; theta <=npar; theta++)       */
           trgradg[h][j][theta]=gradg[h][theta][j];  
          int i, j, d, h, k;
     double **out, cov[NCOVMAX+1];
      for(i=1;i<=nlstate*2;i++)    double **newm;
       for(j=1;j<=nlstate*2;j++)  
         varhe[i][j][(int)age] =0.;    /* Hstepm could be zero and should return the unit matrix */
     for (i=1;i<=nlstate+ndeath;i++)
      printf("%d|",(int)age);fflush(stdout);      for (j=1;j<=nlstate+ndeath;j++){
      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);        oldm[i][j]=(i==j ? 1.0 : 0.0);
      for(h=0;h<=nhstepm-1;h++){        po[i][j][0]=(i==j ? 1.0 : 0.0);
       for(k=0;k<=nhstepm-1;k++){      }
         matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
         matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);    for(h=1; h <=nhstepm; h++){
         for(i=1;i<=nlstate*2;i++)      for(d=1; d <=hstepm; d++){
           for(j=1;j<=nlstate*2;j++)        newm=savm;
             varhe[i][j][(int)age] += doldm[i][j]*hf*hf;        /* Covariates have to be included here again */
       }        cov[1]=1.;
     }        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     /* Computing expectancies */        for (k=1; k<=cptcovn;k++) 
     for(i=1; i<=nlstate;i++)          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
       for(j=1; j<=nlstate;j++)        for (k=1; k<=cptcovage;k++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
                    cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
 /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/  
   
         }        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
     fprintf(ficreseij,"%3.0f",age );        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     cptj=0;                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1; i<=nlstate;i++)        savm=oldm;
       for(j=1; j<=nlstate;j++){        oldm=newm;
         cptj++;      }
         fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );      for(i=1; i<=nlstate+ndeath; i++)
       }        for(j=1;j<=nlstate+ndeath;j++) {
     fprintf(ficreseij,"\n");          po[i][j][h]=newm[i][j];
              /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
     free_matrix(gm,0,nhstepm,1,nlstate*2);        }
     free_matrix(gp,0,nhstepm,1,nlstate*2);      /*printf("h=%d ",h);*/
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);    } /* end h */
     free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);  /*     printf("\n H=%d \n",h); */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    return po;
   }  }
   printf("\n");  
   fprintf(ficlog,"\n");  #ifdef NLOPT
     double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
   free_vector(xp,1,npar);    double fret;
   free_matrix(dnewm,1,nlstate*2,1,npar);    double *xt;
   free_matrix(doldm,1,nlstate*2,1,nlstate*2);    int j;
   free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);    myfunc_data *d2 = (myfunc_data *) pd;
 }  /* xt = (p1-1); */
     xt=vector(1,n); 
 /************ Variance ******************/    for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
 void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased)  
 {    fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
   /* Variance of health expectancies */    /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    printf("Function = %.12lf ",fret);
   /* double **newm;*/    for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
   double **dnewm,**doldm;    printf("\n");
   double **dnewmp,**doldmp;   free_vector(xt,1,n);
   int i, j, nhstepm, hstepm, h, nstepm ;    return fret;
   int k, cptcode;  }
   double *xp;  #endif
   double **gp, **gm;  /* for var eij */  
   double ***gradg, ***trgradg; /*for var eij */  /*************** log-likelihood *************/
   double **gradgp, **trgradgp; /* for var p point j */  double func( double *x)
   double *gpp, *gmp; /* for var p point j */  {
   double **varppt; /* for var p point j nlstate to nlstate+ndeath */    int i, ii, j, k, mi, d, kk;
   double ***p3mat;    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   double age,agelim, hf;    double **out;
   int theta;    double sw; /* Sum of weights */
   char digit[4];    double lli; /* Individual log likelihood */
   char digitp[16];    int s1, s2;
     double bbh, survp;
   char fileresprobmorprev[FILENAMELENGTH];    long ipmx;
     /*extern weight */
   if(popbased==1)    /* We are differentiating ll according to initial status */
     strcpy(digitp,"-populbased-");    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   else    /*for(i=1;i<imx;i++) 
     strcpy(digitp,"-stablbased-");      printf(" %d\n",s[4][i]);
     */
   strcpy(fileresprobmorprev,"prmorprev");  
   sprintf(digit,"%-d",ij);    ++countcallfunc;
   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/  
   strcat(fileresprobmorprev,digit); /* Tvar to be done */    cov[1]=1.;
   strcat(fileresprobmorprev,digitp); /* Popbased or not */  
   strcat(fileresprobmorprev,fileres);    for(k=1; k<=nlstate; k++) ll[k]=0.;
   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprobmorprev);    if(mle==1){
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   }        /* Computes the values of the ncovmodel covariates of the model
   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
   fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n");           to be observed in j being in i according to the model.
   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);         */
   for(j=nlstate+1; j<=(nlstate+ndeath);j++){        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     fprintf(ficresprobmorprev," p.%-d SE",j);          cov[2+k]=covar[Tvar[k]][i];
     for(i=1; i<=nlstate;i++)        }
       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
   }             is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
   fprintf(ficresprobmorprev,"\n");           has been calculated etc */
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {        for(mi=1; mi<= wav[i]-1; mi++){
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);          for (ii=1;ii<=nlstate+ndeath;ii++)
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);            for (j=1;j<=nlstate+ndeath;j++){
     exit(0);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   else{            }
     fprintf(ficgp,"\n# Routine varevsij");          for(d=0; d<dh[mi][i]; d++){
   }            newm=savm;
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     printf("Problem with html file: %s\n", optionfilehtm);            for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
     exit(0);            }
   }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   else{                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     fprintf(fichtm,"\n<li><h4> Computing step probabilities of dying and weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");            savm=oldm;
   }            oldm=newm;
   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);          } /* end mult */
         
   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   fprintf(ficresvij,"# Age");          /* But now since version 0.9 we anticipate for bias at large stepm.
   for(i=1; i<=nlstate;i++)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     for(j=1; j<=nlstate;j++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);           * the nearest (and in case of equal distance, to the lowest) interval but now
   fprintf(ficresvij,"\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
   xp=vector(1,npar);           * probability in order to take into account the bias as a fraction of the way
   dnewm=matrix(1,nlstate,1,npar);           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   doldm=matrix(1,nlstate,1,nlstate);           * -stepm/2 to stepm/2 .
   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);           * For stepm=1 the results are the same as for previous versions of Imach.
   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);           * For stepm > 1 the results are less biased than in previous versions. 
            */
   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);          s1=s[mw[mi][i]][i];
   gpp=vector(nlstate+1,nlstate+ndeath);          s2=s[mw[mi+1][i]][i];
   gmp=vector(nlstate+1,nlstate+ndeath);          bbh=(double)bh[mi][i]/(double)stepm; 
   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/          /* bias bh is positive if real duration
             * is higher than the multiple of stepm and negative otherwise.
   if(estepm < stepm){           */
     printf ("Problem %d lower than %d\n",estepm, stepm);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   }          if( s2 > nlstate){ 
   else  hstepm=estepm;              /* i.e. if s2 is a death state and if the date of death is known 
   /* For example we decided to compute the life expectancy with the smallest unit */               then the contribution to the likelihood is the probability to 
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.               die between last step unit time and current  step unit time, 
      nhstepm is the number of hstepm from age to agelim               which is also equal to probability to die before dh 
      nstepm is the number of stepm from age to agelin.               minus probability to die before dh-stepm . 
      Look at hpijx to understand the reason of that which relies in memory size               In version up to 0.92 likelihood was computed
      and note for a fixed period like k years */          as if date of death was unknown. Death was treated as any other
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the          health state: the date of the interview describes the actual state
      survival function given by stepm (the optimization length). Unfortunately it          and not the date of a change in health state. The former idea was
      means that if the survival funtion is printed only each two years of age and if          to consider that at each interview the state was recorded
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          (healthy, disable or death) and IMaCh was corrected; but when we
      results. So we changed our mind and took the option of the best precision.          introduced the exact date of death then we should have modified
   */          the contribution of an exact death to the likelihood. This new
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */          contribution is smaller and very dependent of the step unit
   agelim = AGESUP;          stepm. It is no more the probability to die between last interview
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          and month of death but the probability to survive from last
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */          interview up to one month before death multiplied by the
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          probability to die within a month. Thanks to Chris
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          Jackson for correcting this bug.  Former versions increased
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          mortality artificially. The bad side is that we add another loop
     gp=matrix(0,nhstepm,1,nlstate);          which slows down the processing. The difference can be up to 10%
     gm=matrix(0,nhstepm,1,nlstate);          lower mortality.
             */
             lli=log(out[s1][s2] - savm[s1][s2]);
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          } else if  (s2==-2) {
       }            for (j=1,survp=0. ; j<=nlstate; j++) 
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            /*survp += out[s1][j]; */
             lli= log(survp);
       if (popbased==1) {          }
         for(i=1; i<=nlstate;i++)          
           prlim[i][i]=probs[(int)age][i][ij];          else if  (s2==-4) { 
       }            for (j=3,survp=0. ; j<=nlstate; j++)  
                survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       for(j=1; j<= nlstate; j++){            lli= log(survp); 
         for(h=0; h<=nhstepm; h++){          } 
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)  
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];          else if  (s2==-5) { 
         }            for (j=1,survp=0. ; j<=2; j++)  
       }              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
       /* This for computing forces of mortality (h=1)as a weighted average */            lli= log(survp); 
       for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){          } 
         for(i=1; i<= nlstate; i++)          
           gpp[j] += prlim[i][i]*p3mat[i][j][1];          else{
       }                lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       /* end force of mortality */            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
           } 
       for(i=1; i<=npar; i++) /* Computes gradient */          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          /*if(lli ==000.0)*/
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          ipmx +=1;
            sw += weight[i];
       if (popbased==1) {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         for(i=1; i<=nlstate;i++)        } /* end of wave */
           prlim[i][i]=probs[(int)age][i][ij];      } /* end of individual */
       }    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(j=1; j<= nlstate; j++){        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(h=0; h<=nhstepm; h++){        for(mi=1; mi<= wav[i]-1; mi++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];            for (j=1;j<=nlstate+ndeath;j++){
         }              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       /* This for computing force of mortality (h=1)as a weighted average */            }
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){          for(d=0; d<=dh[mi][i]; d++){
         for(i=1; i<= nlstate; i++)            newm=savm;
           gmp[j] += prlim[i][i]*p3mat[i][j][1];            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       }                for (kk=1; kk<=cptcovage;kk++) {
       /* end force of mortality */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
       for(j=1; j<= nlstate; j++) /* vareij */            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm; h++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            savm=oldm;
         }            oldm=newm;
       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */          } /* end mult */
         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];        
       }          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
     } /* End theta */          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */          ipmx +=1;
           sw += weight[i];
     for(h=0; h<=nhstepm; h++) /* veij */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       for(j=1; j<=nlstate;j++)        } /* end of wave */
         for(theta=1; theta <=npar; theta++)      } /* end of individual */
           trgradg[h][j][theta]=gradg[h][theta][j];    }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       for(theta=1; theta <=npar; theta++)        for(mi=1; mi<= wav[i]-1; mi++){
         trgradgp[j][theta]=gradgp[theta][j];          for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1;i<=nlstate;i++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(j=1;j<=nlstate;j++)            }
         vareij[i][j][(int)age] =0.;          for(d=0; d<dh[mi][i]; d++){
             newm=savm;
     for(h=0;h<=nhstepm;h++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
       for(k=0;k<=nhstepm;k++){            for (kk=1; kk<=cptcovage;kk++) {
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);            }
         for(i=1;i<=nlstate;i++)            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
           for(j=1;j<=nlstate;j++)                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;            savm=oldm;
       }            oldm=newm;
     }          } /* end mult */
         
     /* pptj */          s1=s[mw[mi][i]][i];
     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);          s2=s[mw[mi+1][i]][i];
     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);          bbh=(double)bh[mi][i]/(double)stepm; 
     for(j=nlstate+1;j<=nlstate+ndeath;j++)          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(i=nlstate+1;i<=nlstate+ndeath;i++)          ipmx +=1;
         varppt[j][i]=doldmp[j][i];          sw += weight[i];
     /* end ppptj */          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);          } /* end of wave */
     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);      } /* end of individual */
      }else if (mle==4){  /* ml=4 no inter-extrapolation */
     if (popbased==1) {      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for(i=1; i<=nlstate;i++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         prlim[i][i]=probs[(int)age][i][ij];        for(mi=1; mi<= wav[i]-1; mi++){
     }          for (ii=1;ii<=nlstate+ndeath;ii++)
                for (j=1;j<=nlstate+ndeath;j++){
     /* This for computing force of mortality (h=1)as a weighted average */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1; i<= nlstate; i++)            }
         gmp[j] += prlim[i][i]*p3mat[i][j][1];          for(d=0; d<dh[mi][i]; d++){
     }                newm=savm;
     /* end force of mortality */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){            }
       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));          
       for(i=1; i<=nlstate;i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       }            savm=oldm;
     }            oldm=newm;
     fprintf(ficresprobmorprev,"\n");          } /* end mult */
         
     fprintf(ficresvij,"%.0f ",age );          s1=s[mw[mi][i]][i];
     for(i=1; i<=nlstate;i++)          s2=s[mw[mi+1][i]][i];
       for(j=1; j<=nlstate;j++){          if( s2 > nlstate){ 
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);            lli=log(out[s1][s2] - savm[s1][s2]);
       }          }else{
     fprintf(ficresvij,"\n");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     free_matrix(gp,0,nhstepm,1,nlstate);          }
     free_matrix(gm,0,nhstepm,1,nlstate);          ipmx +=1;
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);          sw += weight[i];
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   } /* End age */        } /* end of wave */
   free_vector(gpp,nlstate+1,nlstate+ndeath);      } /* end of individual */
   free_vector(gmp,nlstate+1,nlstate+ndeath);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");        for(mi=1; mi<= wav[i]-1; mi++){
   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */          for (ii=1;ii<=nlstate+ndeath;ii++)
   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");            for (j=1;j<=nlstate+ndeath;j++){
   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);            }
   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);          for(d=0; d<dh[mi][i]; d++){
   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);            newm=savm;
   fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   free_vector(xp,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   free_matrix(doldm,1,nlstate,1,nlstate);            }
   free_matrix(dnewm,1,nlstate,1,npar);          
   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);            savm=oldm;
   fclose(ficresprobmorprev);            oldm=newm;
   fclose(ficgp);          } /* end mult */
   fclose(fichtm);        
           s1=s[mw[mi][i]][i];
 }          s2=s[mw[mi+1][i]][i];
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
 /************ Variance of prevlim ******************/          ipmx +=1;
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)          sw += weight[i];
 {          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /* Variance of prevalence limit */          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        } /* end of wave */
   double **newm;      } /* end of individual */
   double **dnewm,**doldm;    } /* End of if */
   int i, j, nhstepm, hstepm;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   int k, cptcode;    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   double *xp;    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   double *gp, *gm;    return -l;
   double **gradg, **trgradg;  }
   double age,agelim;  
   int theta;  /*************** log-likelihood *************/
      double funcone( double *x)
   fprintf(ficresvpl,"# Standard deviation of prevalence's limit\n");  {
   fprintf(ficresvpl,"# Age");    /* Same as likeli but slower because of a lot of printf and if */
   for(i=1; i<=nlstate;i++)    int i, ii, j, k, mi, d, kk;
       fprintf(ficresvpl," %1d-%1d",i,i);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
   fprintf(ficresvpl,"\n");    double **out;
     double lli; /* Individual log likelihood */
   xp=vector(1,npar);    double llt;
   dnewm=matrix(1,nlstate,1,npar);    int s1, s2;
   doldm=matrix(1,nlstate,1,nlstate);    double bbh, survp;
      /*extern weight */
   hstepm=1*YEARM; /* Every year of age */    /* We are differentiating ll according to initial status */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   agelim = AGESUP;    /*for(i=1;i<imx;i++) 
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      printf(" %d\n",s[4][i]);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    */
     if (stepm >= YEARM) hstepm=1;    cov[1]=1.;
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);    for(k=1; k<=nlstate; k++) ll[k]=0.;
     gp=vector(1,nlstate);  
     gm=vector(1,nlstate);    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     for(theta=1; theta <=npar; theta++){      for(mi=1; mi<= wav[i]-1; mi++){
       for(i=1; i<=npar; i++){ /* Computes gradient */        for (ii=1;ii<=nlstate+ndeath;ii++)
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          for (j=1;j<=nlstate+ndeath;j++){
       }            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
       for(i=1;i<=nlstate;i++)          }
         gp[i] = prlim[i][i];        for(d=0; d<dh[mi][i]; d++){
              newm=savm;
       for(i=1; i<=npar; i++) /* Computes gradient */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (kk=1; kk<=cptcovage;kk++) {
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       for(i=1;i<=nlstate;i++)          }
         gm[i] = prlim[i][i];          /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       for(i=1;i<=nlstate;i++)                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
     } /* End theta */          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
           savm=oldm;
     trgradg =matrix(1,nlstate,1,npar);          oldm=newm;
         } /* end mult */
     for(j=1; j<=nlstate;j++)        
       for(theta=1; theta <=npar; theta++)        s1=s[mw[mi][i]][i];
         trgradg[j][theta]=gradg[theta][j];        s2=s[mw[mi+1][i]][i];
         bbh=(double)bh[mi][i]/(double)stepm; 
     for(i=1;i<=nlstate;i++)        /* bias is positive if real duration
       varpl[i][(int)age] =0.;         * is higher than the multiple of stepm and negative otherwise.
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);         */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
     for(i=1;i<=nlstate;i++)          lli=log(out[s1][s2] - savm[s1][s2]);
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */        } else if  (s2==-2) {
           for (j=1,survp=0. ; j<=nlstate; j++) 
     fprintf(ficresvpl,"%.0f ",age );            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
     for(i=1; i<=nlstate;i++)          lli= log(survp);
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));        }else if (mle==1){
     fprintf(ficresvpl,"\n");          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     free_vector(gp,1,nlstate);        } else if(mle==2){
     free_vector(gm,1,nlstate);          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     free_matrix(gradg,1,npar,1,nlstate);        } else if(mle==3){  /* exponential inter-extrapolation */
     free_matrix(trgradg,1,nlstate,1,npar);          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
   } /* End age */        } else if (mle==4){  /* mle=4 no inter-extrapolation */
           lli=log(out[s1][s2]); /* Original formula */
   free_vector(xp,1,npar);        } else{  /* mle=0 back to 1 */
   free_matrix(doldm,1,nlstate,1,npar);          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   free_matrix(dnewm,1,nlstate,1,nlstate);          /*lli=log(out[s1][s2]); */ /* Original formula */
         } /* End of if */
 }        ipmx +=1;
         sw += weight[i];
 /************ Variance of one-step probabilities  ******************/        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
 {        if(globpr){
   int i, j=0,  i1, k1, l1, t, tj;          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
   int k2, l2, j1,  z1;   %11.6f %11.6f %11.6f ", \
   int k=0,l, cptcode;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
   int first=1, first1;                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
   double **dnewm,**doldm;            llt +=ll[k]*gipmx/gsw;
   double *xp;            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
   double *gp, *gm;          }
   double **gradg, **trgradg;          fprintf(ficresilk," %10.6f\n", -llt);
   double **mu;        }
   double age,agelim, cov[NCOVMAX];      } /* end of wave */
   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */    } /* end of individual */
   int theta;    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   char fileresprob[FILENAMELENGTH];    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   char fileresprobcov[FILENAMELENGTH];    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   char fileresprobcor[FILENAMELENGTH];    if(globpr==0){ /* First time we count the contributions and weights */
       gipmx=ipmx;
   double ***varpij;      gsw=sw;
     }
   strcpy(fileresprob,"prob");    return -l;
   strcat(fileresprob,fileres);  }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {  
     printf("Problem with resultfile: %s\n", fileresprob);  
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);  /*************** function likelione ***********/
   }  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
   strcpy(fileresprobcov,"probcov");  {
   strcat(fileresprobcov,fileres);    /* This routine should help understanding what is done with 
   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {       the selection of individuals/waves and
     printf("Problem with resultfile: %s\n", fileresprobcov);       to check the exact contribution to the likelihood.
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);       Plotting could be done.
   }     */
   strcpy(fileresprobcor,"probcor");    int k;
   strcat(fileresprobcor,fileres);  
   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {    if(*globpri !=0){ /* Just counts and sums, no printings */
     printf("Problem with resultfile: %s\n", fileresprobcor);      strcpy(fileresilk,"ilk"); 
     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);      strcat(fileresilk,fileres);
   }      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        printf("Problem with resultfile: %s\n", fileresilk);
   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      }
   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
        for(k=1; k<=nlstate; k++) 
   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
   fprintf(ficresprob,"# Age");      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");    }
   fprintf(ficresprobcov,"# Age");  
   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");    *fretone=(*funcone)(p);
   fprintf(ficresprobcov,"# Age");    if(*globpri !=0){
       fclose(ficresilk);
       fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
   for(i=1; i<=nlstate;i++)      fflush(fichtm); 
     for(j=1; j<=(nlstate+ndeath);j++){    } 
       fprintf(ficresprob," p%1d-%1d (SE)",i,j);    return;
       fprintf(ficresprobcov," p%1d-%1d ",i,j);  }
       fprintf(ficresprobcor," p%1d-%1d ",i,j);  
     }    
   fprintf(ficresprob,"\n");  /*********** Maximum Likelihood Estimation ***************/
   fprintf(ficresprobcov,"\n");  
   fprintf(ficresprobcor,"\n");  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   xp=vector(1,npar);  {
   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);    int i,j, iter=0;
   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));    double **xi;
   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);    double fret;
   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);    double fretone; /* Only one call to likelihood */
   first=1;    /*  char filerespow[FILENAMELENGTH];*/
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {  
     printf("Problem with gnuplot file: %s\n", optionfilegnuplot);  #ifdef NLOPT
     fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);    int creturn;
     exit(0);    nlopt_opt opt;
   }    /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
   else{    double *lb;
     fprintf(ficgp,"\n# Routine varprob");    double minf; /* the minimum objective value, upon return */
   }    double * p1; /* Shifted parameters from 0 instead of 1 */
   if((fichtm=fopen(optionfilehtm,"a"))==NULL) {    myfunc_data dinst, *d = &dinst;
     printf("Problem with html file: %s\n", optionfilehtm);  #endif
     fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);  
     exit(0);  
   }    xi=matrix(1,npar,1,npar);
   else{    for (i=1;i<=npar;i++)
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");      for (j=1;j<=npar;j++)
     fprintf(fichtm,"\n");        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
     fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");    strcpy(filerespow,"pow"); 
     fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");    strcat(filerespow,fileres);
     fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
   }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
      fprintf(ficrespow,"# Powell\n# iter -2*LL");
   cov[1]=1;    for (i=1;i<=nlstate;i++)
   tj=cptcoveff;      for(j=1;j<=nlstate+ndeath;j++)
   if (cptcovn<1) {tj=1;ncodemax[1]=1;}        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
   j1=0;    fprintf(ficrespow,"\n");
   for(t=1; t<=tj;t++){  #ifdef POWELL
     for(i1=1; i1<=ncodemax[t];i1++){    powell(p,xi,npar,ftol,&iter,&fret,func);
       j1++;  #endif
        
       if  (cptcovn>0) {  #ifdef NLOPT
         fprintf(ficresprob, "\n#********** Variable ");  #ifdef NEWUOA
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
         fprintf(ficresprob, "**********\n#");  #else
         fprintf(ficresprobcov, "\n#********** Variable ");    opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  #endif
         fprintf(ficresprobcov, "**********\n#");    lb=vector(0,npar-1);
            for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
         fprintf(ficgp, "\n#********** Variable ");    nlopt_set_lower_bounds(opt, lb);
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    nlopt_set_initial_step1(opt, 0.1);
         fprintf(ficgp, "**********\n#");    
            p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
            d->function = func;
         fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable ");    printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
         for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    nlopt_set_min_objective(opt, myfunc, d);
         fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");    nlopt_set_xtol_rel(opt, ftol);
            if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
         fprintf(ficresprobcor, "\n#********** Variable ");          printf("nlopt failed! %d\n",creturn); 
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    }
         fprintf(ficgp, "**********\n#");        else {
       }      printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
            printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
       for (age=bage; age<=fage; age ++){      iter=1; /* not equal */
         cov[2]=age;    }
         for (k=1; k<=cptcovn;k++) {    nlopt_destroy(opt);
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  #endif
         }    free_matrix(xi,1,npar,1,npar);
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    fclose(ficrespow);
         for (k=1; k<=cptcovprod;k++)    printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];    fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
            fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));  
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);  }
         gp=vector(1,(nlstate)*(nlstate+ndeath));  
         gm=vector(1,(nlstate)*(nlstate+ndeath));  /**** Computes Hessian and covariance matrix ***/
      void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
         for(theta=1; theta <=npar; theta++){  {
           for(i=1; i<=npar; i++)    double  **a,**y,*x,pd;
             xp[i] = x[i] + (i==theta ?delti[theta]:0);    double **hess;
              int i, j;
           pmij(pmmij,cov,ncovmodel,xp,nlstate);    int *indx;
            
           k=0;    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           for(i=1; i<= (nlstate); i++){    double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
             for(j=1; j<=(nlstate+ndeath);j++){    void lubksb(double **a, int npar, int *indx, double b[]) ;
               k=k+1;    void ludcmp(double **a, int npar, int *indx, double *d) ;
               gp[k]=pmmij[i][j];    double gompertz(double p[]);
             }    hess=matrix(1,npar,1,npar);
           }  
              printf("\nCalculation of the hessian matrix. Wait...\n");
           for(i=1; i<=npar; i++)    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
             xp[i] = x[i] - (i==theta ?delti[theta]:0);    for (i=1;i<=npar;i++){
          printf("%d",i);fflush(stdout);
           pmij(pmmij,cov,ncovmodel,xp,nlstate);      fprintf(ficlog,"%d",i);fflush(ficlog);
           k=0;     
           for(i=1; i<=(nlstate); i++){       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
             for(j=1; j<=(nlstate+ndeath);j++){      
               k=k+1;      /*  printf(" %f ",p[i]);
               gm[k]=pmmij[i][j];          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
             }    }
           }    
          for (i=1;i<=npar;i++) {
           for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)      for (j=1;j<=npar;j++)  {
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];          if (j>i) { 
         }          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)          hess[i][j]=hessij(p,delti,i,j,func,npar);
           for(theta=1; theta <=npar; theta++)          
             trgradg[j][theta]=gradg[theta][j];          hess[j][i]=hess[i][j];    
                  /*printf(" %lf ",hess[i][j]);*/
         matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);        }
         matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);      }
            }
         pmij(pmmij,cov,ncovmodel,x,nlstate);    printf("\n");
            fprintf(ficlog,"\n");
         k=0;  
         for(i=1; i<=(nlstate); i++){    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
           for(j=1; j<=(nlstate+ndeath);j++){    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
             k=k+1;    
             mu[k][(int) age]=pmmij[i][j];    a=matrix(1,npar,1,npar);
           }    y=matrix(1,npar,1,npar);
         }    x=vector(1,npar);
         for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)    indx=ivector(1,npar);
           for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)    for (i=1;i<=npar;i++)
             varpij[i][j][(int)age] = doldm[i][j];      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
     ludcmp(a,npar,indx,&pd);
         /*printf("\n%d ",(int)age);  
      for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    for (j=1;j<=npar;j++) {
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      for (i=1;i<=npar;i++) x[i]=0;
        fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));      x[j]=1;
      }*/      lubksb(a,npar,indx,x);
       for (i=1;i<=npar;i++){ 
         fprintf(ficresprob,"\n%d ",(int)age);        matcov[i][j]=x[i];
         fprintf(ficresprobcov,"\n%d ",(int)age);      }
         fprintf(ficresprobcor,"\n%d ",(int)age);    }
   
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)    printf("\n#Hessian matrix#\n");
           fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));    fprintf(ficlog,"\n#Hessian matrix#\n");
         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){    for (i=1;i<=npar;i++) { 
           fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);      for (j=1;j<=npar;j++) { 
           fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);        printf("%.3e ",hess[i][j]);
         }        fprintf(ficlog,"%.3e ",hess[i][j]);
         i=0;      }
         for (k=1; k<=(nlstate);k++){      printf("\n");
           for (l=1; l<=(nlstate+ndeath);l++){      fprintf(ficlog,"\n");
             i=i++;    }
             fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);  
             fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);    /* Recompute Inverse */
             for (j=1; j<=i;j++){    for (i=1;i<=npar;i++)
               fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
               fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));    ludcmp(a,npar,indx,&pd);
             }  
           }    /*  printf("\n#Hessian matrix recomputed#\n");
         }/* end of loop for state */  
       } /* end of loop for age */    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       /* Confidence intervalle of pij  */      x[j]=1;
       /*      lubksb(a,npar,indx,x);
       fprintf(ficgp,"\nset noparametric;unset label");      for (i=1;i<=npar;i++){ 
       fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");        y[i][j]=x[i];
       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        printf("%.3e ",y[i][j]);
       fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);        fprintf(ficlog,"%.3e ",y[i][j]);
       fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);      }
       fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);      printf("\n");
       fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);      fprintf(ficlog,"\n");
       */    }
     */
       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/  
       first1=1;    free_matrix(a,1,npar,1,npar);
       for (k2=1; k2<=(nlstate);k2++){    free_matrix(y,1,npar,1,npar);
         for (l2=1; l2<=(nlstate+ndeath);l2++){    free_vector(x,1,npar);
           if(l2==k2) continue;    free_ivector(indx,1,npar);
           j=(k2-1)*(nlstate+ndeath)+l2;    free_matrix(hess,1,npar,1,npar);
           for (k1=1; k1<=(nlstate);k1++){  
             for (l1=1; l1<=(nlstate+ndeath);l1++){  
               if(l1==k1) continue;  }
               i=(k1-1)*(nlstate+ndeath)+l1;  
               if(i<=j) continue;  /*************** hessian matrix ****************/
               for (age=bage; age<=fage; age ++){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
                 if ((int)age %5==0){  {
                   v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;    int i;
                   v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;    int l=1, lmax=20;
                   cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;    double k1,k2;
                   mu1=mu[i][(int) age]/stepm*YEARM ;    double p2[MAXPARM+1]; /* identical to x */
                   mu2=mu[j][(int) age]/stepm*YEARM;    double res;
                   c12=cv12/sqrt(v1*v2);    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                   /* Computing eigen value of matrix of covariance */    double fx;
                   lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    int k=0,kmax=10;
                   lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;    double l1;
                   /* Eigen vectors */  
                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));    fx=func(x);
                   /*v21=sqrt(1.-v11*v11); *//* error */    for (i=1;i<=npar;i++) p2[i]=x[i];
                   v21=(lc1-v1)/cv12*v11;    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
                   v12=-v21;      l1=pow(10,l);
                   v22=v11;      delts=delt;
                   tnalp=v21/v11;      for(k=1 ; k <kmax; k=k+1){
                   if(first1==1){        delt = delta*(l1*k);
                     first1=0;        p2[theta]=x[theta] +delt;
                     printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
                   }        p2[theta]=x[theta]-delt;
                   fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);        k2=func(p2)-fx;
                   /*printf(fignu*/        /*res= (k1-2.0*fx+k2)/delt/delt; */
                   /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                   /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */        
                   if(first==1){  #ifdef DEBUGHESS
                     first=0;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                     fprintf(ficgp,"\nset parametric;unset label");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                     fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);  #endif
                     fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                     fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                     fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);          k=kmax;
                     fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);        }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);          k=kmax; l=lmax*10;
                     fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\        }
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));          delts=delt;
                   }else{        }
                     first=0;      }
                     fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);    }
                     fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);    delti[theta]=delts;
                     fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\    return res; 
                             mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\    
                             mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));  }
                   }/* if first */  
                 } /* age mod 5 */  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
               } /* end loop age */  {
               fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);    int i;
               first=1;    int l=1, lmax=20;
             } /*l12 */    double k1,k2,k3,k4,res,fx;
           } /* k12 */    double p2[MAXPARM+1];
         } /*l1 */    int k;
       }/* k1 */  
     } /* loop covariates */    fx=func(x);
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);    for (k=1; k<=2; k++) {
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1;i<=npar;i++) p2[i]=x[i];
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));      p2[thetai]=x[thetai]+delti[thetai]/k;
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);      k1=func(p2)-fx;
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    
   }      p2[thetai]=x[thetai]+delti[thetai]/k;
   free_vector(xp,1,npar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   fclose(ficresprob);      k2=func(p2)-fx;
   fclose(ficresprobcov);    
   fclose(ficresprobcor);      p2[thetai]=x[thetai]-delti[thetai]/k;
   fclose(ficgp);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
   fclose(fichtm);      k3=func(p2)-fx;
 }    
       p2[thetai]=x[thetai]-delti[thetai]/k;
       p2[thetaj]=x[thetaj]-delti[thetaj]/k;
 /******************* Printing html file ***********/      k4=func(p2)-fx;
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                   int lastpass, int stepm, int weightopt, char model[],\  #ifdef DEBUG
                   int imx,int jmin, int jmax, double jmeanint,char rfileres[],\      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   int popforecast, int estepm ,\      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   double jprev1, double mprev1,double anprev1, \  #endif
                   double jprev2, double mprev2,double anprev2){    }
   int jj1, k1, i1, cpt;    return res;
   /*char optionfilehtm[FILENAMELENGTH];*/  }
   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);  /************** Inverse of matrix **************/
     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);  void ludcmp(double **a, int n, int *indx, double *d) 
   }  { 
     int i,imax,j,k; 
    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n    double big,dum,sum,temp; 
  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n    double *vv; 
  - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n   
  - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n    vv=vector(1,n); 
  - Life expectancies by age and initial health status (estepm=%2d months):    *d=1.0; 
    <a href=\"e%s\">e%s</a> <br>\n</li>", \    for (i=1;i<=n;i++) { 
   jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);      big=0.0; 
       for (j=1;j<=n;j++) 
 fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");        if ((temp=fabs(a[i][j])) > big) big=temp; 
       if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
  m=cptcoveff;      vv[i]=1.0/big; 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    } 
     for (j=1;j<=n;j++) { 
  jj1=0;      for (i=1;i<j;i++) { 
  for(k1=1; k1<=m;k1++){        sum=a[i][j]; 
    for(i1=1; i1<=ncodemax[k1];i1++){        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
      jj1++;        a[i][j]=sum; 
      if (cptcovn > 0) {      } 
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");      big=0.0; 
        for (cpt=1; cpt<=cptcoveff;cpt++)      for (i=j;i<=n;i++) { 
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        sum=a[i][j]; 
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");        for (k=1;k<j;k++) 
      }          sum -= a[i][k]*a[k][j]; 
      /* Pij */        a[i][j]=sum; 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>        if ( (dum=vv[i]*fabs(sum)) >= big) { 
 <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);              big=dum; 
      /* Quasi-incidences */          imax=i; 
      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>        } 
 <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      } 
        /* Stable prevalence in each health state */      if (j != imax) { 
        for(cpt=1; cpt<nlstate;cpt++){        for (k=1;k<=n;k++) { 
          fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>          dum=a[imax][k]; 
 <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          a[imax][k]=a[j][k]; 
        }          a[j][k]=dum; 
      for(cpt=1; cpt<=nlstate;cpt++) {        } 
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>        *d = -(*d); 
 <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        vv[imax]=vv[j]; 
      }      } 
      fprintf(fichtm,"\n<br>- Total life expectancy by age and      indx[j]=imax; 
 health expectancies in states (1) and (2): e%s%d.png<br>      if (a[j][j] == 0.0) a[j][j]=TINY; 
 <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);      if (j != n) { 
    } /* end i1 */        dum=1.0/(a[j][j]); 
  }/* End k1 */        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
  fprintf(fichtm,"</ul>");      } 
     } 
     free_vector(vv,1,n);  /* Doesn't work */
  fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n  ;
  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n  } 
  - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n  
  - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n  void lubksb(double **a, int n, int *indx, double b[]) 
  - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n  { 
  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    int i,ii=0,ip,j; 
  - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n    double sum; 
  - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);   
     for (i=1;i<=n;i++) { 
  if(popforecast==1) fprintf(fichtm,"\n      ip=indx[i]; 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      sum=b[ip]; 
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      b[ip]=b[i]; 
         <br>",fileres,fileres,fileres,fileres);      if (ii) 
  else        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      else if (sum) ii=i; 
 fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");      b[i]=sum; 
     } 
  m=cptcoveff;    for (i=n;i>=1;i--) { 
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}      sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
  jj1=0;      b[i]=sum/a[i][i]; 
  for(k1=1; k1<=m;k1++){    } 
    for(i1=1; i1<=ncodemax[k1];i1++){  } 
      jj1++;  
      if (cptcovn > 0) {  void pstamp(FILE *fichier)
        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  {
        for (cpt=1; cpt<=cptcoveff;cpt++)    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
          fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);  }
        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");  
      }  /************ Frequencies ********************/
      for(cpt=1; cpt<=nlstate;cpt++) {  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident  {  /* Some frequencies */
 interval) in state (%d): v%s%d%d.png <br>    
 <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);      int i, m, jk, j1, bool, z1,j;
      }    int first;
    } /* end i1 */    double ***freq; /* Frequencies */
  }/* End k1 */    double *pp, **prop;
  fprintf(fichtm,"</ul>");    double pos,posprop, k2, dateintsum=0,k2cpt=0;
 fclose(fichtm);    char fileresp[FILENAMELENGTH];
 }    
     pp=vector(1,nlstate);
 /******************* Gnuplot file **************/    prop=matrix(1,nlstate,iagemin,iagemax+3);
 void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){    strcpy(fileresp,"p");
     strcat(fileresp,fileres);
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;    if((ficresp=fopen(fileresp,"w"))==NULL) {
   int ng;      printf("Problem with prevalence resultfile: %s\n", fileresp);
   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     printf("Problem with file %s",optionfilegnuplot);      exit(0);
     fprintf(ficlog,"Problem with file %s",optionfilegnuplot);    }
   }    freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
     j1=0;
 #ifdef windows    
     fprintf(ficgp,"cd \"%s\" \n",pathc);    j=cptcoveff;
 #endif    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 m=pow(2,cptcoveff);  
      first=1;
  /* 1eme*/  
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /* for(k1=1; k1<=j ; k1++){ */  /* Loop on covariates */
    for (k1=1; k1<= m ; k1 ++) {    /*  for(i1=1; i1<=ncodemax[k1];i1++){ */ /* Now it is 2 */
     /*    j1++; */
 #ifdef windows    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
      fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
      fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          scanf("%d", i);*/
 #endif        for (i=-5; i<=nlstate+ndeath; i++)  
 #ifdef unix          for (jk=-5; jk<=nlstate+ndeath; jk++)  
 fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            for(m=iagemin; m <= iagemax+3; m++)
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);              freq[i][jk][m]=0;
 #endif        
         for (i=1; i<=nlstate; i++)  
 for (i=1; i<= nlstate ; i ++) {          for(m=iagemin; m <= iagemax+3; m++)
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            prop[i][m]=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        
 }        dateintsum=0;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);        k2cpt=0;
     for (i=1; i<= nlstate ; i ++) {        for (i=1; i<=imx; i++) {
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          bool=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
 }            for (z1=1; z1<=cptcoveff; z1++)       
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
      for (i=1; i<= nlstate ; i ++) {                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");                bool=0;
   else fprintf(ficgp," \%%*lf (\%%*lf)");                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
 }                    bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
 #ifdef unix                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
 fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\n");              } 
 #endif          }
    }   
   }          if (bool==1){
   /*2 eme*/            for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
   for (k1=1; k1<= m ; k1 ++) {              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
     fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
                    if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     for (i=1; i<= nlstate+1 ; i ++) {                if (m<lastpass) {
       k=2*i;                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
       for (j=1; j<= nlstate+1 ; j ++) {                }
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");                
   else fprintf(ficgp," \%%*lf (\%%*lf)");                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
 }                    dateintsum=dateintsum+k2;
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");                  k2cpt++;
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);                }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);                /*}*/
       for (j=1; j<= nlstate+1 ; j ++) {            }
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          }
         else fprintf(ficgp," \%%*lf (\%%*lf)");        } /* end i */
 }           
       fprintf(ficgp,"\" t\"\" w l 0,");        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);        pstamp(ficresp);
       for (j=1; j<= nlstate+1 ; j ++) {        if  (cptcovn>0) {
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          fprintf(ficresp, "\n#********** Variable "); 
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 }            fprintf(ficresp, "**********\n#");
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");          fprintf(ficlog, "\n#********** Variable "); 
       else fprintf(ficgp,"\" t\"\" w l 0,");          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficlog, "**********\n#");
   }        }
          for(i=1; i<=nlstate;i++) 
   /*3eme*/          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
   for (k1=1; k1<= m ; k1 ++) {        
     for (cpt=1; cpt<= nlstate ; cpt ++) {        for(i=iagemin; i <= iagemax+3; i++){
       k=2+nlstate*(2*cpt-2);          if(i==iagemax+3){
       fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);            fprintf(ficlog,"Total");
       fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);          }else{
       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            if(first==1){
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");              first=0;
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);              printf("See log file for details...\n");
 fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);            }
  for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");            fprintf(ficlog,"Age %d", i);
 fprintf(ficgp,"\" t \"e%d1\" w l",cpt);          }
           for(jk=1; jk <=nlstate ; jk++){
 */            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       for (i=1; i< nlstate ; i ++) {              pp[jk] += freq[jk][m][i]; 
         fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);          }
           for(jk=1; jk <=nlstate ; jk++){
       }            for(m=-1, pos=0; m <=0 ; m++)
     }              pos += freq[jk][m][i];
   }            if(pp[jk]>=1.e-10){
                if(first==1){
   /* CV preval stat */                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     for (k1=1; k1<= m ; k1 ++) {              }
     for (cpt=1; cpt<nlstate ; cpt ++) {              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
       k=3;            }else{
       fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);              if(first==1)
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
       for (i=1; i< nlstate ; i ++)            }
         fprintf(ficgp,"+$%d",k+i+1);          }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
                for(jk=1; jk <=nlstate ; jk++){
       l=3+(nlstate+ndeath)*cpt;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);              pp[jk] += freq[jk][m][i];
       for (i=1; i< nlstate ; i ++) {          }       
         l=3+(nlstate+ndeath)*cpt;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
         fprintf(ficgp,"+$%d",l+i+1);            pos += pp[jk];
       }            posprop += prop[jk][i];
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            }
     }          for(jk=1; jk <=nlstate ; jk++){
   }              if(pos>=1.e-5){
                if(first==1)
   /* proba elementaires */                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    for(i=1,jk=1; i <=nlstate; i++){              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
     for(k=1; k <=(nlstate+ndeath); k++){            }else{
       if (k != i) {              if(first==1)
         for(j=1; j <=ncovmodel; j++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
           jk++;            }
           fprintf(ficgp,"\n");            if( i <= iagemax){
         }              if(pos>=1.e-5){
       }                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
     }                /*probs[i][jk][j1]= pp[jk]/pos;*/
    }                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/              else
      for(jk=1; jk <=m; jk++) {                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
        fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng);            }
        if (ng==2)          }
          fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");          
        else          for(jk=-1; jk <=nlstate+ndeath; jk++)
          fprintf(ficgp,"\nset title \"Probability\"\n");            for(m=-1; m <=nlstate+ndeath; m++)
        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);              if(freq[jk][m][i] !=0 ) {
        i=1;              if(first==1)
        for(k2=1; k2<=nlstate; k2++) {                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
          k3=i;                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
          for(k=1; k<=(nlstate+ndeath); k++) {              }
            if (k != k2){          if(i <= iagemax)
              if(ng==2)            fprintf(ficresp,"\n");
                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);          if(first==1)
              else            printf("Others in log...\n");
                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);          fprintf(ficlog,"\n");
              ij=1;        }
              for(j=3; j <=ncovmodel; j++) {        /*}*/
                if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    }
                  fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    dateintmean=dateintsum/k2cpt; 
                  ij++;   
                }    fclose(ficresp);
                else    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                  fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    free_vector(pp,1,nlstate);
              }    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
              fprintf(ficgp,")/(1");    /* End of Freq */
                }
              for(k1=1; k1 <=nlstate; k1++){    
                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  /************ Prevalence ********************/
                ij=1;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                for(j=3; j <=ncovmodel; j++){  {  
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);       in each health status at the date of interview (if between dateprev1 and dateprev2).
                    ij++;       We still use firstpass and lastpass as another selection.
                  }    */
                  else   
                    fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    int i, m, jk, j1, bool, z1,j;
                }  
                fprintf(ficgp,")");    double **prop;
              }    double posprop; 
              fprintf(ficgp,") t \"p%d%d\" ", k2,k);    double  y2; /* in fractional years */
              if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");    int iagemin, iagemax;
              i=i+ncovmodel;    int first; /** to stop verbosity which is redirected to log file */
            }  
          } /* end k */    iagemin= (int) agemin;
        } /* end k2 */    iagemax= (int) agemax;
      } /* end jk */    /*pp=vector(1,nlstate);*/
    } /* end ng */    prop=matrix(1,nlstate,iagemin,iagemax+3); 
    fclose(ficgp);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
 }  /* end gnuplot */    j1=0;
     
     /*j=cptcoveff;*/
 /*************** Moving average **************/    if (cptcovn<1) {j=1;ncodemax[1]=1;}
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){    
     first=1;
   int i, cpt, cptcod;    for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)      /*for(i1=1; i1<=ncodemax[k1];i1++){
       for (i=1; i<=nlstate;i++)        j1++;*/
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)        
           mobaverage[(int)agedeb][i][cptcod]=0.;        for (i=1; i<=nlstate; i++)  
              for(m=iagemin; m <= iagemax+3; m++)
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){            prop[i][m]=0.0;
       for (i=1; i<=nlstate;i++){       
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){        for (i=1; i<=imx; i++) { /* Each individual */
           for (cpt=0;cpt<=4;cpt++){          bool=1;
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];          if  (cptcovn>0) {
           }            for (z1=1; z1<=cptcoveff; z1++) 
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
         }                bool=0;
       }          } 
     }          if (bool==1) { 
                for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
 }              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
               if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
 /************** Forecasting ******************/                if(agev[m][i]==1) agev[m][i]=iagemax+2;
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                  if (s[m][i]>0 && s[m][i]<=nlstate) { 
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
   int *popage;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                  prop[s[m][i]][iagemax+3] += weight[i]; 
   double *popeffectif,*popcount;                } 
   double ***p3mat;              }
   char fileresf[FILENAMELENGTH];            } /* end selection of waves */
           }
  agelim=AGESUP;        }
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;        for(i=iagemin; i <= iagemax+3; i++){  
           for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            posprop += prop[jk][i]; 
            } 
            
   strcpy(fileresf,"f");          for(jk=1; jk <=nlstate ; jk++){     
   strcat(fileresf,fileres);            if( i <=  iagemax){ 
   if((ficresf=fopen(fileresf,"w"))==NULL) {              if(posprop>=1.e-5){ 
     printf("Problem with forecast resultfile: %s\n", fileresf);                probs[i][jk][j1]= prop[jk][i]/posprop;
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);              } else{
   }                if(first==1){
   printf("Computing forecasting: result on file '%s' \n", fileresf);                  first=0;
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                 }
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              }
             } 
   if (mobilav==1) {          }/* end jk */ 
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        }/* end i */ 
     movingaverage(agedeb, fage, ageminpar, mobaverage);      /*} *//* end i1 */
   }    } /* end j1 */
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   if (stepm<=12) stepsize=1;    /*free_vector(pp,1,nlstate);*/
      free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   agelim=AGESUP;  }  /* End of prevalence */
    
   hstepm=1;  /************* Waves Concatenation ***************/
   hstepm=hstepm/stepm;  
   yp1=modf(dateintmean,&yp);  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   anprojmean=yp;  {
   yp2=modf((yp1*12),&yp);    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   mprojmean=yp;       Death is a valid wave (if date is known).
   yp1=modf((yp2*30.5),&yp);       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   jprojmean=yp;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
   if(jprojmean==0) jprojmean=1;       and mw[mi+1][i]. dh depends on stepm.
   if(mprojmean==0) jprojmean=1;       */
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);    int i, mi, m;
      /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   for(cptcov=1;cptcov<=i2;cptcov++){       double sum=0., jmean=0.;*/
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    int first;
       k=k+1;    int j, k=0,jk, ju, jl;
       fprintf(ficresf,"\n#******");    double sum=0.;
       for(j=1;j<=cptcoveff;j++) {    first=0;
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    jmin=100000;
       }    jmax=-1;
       fprintf(ficresf,"******\n");    jmean=0.;
       fprintf(ficresf,"# StartingAge FinalAge");    for(i=1; i<=imx; i++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);      mi=0;
            m=firstpass;
            while(s[m][i] <= nlstate){
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
         fprintf(ficresf,"\n");          mw[++mi][i]=m;
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          if(m >=lastpass)
           break;
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){        else
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          m++;
           nhstepm = nhstepm/hstepm;      }/* end while */
                if (s[m][i] > nlstate){
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        mi++;     /* Death is another wave */
           oldm=oldms;savm=savms;        /* if(mi==0)  never been interviewed correctly before death */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);             /* Only death is a correct wave */
                mw[mi][i]=m;
           for (h=0; h<=nhstepm; h++){      }
             if (h==(int) (calagedate+YEARM*cpt)) {  
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);      wav[i]=mi;
             }      if(mi==0){
             for(j=1; j<=nlstate+ndeath;j++) {        nbwarn++;
               kk1=0.;kk2=0;        if(first==0){
               for(i=1; i<=nlstate;i++) {                        printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                 if (mobilav==1)          first=1;
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];        }
                 else {        if(first==1){
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                 }        }
                      } /* end mi==0 */
               }    } /* End individuals */
               if (h==(int)(calagedate+12*cpt)){  
                 fprintf(ficresf," %.3f", kk1);    for(i=1; i<=imx; i++){
                              for(mi=1; mi<wav[i];mi++){
               }        if (stepm <=0)
             }          dh[mi][i]=1;
           }        else{
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         }            if (agedc[i] < 2*AGESUP) {
       }              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
     }              if(j==0) j=1;  /* Survives at least one month after exam */
   }              else if(j<0){
                        nberr++;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 j=1; /* Temporary Dangerous patch */
   fclose(ficresf);                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 /************** Forecasting ******************/                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){              }
                k=k+1;
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;              if (j >= jmax){
   int *popage;                jmax=j;
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;                ijmax=i;
   double *popeffectif,*popcount;              }
   double ***p3mat,***tabpop,***tabpopprev;              if (j <= jmin){
   char filerespop[FILENAMELENGTH];                jmin=j;
                 ijmin=i;
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              }
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);              sum=sum+j;
   agelim=AGESUP;              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
              }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);          }
            else{
              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   strcpy(filerespop,"pop");  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   strcat(filerespop,fileres);  
   if((ficrespop=fopen(filerespop,"w"))==NULL) {            k=k+1;
     printf("Problem with forecast resultfile: %s\n", filerespop);            if (j >= jmax) {
     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);              jmax=j;
   }              ijmax=i;
   printf("Computing forecasting: result on file '%s' \n", filerespop);            }
   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);            else if (j <= jmin){
               jmin=j;
   if (cptcoveff==0) ncodemax[cptcoveff]=1;              ijmin=i;
             }
   if (mobilav==1) {            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
     movingaverage(agedeb, fage, ageminpar, mobaverage);            if(j<0){
   }              nberr++;
               printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   stepsize=(int) (stepm+YEARM-1)/YEARM;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   if (stepm<=12) stepsize=1;            }
              sum=sum+j;
   agelim=AGESUP;          }
            jk= j/stepm;
   hstepm=1;          jl= j -jk*stepm;
   hstepm=hstepm/stepm;          ju= j -(jk+1)*stepm;
            if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
   if (popforecast==1) {            if(jl==0){
     if((ficpop=fopen(popfile,"r"))==NULL) {              dh[mi][i]=jk;
       printf("Problem with population file : %s\n",popfile);exit(0);              bh[mi][i]=0;
       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);            }else{ /* We want a negative bias in order to only have interpolation ie
     }                    * to avoid the price of an extra matrix product in likelihood */
     popage=ivector(0,AGESUP);              dh[mi][i]=jk+1;
     popeffectif=vector(0,AGESUP);              bh[mi][i]=ju;
     popcount=vector(0,AGESUP);            }
              }else{
     i=1;              if(jl <= -ju){
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;              dh[mi][i]=jk;
                  bh[mi][i]=jl;       /* bias is positive if real duration
     imx=i;                                   * is higher than the multiple of stepm and negative otherwise.
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];                                   */
   }            }
             else{
   for(cptcov=1;cptcov<=i2;cptcov++){              dh[mi][i]=jk+1;
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              bh[mi][i]=ju;
       k=k+1;            }
       fprintf(ficrespop,"\n#******");            if(dh[mi][i]==0){
       for(j=1;j<=cptcoveff;j++) {              dh[mi][i]=1; /* At least one step */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              bh[mi][i]=ju; /* At least one step */
       }              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
       fprintf(ficrespop,"******\n");            }
       fprintf(ficrespop,"# Age");          } /* end if mle */
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);        }
       if (popforecast==1)  fprintf(ficrespop," [Population]");      } /* end wave */
          }
       for (cpt=0; cpt<=0;cpt++) {    jmean=sum/k;
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);      printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
            fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){   }
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  
           nhstepm = nhstepm/hstepm;  /*********** Tricode ****************************/
            void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  {
           oldm=oldms;savm=savms;    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
             * Boring subroutine which should only output nbcode[Tvar[j]][k]
           for (h=0; h<=nhstepm; h++){     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
             if (h==(int) (calagedate+YEARM*cpt)) {     * nbcode[Tvar[j]][1]= 
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);    */
             }  
             for(j=1; j<=nlstate+ndeath;j++) {    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
               kk1=0.;kk2=0;    int modmaxcovj=0; /* Modality max of covariates j */
               for(i=1; i<=nlstate;i++) {                  int cptcode=0; /* Modality max of covariates j */
                 if (mobilav==1)    int modmincovj=0; /* Modality min of covariates j */
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];  
                 else {  
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    cptcoveff=0; 
                 }   
               }    for (k=-1; k < maxncov; k++) Ndum[k]=0;
               if (h==(int)(calagedate+12*cpt)){    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;  
                   /*fprintf(ficrespop," %.3f", kk1);    /* Loop on covariates without age and products */
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
               }      for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
             }                                 modality of this covariate Vj*/ 
             for(i=1; i<=nlstate;i++){        ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
               kk1=0.;                                      * If product of Vn*Vm, still boolean *:
                 for(j=1; j<=nlstate;j++){                                      * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];                                      * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                 }        /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];                                        modality of the nth covariate of individual i. */
             }        if (ij > modmaxcovj)
           modmaxcovj=ij; 
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)        else if (ij < modmincovj) 
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);          modmincovj=ij; 
           }        if ((ij < -1) && (ij > NCOVMAX)){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
         }          exit(1);
       }        }else
          Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
   /******/        /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {        /* getting the maximum value of the modality of the covariate
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);             (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){           female is 1, then modmaxcovj=1.*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      }
           nhstepm = nhstepm/hstepm;      printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                cptcode=modmaxcovj;
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
           oldm=oldms;savm=savms;     /*for (i=0; i<=cptcode; i++) {*/
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);        for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
           for (h=0; h<=nhstepm; h++){        printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
             if (h==(int) (calagedate+YEARM*cpt)) {        if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);          ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
             }        }
             for(j=1; j<=nlstate+ndeath;j++) {        /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
               kk1=0.;kk2=0;           historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
               for(i=1; i<=nlstate;i++) {                    } /* Ndum[-1] number of undefined modalities */
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }      /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);      /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
             }      /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
           }         modmincovj=3; modmaxcovj = 7;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);         There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
         }         which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
       }         variables V1_1 and V1_2.
    }         nbcode[Tvar[j]][ij]=k;
   }         nbcode[Tvar[j]][1]=0;
           nbcode[Tvar[j]][2]=1;
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);         nbcode[Tvar[j]][3]=2;
       */
   if (popforecast==1) {      ij=1; /* ij is similar to i but can jumps over null modalities */
     free_ivector(popage,0,AGESUP);      for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
     free_vector(popeffectif,0,AGESUP);        for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
     free_vector(popcount,0,AGESUP);          /*recode from 0 */
   }          if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);            nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);                                       k is a modality. If we have model=V1+V1*sex 
   fclose(ficrespop);                                       then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
 }            ij++;
           }
 /***********************************************/          if (ij > ncodemax[j]) break; 
 /**************** Main Program *****************/        }  /* end of loop on */
 /***********************************************/      } /* end of loop on modality */ 
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
 int main(int argc, char *argv[])    
 {   for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
   double agedeb, agefin,hf;     /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;     ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; 
   double fret;   } 
   double **xi,tmp,delta;  
    ij=1;
   double dum; /* Dummy variable */   for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
   double ***p3mat;     /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
   int *indx;     if((Ndum[i]!=0) && (i<=ncovcol)){
   char line[MAXLINE], linepar[MAXLINE];       /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
   char path[80],pathc[80],pathcd[80],pathtot[80],model[80];       Tvaraff[ij]=i; /*For printing (unclear) */
   int firstobs=1, lastobs=10;       ij++;
   int sdeb, sfin; /* Status at beginning and end */     }else
   int c,  h , cpt,l;         Tvaraff[ij]=0;
   int ju,jl, mi;   }
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;   ij--;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;   cptcoveff=ij; /*Number of total covariates*/
   int mobilav=0,popforecast=0;  
   int hstepm, nhstepm;  }
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;  
   
   double bage, fage, age, agelim, agebase;  /*********** Health Expectancies ****************/
   double ftolpl=FTOL;  
   double **prlim;  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   double *severity;  
   double ***param; /* Matrix of parameters */  {
   double  *p;    /* Health expectancies, no variances */
   double **matcov; /* Matrix of covariance */    int i, j, nhstepm, hstepm, h, nstepm;
   double ***delti3; /* Scale */    int nhstepma, nstepma; /* Decreasing with age */
   double *delti; /* Scale */    double age, agelim, hf;
   double ***eij, ***vareij;    double ***p3mat;
   double **varpl; /* Variances of prevalence limits by age */    double eip;
   double *epj, vepp;  
   double kk1, kk2;    pstamp(ficreseij);
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
      fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
   char *alph[]={"a","a","b","c","d","e"}, str[4];      for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
   char z[1]="c", occ;      fprintf(ficreseij," e%1d. ",i);
 #include <sys/time.h>    }
 #include <time.h>    fprintf(ficreseij,"\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];  
      
   /* long total_usecs;    if(estepm < stepm){
   struct timeval start_time, end_time;      printf ("Problem %d lower than %d\n",estepm, stepm);
      }
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    else  hstepm=estepm;   
   getcwd(pathcd, size);    /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
   printf("\n%s",version);     * if stepm=24 months pijx are given only every 2 years and by summing them
   if(argc <=1){     * we are calculating an estimate of the Life Expectancy assuming a linear 
     printf("\nEnter the parameter file name: ");     * progression in between and thus overestimating or underestimating according
     scanf("%s",pathtot);     * to the curvature of the survival function. If, for the same date, we 
   }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   else{     * to compare the new estimate of Life expectancy with the same linear 
     strcpy(pathtot,argv[1]);     * hypothesis. A more precise result, taking into account a more precise
   }     * curvature will be obtained if estepm is as small as stepm. */
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/  
   /*cygwin_split_path(pathtot,path,optionfile);    /* For example we decided to compute the life expectancy with the smallest unit */
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   /* cutv(path,optionfile,pathtot,'\\');*/       nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);       Look at hpijx to understand the reason of that which relies in memory size
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);       and note for a fixed period like estepm months */
   chdir(path);    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   replace(pathc,path);       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
 /*-------- arguments in the command line --------*/       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
   /* Log file */    */
   strcat(filelog, optionfilefiname);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   strcat(filelog,".log");    /* */  
   if((ficlog=fopen(filelog,"w"))==NULL)    {    agelim=AGESUP;
     printf("Problem with logfile %s\n",filelog);    /* If stepm=6 months */
     goto end;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
   }         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
   fprintf(ficlog,"Log filename:%s\n",filelog);      
   fprintf(ficlog,"\n%s",version);  /* nhstepm age range expressed in number of stepm */
   fprintf(ficlog,"\nEnter the parameter file name: ");    nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
   fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   fflush(ficlog);    /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   /* */    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   strcpy(fileres,"r");  
   strcat(fileres, optionfilefiname);    for (age=bage; age<=fage; age ++){ 
   strcat(fileres,".txt");    /* Other files have txt extension */      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   /*---------arguments file --------*/      /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   if((ficpar=fopen(optionfile,"r"))==NULL)    {  
     printf("Problem with optionfile %s\n",optionfile);      /* If stepm=6 months */
     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);      /* Computed by stepm unit matrices, product of hstepma matrices, stored
     goto end;         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
   }      
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
   strcpy(filereso,"o");      
   strcat(filereso,fileres);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   if((ficparo=fopen(filereso,"w"))==NULL) {      
     printf("Problem with Output resultfile: %s\n", filereso);      printf("%d|",(int)age);fflush(stdout);
     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     goto end;      
   }      /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
   /* Reads comments: lines beginning with '#' */        for(j=1; j<=nlstate;j++)
   while((c=getc(ficpar))=='#' && c!= EOF){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
     ungetc(c,ficpar);            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
     fgets(line, MAXLINE, ficpar);            
     puts(line);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
     fputs(line,ficparo);  
   }          }
   ungetc(c,ficpar);  
       fprintf(ficreseij,"%3.0f",age );
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);      for(i=1; i<=nlstate;i++){
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);        eip=0;
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);        for(j=1; j<=nlstate;j++){
 while((c=getc(ficpar))=='#' && c!= EOF){          eip +=eij[i][j][(int)age];
     ungetc(c,ficpar);          fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
     fgets(line, MAXLINE, ficpar);        }
     puts(line);        fprintf(ficreseij,"%9.4f", eip );
     fputs(line,ficparo);      }
   }      fprintf(ficreseij,"\n");
   ungetc(c,ficpar);      
      }
        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   covar=matrix(0,NCOVMAX,1,n);    printf("\n");
   cptcovn=0;    fprintf(ficlog,"\n");
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;    
   }
   ncovmodel=2+cptcovn;  
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
    
   /* Read guess parameters */  {
   /* Reads comments: lines beginning with '#' */    /* Covariances of health expectancies eij and of total life expectancies according
   while((c=getc(ficpar))=='#' && c!= EOF){     to initial status i, ei. .
     ungetc(c,ficpar);    */
     fgets(line, MAXLINE, ficpar);    int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     puts(line);    int nhstepma, nstepma; /* Decreasing with age */
     fputs(line,ficparo);    double age, agelim, hf;
   }    double ***p3matp, ***p3matm, ***varhe;
   ungetc(c,ficpar);    double **dnewm,**doldm;
      double *xp, *xm;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);    double **gp, **gm;
     for(i=1; i <=nlstate; i++)    double ***gradg, ***trgradg;
     for(j=1; j <=nlstate+ndeath-1; j++){    int theta;
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       fprintf(ficparo,"%1d%1d",i1,j1);    double eip, vip;
       if(mle==1)  
         printf("%1d%1d",i,j);    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
       fprintf(ficlog,"%1d%1d",i,j);    xp=vector(1,npar);
       for(k=1; k<=ncovmodel;k++){    xm=vector(1,npar);
         fscanf(ficpar," %lf",&param[i][j][k]);    dnewm=matrix(1,nlstate*nlstate,1,npar);
         if(mle==1){    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
           printf(" %lf",param[i][j][k]);    
           fprintf(ficlog," %lf",param[i][j][k]);    pstamp(ficresstdeij);
         }    fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
         else    fprintf(ficresstdeij,"# Age");
           fprintf(ficlog," %lf",param[i][j][k]);    for(i=1; i<=nlstate;i++){
         fprintf(ficparo," %lf",param[i][j][k]);      for(j=1; j<=nlstate;j++)
       }        fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fscanf(ficpar,"\n");      fprintf(ficresstdeij," e%1d. ",i);
       if(mle==1)    }
         printf("\n");    fprintf(ficresstdeij,"\n");
       fprintf(ficlog,"\n");  
       fprintf(ficparo,"\n");    pstamp(ficrescveij);
     }    fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
      fprintf(ficrescveij,"# Age");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
   p=param[1][1];        cptj= (j-1)*nlstate+i;
          for(i2=1; i2<=nlstate;i2++)
   /* Reads comments: lines beginning with '#' */          for(j2=1; j2<=nlstate;j2++){
   while((c=getc(ficpar))=='#' && c!= EOF){            cptj2= (j2-1)*nlstate+i2;
     ungetc(c,ficpar);            if(cptj2 <= cptj)
     fgets(line, MAXLINE, ficpar);              fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
     puts(line);          }
     fputs(line,ficparo);      }
   }    fprintf(ficrescveij,"\n");
   ungetc(c,ficpar);    
     if(estepm < stepm){
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      printf ("Problem %d lower than %d\n",estepm, stepm);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    }
   for(i=1; i <=nlstate; i++){    else  hstepm=estepm;   
     for(j=1; j <=nlstate+ndeath-1; j++){    /* We compute the life expectancy from trapezoids spaced every estepm months
       fscanf(ficpar,"%1d%1d",&i1,&j1);     * This is mainly to measure the difference between two models: for example
       printf("%1d%1d",i,j);     * if stepm=24 months pijx are given only every 2 years and by summing them
       fprintf(ficparo,"%1d%1d",i1,j1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
       for(k=1; k<=ncovmodel;k++){     * progression in between and thus overestimating or underestimating according
         fscanf(ficpar,"%le",&delti3[i][j][k]);     * to the curvature of the survival function. If, for the same date, we 
         printf(" %le",delti3[i][j][k]);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
         fprintf(ficparo," %le",delti3[i][j][k]);     * to compare the new estimate of Life expectancy with the same linear 
       }     * hypothesis. A more precise result, taking into account a more precise
       fscanf(ficpar,"\n");     * curvature will be obtained if estepm is as small as stepm. */
       printf("\n");  
       fprintf(ficparo,"\n");    /* For example we decided to compute the life expectancy with the smallest unit */
     }    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   }       nhstepm is the number of hstepm from age to agelim 
   delti=delti3[1][1];       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /* Reads comments: lines beginning with '#' */       and note for a fixed period like estepm months */
   while((c=getc(ficpar))=='#' && c!= EOF){    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
     ungetc(c,ficpar);       survival function given by stepm (the optimization length). Unfortunately it
     fgets(line, MAXLINE, ficpar);       means that if the survival funtion is printed only each two years of age and if
     puts(line);       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
     fputs(line,ficparo);       results. So we changed our mind and took the option of the best precision.
   }    */
   ungetc(c,ficpar);    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
    
   matcov=matrix(1,npar,1,npar);    /* If stepm=6 months */
   for(i=1; i <=npar; i++){    /* nhstepm age range expressed in number of stepm */
     fscanf(ficpar,"%s",&str);    agelim=AGESUP;
     if(mle==1)    nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
       printf("%s",str);    /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     fprintf(ficlog,"%s",str);    /* if (stepm >= YEARM) hstepm=1;*/
     fprintf(ficparo,"%s",str);    nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for(j=1; j <=i; j++){    
       fscanf(ficpar," %le",&matcov[i][j]);    p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       if(mle==1){    p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         printf(" %.5le",matcov[i][j]);    gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
         fprintf(ficlog," %.5le",matcov[i][j]);    trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
       }    gp=matrix(0,nhstepm,1,nlstate*nlstate);
       else    gm=matrix(0,nhstepm,1,nlstate*nlstate);
         fprintf(ficlog," %.5le",matcov[i][j]);  
       fprintf(ficparo," %.5le",matcov[i][j]);    for (age=bage; age<=fage; age ++){ 
     }      nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     fscanf(ficpar,"\n");      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     if(mle==1)      /* if (stepm >= YEARM) hstepm=1;*/
       printf("\n");      nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
     fprintf(ficlog,"\n");  
     fprintf(ficparo,"\n");      /* If stepm=6 months */
   }      /* Computed by stepm unit matrices, product of hstepma matrices, stored
   for(i=1; i <=npar; i++)         in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
     for(j=i+1;j<=npar;j++)      
       matcov[i][j]=matcov[j][i];      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
      
   if(mle==1)      /* Computing  Variances of health expectancies */
     printf("\n");      /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
   fprintf(ficlog,"\n");         decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
     /*-------- Rewriting paramater file ----------*/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
      strcpy(rfileres,"r");    /* "Rparameterfile */          xm[i] = x[i] - (i==theta ?delti[theta]:0);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/        }
      strcat(rfileres,".");    /* */        hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
      strcat(rfileres,optionfilext);    /* Other files have txt extension */        hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     if((ficres =fopen(rfileres,"w"))==NULL) {    
       printf("Problem writing new parameter file: %s\n", fileres);goto end;        for(j=1; j<= nlstate; j++){
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;          for(i=1; i<=nlstate; i++){
     }            for(h=0; h<=nhstepm-1; h++){
     fprintf(ficres,"#%s\n",version);              gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                  gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
     /*-------- data file ----------*/            }
     if((fic=fopen(datafile,"r"))==NULL)    {          }
       printf("Problem with datafile: %s\n", datafile);goto end;        }
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;       
     }        for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
     n= lastobs;            gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
     severity = vector(1,maxwav);          }
     outcome=imatrix(1,maxwav+1,1,n);      }/* End theta */
     num=ivector(1,n);      
     moisnais=vector(1,n);      
     annais=vector(1,n);      for(h=0; h<=nhstepm-1; h++)
     moisdc=vector(1,n);        for(j=1; j<=nlstate*nlstate;j++)
     andc=vector(1,n);          for(theta=1; theta <=npar; theta++)
     agedc=vector(1,n);            trgradg[h][j][theta]=gradg[h][theta][j];
     cod=ivector(1,n);      
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */       for(ij=1;ij<=nlstate*nlstate;ij++)
     mint=matrix(1,maxwav,1,n);        for(ji=1;ji<=nlstate*nlstate;ji++)
     anint=matrix(1,maxwav,1,n);          varhe[ij][ji][(int)age] =0.;
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);           printf("%d|",(int)age);fflush(stdout);
     tab=ivector(1,NCOVMAX);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     ncodemax=ivector(1,8);       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
     i=1;          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
     while (fgets(line, MAXLINE, fic) != NULL)    {          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
       if ((i >= firstobs) && (i <=lastobs)) {          for(ij=1;ij<=nlstate*nlstate;ij++)
                    for(ji=1;ji<=nlstate*nlstate;ji++)
         for (j=maxwav;j>=1;j--){              varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        }
           strcpy(line,stra);      }
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);      /* Computing expectancies */
         }      hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
              for(i=1; i<=nlstate;i++)
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);        for(j=1; j<=nlstate;j++)
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);            /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          }
         for (j=ncovcol;j>=1;j--){  
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      fprintf(ficresstdeij,"%3.0f",age );
         }      for(i=1; i<=nlstate;i++){
         num[i]=atol(stra);        eip=0.;
                vip=0.;
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){        for(j=1; j<=nlstate;j++){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/          eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
         i=i+1;            vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
       }          fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
     }        }
     /* printf("ii=%d", ij);        fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
        scanf("%d",i);*/      }
   imx=i-1; /* Number of individuals */      fprintf(ficresstdeij,"\n");
   
   /* for (i=1; i<=imx; i++){      fprintf(ficrescveij,"%3.0f",age );
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;      for(i=1; i<=nlstate;i++)
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;        for(j=1; j<=nlstate;j++){
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;          cptj= (j-1)*nlstate+i;
     }*/          for(i2=1; i2<=nlstate;i2++)
    /*  for (i=1; i<=imx; i++){            for(j2=1; j2<=nlstate;j2++){
      if (s[4][i]==9)  s[4][i]=-1;              cptj2= (j2-1)*nlstate+i2;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/              if(cptj2 <= cptj)
                  fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
              }
   /* Calculation of the number of parameter from char model*/        }
   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */      fprintf(ficrescveij,"\n");
   Tprod=ivector(1,15);     
   Tvaraff=ivector(1,15);    }
   Tvard=imatrix(1,15,1,2);    free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   Tage=ivector(1,15);          free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
        free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
   if (strlen(model) >1){    free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     j=0, j1=0, k1=1, k2=1;    free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     j=nbocc(model,'+');    free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     j1=nbocc(model,'*');    printf("\n");
     cptcovn=j+1;    fprintf(ficlog,"\n");
     cptcovprod=j1;  
        free_vector(xm,1,npar);
     strcpy(modelsav,model);    free_vector(xp,1,npar);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       printf("Error. Non available option model=%s ",model);    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
       fprintf(ficlog,"Error. Non available option model=%s ",model);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       goto end;  }
     }  
      /************ Variance ******************/
     for(i=(j+1); i>=1;i--){  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */  {
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyze it */    /* Variance of health expectancies */
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       /*scanf("%d",i);*/    /* double **newm;*/
       if (strchr(strb,'*')) {  /* Model includes a product */    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
         cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/    
         if (strcmp(strc,"age")==0) { /* Vn*age */    int movingaverage();
           cptcovprod--;    double **dnewm,**doldm;
           cutv(strb,stre,strd,'V');    double **dnewmp,**doldmp;
           Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/    int i, j, nhstepm, hstepm, h, nstepm ;
           cptcovage++;    int k;
             Tage[cptcovage]=i;    double *xp;
             /*printf("stre=%s ", stre);*/    double **gp, **gm;  /* for var eij */
         }    double ***gradg, ***trgradg; /*for var eij */
         else if (strcmp(strd,"age")==0) { /* or age*Vn */    double **gradgp, **trgradgp; /* for var p point j */
           cptcovprod--;    double *gpp, *gmp; /* for var p point j */
           cutv(strb,stre,strc,'V');    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
           Tvar[i]=atoi(stre);    double ***p3mat;
           cptcovage++;    double age,agelim, hf;
           Tage[cptcovage]=i;    double ***mobaverage;
         }    int theta;
         else {  /* Age is not in the model */    char digit[4];
           cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/    char digitp[25];
           Tvar[i]=ncovcol+k1;  
           cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */    char fileresprobmorprev[FILENAMELENGTH];
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc); /* m*/    if(popbased==1){
           Tvard[k1][2]=atoi(stre); /* n */      if(mobilav!=0)
           Tvar[cptcovn+k2]=Tvard[k1][1];        strcpy(digitp,"-populbased-mobilav-");
           Tvar[cptcovn+k2+1]=Tvard[k1][2];      else strcpy(digitp,"-populbased-nomobil-");
           for (k=1; k<=lastobs;k++)    }
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    else 
           k1++;      strcpy(digitp,"-stablbased-");
           k2=k2+2;  
         }    if (mobilav!=0) {
       }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       else { /* no more sum */      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
        /*  scanf("%d",i);*/        printf(" Error in movingaverage mobilav=%d\n",mobilav);
       cutv(strd,strc,strb,'V');      }
       Tvar[i]=atoi(strc);    }
       }  
       strcpy(modelsav,stra);      strcpy(fileresprobmorprev,"prmorprev"); 
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);    sprintf(digit,"%-d",ij);
         scanf("%d",i);*/    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     } /* end of loop + */    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   } /* end model */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
      strcat(fileresprobmorprev,fileres);
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
   printf("cptcovprod=%d ", cptcovprod);      printf("Problem with resultfile: %s\n", fileresprobmorprev);
   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   scanf("%d ",i);*/    }
     fclose(fic);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     /*  if(mle==1){*/    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     if (weightopt != 1) { /* Maximisation without weights*/    pstamp(ficresprobmorprev);
       for(i=1;i<=n;i++) weight[i]=1.0;    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     /*-calculation of age at interview from date of interview and age at death -*/    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     agev=matrix(1,maxwav,1,imx);      fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
     for (i=1; i<=imx; i++) {        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
       for(m=2; (m<= maxwav); m++) {    }  
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){    fprintf(ficresprobmorprev,"\n");
          anint[m][i]=9999;    fprintf(ficgp,"\n# Routine varevsij");
          s[m][i]=-1;    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
        }    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
       }  /*   } */
     }    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     for (i=1; i<=imx; i++)  {    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);    if(popbased==1)
       for(m=1; (m<= maxwav); m++){      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
         if(s[m][i] >0){    else
           if (s[m][i] >= nlstate+1) {      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
             if(agedc[i]>0)    fprintf(ficresvij,"# Age");
               if(moisdc[i]!=99 && andc[i]!=9999)    for(i=1; i<=nlstate;i++)
                 agev[m][i]=agedc[i];      for(j=1; j<=nlstate;j++)
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
            else {    fprintf(ficresvij,"\n");
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);    xp=vector(1,npar);
               fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);    dnewm=matrix(1,nlstate,1,npar);
               agev[m][i]=-1;    doldm=matrix(1,nlstate,1,nlstate);
               }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
             }    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           }  
           else if(s[m][i] !=9){ /* Should no more exist */    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);    gpp=vector(nlstate+1,nlstate+ndeath);
             if(mint[m][i]==99 || anint[m][i]==9999)    gmp=vector(nlstate+1,nlstate+ndeath);
               agev[m][i]=1;    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
             else if(agev[m][i] <agemin){    
               agemin=agev[m][i];    if(estepm < stepm){
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/      printf ("Problem %d lower than %d\n",estepm, stepm);
             }    }
             else if(agev[m][i] >agemax){    else  hstepm=estepm;   
               agemax=agev[m][i];    /* For example we decided to compute the life expectancy with the smallest unit */
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
             }       nhstepm is the number of hstepm from age to agelim 
             /*agev[m][i]=anint[m][i]-annais[i];*/       nstepm is the number of stepm from age to agelin. 
             /*   agev[m][i] = age[i]+2*m;*/       Look at function hpijx to understand why (it is linked to memory size questions) */
           }    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
           else { /* =9 */       survival function given by stepm (the optimization length). Unfortunately it
             agev[m][i]=1;       means that if the survival funtion is printed every two years of age and if
             s[m][i]=-1;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           }       results. So we changed our mind and took the option of the best precision.
         }    */
         else /*= 0 Unknown */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
           agev[m][i]=1;    agelim = AGESUP;
       }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
          nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     for (i=1; i<=imx; i++)  {      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       for(m=1; (m<= maxwav); m++){      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
         if (s[m][i] > (nlstate+ndeath)) {      gp=matrix(0,nhstepm,1,nlstate);
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);        gm=matrix(0,nhstepm,1,nlstate);
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);    
           goto end;  
         }      for(theta=1; theta <=npar; theta++){
       }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     }          xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
  fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
     free_vector(severity,1,maxwav);        if (popbased==1) {
     free_imatrix(outcome,1,maxwav+1,1,n);          if(mobilav ==0){
     free_vector(moisnais,1,n);            for(i=1; i<=nlstate;i++)
     free_vector(annais,1,n);              prlim[i][i]=probs[(int)age][i][ij];
     /* free_matrix(mint,1,maxwav,1,n);          }else{ /* mobilav */ 
        free_matrix(anint,1,maxwav,1,n);*/            for(i=1; i<=nlstate;i++)
     free_vector(moisdc,1,n);              prlim[i][i]=mobaverage[(int)age][i][ij];
     free_vector(andc,1,n);          }
         }
        
     wav=ivector(1,imx);        for(j=1; j<= nlstate; j++){
     dh=imatrix(1,lastpass-firstpass+1,1,imx);          for(h=0; h<=nhstepm; h++){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                  gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     /* Concatenates waves */          }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);        }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
       Tcode=ivector(1,100);           as a weighted average of prlim.
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        */
       ncodemax[1]=1;        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
                  gpp[j] += prlim[i][i]*p3mat[i][j][1];
    codtab=imatrix(1,100,1,10);        }    
    h=0;        /* end probability of death */
    m=pow(2,cptcoveff);  
          for(i=1; i<=npar; i++) /* Computes gradient x - delta */
    for(k=1;k<=cptcoveff; k++){          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      for(i=1; i <=(m/pow(2,k));i++){        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
        for(j=1; j <= ncodemax[k]; j++){        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){   
            h++;        if (popbased==1) {
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          if(mobilav ==0){
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/            for(i=1; i<=nlstate;i++)
          }              prlim[i][i]=probs[(int)age][i][ij];
        }          }else{ /* mobilav */ 
      }            for(i=1; i<=nlstate;i++)
    }              prlim[i][i]=mobaverage[(int)age][i][ij];
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          }
       codtab[1][2]=1;codtab[2][2]=2; */        }
    /* for(i=1; i <=m ;i++){  
       for(k=1; k <=cptcovn; k++){        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);          for(h=0; h<=nhstepm; h++){
       }            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
       printf("\n");              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       }          }
       scanf("%d",i);*/        }
            /* This for computing probability of death (h=1 means
    /* Calculates basic frequencies. Computes observed prevalence at single age           computed over hstepm matrices product = hstepm*stepm months) 
        and prints on file fileres'p'. */           as a weighted average of prlim.
         */
            for(j=nlstate+1;j<=nlstate+ndeath;j++){
              for(i=1,gmp[j]=0.; i<= nlstate; i++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */           gmp[j] += prlim[i][i]*p3mat[i][j][1];
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        }    
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        /* end probability of death */
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        for(j=1; j<= nlstate; j++) /* vareij */
                for(h=0; h<=nhstepm; h++){
     /* For Powell, parameters are in a vector p[] starting at p[1]            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          }
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */  
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
     if(mle==1){          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        }
     }  
          } /* End theta */
     /*--------- results files --------------*/  
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
    
       for(h=0; h<=nhstepm; h++) /* veij */
    jk=1;        for(j=1; j<=nlstate;j++)
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");          for(theta=1; theta <=npar; theta++)
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");            trgradg[h][j][theta]=gradg[h][theta][j];
    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");  
    for(i=1,jk=1; i <=nlstate; i++){      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
      for(k=1; k <=(nlstate+ndeath); k++){        for(theta=1; theta <=npar; theta++)
        if (k != i)          trgradgp[j][theta]=gradgp[theta][j];
          {    
            printf("%d%d ",i,k);  
            fprintf(ficlog,"%d%d ",i,k);      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
            fprintf(ficres,"%1d%1d ",i,k);      for(i=1;i<=nlstate;i++)
            for(j=1; j <=ncovmodel; j++){        for(j=1;j<=nlstate;j++)
              printf("%f ",p[jk]);          vareij[i][j][(int)age] =0.;
              fprintf(ficlog,"%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);      for(h=0;h<=nhstepm;h++){
              jk++;        for(k=0;k<=nhstepm;k++){
            }          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
            printf("\n");          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
            fprintf(ficlog,"\n");          for(i=1;i<=nlstate;i++)
            fprintf(ficres,"\n");            for(j=1;j<=nlstate;j++)
          }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
      }        }
    }      }
    if(mle==1){    
      /* Computing hessian and covariance matrix */      /* pptj */
      ftolhess=ftol; /* Usually correct */      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
      hesscov(matcov, p, npar, delti, ftolhess, func);      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
    }      for(j=nlstate+1;j<=nlstate+ndeath;j++)
    fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");        for(i=nlstate+1;i<=nlstate+ndeath;i++)
    printf("# Scales (for hessian or gradient estimation)\n");          varppt[j][i]=doldmp[j][i];
    fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");      /* end ppptj */
    for(i=1,jk=1; i <=nlstate; i++){      /*  x centered again */
      for(j=1; j <=nlstate+ndeath; j++){      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
        if (j!=i) {      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
          fprintf(ficres,"%1d%1d",i,j);   
          printf("%1d%1d",i,j);      if (popbased==1) {
          fprintf(ficlog,"%1d%1d",i,j);        if(mobilav ==0){
          for(k=1; k<=ncovmodel;k++){          for(i=1; i<=nlstate;i++)
            printf(" %.5e",delti[jk]);            prlim[i][i]=probs[(int)age][i][ij];
            fprintf(ficlog," %.5e",delti[jk]);        }else{ /* mobilav */ 
            fprintf(ficres," %.5e",delti[jk]);          for(i=1; i<=nlstate;i++)
            jk++;            prlim[i][i]=mobaverage[(int)age][i][ij];
          }        }
          printf("\n");      }
          fprintf(ficlog,"\n");               
          fprintf(ficres,"\n");      /* This for computing probability of death (h=1 means
        }         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
      }         as a weighted average of prlim.
    }      */
          for(j=nlstate+1;j<=nlstate+ndeath;j++){
    k=1;        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
    if(mle==1)      }    
      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");      /* end probability of death */
    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");  
    for(i=1;i<=npar;i++){      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
      /*  if (k>nlstate) k=1;      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
          i1=(i-1)/(ncovmodel*nlstate)+1;        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);        for(i=1; i<=nlstate;i++){
          printf("%s%d%d",alph[k],i1,tab[i]);*/          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
      fprintf(ficres,"%3d",i);        }
      if(mle==1)      } 
        printf("%3d",i);      fprintf(ficresprobmorprev,"\n");
      fprintf(ficlog,"%3d",i);  
      for(j=1; j<=i;j++){      fprintf(ficresvij,"%.0f ",age );
        fprintf(ficres," %.5e",matcov[i][j]);      for(i=1; i<=nlstate;i++)
        if(mle==1)        for(j=1; j<=nlstate;j++){
          printf(" %.5e",matcov[i][j]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
        fprintf(ficlog," %.5e",matcov[i][j]);        }
      }      fprintf(ficresvij,"\n");
      fprintf(ficres,"\n");      free_matrix(gp,0,nhstepm,1,nlstate);
      if(mle==1)      free_matrix(gm,0,nhstepm,1,nlstate);
        printf("\n");      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
      fprintf(ficlog,"\n");      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
      k++;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
    }    } /* End age */
        free_vector(gpp,nlstate+1,nlstate+ndeath);
    while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(gmp,nlstate+1,nlstate+ndeath);
      ungetc(c,ficpar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
      fgets(line, MAXLINE, ficpar);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
      puts(line);    fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
      fputs(line,ficparo);    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
    }    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
    ungetc(c,ficpar);  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
    estepm=0;  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
    if (estepm==0 || estepm < stepm) estepm=stepm;    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
    if (fage <= 2) {    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
      bage = ageminpar;    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
      fage = agemaxpar;    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
    }    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
        /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
    fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  */
    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);  /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);    fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
      
    while((c=getc(ficpar))=='#' && c!= EOF){    free_vector(xp,1,npar);
      ungetc(c,ficpar);    free_matrix(doldm,1,nlstate,1,nlstate);
      fgets(line, MAXLINE, ficpar);    free_matrix(dnewm,1,nlstate,1,npar);
      puts(line);    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      fputs(line,ficparo);    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
    }    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    ungetc(c,ficpar);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
      fclose(ficresprobmorprev);
    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);    fflush(ficgp);
    fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fflush(fichtm); 
    fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  }  /* end varevsij */
      
    while((c=getc(ficpar))=='#' && c!= EOF){  /************ Variance of prevlim ******************/
      ungetc(c,ficpar);  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
      fgets(line, MAXLINE, ficpar);  {
      puts(line);    /* Variance of prevalence limit */
      fputs(line,ficparo);    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
    }  
    ungetc(c,ficpar);    double **dnewm,**doldm;
      int i, j, nhstepm, hstepm;
     double *xp;
    dateprev1=anprev1+mprev1/12.+jprev1/365.;    double *gp, *gm;
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    double **gradg, **trgradg;
     double age,agelim;
   fscanf(ficpar,"pop_based=%d\n",&popbased);    int theta;
   fprintf(ficparo,"pop_based=%d\n",popbased);      
   fprintf(ficres,"pop_based=%d\n",popbased);      pstamp(ficresvpl);
      fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
   while((c=getc(ficpar))=='#' && c!= EOF){    fprintf(ficresvpl,"# Age");
     ungetc(c,ficpar);    for(i=1; i<=nlstate;i++)
     fgets(line, MAXLINE, ficpar);        fprintf(ficresvpl," %1d-%1d",i,i);
     puts(line);    fprintf(ficresvpl,"\n");
     fputs(line,ficparo);  
   }    xp=vector(1,npar);
   ungetc(c,ficpar);    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);    
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    hstepm=1*YEARM; /* Every year of age */
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 while((c=getc(ficpar))=='#' && c!= EOF){      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     ungetc(c,ficpar);      if (stepm >= YEARM) hstepm=1;
     fgets(line, MAXLINE, ficpar);      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
     puts(line);      gradg=matrix(1,npar,1,nlstate);
     fputs(line,ficparo);      gp=vector(1,nlstate);
   }      gm=vector(1,nlstate);
   ungetc(c,ficpar);  
       for(theta=1; theta <=npar; theta++){
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);        for(i=1; i<=npar; i++){ /* Computes gradient */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);        }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);        for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
 /*------------ gnuplot -------------*/      
   strcpy(optionfilegnuplot,optionfilefiname);        for(i=1; i<=npar; i++) /* Computes gradient */
   strcat(optionfilegnuplot,".gp");          xp[i] = x[i] - (i==theta ?delti[theta]:0);
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
     printf("Problem with file %s",optionfilegnuplot);        for(i=1;i<=nlstate;i++)
   }          gm[i] = prlim[i][i];
   fclose(ficgp);  
  printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);        for(i=1;i<=nlstate;i++)
 /*--------- index.htm --------*/          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   strcpy(optionfilehtm,optionfile);  
   strcat(optionfilehtm,".htm");      trgradg =matrix(1,nlstate,1,npar);
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {  
     printf("Problem with %s \n",optionfilehtm), exit(0);      for(j=1; j<=nlstate;j++)
   }        for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n  
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n      for(i=1;i<=nlstate;i++)
 \n        varpl[i][(int)age] =0.;
 Total number of observations=%d <br>\n      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
 <hr  size=\"2\" color=\"#EC5E5E\">      for(i=1;i<=nlstate;i++)
  <ul><li><h4>Parameter files</h4>\n        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n  
  - Log file of the run: <a href=\"%s\">%s</a><br>\n      fprintf(ficresvpl,"%.0f ",age );
  - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);      for(i=1; i<=nlstate;i++)
   fclose(fichtm);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
  printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);      free_vector(gp,1,nlstate);
        free_vector(gm,1,nlstate);
 /*------------ free_vector  -------------*/      free_matrix(gradg,1,npar,1,nlstate);
  chdir(path);      free_matrix(trgradg,1,nlstate,1,npar);
      } /* End age */
  free_ivector(wav,1,imx);  
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    free_vector(xp,1,npar);
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      free_matrix(doldm,1,nlstate,1,npar);
  free_ivector(num,1,n);    free_matrix(dnewm,1,nlstate,1,nlstate);
  free_vector(agedc,1,n);  
  /*free_matrix(covar,1,NCOVMAX,1,n);*/  }
  fclose(ficparo);  
  fclose(ficres);  /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
   /*--------------- Prevalence limit --------------*/    int i, j=0,  k1, l1, tj;
      int k2, l2, j1,  z1;
   strcpy(filerespl,"pl");    int k=0, l;
   strcat(filerespl,fileres);    int first=1, first1, first2;
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double **dnewm,**doldm;
     fprintf(ficlog,"Problem with Prev limit resultfile: %s\n", filerespl);goto end;    double *xp;
   }    double *gp, *gm;
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    double **gradg, **trgradg;
   fprintf(ficlog,"Computing prevalence limit: result on file '%s' \n", filerespl);    double **mu;
   fprintf(ficrespl,"#Prevalence limit\n");    double age, cov[NCOVMAX+1];
   fprintf(ficrespl,"#Age ");    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    int theta;
   fprintf(ficrespl,"\n");    char fileresprob[FILENAMELENGTH];
      char fileresprobcov[FILENAMELENGTH];
   prlim=matrix(1,nlstate,1,nlstate);    char fileresprobcor[FILENAMELENGTH];
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    double ***varpij;
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcpy(fileresprob,"prob"); 
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    strcat(fileresprob,fileres);
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   k=0;      printf("Problem with resultfile: %s\n", fileresprob);
   agebase=ageminpar;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   agelim=agemaxpar;    }
   ftolpl=1.e-10;    strcpy(fileresprobcov,"probcov"); 
   i1=cptcoveff;    strcat(fileresprobcov,fileres);
   if (cptcovn < 1){i1=1;}    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
   for(cptcov=1;cptcov<=i1;cptcov++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }
         k=k+1;    strcpy(fileresprobcor,"probcor"); 
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    strcat(fileresprobcor,fileres);
         fprintf(ficrespl,"\n#******");    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
         printf("\n#******");      printf("Problem with resultfile: %s\n", fileresprobcor);
         fprintf(ficlog,"\n#******");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
         for(j=1;j<=cptcoveff;j++) {    }
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         }    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
         fprintf(ficrespl,"******\n");    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         printf("******\n");    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
         fprintf(ficlog,"******\n");    pstamp(ficresprob);
            fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
         for (age=agebase; age<=agelim; age++){    fprintf(ficresprob,"# Age");
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    pstamp(ficresprobcov);
           fprintf(ficrespl,"%.0f",age );    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
           for(i=1; i<=nlstate;i++)    fprintf(ficresprobcov,"# Age");
           fprintf(ficrespl," %.5f", prlim[i][i]);    pstamp(ficresprobcor);
           fprintf(ficrespl,"\n");    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
         }    fprintf(ficresprobcor,"# Age");
       }  
     }  
   fclose(ficrespl);    for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
   /*------------- h Pij x at various ages ------------*/        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
          fprintf(ficresprobcov," p%1d-%1d ",i,j);
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        fprintf(ficresprobcor," p%1d-%1d ",i,j);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {      }  
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;   /* fprintf(ficresprob,"\n");
     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;    fprintf(ficresprobcov,"\n");
   }    fprintf(ficresprobcor,"\n");
   printf("Computing pij: result on file '%s' \n", filerespij);   */
   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);    xp=vector(1,npar);
      dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   stepsize=(int) (stepm+YEARM-1)/YEARM;    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
   /*if (stepm<=24) stepsize=2;*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
   agelim=AGESUP;    first=1;
   hstepm=stepsize*YEARM; /* Every year of age */    fprintf(ficgp,"\n# Routine varprob");
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   /* hstepm=1;   aff par mois*/  
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
   k=0;    fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
   for(cptcov=1;cptcov<=i1;cptcov++){    file %s<br>\n",optionfilehtmcov);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
       k=k+1;  and drawn. It helps understanding how is the covariance between two incidences.\
         fprintf(ficrespij,"\n#****** ");   They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
         for(j=1;j<=cptcoveff;j++)    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
         fprintf(ficrespij,"******\n");  would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
          standard deviations wide on each axis. <br>\
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */   Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */   and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
           /*      nhstepm=nhstepm*YEARM; aff par mois*/    cov[1]=1;
     /* tj=cptcoveff; */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    tj = (int) pow(2,cptcoveff);
           oldm=oldms;savm=savms;    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      j1=0;
           fprintf(ficrespij,"# Age");    for(j1=1; j1<=tj;j1++){
           for(i=1; i<=nlstate;i++)      /*for(i1=1; i1<=ncodemax[t];i1++){ */
             for(j=1; j<=nlstate+ndeath;j++)      /*j1++;*/
               fprintf(ficrespij," %1d-%1d",i,j);        if  (cptcovn>0) {
           fprintf(ficrespij,"\n");          fprintf(ficresprob, "\n#********** Variable "); 
            for (h=0; h<=nhstepm; h++){          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          fprintf(ficresprob, "**********\n#\n");
             for(i=1; i<=nlstate;i++)          fprintf(ficresprobcov, "\n#********** Variable "); 
               for(j=1; j<=nlstate+ndeath;j++)          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);          fprintf(ficresprobcov, "**********\n#\n");
             fprintf(ficrespij,"\n");          
              }          fprintf(ficgp, "\n#********** Variable "); 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficrespij,"\n");          fprintf(ficgp, "**********\n#\n");
         }          
     }          
   }          fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);          fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
   fclose(ficrespij);          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
   /*---------- Forecasting ------------------*/        }
   if((stepm == 1) && (strcmp(model,".")==0)){        
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   }        gp=vector(1,(nlstate)*(nlstate+ndeath));
   else{        gm=vector(1,(nlstate)*(nlstate+ndeath));
     erreur=108;        for (age=bage; age<=fage; age ++){ 
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          cov[2]=age;
     fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);          for (k=1; k<=cptcovn;k++) {
   }            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                             * 1  1 1 1 1
                                                            * 2  2 1 1 1
   /*---------- Health expectancies and variances ------------*/                                                           * 3  1 2 1 1
                                                            */
   strcpy(filerest,"t");            /* nbcode[1][1]=0 nbcode[1][2]=1;*/
   strcat(filerest,fileres);          }
   if((ficrest=fopen(filerest,"w"))==NULL) {          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;          for (k=1; k<=cptcovprod;k++)
     fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   }          
   printf("Computing Total LEs with variances: file '%s' \n", filerest);      
   fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);          for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
   strcpy(filerese,"e");            
   strcat(filerese,fileres);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   if((ficreseij=fopen(filerese,"w"))==NULL) {            
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            k=0;
     fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);            for(i=1; i<= (nlstate); i++){
   }              for(j=1; j<=(nlstate+ndeath);j++){
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);                k=k+1;
   fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);                gp[k]=pmmij[i][j];
               }
   strcpy(fileresv,"v");            }
   strcat(fileresv,fileres);            
   if((ficresvij=fopen(fileresv,"w"))==NULL) {            for(i=1; i<=npar; i++)
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);              xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
     fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);      
   }            pmij(pmmij,cov,ncovmodel,xp,nlstate);
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            k=0;
   fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);            for(i=1; i<=(nlstate); i++){
   calagedate=-1;              for(j=1; j<=(nlstate+ndeath);j++){
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);                k=k+1;
                 gm[k]=pmmij[i][j];
   k=0;              }
   for(cptcov=1;cptcov<=i1;cptcov++){            }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){       
       k=k+1;            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
       fprintf(ficrest,"\n#****** ");              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
       for(j=1;j<=cptcoveff;j++)          }
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
       fprintf(ficrest,"******\n");          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
       fprintf(ficreseij,"\n#****** ");              trgradg[j][theta]=gradg[theta][j];
       for(j=1;j<=cptcoveff;j++)          
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
       fprintf(ficreseij,"******\n");          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
       fprintf(ficresvij,"\n#****** ");          pmij(pmmij,cov,ncovmodel,x,nlstate);
       for(j=1;j<=cptcoveff;j++)          
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          k=0;
       fprintf(ficresvij,"******\n");          for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);              k=k+1;
       oldm=oldms;savm=savms;              mu[k][(int) age]=pmmij[i][j];
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);              }
            }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
       oldm=oldms;savm=savms;            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
       varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0);              varpij[i][j][(int)age] = doldm[i][j];
       if(popbased==1){  
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased);          /*printf("\n%d ",(int)age);
        }            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
              fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");            }*/
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
       fprintf(ficrest,"\n");          fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
       epj=vector(1,nlstate+1);          fprintf(ficresprobcor,"\n%d ",(int)age);
       for(age=bage; age <=fage ;age++){  
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
         if (popbased==1) {            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for(i=1; i<=nlstate;i++)          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             prlim[i][i]=probs[(int)age][i][k];            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
         }            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                  }
         fprintf(ficrest," %4.0f",age);          i=0;
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          for (k=1; k<=(nlstate);k++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {            for (l=1; l<=(nlstate+ndeath);l++){ 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];              i++;
             /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
           }              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
           epj[nlstate+1] +=epj[j];              for (j=1; j<=i;j++){
         }                /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
         for(i=1, vepp=0.;i <=nlstate;i++)                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
           for(j=1;j <=nlstate;j++)              }
             vepp += vareij[i][j][(int)age];            }
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));          }/* end of loop for state */
         for(j=1;j <=nlstate;j++){        } /* end of loop for age */
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         }        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         fprintf(ficrest,"\n");        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       }        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     }        
   }        /* Confidence intervalle of pij  */
 free_matrix(mint,1,maxwav,1,n);        /*
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);          fprintf(ficgp,"\nunset parametric;unset label");
     free_vector(weight,1,n);          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
   fclose(ficreseij);          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
   fclose(ficresvij);          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
   fclose(ficrest);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
   fclose(ficpar);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
   free_vector(epj,1,nlstate+1);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
          */
   /*------- Variance limit prevalence------*/    
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
   strcpy(fileresvpl,"vpl");        first1=1;first2=2;
   strcat(fileresvpl,fileres);        for (k2=1; k2<=(nlstate);k2++){
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);            if(l2==k2) continue;
     exit(0);            j=(k2-1)*(nlstate+ndeath)+l2;
   }            for (k1=1; k1<=(nlstate);k1++){
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
   k=0;                i=(k1-1)*(nlstate+ndeath)+l1;
   for(cptcov=1;cptcov<=i1;cptcov++){                if(i<=j) continue;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){                for (age=bage; age<=fage; age ++){ 
       k=k+1;                  if ((int)age %5==0){
       fprintf(ficresvpl,"\n#****** ");                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
       for(j=1;j<=cptcoveff;j++)                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
       fprintf(ficresvpl,"******\n");                    mu1=mu[i][(int) age]/stepm*YEARM ;
                          mu2=mu[j][(int) age]/stepm*YEARM;
       varpl=matrix(1,nlstate,(int) bage, (int) fage);                    c12=cv12/sqrt(v1*v2);
       oldm=oldms;savm=savms;                    /* Computing eigen value of matrix of covariance */
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
     }                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
  }                    if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
   fclose(ficresvpl);                        first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
   /*---------- End : free ----------------*/                      }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);                      fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                        /* lc1=fabs(lc1); */ /* If we want to have them positive */
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);                      /* lc2=fabs(lc2); */
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);                    }
    
                      /* Eigen vectors */
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);                    v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                    /*v21=sqrt(1.-v11*v11); *//* error */
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    v21=(lc1-v1)/cv12*v11;
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                    v12=-v21;
                      v22=v11;
   free_matrix(matcov,1,npar,1,npar);                    tnalp=v21/v11;
   free_vector(delti,1,npar);                    if(first1==1){
   free_matrix(agev,1,maxwav,1,imx);                      first1=0;
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
   fprintf(fichtm,"\n</body>");                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
   fclose(fichtm);                    /*printf(fignu*/
   fclose(ficgp);                    /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                      /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
   if(erreur >0){                      first=0;
     printf("End of Imach with error or warning %d\n",erreur);                      fprintf(ficgp,"\nset parametric;unset label");
     fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
   }else{                      fprintf(ficgp,"\nset ter png small size 320, 240");
    printf("End of Imach\n");                      fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    fprintf(ficlog,"End of Imach\n");   :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   }  %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
   printf("See log file on %s\n",filelog);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
   fclose(ficlog);                              subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                      fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                        fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/                      fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
   /*printf("Total time was %d uSec.\n", total_usecs);*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /*------ End -----------*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  end:                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
 #ifdef windows                    }else{
   /* chdir(pathcd);*/                      first=0;
 #endif                      fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
  /*system("wgnuplot graph.plt");*/                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
  /*system("../gp37mgw/wgnuplot graph.plt");*/                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
  /*system("cd ../gp37mgw");*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
  strcpy(plotcmd,GNUPLOTPROGRAM);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
  strcat(plotcmd," ");                    }/* if first */
  strcat(plotcmd,optionfilegnuplot);                  } /* age mod 5 */
  system(plotcmd);                } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
 #ifdef windows                first=1;
   while (z[0] != 'q') {              } /*l12 */
     /* chdir(path); */            } /* k12 */
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");          } /*l1 */
     scanf("%s",z);        }/* k1 */
     if (z[0] == 'c') system("./imach");        /* } */ /* loop covariates */
     else if (z[0] == 'e') system(optionfilehtm);    }
     else if (z[0] == 'g') system(plotcmd);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     else if (z[0] == 'q') exit(0);    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
   }    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
 #endif    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
 }    free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<=nlstate;cpt++){
            fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else        fprintf(ficgp," %%*lf (%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
          else fprintf(ficgp," %%*lf (%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," %%lf (%%lf)");
           else fprintf(ficgp," %%*lf (%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
         k=3;
         fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f]  ", ageminpar, agemaxpar);
         for (i=1; i<= nlstate ; i ++){
           if(i==1)
             fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
           else
             fprintf(ficgp,", '' ");
           l=(nlstate+ndeath)*(i-1)+1;
           fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
           for (j=1; j<= (nlstate-1) ; j ++)
             fprintf(ficgp,"+$%d",k+l+j);
           fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
         } /* nlstate */
         fprintf(ficgp,"\n");
       } /* end cpt state*/ 
     } /* end covariate */  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    /* avoid: */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32];
     int i,j, k, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
   
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i=0, j=0, n=0;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[MAXLINE], strb[MAXLINE];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       strcpy(line, linetmp);
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
         }
         else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
       }
       else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     /* endread: */
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ == *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int  j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     * but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     /*endread:*/
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr = *nberr + 1;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased (%d)\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           (*nberr)++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0){
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               }else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
             } /* agedc > 0 */
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           (*nberr)++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
    /* endread:*/
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   #if defined(_MSC_VER)
   /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
   //#include "stdafx.h"
   //#include <stdio.h>
   //#include <tchar.h>
   //#include <windows.h>
   //#include <iostream>
   typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
   
   LPFN_ISWOW64PROCESS fnIsWow64Process;
   
   BOOL IsWow64()
   {
           BOOL bIsWow64 = FALSE;
   
           //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
           //  (HANDLE, PBOOL);
   
           //LPFN_ISWOW64PROCESS fnIsWow64Process;
   
           HMODULE module = GetModuleHandle(_T("kernel32"));
           const char funcName[] = "IsWow64Process";
           fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   GetProcAddress(module, funcName);
   
           if (NULL != fnIsWow64Process)
           {
                   if (!fnIsWow64Process(GetCurrentProcess(),
                           &bIsWow64))
                           //throw std::exception("Unknown error");
                           printf("Unknown error\n");
           }
           return bIsWow64 != FALSE;
   }
   #endif
   
   void syscompilerinfo()
    {
      /* #include "syscompilerinfo.h"*/
   
   #if defined __INTEL_COMPILER
   #if defined(__GNUC__)
           struct utsname sysInfo;  /* For Intel on Linux and OS/X */
   #endif
   #elif defined(__GNUC__) 
   #include <gnu/libc-version.h>  /* Only on gnu */
      struct utsname sysInfo;
      int cross = CROSS;
      if (cross){
              printf("Cross-");
              fprintf(ficlog, "Cross-");
      }
   #endif
   
   #include <stdint.h>
   
      printf("Compiled with:");fprintf(ficlog,"Compiled with:");
   #if defined(__clang__)
      printf(" Clang/LLVM");fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
   #endif
   #if defined(__ICC) || defined(__INTEL_COMPILER)
      printf(" Intel ICC/ICPC");fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
   #endif
   #if defined(__GNUC__) || defined(__GNUG__)
      printf(" GNU GCC/G++");fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
   #endif
   #if defined(__HP_cc) || defined(__HP_aCC)
      printf(" Hewlett-Packard C/aC++");fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
   #endif
   #if defined(__IBMC__) || defined(__IBMCPP__)
      printf(" IBM XL C/C++"); fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
   #endif
   #if defined(_MSC_VER)
      printf(" Microsoft Visual Studio");fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
   #endif
   #if defined(__PGI)
      printf(" Portland Group PGCC/PGCPP");fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
   #endif
   #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
      printf(" Oracle Solaris Studio");fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
   #endif
      printf(" for ");fprintf(ficlog," for ");
      
   // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
   #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
       // Windows (x64 and x86)
      printf("Windows (x64 and x86) ");fprintf(ficlog,"Windows (x64 and x86) ");
   #elif __unix__ // all unices, not all compilers
       // Unix
      printf("Unix ");fprintf(ficlog,"Unix ");
   #elif __linux__
       // linux
      printf("linux ");fprintf(ficlog,"linux ");
   #elif __APPLE__
       // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
      printf("Mac OS ");fprintf(ficlog,"Mac OS ");
   #endif
   
   /*  __MINGW32__   */
   /*  __CYGWIN__   */
   /* __MINGW64__  */
   // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
   /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
   /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
   /* _WIN64  // Defined for applications for Win64. */
   /* _M_X64 // Defined for compilations that target x64 processors. */
   /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
   
   #if UINTPTR_MAX == 0xffffffff
      printf(" 32-bit"); fprintf(ficlog," 32-bit");/* 32-bit */
   #elif UINTPTR_MAX == 0xffffffffffffffff
      printf(" 64-bit"); fprintf(ficlog," 64-bit");/* 64-bit */
   #else
      printf(" wtf-bit"); fprintf(ficlog," wtf-bit");/* wtf */
   #endif
   
   #if defined(__GNUC__)
   # if defined(__GNUC_PATCHLEVEL__)
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100 \
                               + __GNUC_PATCHLEVEL__)
   # else
   #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                               + __GNUC_MINOR__ * 100)
   # endif
      printf(" using GNU C version %d.\n", __GNUC_VERSION__);
      fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
   
      if (uname(&sysInfo) != -1) {
        printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
        fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
      }
      else
         perror("uname() error");
   #ifndef __INTEL_COMPILER
      printf("GNU libc version: %s\n", gnu_get_libc_version()); 
      fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version()); 
   #endif
   #endif
   
      //   void main()
      //   {
   #if defined(_MSC_VER)
      if (IsWow64()){
              printf("The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
              fprintf(ficlog, "The program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
      }
      else{
              printf("The process is not running under WOW64 (i.e probably on a 64bit Windows).\n");
              fprintf(ficlog,"The programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
      }
      //      printf("\nPress Enter to continue...");
      //      getchar();
      //   }
   
   #endif
      
   
    }
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
   
     int jj, ll, li, lj, lk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
   
     char line[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int c,  h , cpt;
     int jl;
     int i1, j1, jk, stepsize;
     int *tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage=0, fage=110, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
   
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c";
   
     /*char  *strt;*/
     char strtend[80];
   
   
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     rstart_time = time(NULL);  
     /*  (void) gettimeofday(&start_time,&tzp);*/
     start_time = *localtime(&rstart_time);
     curr_time=start_time;
     /*tml = *localtime(&start_time.tm_sec);*/
     /* strcpy(strstart,asctime(&tml)); */
     strcpy(strstart,asctime(&start_time));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tm_sec = tp.tm_sec +86400; */
   /*  tm = *localtime(&start_time.tm_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tm_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
       i=strlen(pathr);
       if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     syscompilerinfo();
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ( (i1-i) * (j1-j) != 0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #else
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #else
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             cptcod= 0; /* To be deleted */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    /* endfree:*/
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     /*(void) gettimeofday(&end_time,&tzp);*/
     rend_time = time(NULL);  
     end_time = *localtime(&rend_time);
     /* tml = *localtime(&end_time.tm_sec); */
     strcpy(strtend,asctime(&end_time));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
   
     printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
     fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifdef _WIN32
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef __unix
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
       printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
       sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
       if((outcmd=system(plotcmd)) != 0)
         printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
     }
     printf(" Successful, please wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
   #ifdef __APPLE__
         sprintf(pplotcmd, "open %s", optionfilehtm);
   #elif __linux
         sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
   #else
         sprintf(pplotcmd, "%s", optionfilehtm);
   #endif
         printf("Starting browser with: %s",pplotcmd);fflush(stdout);
         system(pplotcmd);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }

Removed from v.1.51  
changed lines
  Added in v.1.178


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>