|
|
| version 1.59, 2002/11/18 23:01:13 | version 1.73, 2003/04/08 14:06:50 |
|---|---|
| Line 32 | Line 32 |
| hPijx is the probability to be observed in state i at age x+h | hPijx is the probability to be observed in state i at age x+h |
| conditional to the observed state i at age x. The delay 'h' can be | conditional to the observed state i at age x. The delay 'h' can be |
| split into an exact number (nh*stepm) of unobserved intermediate | split into an exact number (nh*stepm) of unobserved intermediate |
| states. This elementary transition (by month or quarter trimester, | states. This elementary transition (by month, quarter, |
| semester or year) is model as a multinomial logistic. The hPx | semester or year) is modelled as a multinomial logistic. The hPx |
| matrix is simply the matrix product of nh*stepm elementary matrices | matrix is simply the matrix product of nh*stepm elementary matrices |
| and the contribution of each individual to the likelihood is simply | and the contribution of each individual to the likelihood is simply |
| hPijx. | hPijx. |
| Line 83 | Line 83 |
| #define ODIRSEPARATOR '\\' | #define ODIRSEPARATOR '\\' |
| #endif | #endif |
| char version[80]="Imach version 0.9, November 2002, INED-EUROREVES "; | char version[80]="Imach version 0.94, February 2003, INED-EUROREVES "; |
| int erreur; /* Error number */ | int erreur; /* Error number */ |
| int nvar; | int nvar; |
| int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov; | int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov; |
| Line 856 double **matprod2(double **out, double * | Line 856 double **matprod2(double **out, double * |
| double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) | double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij ) |
| { | { |
| /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month | /* Computes the transition matrix starting at age 'age' over |
| duration (i.e. until | 'nhstepm*hstepm*stepm' months (i.e. until |
| age (in years) age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices. | age (in years) age+nhstepm*hstepm*stepm/12) by multiplying |
| nhstepm*hstepm matrices. | |
| Output is stored in matrix po[i][j][h] for h every 'hstepm' step | Output is stored in matrix po[i][j][h] for h every 'hstepm' step |
| (typically every 2 years instead of every month which is too big). | (typically every 2 years instead of every month which is too big |
| for the memory). | |
| Model is determined by parameters x and covariates have to be | Model is determined by parameters x and covariates have to be |
| included manually here. | included manually here. |
| Line 917 double func( double *x) | Line 919 double func( double *x) |
| double sw; /* Sum of weights */ | double sw; /* Sum of weights */ |
| double lli; /* Individual log likelihood */ | double lli; /* Individual log likelihood */ |
| int s1, s2; | int s1, s2; |
| double bbh; | double bbh, survp; |
| long ipmx; | long ipmx; |
| /*extern weight */ | /*extern weight */ |
| /* We are differentiating ll according to initial status */ | /* We are differentiating ll according to initial status */ |
| Line 928 double func( double *x) | Line 930 double func( double *x) |
| cov[1]=1.; | cov[1]=1.; |
| for(k=1; k<=nlstate; k++) ll[k]=0.; | for(k=1; k<=nlstate; k++) ll[k]=0.; |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | |
| for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | if(mle==1){ |
| for(mi=1; mi<= wav[i]-1; mi++){ | for (i=1,ipmx=0, sw=0.; i<=imx; i++){ |
| for (ii=1;ii<=nlstate+ndeath;ii++) | for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; |
| for (j=1;j<=nlstate+ndeath;j++){ | for(mi=1; mi<= wav[i]-1; mi++){ |
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | for (ii=1;ii<=nlstate+ndeath;ii++) |
| savm[ii][j]=(ii==j ? 1.0 : 0.0); | for (j=1;j<=nlstate+ndeath;j++){ |
| } | oldm[ii][j]=(ii==j ? 1.0 : 0.0); |
| for(d=0; d<dh[mi][i]; d++){ | savm[ii][j]=(ii==j ? 1.0 : 0.0); |
| newm=savm; | } |
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | for(d=0; d<dh[mi][i]; d++){ |
| for (kk=1; kk<=cptcovage;kk++) { | newm=savm; |
| cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; |
| } | for (kk=1; kk<=cptcovage;kk++) { |
| cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | } |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| savm=oldm; | 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); |
| oldm=newm; | savm=oldm; |
| oldm=newm; | |
| } /* end mult */ | |
| /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | |
| /* But now since version 0.9 we anticipate for bias and large stepm. | |
| * If stepm is larger than one month (smallest stepm) and if the exact delay | |
| * (in months) between two waves is not a multiple of stepm, we rounded to | |
| * the nearest (and in case of equal distance, to the lowest) interval but now | |
| * we keep into memory the bias bh[mi][i] and also the previous matrix product | |
| * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | |
| * probability in order to take into account the bias as a fraction of the way | |
| * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | |
| * -stepm/2 to stepm/2 . | |
| * For stepm=1 the results are the same as for previous versions of Imach. | |
| * For stepm > 1 the results are less biased than in previous versions. | |
| */ | |
| s1=s[mw[mi][i]][i]; | |
| s2=s[mw[mi+1][i]][i]; | |
| bbh=(double)bh[mi][i]/(double)stepm; | |
| /* bias is positive if real duration | |
| * is higher than the multiple of stepm and negative otherwise. | |
| */ | |
| /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ | |
| if( s2 > nlstate){ | |
| /* i.e. if s2 is a death state and if the date of death is known then the contribution | |
| to the likelihood is the probability to die between last step unit time and current | |
| step unit time, which is also the differences between probability to die before dh | |
| and probability to die before dh-stepm . | |
| In version up to 0.92 likelihood was computed | |
| as if date of death was unknown. Death was treated as any other | |
| health state: the date of the interview describes the actual state | |
| and not the date of a change in health state. The former idea was | |
| to consider that at each interview the state was recorded | |
| (healthy, disable or death) and IMaCh was corrected; but when we | |
| introduced the exact date of death then we should have modified | |
| the contribution of an exact death to the likelihood. This new | |
| contribution is smaller and very dependent of the step unit | |
| stepm. It is no more the probability to die between last interview | |
| and month of death but the probability to survive from last | |
| interview up to one month before death multiplied by the | |
| probability to die within a month. Thanks to Chris | |
| Jackson for correcting this bug. Former versions increased | |
| mortality artificially. The bad side is that we add another loop | |
| which slows down the processing. The difference can be up to 10% | |
| lower mortality. | |
| */ | |
| lli=log(out[s1][s2] - savm[s1][s2]); | |
| }else{ | |
| lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */ | |
| /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */ | |
| } | |
| /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | |
| /*if(lli ==000.0)*/ | |
| /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | |
| ipmx +=1; | |
| sw += weight[i]; | |
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | |
| } /* end of wave */ | |
| } /* end of individual */ | |
| } else if(mle==2){ | |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | |
| for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | |
| for(mi=1; mi<= wav[i]-1; mi++){ | |
| for (ii=1;ii<=nlstate+ndeath;ii++) | |
| for (j=1;j<=nlstate+ndeath;j++){ | |
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| savm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| } | |
| for(d=0; d<=dh[mi][i]; d++){ | |
| newm=savm; | |
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | |
| for (kk=1; kk<=cptcovage;kk++) { | |
| cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | |
| } | |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | |
| savm=oldm; | |
| oldm=newm; | |
| } /* end mult */ | |
| /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | |
| /* But now since version 0.9 we anticipate for bias and large stepm. | |
| * If stepm is larger than one month (smallest stepm) and if the exact delay | |
| * (in months) between two waves is not a multiple of stepm, we rounded to | |
| * the nearest (and in case of equal distance, to the lowest) interval but now | |
| * we keep into memory the bias bh[mi][i] and also the previous matrix product | |
| * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | |
| * probability in order to take into account the bias as a fraction of the way | |
| * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | |
| * -stepm/2 to stepm/2 . | |
| * For stepm=1 the results are the same as for previous versions of Imach. | |
| * For stepm > 1 the results are less biased than in previous versions. | |
| */ | |
| s1=s[mw[mi][i]][i]; | |
| s2=s[mw[mi+1][i]][i]; | |
| bbh=(double)bh[mi][i]/(double)stepm; | |
| /* bias is positive if real duration | |
| * is higher than the multiple of stepm and negative otherwise. | |
| */ | |
| lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */ | |
| /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/ | |
| /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */ | |
| /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | |
| /*if(lli ==000.0)*/ | |
| /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | |
| ipmx +=1; | |
| sw += weight[i]; | |
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | |
| } /* end of wave */ | |
| } /* end of individual */ | |
| } else if(mle==3){ /* exponential inter-extrapolation */ | |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | |
| for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | |
| for(mi=1; mi<= wav[i]-1; mi++){ | |
| for (ii=1;ii<=nlstate+ndeath;ii++) | |
| for (j=1;j<=nlstate+ndeath;j++){ | |
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| savm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| } | |
| for(d=0; d<dh[mi][i]; d++){ | |
| newm=savm; | |
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | |
| for (kk=1; kk<=cptcovage;kk++) { | |
| cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | |
| } | |
| out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, | |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | |
| savm=oldm; | |
| oldm=newm; | |
| } /* end mult */ | |
| /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | |
| /* But now since version 0.9 we anticipate for bias and large stepm. | |
| * If stepm is larger than one month (smallest stepm) and if the exact delay | |
| * (in months) between two waves is not a multiple of stepm, we rounded to | |
| * the nearest (and in case of equal distance, to the lowest) interval but now | |
| * we keep into memory the bias bh[mi][i] and also the previous matrix product | |
| * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | |
| * probability in order to take into account the bias as a fraction of the way | |
| * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | |
| * -stepm/2 to stepm/2 . | |
| * For stepm=1 the results are the same as for previous versions of Imach. | |
| * For stepm > 1 the results are less biased than in previous versions. | |
| */ | |
| s1=s[mw[mi][i]][i]; | |
| s2=s[mw[mi+1][i]][i]; | |
| bbh=(double)bh[mi][i]/(double)stepm; | |
| /* bias is positive if real duration | |
| * is higher than the multiple of stepm and negative otherwise. | |
| */ | |
| /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */ | |
| lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */ | |
| /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | |
| /*if(lli ==000.0)*/ | |
| /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | |
| ipmx +=1; | |
| sw += weight[i]; | |
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | |
| } /* end of wave */ | |
| } /* end of individual */ | |
| }else{ /* ml=4 no inter-extrapolation */ | |
| for (i=1,ipmx=0, sw=0.; i<=imx; i++){ | |
| for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i]; | |
| for(mi=1; mi<= wav[i]-1; mi++){ | |
| for (ii=1;ii<=nlstate+ndeath;ii++) | |
| for (j=1;j<=nlstate+ndeath;j++){ | |
| oldm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| savm[ii][j]=(ii==j ? 1.0 : 0.0); | |
| } | |
| for(d=0; d<dh[mi][i]; d++){ | |
| newm=savm; | |
| cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM; | |
| for (kk=1; kk<=cptcovage;kk++) { | |
| cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; | |
| } | |
| } /* end mult */ | out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, |
| 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); | |
| savm=oldm; | |
| oldm=newm; | |
| } /* end mult */ | |
| /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */ | lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */ |
| /* But now since version 0.9 we anticipate for bias and large stepm. | ipmx +=1; |
| * If stepm is larger than one month (smallest stepm) and if the exact delay | sw += weight[i]; |
| * (in months) between two waves is not a multiple of stepm, we rounded to | ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; |
| * the nearest (and in case of equal distance, to the lowest) interval but now | } /* end of wave */ |
| * we keep into memory the bias bh[mi][i] and also the previous matrix product | } /* end of individual */ |
| * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the | } /* End of if */ |
| * probability in order to take into account the bias as a fraction of the way | |
| * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies | |
| * -stepm/2 to stepm/2 . | |
| * For stepm=1 the results are the same as for previous versions of Imach. | |
| * For stepm > 1 the results are less biased than in previous versions. | |
| */ | |
| s1=s[mw[mi][i]][i]; | |
| s2=s[mw[mi+1][i]][i]; | |
| bbh=(double)bh[mi][i]/(double)stepm; | |
| lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2])); | |
| /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-bbh)*out[s1][s2]));*/ | |
| /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ | |
| /*if(lli ==000.0)*/ | |
| /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ | |
| ipmx +=1; | |
| sw += weight[i]; | |
| ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; | |
| } /* end of wave */ | |
| } /* end of individual */ | |
| for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; | for(k=1,l=0.; k<=nlstate; k++) l += ll[k]; |
| /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ | /* printf("l1=%f l2=%f ",ll[1],ll[2]); */ |
| l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ | l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */ |
| Line 1000 void mlikeli(FILE *ficres,double p[], in | Line 1160 void mlikeli(FILE *ficres,double p[], in |
| powell(p,xi,npar,ftol,&iter,&fret,func); | powell(p,xi,npar,ftol,&iter,&fret,func); |
| printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); | printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p)); |
| fprintf(ficlog,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
| fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); | fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p)); |
| } | } |
| Line 1269 void freqsummary(char fileres[], int ag | Line 1429 void freqsummary(char fileres[], int ag |
| int i, m, jk, k1,i1, j1, bool, z1,z2,j; | int i, m, jk, k1,i1, j1, bool, z1,z2,j; |
| int first; | int first; |
| double ***freq; /* Frequencies */ | double ***freq; /* Frequencies */ |
| double *pp; | double *pp, **prop; |
| double pos, k2, dateintsum=0,k2cpt=0; | double pos,posprop, k2, dateintsum=0,k2cpt=0; |
| FILE *ficresp; | FILE *ficresp; |
| char fileresp[FILENAMELENGTH]; | char fileresp[FILENAMELENGTH]; |
| pp=vector(1,nlstate); | pp=vector(1,nlstate); |
| prop=matrix(1,nlstate,agemin,agemax+3); | |
| probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); | probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| strcpy(fileresp,"p"); | strcpy(fileresp,"p"); |
| strcat(fileresp,fileres); | strcat(fileresp,fileres); |
| Line 1300 void freqsummary(char fileres[], int ag | Line 1461 void freqsummary(char fileres[], int ag |
| for (jk=-1; jk<=nlstate+ndeath; jk++) | for (jk=-1; jk<=nlstate+ndeath; jk++) |
| for(m=agemin; m <= agemax+3; m++) | for(m=agemin; m <= agemax+3; m++) |
| freq[i][jk][m]=0; | freq[i][jk][m]=0; |
| for (i=1; i<=nlstate; i++) | |
| for(m=agemin; m <= agemax+3; m++) | |
| prop[i][m]=0; | |
| dateintsum=0; | dateintsum=0; |
| k2cpt=0; | k2cpt=0; |
| Line 1316 void freqsummary(char fileres[], int ag | Line 1481 void freqsummary(char fileres[], int ag |
| if ((k2>=dateprev1) && (k2<=dateprev2)) { | if ((k2>=dateprev1) && (k2<=dateprev2)) { |
| if(agev[m][i]==0) agev[m][i]=agemax+1; | if(agev[m][i]==0) agev[m][i]=agemax+1; |
| if(agev[m][i]==1) agev[m][i]=agemax+2; | if(agev[m][i]==1) agev[m][i]=agemax+2; |
| if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i]; | |
| if (m<lastpass) { | if (m<lastpass) { |
| freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; |
| freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i]; | freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i]; |
| Line 1373 void freqsummary(char fileres[], int ag | Line 1539 void freqsummary(char fileres[], int ag |
| for(jk=1; jk <=nlstate ; jk++){ | for(jk=1; jk <=nlstate ; jk++){ |
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) |
| pp[jk] += freq[jk][m][i]; | pp[jk] += freq[jk][m][i]; |
| } | } |
| for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){ | |
| for(jk=1,pos=0; jk <=nlstate ; jk++) | |
| pos += pp[jk]; | pos += pp[jk]; |
| posprop += prop[jk][i]; | |
| } | |
| for(jk=1; jk <=nlstate ; jk++){ | for(jk=1; jk <=nlstate ; jk++){ |
| if(pos>=1.e-5){ | if(pos>=1.e-5){ |
| if(first==1) | if(first==1) |
| Line 1389 void freqsummary(char fileres[], int ag | Line 1556 void freqsummary(char fileres[], int ag |
| } | } |
| if( i <= (int) agemax){ | if( i <= (int) agemax){ |
| if(pos>=1.e-5){ | if(pos>=1.e-5){ |
| fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos); | fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop); |
| probs[i][jk][j1]= pp[jk]/pos; | probs[i][jk][j1]= pp[jk]/pos; |
| /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ | /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/ |
| } | } |
| else | else |
| fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos); | fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop); |
| } | } |
| } | } |
| Line 1418 void freqsummary(char fileres[], int ag | Line 1585 void freqsummary(char fileres[], int ag |
| fclose(ficresp); | fclose(ficresp); |
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); | free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); |
| free_vector(pp,1,nlstate); | free_vector(pp,1,nlstate); |
| free_matrix(prop,1,nlstate,(int) agemin,(int) agemax+3); | |
| /* End of Freq */ | /* End of Freq */ |
| } | } |
| /************ Prevalence ********************/ | /************ Prevalence ********************/ |
| void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate) | void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass) |
| { /* Some frequencies */ | { |
| /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people | |
| in each health status at the date of interview (if between dateprev1 and dateprev2). | |
| We still use firstpass and lastpass as another selection. | |
| */ | |
| int i, m, jk, k1, i1, j1, bool, z1,z2,j; | int i, m, jk, k1, i1, j1, bool, z1,z2,j; |
| double ***freq; /* Frequencies */ | double ***freq; /* Frequencies */ |
| double *pp; | double *pp, **prop; |
| double pos, k2; | double pos,posprop; |
| double y2; /* in fractional years */ | |
| pp=vector(1,nlstate); | pp=vector(1,nlstate); |
| prop=matrix(1,nlstate,agemin,agemax+3); | |
| freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); | freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3); |
| j1=0; | j1=0; |
| Line 1443 void prevalence(int agemin, float agemax | Line 1615 void prevalence(int agemin, float agemax |
| for(i1=1; i1<=ncodemax[k1];i1++){ | for(i1=1; i1<=ncodemax[k1];i1++){ |
| j1++; | j1++; |
| for (i=-1; i<=nlstate+ndeath; i++) | for (i=1; i<=nlstate; i++) |
| for (jk=-1; jk<=nlstate+ndeath; jk++) | for(m=agemin; m <= agemax+3; m++) |
| for(m=agemin; m <= agemax+3; m++) | prop[i][m]=0; |
| freq[i][jk][m]=0; | |
| for (i=1; i<=imx; i++) { | for (i=1; i<=imx; i++) { /* Each individual */ |
| bool=1; | bool=1; |
| if (cptcovn>0) { | if (cptcovn>0) { |
| for (z1=1; z1<=cptcoveff; z1++) | for (z1=1; z1<=cptcoveff; z1++) |
| Line 1456 void prevalence(int agemin, float agemax | Line 1627 void prevalence(int agemin, float agemax |
| bool=0; | bool=0; |
| } | } |
| if (bool==1) { | if (bool==1) { |
| for(m=firstpass; m<=lastpass; m++){ | for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/ |
| k2=anint[m][i]+(mint[m][i]/12.); | y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */ |
| if ((k2>=dateprev1) && (k2<=dateprev2)) { | if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */ |
| if(agev[m][i]==0) agev[m][i]=agemax+1; | if(agev[m][i]==0) agev[m][i]=agemax+1; |
| if(agev[m][i]==1) agev[m][i]=agemax+2; | if(agev[m][i]==1) agev[m][i]=agemax+2; |
| if (m<lastpass) { | if (s[m][i]>0 && s[m][i]<=nlstate) { |
| if (calagedate>0) | prop[s[m][i]][(int)agev[m][i]] += weight[i]; |
| freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i]; | prop[s[m][i]][(int)(agemax+3)] += weight[i]; |
| else | |
| freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i]; | |
| freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i]; | |
| } | } |
| } | } |
| } | } /* end selection of waves */ |
| } | } |
| } | } |
| for(i=(int)agemin; i <= (int)agemax+3; i++){ | for(i=(int)agemin; i <= (int)agemax+3; i++){ |
| for(jk=1; jk <=nlstate ; jk++){ | |
| for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++) | |
| pp[jk] += freq[jk][m][i]; | |
| } | |
| for(jk=1; jk <=nlstate ; jk++){ | |
| for(m=-1, pos=0; m <=0 ; m++) | |
| pos += freq[jk][m][i]; | |
| } | |
| for(jk=1; jk <=nlstate ; jk++){ | for(jk=1,posprop=0; jk <=nlstate ; jk++) { |
| for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++) | posprop += prop[jk][i]; |
| pp[jk] += freq[jk][m][i]; | |
| } | } |
| for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk]; | |
| for(jk=1; jk <=nlstate ; jk++){ | for(jk=1; jk <=nlstate ; jk++){ |
| if( i <= (int) agemax){ | if( i <= (int) agemax){ |
| if(pos>=1.e-5){ | if(posprop>=1.e-5){ |
| probs[i][jk][j1]= pp[jk]/pos; | probs[i][jk][j1]= prop[jk][i]/posprop; |
| } | } |
| } | } |
| }/* end jk */ | }/* end jk */ |
| Line 1503 void prevalence(int agemin, float agemax | Line 1660 void prevalence(int agemin, float agemax |
| free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); | free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3); |
| free_vector(pp,1,nlstate); | free_vector(pp,1,nlstate); |
| free_matrix(prop,1,nlstate,(int) agemin,(int) agemax+3); | |
| } /* End of Freq */ | } /* End of Freq */ |
| /************* Waves Concatenation ***************/ | /************* Waves Concatenation ***************/ |
| Line 1571 void concatwav(int wav[], int **dh, int | Line 1728 void concatwav(int wav[], int **dh, int |
| if (j <= jmin) jmin=j; | if (j <= jmin) jmin=j; |
| sum=sum+j; | sum=sum+j; |
| /*if (j<0) printf("j=%d num=%d \n",j,i); */ | /*if (j<0) printf("j=%d num=%d \n",j,i); */ |
| /* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ | |
| /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ | |
| } | } |
| } | } |
| else{ | else{ |
| j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); | j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12)); |
| /* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/ | |
| k=k+1; | k=k+1; |
| if (j >= jmax) jmax=j; | if (j >= jmax) jmax=j; |
| else if (j <= jmin)jmin=j; | else if (j <= jmin)jmin=j; |
| /* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ | /* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */ |
| /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/ | |
| sum=sum+j; | sum=sum+j; |
| } | } |
| jk= j/stepm; | jk= j/stepm; |
| jl= j -jk*stepm; | jl= j -jk*stepm; |
| ju= j -(jk+1)*stepm; | ju= j -(jk+1)*stepm; |
| if(jl <= -ju){ | if(mle <=1){ |
| dh[mi][i]=jk; | if(jl==0){ |
| bh[mi][i]=jl; | dh[mi][i]=jk; |
| } | bh[mi][i]=0; |
| else{ | }else{ /* We want a negative bias in order to only have interpolation ie |
| dh[mi][i]=jk+1; | * at the price of an extra matrix product in likelihood */ |
| bh[mi][i]=ju; | dh[mi][i]=jk+1; |
| } | bh[mi][i]=ju; |
| if(dh[mi][i]==0){ | } |
| dh[mi][i]=1; /* At least one step */ | }else{ |
| bh[mi][i]=ju; /* At least one step */ | if(jl <= -ju){ |
| printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i); | dh[mi][i]=jk; |
| bh[mi][i]=jl; /* bias is positive if real duration | |
| * is higher than the multiple of stepm and negative otherwise. | |
| */ | |
| } | |
| else{ | |
| dh[mi][i]=jk+1; | |
| bh[mi][i]=ju; | |
| } | |
| if(dh[mi][i]==0){ | |
| dh[mi][i]=1; /* At least one step */ | |
| bh[mi][i]=ju; /* At least one step */ | |
| /* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/ | |
| } | |
| } | } |
| if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm); | } /* end if mle */ |
| } | } /* end wave */ |
| } | |
| } | } |
| jmean=sum/k; | jmean=sum/k; |
| printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); | printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean); |
| Line 1700 void evsij(char fileres[], double ***eij | Line 1873 void evsij(char fileres[], double ***eij |
| * This is mainly to measure the difference between two models: for example | * This is mainly to measure the difference between two models: for example |
| * if stepm=24 months pijx are given only every 2 years and by summing them | * if stepm=24 months pijx are given only every 2 years and by summing them |
| * we are calculating an estimate of the Life Expectancy assuming a linear | * we are calculating an estimate of the Life Expectancy assuming a linear |
| * progression inbetween and thus overestimating or underestimating according | * progression in between and thus overestimating or underestimating according |
| * to the curvature of the survival function. If, for the same date, we | * to the curvature of the survival function. If, for the same date, we |
| * estimate the model with stepm=1 month, we can keep estepm to 24 months | * estimate the model with stepm=1 month, we can keep estepm to 24 months |
| * to compare the new estimate of Life expectancy with the same linear | * to compare the new estimate of Life expectancy with the same linear |
| Line 1890 void varevsij(char optionfilefiname[], d | Line 2063 void varevsij(char optionfilefiname[], d |
| } | } |
| printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); | printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
| fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); | fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev); |
| fprintf(ficresprobmorprev,"# probabilities of dying during a year and weighted mean w1*p1j+w2*p2j+... stand dev in()\n"); | fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); |
| fprintf(ficresprobmorprev,"# Age cov=%-d",ij); | fprintf(ficresprobmorprev,"# Age cov=%-d",ij); |
| for(j=nlstate+1; j<=(nlstate+ndeath);j++){ | for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
| fprintf(ficresprobmorprev," p.%-d SE",j); | fprintf(ficresprobmorprev," p.%-d SE",j); |
| Line 1912 void varevsij(char optionfilefiname[], d | Line 2085 void varevsij(char optionfilefiname[], d |
| exit(0); | exit(0); |
| } | } |
| else{ | else{ |
| fprintf(fichtm,"\n<li><h4> Computing probabilities of dying as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); | fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n"); |
| fprintf(fichtm,"\n<br>%s (à revoir) <br>\n",digitp); | fprintf(fichtm,"\n<br>%s <br>\n",digitp); |
| } | } |
| varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); | varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath); |
| Line 1947 void varevsij(char optionfilefiname[], d | Line 2120 void varevsij(char optionfilefiname[], d |
| and note for a fixed period like k years */ | and note for a fixed period like k years */ |
| /* We decided (b) to get a life expectancy respecting the most precise curvature of the | /* We decided (b) to get a life expectancy respecting the most precise curvature of the |
| survival function given by stepm (the optimization length). Unfortunately it | survival function given by stepm (the optimization length). Unfortunately it |
| means that if the survival funtion is printed only each two years of age and if | means that if the survival funtion is printed every two years of age and if |
| you sum them up and add 1 year (area under the trapezoids) you won't get the same | you sum them up and add 1 year (area under the trapezoids) you won't get the same |
| results. So we changed our mind and took the option of the best precision. | results. So we changed our mind and took the option of the best precision. |
| */ | */ |
| Line 1963 void varevsij(char optionfilefiname[], d | Line 2136 void varevsij(char optionfilefiname[], d |
| for(theta=1; theta <=npar; theta++){ | for(theta=1; theta <=npar; theta++){ |
| for(i=1; i<=npar; i++){ /* Computes gradient */ | for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/ |
| xp[i] = x[i] + (i==theta ?delti[theta]:0); | xp[i] = x[i] + (i==theta ?delti[theta]:0); |
| } | } |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
| Line 1985 void varevsij(char optionfilefiname[], d | Line 2158 void varevsij(char optionfilefiname[], d |
| gp[h][j] += prlim[i][i]*p3mat[i][j][h]; | gp[h][j] += prlim[i][i]*p3mat[i][j][h]; |
| } | } |
| } | } |
| /* This for computing forces of mortality (h=1)as a weighted average */ | /* This for computing probability of death (h=1 means |
| for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){ | computed over hstepm matrices product = hstepm*stepm months) |
| for(i=1; i<= nlstate; i++) | as a weighted average of prlim. |
| */ | |
| for(j=nlstate+1;j<=nlstate+ndeath;j++){ | |
| for(i=1,gpp[j]=0.; i<= nlstate; i++) | |
| gpp[j] += prlim[i][i]*p3mat[i][j][1]; | gpp[j] += prlim[i][i]*p3mat[i][j][1]; |
| } | } |
| /* end force of mortality */ | /* end probability of death */ |
| for(i=1; i<=npar; i++) /* Computes gradient */ | for(i=1; i<=npar; i++) /* Computes gradient x - delta */ |
| xp[i] = x[i] - (i==theta ?delti[theta]:0); | xp[i] = x[i] - (i==theta ?delti[theta]:0); |
| hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); | hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); |
| prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); | prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij); |
| Line 2013 void varevsij(char optionfilefiname[], d | Line 2189 void varevsij(char optionfilefiname[], d |
| gm[h][j] += prlim[i][i]*p3mat[i][j][h]; | gm[h][j] += prlim[i][i]*p3mat[i][j][h]; |
| } | } |
| } | } |
| /* This for computing force of mortality (h=1)as a weighted average */ | /* This for computing probability of death (h=1 means |
| for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){ | computed over hstepm matrices product = hstepm*stepm months) |
| for(i=1; i<= nlstate; i++) | as a weighted average of prlim. |
| gmp[j] += prlim[i][i]*p3mat[i][j][1]; | */ |
| for(j=nlstate+1;j<=nlstate+ndeath;j++){ | |
| for(i=1,gmp[j]=0.; i<= nlstate; i++) | |
| gmp[j] += prlim[i][i]*p3mat[i][j][1]; | |
| } | } |
| /* end force of mortality */ | /* end probability of death */ |
| for(j=1; j<= nlstate; j++) /* vareij */ | for(j=1; j<= nlstate; j++) /* vareij */ |
| for(h=0; h<=nhstepm; h++){ | for(h=0; h<=nhstepm; h++){ |
| gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; | gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta]; |
| } | } |
| for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ | for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */ |
| gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; | gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta]; |
| } | } |
| Line 2040 void varevsij(char optionfilefiname[], d | Line 2220 void varevsij(char optionfilefiname[], d |
| for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ | for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */ |
| for(theta=1; theta <=npar; theta++) | for(theta=1; theta <=npar; theta++) |
| trgradgp[j][theta]=gradgp[theta][j]; | trgradgp[j][theta]=gradgp[theta][j]; |
| hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ | hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */ |
| for(i=1;i<=nlstate;i++) | for(i=1;i<=nlstate;i++) |
| Line 2055 void varevsij(char optionfilefiname[], d | Line 2236 void varevsij(char optionfilefiname[], d |
| vareij[i][j][(int)age] += doldm[i][j]*hf*hf; | vareij[i][j][(int)age] += doldm[i][j]*hf*hf; |
| } | } |
| } | } |
| /* pptj */ | /* pptj */ |
| matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); | matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov); |
| matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); | matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp); |
| Line 2063 void varevsij(char optionfilefiname[], d | Line 2244 void varevsij(char optionfilefiname[], d |
| for(i=nlstate+1;i<=nlstate+ndeath;i++) | for(i=nlstate+1;i<=nlstate+ndeath;i++) |
| varppt[j][i]=doldmp[j][i]; | varppt[j][i]=doldmp[j][i]; |
| /* end ppptj */ | /* end ppptj */ |
| /* x centered again */ | |
| hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); | hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij); |
| prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij); | prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij); |
| Line 2075 void varevsij(char optionfilefiname[], d | Line 2257 void varevsij(char optionfilefiname[], d |
| prlim[i][i]=mobaverage[(int)age][i][ij]; | prlim[i][i]=mobaverage[(int)age][i][ij]; |
| } | } |
| } | } |
| /* This for computing force of mortality (h=1)as a weighted average */ | /* This for computing probability of death (h=1 means |
| for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){ | computed over hstepm (estepm) matrices product = hstepm*stepm months) |
| for(i=1; i<= nlstate; i++) | as a weighted average of prlim. |
| */ | |
| for(j=nlstate+1;j<=nlstate+ndeath;j++){ | |
| for(i=1,gmp[j]=0.;i<= nlstate; i++) | |
| gmp[j] += prlim[i][i]*p3mat[i][j][1]; | gmp[j] += prlim[i][i]*p3mat[i][j][1]; |
| } | } |
| /* end force of mortality */ | /* end probability of death */ |
| fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); | fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij); |
| for(j=nlstate+1; j<=(nlstate+ndeath);j++){ | for(j=nlstate+1; j<=(nlstate+ndeath);j++){ |
| Line 2111 void varevsij(char optionfilefiname[], d | Line 2296 void varevsij(char optionfilefiname[], d |
| fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65"); | fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65"); |
| /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ | /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */ |
| fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); | fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";"); |
| fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); | /* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */ |
| fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); | /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
| fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); | /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */ |
| fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l 1 ",fileresprobmorprev); | |
| fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev); | |
| fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev); | |
| fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev); | fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev); |
| fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,digitp,digit); | fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit); |
| /* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit); | /* fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit); |
| */ | */ |
| fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit); | fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); |
| free_vector(xp,1,npar); | free_vector(xp,1,npar); |
| free_matrix(doldm,1,nlstate,1,nlstate); | free_matrix(doldm,1,nlstate,1,nlstate); |
| Line 2130 void varevsij(char optionfilefiname[], d | Line 2318 void varevsij(char optionfilefiname[], d |
| fclose(ficresprobmorprev); | fclose(ficresprobmorprev); |
| fclose(ficgp); | fclose(ficgp); |
| fclose(fichtm); | fclose(fichtm); |
| } | } |
| /************ Variance of prevlim ******************/ | /************ Variance of prevlim ******************/ |
| void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) | void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij) |
| Line 2276 void varprob(char optionfilefiname[], do | Line 2464 void varprob(char optionfilefiname[], do |
| fprintf(ficresprobcov," p%1d-%1d ",i,j); | fprintf(ficresprobcov," p%1d-%1d ",i,j); |
| fprintf(ficresprobcor," p%1d-%1d ",i,j); | fprintf(ficresprobcor," p%1d-%1d ",i,j); |
| } | } |
| fprintf(ficresprob,"\n"); | /* fprintf(ficresprob,"\n"); |
| fprintf(ficresprobcov,"\n"); | fprintf(ficresprobcov,"\n"); |
| fprintf(ficresprobcor,"\n"); | fprintf(ficresprobcor,"\n"); |
| xp=vector(1,npar); | */ |
| xp=vector(1,npar); | |
| dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); | dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar); |
| doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); | doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath)); |
| mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); | mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage); |
| Line 2318 void varprob(char optionfilefiname[], do | Line 2507 void varprob(char optionfilefiname[], do |
| if (cptcovn>0) { | if (cptcovn>0) { |
| fprintf(ficresprob, "\n#********** Variable "); | fprintf(ficresprob, "\n#********** Variable "); |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| fprintf(ficresprob, "**********\n#"); | fprintf(ficresprob, "**********\n#\n"); |
| fprintf(ficresprobcov, "\n#********** Variable "); | fprintf(ficresprobcov, "\n#********** Variable "); |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| fprintf(ficresprobcov, "**********\n#"); | fprintf(ficresprobcov, "**********\n#\n"); |
| fprintf(ficgp, "\n#********** Variable "); | fprintf(ficgp, "\n#********** Variable "); |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| fprintf(ficgp, "**********\n#"); | fprintf(ficgp, "**********\n#\n"); |
| fprintf(fichtm, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); | fprintf(fichtm, "\n<hr size=\"2\" color=\"#EC5E5E\">********** Variable "); |
| Line 2334 void varprob(char optionfilefiname[], do | Line 2523 void varprob(char optionfilefiname[], do |
| fprintf(ficresprobcor, "\n#********** Variable "); | fprintf(ficresprobcor, "\n#********** Variable "); |
| for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); | for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]); |
| fprintf(ficgp, "**********\n#"); | fprintf(ficresprobcor, "**********\n#"); |
| } | } |
| for (age=bage; age<=fage; age ++){ | for (age=bage; age<=fage; age ++){ |
| Line 2653 m=pow(2,cptcoveff); | Line 2842 m=pow(2,cptcoveff); |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | else fprintf(ficgp," \%%*lf (\%%*lf)"); |
| } | } |
| fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1); | fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1); |
| for (i=1; i<= nlstate ; i ++) { | for (i=1; i<= nlstate ; i ++) { |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | else fprintf(ficgp," \%%*lf (\%%*lf)"); |
| } | } |
| fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1); | fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); |
| for (i=1; i<= nlstate ; i ++) { | for (i=1; i<= nlstate ; i ++) { |
| if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); | if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)"); |
| else fprintf(ficgp," \%%*lf (\%%*lf)"); | else fprintf(ficgp," \%%*lf (\%%*lf)"); |
| Line 2849 int movingaverage(double ***probs, doubl | Line 3038 int movingaverage(double ***probs, doubl |
| /************** Forecasting ******************/ | /************** Forecasting ******************/ |
| prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){ | prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){ |
| /* proj1, year, month, day of starting projection | |
| int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | agemin, agemax range of age |
| dateprev1 dateprev2 range of dates during which prevalence is computed | |
| anproj2 year of en of projection (same day and month as proj1). | |
| */ | |
| int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1; | |
| int *popage; | int *popage; |
| double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | double agec; /* generic age */ |
| double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; | |
| double *popeffectif,*popcount; | double *popeffectif,*popcount; |
| double ***p3mat; | double ***p3mat; |
| double ***mobaverage; | double ***mobaverage; |
| char fileresf[FILENAMELENGTH]; | char fileresf[FILENAMELENGTH]; |
| agelim=AGESUP; | agelim=AGESUP; |
| calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM; | prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | |
| strcpy(fileresf,"f"); | strcpy(fileresf,"f"); |
| strcat(fileresf,fileres); | strcat(fileresf,fileres); |
| Line 2887 prevforecast(char fileres[], double anpr | Line 3078 prevforecast(char fileres[], double anpr |
| stepsize=(int) (stepm+YEARM-1)/YEARM; | stepsize=(int) (stepm+YEARM-1)/YEARM; |
| if (stepm<=12) stepsize=1; | if (stepm<=12) stepsize=1; |
| agelim=AGESUP; | |
| hstepm=1; | hstepm=1; |
| hstepm=hstepm/stepm; | hstepm=hstepm/stepm; |
| yp1=modf(dateintmean,&yp); | yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and |
| fractional in yp1 */ | |
| anprojmean=yp; | anprojmean=yp; |
| yp2=modf((yp1*12),&yp); | yp2=modf((yp1*12),&yp); |
| mprojmean=yp; | mprojmean=yp; |
| Line 2899 prevforecast(char fileres[], double anpr | Line 3089 prevforecast(char fileres[], double anpr |
| jprojmean=yp; | jprojmean=yp; |
| if(jprojmean==0) jprojmean=1; | if(jprojmean==0) jprojmean=1; |
| if(mprojmean==0) jprojmean=1; | if(mprojmean==0) jprojmean=1; |
| i1=cptcoveff; | |
| if (cptcovn < 1){i1=1;} | |
| fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean); | fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); |
| for(cptcov=1;cptcov<=i2;cptcov++){ | fprintf(ficresf,"#****** Routine prevforecast **\n"); |
| for(cptcov=1, k=0;cptcov<=i1;cptcov++){ | |
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
| k=k+1; | k=k+1; |
| fprintf(ficresf,"\n#******"); | fprintf(ficresf,"\n#******"); |
| for(j=1;j<=cptcoveff;j++) { | for(j=1;j<=cptcoveff;j++) { |
| fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); |
| } | } |
| fprintf(ficresf,"******\n"); | fprintf(ficresf,"******\n"); |
| fprintf(ficresf,"# StartingAge FinalAge"); | fprintf(ficresf,"# Covariate valuofcovar yearproj age"); |
| for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j); | for(j=1; j<=nlstate+ndeath;j++){ |
| for(i=1; i<=nlstate;i++) | |
| fprintf(ficresf," p%d%d",i,j); | |
| for (cpt=0; cpt<=(anproj2-anproj1);cpt++) { | fprintf(ficresf," p.%d",j); |
| } | |
| for (yearp=0; yearp<=(anproj2-anproj1);yearp++) { | |
| fprintf(ficresf,"\n"); | fprintf(ficresf,"\n"); |
| fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt); | fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp); |
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | for (agec=fage; agec>=(ageminpar-1); agec--){ |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | nhstepm=(int) rint((agelim-agec)*YEARM/stepm); |
| nhstepm = nhstepm/hstepm; | nhstepm = nhstepm/hstepm; |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| oldm=oldms;savm=savms; | oldm=oldms;savm=savms; |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k); |
| for (h=0; h<=nhstepm; h++){ | for (h=0; h<=nhstepm; h++){ |
| if (h==(int) (calagedate+YEARM*cpt)) { | if (h==(int) (YEARM*yearp)) { |
| fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm); | fprintf(ficresf,"\n"); |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm); | |
| } | } |
| for(j=1; j<=nlstate+ndeath;j++) { | for(j=1; j<=nlstate+ndeath;j++) { |
| kk1=0.;kk2=0; | ppij=0.; |
| for(i=1; i<=nlstate;i++) { | for(i=1; i<=nlstate;i++) { |
| if (mobilav==1) | if (mobilav==1) |
| kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; | ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; |
| else { | else { |
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; |
| } | } |
| if (h==(int)(YEARM*yearp)) | |
| fprintf(ficresf," %.3f", p3mat[i][j][h]); | |
| } | } |
| if (h==(int)(calagedate+12*cpt)){ | if (h==(int)(YEARM*yearp)){ |
| fprintf(ficresf," %.3f", kk1); | fprintf(ficresf," %.3f", ppij); |
| } | } |
| } | } |
| } | } |
| Line 2956 prevforecast(char fileres[], double anpr | Line 3155 prevforecast(char fileres[], double anpr |
| fclose(ficresf); | fclose(ficresf); |
| } | } |
| /************** Forecasting ******************/ | |
| /************** Forecasting *****not tested NB*************/ | |
| populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ | populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ |
| int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; | int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; |
| int *popage; | int *popage; |
| double calagedate, agelim, kk1, kk2; | double calagedatem, agelim, kk1, kk2; |
| double *popeffectif,*popcount; | double *popeffectif,*popcount; |
| double ***p3mat,***tabpop,***tabpopprev; | double ***p3mat,***tabpop,***tabpopprev; |
| double ***mobaverage; | double ***mobaverage; |
| Line 2970 populforecast(char fileres[], double anp | Line 3170 populforecast(char fileres[], double anp |
| tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| agelim=AGESUP; | agelim=AGESUP; |
| calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; | calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; |
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
| strcpy(filerespop,"pop"); | strcpy(filerespop,"pop"); |
| Line 3018 populforecast(char fileres[], double anp | Line 3218 populforecast(char fileres[], double anp |
| for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; | for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; |
| } | } |
| for(cptcov=1;cptcov<=i2;cptcov++){ | for(cptcov=1,k=0;cptcov<=i2;cptcov++){ |
| for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ | for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ |
| k=k+1; | k=k+1; |
| fprintf(ficrespop,"\n#******"); | fprintf(ficrespop,"\n#******"); |
| Line 3033 populforecast(char fileres[], double anp | Line 3233 populforecast(char fileres[], double anp |
| for (cpt=0; cpt<=0;cpt++) { | for (cpt=0; cpt<=0;cpt++) { |
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
| nhstepm = nhstepm/hstepm; | nhstepm = nhstepm/hstepm; |
| Line 3042 populforecast(char fileres[], double anp | Line 3242 populforecast(char fileres[], double anp |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
| for (h=0; h<=nhstepm; h++){ | for (h=0; h<=nhstepm; h++){ |
| if (h==(int) (calagedate+YEARM*cpt)) { | if (h==(int) (calagedatem+YEARM*cpt)) { |
| fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
| } | } |
| for(j=1; j<=nlstate+ndeath;j++) { | for(j=1; j<=nlstate+ndeath;j++) { |
| Line 3054 populforecast(char fileres[], double anp | Line 3254 populforecast(char fileres[], double anp |
| kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; | kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; |
| } | } |
| } | } |
| if (h==(int)(calagedate+12*cpt)){ | if (h==(int)(calagedatem+12*cpt)){ |
| tabpop[(int)(agedeb)][j][cptcod]=kk1; | tabpop[(int)(agedeb)][j][cptcod]=kk1; |
| /*fprintf(ficrespop," %.3f", kk1); | /*fprintf(ficrespop," %.3f", kk1); |
| if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ | if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/ |
| Line 3065 populforecast(char fileres[], double anp | Line 3265 populforecast(char fileres[], double anp |
| for(j=1; j<=nlstate;j++){ | for(j=1; j<=nlstate;j++){ |
| kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; | kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; |
| } | } |
| tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)]; | tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; |
| } | } |
| if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++) | if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) |
| fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); | fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); |
| } | } |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| Line 3079 populforecast(char fileres[], double anp | Line 3279 populforecast(char fileres[], double anp |
| for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { | for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { |
| fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); | fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); |
| for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){ | for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ |
| nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); | nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); |
| nhstepm = nhstepm/hstepm; | nhstepm = nhstepm/hstepm; |
| Line 3087 populforecast(char fileres[], double anp | Line 3287 populforecast(char fileres[], double anp |
| oldm=oldms;savm=savms; | oldm=oldms;savm=savms; |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
| for (h=0; h<=nhstepm; h++){ | for (h=0; h<=nhstepm; h++){ |
| if (h==(int) (calagedate+YEARM*cpt)) { | if (h==(int) (calagedatem+YEARM*cpt)) { |
| fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); | fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); |
| } | } |
| for(j=1; j<=nlstate+ndeath;j++) { | for(j=1; j<=nlstate+ndeath;j++) { |
| Line 3095 populforecast(char fileres[], double anp | Line 3295 populforecast(char fileres[], double anp |
| for(i=1; i<=nlstate;i++) { | for(i=1; i<=nlstate;i++) { |
| kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; | kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; |
| } | } |
| if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1); | if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); |
| } | } |
| } | } |
| free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| Line 3122 populforecast(char fileres[], double anp | Line 3322 populforecast(char fileres[], double anp |
| int main(int argc, char *argv[]) | int main(int argc, char *argv[]) |
| { | { |
| int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav); | |
| int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod; | int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod; |
| double agedeb, agefin,hf; | double agedeb, agefin,hf; |
| double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; | double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20; |
| Line 3142 int main(int argc, char *argv[]) | Line 3342 int main(int argc, char *argv[]) |
| int ju,jl, mi; | int ju,jl, mi; |
| int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; | int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij; |
| int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; | int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; |
| int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */ | |
| int mobilav=0,popforecast=0; | int mobilav=0,popforecast=0; |
| int hstepm, nhstepm; | int hstepm, nhstepm; |
| double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate; | double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1; |
| double bage, fage, age, agelim, agebase; | double bage, fage, age, agelim, agebase; |
| double ftolpl=FTOL; | double ftolpl=FTOL; |
| Line 3160 int main(int argc, char *argv[]) | Line 3361 int main(int argc, char *argv[]) |
| double *epj, vepp; | double *epj, vepp; |
| double kk1, kk2; | double kk1, kk2; |
| double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2; | double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2; |
| /*int *movingaverage; */ | |
| char *alph[]={"a","a","b","c","d","e"}, str[4]; | char *alph[]={"a","a","b","c","d","e"}, str[4]; |
| Line 3443 int main(int argc, char *argv[]) | Line 3643 int main(int argc, char *argv[]) |
| if (s[4][i]==9) s[4][i]=-1; | if (s[4][i]==9) s[4][i]=-1; |
| printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ | printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/ |
| for (i=1; i<=imx; i++) | |
| /*if ((s[3][i]==3) || (s[4][i]==3)) weight[i]=0.08; | |
| else weight[i]=1;*/ | |
| /* Calculation of the number of parameter from char model*/ | /* Calculation of the number of parameter from char model*/ |
| Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */ | Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */ |
| Tprod=ivector(1,15); | Tprod=ivector(1,15); |
| Line 3545 int main(int argc, char *argv[]) | Line 3749 int main(int argc, char *argv[]) |
| for (i=1; i<=imx; i++) { | for (i=1; i<=imx; i++) { |
| agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); | agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]); |
| for(m=1; (m<= maxwav); m++){ | for(m=firstpass; (m<= lastpass); m++){ |
| if(s[m][i] >0){ | if(s[m][i] >0){ |
| if (s[m][i] >= nlstate+1) { | if (s[m][i] >= nlstate+1) { |
| if(agedc[i]>0) | if(agedc[i]>0) |
| Line 3560 int main(int argc, char *argv[]) | Line 3764 int main(int argc, char *argv[]) |
| } | } |
| } | } |
| } | } |
| else if(s[m][i] !=9){ /* Should no more exist */ | else if(s[m][i] !=9){ /* Standard case, age in fractional |
| years but with the precision of a | |
| month */ | |
| agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); | agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]); |
| if(mint[m][i]==99 || anint[m][i]==9999) | if(mint[m][i]==99 || anint[m][i]==9999) |
| agev[m][i]=1; | agev[m][i]=1; |
| Line 3586 int main(int argc, char *argv[]) | Line 3792 int main(int argc, char *argv[]) |
| } | } |
| for (i=1; i<=imx; i++) { | for (i=1; i<=imx; i++) { |
| for(m=1; (m<= maxwav); m++){ | for(m=firstpass; (m<=lastpass); m++){ |
| if (s[m][i] > (nlstate+ndeath)) { | if (s[m][i] > (nlstate+ndeath)) { |
| printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
| fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); | fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath); |
| Line 3595 int main(int argc, char *argv[]) | Line 3801 int main(int argc, char *argv[]) |
| } | } |
| } | } |
| /*for (i=1; i<=imx; i++){ | |
| for (m=firstpass; (m<lastpass); m++){ | |
| printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]); | |
| } | |
| }*/ | |
| printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); |
| fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); | fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); |
| Line 3652 int main(int argc, char *argv[]) | Line 3865 int main(int argc, char *argv[]) |
| /* Calculates basic frequencies. Computes observed prevalence at single age | /* Calculates basic frequencies. Computes observed prevalence at single age |
| and prints on file fileres'p'. */ | and prints on file fileres'p'. */ |
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | |
| /* For Powell, parameters are in a vector p[] starting at p[1] | /* For Powell, parameters are in a vector p[] starting at p[1] |
| so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ | so we point p on param[1][1] so that p[1] maps on param[1][1][1] */ |
| p=param[1][1]; /* *(*(*(param +1)+1)+0) */ | p=param[1][1]; /* *(*(*(param +1)+1)+0) */ |
| if(mle==1){ | if(mle>=1){ /* Could be 1 or 2 */ |
| mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); | mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func); |
| } | } |
| Line 3774 int main(int argc, char *argv[]) | Line 3992 int main(int argc, char *argv[]) |
| fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); | fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav); |
| fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
| fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); |
| printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav); | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | while((c=getc(ficpar))=='#' && c!= EOF){ |
| ungetc(c,ficpar); | ungetc(c,ficpar); |
| Line 3784 int main(int argc, char *argv[]) | Line 4004 int main(int argc, char *argv[]) |
| ungetc(c,ficpar); | ungetc(c,ficpar); |
| dateprev1=anprev1+mprev1/12.+jprev1/365.; | dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.; |
| dateprev2=anprev2+mprev2/12.+jprev2/365.; | dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.; |
| fscanf(ficpar,"pop_based=%d\n",&popbased); | fscanf(ficpar,"pop_based=%d\n",&popbased); |
| fprintf(ficparo,"pop_based=%d\n",popbased); | fprintf(ficparo,"pop_based=%d\n",popbased); |
| Line 3799 int main(int argc, char *argv[]) | Line 4019 int main(int argc, char *argv[]) |
| } | } |
| ungetc(c,ficpar); | ungetc(c,ficpar); |
| fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2); | fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj); |
| fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2); | fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
| fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2); | printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); |
| fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj); | |
| /* day and month of proj2 are not used but only year anproj2.*/ | |
| while((c=getc(ficpar))=='#' && c!= EOF){ | while((c=getc(ficpar))=='#' && c!= EOF){ |
| ungetc(c,ficpar); | ungetc(c,ficpar); |
| Line 3862 Interval (in months) between two waves: | Line 4084 Interval (in months) between two waves: |
| free_imatrix(mw,1,lastpass-firstpass+1,1,imx); | free_imatrix(mw,1,lastpass-firstpass+1,1,imx); |
| free_ivector(num,1,n); | free_ivector(num,1,n); |
| free_vector(agedc,1,n); | free_vector(agedc,1,n); |
| free_matrix(covar,0,NCOVMAX,1,n); | /*free_matrix(covar,0,NCOVMAX,1,n);*/ |
| /*free_matrix(covar,1,NCOVMAX,1,n);*/ | /*free_matrix(covar,1,NCOVMAX,1,n);*/ |
| fclose(ficparo); | fclose(ficparo); |
| fclose(ficres); | fclose(ficres); |
| Line 3884 Interval (in months) between two waves: | Line 4106 Interval (in months) between two waves: |
| fprintf(ficrespl,"\n"); | fprintf(ficrespl,"\n"); |
| prlim=matrix(1,nlstate,1,nlstate); | prlim=matrix(1,nlstate,1,nlstate); |
| pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */ | |
| oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */ | |
| agebase=ageminpar; | agebase=ageminpar; |
| agelim=agemaxpar; | agelim=agemaxpar; |
| Line 3914 Interval (in months) between two waves: | Line 4131 Interval (in months) between two waves: |
| for (age=agebase; age<=agelim; age++){ | for (age=agebase; age<=agelim; age++){ |
| prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); | prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k); |
| fprintf(ficrespl,"%.0f",age ); | fprintf(ficrespl,"%.0f ",age ); |
| for(j=1;j<=cptcoveff;j++) | |
| fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]); | |
| for(i=1; i<=nlstate;i++) | for(i=1; i<=nlstate;i++) |
| fprintf(ficrespl," %.5f", prlim[i][i]); | fprintf(ficrespl," %.5f", prlim[i][i]); |
| fprintf(ficrespl,"\n"); | fprintf(ficrespl,"\n"); |
| Line 3942 Interval (in months) between two waves: | Line 4161 Interval (in months) between two waves: |
| /* hstepm=1; aff par mois*/ | /* hstepm=1; aff par mois*/ |
| fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); | |
| for(cptcov=1,k=0;cptcov<=i1;cptcov++){ | for(cptcov=1,k=0;cptcov<=i1;cptcov++){ |
| for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ | for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){ |
| k=k+1; | k=k+1; |
| Line 3959 Interval (in months) between two waves: | Line 4179 Interval (in months) between two waves: |
| p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); | p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); |
| oldm=oldms;savm=savms; | oldm=oldms;savm=savms; |
| hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); | hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); |
| fprintf(ficrespij,"# Age"); | fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); |
| for(i=1; i<=nlstate;i++) | for(i=1; i<=nlstate;i++) |
| for(j=1; j<=nlstate+ndeath;j++) | for(j=1; j<=nlstate+ndeath;j++) |
| fprintf(ficrespij," %1d-%1d",i,j); | fprintf(ficrespij," %1d-%1d",i,j); |
| fprintf(ficrespij,"\n"); | fprintf(ficrespij,"\n"); |
| for (h=0; h<=nhstepm; h++){ | for (h=0; h<=nhstepm; h++){ |
| fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); | fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm ); |
| for(i=1; i<=nlstate;i++) | for(i=1; i<=nlstate;i++) |
| for(j=1; j<=nlstate+ndeath;j++) | for(j=1; j<=nlstate+ndeath;j++) |
| fprintf(ficrespij," %.5f", p3mat[i][j][h]); | fprintf(ficrespij," %.5f", p3mat[i][j][h]); |
| Line 3983 Interval (in months) between two waves: | Line 4203 Interval (in months) between two waves: |
| /*---------- Forecasting ------------------*/ | /*---------- Forecasting ------------------*/ |
| if((stepm == 1) && (strcmp(model,".")==0)){ | /*if((stepm == 1) && (strcmp(model,".")==0)){*/ |
| prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1); | if(prevfcast==1){ |
| if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1); | if(stepm ==1){ |
| } | prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff); |
| else{ | if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1); |
| erreur=108; | } |
| printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); | else{ |
| fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); | erreur=108; |
| printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); | |
| fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); | |
| } | |
| } | } |
| Line 4024 Interval (in months) between two waves: | Line 4247 Interval (in months) between two waves: |
| printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
| fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); | fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv); |
| calagedate=-1; | prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); |
| prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate); | |
| if (mobilav!=0) { | if (mobilav!=0) { |
| mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); | mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); |
| Line 4150 Interval (in months) between two waves: | Line 4371 Interval (in months) between two waves: |
| free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); | free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); |
| free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); | free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); |
| free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); | free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); |
| free_matrix(covar,0,NCOVMAX,1,n); | |
| free_matrix(matcov,1,npar,1,npar); | free_matrix(matcov,1,npar,1,npar); |
| free_vector(delti,1,npar); | free_vector(delti,1,npar); |
| free_matrix(agev,1,maxwav,1,imx); | free_matrix(agev,1,maxwav,1,imx); |