Diff for /imach/src/imach.c between versions 1.1.1.1 and 1.66

version 1.1.1.1, 2000/12/28 18:49:56 version 1.66, 2003/01/28 17:23:35
Line 1 Line 1
       /* $Id$
 /*********************** Imach **************************************             Interpolated Markov Chain
   This program computes Healthy Life Expectancies from cross-longitudinal   
   data. Cross-longitudinal consist in a first survey ("cross") where     Short summary of the programme:
   individuals from different ages are interviewed on their health status    
   or degree of  disability. At least a second wave of interviews     This program computes Healthy Life Expectancies from
   ("longitudinal") should  measure each new individual health status.     cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   Health expectancies are computed from the transistions observed between     first survey ("cross") where individuals from different ages are
   waves and are computed for each degree of severity of disability (number    interviewed on their health status or degree of disability (in the
   of life states). More degrees you consider, more time is necessary to    case of a health survey which is our main interest) -2- at least a
   reach the Maximum Likekilhood of the parameters involved in the model.    second wave of interviews ("longitudinal") which measure each change
   The simplest model is the multinomial logistic model where pij is    (if any) in individual health status.  Health expectancies are
   the probabibility to be observed in state j at the second wave conditional    computed from the time spent in each health state according to a
   to be observed in state i at the first wave. Therefore the model is:    model. More health states you consider, more time is necessary to reach the
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'     Maximum Likelihood of the parameters involved in the model.  The
   is a covariate. If you want to have a more complex model than "constant and    simplest model is the multinomial logistic model where pij is the
   age", you should modify the program where the markup     probability to be observed in state j at the second wave
     *Covariates have to be included here again* invites you to do it.    conditional to be observed in state i at the first wave. Therefore
   More covariates you add, less is the speed of the convergence.    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
     'age' is age and 'sex' is a covariate. If you want to have a more
   The advantage that this computer programme claims, comes from that if the     complex model than "constant and age", you should modify the program
   delay between waves is not identical for each individual, or if some     where the markup *Covariates have to be included here again* invites
   individual missed an interview, the information is not rounded or lost, but    you to do it.  More covariates you add, slower the
   taken into account using an interpolation or extrapolation.    convergence.
   hPijx is the probability to be  
   observed in state i at age x+h conditional to the observed state i at age     The advantage of this computer programme, compared to a simple
   x. The delay 'h' can be split into an exact number (nh*stepm) of     multinomial logistic model, is clear when the delay between waves is not
   unobserved intermediate  states. This elementary transition (by month or     identical for each individual. Also, if a individual missed an
   quarter trimester, semester or year) is model as a multinomial logistic.     intermediate interview, the information is lost, but taken into
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    account using an interpolation or extrapolation.  
   and the contribution of each individual to the likelihood is simply hPijx.  
     hPijx is the probability to be observed in state i at age x+h
     conditional to the observed state i at age x. The delay 'h' can be
     split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
     semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
     and the contribution of each individual to the likelihood is simply
     hPijx.
   
   Also this programme outputs the covariance matrix of the parameters but also    Also this programme outputs the covariance matrix of the parameters but also
   of the life expectancies. It also computes the prevalence limits.     of the life expectancies. It also computes the stable prevalence. 
       
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
            Institut national d'études démographiques, Paris.             Institut national d'études démographiques, Paris.
Line 48 Line 56
 #include <unistd.h>  #include <unistd.h>
   
 #define MAXLINE 256  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define FILENAMELENGTH 80  #define FILENAMELENGTH 80
 /*#define DEBUG*/  /*#define DEBUG*/
 /*#define win*/  #define windows
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
   #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */  #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncov */  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define NINTERVMAX 8  #define NINTERVMAX 8
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
Line 63 Line 75
 #define YEARM 12. /* Number of months per year */  #define YEARM 12. /* Number of months per year */
 #define AGESUP 130  #define AGESUP 130
 #define AGEBASE 40  #define AGEBASE 40
   #ifdef windows
   #define DIRSEPARATOR '\\'
   #define ODIRSEPARATOR '/'
   #else
   #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
   #endif
   
   char version[80]="Imach version 0.91, November 2002, INED-EUROREVES ";
   int erreur; /* Error number */
 int nvar;  int nvar;
   int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 int npar=NPARMAX;  int npar=NPARMAX;
 int nlstate=2; /* Number of live states */  int nlstate=2; /* Number of live states */
 int ndeath=1; /* Number of dead states */  int ndeath=1; /* Number of dead states */
 int ncov;     /* Total number of covariables including constant a12*1 +b12*x ncov=2 */  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   int popbased=0;
   
 int *wav; /* Number of waves for this individuual 0 is possible */  int *wav; /* Number of waves for this individuual 0 is possible */
 int maxwav; /* Maxim number of waves */  int maxwav; /* Maxim number of waves */
   int jmin, jmax; /* min, max spacing between 2 waves */
 int mle, weightopt;  int mle, weightopt;
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
              * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 double **oldm, **newm, **savm; /* Working pointers to matrices */  double **oldm, **newm, **savm; /* Working pointers to matrices */
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 FILE *ficgp, *fichtm;  FILE *ficlog;
   FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
   FILE *ficreseij;
   char filerese[FILENAMELENGTH];
   FILE  *ficresvij;
   char fileresv[FILENAMELENGTH];
   FILE  *ficresvpl;
   char fileresvpl[FILENAMELENGTH];
   char title[MAXLINE];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
   char filelog[FILENAMELENGTH]; /* Log file */
   char filerest[FILENAMELENGTH];
   char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
   
   char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
   
 #define NR_END 1  #define NR_END 1
 #define FREE_ARG char*  #define FREE_ARG char*
Line 102  FILE *ficgp, *fichtm; Line 147  FILE *ficgp, *fichtm;
 static double maxarg1,maxarg2;  static double maxarg1,maxarg2;
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
      
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
 #define rint(a) floor(a+0.5)  #define rint(a) floor(a+0.5)
   
Line 114  int imx; Line 159  int imx;
 int stepm;  int stepm;
 /* Stepm, step in month: minimum step interpolation*/  /* Stepm, step in month: minimum step interpolation*/
   
   int estepm;
   /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   
 int m,nb;  int m,nb;
 int *num, firstpass=0, lastpass=2,*cod;  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
 double **pmmij;  double **pmmij, ***probs;
   double dateintmean=0;
   
 double *weight;  double *weight;
 int **s; /* Status */  int **s; /* Status */
 double *agedc, **covar, idx;  double *agedc, **covar, idx;
   int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
 double ftolhess; /* Tolerance for computing hessian */  double ftolhess; /* Tolerance for computing hessian */
   
   /**************** split *************************/
   static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
   {
     char  *ss;                            /* pointer */
     int   l1, l2;                         /* length counters */
   
     l1 = strlen(path );                   /* length of path */
     if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if ( ss == NULL ) {                   /* no directory, so use current */
       /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   #if     defined(__bsd__)                /* get current working directory */
       extern char *getwd( );
   
       if ( getwd( dirc ) == NULL ) {
   #else
       extern char *getcwd( );
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   #endif
         return( GLOCK_ERROR_GETCWD );
       }
       strcpy( name, path );               /* we've got it */
     } else {                              /* strip direcotry from path */
       ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
       strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
     }
     l1 = strlen( dirc );                  /* length of directory */
   #ifdef windows
     if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   #else
     if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   #endif
     ss = strrchr( name, '.' );            /* find last / */
     ss++;
     strcpy(ext,ss);                       /* save extension */
     l1= strlen( name);
     l2= strlen(ss)+1;
     strncpy( finame, name, l1-l2);
     finame[l1-l2]= 0;
     return( 0 );                          /* we're done */
   }
   
   
 /******************************************/  /******************************************/
   
Line 141  void replace(char *s, char*t) Line 238  void replace(char *s, char*t)
     if (t[i]== '\\') s[i]='/';      if (t[i]== '\\') s[i]='/';
   }    }
 }  }
 void cut(char *u,char *v, char*t)  
   int nbocc(char *s, char occ)
   {
     int i,j=0;
     int lg=20;
     i=0;
     lg=strlen(s);
     for(i=0; i<= lg; i++) {
     if  (s[i] == occ ) j++;
     }
     return j;
   }
   
   void cutv(char *u,char *v, char*t, char occ)
 {  {
   int i,lg,j,p;    /* cuts string t into u and v where u is ended by char occ excluding it
        and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
        gives u="abcedf" and v="ghi2j" */
     int i,lg,j,p=0;
   i=0;    i=0;
   for(j=0; j<=strlen(t); j++) {    for(j=0; j<=strlen(t)-1; j++) {
     if(t[j]=='\\') p=j;      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   }    }
   
   lg=strlen(t);    lg=strlen(t);
   for(j=0; j<p; j++) {    for(j=0; j<p; j++) {
     (u[j] = t[j]);      (u[j] = t[j]);
     u[p]='\0';  
   }    }
        u[p]='\0';
   
   for(j=0; j<= lg; j++) {     for(j=0; j<= lg; j++) {
     if (j>=(p+1))(v[j-p-1] = t[j]);      if (j>=(p+1))(v[j-p-1] = t[j]);
   }    }
 }  }
Line 166  void nrerror(char error_text[]) Line 279  void nrerror(char error_text[])
 {  {
   fprintf(stderr,"ERREUR ...\n");    fprintf(stderr,"ERREUR ...\n");
   fprintf(stderr,"%s\n",error_text);    fprintf(stderr,"%s\n",error_text);
   exit(1);    exit(EXIT_FAILURE);
 }  }
 /*********************** vector *******************/  /*********************** vector *******************/
 double *vector(int nl, int nh)  double *vector(int nl, int nh)
Line 339  double brent(double ax, double bx, doubl Line 452  double brent(double ax, double bx, doubl
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     printf(".");fflush(stdout);      printf(".");fflush(stdout);
       fprintf(ficlog,".");fflush(ficlog);
 #ifdef DEBUG  #ifdef DEBUG
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 #endif  #endif
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
Line 465  void linmin(double p[], double xi[], int Line 580  void linmin(double p[], double xi[], int
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 #ifdef DEBUG  #ifdef DEBUG
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
     fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 #endif  #endif
   for (j=1;j<=n;j++) {     for (j=1;j<=n;j++) { 
     xi[j] *= xmin;       xi[j] *= xmin; 
Line 477  void linmin(double p[], double xi[], int Line 593  void linmin(double p[], double xi[], int
 /*************** powell ************************/  /*************** powell ************************/
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,   void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
             double (*func)(double []))               double (*func)(double [])) 
   
 {   { 
   
   
   void linmin(double p[], double xi[], int n, double *fret,     void linmin(double p[], double xi[], int n, double *fret, 
               double (*func)(double []));                 double (*func)(double [])); 
   int i,ibig,j;     int i,ibig,j; 
Line 498  void powell(double p[], double **xi, int Line 611  void powell(double p[], double **xi, int
     ibig=0;       ibig=0; 
     del=0.0;       del=0.0; 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);      printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     for (i=1;i<=n;i++)       for (i=1;i<=n;i++) 
       printf(" %d %.12f",i, p[i]);        printf(" %d %.12f",i, p[i]);
       fprintf(ficlog," %d %.12f",i, p[i]);
     printf("\n");      printf("\n");
       fprintf(ficlog,"\n");
     for (i=1;i<=n;i++) {       for (i=1;i<=n;i++) { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];         for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
       fptt=(*fret);         fptt=(*fret); 
 #ifdef DEBUG  #ifdef DEBUG
       printf("fret=%lf \n",*fret);        printf("fret=%lf \n",*fret);
         fprintf(ficlog,"fret=%lf \n",*fret);
 #endif  #endif
       printf("%d",i);fflush(stdout);        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
       linmin(p,xit,n,fret,func);         linmin(p,xit,n,fret,func); 
       if (fabs(fptt-(*fret)) > del) {         if (fabs(fptt-(*fret)) > del) { 
         del=fabs(fptt-(*fret));           del=fabs(fptt-(*fret)); 
Line 515  void powell(double p[], double **xi, int Line 633  void powell(double p[], double **xi, int
       }         } 
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %.12e",i,(*fret));        printf("%d %.12e",i,(*fret));
         fprintf(ficlog,"%d %.12e",i,(*fret));
       for (j=1;j<=n;j++) {        for (j=1;j<=n;j++) {
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         printf(" x(%d)=%.12e",j,xit[j]);          printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       }        }
       for(j=1;j<=n;j++)         for(j=1;j<=n;j++) {
         printf(" p=%.12e",p[j]);          printf(" p=%.12e",p[j]);
           fprintf(ficlog," p=%.12e",p[j]);
         }
       printf("\n");        printf("\n");
         fprintf(ficlog,"\n");
 #endif  #endif
     }       } 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
Line 530  void powell(double p[], double **xi, int Line 653  void powell(double p[], double **xi, int
       k[0]=1;        k[0]=1;
       k[1]=-1;        k[1]=-1;
       printf("Max: %.12e",(*func)(p));        printf("Max: %.12e",(*func)(p));
       for (j=1;j<=n;j++)         fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
         printf(" %.12e",p[j]);          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
         }
       printf("\n");        printf("\n");
         fprintf(ficlog,"\n");
       for(l=0;l<=1;l++) {        for(l=0;l<=1;l++) {
         for (j=1;j<=n;j++) {          for (j=1;j<=n;j++) {
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
         }          }
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
           fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
       }        }
 #endif  #endif
   
Line 566  void powell(double p[], double **xi, int Line 695  void powell(double p[], double **xi, int
         }          }
 #ifdef DEBUG  #ifdef DEBUG
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
         for(j=1;j<=n;j++)          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
           printf(" %.12e",xit[j]);            printf(" %.12e",xit[j]);
             fprintf(ficlog," %.12e",xit[j]);
           }
         printf("\n");          printf("\n");
           fprintf(ficlog,"\n");
 #endif  #endif
       }         }
     }       } 
   }     } 
 }   } 
   
 /**** Prevalence limit ****************/  /**** Prevalence limit (stable prevalence)  ****************/
   
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl)  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
 {  {
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
      matrix by transitions matrix until convergence is reached */       matrix by transitions matrix until convergence is reached */
Line 593  double **prevalim(double **prlim, int nl Line 726  double **prevalim(double **prlim, int nl
     for (j=1;j<=nlstate+ndeath;j++){      for (j=1;j<=nlstate+ndeath;j++){
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     }      }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
      cov[1]=1.;
    
    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     newm=savm;      newm=savm;
     /* Covariates have to be included here again */      /* Covariates have to be included here again */
     cov[1]=1.;       cov[2]=agefin;
     cov[2]=agefin;    
     out=matprod2(newm, pmij(pmmij,cov,ncov,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);        for (k=1; k<=cptcovn;k++) {
 /*    printf("age=%f agefin=%f po=%f pn=%f\n",age,agefin,oldm[1][1],newm[1][1]);*/          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
               /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
         /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
       out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
   
     savm=oldm;      savm=oldm;
     oldm=newm;      oldm=newm;
     maxmax=0.;      maxmax=0.;
Line 624  double **prevalim(double **prlim, int nl Line 770  double **prevalim(double **prlim, int nl
   }    }
 }  }
   
 /*************** transition probabilities **********/   /*************** transition probabilities ***************/ 
   
 double **pmij(double **ps, double *cov, int ncov, double *x, int nlstate )  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 {  {
   double s1, s2;    double s1, s2;
   /*double t34;*/    /*double t34;*/
Line 634  double **pmij(double **ps, double *cov, Line 780  double **pmij(double **ps, double *cov,
   
     for(i=1; i<= nlstate; i++){      for(i=1; i<= nlstate; i++){
     for(j=1; j<i;j++){      for(j=1; j<i;j++){
       for (nc=1, s2=0.;nc <=ncov; nc++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         /*s2 += param[i][j][nc]*cov[nc];*/          /*s2 += param[i][j][nc]*cov[nc];*/
         s2 += x[(i-1)*nlstate*ncov+(j-1)*ncov+nc+(i-1)*(ndeath-1)*ncov]*cov[nc];          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
       }        }
       ps[i][j]=s2;        ps[i][j]=s2;
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
     }      }
     for(j=i+1; j<=nlstate+ndeath;j++){      for(j=i+1; j<=nlstate+ndeath;j++){
       for (nc=1, s2=0.;nc <=ncov; nc++){        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         s2 += x[(i-1)*nlstate*ncov+(j-2)*ncov+nc+(i-1)*(ndeath-1)*ncov]*cov[nc];          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
       }        }
       ps[i][j]=s2;        ps[i][j]=s2;
     }      }
   }    }
       /*ps[3][2]=1;*/
   
   for(i=1; i<= nlstate; i++){    for(i=1; i<= nlstate; i++){
      s1=0;       s1=0;
     for(j=1; j<i; j++)      for(j=1; j<i; j++)
Line 671  double **pmij(double **ps, double *cov, Line 819  double **pmij(double **ps, double *cov,
     }      }
   }    }
   
   
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     for(jj=1; jj<= nlstate+ndeath; jj++){      for(jj=1; jj<= nlstate+ndeath; jj++){
      printf("%lf ",ps[ii][jj]);       printf("%lf ",ps[ii][jj]);
Line 688  double **pmij(double **ps, double *cov, Line 837  double **pmij(double **ps, double *cov,
   
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
 {  {
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   /* in, b, out are matrice of pointers which should have been initialized     /* in, b, out are matrice of pointers which should have been initialized 
      before: only the contents of out is modified. The function returns       before: only the contents of out is modified. The function returns
Line 705  double **matprod2(double **out, double * Line 854  double **matprod2(double **out, double *
   
 /************* Higher Matrix Product ***************/  /************* Higher Matrix Product ***************/
   
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm )  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
 {  {
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month     /* Computes the transition matrix starting at age 'age' over 
      duration (i.e. until       'nhstepm*hstepm*stepm' months (i.e. until
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
      (typically every 2 years instead of every month which is too big).       (typically every 2 years instead of every month which is too big 
        for the memory).
      Model is determined by parameters x and covariates have to be        Model is determined by parameters x and covariates have to be 
      included manually here.        included manually here. 
   
      */       */
   
   int i, j, d, h;    int i, j, d, h, k;
   double **out, cov[NCOVMAX];    double **out, cov[NCOVMAX];
   double **newm;    double **newm;
   
Line 734  double ***hpxij(double ***po, int nhstep Line 885  double ***hpxij(double ***po, int nhstep
       /* Covariates have to be included here again */        /* Covariates have to be included here again */
       cov[1]=1.;        cov[1]=1.;
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
         for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
         for (k=1; k<=cptcovage;k++)
           cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
         for (k=1; k<=cptcovprod;k++)
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
   
         /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                    pmij(pmmij,cov,ncov,x,nlstate));                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       savm=oldm;        savm=oldm;
       oldm=newm;        oldm=newm;
     }      }
Line 754  double ***hpxij(double ***po, int nhstep Line 913  double ***hpxij(double ***po, int nhstep
 /*************** log-likelihood *************/  /*************** log-likelihood *************/
 double func( double *x)  double func( double *x)
 {  {
   int i, ii, j, k, mi, d;    int i, ii, j, k, mi, d, kk;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   double **out;    double **out;
   double sw; /* Sum of weights */    double sw; /* Sum of weights */
   double lli; /* Individual log likelihood */    double lli; /* Individual log likelihood */
     int s1, s2;
     double bbh;
   long ipmx;    long ipmx;
   /*extern weight */    /*extern weight */
   /* We are differentiating ll according to initial status */    /* We are differentiating ll according to initial status */
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   /*for(i=1;i<imx;i++)     /*for(i=1;i<imx;i++) 
 printf(" %d\n",s[4][i]);      printf(" %d\n",s[4][i]);
   */    */
     cov[1]=1.;
   
   for(k=1; k<=nlstate; k++) ll[k]=0.;    for(k=1; k<=nlstate; k++) ll[k]=0.;
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
        for(mi=1; mi<= wav[i]-1; mi++){    if(mle==1){
       for (ii=1;ii<=nlstate+ndeath;ii++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
             for(d=0; d<dh[mi][i]; d++){        for(mi=1; mi<= wav[i]-1; mi++){
         newm=savm;          for (ii=1;ii<=nlstate+ndeath;ii++)
           cov[1]=1.;            for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<dh[mi][i]; d++){
             newm=savm;
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,            for (kk=1; kk<=cptcovage;kk++) {
                        1,nlstate+ndeath,pmij(pmmij,cov,ncov,x,nlstate));              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           savm=oldm;            savm=oldm;
           oldm=newm;            oldm=newm;
           } /* end mult */
         
       } /* end mult */          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
              /* But now since version 0.9 we anticipate for bias and large stepm.
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);           * If stepm is larger than one month (smallest stepm) and if the exact delay 
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/           * (in months) between two waves is not a multiple of stepm, we rounded to 
       ipmx +=1;           * the nearest (and in case of equal distance, to the lowest) interval but now
       sw += weight[i];           * we keep into memory the bias bh[mi][i] and also the previous matrix product
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     } /* end of wave */           * probability in order to take into account the bias as a fraction of the way
   } /* end of individual */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
            */
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
            */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));  /* linear interpolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
     }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<=dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
           } /* end mult */
         
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
            */
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
            */
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
           /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
           /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
     }  else if(mle==3){  /* exponential inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
           } /* end mult */
         
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
           /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
            * the nearest (and in case of equal distance, to the lowest) interval but now
            * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
            * -stepm/2 to stepm/2 .
            * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
            */
           s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
           /* bias is positive if real duration
            * is higher than the multiple of stepm and negative otherwise.
            */
           /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
           lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
           /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
     }else{  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
             for (j=1;j<=nlstate+ndeath;j++){
               oldm[ii][j]=(ii==j ? 1.0 : 0.0);
               savm[ii][j]=(ii==j ? 1.0 : 0.0);
             }
           for(d=0; d<dh[mi][i]; d++){
             newm=savm;
             cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
           
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
             savm=oldm;
             oldm=newm;
           } /* end mult */
         
           lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
           ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
       } /* end of individual */
     } /* End of if */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
Line 801  printf(" %d\n",s[4][i]); Line 1120  printf(" %d\n",s[4][i]);
   
 /*********** Maximum Likelihood Estimation ***************/  /*********** Maximum Likelihood Estimation ***************/
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncov, int nlstate, double ftol, double (*func)(double []))  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
 {  {
   int i,j, iter;    int i,j, iter;
   double **xi,*delti;    double **xi,*delti;
Line 810  void mlikeli(FILE *ficres,double p[], in Line 1129  void mlikeli(FILE *ficres,double p[], in
   for (i=1;i<=npar;i++)    for (i=1;i<=npar;i++)
     for (j=1;j<=npar;j++)      for (j=1;j<=npar;j++)
       xi[i][j]=(i==j ? 1.0 : 0.0);        xi[i][j]=(i==j ? 1.0 : 0.0);
   printf("Powell\n");    printf("Powell\n");  fprintf(ficlog,"Powell\n");
   powell(p,xi,npar,ftol,&iter,&fret,func);    powell(p,xi,npar,ftol,&iter,&fret,func);
   
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
     fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
 }  }
   
Line 831  void hesscov(double **matcov, double p[] Line 1151  void hesscov(double **matcov, double p[]
   void lubksb(double **a, int npar, int *indx, double b[]) ;    void lubksb(double **a, int npar, int *indx, double b[]) ;
   void ludcmp(double **a, int npar, int *indx, double *d) ;    void ludcmp(double **a, int npar, int *indx, double *d) ;
   
   
   hess=matrix(1,npar,1,npar);    hess=matrix(1,npar,1,npar);
   
   printf("\nCalculation of the hessian matrix. Wait...\n");    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   for (i=1;i<=npar;i++){    for (i=1;i<=npar;i++){
     printf("%d",i);fflush(stdout);      printf("%d",i);fflush(stdout);
       fprintf(ficlog,"%d",i);fflush(ficlog);
     hess[i][i]=hessii(p,ftolhess,i,delti);      hess[i][i]=hessii(p,ftolhess,i,delti);
     /*printf(" %f ",p[i]);*/      /*printf(" %f ",p[i]);*/
       /*printf(" %lf ",hess[i][i]);*/
   }    }
     
   for (i=1;i<=npar;i++) {    for (i=1;i<=npar;i++) {
     for (j=1;j<=npar;j++)  {      for (j=1;j<=npar;j++)  {
       if (j>i) {         if (j>i) { 
         printf(".%d%d",i,j);fflush(stdout);          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         hess[i][j]=hessij(p,delti,i,j);          hess[i][j]=hessij(p,delti,i,j);
         hess[j][i]=hess[i][j];          hess[j][i]=hess[i][j];    
           /*printf(" %lf ",hess[i][j]);*/
       }        }
     }      }
   }    }
   printf("\n");    printf("\n");
     fprintf(ficlog,"\n");
   
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
     fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
       
   a=matrix(1,npar,1,npar);    a=matrix(1,npar,1,npar);
   y=matrix(1,npar,1,npar);    y=matrix(1,npar,1,npar);
Line 872  void hesscov(double **matcov, double p[] Line 1198  void hesscov(double **matcov, double p[]
   }    }
   
   printf("\n#Hessian matrix#\n");    printf("\n#Hessian matrix#\n");
     fprintf(ficlog,"\n#Hessian matrix#\n");
   for (i=1;i<=npar;i++) {     for (i=1;i<=npar;i++) { 
     for (j=1;j<=npar;j++) {       for (j=1;j<=npar;j++) { 
       printf("%.3e ",hess[i][j]);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
     }      }
     printf("\n");      printf("\n");
       fprintf(ficlog,"\n");
   }    }
   
   /* Recompute Inverse */    /* Recompute Inverse */
Line 893  void hesscov(double **matcov, double p[] Line 1222  void hesscov(double **matcov, double p[]
     for (i=1;i<=npar;i++){       for (i=1;i<=npar;i++){ 
       y[i][j]=x[i];        y[i][j]=x[i];
       printf("%.3e ",y[i][j]);        printf("%.3e ",y[i][j]);
         fprintf(ficlog,"%.3e ",y[i][j]);
     }      }
     printf("\n");      printf("\n");
       fprintf(ficlog,"\n");
   }    }
   */    */
   
Line 936  double hessii( double x[], double delta, Line 1267  double hessii( double x[], double delta,
               
 #ifdef DEBUG  #ifdef DEBUG
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
         fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
 #endif  #endif
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
Line 950  double hessii( double x[], double delta, Line 1282  double hessii( double x[], double delta,
     }      }
   }    }
   delti[theta]=delts;    delti[theta]=delts;
   return res;    return res; 
       
 }  }
   
Line 983  double hessij( double x[], double delti[ Line 1315  double hessij( double x[], double delti[
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
 #ifdef DEBUG  #ifdef DEBUG
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #endif  #endif
   }    }
   return res;    return res;
Line 1063  void lubksb(double **a, int n, int *indx Line 1396  void lubksb(double **a, int n, int *indx
 }   } 
   
 /************ Frequencies ********************/  /************ Frequencies ********************/
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx)  void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
 {  /* Some frequencies */  {  /* Some frequencies */
      
   int i, m, jk;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     int first;
   double ***freq; /* Frequencies */    double ***freq; /* Frequencies */
   double *pp;    double *pp;
   double pos;    double pos, k2, dateintsum=0,k2cpt=0;
   FILE *ficresp;    FILE *ficresp;
   char fileresp[FILENAMELENGTH];    char fileresp[FILENAMELENGTH];
     
   pp=vector(1,nlstate);    pp=vector(1,nlstate);
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(fileresp,"p");    strcpy(fileresp,"p");
   strcat(fileresp,fileres);    strcat(fileresp,fileres);
   if((ficresp=fopen(fileresp,"w"))==NULL) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
     printf("Problem with prevalence resultfile: %s\n", fileresp);      printf("Problem with prevalence resultfile: %s\n", fileresp);
       fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     exit(0);      exit(0);
   }    }
   
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
   for (i=-1; i<=nlstate+ndeath; i++)      j1=0;
     for (jk=-1; jk<=nlstate+ndeath; jk++)      
       for(m=agemin; m <= agemax+3; m++)    j=cptcoveff;
         freq[i][jk][m]=0;    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   
   for (i=1; i<=imx; i++)  {    first=1;
     for(m=firstpass; m<= lastpass-1; m++){  
       if(agev[m][i]==0) agev[m][i]=agemax+1;  
       if(agev[m][i]==1) agev[m][i]=agemax+2;  
        freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
        freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  
     }  
   }  
   
   fprintf(ficresp, "#");    for(k1=1; k1<=j;k1++){
   for(i=1; i<=nlstate;i++)       for(i1=1; i1<=ncodemax[k1];i1++){
     fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);        j1++;
 fprintf(ficresp, "\n");        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           scanf("%d", i);*/
   for(i=(int)agemin; i <= (int)agemax+3; i++){        for (i=-1; i<=nlstate+ndeath; i++)  
     if(i==(int)agemax+3)          for (jk=-1; jk<=nlstate+ndeath; jk++)  
       printf("Total");            for(m=agemin; m <= agemax+3; m++)
     else              freq[i][jk][m]=0;
       printf("Age %d", i);        
     for(jk=1; jk <=nlstate ; jk++){        dateintsum=0;
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)        k2cpt=0;
         pp[jk] += freq[jk][m][i];        for (i=1; i<=imx; i++) {
     }          bool=1;
     for(jk=1; jk <=nlstate ; jk++){          if  (cptcovn>0) {
       for(m=-1, pos=0; m <=0 ; m++)            for (z1=1; z1<=cptcoveff; z1++) 
         pos += freq[jk][m][i];              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
       if(pp[jk]>=1.e-10)                bool=0;
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          }
       else          if (bool==1){
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);            for(m=firstpass; m<=lastpass; m++){
     }              k2=anint[m][i]+(mint[m][i]/12.);
     for(jk=1; jk <=nlstate ; jk++){              if ((k2>=dateprev1) && (k2<=dateprev2)) {
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)                if(agev[m][i]==0) agev[m][i]=agemax+1;
         pp[jk] += freq[jk][m][i];                if(agev[m][i]==1) agev[m][i]=agemax+2;
     }                if (m<lastpass) {
     for(jk=1,pos=0; jk <=nlstate ; jk++)                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
       pos += pp[jk];                  freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
     for(jk=1; jk <=nlstate ; jk++){                }
       if(pos>=1.e-5)                
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);                if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
       else                  dateintsum=dateintsum+k2;
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);                  k2cpt++;
       if( i <= (int) agemax){                }
         if(pos>=1.e-5)              }
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);            }
       else          }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);        }
          
         fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
         if  (cptcovn>0) {
           fprintf(ficresp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresp, "**********\n#");
         }
         for(i=1; i<=nlstate;i++) 
           fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
         fprintf(ficresp, "\n");
         
         for(i=(int)agemin; i <= (int)agemax+3; i++){
           if(i==(int)agemax+3){
             fprintf(ficlog,"Total");
           }else{
             if(first==1){
               first=0;
               printf("See log file for details...\n");
             }
             fprintf(ficlog,"Age %d", i);
           }
           for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
           }
           for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
               if(first==1){
               printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
               }
               fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
               if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
           }
   
           for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
           }
   
           for(jk=1,pos=0; jk <=nlstate ; jk++)
             pos += pp[jk];
           for(jk=1; jk <=nlstate ; jk++){
             if(pos>=1.e-5){
               if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
               fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
             }else{
               if(first==1)
                 printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
               fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
             }
             if( i <= (int) agemax){
               if(pos>=1.e-5){
                 fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
                 probs[i][jk][j1]= pp[jk]/pos;
                 /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
               }
               else
                 fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
             }
           }
           
           for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
               if(freq[jk][m][i] !=0 ) {
               if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                 fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
               }
           if(i <= (int) agemax)
             fprintf(ficresp,"\n");
           if(first==1)
             printf("Others in log...\n");
           fprintf(ficlog,"\n");
       }        }
     }      }
     for(jk=-1; jk <=nlstate+ndeath; jk++)  
       for(m=-1; m <=nlstate+ndeath; m++)  
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);  
     if(i <= (int) agemax)  
       fprintf(ficresp,"\n");  
     printf("\n");  
   }    }
     dateintmean=dateintsum/k2cpt; 
    
   fclose(ficresp);    fclose(ficresp);
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
   free_vector(pp,1,nlstate);    free_vector(pp,1,nlstate);
     
     /* End of Freq */
   }
   
   /************ Prevalence ********************/
   void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
   {  /* Some frequencies */
    
     int i, m, jk, k1, i1, j1, bool, z1,z2,j;
     double ***freq; /* Frequencies */
     double *pp;
     double pos, k2;
   
     pp=vector(1,nlstate);
     
     freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
     j1=0;
     
     j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
     for(k1=1; k1<=j;k1++){
       for(i1=1; i1<=ncodemax[k1];i1++){
         j1++;
         
         for (i=-1; i<=nlstate+ndeath; i++)  
           for (jk=-1; jk<=nlstate+ndeath; jk++)  
             for(m=agemin; m <= agemax+3; m++)
               freq[i][jk][m]=0;
        
         for (i=1; i<=imx; i++) {
           bool=1;
           if  (cptcovn>0) {
             for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                 bool=0;
           } 
           if (bool==1) { 
             for(m=firstpass; m<=lastpass; m++){
               k2=anint[m][i]+(mint[m][i]/12.);
               if ((k2>=dateprev1) && (k2<=dateprev2)) {
                 if(agev[m][i]==0) agev[m][i]=agemax+1;
                 if(agev[m][i]==1) agev[m][i]=agemax+2;
                 if (m<lastpass) {
                   if (calagedate>0) 
                     freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
                   else
                     freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; 
                 }
               }
             }
           }
         }
         for(i=(int)agemin; i <= (int)agemax+3; i++){ 
           for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
               pp[jk] += freq[jk][m][i]; 
           }
           for(jk=1; jk <=nlstate ; jk++){
             for(m=-1, pos=0; m <=0 ; m++)
               pos += freq[jk][m][i];
           }
           
           for(jk=1; jk <=nlstate ; jk++){
             for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
               pp[jk] += freq[jk][m][i];
           }
           
           for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
           
           for(jk=1; jk <=nlstate ; jk++){    
             if( i <= (int) agemax){
               if(pos>=1.e-5){
                 probs[i][jk][j1]= pp[jk]/pos;
               }
             }
           }/* end jk */
         }/* end i */
       } /* end i1 */
     } /* end k1 */
   
     
     free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
     free_vector(pp,1,nlstate);
     
 }  /* End of Freq */  }  /* End of Freq */
   
 /************* Waves Concatenation ***************/  /************* Waves Concatenation ***************/
   
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
 {  {
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
      Death is a valid wave (if date is known).       Death is a valid wave (if date is known).
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
      and mw[mi+1][i]. dh depends on stepm.       and mw[mi+1][i]. dh depends on stepm.
      */       */
   
   int i, mi, m;    int i, mi, m;
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
 float sum=0.;       double sum=0., jmean=0.;*/
     int first;
     int j, k=0,jk, ju, jl;
     double sum=0.;
     first=0;
     jmin=1e+5;
     jmax=-1;
     jmean=0.;
   for(i=1; i<=imx; i++){    for(i=1; i<=imx; i++){
     mi=0;      mi=0;
     m=firstpass;      m=firstpass;
Line 1185  float sum=0.; Line 1679  float sum=0.;
     }      }
   
     wav[i]=mi;      wav[i]=mi;
     if(mi==0)      if(mi==0){
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        if(first==0){
           printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
           first=1;
         }
         if(first==1){
           fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
         }
       } /* end mi==0 */
   }    }
   
   for(i=1; i<=imx; i++){    for(i=1; i<=imx; i++){
Line 1195  float sum=0.; Line 1696  float sum=0.;
         dh[mi][i]=1;          dh[mi][i]=1;
       else{        else{
         if (s[mw[mi+1][i]][i] > nlstate) {          if (s[mw[mi+1][i]][i] > nlstate) {
             if (agedc[i] < 2*AGESUP) {
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);             j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
           if(j=0) j=1;  /* Survives at least one month after exam */            if(j==0) j=1;  /* Survives at least one month after exam */
             k=k+1;
             if (j >= jmax) jmax=j;
             if (j <= jmin) jmin=j;
             sum=sum+j;
             /*if (j<0) printf("j=%d num=%d \n",j,i); */
             }
         }          }
         else{          else{
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
           k=k+1;            k=k+1;
           if (j >= jmax) jmax=j;            if (j >= jmax) jmax=j;
           else if (j <= jmin)jmin=j;            else if (j <= jmin)jmin=j;
             /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
           sum=sum+j;            sum=sum+j;
         }          }
         jk= j/stepm;          jk= j/stepm;
         jl= j -jk*stepm;          jl= j -jk*stepm;
         ju= j -(jk+1)*stepm;          ju= j -(jk+1)*stepm;
         if(jl <= -ju)          if(mle <=1){ 
           dh[mi][i]=jk;            if(jl==0){
         else              dh[mi][i]=jk;
           dh[mi][i]=jk+1;              bh[mi][i]=0;
         if(dh[mi][i]==0)            }else{ /* We want a negative bias in order to only have interpolation ie
           dh[mi][i]=1; /* At least one step */                    * at the price of an extra matrix product in likelihood */
       }              dh[mi][i]=jk+1;
     }              bh[mi][i]=ju;
             }
           }else{
             if(jl <= -ju){
               dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
                                    * is higher than the multiple of stepm and negative otherwise.
                                    */
             }
             else{
               dh[mi][i]=jk+1;
               bh[mi][i]=ju;
             }
             if(dh[mi][i]==0){
               dh[mi][i]=1; /* At least one step */
               bh[mi][i]=ju; /* At least one step */
               printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);
             }
             if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm);
           }
         } /* end if mle */
       } /* end wave */
   }    }
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);    jmean=sum/k;
     printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
    }
   
   /*********** Tricode ****************************/
   void tricode(int *Tvar, int **nbcode, int imx)
   {
     
     int Ndum[20],ij=1, k, j, i, maxncov=19;
     int cptcode=0;
     cptcoveff=0; 
    
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     for (k=1; k<=7; k++) ncodemax[k]=0;
   
     for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
       for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                  modality*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
         Ndum[ij]++; /*store the modality */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                                          Tvar[j]. If V=sex and male is 0 and 
                                          female is 1, then  cptcode=1.*/
       }
   
       for (i=0; i<=cptcode; i++) {
         if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
       }
   
       ij=1; 
       for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
           if (Ndum[k] != 0) {
             nbcode[Tvar[j]][ij]=k; 
             /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             
             ij++;
           }
           if (ij > ncodemax[j]) break; 
         }  
       } 
     }  
   
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   
    for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
      ij=Tvar[i];
      Ndum[ij]++;
    }
   
    ij=1;
    for (i=1; i<= maxncov; i++) {
      if((Ndum[i]!=0) && (i<=ncovcol)){
        Tvaraff[ij]=i; /*For printing */
        ij++;
      }
    }
    
    cptcoveff=ij-1; /*Number of simple covariates*/
 }  }
   
 /*********** Health Expectancies ****************/  /*********** Health Expectancies ****************/
   
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm)  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   
 {  {
   /* Health expectancies */    /* Health expectancies */
   int i, j, nhstepm, hstepm, h;    int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
   double age, agelim,hf;    double age, agelim, hf;
   double ***p3mat;    double ***p3mat,***varhe;
     double **dnewm,**doldm;
   FILE  *ficreseij;    double *xp;
   char filerese[FILENAMELENGTH];    double **gp, **gm;
     double ***gradg, ***trgradg;
   strcpy(filerese,"e");    int theta;
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {  
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }  
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);  
   
     varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate*2,1,npar);
     doldm=matrix(1,nlstate*2,1,nlstate*2);
     
   fprintf(ficreseij,"# Health expectancies\n");    fprintf(ficreseij,"# Health expectancies\n");
   fprintf(ficreseij,"# Age");    fprintf(ficreseij,"# Age");
   for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
     for(j=1; j<=nlstate;j++)      for(j=1; j<=nlstate;j++)
       fprintf(ficreseij," %1d-%1d",i,j);        fprintf(ficreseij," %1d-%1d (SE)",i,j);
   fprintf(ficreseij,"\n");    fprintf(ficreseij,"\n");
   
   hstepm=1*YEARM; /*  Every j years of age (in month) */    if(estepm < stepm){
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
   agelim=AGESUP;    agelim=AGESUP;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */      /* nhstepm age range expressed in number of stepm */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
     /* Typically if 20 years = 20*12/6=40 stepm */       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     if (stepm >= YEARM) hstepm=1;      /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
       gp=matrix(0,nhstepm,1,nlstate*2);
       gm=matrix(0,nhstepm,1,nlstate*2);
   
     /* Computed by stepm unit matrices, product of hstepm matrices, stored      /* Computed by stepm unit matrices, product of hstepm matrices, stored
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm);        hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
    
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing Variances of health expectancies */
   
        for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
     
         cptj=0;
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             cptj=cptj+1;
             for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
               gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
           }
         }
        
        
         for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         
         cptj=0;
         for(j=1; j<= nlstate; j++){
           for(i=1;i<=nlstate;i++){
             cptj=cptj+1;
             for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
             }
           }
         }
         for(j=1; j<= nlstate*2; j++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
        } 
      
   /* End theta */
   
        trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
   
        for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*2;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
        
   
        for(i=1;i<=nlstate*2;i++)
         for(j=1;j<=nlstate*2;j++)
           varhe[i][j][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
           for(i=1;i<=nlstate*2;i++)
             for(j=1;j<=nlstate*2;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
       /* Computing expectancies */
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)        for(j=1; j<=nlstate;j++)
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
           eij[i][j][(int)age] +=p3mat[i][j][h];            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
         }          }
       
     hf=1;      fprintf(ficreseij,"%3.0f",age );
     if (stepm >= YEARM) hf=stepm/YEARM;      cptj=0;
     fprintf(ficreseij,"%.0f",age );  
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){        for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
       }        }
     fprintf(ficreseij,"\n");      fprintf(ficreseij,"\n");
      
       free_matrix(gm,0,nhstepm,1,nlstate*2);
       free_matrix(gp,0,nhstepm,1,nlstate*2);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
       free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   }    }
   fclose(ficreseij);    printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*2,1,npar);
     free_matrix(doldm,1,nlstate*2,1,nlstate*2);
     free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
 }  }
   
 /************ Variance ******************/  /************ Variance ******************/
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
 {  {
   /* Variance of health expectancies */    /* Variance of health expectancies */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
   double **newm;    /* double **newm;*/
   double **dnewm,**doldm;    double **dnewm,**doldm;
   int i, j, nhstepm, hstepm, h;    double **dnewmp,**doldmp;
   int k;    int i, j, nhstepm, hstepm, h, nstepm ;
   FILE  *ficresvij;    int k, cptcode;
   char fileresv[FILENAMELENGTH];  
   double *xp;    double *xp;
   double **gp, **gm;    double **gp, **gm;  /* for var eij */
   double ***gradg, ***trgradg;    double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
   double ***p3mat;    double ***p3mat;
   double age,agelim;    double age,agelim, hf;
     double ***mobaverage;
   int theta;    int theta;
     char digit[4];
     char digitp[25];
   
   strcpy(fileresv,"v");    char fileresprobmorprev[FILENAMELENGTH];
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {  
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);  
   }  
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);  
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
   fprintf(ficresvij,"# Covariances of life expectancies\n");    strcpy(fileresprobmorprev,"prmorprev"); 
   fprintf(ficresvij,"# Age");    sprintf(digit,"%-d",ij);
   for(i=1; i<=nlstate;i++)    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     for(j=1; j<=nlstate;j++)    strcat(fileresprobmorprev,digit); /* Tvar to be done */
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
     }
     else{
       fprintf(ficgp,"\n# Routine varevsij");
     }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
     }
     else{
       fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
       fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp);
     }
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   fprintf(ficresvij,"\n");    fprintf(ficresvij,"\n");
   
   xp=vector(1,npar);    xp=vector(1,npar);
   dnewm=matrix(1,nlstate,1,npar);    dnewm=matrix(1,nlstate,1,npar);
   doldm=matrix(1,nlstate,1,nlstate);    doldm=matrix(1,nlstate,1,nlstate);
       dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   hstepm=1*YEARM; /* Every year of age */    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like k years */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   agelim = AGESUP;    agelim = AGESUP;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
     if (stepm >= YEARM) hstepm=1;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     gp=matrix(0,nhstepm,1,nlstate);      gp=matrix(0,nhstepm,1,nlstate);
     gm=matrix(0,nhstepm,1,nlstate);      gm=matrix(0,nhstepm,1,nlstate);
   
   
     for(theta=1; theta <=npar; theta++){      for(theta=1; theta <=npar; theta++){
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
       for(j=1; j<= nlstate; j++){        for(j=1; j<= nlstate; j++){
         for(h=0; h<=nhstepm; h++){          for(h=0; h<=nhstepm; h++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
             /* This for computing probability of death (h=1 means
       for(i=1; i<=npar; i++) /* Computes gradient */           computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){
           for(i=1; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm);          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
       for(j=1; j<= nlstate; j++){        for(j=1; j<= nlstate; j++){
         for(h=0; h<=nhstepm; h++){          for(h=0; h<=nhstepm; h++){
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
         }          }
       }        }
       for(j=1; j<= nlstate; j++)        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
           for(i=1; i<= nlstate; i++)
             gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
         for(h=0; h<=nhstepm; h++){          for(h=0; h<=nhstepm; h++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
         }          }
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
     } /* End theta */      } /* End theta */
   
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
     for(h=0; h<=nhstepm; h++)      for(h=0; h<=nhstepm; h++) /* veij */
       for(j=1; j<=nlstate;j++)        for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)          for(theta=1; theta <=npar; theta++)
           trgradg[h][j][theta]=gradg[h][theta][j];            trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
     for(i=1;i<=nlstate;i++)      for(i=1;i<=nlstate;i++)
       for(j=1;j<=nlstate;j++)        for(j=1;j<=nlstate;j++)
         vareij[i][j][(int)age] =0.;          vareij[i][j][(int)age] =0.;
   
     for(h=0;h<=nhstepm;h++){      for(h=0;h<=nhstepm;h++){
       for(k=0;k<=nhstepm;k++){        for(k=0;k<=nhstepm;k++){
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
         for(i=1;i<=nlstate;i++)          for(i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate;j++)            for(j=1;j<=nlstate;j++)
             vareij[i][j][(int)age] += doldm[i][j];              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
   
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
       }        }
     }      }
     h=1;      
     if (stepm >= YEARM) h=stepm/YEARM;      /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
         for(i=1; i<= nlstate; i++)
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
     fprintf(ficresvij,"%.0f ",age );      fprintf(ficresvij,"%.0f ",age );
     for(i=1; i<=nlstate;i++)      for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){        for(j=1; j<=nlstate;j++){
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       }        }
     fprintf(ficresvij,"\n");      fprintf(ficresvij,"\n");
     free_matrix(gp,0,nhstepm,1,nlstate);      free_matrix(gp,0,nhstepm,1,nlstate);
Line 1392  void varevsij(char fileres[], double *** Line 2260  void varevsij(char fileres[], double ***
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   } /* End age */    } /* End age */
   fclose(ficresvij);    free_vector(gpp,nlstate+1,nlstate+ndeath);
   free_vector(xp,1,npar);    free_vector(gmp,nlstate+1,nlstate+ndeath);
   free_matrix(doldm,1,nlstate,1,npar);    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   free_matrix(dnewm,1,nlstate,1,nlstate);    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm);
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm);
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", estepm,digitp,digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
     fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fclose(ficgp);
     fclose(fichtm);
 }  }
   
 /************ Variance of prevlim ******************/  /************ Variance of prevlim ******************/
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl)  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
 {  {
   /* Variance of health expectancies */    /* Variance of prevalence limit */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
   double **newm;    double **newm;
   double **dnewm,**doldm;    double **dnewm,**doldm;
   int i, j, nhstepm, hstepm;    int i, j, nhstepm, hstepm;
   int k;    int k, cptcode;
   FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];  
   double *xp;    double *xp;
   double *gp, *gm;    double *gp, *gm;
   double **gradg, **trgradg;    double **gradg, **trgradg;
   double age,agelim;    double age,agelim;
   int theta;    int theta;
      
   strcpy(fileresvpl,"vpl");    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
   strcat(fileresvpl,fileres);  
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {  
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);  
     exit(0);  
   }  
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  
   
   
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");  
   fprintf(ficresvpl,"# Age");    fprintf(ficresvpl,"# Age");
   for(i=1; i<=nlstate;i++)    for(i=1; i<=nlstate;i++)
       fprintf(ficresvpl," %1d-%1d",i,i);        fprintf(ficresvpl," %1d-%1d",i,i);
Line 1450  void varprevlim(char fileres[], double * Line 2328  void varprevlim(char fileres[], double *
       for(i=1; i<=npar; i++){ /* Computes gradient */        for(i=1; i<=npar; i++){ /* Computes gradient */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
       }        }
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(i=1;i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
         gp[i] = prlim[i][i];          gp[i] = prlim[i][i];
           
       for(i=1; i<=npar; i++) /* Computes gradient */        for(i=1; i<=npar; i++) /* Computes gradient */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          xp[i] = x[i] - (i==theta ?delti[theta]:0);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl);        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
       for(i=1;i<=nlstate;i++)        for(i=1;i<=nlstate;i++)
         gm[i] = prlim[i][i];          gm[i] = prlim[i][i];
   
Line 1486  void varprevlim(char fileres[], double * Line 2364  void varprevlim(char fileres[], double *
     free_matrix(gradg,1,npar,1,nlstate);      free_matrix(gradg,1,npar,1,nlstate);
     free_matrix(trgradg,1,nlstate,1,npar);      free_matrix(trgradg,1,nlstate,1,npar);
   } /* End age */    } /* End age */
   fclose(ficresvpl);  
   free_vector(xp,1,npar);    free_vector(xp,1,npar);
   free_matrix(doldm,1,nlstate,1,npar);    free_matrix(doldm,1,nlstate,1,npar);
   free_matrix(dnewm,1,nlstate,1,nlstate);    free_matrix(dnewm,1,nlstate,1,nlstate);
   
 }  }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
     fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
       fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
       exit(0);
     }
     else{
       fprintf(ficgp,"\n# Routine varprob");
     }
     if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
       printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
       exit(0);
     }
     else{
       fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
       fprintf(fichtm,"\n");
   
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
       fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
       fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   
     }
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtm," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fclose(ficgp);
     fclose(fichtm);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
     if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
       fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
     }
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
    - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
    - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
    - Life expectancies by age and initial health status (estepm=%2d months): 
      <a href=\"e%s\">e%s</a> <br>\n</li>", \
     jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png<br>
   <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
   <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
   <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and
   health expectancies in states (1) and (2): e%s%d.png<br>
   <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
    - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
    - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
    - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
    - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
    - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
   
    if(popforecast==1) fprintf(fichtm,"\n
    - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n
    - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n
           <br>",fileres,fileres,fileres,fileres);
    else 
      fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
   interval) in state (%d): v%s%d%d.png <br>
   <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   fclose(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
     if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
       fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
     }
   
     /*#ifdef windows */
       fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   m=pow(2,cptcoveff);
     
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stat */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fclose(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
    agelim=AGESUP;
    calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
   
     prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
    
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
     
     fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); 
     
     for(cptcov=1;cptcov<=i2;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# StartingAge FinalAge");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
         
         
         for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);   
   
           for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedate+YEARM*cpt)) {
                 fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                   
                 }
                 if (h==(int)(calagedate+12*cpt)){
                   fprintf(ficresf," %.3f", kk1);
                           
                 }
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
       }
     }
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   /************** Forecasting ******************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedate, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedate+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedate+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedate+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); 
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   }
   
 /***********************************************/  /***********************************************/
 /**************** Main Program *****************/  /**************** Main Program *****************/
 /***********************************************/  /***********************************************/
   
 /*int main(int argc, char *argv[])*/  int main(int argc, char *argv[])
 int main()  
 {  {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
   int i,j, k, n=MAXN,iter,m,size;    int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
   double agedeb, agefin,hf;    double agedeb, agefin,hf;
   double agemin=1.e20, agemax=-1.e20;    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
   double fret;    double fret;
   double **xi,tmp,delta;    double **xi,tmp,delta;
   
   double dum; /* Dummy variable */    double dum; /* Dummy variable */
   double ***p3mat;    double ***p3mat;
     double ***mobaverage;
   int *indx;    int *indx;
   char line[MAXLINE], linepar[MAXLINE];    char line[MAXLINE], linepar[MAXLINE];
   char title[MAXLINE];    char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];  
   char filerest[FILENAMELENGTH];  
   char fileregp[FILENAMELENGTH];  
   char path[80],pathc[80],pathcd[80],pathtot[80];  
   int firstobs=1, lastobs=10;    int firstobs=1, lastobs=10;
   int sdeb, sfin; /* Status at beginning and end */    int sdeb, sfin; /* Status at beginning and end */
   int c,  h , cpt,l;    int c,  h , cpt,l;
   int ju,jl, mi;    int ju,jl, mi;
   int i1,j1, k1,jk,aa,bb, stepsize;    int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
       int mobilav=0,popforecast=0;
   int hstepm, nhstepm;    int hstepm, nhstepm;
     double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
   
   double bage, fage, age, agelim, agebase;    double bage, fage, age, agelim, agebase;
   double ftolpl=FTOL;    double ftolpl=FTOL;
   double **prlim;    double **prlim;
Line 1540  int main() Line 3314  int main()
   double ***eij, ***vareij;    double ***eij, ***vareij;
   double **varpl; /* Variances of prevalence limits by age */    double **varpl; /* Variances of prevalence limits by age */
   double *epj, vepp;    double *epj, vepp;
   char version[80]="Imach version 0.64, May 2000, INED-EUROREVES ";    double kk1, kk2;
     double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
   
   char *alph[]={"a","a","b","c","d","e"}, str[4];    char *alph[]={"a","a","b","c","d","e"}, str[4];
   char z[1]="c";  
   
     char z[1]="c", occ;
 #include <sys/time.h>  #include <sys/time.h>
 #include <time.h>  #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
   /* long total_usecs;    /* long total_usecs;
   struct timeval start_time, end_time;       struct timeval start_time, end_time;
       
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */       gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s",version);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
   printf("\nIMACH, Version 0.64");    split(pathtot,path,optionfile,optionfilext,optionfilefiname);
   printf("\nEnter the parameter file name: ");    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
 #define windows 1  
 #ifdef windows  
   scanf("%s",pathtot);  
   getcwd(pathcd, size);  
   cut(path,optionfile,pathtot);  
   chdir(path);    chdir(path);
   replace(pathc,path);    replace(pathc,path);
 #endif  
 #ifdef unix  
   scanf("%s",optionfile);  
 #endif  
   
 /*-------- arguments in the command line --------*/    /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
   strcpy(fileres,"r");    strcpy(fileres,"r");
   strcat(fileres, optionfile);    strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
   /*---------arguments file --------*/    /*---------arguments file --------*/
   
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    if((ficpar=fopen(optionfile,"r"))==NULL)    {
     printf("Problem with optionfile %s\n",optionfile);      printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
     goto end;      goto end;
   }    }
   
   strcpy(filereso,"o");    strcpy(filereso,"o");
   strcat(filereso,fileres);    strcat(filereso,fileres);
   if((ficparo=fopen(filereso,"w"))==NULL) {    if((ficparo=fopen(filereso,"w"))==NULL) {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      printf("Problem with Output resultfile: %s\n", filereso);
   }      fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
 /*--------- index.htm --------*/  
   
   if((fichtm=fopen("index.htm","w"))==NULL)    {  
     printf("Problem with index.htm \n");goto end;  
   }    }
   
  fprintf(fichtm,"<body><ul><li>Outputs files<br><br>\n  
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n  
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>  
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>  
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>  
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>  
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>  
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  
   
  fprintf(fichtm," <li>Graphs<br> <br>");  
    
 for(cpt=1; cpt<nlstate;cpt++)  
    fprintf(fichtm,"- Prevalence of disability: p%s1.gif<br>  
 <img src=\"p%s1.gif\"><br>",strtok(optionfile, "."),strtok(optionfile, "."),cpt);  
  for(cpt=1; cpt<=nlstate;cpt++)  
      fprintf(fichtm,"- Observed and stationary  prevalence (with confident  
 interval) in state (%d): v%s%d.gif <br>  
 <img src=\"v%s%d.gif\"><br>",cpt,strtok(optionfile, "."),cpt,strtok(optionfile, "."),cpt);  
    
  for(cpt=1; cpt<=nlstate;cpt++)  
      fprintf(fichtm,"- Health life expectancies by age and initial health state (%d): exp%s%d.gif <br>  
 <img src=\"ex%s%d.gif\"><br>",cpt,strtok(optionfile, "."),cpt,strtok(optionfile, "."),cpt);  
      
  fprintf(fichtm,"- Total life expectancy by age and  
         health expectancies in states (1) and (2): e%s.gif<br>  
         <img src=\"e%s.gif\"></li> </ul></body>",strtok(optionfile, "."),strtok(optionfile, "."));  
   
   
 fclose(fichtm);  
   
   /* Reads comments: lines beginning with '#' */    /* Reads comments: lines beginning with '#' */
   while((c=getc(ficpar))=='#' && c!= EOF){    while((c=getc(ficpar))=='#' && c!= EOF){
     ungetc(c,ficpar);      ungetc(c,ficpar);
Line 1631  fclose(fichtm); Line 3394  fclose(fichtm);
   }    }
   ungetc(c,ficpar);    ungetc(c,ficpar);
   
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt);    fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt);    printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt);    fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
       
   nvar=ncov-1; /* Suppressing age as a basic covariate */     
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
       
   /* Read guess parameters */    /* Read guess parameters */
   /* Reads comments: lines beginning with '#' */    /* Reads comments: lines beginning with '#' */
Line 1647  fclose(fichtm); Line 3423  fclose(fichtm);
   }    }
   ungetc(c,ficpar);    ungetc(c,ficpar);
       
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncov);    param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)    for(i=1; i <=nlstate; i++)
     for(j=1; j <=nlstate+ndeath-1; j++){      for(j=1; j <=nlstate+ndeath-1; j++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fscanf(ficpar,"%1d%1d",&i1,&j1);
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficparo,"%1d%1d",i1,j1);
       printf("%1d%1d",i,j);        if(mle==1)
       for(k=1; k<=ncov;k++){          printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
         fscanf(ficpar," %lf",&param[i][j][k]);          fscanf(ficpar," %lf",&param[i][j][k]);
         printf(" %lf",param[i][j][k]);          if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
         fprintf(ficparo," %lf",param[i][j][k]);          fprintf(ficparo," %lf",param[i][j][k]);
       }        }
       fscanf(ficpar,"\n");        fscanf(ficpar,"\n");
       printf("\n");        if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");        fprintf(ficparo,"\n");
     }      }
       
   npar= (nlstate+ndeath-1)*nlstate*ncov;    npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
   p=param[1][1];    p=param[1][1];
       
   /* Reads comments: lines beginning with '#' */    /* Reads comments: lines beginning with '#' */
Line 1675  fclose(fichtm); Line 3461  fclose(fichtm);
   }    }
   ungetc(c,ficpar);    ungetc(c,ficpar);
   
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncov);    delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */    delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
   for(i=1; i <=nlstate; i++){    for(i=1; i <=nlstate; i++){
     for(j=1; j <=nlstate+ndeath-1; j++){      for(j=1; j <=nlstate+ndeath-1; j++){
       fscanf(ficpar,"%1d%1d",&i1,&j1);        fscanf(ficpar,"%1d%1d",&i1,&j1);
       printf("%1d%1d",i,j);        printf("%1d%1d",i,j);
       fprintf(ficparo,"%1d%1d",i1,j1);        fprintf(ficparo,"%1d%1d",i1,j1);
       for(k=1; k<=ncov;k++){        for(k=1; k<=ncovmodel;k++){
         fscanf(ficpar,"%le",&delti3[i][j][k]);          fscanf(ficpar,"%le",&delti3[i][j][k]);
         printf(" %le",delti3[i][j][k]);          printf(" %le",delti3[i][j][k]);
         fprintf(ficparo," %le",delti3[i][j][k]);          fprintf(ficparo," %le",delti3[i][j][k]);
Line 1706  fclose(fichtm); Line 3492  fclose(fichtm);
   matcov=matrix(1,npar,1,npar);    matcov=matrix(1,npar,1,npar);
   for(i=1; i <=npar; i++){    for(i=1; i <=npar; i++){
     fscanf(ficpar,"%s",&str);      fscanf(ficpar,"%s",&str);
     printf("%s",str);      if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
     fprintf(ficparo,"%s",str);      fprintf(ficparo,"%s",str);
     for(j=1; j <=i; j++){      for(j=1; j <=i; j++){
       fscanf(ficpar," %le",&matcov[i][j]);        fscanf(ficpar," %le",&matcov[i][j]);
       printf(" %.5le",matcov[i][j]);        if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
       fprintf(ficparo," %.5le",matcov[i][j]);        fprintf(ficparo," %.5le",matcov[i][j]);
     }      }
     fscanf(ficpar,"\n");      fscanf(ficpar,"\n");
     printf("\n");      if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
     fprintf(ficparo,"\n");      fprintf(ficparo,"\n");
   }    }
   for(i=1; i <=npar; i++)    for(i=1; i <=npar; i++)
     for(j=i+1;j<=npar;j++)      for(j=i+1;j<=npar;j++)
       matcov[i][j]=matcov[j][i];        matcov[i][j]=matcov[j][i];
         
   printf("\n");    if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
   if(mle==1){  
     /*-------- data file ----------*/  
     if((ficres =fopen(fileres,"w"))==NULL) {    /*-------- Rewriting paramater file ----------*/
       printf("Problem with resultfile: %s\n", fileres);goto end;    strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
     }      }
     fprintf(ficres,"#%s\n",version);    }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
           
     if((fic=fopen(datafile,"r"))==NULL)    {      strcpy(modelsav,model); 
       printf("Problem with datafile: %s\n", datafile);goto end;      if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
     }      }
           
     n= lastobs;      /* This loop fills the array Tvar from the string 'model'.*/
     severity = vector(1,maxwav);  
     outcome=imatrix(1,maxwav+1,1,n);  
     num=ivector(1,n);  
     moisnais=vector(1,n);  
     annais=vector(1,n);  
     moisdc=vector(1,n);  
     andc=vector(1,n);  
     agedc=vector(1,n);  
     cod=ivector(1,n);  
     weight=vector(1,n);  
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */  
     mint=matrix(1,maxwav,1,n);  
     anint=matrix(1,maxwav,1,n);  
     covar=matrix(1,NCOVMAX,1,n);  
     s=imatrix(1,maxwav+1,1,n);  
     adl=imatrix(1,maxwav+1,1,n);      
     tab=ivector(1,NCOVMAX);  
     i=1;   
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <lastobs)) {  
 sscanf(line,"%d %lf %lf %lf %lf/%lf %lf/%lf %lf/%lf %d %lf/%lf %d %lf/%lf %d %lf/%lf %d", &num[i], &covar[1][i], &covar[2][i],&weight[i],&moisnais[i],&annais[i],&moisdc[i],&andc[i], &mint[1][i], &anint[1][i], &s[1][i], &mint[2][i],&anint[2][i], &s[2][i],&mint[3][i],&anint[3][i], &s[3][i],&mint[4][i],&anint[4][i], &s[4][i]);  
         i=i+1;  
       }  
     }   
   imx=i-1; /* Number of individuals */  
   
     fclose(fic);      for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if (weightopt != 1) { /* Maximisation without weights*/    for (i=1; i<=imx; i++) {
       for(i=1;i<=n;i++) weight[i]=1.0;      for(m=2; (m<= maxwav); m++) {
         if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
     }      }
     /*-calculation of age at interview from date of interview and age at death -*/    }
     agev=matrix(1,maxwav,1,imx);  
         for (i=1; i<=imx; i++)  {
     for (i=1; i<=imx; i++)  {      agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);      for(m=1; (m<= maxwav); m++){
       for(m=1; (m<= maxwav); m++){        if(s[m][i] >0){
         if(s[m][i] >0){          if (s[m][i] >= nlstate+1) {
           if (s[m][i] == nlstate+1) {            if(agedc[i]>0)
             if(agedc[i]>0)              if(moisdc[i]!=99 && andc[i]!=9999)
               agev[m][i]=agedc[i];                agev[m][i]=agedc[i];
             else{            /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               printf("Warning negative age at death: %d line:%d\n",num[i],i);              else {
               agev[m][i]=-1;                if (andc[i]!=9999){
             }                  printf("Warning negative age at death: %d line:%d\n",num[i],i);
           }                  fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
           else if(s[m][i] !=9){ /* Should no more exist */                  agev[m][i]=-1;
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);                }
             if(mint[m][i]==99 || anint[m][i]==9999)  
               agev[m][i]=1;  
             else if(agev[m][i] <agemin){   
               agemin=agev[m][i];  
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/  
             }  
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];  
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }              }
             /*agev[m][i]=anint[m][i]-annais[i];*/          }
             /*   agev[m][i] = age[i]+2*m;*/          else if(s[m][i] !=9){ /* Should no more exist */
           }            agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
           else { /* =9 */            if(mint[m][i]==99 || anint[m][i]==9999)
             agev[m][i]=1;              agev[m][i]=1;
             s[m][i]=-1;            else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
           }            }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
         }          }
         else /*= 0 Unknown */          else { /* =9 */
           agev[m][i]=1;            agev[m][i]=1;
             s[m][i]=-1;
           }
       }        }
             else /*= 0 Unknown */
           agev[m][i]=1;
     }      }
     for (i=1; i<=imx; i++)  {      
       for(m=1; (m<= maxwav); m++){    }
         if (s[m][i] > (nlstate+ndeath)) {    for (i=1; i<=imx; i++)  {
           printf("Error: Wrong value in nlstate or ndeath\n");        for(m=1; (m<= maxwav); m++){
           goto end;        if (s[m][i] > (nlstate+ndeath)) {
         }          printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
       }        }
     }      }
     }
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);    free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);    free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);    free_vector(moisnais,1,n);
     free_vector(annais,1,n);    free_vector(annais,1,n);
     free_matrix(mint,1,maxwav,1,n);    /* free_matrix(mint,1,maxwav,1,n);
     free_matrix(anint,1,maxwav,1,n);       free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);    free_vector(moisdc,1,n);
     free_vector(andc,1,n);    free_vector(andc,1,n);
   
         
     wav=ivector(1,imx);    wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);    dh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);    bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
         
     /* Concatenates waves */    /* Concatenates waves */
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);    concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
           
    /* Calculates basic frequencies. Computes observed prevalence at single age    /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */       and prints on file fileres'p'. */
       freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx);   
   
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
Line 1845  printf("Total number of individuals= %d, Line 3813  printf("Total number of individuals= %d,
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
           
     /* For Powell, parameters are in a vector p[] starting at p[1]     
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */    /* For Powell, parameters are in a vector p[] starting at p[1]
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */       so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
         p=param[1][1]; /* *(*(*(param +1)+1)+0) */
     mlikeli(ficres,p, npar, ncov, nlstate, ftol, func);  
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
           
     /*--------- results files --------------*/    /*--------- results files --------------*/
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt);    fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
         
    jk=1;  
    fprintf(ficres,"# Parameters\n");  
    printf("# Parameters\n");  
    for(i=1,jk=1; i <=nlstate; i++){  
      for(k=1; k <=(nlstate+ndeath); k++){  
        if (k != i)   
          {  
            printf("%d%d ",i,k);  
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncov; j++){  
              printf("%f ",p[jk]);  
              fprintf(ficres,"%f ",p[jk]);  
              jk++;   
            }  
            printf("\n");  
            fprintf(ficres,"\n");  
          }  
      }  
    }  
   
     /* Computing hessian and covariance matrix */    jk=1;
     ftolhess=ftol; /* Usually correct */    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     hesscov(matcov, p, npar, delti, ftolhess, func);    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficres,"# Scales\n");    fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Scales\n");    for(i=1,jk=1; i <=nlstate; i++){
      for(i=1,jk=1; i <=nlstate; i++){      for(k=1; k <=(nlstate+ndeath); k++){
       for(j=1; j <=nlstate+ndeath; j++){        if (k != i) 
         if (j!=i) {          {
           fprintf(ficres,"%1d%1d",i,j);            printf("%d%d ",i,k);
           printf("%1d%1d",i,j);            fprintf(ficlog,"%d%d ",i,k);
           for(k=1; k<=ncov;k++){            fprintf(ficres,"%1d%1d ",i,k);
             printf(" %.5e",delti[jk]);            for(j=1; j <=ncovmodel; j++){
             fprintf(ficres," %.5e",delti[jk]);              printf("%f ",p[jk]);
             jk++;              fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
           }            }
           printf("\n");            printf("\n");
             fprintf(ficlog,"\n");
           fprintf(ficres,"\n");            fprintf(ficres,"\n");
         }          }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
       }        }
       }      }
         }
     k=1;     
     fprintf(ficres,"# Covariance\n");    fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     printf("# Covariance\n");    if(mle==1)
     for(i=1;i<=npar;i++){      printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /*  if (k>nlstate) k=1;    fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       i1=(i-1)/(ncov*nlstate)+1;     for(i=1,k=1;i<=npar;i++){
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);      /*  if (k>nlstate) k=1;
       printf("%s%d%d",alph[k],i1,tab[i]);*/          i1=(i-1)/(ncovmodel*nlstate)+1; 
       fprintf(ficres,"%3d",i);          fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
       printf("%3d",i);        printf("%3d",i);
       for(j=1; j<=i;j++){      fprintf(ficlog,"%3d",i);
         fprintf(ficres," %.5e",matcov[i][j]);      for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
         printf(" %.5e",matcov[i][j]);          printf(" %.5e",matcov[i][j]);
       }        fprintf(ficlog," %.5e",matcov[i][j]);
       fprintf(ficres,"\n");  
       printf("\n");  
       k++;  
     }  
       
     while((c=getc(ficpar))=='#' && c!= EOF){  
       ungetc(c,ficpar);  
       fgets(line, MAXLINE, ficpar);  
       puts(line);  
       fputs(line,ficparo);  
     }      }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
     ungetc(c,ficpar);      ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);      puts(line);
           fputs(line,ficparo);
     if (fage <= 2) {  
       bage = agemin;  
       fage = agemax;  
     }  
   
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");  
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
 /*------------ gnuplot -------------*/  
 chdir(pathcd);  
   if((ficgp=fopen("graph.gp","w"))==NULL) {  
     printf("Problem with file graph.gp");goto end;  
   }    }
 #ifdef windows    ungetc(c,ficpar);
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif  
    /* 1eme*/  
   
   for (cpt=1; cpt<= nlstate ; cpt ++) {    estepm=0;
 #ifdef windows    fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" u 1:%d \"\%%lf",agemin,fage,fileres,cpt*2);    if (estepm==0 || estepm < stepm) estepm=stepm;
 #endif    if (fage <= 2) {
 #ifdef unix      bage = ageminpar;
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:%d \"\%%lf",agemin,fage,fileres,cpt*2);      fage = agemaxpar;
 #endif  
     for (i=1; i<= nlstate ; i ++) fprintf(ficgp," \%%lf (\%%lf)");  
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" u 1:($%d+2*$%d) \"\%%lf",fileres,2*cpt,cpt*2+1);  
     for (i=1; i<= nlstate ; i ++) fprintf(ficgp," \%%lf (\%%lf)");  
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" u 1:($%d-2*$%d) \"\%%lf",fileres,2*cpt,2*cpt+1);   
      for (i=1; i<= nlstate ; i ++) fprintf(ficgp," \%%lf (\%%lf)");   
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" u 1:($%d) t\"Observed prevalence \" w l 2",fileres,2+4*(cpt-1));  
 #ifdef unix  
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif  
 fprintf(ficgp,"\nset out \"v%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt);  
    
   }    }
   /*2 eme*/     
      fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
   fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);    fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
   for (i=1; i<= nlstate+1 ; i ++) {    fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
 k=2*i;     
     fprintf(ficgp,"\"t%s\" u 1:%d \"\%%lf \%%lf (\%%lf) \%%lf (\%%lf)",fileres,k);    while((c=getc(ficpar))=='#' && c!= EOF){
     for (j=1; j< nlstate ; j ++) fprintf(ficgp," \%%lf (\%%lf)");      ungetc(c,ficpar);
     if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      fgets(line, MAXLINE, ficpar);
     else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);      puts(line);
     fprintf(ficgp,"\"t%s\" u 1:($%d-2*$%d) \"\%%lf \%%lf (\%%lf) \%%lf (\%%lf)",fileres,k,k+1);      fputs(line,ficparo);
     for (j=1; j< nlstate ; j ++) fprintf(ficgp," \%%lf (\%%lf)");    }
     fprintf(ficgp,"\" t\"\" w l 0,");    ungetc(c,ficpar);
 fprintf(ficgp,"\"t%s\" u 1:($%d+2*$%d) \"\%%lf \%%lf (\%%lf) \%%lf (\%%lf)",fileres,k,k+1);  
     for (j=1; j< nlstate ; j ++) fprintf(ficgp," \%%lf (\%%lf)");  
     if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");  
 else fprintf(ficgp,"\" t\"\" w l 0,");  
   }   
   fprintf(ficgp,"\nset out \"e%s.gif\" \nreplot\n\n",strtok(optionfile, "."));  
   
   /*3eme*/  
 for (cpt=1; cpt<= nlstate ; cpt ++) {  
   k=2+nlstate*(cpt-1);  
     fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k,cpt);  
 for (i=1; i< nlstate ; i ++) {  
 fprintf(ficgp,",\"e%s\" u 1:%d t \"e%d%d\" w l",fileres,k+1,cpt,i+1);  
 }   
 fprintf(ficgp,"\nset out \"ex%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt);  
 }  
    
 /* CV preval stat */  
 for (cpt=1; cpt<nlstate ; cpt ++) {  
     k=3;  
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u 2:($%d/($%d",agemin,agemax,fileres,k+cpt,k);  
     for (i=1; i< nlstate ; i ++)  
       fprintf(ficgp,"+$%d",k+i);  
     fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
       
  l=3+(nlstate+ndeath)*cpt;  
    fprintf(ficgp,",\"pij%s\" u 2:($%d/($%d",fileres,l+cpt,l);  
    
    for (i=1; i< nlstate ; i ++) {  
    l=3+(nlstate+ndeath)*cpt;  
     fprintf(ficgp,"+$%d",l+i);  
    }  
   fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);  
     
       
   fprintf(ficgp,"set out \"p%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt);    fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
   }     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
   
   fclose(ficgp);  
         
 chdir(path);    while((c=getc(ficpar))=='#' && c!= EOF){
     free_matrix(agev,1,maxwav,1,imx);      ungetc(c,ficpar);
     free_ivector(wav,1,imx);      fgets(line, MAXLINE, ficpar);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      puts(line);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      fputs(line,ficparo);
       
     free_imatrix(s,1,maxwav+1,1,n);  
       
       
     free_ivector(num,1,n);  
     free_vector(agedc,1,n);  
     free_vector(weight,1,n);  
     free_matrix(covar,1,NCOVMAX,1,n);  
     fclose(ficparo);  
     fclose(ficres);  
   }    }
     ungetc(c,ficpar);
    
   
   /*________fin mle=1_________*/    dateprev1=anprev1+mprev1/12.+jprev1/365.;
       dateprev2=anprev2+mprev2/12.+jprev2/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
       
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);
     fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
     fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
   
   
   /* No more information from the sample is required now */  
   /* Reads comments: lines beginning with '#' */  
   while((c=getc(ficpar))=='#' && c!= EOF){    while((c=getc(ficpar))=='#' && c!= EOF){
     ungetc(c,ficpar);      ungetc(c,ficpar);
     fgets(line, MAXLINE, ficpar);      fgets(line, MAXLINE, ficpar);
Line 2044  chdir(path); Line 3971  chdir(path);
     fputs(line,ficparo);      fputs(line,ficparo);
   }    }
   ungetc(c,ficpar);    ungetc(c,ficpar);
     
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);  
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);  
   
   /*--------------- Prevalence limit --------------*/    fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
     fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
       
   strcpy(filerespl,"pl");    strcpy(filerespl,"pl");
   strcat(filerespl,fileres);    strcat(filerespl,fileres);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {    if((ficrespl=fopen(filerespl,"w"))==NULL) {
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;      printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
   }    }
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    printf("Computing stable prevalence: result on file '%s' \n", filerespl);
   fprintf(ficrespl,"#Prevalence limit\n");    fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
   fprintf(ficrespl,"#Age ");    fprintf(ficrespl,"#Age ");
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
   fprintf(ficrespl,"\n");    fprintf(ficrespl,"\n");
       
   prlim=matrix(1,nlstate,1,nlstate);    prlim=matrix(1,nlstate,1,nlstate);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agebase=ageminpar;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agelim=agemaxpar;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
     
   agebase=agemin;  
   agelim=agemax;  
   ftolpl=1.e-10;    ftolpl=1.e-10;
   for (age=agebase; age<=agelim; age++){    i1=cptcoveff;
     prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl);    if (cptcovn < 1){i1=1;}
     fprintf(ficrespl,"%.0f",age );  
     for(i=1; i<=nlstate;i++)    for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       fprintf(ficrespl," %.5f", prlim[i][i]);      for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     fprintf(ficrespl,"\n");        k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f",age );
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
   }    }
   fclose(ficrespl);    fclose(ficrespl);
     
   /*------------- h Pij x at various ages ------------*/    /*------------- h Pij x at various ages ------------*/
       
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);    strcpy(filerespij,"pij");  strcat(filerespij,fileres);
   if((ficrespij=fopen(filerespij,"w"))==NULL) {    if((ficrespij=fopen(filerespij,"w"))==NULL) {
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;      printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
   }    }
   printf("Computing pij: result on file '%s' \n", filerespij);    printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
   stepsize=(int) (stepm+YEARM-1)/YEARM;    stepsize=(int) (stepm+YEARM-1)/YEARM;
   if (stepm<=24) stepsize=2;    /*if (stepm<=24) stepsize=2;*/
   
   agelim=AGESUP;    agelim=AGESUP;
   hstepm=stepsize*YEARM; /* Every year of age */    hstepm=stepsize*YEARM; /* Every year of age */
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */     /* hstepm=1;   aff par mois*/
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    for(cptcov=1,k=0;cptcov<=i1;cptcov++){
     oldm=oldms;savm=savms;      for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
     hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm);          k=k+1;
     fprintf(ficrespij,"# Age");        fprintf(ficrespij,"\n#****** ");
     for(i=1; i<=nlstate;i++)        for(j=1;j<=cptcoveff;j++) 
       for(j=1; j<=nlstate+ndeath;j++)          fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij," %1d-%1d",i,j);        fprintf(ficrespij,"******\n");
     fprintf(ficrespij,"\n");          
     for (h=0; h<=nhstepm; h++){        for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
       fprintf(ficrespij,"%.0f %.0f",agedeb, agedeb+ h*hstepm/YEARM*stepm );          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       for(i=1; i<=nlstate;i++)          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
         for(j=1; j<=nlstate+ndeath;j++)  
           fprintf(ficrespij," %.5f", p3mat[i][j][h]);          /*        nhstepm=nhstepm*YEARM; aff par mois*/
       fprintf(ficrespij,"\n");  
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Age");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
     }      }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
     fprintf(ficrespij,"\n");  
   }    }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
   
   fclose(ficrespij);    fclose(ficrespij);
   
   /*---------- Health expectancies and variances ------------*/  
     /*---------- Forecasting ------------------*/
     if((stepm == 1) && (strcmp(model,".")==0)){
       prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
       if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
     } 
     else{
       erreur=108;
       printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
       fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
     }
       
   eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
   oldm=oldms;savm=savms;    /*---------- Health expectancies and variances ------------*/
   evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm);  
     
   vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
   oldm=oldms;savm=savms;  
   varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl);  
   
   strcpy(filerest,"t");    strcpy(filerest,"t");
   strcat(filerest,fileres);    strcat(filerest,fileres);
   if((ficrest=fopen(filerest,"w"))==NULL) {    if((ficrest=fopen(filerest,"w"))==NULL) {
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
   }    }
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    printf("Computing Health Expectancies: result on file '%s' \n", filerese);
   fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);  
   fprintf(ficrest,"\n");    strcpy(fileresv,"v");
     strcat(fileresv,fileres);
   hf=1;    if((ficresvij=fopen(fileresv,"w"))==NULL) {
   if (stepm >= YEARM) hf=stepm/YEARM;      printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
   epj=vector(1,nlstate+1);      fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
   for(age=bage; age <=fage ;age++){    }
     prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl);    printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficrest," %.0f",age);    fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
       for(i=1, epj[j]=0.;i <=nlstate;i++) {    calagedate=-1;
         epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  
       }    prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
       epj[nlstate+1] +=epj[j];  
     }    if (mobilav!=0) {
     for(i=1, vepp=0.;i <=nlstate;i++)      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(j=1;j <=nlstate;j++)      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         vepp += vareij[i][j][(int)age];        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));        printf(" Error in movingaverage mobilav=%d\n",mobilav);
     for(j=1;j <=nlstate;j++){      }
       fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
     }      }
     fprintf(ficrest,"\n");  
   }    }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
   fclose(ficrest);    fclose(ficrest);
   fclose(ficpar);    fclose(ficpar);
   free_vector(epj,1,nlstate+1);    
     /*------- Variance of stable prevalence------*/   
   
   /*------- Variance limit prevalence------*/       strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
   varpl=matrix(1,nlstate,(int) bage, (int) fage);    for(cptcov=1,k=0;cptcov<=i1;cptcov++){
   oldm=oldms;savm=savms;      for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
   varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl);        k=k+1;
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);        
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);        varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       
     free_matrix(covar,0,NCOVMAX,1,n);
   free_matrix(matcov,1,npar,1,npar);    free_matrix(matcov,1,npar,1,npar);
   free_vector(delti,1,npar);    free_vector(delti,1,npar);
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fprintf(fichtm,"\n</body>");
     fclose(fichtm);
     fclose(ficgp);
       
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncov);  
   
   printf("End of Imach\n");    if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */    /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
       
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/    /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /*printf("Total time was %d uSec.\n", total_usecs);*/
   /*------ End -----------*/    /*------ End -----------*/
   
  end:    end:
 #ifdef windows  #ifdef windows
  chdir(pathcd);    /* chdir(pathcd);*/
 #endif   #endif 
  system("gnuplot graph.gp");   /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting: %s\n",plotcmd);fflush(stdout);
     system(plotcmd);
   
 #ifdef windows   /*#ifdef windows*/
   while (z[0] != 'q') {    while (z[0] != 'q') {
     chdir(pathcd);       /* chdir(path); */
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
     scanf("%s",z);      scanf("%s",z);
     if (z[0] == 'c') system("./imach");      if (z[0] == 'c') system("./imach");
     else if (z[0] == 'e') {      else if (z[0] == 'e') system(optionfilehtm);
       chdir(path);      else if (z[0] == 'g') system(plotcmd);
       system("index.htm");  
     }  
     else if (z[0] == 'q') exit(0);      else if (z[0] == 'q') exit(0);
   }    }
 #endif     /*#endif */
 }  }
   
   

Removed from v.1.1.1.1  
changed lines
  Added in v.1.66


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>