Diff for /imach/src/imach.c between versions 1.8 and 1.149

version 1.8, 2001/05/02 17:54:31 version 1.149, 2014/06/18 15:51:14
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.149  2014/06/18 15:51:14  brouard
   individuals from different ages are interviewed on their health status    Summary: Some fixes in parameter files errors
   or degree of  disability. At least a second wave of interviews    Author: Nicolas Brouard
   ("longitudinal") should  measure each new individual health status.  
   Health expectancies are computed from the transistions observed between    Revision 1.148  2014/06/17 17:38:48  brouard
   waves and are computed for each degree of severity of disability (number    Summary: Nothing new
   of life states). More degrees you consider, more time is necessary to    Author: Brouard
   reach the Maximum Likelihood of the parameters involved in the model.  
   The simplest model is the multinomial logistic model where pij is    Just a new packaging for OS/X version 0.98nS
   the probabibility to be observed in state j at the second wave conditional  
   to be observed in state i at the first wave. Therefore the model is:    Revision 1.147  2014/06/16 10:33:11  brouard
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    *** empty log message ***
   is a covariate. If you want to have a more complex model than "constant and  
   age", you should modify the program where the markup    Revision 1.146  2014/06/16 10:20:28  brouard
     *Covariates have to be included here again* invites you to do it.    Summary: Merge
   More covariates you add, less is the speed of the convergence.    Author: Brouard
   
   The advantage that this computer programme claims, comes from that if the    Merge, before building revised version.
   delay between waves is not identical for each individual, or if some  
   individual missed an interview, the information is not rounded or lost, but    Revision 1.145  2014/06/10 21:23:15  brouard
   taken into account using an interpolation or extrapolation.    Summary: Debugging with valgrind
   hPijx is the probability to be    Author: Nicolas Brouard
   observed in state i at age x+h conditional to the observed state i at age  
   x. The delay 'h' can be split into an exact number (nh*stepm) of    Lot of changes in order to output the results with some covariates
   unobserved intermediate  states. This elementary transition (by month or    After the Edimburgh REVES conference 2014, it seems mandatory to
   quarter trimester, semester or year) is model as a multinomial logistic.    improve the code.
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    No more memory valgrind error but a lot has to be done in order to
   and the contribution of each individual to the likelihood is simply hPijx.    continue the work of splitting the code into subroutines.
     Also, decodemodel has been improved. Tricode is still not
   Also this programme outputs the covariance matrix of the parameters but also    optimal. nbcode should be improved. Documentation has been added in
   of the life expectancies. It also computes the prevalence limits.    the source code.
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.143  2014/01/26 09:45:38  brouard
            Institut national d'études démographiques, Paris.    Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
   This software have been partly granted by Euro-REVES, a concerted action  
   from the European Union.    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   It is copyrighted identically to a GNU software product, ie programme and    (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
   software can be distributed freely for non commercial use. Latest version  
   can be accessed at http://euroreves.ined.fr/imach .    Revision 1.142  2014/01/26 03:57:36  brouard
   **********************************************************************/    Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
    
 #include <math.h>    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
 #include <stdio.h>  
 #include <stdlib.h>    Revision 1.141  2014/01/26 02:42:01  brouard
 #include <unistd.h>    * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
   
 #define MAXLINE 256    Revision 1.140  2011/09/02 10:37:54  brouard
 #define FILENAMELENGTH 80    Summary: times.h is ok with mingw32 now.
 /*#define DEBUG*/  
 #define windows    Revision 1.139  2010/06/14 07:50:17  brouard
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    I remember having already fixed agemin agemax which are pointers now but not cvs saved.
   
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    Revision 1.138  2010/04/30 18:19:40  brouard
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    *** empty log message ***
   
 #define NINTERVMAX 8    Revision 1.137  2010/04/29 18:11:38  brouard
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    (Module): Checking covariates for more complex models
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    than V1+V2. A lot of change to be done. Unstable.
 #define NCOVMAX 8 /* Maximum number of covariates */  
 #define MAXN 20000    Revision 1.136  2010/04/26 20:30:53  brouard
 #define YEARM 12. /* Number of months per year */    (Module): merging some libgsl code. Fixing computation
 #define AGESUP 130    of likelione (using inter/intrapolation if mle = 0) in order to
 #define AGEBASE 40    get same likelihood as if mle=1.
     Some cleaning of code and comments added.
   
 int nvar;    Revision 1.135  2009/10/29 15:33:14  brouard
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int npar=NPARMAX;  
 int nlstate=2; /* Number of live states */    Revision 1.134  2009/10/29 13:18:53  brouard
 int ndeath=1; /* Number of dead states */    (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */  
     Revision 1.133  2009/07/06 10:21:25  brouard
 int *wav; /* Number of waves for this individuual 0 is possible */    just nforces
 int maxwav; /* Maxim number of waves */  
 int jmin, jmax; /* min, max spacing between 2 waves */    Revision 1.132  2009/07/06 08:22:05  brouard
 int mle, weightopt;    Many tings
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */  
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    Revision 1.131  2009/06/20 16:22:47  brouard
 double jmean; /* Mean space between 2 waves */    Some dimensions resccaled
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    Revision 1.130  2009/05/26 06:44:34  brouard
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    (Module): Max Covariate is now set to 20 instead of 8. A
 FILE *ficgp, *fichtm;    lot of cleaning with variables initialized to 0. Trying to make
 FILE *ficreseij;    V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
   char filerese[FILENAMELENGTH];  
  FILE  *ficresvij;    Revision 1.129  2007/08/31 13:49:27  lievre
   char fileresv[FILENAMELENGTH];    Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
  FILE  *ficresvpl;  
   char fileresvpl[FILENAMELENGTH];    Revision 1.128  2006/06/30 13:02:05  brouard
     (Module): Clarifications on computing e.j
 #define NR_END 1  
 #define FREE_ARG char*    Revision 1.127  2006/04/28 18:11:50  brouard
 #define FTOL 1.0e-10    (Module): Yes the sum of survivors was wrong since
     imach-114 because nhstepm was no more computed in the age
 #define NRANSI    loop. Now we define nhstepma in the age loop.
 #define ITMAX 200    (Module): In order to speed up (in case of numerous covariates) we
     compute health expectancies (without variances) in a first step
 #define TOL 2.0e-4    and then all the health expectancies with variances or standard
     deviation (needs data from the Hessian matrices) which slows the
 #define CGOLD 0.3819660    computation.
 #define ZEPS 1.0e-10    In the future we should be able to stop the program is only health
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);    expectancies and graph are needed without standard deviations.
   
 #define GOLD 1.618034    Revision 1.126  2006/04/28 17:23:28  brouard
 #define GLIMIT 100.0    (Module): Yes the sum of survivors was wrong since
 #define TINY 1.0e-20    imach-114 because nhstepm was no more computed in the age
     loop. Now we define nhstepma in the age loop.
 static double maxarg1,maxarg2;    Version 0.98h
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    Revision 1.125  2006/04/04 15:20:31  lievre
      Errors in calculation of health expectancies. Age was not initialized.
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    Forecasting file added.
 #define rint(a) floor(a+0.5)  
     Revision 1.124  2006/03/22 17:13:53  lievre
 static double sqrarg;    Parameters are printed with %lf instead of %f (more numbers after the comma).
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    The log-likelihood is printed in the log file
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  
     Revision 1.123  2006/03/20 10:52:43  brouard
 int imx;    * imach.c (Module): <title> changed, corresponds to .htm file
 int stepm;    name. <head> headers where missing.
 /* Stepm, step in month: minimum step interpolation*/  
     * imach.c (Module): Weights can have a decimal point as for
 int m,nb;    English (a comma might work with a correct LC_NUMERIC environment,
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;    otherwise the weight is truncated).
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;    Modification of warning when the covariates values are not 0 or
 double **pmmij;    1.
     Version 0.98g
 double *weight;  
 int **s; /* Status */    Revision 1.122  2006/03/20 09:45:41  brouard
 double *agedc, **covar, idx;    (Module): Weights can have a decimal point as for
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;    English (a comma might work with a correct LC_NUMERIC environment,
     otherwise the weight is truncated).
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    Modification of warning when the covariates values are not 0 or
 double ftolhess; /* Tolerance for computing hessian */    1.
     Version 0.98g
 /**************** split *************************/  
 static  int split( char *path, char *dirc, char *name )    Revision 1.121  2006/03/16 17:45:01  lievre
 {    * imach.c (Module): Comments concerning covariates added
    char *s;                             /* pointer */  
    int  l1, l2;                         /* length counters */    * imach.c (Module): refinements in the computation of lli if
     status=-2 in order to have more reliable computation if stepm is
    l1 = strlen( path );                 /* length of path */    not 1 month. Version 0.98f
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  
    s = strrchr( path, '\\' );           /* find last / */    Revision 1.120  2006/03/16 15:10:38  lievre
    if ( s == NULL ) {                   /* no directory, so use current */    (Module): refinements in the computation of lli if
 #if     defined(__bsd__)                /* get current working directory */    status=-2 in order to have more reliable computation if stepm is
       extern char       *getwd( );    not 1 month. Version 0.98f
   
       if ( getwd( dirc ) == NULL ) {    Revision 1.119  2006/03/15 17:42:26  brouard
 #else    (Module): Bug if status = -2, the loglikelihood was
       extern char       *getcwd( );    computed as likelihood omitting the logarithm. Version O.98e
   
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {    Revision 1.118  2006/03/14 18:20:07  brouard
 #endif    (Module): varevsij Comments added explaining the second
          return( GLOCK_ERROR_GETCWD );    table of variances if popbased=1 .
       }    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       strcpy( name, path );             /* we've got it */    (Module): Function pstamp added
    } else {                             /* strip direcotry from path */    (Module): Version 0.98d
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */    Revision 1.117  2006/03/14 17:16:22  brouard
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );    (Module): varevsij Comments added explaining the second
       strcpy( name, s );                /* save file name */    table of variances if popbased=1 .
       strncpy( dirc, path, l1 - l2 );   /* now the directory */    (Module): Covariances of eij, ekl added, graphs fixed, new html link.
       dirc[l1-l2] = 0;                  /* add zero */    (Module): Function pstamp added
    }    (Module): Version 0.98d
    l1 = strlen( dirc );                 /* length of directory */  
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }    Revision 1.116  2006/03/06 10:29:27  brouard
    return( 0 );                         /* we're done */    (Module): Variance-covariance wrong links and
 }    varian-covariance of ej. is needed (Saito).
   
     Revision 1.115  2006/02/27 12:17:45  brouard
 /******************************************/    (Module): One freematrix added in mlikeli! 0.98c
   
 void replace(char *s, char*t)    Revision 1.114  2006/02/26 12:57:58  brouard
 {    (Module): Some improvements in processing parameter
   int i;    filename with strsep.
   int lg=20;  
   i=0;    Revision 1.113  2006/02/24 14:20:24  brouard
   lg=strlen(t);    (Module): Memory leaks checks with valgrind and:
   for(i=0; i<= lg; i++) {    datafile was not closed, some imatrix were not freed and on matrix
     (s[i] = t[i]);    allocation too.
     if (t[i]== '\\') s[i]='/';  
   }    Revision 1.112  2006/01/30 09:55:26  brouard
 }    (Module): Back to gnuplot.exe instead of wgnuplot.exe
   
 int nbocc(char *s, char occ)    Revision 1.111  2006/01/25 20:38:18  brouard
 {    (Module): Lots of cleaning and bugs added (Gompertz)
   int i,j=0;    (Module): Comments can be added in data file. Missing date values
   int lg=20;    can be a simple dot '.'.
   i=0;  
   lg=strlen(s);    Revision 1.110  2006/01/25 00:51:50  brouard
   for(i=0; i<= lg; i++) {    (Module): Lots of cleaning and bugs added (Gompertz)
   if  (s[i] == occ ) j++;  
   }    Revision 1.109  2006/01/24 19:37:15  brouard
   return j;    (Module): Comments (lines starting with a #) are allowed in data.
 }  
     Revision 1.108  2006/01/19 18:05:42  lievre
 void cutv(char *u,char *v, char*t, char occ)    Gnuplot problem appeared...
 {    To be fixed
   int i,lg,j,p=0;  
   i=0;    Revision 1.107  2006/01/19 16:20:37  brouard
   for(j=0; j<=strlen(t)-1; j++) {    Test existence of gnuplot in imach path
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  
   }    Revision 1.106  2006/01/19 13:24:36  brouard
     Some cleaning and links added in html output
   lg=strlen(t);  
   for(j=0; j<p; j++) {    Revision 1.105  2006/01/05 20:23:19  lievre
     (u[j] = t[j]);    *** empty log message ***
   }  
      u[p]='\0';    Revision 1.104  2005/09/30 16:11:43  lievre
     (Module): sump fixed, loop imx fixed, and simplifications.
    for(j=0; j<= lg; j++) {    (Module): If the status is missing at the last wave but we know
     if (j>=(p+1))(v[j-p-1] = t[j]);    that the person is alive, then we can code his/her status as -2
   }    (instead of missing=-1 in earlier versions) and his/her
 }    contributions to the likelihood is 1 - Prob of dying from last
     health status (= 1-p13= p11+p12 in the easiest case of somebody in
 /********************** nrerror ********************/    the healthy state at last known wave). Version is 0.98
   
 void nrerror(char error_text[])    Revision 1.103  2005/09/30 15:54:49  lievre
 {    (Module): sump fixed, loop imx fixed, and simplifications.
   fprintf(stderr,"ERREUR ...\n");  
   fprintf(stderr,"%s\n",error_text);    Revision 1.102  2004/09/15 17:31:30  brouard
   exit(1);    Add the possibility to read data file including tab characters.
 }  
 /*********************** vector *******************/    Revision 1.101  2004/09/15 10:38:38  brouard
 double *vector(int nl, int nh)    Fix on curr_time
 {  
   double *v;    Revision 1.100  2004/07/12 18:29:06  brouard
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    Add version for Mac OS X. Just define UNIX in Makefile
   if (!v) nrerror("allocation failure in vector");  
   return v-nl+NR_END;    Revision 1.99  2004/06/05 08:57:40  brouard
 }    *** empty log message ***
   
 /************************ free vector ******************/    Revision 1.98  2004/05/16 15:05:56  brouard
 void free_vector(double*v, int nl, int nh)    New version 0.97 . First attempt to estimate force of mortality
 {    directly from the data i.e. without the need of knowing the health
   free((FREE_ARG)(v+nl-NR_END));    state at each age, but using a Gompertz model: log u =a + b*age .
 }    This is the basic analysis of mortality and should be done before any
     other analysis, in order to test if the mortality estimated from the
 /************************ivector *******************************/    cross-longitudinal survey is different from the mortality estimated
 int *ivector(long nl,long nh)    from other sources like vital statistic data.
 {  
   int *v;    The same imach parameter file can be used but the option for mle should be -3.
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  
   if (!v) nrerror("allocation failure in ivector");    Agnès, who wrote this part of the code, tried to keep most of the
   return v-nl+NR_END;    former routines in order to include the new code within the former code.
 }  
     The output is very simple: only an estimate of the intercept and of
 /******************free ivector **************************/    the slope with 95% confident intervals.
 void free_ivector(int *v, long nl, long nh)  
 {    Current limitations:
   free((FREE_ARG)(v+nl-NR_END));    A) Even if you enter covariates, i.e. with the
 }    model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
     B) There is no computation of Life Expectancy nor Life Table.
 /******************* imatrix *******************************/  
 int **imatrix(long nrl, long nrh, long ncl, long nch)    Revision 1.97  2004/02/20 13:25:42  lievre
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    Version 0.96d. Population forecasting command line is (temporarily)
 {    suppressed.
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  
   int **m;    Revision 1.96  2003/07/15 15:38:55  brouard
      * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
   /* allocate pointers to rows */    rewritten within the same printf. Workaround: many printfs.
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.95  2003/07/08 07:54:34  brouard
   m += NR_END;    * imach.c (Repository):
   m -= nrl;    (Repository): Using imachwizard code to output a more meaningful covariance
      matrix (cov(a12,c31) instead of numbers.
    
   /* allocate rows and set pointers to them */    Revision 1.94  2003/06/27 13:00:02  brouard
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    Just cleaning
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.93  2003/06/25 16:33:55  brouard
   m[nrl] -= ncl;    (Module): On windows (cygwin) function asctime_r doesn't
      exist so I changed back to asctime which exists.
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    (Module): Version 0.96b
    
   /* return pointer to array of pointers to rows */    Revision 1.92  2003/06/25 16:30:45  brouard
   return m;    (Module): On windows (cygwin) function asctime_r doesn't
 }    exist so I changed back to asctime which exists.
   
 /****************** free_imatrix *************************/    Revision 1.91  2003/06/25 15:30:29  brouard
 void free_imatrix(m,nrl,nrh,ncl,nch)    * imach.c (Repository): Duplicated warning errors corrected.
       int **m;    (Repository): Elapsed time after each iteration is now output. It
       long nch,ncl,nrh,nrl;    helps to forecast when convergence will be reached. Elapsed time
      /* free an int matrix allocated by imatrix() */    is stamped in powell.  We created a new html file for the graphs
 {    concerning matrix of covariance. It has extension -cov.htm.
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  
   free((FREE_ARG) (m+nrl-NR_END));    Revision 1.90  2003/06/24 12:34:15  brouard
 }    (Module): Some bugs corrected for windows. Also, when
     mle=-1 a template is output in file "or"mypar.txt with the design
 /******************* matrix *******************************/    of the covariance matrix to be input.
 double **matrix(long nrl, long nrh, long ncl, long nch)  
 {    Revision 1.89  2003/06/24 12:30:52  brouard
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;    (Module): Some bugs corrected for windows. Also, when
   double **m;    mle=-1 a template is output in file "or"mypar.txt with the design
     of the covariance matrix to be input.
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  
   if (!m) nrerror("allocation failure 1 in matrix()");    Revision 1.88  2003/06/23 17:54:56  brouard
   m += NR_END;    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   m -= nrl;  
     Revision 1.87  2003/06/18 12:26:01  brouard
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    Version 0.96
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.86  2003/06/17 20:04:08  brouard
   m[nrl] -= ncl;    (Module): Change position of html and gnuplot routines and added
     routine fileappend.
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;    Revision 1.85  2003/06/17 13:12:43  brouard
 }    * imach.c (Repository): Check when date of death was earlier that
     current date of interview. It may happen when the death was just
 /*************************free matrix ************************/    prior to the death. In this case, dh was negative and likelihood
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    was wrong (infinity). We still send an "Error" but patch by
 {    assuming that the date of death was just one stepm after the
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    interview.
   free((FREE_ARG)(m+nrl-NR_END));    (Repository): Because some people have very long ID (first column)
 }    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 /******************* ma3x *******************************/    truncation)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)    (Repository): No more line truncation errors.
 {  
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;    Revision 1.84  2003/06/13 21:44:43  brouard
   double ***m;    * imach.c (Repository): Replace "freqsummary" at a correct
     place. It differs from routine "prevalence" which may be called
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    many times. Probs is memory consuming and must be used with
   if (!m) nrerror("allocation failure 1 in matrix()");    parcimony.
   m += NR_END;    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
   m -= nrl;  
     Revision 1.83  2003/06/10 13:39:11  lievre
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    *** empty log message ***
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  
   m[nrl] += NR_END;    Revision 1.82  2003/06/05 15:57:20  brouard
   m[nrl] -= ncl;    Add log in  imach.c and  fullversion number is now printed.
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  */
   /*
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));     Interpolated Markov Chain
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;    Short summary of the programme:
   m[nrl][ncl] -= nll;    
   for (j=ncl+1; j<=nch; j++)    This program computes Healthy Life Expectancies from
     m[nrl][j]=m[nrl][j-1]+nlay;    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
      first survey ("cross") where individuals from different ages are
   for (i=nrl+1; i<=nrh; i++) {    interviewed on their health status or degree of disability (in the
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    case of a health survey which is our main interest) -2- at least a
     for (j=ncl+1; j<=nch; j++)    second wave of interviews ("longitudinal") which measure each change
       m[i][j]=m[i][j-1]+nlay;    (if any) in individual health status.  Health expectancies are
   }    computed from the time spent in each health state according to a
   return m;    model. More health states you consider, more time is necessary to reach the
 }    Maximum Likelihood of the parameters involved in the model.  The
     simplest model is the multinomial logistic model where pij is the
 /*************************free ma3x ************************/    probability to be observed in state j at the second wave
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    conditional to be observed in state i at the first wave. Therefore
 {    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    'age' is age and 'sex' is a covariate. If you want to have a more
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    complex model than "constant and age", you should modify the program
   free((FREE_ARG)(m+nrl-NR_END));    where the markup *Covariates have to be included here again* invites
 }    you to do it.  More covariates you add, slower the
     convergence.
 /***************** f1dim *************************/  
 extern int ncom;    The advantage of this computer programme, compared to a simple
 extern double *pcom,*xicom;    multinomial logistic model, is clear when the delay between waves is not
 extern double (*nrfunc)(double []);    identical for each individual. Also, if a individual missed an
      intermediate interview, the information is lost, but taken into
 double f1dim(double x)    account using an interpolation or extrapolation.  
 {  
   int j;    hPijx is the probability to be observed in state i at age x+h
   double f;    conditional to the observed state i at age x. The delay 'h' can be
   double *xt;    split into an exact number (nh*stepm) of unobserved intermediate
      states. This elementary transition (by month, quarter,
   xt=vector(1,ncom);    semester or year) is modelled as a multinomial logistic.  The hPx
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    matrix is simply the matrix product of nh*stepm elementary matrices
   f=(*nrfunc)(xt);    and the contribution of each individual to the likelihood is simply
   free_vector(xt,1,ncom);    hPijx.
   return f;  
 }    Also this programme outputs the covariance matrix of the parameters but also
     of the life expectancies. It also computes the period (stable) prevalence. 
 /*****************brent *************************/    
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 {             Institut national d'études démographiques, Paris.
   int iter;    This software have been partly granted by Euro-REVES, a concerted action
   double a,b,d,etemp;    from the European Union.
   double fu,fv,fw,fx;    It is copyrighted identically to a GNU software product, ie programme and
   double ftemp;    software can be distributed freely for non commercial use. Latest version
   double p,q,r,tol1,tol2,u,v,w,x,xm;    can be accessed at http://euroreves.ined.fr/imach .
   double e=0.0;  
      Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
   a=(ax < cx ? ax : cx);    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
   b=(ax > cx ? ax : cx);    
   x=w=v=bx;    **********************************************************************/
   fw=fv=fx=(*f)(x);  /*
   for (iter=1;iter<=ITMAX;iter++) {    main
     xm=0.5*(a+b);    read parameterfile
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    read datafile
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    concatwav
     printf(".");fflush(stdout);    freqsummary
 #ifdef DEBUG    if (mle >= 1)
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);      mlikeli
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */    print results files
 #endif    if mle==1 
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){       computes hessian
       *xmin=x;    read end of parameter file: agemin, agemax, bage, fage, estepm
       return fx;        begin-prev-date,...
     }    open gnuplot file
     ftemp=fu;    open html file
     if (fabs(e) > tol1) {    period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
       r=(x-w)*(fx-fv);     for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
       q=(x-v)*(fx-fw);                                    | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
       p=(x-v)*q-(x-w)*r;      freexexit2 possible for memory heap.
       q=2.0*(q-r);  
       if (q > 0.0) p = -p;    h Pij x                         | pij_nom  ficrestpij
       q=fabs(q);     # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
       etemp=e;         1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
       e=d;         1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))  
         d=CGOLD*(e=(x >= xm ? a-x : b-x));         1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
       else {         1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
         d=p/q;    variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
         u=x+d;     Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
         if (u-a < tol2 || b-u < tol2)     Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
           d=SIGN(tol1,xm-x);  
       }    forecasting if prevfcast==1 prevforecast call prevalence()
     } else {    health expectancies
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    Variance-covariance of DFLE
     }    prevalence()
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));     movingaverage()
     fu=(*f)(u);    varevsij() 
     if (fu <= fx) {    if popbased==1 varevsij(,popbased)
       if (u >= x) a=x; else b=x;    total life expectancies
       SHFT(v,w,x,u)    Variance of period (stable) prevalence
         SHFT(fv,fw,fx,fu)   end
         } else {  */
           if (u < x) a=u; else b=u;  
           if (fu <= fw || w == x) {  
             v=w;  
             w=u;   
             fv=fw;  #include <math.h>
             fw=fu;  #include <stdio.h>
           } else if (fu <= fv || v == x || v == w) {  #include <stdlib.h>
             v=u;  #include <string.h>
             fv=fu;  #include <unistd.h>
           }  
         }  #include <limits.h>
   }  #include <sys/types.h>
   nrerror("Too many iterations in brent");  #include <sys/stat.h>
   *xmin=x;  #include <errno.h>
   return fx;  extern int errno;
 }  
   #ifdef LINUX
 /****************** mnbrak ***********************/  #include <time.h>
   #include "timeval.h"
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  #else
             double (*func)(double))  #include <sys/time.h>
 {  #endif
   double ulim,u,r,q, dum;  
   double fu;  #ifdef GSL
    #include <gsl/gsl_errno.h>
   *fa=(*func)(*ax);  #include <gsl/gsl_multimin.h>
   *fb=(*func)(*bx);  #endif
   if (*fb > *fa) {  
     SHFT(dum,*ax,*bx,dum)  /* #include <libintl.h> */
       SHFT(dum,*fb,*fa,dum)  /* #define _(String) gettext (String) */
       }  
   *cx=(*bx)+GOLD*(*bx-*ax);  #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  #define GNUPLOTPROGRAM "gnuplot"
     r=(*bx-*ax)*(*fb-*fc);  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
     q=(*bx-*cx)*(*fb-*fa);  #define FILENAMELENGTH 132
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     ulim=(*bx)+GLIMIT*(*cx-*bx);  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
     } else if ((*cx-u)*(u-ulim) > 0.0) {  #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
       fu=(*func)(u);  
       if (fu < *fc) {  #define NINTERVMAX 8
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))  #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
           SHFT(*fb,*fc,fu,(*func)(u))  #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
           }  #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
       u=ulim;  #define MAXN 20000
       fu=(*func)(u);  #define YEARM 12. /**< Number of months per year */
     } else {  #define AGESUP 130
       u=(*cx)+GOLD*(*cx-*bx);  #define AGEBASE 40
       fu=(*func)(u);  #define AGEGOMP 10. /**< Minimal age for Gompertz adjustment */
     }  #ifdef UNIX
     SHFT(*ax,*bx,*cx,u)  #define DIRSEPARATOR '/'
       SHFT(*fa,*fb,*fc,fu)  #define CHARSEPARATOR "/"
       }  #define ODIRSEPARATOR '\\'
 }  #else
   #define DIRSEPARATOR '\\'
 /*************** linmin ************************/  #define CHARSEPARATOR "\\"
   #define ODIRSEPARATOR '/'
 int ncom;  #endif
 double *pcom,*xicom;  
 double (*nrfunc)(double []);  /* $Id$ */
    /* $State$ */
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))  
 {  char version[]="Imach version 0.98nT, January 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
   double brent(double ax, double bx, double cx,  char fullversion[]="$Revision$ $Date$"; 
                double (*f)(double), double tol, double *xmin);  char strstart[80];
   double f1dim(double x);  char optionfilext[10], optionfilefiname[FILENAMELENGTH];
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,  int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
               double *fc, double (*func)(double));  int nvar=0, nforce=0; /* Number of variables, number of forces */
   int j;  /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
   double xx,xmin,bx,ax;  int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
   double fx,fb,fa;  int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
    int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
   ncom=n;  int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
   pcom=vector(1,n);  int cptcovprodnoage=0; /**< Number of covariate products without age */   
   xicom=vector(1,n);  int cptcoveff=0; /* Total number of covariates to vary for printing results */
   nrfunc=func;  int cptcov=0; /* Working variable */
   for (j=1;j<=n;j++) {  int npar=NPARMAX;
     pcom[j]=p[j];  int nlstate=2; /* Number of live states */
     xicom[j]=xi[j];  int ndeath=1; /* Number of dead states */
   }  int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
   ax=0.0;  int popbased=0;
   xx=1.0;  
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  int *wav; /* Number of waves for this individuual 0 is possible */
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);  int maxwav=0; /* Maxim number of waves */
 #ifdef DEBUG  int jmin=0, jmax=0; /* min, max spacing between 2 waves */
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
 #endif  int gipmx=0, gsw=0; /* Global variables on the number of contributions 
   for (j=1;j<=n;j++) {                     to the likelihood and the sum of weights (done by funcone)*/
     xi[j] *= xmin;  int mle=1, weightopt=0;
     p[j] += xi[j];  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   }  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   free_vector(xicom,1,n);  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
   free_vector(pcom,1,n);             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 }  double jmean=1; /* Mean space between 2 waves */
   double **matprod2(); /* test */
 /*************** powell ************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
             double (*func)(double []))  /*FILE *fic ; */ /* Used in readdata only */
 {  FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   void linmin(double p[], double xi[], int n, double *fret,  FILE *ficlog, *ficrespow;
               double (*func)(double []));  int globpr=0; /* Global variable for printing or not */
   int i,ibig,j;  double fretone; /* Only one call to likelihood */
   double del,t,*pt,*ptt,*xit;  long ipmx=0; /* Number of contributions */
   double fp,fptt;  double sw; /* Sum of weights */
   double *xits;  char filerespow[FILENAMELENGTH];
   pt=vector(1,n);  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
   ptt=vector(1,n);  FILE *ficresilk;
   xit=vector(1,n);  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   xits=vector(1,n);  FILE *ficresprobmorprev;
   *fret=(*func)(p);  FILE *fichtm, *fichtmcov; /* Html File */
   for (j=1;j<=n;j++) pt[j]=p[j];  FILE *ficreseij;
   for (*iter=1;;++(*iter)) {  char filerese[FILENAMELENGTH];
     fp=(*fret);  FILE *ficresstdeij;
     ibig=0;  char fileresstde[FILENAMELENGTH];
     del=0.0;  FILE *ficrescveij;
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  char filerescve[FILENAMELENGTH];
     for (i=1;i<=n;i++)  FILE  *ficresvij;
       printf(" %d %.12f",i, p[i]);  char fileresv[FILENAMELENGTH];
     printf("\n");  FILE  *ficresvpl;
     for (i=1;i<=n;i++) {  char fileresvpl[FILENAMELENGTH];
       for (j=1;j<=n;j++) xit[j]=xi[j][i];  char title[MAXLINE];
       fptt=(*fret);  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #ifdef DEBUG  char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
       printf("fret=%lf \n",*fret);  char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
 #endif  char command[FILENAMELENGTH];
       printf("%d",i);fflush(stdout);  int  outcmd=0;
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
         del=fabs(fptt-(*fret));  
         ibig=i;  char filelog[FILENAMELENGTH]; /* Log file */
       }  char filerest[FILENAMELENGTH];
 #ifdef DEBUG  char fileregp[FILENAMELENGTH];
       printf("%d %.12e",i,(*fret));  char popfile[FILENAMELENGTH];
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
         printf(" x(%d)=%.12e",j,xit[j]);  
       }  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
       for(j=1;j<=n;j++)  struct timezone tzp;
         printf(" p=%.12e",p[j]);  extern int gettimeofday();
       printf("\n");  struct tm tmg, tm, tmf, *gmtime(), *localtime();
 #endif  long time_value;
     }  extern long time();
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {  char strcurr[80], strfor[80];
 #ifdef DEBUG  
       int k[2],l;  char *endptr;
       k[0]=1;  long lval;
       k[1]=-1;  double dval;
       printf("Max: %.12e",(*func)(p));  
       for (j=1;j<=n;j++)  #define NR_END 1
         printf(" %.12e",p[j]);  #define FREE_ARG char*
       printf("\n");  #define FTOL 1.0e-10
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  #define NRANSI 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  #define ITMAX 200 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  
         }  #define TOL 2.0e-4 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));  
       }  #define CGOLD 0.3819660 
 #endif  #define ZEPS 1.0e-10 
   #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   
       free_vector(xit,1,n);  #define GOLD 1.618034 
       free_vector(xits,1,n);  #define GLIMIT 100.0 
       free_vector(ptt,1,n);  #define TINY 1.0e-20 
       free_vector(pt,1,n);  
       return;  static double maxarg1,maxarg2;
     }  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
     for (j=1;j<=n;j++) {    
       ptt[j]=2.0*p[j]-pt[j];  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
       xit[j]=p[j]-pt[j];  #define rint(a) floor(a+0.5)
       pt[j]=p[j];  
     }  static double sqrarg;
     fptt=(*func)(ptt);  #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
     if (fptt < fp) {  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);  int agegomp= AGEGOMP;
       if (t < 0.0) {  
         linmin(p,xit,n,fret,func);  int imx; 
         for (j=1;j<=n;j++) {  int stepm=1;
           xi[j][ibig]=xi[j][n];  /* Stepm, step in month: minimum step interpolation*/
           xi[j][n]=xit[j];  
         }  int estepm;
 #ifdef DEBUG  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);  
         for(j=1;j<=n;j++)  int m,nb;
           printf(" %.12e",xit[j]);  long *num;
         printf("\n");  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
 #endif  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
       }  double **pmmij, ***probs;
     }  double *ageexmed,*agecens;
   }  double dateintmean=0;
 }  
   double *weight;
 /**** Prevalence limit ****************/  int **s; /* Status */
   double *agedc;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)  double  **covar; /**< covar[j,i], value of jth covariate for individual i,
 {                    * covar=matrix(0,NCOVMAX,1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit                    * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
      matrix by transitions matrix until convergence is reached */  double  idx; 
   int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
   int i, ii,j,k;  int *Ndum; /** Freq of modality (tricode */
   double min, max, maxmin, maxmax,sumnew=0.;  int **codtab; /**< codtab=imatrix(1,100,1,10); */
   double **matprod2();  int **Tvard, *Tprod, cptcovprod, *Tvaraff;
   double **out, cov[NCOVMAX], **pmij();  double *lsurv, *lpop, *tpop;
   double **newm;  
   double agefin, delaymax=50 ; /* Max number of years to converge */  double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
   double ftolhess; /**< Tolerance for computing hessian */
   for (ii=1;ii<=nlstate+ndeath;ii++)  
     for (j=1;j<=nlstate+ndeath;j++){  /**************** split *************************/
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     }  {
     /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
    cov[1]=1.;       the name of the file (name), its extension only (ext) and its first part of the name (finame)
      */ 
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */    char  *ss;                            /* pointer */
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){    int   l1, l2;                         /* length counters */
     newm=savm;  
     /* Covariates have to be included here again */    l1 = strlen(path );                   /* length of path */
      cov[2]=agefin;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
      ss= strrchr( path, DIRSEPARATOR );            /* find last / */
       for (k=1; k<=cptcovn;k++) {    if ( ss == NULL ) {                   /* no directory, so determine current directory */
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];      strcpy( name, path );               /* we got the fullname name because no directory */
         /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
       }        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
       for (k=1; k<=cptcovage;k++)      /* get current working directory */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];      /*    extern  char* getcwd ( char *buf , int len);*/
       for (k=1; k<=cptcovprod;k++)      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        return( GLOCK_ERROR_GETCWD );
       }
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/      /* got dirc from getcwd*/
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/      printf(" DIRC = %s \n",dirc);
     } else {                              /* strip direcotry from path */
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);      ss++;                               /* after this, the filename */
       l2 = strlen( ss );                  /* length of filename */
     savm=oldm;      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
     oldm=newm;      strcpy( name, ss );         /* save file name */
     maxmax=0.;      strncpy( dirc, path, l1 - l2 );     /* now the directory */
     for(j=1;j<=nlstate;j++){      dirc[l1-l2] = 0;                    /* add zero */
       min=1.;      printf(" DIRC2 = %s \n",dirc);
       max=0.;    }
       for(i=1; i<=nlstate; i++) {    /* We add a separator at the end of dirc if not exists */
         sumnew=0;    l1 = strlen( dirc );                  /* length of directory */
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];    if( dirc[l1-1] != DIRSEPARATOR ){
         prlim[i][j]= newm[i][j]/(1-sumnew);      dirc[l1] =  DIRSEPARATOR;
         max=FMAX(max,prlim[i][j]);      dirc[l1+1] = 0; 
         min=FMIN(min,prlim[i][j]);      printf(" DIRC3 = %s \n",dirc);
       }    }
       maxmin=max-min;    ss = strrchr( name, '.' );            /* find last / */
       maxmax=FMAX(maxmax,maxmin);    if (ss >0){
     }      ss++;
     if(maxmax < ftolpl){      strcpy(ext,ss);                     /* save extension */
       return prlim;      l1= strlen( name);
     }      l2= strlen(ss)+1;
   }      strncpy( finame, name, l1-l2);
 }      finame[l1-l2]= 0;
     }
 /*************** transition probabilities **********/  
     return( 0 );                          /* we're done */
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )  }
 {  
   double s1, s2;  
   /*double t34;*/  /******************************************/
   int i,j,j1, nc, ii, jj;  
   void replace_back_to_slash(char *s, char*t)
     for(i=1; i<= nlstate; i++){  {
     for(j=1; j<i;j++){    int i;
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){    int lg=0;
         /*s2 += param[i][j][nc]*cov[nc];*/    i=0;
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];    lg=strlen(t);
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    for(i=0; i<= lg; i++) {
       }      (s[i] = t[i]);
       ps[i][j]=s2;      if (t[i]== '\\') s[i]='/';
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    }
     }  }
     for(j=i+1; j<=nlstate+ndeath;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  char *trimbb(char *out, char *in)
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/    char *s;
       }    s=out;
       ps[i][j]=s2;    while (*in != '\0'){
     }      while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
   }        in++;
   for(i=1; i<= nlstate; i++){      }
      s1=0;      *out++ = *in++;
     for(j=1; j<i; j++)    }
       s1+=exp(ps[i][j]);    *out='\0';
     for(j=i+1; j<=nlstate+ndeath; j++)    return s;
       s1+=exp(ps[i][j]);  }
     ps[i][i]=1./(s1+1.);  
     for(j=1; j<i; j++)  char *cutl(char *blocc, char *alocc, char *in, char occ)
       ps[i][j]= exp(ps[i][j])*ps[i][i];  {
     for(j=i+1; j<=nlstate+ndeath; j++)    /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
       ps[i][j]= exp(ps[i][j])*ps[i][i];       and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */       gives blocc="abcdef2ghi" and alocc="j".
   } /* end i */       If occ is not found blocc is null and alocc is equal to in. Returns blocc
     */
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){    char *s, *t, *bl;
     for(jj=1; jj<= nlstate+ndeath; jj++){    t=in;s=in;
       ps[ii][jj]=0;    while ((*in != occ) && (*in != '\0')){
       ps[ii][ii]=1;      *alocc++ = *in++;
     }    }
   }    if( *in == occ){
       *(alocc)='\0';
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){      s=++in;
     for(jj=1; jj<= nlstate+ndeath; jj++){    }
      printf("%lf ",ps[ii][jj]);   
    }    if (s == t) {/* occ not found */
     printf("\n ");      *(alocc-(in-s))='\0';
     }      in=s;
     printf("\n ");printf("%lf ",cov[2]);*/    }
 /*    while ( *in != '\0'){
   for(i=1; i<= npar; i++) printf("%f ",x[i]);      *blocc++ = *in++;
   goto end;*/    }
     return ps;  
 }    *blocc='\0';
     return t;
 /**************** Product of 2 matrices ******************/  }
   char *cutv(char *blocc, char *alocc, char *in, char occ)
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)  {
 {    /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times       and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */       gives blocc="abcdef2ghi" and alocc="j".
   /* in, b, out are matrice of pointers which should have been initialized       If occ is not found blocc is null and alocc is equal to in. Returns alocc
      before: only the contents of out is modified. The function returns    */
      a pointer to pointers identical to out */    char *s, *t;
   long i, j, k;    t=in;s=in;
   for(i=nrl; i<= nrh; i++)    while (*in != '\0'){
     for(k=ncolol; k<=ncoloh; k++)      while( *in == occ){
       for(j=ncl,out[i][k]=0.; j<=nch; j++)        *blocc++ = *in++;
         out[i][k] +=in[i][j]*b[j][k];        s=in;
       }
   return out;      *blocc++ = *in++;
 }    }
     if (s == t) /* occ not found */
       *(blocc-(in-s))='\0';
 /************* Higher Matrix Product ***************/    else
       *(blocc-(in-s)-1)='\0';
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    in=s;
 {    while ( *in != '\0'){
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month      *alocc++ = *in++;
      duration (i.e. until    }
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.  
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    *alocc='\0';
      (typically every 2 years instead of every month which is too big).    return s;
      Model is determined by parameters x and covariates have to be  }
      included manually here.  
   int nbocc(char *s, char occ)
      */  {
     int i,j=0;
   int i, j, d, h, k;    int lg=20;
   double **out, cov[NCOVMAX];    i=0;
   double **newm;    lg=strlen(s);
     for(i=0; i<= lg; i++) {
   /* Hstepm could be zero and should return the unit matrix */    if  (s[i] == occ ) j++;
   for (i=1;i<=nlstate+ndeath;i++)    }
     for (j=1;j<=nlstate+ndeath;j++){    return j;
       oldm[i][j]=(i==j ? 1.0 : 0.0);  }
       po[i][j][0]=(i==j ? 1.0 : 0.0);  
     }  /* void cutv(char *u,char *v, char*t, char occ) */
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  /* { */
   for(h=1; h <=nhstepm; h++){  /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
     for(d=1; d <=hstepm; d++){  /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
       newm=savm;  /*      gives u="abcdef2ghi" and v="j" *\/ */
       /* Covariates have to be included here again */  /*   int i,lg,j,p=0; */
       cov[1]=1.;  /*   i=0; */
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;  /*   lg=strlen(t); */
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  /*   for(j=0; j<=lg-1; j++) { */
 for (k=1; k<=cptcovage;k++)  /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*   } */
    for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  /*   for(j=0; j<p; j++) { */
   /*     (u[j] = t[j]); */
   /*   } */
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/  /*      u[p]='\0'; */
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/  
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  /*    for(j=0; j<= lg; j++) { */
                    pmij(pmmij,cov,ncovmodel,x,nlstate));  /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
       savm=oldm;  /*   } */
       oldm=newm;  /* } */
     }  
     for(i=1; i<=nlstate+ndeath; i++)  /********************** nrerror ********************/
       for(j=1;j<=nlstate+ndeath;j++) {  
         po[i][j][h]=newm[i][j];  void nrerror(char error_text[])
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);  {
          */    fprintf(stderr,"ERREUR ...\n");
       }    fprintf(stderr,"%s\n",error_text);
   } /* end h */    exit(EXIT_FAILURE);
   return po;  }
 }  /*********************** vector *******************/
   double *vector(int nl, int nh)
   {
 /*************** log-likelihood *************/    double *v;
 double func( double *x)    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 {    if (!v) nrerror("allocation failure in vector");
   int i, ii, j, k, mi, d, kk;    return v-nl+NR_END;
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  }
   double **out;  
   double sw; /* Sum of weights */  /************************ free vector ******************/
   double lli; /* Individual log likelihood */  void free_vector(double*v, int nl, int nh)
   long ipmx;  {
   /*extern weight */    free((FREE_ARG)(v+nl-NR_END));
   /* We are differentiating ll according to initial status */  }
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  
   /*for(i=1;i<imx;i++)  /************************ivector *******************************/
     printf(" %d\n",s[4][i]);  int *ivector(long nl,long nh)
   */  {
   cov[1]=1.;    int *v;
     v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
   for(k=1; k<=nlstate; k++) ll[k]=0.;    if (!v) nrerror("allocation failure in ivector");
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){    return v-nl+NR_END;
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];  }
     for(mi=1; mi<= wav[i]-1; mi++){  
       for (ii=1;ii<=nlstate+ndeath;ii++)  /******************free ivector **************************/
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);  void free_ivector(int *v, long nl, long nh)
       for(d=0; d<dh[mi][i]; d++){  {
         newm=savm;    free((FREE_ARG)(v+nl-NR_END));
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  }
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];  /************************lvector *******************************/
         }  long *lvector(long nl,long nh)
          {
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,    long *v;
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
         savm=oldm;    if (!v) nrerror("allocation failure in ivector");
         oldm=newm;    return v-nl+NR_END;
          }
          
       } /* end mult */  /******************free lvector **************************/
        void free_lvector(long *v, long nl, long nh)
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  {
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/    free((FREE_ARG)(v+nl-NR_END));
       ipmx +=1;  }
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  /******************* imatrix *******************************/
     } /* end of wave */  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   } /* end of individual */       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */    int **m; 
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */    
   return -l;    /* allocate pointers to rows */ 
 }    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
     if (!m) nrerror("allocation failure 1 in matrix()"); 
     m += NR_END; 
 /*********** Maximum Likelihood Estimation ***************/    m -= nrl; 
     
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    
 {    /* allocate rows and set pointers to them */ 
   int i,j, iter;    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   double **xi,*delti;    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   double fret;    m[nrl] += NR_END; 
   xi=matrix(1,npar,1,npar);    m[nrl] -= ncl; 
   for (i=1;i<=npar;i++)    
     for (j=1;j<=npar;j++)    for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
       xi[i][j]=(i==j ? 1.0 : 0.0);    
   printf("Powell\n");    /* return pointer to array of pointers to rows */ 
   powell(p,xi,npar,ftol,&iter,&fret,func);    return m; 
   } 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));  
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));  /****************** free_imatrix *************************/
   void free_imatrix(m,nrl,nrh,ncl,nch)
 }        int **m;
         long nch,ncl,nrh,nrl; 
 /**** Computes Hessian and covariance matrix ***/       /* free an int matrix allocated by imatrix() */ 
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))  { 
 {    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   double  **a,**y,*x,pd;    free((FREE_ARG) (m+nrl-NR_END)); 
   double **hess;  } 
   int i, j,jk;  
   int *indx;  /******************* matrix *******************************/
   double **matrix(long nrl, long nrh, long ncl, long nch)
   double hessii(double p[], double delta, int theta, double delti[]);  {
   double hessij(double p[], double delti[], int i, int j);    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   void lubksb(double **a, int npar, int *indx, double b[]) ;    double **m;
   void ludcmp(double **a, int npar, int *indx, double *d) ;  
     m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
   hess=matrix(1,npar,1,npar);    m += NR_END;
     m -= nrl;
   printf("\nCalculation of the hessian matrix. Wait...\n");  
   for (i=1;i<=npar;i++){    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
     printf("%d",i);fflush(stdout);    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     hess[i][i]=hessii(p,ftolhess,i,delti);    m[nrl] += NR_END;
     /*printf(" %f ",p[i]);*/    m[nrl] -= ncl;
   }  
     for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (i=1;i<=npar;i++) {    return m;
     for (j=1;j<=npar;j++)  {    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
       if (j>i) {  m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
         printf(".%d%d",i,j);fflush(stdout);  that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
         hess[i][j]=hessij(p,delti,i,j);     */
         hess[j][i]=hess[i][j];  }
       }  
     }  /*************************free matrix ************************/
   }  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   printf("\n");  {
     free((FREE_ARG)(m[nrl]+ncl-NR_END));
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");    free((FREE_ARG)(m+nrl-NR_END));
    }
   a=matrix(1,npar,1,npar);  
   y=matrix(1,npar,1,npar);  /******************* ma3x *******************************/
   x=vector(1,npar);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
   indx=ivector(1,npar);  {
   for (i=1;i<=npar;i++)    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];    double ***m;
   ludcmp(a,npar,indx,&pd);  
     m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   for (j=1;j<=npar;j++) {    if (!m) nrerror("allocation failure 1 in matrix()");
     for (i=1;i<=npar;i++) x[i]=0;    m += NR_END;
     x[j]=1;    m -= nrl;
     lubksb(a,npar,indx,x);  
     for (i=1;i<=npar;i++){    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
       matcov[i][j]=x[i];    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
     }    m[nrl] += NR_END;
   }    m[nrl] -= ncl;
   
   printf("\n#Hessian matrix#\n");    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (i=1;i<=npar;i++) {  
     for (j=1;j<=npar;j++) {    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
       printf("%.3e ",hess[i][j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
     }    m[nrl][ncl] += NR_END;
     printf("\n");    m[nrl][ncl] -= nll;
   }    for (j=ncl+1; j<=nch; j++) 
       m[nrl][j]=m[nrl][j-1]+nlay;
   /* Recompute Inverse */    
   for (i=1;i<=npar;i++)    for (i=nrl+1; i<=nrh; i++) {
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
   ludcmp(a,npar,indx,&pd);      for (j=ncl+1; j<=nch; j++) 
         m[i][j]=m[i][j-1]+nlay;
   /*  printf("\n#Hessian matrix recomputed#\n");    }
     return m; 
   for (j=1;j<=npar;j++) {    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
     for (i=1;i<=npar;i++) x[i]=0;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
     x[j]=1;    */
     lubksb(a,npar,indx,x);  }
     for (i=1;i<=npar;i++){  
       y[i][j]=x[i];  /*************************free ma3x ************************/
       printf("%.3e ",y[i][j]);  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
     }  {
     printf("\n");    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   */    free((FREE_ARG)(m+nrl-NR_END));
   }
   free_matrix(a,1,npar,1,npar);  
   free_matrix(y,1,npar,1,npar);  /*************** function subdirf ***********/
   free_vector(x,1,npar);  char *subdirf(char fileres[])
   free_ivector(indx,1,npar);  {
   free_matrix(hess,1,npar,1,npar);    /* Caution optionfilefiname is hidden */
     strcpy(tmpout,optionfilefiname);
     strcat(tmpout,"/"); /* Add to the right */
 }    strcat(tmpout,fileres);
     return tmpout;
 /*************** hessian matrix ****************/  }
 double hessii( double x[], double delta, int theta, double delti[])  
 {  /*************** function subdirf2 ***********/
   int i;  char *subdirf2(char fileres[], char *preop)
   int l=1, lmax=20;  {
   double k1,k2;    
   double p2[NPARMAX+1];    /* Caution optionfilefiname is hidden */
   double res;    strcpy(tmpout,optionfilefiname);
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;    strcat(tmpout,"/");
   double fx;    strcat(tmpout,preop);
   int k=0,kmax=10;    strcat(tmpout,fileres);
   double l1;    return tmpout;
   }
   fx=func(x);  
   for (i=1;i<=npar;i++) p2[i]=x[i];  /*************** function subdirf3 ***********/
   for(l=0 ; l <=lmax; l++){  char *subdirf3(char fileres[], char *preop, char *preop2)
     l1=pow(10,l);  {
     delts=delt;    
     for(k=1 ; k <kmax; k=k+1){    /* Caution optionfilefiname is hidden */
       delt = delta*(l1*k);    strcpy(tmpout,optionfilefiname);
       p2[theta]=x[theta] +delt;    strcat(tmpout,"/");
       k1=func(p2)-fx;    strcat(tmpout,preop);
       p2[theta]=x[theta]-delt;    strcat(tmpout,preop2);
       k2=func(p2)-fx;    strcat(tmpout,fileres);
       /*res= (k1-2.0*fx+k2)/delt/delt; */    return tmpout;
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  }
        
 #ifdef DEBUG  /***************** f1dim *************************/
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);  extern int ncom; 
 #endif  extern double *pcom,*xicom;
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */  extern double (*nrfunc)(double []); 
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){   
         k=kmax;  double f1dim(double x) 
       }  { 
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */    int j; 
         k=kmax; l=lmax*10.;    double f;
       }    double *xt; 
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){   
         delts=delt;    xt=vector(1,ncom); 
       }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     }    f=(*nrfunc)(xt); 
   }    free_vector(xt,1,ncom); 
   delti[theta]=delts;    return f; 
   return res;  } 
    
 }  /*****************brent *************************/
   double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
 double hessij( double x[], double delti[], int thetai,int thetaj)  { 
 {    int iter; 
   int i;    double a,b,d,etemp;
   int l=1, l1, lmax=20;    double fu,fv,fw,fx;
   double k1,k2,k3,k4,res,fx;    double ftemp;
   double p2[NPARMAX+1];    double p,q,r,tol1,tol2,u,v,w,x,xm; 
   int k;    double e=0.0; 
    
   fx=func(x);    a=(ax < cx ? ax : cx); 
   for (k=1; k<=2; k++) {    b=(ax > cx ? ax : cx); 
     for (i=1;i<=npar;i++) p2[i]=x[i];    x=w=v=bx; 
     p2[thetai]=x[thetai]+delti[thetai]/k;    fw=fv=fx=(*f)(x); 
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;    for (iter=1;iter<=ITMAX;iter++) { 
     k1=func(p2)-fx;      xm=0.5*(a+b); 
        tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     p2[thetai]=x[thetai]+delti[thetai]/k;      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      printf(".");fflush(stdout);
     k2=func(p2)-fx;      fprintf(ficlog,".");fflush(ficlog);
    #ifdef DEBUG
     p2[thetai]=x[thetai]-delti[thetai]/k;      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
     k3=func(p2)-fx;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
    #endif
     p2[thetai]=x[thetai]-delti[thetai]/k;      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;        *xmin=x; 
     k4=func(p2)-fx;        return fx; 
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */      } 
 #ifdef DEBUG      ftemp=fu;
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      if (fabs(e) > tol1) { 
 #endif        r=(x-w)*(fx-fv); 
   }        q=(x-v)*(fx-fw); 
   return res;        p=(x-v)*q-(x-w)*r; 
 }        q=2.0*(q-r); 
         if (q > 0.0) p = -p; 
 /************** Inverse of matrix **************/        q=fabs(q); 
 void ludcmp(double **a, int n, int *indx, double *d)        etemp=e; 
 {        e=d; 
   int i,imax,j,k;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double big,dum,sum,temp;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double *vv;        else { 
            d=p/q; 
   vv=vector(1,n);          u=x+d; 
   *d=1.0;          if (u-a < tol2 || b-u < tol2) 
   for (i=1;i<=n;i++) {            d=SIGN(tol1,xm-x); 
     big=0.0;        } 
     for (j=1;j<=n;j++)      } else { 
       if ((temp=fabs(a[i][j])) > big) big=temp;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");      } 
     vv[i]=1.0/big;      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   }      fu=(*f)(u); 
   for (j=1;j<=n;j++) {      if (fu <= fx) { 
     for (i=1;i<j;i++) {        if (u >= x) a=x; else b=x; 
       sum=a[i][j];        SHFT(v,w,x,u) 
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          SHFT(fv,fw,fx,fu) 
       a[i][j]=sum;          } else { 
     }            if (u < x) a=u; else b=u; 
     big=0.0;            if (fu <= fw || w == x) { 
     for (i=j;i<=n;i++) {              v=w; 
       sum=a[i][j];              w=u; 
       for (k=1;k<j;k++)              fv=fw; 
         sum -= a[i][k]*a[k][j];              fw=fu; 
       a[i][j]=sum;            } else if (fu <= fv || v == x || v == w) { 
       if ( (dum=vv[i]*fabs(sum)) >= big) {              v=u; 
         big=dum;              fv=fu; 
         imax=i;            } 
       }          } 
     }    } 
     if (j != imax) {    nrerror("Too many iterations in brent"); 
       for (k=1;k<=n;k++) {    *xmin=x; 
         dum=a[imax][k];    return fx; 
         a[imax][k]=a[j][k];  } 
         a[j][k]=dum;  
       }  /****************** mnbrak ***********************/
       *d = -(*d);  
       vv[imax]=vv[j];  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
     }              double (*func)(double)) 
     indx[j]=imax;  { 
     if (a[j][j] == 0.0) a[j][j]=TINY;    double ulim,u,r,q, dum;
     if (j != n) {    double fu; 
       dum=1.0/(a[j][j]);   
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
   }    if (*fb > *fa) { 
   free_vector(vv,1,n);  /* Doesn't work */      SHFT(dum,*ax,*bx,dum) 
 ;        SHFT(dum,*fb,*fa,dum) 
 }        } 
     *cx=(*bx)+GOLD*(*bx-*ax); 
 void lubksb(double **a, int n, int *indx, double b[])    *fc=(*func)(*cx); 
 {    while (*fb > *fc) { 
   int i,ii=0,ip,j;      r=(*bx-*ax)*(*fb-*fc); 
   double sum;      q=(*bx-*cx)*(*fb-*fa); 
        u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
   for (i=1;i<=n;i++) {        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
     ip=indx[i];      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     sum=b[ip];      if ((*bx-u)*(u-*cx) > 0.0) { 
     b[ip]=b[i];        fu=(*func)(u); 
     if (ii)      } else if ((*cx-u)*(u-ulim) > 0.0) { 
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];        fu=(*func)(u); 
     else if (sum) ii=i;        if (fu < *fc) { 
     b[i]=sum;          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
   }            SHFT(*fb,*fc,fu,(*func)(u)) 
   for (i=n;i>=1;i--) {            } 
     sum=b[i];      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        u=ulim; 
     b[i]=sum/a[i][i];        fu=(*func)(u); 
   }      } else { 
 }        u=(*cx)+GOLD*(*cx-*bx); 
         fu=(*func)(u); 
 /************ Frequencies ********************/      } 
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)      SHFT(*ax,*bx,*cx,u) 
 {  /* Some frequencies */        SHFT(*fa,*fb,*fc,fu) 
          } 
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;  } 
   double ***freq; /* Frequencies */  
   double *pp;  /*************** linmin ************************/
   double pos;  
   FILE *ficresp;  int ncom; 
   char fileresp[FILENAMELENGTH];  double *pcom,*xicom;
   double (*nrfunc)(double []); 
   pp=vector(1,nlstate);   
   void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
   strcpy(fileresp,"p");  { 
   strcat(fileresp,fileres);    double brent(double ax, double bx, double cx, 
   if((ficresp=fopen(fileresp,"w"))==NULL) {                 double (*f)(double), double tol, double *xmin); 
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double f1dim(double x); 
     exit(0);    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
   }                double *fc, double (*func)(double)); 
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    int j; 
   j1=0;    double xx,xmin,bx,ax; 
     double fx,fb,fa;
   j=cptcoveff;   
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    ncom=n; 
     pcom=vector(1,n); 
   for(k1=1; k1<=j;k1++){    xicom=vector(1,n); 
    for(i1=1; i1<=ncodemax[k1];i1++){    nrfunc=func; 
        j1++;    for (j=1;j<=n;j++) { 
        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);      pcom[j]=p[j]; 
          scanf("%d", i);*/      xicom[j]=xi[j]; 
         for (i=-1; i<=nlstate+ndeath; i++)      } 
          for (jk=-1; jk<=nlstate+ndeath; jk++)      ax=0.0; 
            for(m=agemin; m <= agemax+3; m++)    xx=1.0; 
              freq[i][jk][m]=0;    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
            *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
        for (i=1; i<=imx; i++) {  #ifdef DEBUG
          bool=1;    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
          if  (cptcovn>0) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
            for (z1=1; z1<=cptcoveff; z1++)  #endif
              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    for (j=1;j<=n;j++) { 
                bool=0;      xi[j] *= xmin; 
          }      p[j] += xi[j]; 
           if (bool==1) {    } 
            for(m=firstpass; m<=lastpass-1; m++){    free_vector(xicom,1,n); 
              if(agev[m][i]==0) agev[m][i]=agemax+1;    free_vector(pcom,1,n); 
              if(agev[m][i]==1) agev[m][i]=agemax+2;  } 
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];  
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];  char *asc_diff_time(long time_sec, char ascdiff[])
            }  {
          }    long sec_left, days, hours, minutes;
        }    days = (time_sec) / (60*60*24);
         if  (cptcovn>0) {    sec_left = (time_sec) % (60*60*24);
          fprintf(ficresp, "\n#********** Variable ");    hours = (sec_left) / (60*60) ;
          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    sec_left = (sec_left) %(60*60);
        fprintf(ficresp, "**********\n#");    minutes = (sec_left) /60;
         }    sec_left = (sec_left) % (60);
        for(i=1; i<=nlstate;i++)    sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    return ascdiff;
        fprintf(ficresp, "\n");  }
          
   for(i=(int)agemin; i <= (int)agemax+3; i++){  /*************** powell ************************/
     if(i==(int)agemax+3)  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       printf("Total");              double (*func)(double [])) 
     else  { 
       printf("Age %d", i);    void linmin(double p[], double xi[], int n, double *fret, 
     for(jk=1; jk <=nlstate ; jk++){                double (*func)(double [])); 
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    int i,ibig,j; 
         pp[jk] += freq[jk][m][i];    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
     for(jk=1; jk <=nlstate ; jk++){    double *xits;
       for(m=-1, pos=0; m <=0 ; m++)    int niterf, itmp;
         pos += freq[jk][m][i];  
       if(pp[jk]>=1.e-10)    pt=vector(1,n); 
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);    ptt=vector(1,n); 
       else    xit=vector(1,n); 
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);    xits=vector(1,n); 
     }    *fret=(*func)(p); 
     for(jk=1; jk <=nlstate ; jk++){    for (j=1;j<=n;j++) pt[j]=p[j]; 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)    for (*iter=1;;++(*iter)) { 
         pp[jk] += freq[jk][m][i];      fp=(*fret); 
     }      ibig=0; 
     for(jk=1,pos=0; jk <=nlstate ; jk++)      del=0.0; 
       pos += pp[jk];      last_time=curr_time;
     for(jk=1; jk <=nlstate ; jk++){      (void) gettimeofday(&curr_time,&tzp);
       if(pos>=1.e-5)      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec); fflush(ficlog);
       else  /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec); */
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);     for (i=1;i<=n;i++) {
       if( i <= (int) agemax){        printf(" %d %.12f",i, p[i]);
         if(pos>=1.e-5)        fprintf(ficlog," %d %.12lf",i, p[i]);
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);        fprintf(ficrespow," %.12lf", p[i]);
       else      }
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);      printf("\n");
       }      fprintf(ficlog,"\n");
     }      fprintf(ficrespow,"\n");fflush(ficrespow);
     for(jk=-1; jk <=nlstate+ndeath; jk++)      if(*iter <=3){
       for(m=-1; m <=nlstate+ndeath; m++)        tm = *localtime(&curr_time.tv_sec);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);        strcpy(strcurr,asctime(&tm));
     if(i <= (int) agemax)  /*       asctime_r(&tm,strcurr); */
       fprintf(ficresp,"\n");        forecast_time=curr_time; 
     printf("\n");        itmp = strlen(strcurr);
     }        if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
     }          strcurr[itmp-1]='\0';
  }        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
          fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   fclose(ficresp);        for(niterf=10;niterf<=30;niterf+=10){
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
   free_vector(pp,1,nlstate);          tmf = *localtime(&forecast_time.tv_sec);
   /*      asctime_r(&tmf,strfor); */
 }  /* End of Freq */          strcpy(strfor,asctime(&tmf));
           itmp = strlen(strfor);
 /************* Waves Concatenation ***************/          if(strfor[itmp-1]=='\n')
           strfor[itmp-1]='\0';
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
 {          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.        }
      Death is a valid wave (if date is known).      }
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i      for (i=1;i<=n;i++) { 
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
      and mw[mi+1][i]. dh depends on stepm.        fptt=(*fret); 
      */  #ifdef DEBUG
         printf("fret=%lf \n",*fret);
   int i, mi, m;        fprintf(ficlog,"fret=%lf \n",*fret);
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;  #endif
      double sum=0., jmean=0.;*/        printf("%d",i);fflush(stdout);
         fprintf(ficlog,"%d",i);fflush(ficlog);
 int j, k=0,jk, ju, jl;        linmin(p,xit,n,fret,func); 
      double sum=0.;        if (fabs(fptt-(*fret)) > del) { 
 jmin=1e+5;          del=fabs(fptt-(*fret)); 
  jmax=-1;          ibig=i; 
 jmean=0.;        } 
   for(i=1; i<=imx; i++){  #ifdef DEBUG
     mi=0;        printf("%d %.12e",i,(*fret));
     m=firstpass;        fprintf(ficlog,"%d %.12e",i,(*fret));
     while(s[m][i] <= nlstate){        for (j=1;j<=n;j++) {
       if(s[m][i]>=1)          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
         mw[++mi][i]=m;          printf(" x(%d)=%.12e",j,xit[j]);
       if(m >=lastpass)          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
         break;        }
       else        for(j=1;j<=n;j++) {
         m++;          printf(" p=%.12e",p[j]);
     }/* end while */          fprintf(ficlog," p=%.12e",p[j]);
     if (s[m][i] > nlstate){        }
       mi++;     /* Death is another wave */        printf("\n");
       /* if(mi==0)  never been interviewed correctly before death */        fprintf(ficlog,"\n");
          /* Only death is a correct wave */  #endif
       mw[mi][i]=m;      } 
     }      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
   #ifdef DEBUG
     wav[i]=mi;        int k[2],l;
     if(mi==0)        k[0]=1;
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);        k[1]=-1;
   }        printf("Max: %.12e",(*func)(p));
         fprintf(ficlog,"Max: %.12e",(*func)(p));
   for(i=1; i<=imx; i++){        for (j=1;j<=n;j++) {
     for(mi=1; mi<wav[i];mi++){          printf(" %.12e",p[j]);
       if (stepm <=0)          fprintf(ficlog," %.12e",p[j]);
         dh[mi][i]=1;        }
       else{        printf("\n");
         if (s[mw[mi+1][i]][i] > nlstate) {        fprintf(ficlog,"\n");
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);        for(l=0;l<=1;l++) {
           /*if ((j<0) || (j>28)) printf("j=%d num=%d ",j,i);*/          for (j=1;j<=n;j++) {
           if(j==0) j=1;  /* Survives at least one month after exam */            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
           k=k+1;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           if (j >= jmax) jmax=j;            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
           else if (j <= jmin)jmin=j;          }
           sum=sum+j;          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         }          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         else{        }
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));  #endif
           /*if ((j<0) || (j>28)) printf("j=%d num=%d ",j,i);*/  
           k=k+1;  
           if (j >= jmax) jmax=j;        free_vector(xit,1,n); 
           else if (j <= jmin)jmin=j;        free_vector(xits,1,n); 
           sum=sum+j;        free_vector(ptt,1,n); 
         }        free_vector(pt,1,n); 
         jk= j/stepm;        return; 
         jl= j -jk*stepm;      } 
         ju= j -(jk+1)*stepm;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
         if(jl <= -ju)      for (j=1;j<=n;j++) { 
           dh[mi][i]=jk;        ptt[j]=2.0*p[j]-pt[j]; 
         else        xit[j]=p[j]-pt[j]; 
           dh[mi][i]=jk+1;        pt[j]=p[j]; 
         if(dh[mi][i]==0)      } 
           dh[mi][i]=1; /* At least one step */      fptt=(*func)(ptt); 
       }      if (fptt < fp) { 
     }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
   }        if (t < 0.0) { 
   jmean=sum/k;          linmin(p,xit,n,fret,func); 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);          for (j=1;j<=n;j++) { 
 }            xi[j][ibig]=xi[j][n]; 
 /*********** Tricode ****************************/            xi[j][n]=xit[j]; 
 void tricode(int *Tvar, int **nbcode, int imx)          }
 {  #ifdef DEBUG
   int Ndum[20],ij=1, k, j, i;          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   int cptcode=0;          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   cptcoveff=0;          for(j=1;j<=n;j++){
              printf(" %.12e",xit[j]);
   for (k=0; k<19; k++) Ndum[k]=0;            fprintf(ficlog," %.12e",xit[j]);
   for (k=1; k<=7; k++) ncodemax[k]=0;          }
           printf("\n");
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {          fprintf(ficlog,"\n");
     for (i=1; i<=imx; i++) {  #endif
       ij=(int)(covar[Tvar[j]][i]);        }
       Ndum[ij]++;      } 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/    } 
       if (ij > cptcode) cptcode=ij;  } 
     }  
   /**** Prevalence limit (stable or period prevalence)  ****************/
     for (i=0; i<=cptcode; i++) {  
       if(Ndum[i]!=0) ncodemax[j]++;  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     }  {
     ij=1;    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
        matrix by transitions matrix until convergence is reached */
   
     for (i=1; i<=ncodemax[j]; i++) {    int i, ii,j,k;
       for (k=0; k<=19; k++) {    double min, max, maxmin, maxmax,sumnew=0.;
         if (Ndum[k] != 0) {    /* double **matprod2(); */ /* test */
           nbcode[Tvar[j]][ij]=k;    double **out, cov[NCOVMAX+1], **pmij();
           ij++;    double **newm;
         }    double agefin, delaymax=50 ; /* Max number of years to converge */
         if (ij > ncodemax[j]) break;  
       }      for (ii=1;ii<=nlstate+ndeath;ii++)
     }      for (j=1;j<=nlstate+ndeath;j++){
   }          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
       }
  for (k=0; k<19; k++) Ndum[k]=0;  
      cov[1]=1.;
  for (i=1; i<=ncovmodel; i++) {   
       ij=Tvar[i];   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       Ndum[ij]++;    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
     }      newm=savm;
       /* Covariates have to be included here again */
  ij=1;      cov[2]=agefin;
  for (i=1; i<=10; i++) {      
    if((Ndum[i]!=0) && (i<=ncov)){      for (k=1; k<=cptcovn;k++) {
      Tvaraff[ij]=i;        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
      ij++;        /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
    }      }
  }      /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
        /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
     cptcoveff=ij-1;      /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
 }      
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 /*********** Health Expectancies ****************/      /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)      /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
 {      /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
   /* Health expectancies */      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
   int i, j, nhstepm, hstepm, h;      
   double age, agelim,hf;      savm=oldm;
   double ***p3mat;      oldm=newm;
        maxmax=0.;
   fprintf(ficreseij,"# Health expectancies\n");      for(j=1;j<=nlstate;j++){
   fprintf(ficreseij,"# Age");        min=1.;
   for(i=1; i<=nlstate;i++)        max=0.;
     for(j=1; j<=nlstate;j++)        for(i=1; i<=nlstate; i++) {
       fprintf(ficreseij," %1d-%1d",i,j);          sumnew=0;
   fprintf(ficreseij,"\n");          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
           prlim[i][j]= newm[i][j]/(1-sumnew);
   hstepm=1*YEARM; /*  Every j years of age (in month) */          /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          max=FMAX(max,prlim[i][j]);
           min=FMIN(min,prlim[i][j]);
   agelim=AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        maxmin=max-min;
     /* nhstepm age range expressed in number of stepm */        maxmax=FMAX(maxmax,maxmin);
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);      }
     /* Typically if 20 years = 20*12/6=40 stepm */      if(maxmax < ftolpl){
     if (stepm >= YEARM) hstepm=1;        return prlim;
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */      }
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored  }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */  
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);    /*************** transition probabilities ***************/ 
   
   double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
     for(i=1; i<=nlstate;i++)  {
       for(j=1; j<=nlstate;j++)    /* According to parameters values stored in x and the covariate's values stored in cov,
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){       computes the probability to be observed in state j being in state i by appying the
           eij[i][j][(int)age] +=p3mat[i][j][h];       model to the ncovmodel covariates (including constant and age).
         }       lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
           and, according on how parameters are entered, the position of the coefficient xij(nc) of the
     hf=1;       ncth covariate in the global vector x is given by the formula:
     if (stepm >= YEARM) hf=stepm/YEARM;       j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
     fprintf(ficreseij,"%.0f",age );       j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
     for(i=1; i<=nlstate;i++)       Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
       for(j=1; j<=nlstate;j++){       sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);       Outputs ps[i][j] the probability to be observed in j being in j according to
       }       the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
     fprintf(ficreseij,"\n");    */
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double s1, lnpijopii;
   }    /*double t34;*/
 }    int i,j,j1, nc, ii, jj;
   
 /************ Variance ******************/      for(i=1; i<= nlstate; i++){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)        for(j=1; j<i;j++){
 {          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   /* Variance of health expectancies */            /*lnpijopii += param[i][j][nc]*cov[nc];*/
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
   double **newm;  /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
   double **dnewm,**doldm;          }
   int i, j, nhstepm, hstepm, h;          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   int k, cptcode;  /*      printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
    double *xp;        }
   double **gp, **gm;        for(j=i+1; j<=nlstate+ndeath;j++){
   double ***gradg, ***trgradg;          for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
   double ***p3mat;            /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
   double age,agelim;            lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
   int theta;  /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
           }
    fprintf(ficresvij,"# Covariances of life expectancies\n");          ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
   fprintf(ficresvij,"# Age");        }
   for(i=1; i<=nlstate;i++)      }
     for(j=1; j<=nlstate;j++)      
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);      for(i=1; i<= nlstate; i++){
   fprintf(ficresvij,"\n");        s1=0;
         for(j=1; j<i; j++){
   xp=vector(1,npar);          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   dnewm=matrix(1,nlstate,1,npar);          /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   doldm=matrix(1,nlstate,1,nlstate);        }
          for(j=i+1; j<=nlstate+ndeath; j++){
   hstepm=1*YEARM; /* Every year of age */          s1+=exp(ps[i][j]); /* In fact sums pij/pii */
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */          /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
   agelim = AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */        /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */        ps[i][i]=1./(s1+1.);
     if (stepm >= YEARM) hstepm=1;        /* Computing other pijs */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        for(j=1; j<i; j++)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);        for(j=i+1; j<=nlstate+ndeath; j++)
     gp=matrix(0,nhstepm,1,nlstate);          ps[i][j]= exp(ps[i][j])*ps[i][i];
     gm=matrix(0,nhstepm,1,nlstate);        /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
       } /* end i */
     for(theta=1; theta <=npar; theta++){      
       for(i=1; i<=npar; i++){ /* Computes gradient */      for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
         xp[i] = x[i] + (i==theta ?delti[theta]:0);        for(jj=1; jj<= nlstate+ndeath; jj++){
       }          ps[ii][jj]=0;
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);            ps[ii][ii]=1;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        }
       for(j=1; j<= nlstate; j++){      }
         for(h=0; h<=nhstepm; h++){      
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)      
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];      /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
         }      /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
       }      /*  printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
          /*   } */
       for(i=1; i<=npar; i++) /* Computes gradient */      /*   printf("\n "); */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      /* } */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        /* printf("\n ");printf("%lf ",cov[2]);*/
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      /*
       for(j=1; j<= nlstate; j++){        for(i=1; i<= npar; i++) printf("%f ",x[i]);
         for(h=0; h<=nhstepm; h++){        goto end;*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)      return ps;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];  }
         }  
       }  /**************** Product of 2 matrices ******************/
       for(j=1; j<= nlstate; j++)  
         for(h=0; h<=nhstepm; h++){  double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];  {
         }    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     } /* End theta */       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
     /* in, b, out are matrice of pointers which should have been initialized 
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);       before: only the contents of out is modified. The function returns
        a pointer to pointers identical to out */
     for(h=0; h<=nhstepm; h++)    int i, j, k;
       for(j=1; j<=nlstate;j++)    for(i=nrl; i<= nrh; i++)
         for(theta=1; theta <=npar; theta++)      for(k=ncolol; k<=ncoloh; k++){
           trgradg[h][j][theta]=gradg[h][theta][j];        out[i][k]=0.;
         for(j=ncl; j<=nch; j++)
     for(i=1;i<=nlstate;i++)          out[i][k] +=in[i][j]*b[j][k];
       for(j=1;j<=nlstate;j++)      }
         vareij[i][j][(int)age] =0.;    return out;
     for(h=0;h<=nhstepm;h++){  }
       for(k=0;k<=nhstepm;k++){  
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);  
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);  /************* Higher Matrix Product ***************/
         for(i=1;i<=nlstate;i++)  
           for(j=1;j<=nlstate;j++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
             vareij[i][j][(int)age] += doldm[i][j];  {
       }    /* Computes the transition matrix starting at age 'age' over 
     }       'nhstepm*hstepm*stepm' months (i.e. until
     h=1;       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     if (stepm >= YEARM) h=stepm/YEARM;       nhstepm*hstepm matrices. 
     fprintf(ficresvij,"%.0f ",age );       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
     for(i=1; i<=nlstate;i++)       (typically every 2 years instead of every month which is too big 
       for(j=1; j<=nlstate;j++){       for the memory).
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);       Model is determined by parameters x and covariates have to be 
       }       included manually here. 
     fprintf(ficresvij,"\n");  
     free_matrix(gp,0,nhstepm,1,nlstate);       */
     free_matrix(gm,0,nhstepm,1,nlstate);  
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    int i, j, d, h, k;
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    double **out, cov[NCOVMAX+1];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    double **newm;
   } /* End age */  
      /* Hstepm could be zero and should return the unit matrix */
   free_vector(xp,1,npar);    for (i=1;i<=nlstate+ndeath;i++)
   free_matrix(doldm,1,nlstate,1,npar);      for (j=1;j<=nlstate+ndeath;j++){
   free_matrix(dnewm,1,nlstate,1,nlstate);        oldm[i][j]=(i==j ? 1.0 : 0.0);
         po[i][j][0]=(i==j ? 1.0 : 0.0);
 }      }
     /* Even if hstepm = 1, at least one multiplication by the unit matrix */
 /************ Variance of prevlim ******************/    for(h=1; h <=nhstepm; h++){
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)      for(d=1; d <=hstepm; d++){
 {        newm=savm;
   /* Variance of prevalence limit */        /* Covariates have to be included here again */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        cov[1]=1.;
   double **newm;        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   double **dnewm,**doldm;        for (k=1; k<=cptcovn;k++) 
   int i, j, nhstepm, hstepm;          cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   int k, cptcode;        for (k=1; k<=cptcovage;k++)
   double *xp;          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   double *gp, *gm;        for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
   double **gradg, **trgradg;          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   double age,agelim;  
   int theta;  
            /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   fprintf(ficresvpl,"# Age");        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
   for(i=1; i<=nlstate;i++)                     pmij(pmmij,cov,ncovmodel,x,nlstate));
       fprintf(ficresvpl," %1d-%1d",i,i);        savm=oldm;
   fprintf(ficresvpl,"\n");        oldm=newm;
       }
   xp=vector(1,npar);      for(i=1; i<=nlstate+ndeath; i++)
   dnewm=matrix(1,nlstate,1,npar);        for(j=1;j<=nlstate+ndeath;j++) {
   doldm=matrix(1,nlstate,1,nlstate);          po[i][j][h]=newm[i][j];
            /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
   hstepm=1*YEARM; /* Every year of age */        }
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */      /*printf("h=%d ",h);*/
   agelim = AGESUP;    } /* end h */
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  /*     printf("\n H=%d \n",h); */
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    return po;
     if (stepm >= YEARM) hstepm=1;  }
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */  
     gradg=matrix(1,npar,1,nlstate);  
     gp=vector(1,nlstate);  /*************** log-likelihood *************/
     gm=vector(1,nlstate);  double func( double *x)
   {
     for(theta=1; theta <=npar; theta++){    int i, ii, j, k, mi, d, kk;
       for(i=1; i<=npar; i++){ /* Computes gradient */    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    double **out;
       }    double sw; /* Sum of weights */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double lli; /* Individual log likelihood */
       for(i=1;i<=nlstate;i++)    int s1, s2;
         gp[i] = prlim[i][i];    double bbh, survp;
        long ipmx;
       for(i=1; i<=npar; i++) /* Computes gradient */    /*extern weight */
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    /* We are differentiating ll according to initial status */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
       for(i=1;i<=nlstate;i++)    /*for(i=1;i<imx;i++) 
         gm[i] = prlim[i][i];      printf(" %d\n",s[4][i]);
     */
       for(i=1;i<=nlstate;i++)    cov[1]=1.;
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];  
     } /* End theta */    for(k=1; k<=nlstate; k++) ll[k]=0.;
   
     trgradg =matrix(1,nlstate,1,npar);    if(mle==1){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     for(j=1; j<=nlstate;j++)        /* Computes the values of the ncovmodel covariates of the model
       for(theta=1; theta <=npar; theta++)           depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
         trgradg[j][theta]=gradg[theta][j];           Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
            to be observed in j being in i according to the model.
     for(i=1;i<=nlstate;i++)         */
       varpl[i][(int)age] =0.;        for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          cov[2+k]=covar[Tvar[k]][i];
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);        }
     for(i=1;i<=nlstate;i++)        /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */           is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
            has been calculated etc */
     fprintf(ficresvpl,"%.0f ",age );        for(mi=1; mi<= wav[i]-1; mi++){
     for(i=1; i<=nlstate;i++)          for (ii=1;ii<=nlstate+ndeath;ii++)
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            for (j=1;j<=nlstate+ndeath;j++){
     fprintf(ficresvpl,"\n");              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_vector(gp,1,nlstate);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     free_vector(gm,1,nlstate);            }
     free_matrix(gradg,1,npar,1,nlstate);          for(d=0; d<dh[mi][i]; d++){
     free_matrix(trgradg,1,nlstate,1,npar);            newm=savm;
   } /* End age */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   free_vector(xp,1,npar);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
   free_matrix(doldm,1,nlstate,1,npar);            }
   free_matrix(dnewm,1,nlstate,1,nlstate);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 }            savm=oldm;
             oldm=newm;
           } /* end mult */
         
 /***********************************************/          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 /**************** Main Program *****************/          /* But now since version 0.9 we anticipate for bias at large stepm.
 /***********************************************/           * If stepm is larger than one month (smallest stepm) and if the exact delay 
            * (in months) between two waves is not a multiple of stepm, we rounded to 
 /*int main(int argc, char *argv[])*/           * the nearest (and in case of equal distance, to the lowest) interval but now
 int main()           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 {           * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
            * probability in order to take into account the bias as a fraction of the way
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;           * from savm to out if bh is negative or even beyond if bh is positive. bh varies
   double agedeb, agefin,hf;           * -stepm/2 to stepm/2 .
   double agemin=1.e20, agemax=-1.e20;           * For stepm=1 the results are the same as for previous versions of Imach.
            * For stepm > 1 the results are less biased than in previous versions. 
   double fret;           */
   double **xi,tmp,delta;          s1=s[mw[mi][i]][i];
           s2=s[mw[mi+1][i]][i];
   double dum; /* Dummy variable */          bbh=(double)bh[mi][i]/(double)stepm; 
   double ***p3mat;          /* bias bh is positive if real duration
   int *indx;           * is higher than the multiple of stepm and negative otherwise.
   char line[MAXLINE], linepar[MAXLINE];           */
   char title[MAXLINE];          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];          if( s2 > nlstate){ 
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];            /* i.e. if s2 is a death state and if the date of death is known 
   char filerest[FILENAMELENGTH];               then the contribution to the likelihood is the probability to 
   char fileregp[FILENAMELENGTH];               die between last step unit time and current  step unit time, 
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];               which is also equal to probability to die before dh 
   int firstobs=1, lastobs=10;               minus probability to die before dh-stepm . 
   int sdeb, sfin; /* Status at beginning and end */               In version up to 0.92 likelihood was computed
   int c,  h , cpt,l;          as if date of death was unknown. Death was treated as any other
   int ju,jl, mi;          health state: the date of the interview describes the actual state
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;          and not the date of a change in health state. The former idea was
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;          to consider that at each interview the state was recorded
            (healthy, disable or death) and IMaCh was corrected; but when we
   int hstepm, nhstepm;          introduced the exact date of death then we should have modified
   double bage, fage, age, agelim, agebase;          the contribution of an exact death to the likelihood. This new
   double ftolpl=FTOL;          contribution is smaller and very dependent of the step unit
   double **prlim;          stepm. It is no more the probability to die between last interview
   double *severity;          and month of death but the probability to survive from last
   double ***param; /* Matrix of parameters */          interview up to one month before death multiplied by the
   double  *p;          probability to die within a month. Thanks to Chris
   double **matcov; /* Matrix of covariance */          Jackson for correcting this bug.  Former versions increased
   double ***delti3; /* Scale */          mortality artificially. The bad side is that we add another loop
   double *delti; /* Scale */          which slows down the processing. The difference can be up to 10%
   double ***eij, ***vareij;          lower mortality.
   double **varpl; /* Variances of prevalence limits by age */            */
   double *epj, vepp;            lli=log(out[s1][s2] - savm[s1][s2]);
   char version[80]="Imach version 62c, May 1999, INED-EUROREVES ";  
   char *alph[]={"a","a","b","c","d","e"}, str[4];  
           } else if  (s2==-2) {
   char z[1]="c", occ;            for (j=1,survp=0. ; j<=nlstate; j++) 
 #include <sys/time.h>              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
 #include <time.h>            /*survp += out[s1][j]; */
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];            lli= log(survp);
   /* long total_usecs;          }
   struct timeval start_time, end_time;          
            else if  (s2==-4) { 
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */            for (j=3,survp=0. ; j<=nlstate; j++)  
               survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
             lli= log(survp); 
   printf("\nIMACH, Version 0.64a");          } 
   printf("\nEnter the parameter file name: ");  
           else if  (s2==-5) { 
 #ifdef windows            for (j=1,survp=0. ; j<=2; j++)  
   scanf("%s",pathtot);              survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   getcwd(pathcd, size);            lli= log(survp); 
   /*cygwin_split_path(pathtot,path,optionfile);          } 
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/          
   /* cutv(path,optionfile,pathtot,'\\');*/          else{
             lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
 split(pathtot, path,optionfile);            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
   chdir(path);          } 
   replace(pathc,path);          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
 #endif          /*if(lli ==000.0)*/
 #ifdef unix          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
   scanf("%s",optionfile);          ipmx +=1;
 #endif          sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
 /*-------- arguments in the command line --------*/        } /* end of wave */
       } /* end of individual */
   strcpy(fileres,"r");    }  else if(mle==2){
   strcat(fileres, optionfile);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   /*---------arguments file --------*/        for(mi=1; mi<= wav[i]-1; mi++){
           for (ii=1;ii<=nlstate+ndeath;ii++)
   if((ficpar=fopen(optionfile,"r"))==NULL)    {            for (j=1;j<=nlstate+ndeath;j++){
     printf("Problem with optionfile %s\n",optionfile);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     goto end;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   }            }
           for(d=0; d<=dh[mi][i]; d++){
   strcpy(filereso,"o");            newm=savm;
   strcat(filereso,fileres);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   if((ficparo=fopen(filereso,"w"))==NULL) {            for (kk=1; kk<=cptcovage;kk++) {
     printf("Problem with Output resultfile: %s\n", filereso);goto end;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   /* Reads comments: lines beginning with '#' */                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   while((c=getc(ficpar))=='#' && c!= EOF){            savm=oldm;
     ungetc(c,ficpar);            oldm=newm;
     fgets(line, MAXLINE, ficpar);          } /* end mult */
     puts(line);        
     fputs(line,ficparo);          s1=s[mw[mi][i]][i];
   }          s2=s[mw[mi+1][i]][i];
   ungetc(c,ficpar);          bbh=(double)bh[mi][i]/(double)stepm; 
           lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          ipmx +=1;
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);          sw += weight[i];
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         } /* end of wave */
   covar=matrix(0,NCOVMAX,1,n);      } /* end of individual */
   cptcovn=0;    }  else if(mle==3){  /* exponential inter-extrapolation */
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   ncovmodel=2+cptcovn;        for(mi=1; mi<= wav[i]-1; mi++){
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */          for (ii=1;ii<=nlstate+ndeath;ii++)
              for (j=1;j<=nlstate+ndeath;j++){
   /* Read guess parameters */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   /* Reads comments: lines beginning with '#' */              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   while((c=getc(ficpar))=='#' && c!= EOF){            }
     ungetc(c,ficpar);          for(d=0; d<dh[mi][i]; d++){
     fgets(line, MAXLINE, ficpar);            newm=savm;
     puts(line);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fputs(line,ficparo);            for (kk=1; kk<=cptcovage;kk++) {
   }              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   ungetc(c,ficpar);            }
              out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     for(i=1; i <=nlstate; i++)            savm=oldm;
     for(j=1; j <=nlstate+ndeath-1; j++){            oldm=newm;
       fscanf(ficpar,"%1d%1d",&i1,&j1);          } /* end mult */
       fprintf(ficparo,"%1d%1d",i1,j1);        
       printf("%1d%1d",i,j);          s1=s[mw[mi][i]][i];
       for(k=1; k<=ncovmodel;k++){          s2=s[mw[mi+1][i]][i];
         fscanf(ficpar," %lf",&param[i][j][k]);          bbh=(double)bh[mi][i]/(double)stepm; 
         printf(" %lf",param[i][j][k]);          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
         fprintf(ficparo," %lf",param[i][j][k]);          ipmx +=1;
       }          sw += weight[i];
       fscanf(ficpar,"\n");          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
       printf("\n");        } /* end of wave */
       fprintf(ficparo,"\n");      } /* end of individual */
     }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
        for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   p=param[1][1];        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   /* Reads comments: lines beginning with '#' */            for (j=1;j<=nlstate+ndeath;j++){
   while((c=getc(ficpar))=='#' && c!= EOF){              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     ungetc(c,ficpar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          for(d=0; d<dh[mi][i]; d++){
     fputs(line,ficparo);            newm=savm;
   }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   ungetc(c,ficpar);            for (kk=1; kk<=cptcovage;kk++) {
               cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);            }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */          
   for(i=1; i <=nlstate; i++){            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     for(j=1; j <=nlstate+ndeath-1; j++){                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       fscanf(ficpar,"%1d%1d",&i1,&j1);            savm=oldm;
       printf("%1d%1d",i,j);            oldm=newm;
       fprintf(ficparo,"%1d%1d",i1,j1);          } /* end mult */
       for(k=1; k<=ncovmodel;k++){        
         fscanf(ficpar,"%le",&delti3[i][j][k]);          s1=s[mw[mi][i]][i];
         printf(" %le",delti3[i][j][k]);          s2=s[mw[mi+1][i]][i];
         fprintf(ficparo," %le",delti3[i][j][k]);          if( s2 > nlstate){ 
       }            lli=log(out[s1][s2] - savm[s1][s2]);
       fscanf(ficpar,"\n");          }else{
       printf("\n");            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
       fprintf(ficparo,"\n");          }
     }          ipmx +=1;
   }          sw += weight[i];
   delti=delti3[1][1];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
    /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
   /* Reads comments: lines beginning with '#' */        } /* end of wave */
   while((c=getc(ficpar))=='#' && c!= EOF){      } /* end of individual */
     ungetc(c,ficpar);    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
     fgets(line, MAXLINE, ficpar);      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
     puts(line);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
     fputs(line,ficparo);        for(mi=1; mi<= wav[i]-1; mi++){
   }          for (ii=1;ii<=nlstate+ndeath;ii++)
   ungetc(c,ficpar);            for (j=1;j<=nlstate+ndeath;j++){
                oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   matcov=matrix(1,npar,1,npar);              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   for(i=1; i <=npar; i++){            }
     fscanf(ficpar,"%s",&str);          for(d=0; d<dh[mi][i]; d++){
     printf("%s",str);            newm=savm;
     fprintf(ficparo,"%s",str);            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     for(j=1; j <=i; j++){            for (kk=1; kk<=cptcovage;kk++) {
       fscanf(ficpar," %le",&matcov[i][j]);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       printf(" %.5le",matcov[i][j]);            }
       fprintf(ficparo," %.5le",matcov[i][j]);          
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     fscanf(ficpar,"\n");                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     printf("\n");            savm=oldm;
     fprintf(ficparo,"\n");            oldm=newm;
   }          } /* end mult */
   for(i=1; i <=npar; i++)        
     for(j=i+1;j<=npar;j++)          s1=s[mw[mi][i]][i];
       matcov[i][j]=matcov[j][i];          s2=s[mw[mi+1][i]][i];
              lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   printf("\n");          ipmx +=1;
           sw += weight[i];
           ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     /*-------- data file ----------*/          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
     if((ficres =fopen(fileres,"w"))==NULL) {        } /* end of wave */
       printf("Problem with resultfile: %s\n", fileres);goto end;      } /* end of individual */
     }    } /* End of if */
     fprintf(ficres,"#%s\n",version);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
        /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
     if((fic=fopen(datafile,"r"))==NULL)    {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
       printf("Problem with datafile: %s\n", datafile);goto end;    return -l;
     }  }
   
     n= lastobs;  /*************** log-likelihood *************/
     severity = vector(1,maxwav);  double funcone( double *x)
     outcome=imatrix(1,maxwav+1,1,n);  {
     num=ivector(1,n);    /* Same as likeli but slower because of a lot of printf and if */
     moisnais=vector(1,n);    int i, ii, j, k, mi, d, kk;
     annais=vector(1,n);    double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
     moisdc=vector(1,n);    double **out;
     andc=vector(1,n);    double lli; /* Individual log likelihood */
     agedc=vector(1,n);    double llt;
     cod=ivector(1,n);    int s1, s2;
     weight=vector(1,n);    double bbh, survp;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */    /*extern weight */
     mint=matrix(1,maxwav,1,n);    /* We are differentiating ll according to initial status */
     anint=matrix(1,maxwav,1,n);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     s=imatrix(1,maxwav+1,1,n);    /*for(i=1;i<imx;i++) 
     adl=imatrix(1,maxwav+1,1,n);          printf(" %d\n",s[4][i]);
     tab=ivector(1,NCOVMAX);    */
     ncodemax=ivector(1,8);    cov[1]=1.;
   
     i=1;    for(k=1; k<=nlstate; k++) ll[k]=0.;
     while (fgets(line, MAXLINE, fic) != NULL)    {  
       if ((i >= firstobs) && (i <=lastobs)) {    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for (j=maxwav;j>=1;j--){      for(mi=1; mi<= wav[i]-1; mi++){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);        for (ii=1;ii<=nlstate+ndeath;ii++)
           strcpy(line,stra);          for (j=1;j<=nlstate+ndeath;j++){
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
                for(d=0; d<dh[mi][i]; d++){
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);          newm=savm;
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
           for (kk=1; kk<=cptcovage;kk++) {
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);          }
           /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for (j=ncov;j>=1;j--){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);          /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
         }          /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
         num[i]=atol(stra);          savm=oldm;
           oldm=newm;
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));*/        } /* end mult */
         
         i=i+1;        s1=s[mw[mi][i]][i];
       }        s2=s[mw[mi+1][i]][i];
     }        bbh=(double)bh[mi][i]/(double)stepm; 
         /* bias is positive if real duration
     /*scanf("%d",i);*/         * is higher than the multiple of stepm and negative otherwise.
   imx=i-1; /* Number of individuals */         */
         if( s2 > nlstate && (mle <5) ){  /* Jackson */
   /* Calculation of the number of parameter from char model*/          lli=log(out[s1][s2] - savm[s1][s2]);
   Tvar=ivector(1,15);        } else if  (s2==-2) {
   Tprod=ivector(1,15);          for (j=1,survp=0. ; j<=nlstate; j++) 
   Tvaraff=ivector(1,15);            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
   Tvard=imatrix(1,15,1,2);          lli= log(survp);
   Tage=ivector(1,15);              }else if (mle==1){
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   if (strlen(model) >1){        } else if(mle==2){
     j=0, j1=0, k1=1, k2=1;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     j=nbocc(model,'+');        } else if(mle==3){  /* exponential inter-extrapolation */
     j1=nbocc(model,'*');          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     cptcovn=j+1;        } else if (mle==4){  /* mle=4 no inter-extrapolation */
     cptcovprod=j1;          lli=log(out[s1][s2]); /* Original formula */
            } else{  /* mle=0 back to 1 */
              lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
     strcpy(modelsav,model);          /*lli=log(out[s1][s2]); */ /* Original formula */
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){        } /* End of if */
       printf("Error. Non available option model=%s ",model);        ipmx +=1;
       goto end;        sw += weight[i];
     }        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
            /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
     for(i=(j+1); i>=1;i--){        if(globpr){
       cutv(stra,strb,modelsav,'+');          fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);   %11.6f %11.6f %11.6f ", \
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
       /*scanf("%d",i);*/                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
       if (strchr(strb,'*')) {          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
         cutv(strd,strc,strb,'*');            llt +=ll[k]*gipmx/gsw;
         if (strcmp(strc,"age")==0) {            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
           cptcovprod--;          }
           cutv(strb,stre,strd,'V');          fprintf(ficresilk," %10.6f\n", -llt);
           Tvar[i]=atoi(stre);        }
           cptcovage++;      } /* end of wave */
             Tage[cptcovage]=i;    } /* end of individual */
             /*printf("stre=%s ", stre);*/    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         }    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
         else if (strcmp(strd,"age")==0) {    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
           cptcovprod--;    if(globpr==0){ /* First time we count the contributions and weights */
           cutv(strb,stre,strc,'V');      gipmx=ipmx;
           Tvar[i]=atoi(stre);      gsw=sw;
           cptcovage++;    }
           Tage[cptcovage]=i;    return -l;
         }  }
         else {  
           cutv(strb,stre,strc,'V');  
           Tvar[i]=ncov+k1;  /*************** function likelione ***********/
           cutv(strb,strc,strd,'V');  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
           Tprod[k1]=i;  {
           Tvard[k1][1]=atoi(strc);    /* This routine should help understanding what is done with 
           Tvard[k1][2]=atoi(stre);       the selection of individuals/waves and
           Tvar[cptcovn+k2]=Tvard[k1][1];       to check the exact contribution to the likelihood.
           Tvar[cptcovn+k2+1]=Tvard[k1][2];       Plotting could be done.
           for (k=1; k<=lastobs;k++)     */
             covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    int k;
           k1++;  
           k2=k2+2;    if(*globpri !=0){ /* Just counts and sums, no printings */
         }      strcpy(fileresilk,"ilk"); 
       }      strcat(fileresilk,fileres);
       else {      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/        printf("Problem with resultfile: %s\n", fileresilk);
        /*  scanf("%d",i);*/        fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       cutv(strd,strc,strb,'V');      }
       Tvar[i]=atoi(strc);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       }      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       strcpy(modelsav,stra);        /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);      for(k=1; k<=nlstate; k++) 
         scanf("%d",i);*/        fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
     }      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
 }    }
    
   /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);    *fretone=(*funcone)(p);
   printf("cptcovprod=%d ", cptcovprod);    if(*globpri !=0){
   scanf("%d ",i);*/      fclose(ficresilk);
     fclose(fic);      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       fflush(fichtm); 
     /*  if(mle==1){*/    } 
     if (weightopt != 1) { /* Maximisation without weights*/    return;
       for(i=1;i<=n;i++) weight[i]=1.0;  }
     }  
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);  /*********** Maximum Likelihood Estimation ***************/
      
     for (i=1; i<=imx; i++)  {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);  {
       for(m=1; (m<= maxwav); m++){    int i,j, iter;
         if(s[m][i] >0){    double **xi;
           if (s[m][i] == nlstate+1) {    double fret;
             if(agedc[i]>0)    double fretone; /* Only one call to likelihood */
               if(moisdc[i]!=99 && andc[i]!=9999)    /*  char filerespow[FILENAMELENGTH];*/
               agev[m][i]=agedc[i];    xi=matrix(1,npar,1,npar);
             else {    for (i=1;i<=npar;i++)
               if (andc[i]!=9999){      for (j=1;j<=npar;j++)
               printf("Warning negative age at death: %d line:%d\n",num[i],i);        xi[i][j]=(i==j ? 1.0 : 0.0);
               agev[m][i]=-1;    printf("Powell\n");  fprintf(ficlog,"Powell\n");
               }    strcpy(filerespow,"pow"); 
             }    strcat(filerespow,fileres);
           }    if((ficrespow=fopen(filerespow,"w"))==NULL) {
           else if(s[m][i] !=9){ /* Should no more exist */      printf("Problem with resultfile: %s\n", filerespow);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
             if(mint[m][i]==99 || anint[m][i]==9999)    }
               agev[m][i]=1;    fprintf(ficrespow,"# Powell\n# iter -2*LL");
             else if(agev[m][i] <agemin){    for (i=1;i<=nlstate;i++)
               agemin=agev[m][i];      for(j=1;j<=nlstate+ndeath;j++)
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
             }    fprintf(ficrespow,"\n");
             else if(agev[m][i] >agemax){  
               agemax=agev[m][i];    powell(p,xi,npar,ftol,&iter,&fret,func);
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  
             }    free_matrix(xi,1,npar,1,npar);
             /*agev[m][i]=anint[m][i]-annais[i];*/    fclose(ficrespow);
             /*   agev[m][i] = age[i]+2*m;*/    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
           }    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
           else { /* =9 */    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
             agev[m][i]=1;  
             s[m][i]=-1;  }
           }  
         }  /**** Computes Hessian and covariance matrix ***/
         else /*= 0 Unknown */  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
           agev[m][i]=1;  {
       }    double  **a,**y,*x,pd;
        double **hess;
     }    int i, j,jk;
     for (i=1; i<=imx; i++)  {    int *indx;
       for(m=1; (m<= maxwav); m++){  
         if (s[m][i] > (nlstate+ndeath)) {    double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
           printf("Error: Wrong value in nlstate or ndeath\n");      double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
           goto end;    void lubksb(double **a, int npar, int *indx, double b[]) ;
         }    void ludcmp(double **a, int npar, int *indx, double *d) ;
       }    double gompertz(double p[]);
     }    hess=matrix(1,npar,1,npar);
   
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);    printf("\nCalculation of the hessian matrix. Wait...\n");
     fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
     free_vector(severity,1,maxwav);    for (i=1;i<=npar;i++){
     free_imatrix(outcome,1,maxwav+1,1,n);      printf("%d",i);fflush(stdout);
     free_vector(moisnais,1,n);      fprintf(ficlog,"%d",i);fflush(ficlog);
     free_vector(annais,1,n);     
     free_matrix(mint,1,maxwav,1,n);       hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
     free_matrix(anint,1,maxwav,1,n);      
     free_vector(moisdc,1,n);      /*  printf(" %f ",p[i]);
     free_vector(andc,1,n);          printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
     }
        
     wav=ivector(1,imx);    for (i=1;i<=npar;i++) {
     dh=imatrix(1,lastpass-firstpass+1,1,imx);      for (j=1;j<=npar;j++)  {
     mw=imatrix(1,lastpass-firstpass+1,1,imx);        if (j>i) { 
              printf(".%d%d",i,j);fflush(stdout);
     /* Concatenates waves */          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);          hess[i][j]=hessij(p,delti,i,j,func,npar);
           
           hess[j][i]=hess[i][j];    
       Tcode=ivector(1,100);          /*printf(" %lf ",hess[i][j]);*/
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);        }
       ncodemax[1]=1;      }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    }
          printf("\n");
    codtab=imatrix(1,100,1,10);    fprintf(ficlog,"\n");
    h=0;  
    m=pow(2,cptcoveff);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
    for(k=1;k<=cptcoveff; k++){    
      for(i=1; i <=(m/pow(2,k));i++){    a=matrix(1,npar,1,npar);
        for(j=1; j <= ncodemax[k]; j++){    y=matrix(1,npar,1,npar);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){    x=vector(1,npar);
            h++;    indx=ivector(1,npar);
            if (h>m) h=1;codtab[h][k]=j;    for (i=1;i<=npar;i++)
          }      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
        }    ludcmp(a,npar,indx,&pd);
      }  
    }    for (j=1;j<=npar;j++) {
       for (i=1;i<=npar;i++) x[i]=0;
       x[j]=1;
    /*for(i=1; i <=m ;i++){      lubksb(a,npar,indx,x);
      for(k=1; k <=cptcovn; k++){      for (i=1;i<=npar;i++){ 
        printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);        matcov[i][j]=x[i];
      }      }
      printf("\n");    }
    }  
    scanf("%d",i);*/    printf("\n#Hessian matrix#\n");
        fprintf(ficlog,"\n#Hessian matrix#\n");
    /* Calculates basic frequencies. Computes observed prevalence at single age    for (i=1;i<=npar;i++) { 
        and prints on file fileres'p'. */      for (j=1;j<=npar;j++) { 
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);        printf("%.3e ",hess[i][j]);
         fprintf(ficlog,"%.3e ",hess[i][j]);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      }
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      printf("\n");
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      fprintf(ficlog,"\n");
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    }
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
        /* Recompute Inverse */
     /* For Powell, parameters are in a vector p[] starting at p[1]    for (i=1;i<=npar;i++)
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */    ludcmp(a,npar,indx,&pd);
   
     if(mle==1){    /*  printf("\n#Hessian matrix recomputed#\n");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);  
     }    for (j=1;j<=npar;j++) {
          for (i=1;i<=npar;i++) x[i]=0;
     /*--------- results files --------------*/      x[j]=1;
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);      lubksb(a,npar,indx,x);
          for (i=1;i<=npar;i++){ 
    jk=1;        y[i][j]=x[i];
    fprintf(ficres,"# Parameters\n");        printf("%.3e ",y[i][j]);
    printf("# Parameters\n");        fprintf(ficlog,"%.3e ",y[i][j]);
    for(i=1,jk=1; i <=nlstate; i++){      }
      for(k=1; k <=(nlstate+ndeath); k++){      printf("\n");
        if (k != i)      fprintf(ficlog,"\n");
          {    }
            printf("%d%d ",i,k);    */
            fprintf(ficres,"%1d%1d ",i,k);  
            for(j=1; j <=ncovmodel; j++){    free_matrix(a,1,npar,1,npar);
              printf("%f ",p[jk]);    free_matrix(y,1,npar,1,npar);
              fprintf(ficres,"%f ",p[jk]);    free_vector(x,1,npar);
              jk++;    free_ivector(indx,1,npar);
            }    free_matrix(hess,1,npar,1,npar);
            printf("\n");  
            fprintf(ficres,"\n");  
          }  }
      }  
    }  /*************** hessian matrix ****************/
  if(mle==1){  double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
     /* Computing hessian and covariance matrix */  {
     ftolhess=ftol; /* Usually correct */    int i;
     hesscov(matcov, p, npar, delti, ftolhess, func);    int l=1, lmax=20;
  }    double k1,k2;
     fprintf(ficres,"# Scales\n");    double p2[MAXPARM+1]; /* identical to x */
     printf("# Scales\n");    double res;
      for(i=1,jk=1; i <=nlstate; i++){    double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
       for(j=1; j <=nlstate+ndeath; j++){    double fx;
         if (j!=i) {    int k=0,kmax=10;
           fprintf(ficres,"%1d%1d",i,j);    double l1;
           printf("%1d%1d",i,j);  
           for(k=1; k<=ncovmodel;k++){    fx=func(x);
             printf(" %.5e",delti[jk]);    for (i=1;i<=npar;i++) p2[i]=x[i];
             fprintf(ficres," %.5e",delti[jk]);    for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
             jk++;      l1=pow(10,l);
           }      delts=delt;
           printf("\n");      for(k=1 ; k <kmax; k=k+1){
           fprintf(ficres,"\n");        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
       }        k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
       }        p2[theta]=x[theta]-delt;
            k2=func(p2)-fx;
     k=1;        /*res= (k1-2.0*fx+k2)/delt/delt; */
     fprintf(ficres,"# Covariance\n");        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
     printf("# Covariance\n");        
     for(i=1;i<=npar;i++){  #ifdef DEBUGHESS
       /*  if (k>nlstate) k=1;        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       i1=(i-1)/(ncovmodel*nlstate)+1;        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);  #endif
       printf("%s%d%d",alph[k],i1,tab[i]);*/        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
       fprintf(ficres,"%3d",i);        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
       printf("%3d",i);          k=kmax;
       for(j=1; j<=i;j++){        }
         fprintf(ficres," %.5e",matcov[i][j]);        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
         printf(" %.5e",matcov[i][j]);          k=kmax; l=lmax*10.;
       }        }
       fprintf(ficres,"\n");        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
       printf("\n");          delts=delt;
       k++;        }
     }      }
        }
     while((c=getc(ficpar))=='#' && c!= EOF){    delti[theta]=delts;
       ungetc(c,ficpar);    return res; 
       fgets(line, MAXLINE, ficpar);    
       puts(line);  }
       fputs(line,ficparo);  
     }  double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
     ungetc(c,ficpar);  {
      int i;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);    int l=1, l1, lmax=20;
        double k1,k2,k3,k4,res,fx;
     if (fage <= 2) {    double p2[MAXPARM+1];
       bage = agemin;    int k;
       fage = agemax;  
     }    fx=func(x);
     for (k=1; k<=2; k++) {
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");      for (i=1;i<=npar;i++) p2[i]=x[i];
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      p2[thetai]=x[thetai]+delti[thetai]/k;
       p2[thetaj]=x[thetaj]+delti[thetaj]/k;
          k1=func(p2)-fx;
 /*------------ gnuplot -------------*/    
 chdir(pathcd);      p2[thetai]=x[thetai]+delti[thetai]/k;
   if((ficgp=fopen("graph.plt","w"))==NULL) {      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
     printf("Problem with file graph.gp");goto end;      k2=func(p2)-fx;
   }    
 #ifdef windows      p2[thetai]=x[thetai]-delti[thetai]/k;
   fprintf(ficgp,"cd \"%s\" \n",pathc);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
 #endif      k3=func(p2)-fx;
 m=pow(2,cptcoveff);    
        p2[thetai]=x[thetai]-delti[thetai]/k;
  /* 1eme*/      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   for (cpt=1; cpt<= nlstate ; cpt ++) {      k4=func(p2)-fx;
    for (k1=1; k1<= m ; k1 ++) {      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   #ifdef DEBUG
 #ifdef windows      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
 #endif  #endif
 #ifdef unix    }
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    return res;
 #endif  }
   
 for (i=1; i<= nlstate ; i ++) {  /************** Inverse of matrix **************/
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");  void ludcmp(double **a, int n, int *indx, double *d) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");  { 
 }    int i,imax,j,k; 
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    double big,dum,sum,temp; 
     for (i=1; i<= nlstate ; i ++) {    double *vv; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");   
   else fprintf(ficgp," \%%*lf (\%%*lf)");    vv=vector(1,n); 
 }    *d=1.0; 
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);    for (i=1;i<=n;i++) { 
      for (i=1; i<= nlstate ; i ++) {      big=0.0; 
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      for (j=1;j<=n;j++) 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        if ((temp=fabs(a[i][j])) > big) big=temp; 
 }        if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));      vv[i]=1.0/big; 
 #ifdef unix    } 
 fprintf(ficgp,"\nset ter gif small size 400,300");    for (j=1;j<=n;j++) { 
 #endif      for (i=1;i<j;i++) { 
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);        sum=a[i][j]; 
    }        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
   }        a[i][j]=sum; 
   /*2 eme*/      } 
       big=0.0; 
   for (k1=1; k1<= m ; k1 ++) {      for (i=j;i<=n;i++) { 
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);        sum=a[i][j]; 
            for (k=1;k<j;k++) 
     for (i=1; i<= nlstate+1 ; i ++) {          sum -= a[i][k]*a[k][j]; 
       k=2*i;        a[i][j]=sum; 
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
       for (j=1; j<= nlstate+1 ; j ++) {          big=dum; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          imax=i; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");        } 
 }        } 
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");      if (j != imax) { 
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        for (k=1;k<=n;k++) { 
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);          dum=a[imax][k]; 
       for (j=1; j<= nlstate+1 ; j ++) {          a[imax][k]=a[j][k]; 
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          a[j][k]=dum; 
         else fprintf(ficgp," \%%*lf (\%%*lf)");        } 
 }          *d = -(*d); 
       fprintf(ficgp,"\" t\"\" w l 0,");        vv[imax]=vv[j]; 
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);      } 
       for (j=1; j<= nlstate+1 ; j ++) {      indx[j]=imax; 
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      if (a[j][j] == 0.0) a[j][j]=TINY; 
   else fprintf(ficgp," \%%*lf (\%%*lf)");      if (j != n) { 
 }          dum=1.0/(a[j][j]); 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
       else fprintf(ficgp,"\" t\"\" w l 0,");      } 
     }    } 
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    free_vector(vv,1,n);  /* Doesn't work */
   }  ;
    } 
   /*3eme*/  
   void lubksb(double **a, int n, int *indx, double b[]) 
   for (k1=1; k1<= m ; k1 ++) {  { 
     for (cpt=1; cpt<= nlstate ; cpt ++) {    int i,ii=0,ip,j; 
       k=2+nlstate*(cpt-1);    double sum; 
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);   
       for (i=1; i< nlstate ; i ++) {    for (i=1;i<=n;i++) { 
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);      ip=indx[i]; 
       }      sum=b[ip]; 
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      b[ip]=b[i]; 
     }      if (ii) 
   }        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
        else if (sum) ii=i; 
   /* CV preval stat */      b[i]=sum; 
   for (k1=1; k1<= m ; k1 ++) {    } 
     for (cpt=1; cpt<nlstate ; cpt ++) {    for (i=n;i>=1;i--) { 
       k=3;      sum=b[i]; 
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       for (i=1; i< nlstate ; i ++)      b[i]=sum/a[i][i]; 
         fprintf(ficgp,"+$%d",k+i+1);    } 
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  } 
        
       l=3+(nlstate+ndeath)*cpt;  void pstamp(FILE *fichier)
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);  {
       for (i=1; i< nlstate ; i ++) {    fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
         l=3+(nlstate+ndeath)*cpt;  }
         fprintf(ficgp,"+$%d",l+i+1);  
       }  /************ Frequencies ********************/
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);  {  /* Some frequencies */
     }    
   }    int i, m, jk, k1,i1, j1, bool, z1,j;
     int first;
   /* proba elementaires */    double ***freq; /* Frequencies */
    for(i=1,jk=1; i <=nlstate; i++){    double *pp, **prop;
     for(k=1; k <=(nlstate+ndeath); k++){    double pos,posprop, k2, dateintsum=0,k2cpt=0;
       if (k != i) {    char fileresp[FILENAMELENGTH];
         for(j=1; j <=ncovmodel; j++){    
           /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/    pp=vector(1,nlstate);
           /*fprintf(ficgp,"%s",alph[1]);*/    prop=matrix(1,nlstate,iagemin,iagemax+3);
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    strcpy(fileresp,"p");
           jk++;    strcat(fileresp,fileres);
           fprintf(ficgp,"\n");    if((ficresp=fopen(fileresp,"w"))==NULL) {
         }      printf("Problem with prevalence resultfile: %s\n", fileresp);
       }      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
     }      exit(0);
     }    }
     freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
   for(jk=1; jk <=m; jk++) {    j1=0;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);    
    i=1;    j=cptcoveff;
    for(k2=1; k2<=nlstate; k2++) {    if (cptcovn<1) {j=1;ncodemax[1]=1;}
      k3=i;  
      for(k=1; k<=(nlstate+ndeath); k++) {    first=1;
        if (k != k2){  
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
 ij=1;    /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
         for(j=3; j <=ncovmodel; j++) {    /*    j1++;
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {  */
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);    for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
             ij++;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
           }          scanf("%d", i);*/
           else        for (i=-5; i<=nlstate+ndeath; i++)  
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);          for (jk=-5; jk<=nlstate+ndeath; jk++)  
         }            for(m=iagemin; m <= iagemax+3; m++)
           fprintf(ficgp,")/(1");              freq[i][jk][m]=0;
                
         for(k1=1; k1 <=nlstate; k1++){          for (i=1; i<=nlstate; i++)  
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);          for(m=iagemin; m <= iagemax+3; m++)
 ij=1;            prop[i][m]=0;
           for(j=3; j <=ncovmodel; j++){        
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {        dateintsum=0;
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);        k2cpt=0;
             ij++;        for (i=1; i<=imx; i++) {
           }          bool=1;
           else          if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            for (z1=1; z1<=cptcoveff; z1++)       
           }              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
           fprintf(ficgp,")");                  /* Tests if the value of each of the covariates of i is equal to filter j1 */
         }                bool=0;
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);                /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");                  bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
         i=i+ncovmodel;                  j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
        }                /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
      }              } 
    }          }
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);   
   }          if (bool==1){
                for(m=firstpass; m<=lastpass; m++){
   fclose(ficgp);              k2=anint[m][i]+(mint[m][i]/12.);
                  /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
 chdir(path);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
     free_matrix(agev,1,maxwav,1,imx);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
     free_ivector(wav,1,imx);                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);                if (m<lastpass) {
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                      freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
     free_imatrix(s,1,maxwav+1,1,n);                }
                    
                    if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
     free_ivector(num,1,n);                  dateintsum=dateintsum+k2;
     free_vector(agedc,1,n);                  k2cpt++;
     free_vector(weight,1,n);                }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/                /*}*/
     fclose(ficparo);            }
     fclose(ficres);          }
     /*  }*/        } /* end i */
             
    /*________fin mle=1_________*/        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
            pstamp(ficresp);
         if  (cptcovn>0) {
            fprintf(ficresp, "\n#********** Variable "); 
     /* No more information from the sample is required now */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   /* Reads comments: lines beginning with '#' */          fprintf(ficresp, "**********\n#");
   while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficlog, "\n#********** Variable "); 
     ungetc(c,ficpar);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fgets(line, MAXLINE, ficpar);          fprintf(ficlog, "**********\n#");
     puts(line);        }
     fputs(line,ficparo);        for(i=1; i<=nlstate;i++) 
   }          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
   ungetc(c,ficpar);        fprintf(ficresp, "\n");
          
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);        for(i=iagemin; i <= iagemax+3; i++){
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);          if(i==iagemax+3){
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);            fprintf(ficlog,"Total");
 /*--------- index.htm --------*/          }else{
             if(first==1){
   if((fichtm=fopen("index.htm","w"))==NULL)    {              first=0;
     printf("Problem with index.htm \n");goto end;              printf("See log file for details...\n");
   }            }
             fprintf(ficlog,"Age %d", i);
  fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.64a </font> <hr size=\"2\" color=\"#EC5E5E\">          }
 Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>          for(jk=1; jk <=nlstate ; jk++){
 Total number of observations=%d <br>            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>              pp[jk] += freq[jk][m][i]; 
 <hr  size=\"2\" color=\"#EC5E5E\">          }
 <li>Outputs files<br><br>\n          for(jk=1; jk <=nlstate ; jk++){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n            for(m=-1, pos=0; m <=0 ; m++)
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>              pos += freq[jk][m][i];
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>            if(pp[jk]>=1.e-10){
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>              if(first==1){
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>                printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>              }
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>            }else{
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);              if(first==1)
                 printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
  fprintf(fichtm," <li>Graphs</li><p>");              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
             }
  m=cptcoveff;          }
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}  
           for(jk=1; jk <=nlstate ; jk++){
  j1=0;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
  for(k1=1; k1<=m;k1++){              pp[jk] += freq[jk][m][i];
    for(i1=1; i1<=ncodemax[k1];i1++){          }       
        j1++;          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
        if (cptcovn > 0) {            pos += pp[jk];
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");            posprop += prop[jk][i];
          for (cpt=1; cpt<=cptcoveff;cpt++)          }
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);          for(jk=1; jk <=nlstate ; jk++){
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");            if(pos>=1.e-5){
        }              if(first==1)
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);                  fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
        for(cpt=1; cpt<nlstate;cpt++){            }else{
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>              if(first==1)
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        }              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     for(cpt=1; cpt<=nlstate;cpt++) {            }
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident            if( i <= iagemax){
 interval) in state (%d): v%s%d%d.gif <br>              if(pos>=1.e-5){
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);                  fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
      }                /*probs[i][jk][j1]= pp[jk]/pos;*/
      for(cpt=1; cpt<=nlstate;cpt++) {                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>              }
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);              else
      }                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and            }
 health expectancies in states (1) and (2): e%s%d.gif<br>          }
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);          
 fprintf(fichtm,"\n</body>");          for(jk=-1; jk <=nlstate+ndeath; jk++)
    }            for(m=-1; m <=nlstate+ndeath; m++)
  }              if(freq[jk][m][i] !=0 ) {
 fclose(fichtm);              if(first==1)
                 printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   /*--------------- Prevalence limit --------------*/                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                }
   strcpy(filerespl,"pl");          if(i <= iagemax)
   strcat(filerespl,fileres);            fprintf(ficresp,"\n");
   if((ficrespl=fopen(filerespl,"w"))==NULL) {          if(first==1)
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;            printf("Others in log...\n");
   }          fprintf(ficlog,"\n");
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);        }
   fprintf(ficrespl,"#Prevalence limit\n");        /*}*/
   fprintf(ficrespl,"#Age ");    }
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);    dateintmean=dateintsum/k2cpt; 
   fprintf(ficrespl,"\n");   
      fclose(ficresp);
   prlim=matrix(1,nlstate,1,nlstate);    free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_vector(pp,1,nlstate);
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    /* End of Freq */
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  }
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */  
   k=0;  /************ Prevalence ********************/
   agebase=agemin;  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
   agelim=agemax;  {  
   ftolpl=1.e-10;    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
   i1=cptcoveff;       in each health status at the date of interview (if between dateprev1 and dateprev2).
   if (cptcovn < 1){i1=1;}       We still use firstpass and lastpass as another selection.
     */
   for(cptcov=1;cptcov<=i1;cptcov++){   
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    int i, m, jk, k1, i1, j1, bool, z1,j;
         k=k+1;    double ***freq; /* Frequencies */
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    double *pp, **prop;
         fprintf(ficrespl,"\n#******");    double pos,posprop; 
         for(j=1;j<=cptcoveff;j++)    double  y2; /* in fractional years */
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    int iagemin, iagemax;
         fprintf(ficrespl,"******\n");    int first; /** to stop verbosity which is redirected to log file */
          
         for (age=agebase; age<=agelim; age++){    iagemin= (int) agemin;
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    iagemax= (int) agemax;
           fprintf(ficrespl,"%.0f",age );    /*pp=vector(1,nlstate);*/
           for(i=1; i<=nlstate;i++)    prop=matrix(1,nlstate,iagemin,iagemax+3); 
           fprintf(ficrespl," %.5f", prlim[i][i]);    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           fprintf(ficrespl,"\n");    j1=0;
         }    
       }    /*j=cptcoveff;*/
     }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
   fclose(ficrespl);    
   /*------------- h Pij x at various ages ------------*/    first=1;
      for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);      /*for(i1=1; i1<=ncodemax[k1];i1++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        j1++;*/
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        
   }        for (i=1; i<=nlstate; i++)  
   printf("Computing pij: result on file '%s' \n", filerespij);          for(m=iagemin; m <= iagemax+3; m++)
              prop[i][m]=0.0;
   stepsize=(int) (stepm+YEARM-1)/YEARM;       
   if (stepm<=24) stepsize=2;        for (i=1; i<=imx; i++) { /* Each individual */
           bool=1;
   agelim=AGESUP;          if  (cptcovn>0) {
   hstepm=stepsize*YEARM; /* Every year of age */            for (z1=1; z1<=cptcoveff; z1++) 
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                  bool=0;
   k=0;          } 
   for(cptcov=1;cptcov<=i1;cptcov++){          if (bool==1) { 
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       k=k+1;              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
         fprintf(ficrespij,"\n#****** ");              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
         for(j=1;j<=cptcoveff;j++)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficrespij,"******\n");                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                        if (s[m][i]>0 && s[m][i]<=nlstate) { 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */                  prop[s[m][i]][iagemax+3] += weight[i]; 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                } 
           oldm=oldms;savm=savms;              }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);              } /* end selection of waves */
           fprintf(ficrespij,"# Age");          }
           for(i=1; i<=nlstate;i++)        }
             for(j=1; j<=nlstate+ndeath;j++)        for(i=iagemin; i <= iagemax+3; i++){  
               fprintf(ficrespij," %1d-%1d",i,j);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
           fprintf(ficrespij,"\n");            posprop += prop[jk][i]; 
           for (h=0; h<=nhstepm; h++){          } 
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );          
             for(i=1; i<=nlstate;i++)          for(jk=1; jk <=nlstate ; jk++){     
               for(j=1; j<=nlstate+ndeath;j++)            if( i <=  iagemax){ 
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);              if(posprop>=1.e-5){ 
             fprintf(ficrespij,"\n");                probs[i][jk][j1]= prop[jk][i]/posprop;
           }              } else{
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);                if(first==1){
           fprintf(ficrespij,"\n");                  first=0;
         }                  printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
     }                }
   }              }
             } 
   fclose(ficrespij);          }/* end jk */ 
         }/* end i */ 
   /*---------- Health expectancies and variances ------------*/      /*} *//* end i1 */
     } /* end j1 */
   strcpy(filerest,"t");    
   strcat(filerest,fileres);    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
   if((ficrest=fopen(filerest,"w"))==NULL) {    /*free_vector(pp,1,nlstate);*/
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   }  }  /* End of prevalence */
   printf("Computing Total LEs with variances: file '%s' \n", filerest);  
   /************* Waves Concatenation ***************/
   
   strcpy(filerese,"e");  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   strcat(filerese,fileres);  {
   if((ficreseij=fopen(filerese,"w"))==NULL) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);       Death is a valid wave (if date is known).
   }       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
        and mw[mi+1][i]. dh depends on stepm.
  strcpy(fileresv,"v");       */
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    int i, mi, m;
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   }       double sum=0., jmean=0.;*/
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);    int first;
     int j, k=0,jk, ju, jl;
   k=0;    double sum=0.;
   for(cptcov=1;cptcov<=i1;cptcov++){    first=0;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    jmin=1e+5;
       k=k+1;    jmax=-1;
       fprintf(ficrest,"\n#****** ");    jmean=0.;
       for(j=1;j<=cptcoveff;j++)    for(i=1; i<=imx; i++){
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      mi=0;
       fprintf(ficrest,"******\n");      m=firstpass;
       while(s[m][i] <= nlstate){
       fprintf(ficreseij,"\n#****** ");        if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
       for(j=1;j<=cptcoveff;j++)          mw[++mi][i]=m;
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);        if(m >=lastpass)
       fprintf(ficreseij,"******\n");          break;
         else
       fprintf(ficresvij,"\n#****** ");          m++;
       for(j=1;j<=cptcoveff;j++)      }/* end while */
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);      if (s[m][i] > nlstate){
       fprintf(ficresvij,"******\n");        mi++;     /* Death is another wave */
         /* if(mi==0)  never been interviewed correctly before death */
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);           /* Only death is a correct wave */
       oldm=oldms;savm=savms;        mw[mi][i]=m;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);        }
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);  
       oldm=oldms;savm=savms;      wav[i]=mi;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);      if(mi==0){
              nbwarn++;
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");        if(first==0){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);          printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
       fprintf(ficrest,"\n");          first=1;
                }
       hf=1;        if(first==1){
       if (stepm >= YEARM) hf=stepm/YEARM;          fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
       epj=vector(1,nlstate+1);        }
       for(age=bage; age <=fage ;age++){      } /* end mi==0 */
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    } /* End individuals */
         fprintf(ficrest," %.0f",age);  
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){    for(i=1; i<=imx; i++){
           for(i=1, epj[j]=0.;i <=nlstate;i++) {      for(mi=1; mi<wav[i];mi++){
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];        if (stepm <=0)
           }          dh[mi][i]=1;
           epj[nlstate+1] +=epj[j];        else{
         }          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
         for(i=1, vepp=0.;i <=nlstate;i++)            if (agedc[i] < 2*AGESUP) {
           for(j=1;j <=nlstate;j++)              j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
             vepp += vareij[i][j][(int)age];              if(j==0) j=1;  /* Survives at least one month after exam */
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));              else if(j<0){
         for(j=1;j <=nlstate;j++){                nberr++;
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
         }                j=1; /* Temporary Dangerous patch */
         fprintf(ficrest,"\n");                printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
       }                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     }                fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
   }              }
                      k=k+1;
  fclose(ficreseij);              if (j >= jmax){
  fclose(ficresvij);                jmax=j;
   fclose(ficrest);                ijmax=i;
   fclose(ficpar);              }
   free_vector(epj,1,nlstate+1);              if (j <= jmin){
   /*  scanf("%d ",i); */                jmin=j;
                 ijmin=i;
   /*------- Variance limit prevalence------*/                }
               sum=sum+j;
 strcpy(fileresvpl,"vpl");              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
   strcat(fileresvpl,fileres);              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {            }
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);          }
     exit(0);          else{
   }            j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);  /*        if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
   
  k=0;            k=k+1;
  for(cptcov=1;cptcov<=i1;cptcov++){            if (j >= jmax) {
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              jmax=j;
      k=k+1;              ijmax=i;
      fprintf(ficresvpl,"\n#****** ");            }
      for(j=1;j<=cptcoveff;j++)            else if (j <= jmin){
        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              jmin=j;
      fprintf(ficresvpl,"******\n");              ijmin=i;
                  }
      varpl=matrix(1,nlstate,(int) bage, (int) fage);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
      oldm=oldms;savm=savms;            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);            if(j<0){
    }              nberr++;
  }              printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
               fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   fclose(ficresvpl);            }
             sum=sum+j;
   /*---------- End : free ----------------*/          }
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);          jk= j/stepm;
            jl= j -jk*stepm;
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);          ju= j -(jk+1)*stepm;
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
              if(jl==0){
                dh[mi][i]=jk;
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              bh[mi][i]=0;
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);            }else{ /* We want a negative bias in order to only have interpolation ie
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                    * to avoid the price of an extra matrix product in likelihood */
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   free_matrix(matcov,1,npar,1,npar);            }
   free_vector(delti,1,npar);          }else{
              if(jl <= -ju){
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);              dh[mi][i]=jk;
               bh[mi][i]=jl;       /* bias is positive if real duration
   printf("End of Imach\n");                                   * is higher than the multiple of stepm and negative otherwise.
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */                                   */
              }
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/            else{
   /*printf("Total time was %d uSec.\n", total_usecs);*/              dh[mi][i]=jk+1;
   /*------ End -----------*/              bh[mi][i]=ju;
             }
  end:            if(dh[mi][i]==0){
 #ifdef windows              dh[mi][i]=1; /* At least one step */
  chdir(pathcd);              bh[mi][i]=ju; /* At least one step */
 #endif              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
  /*system("wgnuplot graph.plt");*/            }
  system("../gp37mgw/wgnuplot graph.plt");          } /* end if mle */
         }
 #ifdef windows      } /* end wave */
   while (z[0] != 'q') {    }
     chdir(pathcd);    jmean=sum/k;
     printf("\nType e to edit output files, c to start again, and q for exiting: ");    printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
     scanf("%s",z);    fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
     if (z[0] == 'c') system("./imach");   }
     else if (z[0] == 'e') {  
       chdir(path);  /*********** Tricode ****************************/
       system("index.htm");  void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
     }  {
     else if (z[0] == 'q') exit(0);    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
   }    /*      Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
 #endif    /* Boring subroutine which should only output nbcode[Tvar[j]][k]
 }     * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
     /* nbcode[Tvar[j]][1]= 
     */
   
     int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
     int modmaxcovj=0; /* Modality max of covariates j */
     int cptcode=0; /* Modality max of covariates j */
     int modmincovj=0; /* Modality min of covariates j */
   
   
     cptcoveff=0; 
    
     for (k=-1; k < maxncov; k++) Ndum[k]=0;
     for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
   
     /* Loop on covariates without age and products */
     for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
       for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
                                  modality of this covariate Vj*/ 
         ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                                       * If product of Vn*Vm, still boolean *:
                                       * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                                       * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
         /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                                         modality of the nth covariate of individual i. */
         if (ij > modmaxcovj)
           modmaxcovj=ij; 
         else if (ij < modmincovj) 
           modmincovj=ij; 
         if ((ij < -1) && (ij > NCOVMAX)){
           printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
           exit(1);
         }else
         Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
         /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
         /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
         /* getting the maximum value of the modality of the covariate
            (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
            female is 1, then modmaxcovj=1.*/
       }
       printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
       cptcode=modmaxcovj;
       /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
      /*for (i=0; i<=cptcode; i++) {*/
       for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
         printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
         if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
           ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
         }
         /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
            historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
       } /* Ndum[-1] number of undefined modalities */
   
       /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
       /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
       /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
          modmincovj=3; modmaxcovj = 7;
          There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
          which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
          variables V1_1 and V1_2.
          nbcode[Tvar[j]][ij]=k;
          nbcode[Tvar[j]][1]=0;
          nbcode[Tvar[j]][2]=1;
          nbcode[Tvar[j]][3]=2;
       */
       ij=1; /* ij is similar to i but can jumps over null modalities */
       for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
         for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
           /*recode from 0 */
           if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
             nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                                        k is a modality. If we have model=V1+V1*sex 
                                        then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
             ij++;
           }
           if (ij > ncodemax[j]) break; 
         }  /* end of loop on */
       } /* end of loop on modality */ 
     } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
     
    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
     
     for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
      ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
      Ndum[ij]++; 
    } 
   
    ij=1;
    for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
      if((Ndum[i]!=0) && (i<=ncovcol)){
        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
        Tvaraff[ij]=i; /*For printing (unclear) */
        ij++;
      }else
          Tvaraff[ij]=0;
    }
    ij--;
    cptcoveff=ij; /*Number of total covariates*/
   
   }
   
   
   /*********** Health Expectancies ****************/
   
   void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
   
   {
     /* Health expectancies, no variances */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3mat;
     double eip;
   
     pstamp(ficreseij);
     fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
     fprintf(ficreseij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++){
         fprintf(ficreseij," e%1d%1d ",i,j);
       }
       fprintf(ficreseij," e%1d. ",i);
     }
     fprintf(ficreseij,"\n");
   
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     agelim=AGESUP;
     /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepm matrices, stored
          in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       
   /* nhstepm age range expressed in number of stepm */
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       
       printf("%d|",(int)age);fflush(stdout);
       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
       
       /* Computing expectancies */
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficreseij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0;
         for(j=1; j<=nlstate;j++){
           eip +=eij[i][j][(int)age];
           fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
         }
         fprintf(ficreseij,"%9.4f", eip );
       }
       fprintf(ficreseij,"\n");
       
     }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
     
   }
   
   void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
   
   {
     /* Covariances of health expectancies eij and of total life expectancies according
      to initial status i, ei. .
     */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
     int nhstepma, nstepma; /* Decreasing with age */
     double age, agelim, hf;
     double ***p3matp, ***p3matm, ***varhe;
     double **dnewm,**doldm;
     double *xp, *xm;
     double **gp, **gm;
     double ***gradg, ***trgradg;
     int theta;
   
     double eip, vip;
   
     varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     xp=vector(1,npar);
     xm=vector(1,npar);
     dnewm=matrix(1,nlstate*nlstate,1,npar);
     doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
     
     pstamp(ficresstdeij);
     fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
     fprintf(ficresstdeij,"# Age");
     for(i=1; i<=nlstate;i++){
       for(j=1; j<=nlstate;j++)
         fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
       fprintf(ficresstdeij," e%1d. ",i);
     }
     fprintf(ficresstdeij,"\n");
   
     pstamp(ficrescveij);
     fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
     fprintf(ficrescveij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++){
         cptj= (j-1)*nlstate+i;
         for(i2=1; i2<=nlstate;i2++)
           for(j2=1; j2<=nlstate;j2++){
             cptj2= (j2-1)*nlstate+i2;
             if(cptj2 <= cptj)
               fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
           }
       }
     fprintf(ficrescveij,"\n");
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* We compute the life expectancy from trapezoids spaced every estepm months
      * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
      * we are calculating an estimate of the Life Expectancy assuming a linear 
      * progression in between and thus overestimating or underestimating according
      * to the curvature of the survival function. If, for the same date, we 
      * estimate the model with stepm=1 month, we can keep estepm to 24 months
      * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
      * curvature will be obtained if estepm is as small as stepm. */
   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
        and note for a fixed period like estepm months */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed only each two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   
     /* If stepm=6 months */
     /* nhstepm age range expressed in number of stepm */
     agelim=AGESUP;
     nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
     /* if (stepm >= YEARM) hstepm=1;*/
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     
     p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
     trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     gp=matrix(0,nhstepm,1,nlstate*nlstate);
     gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
     for (age=bage; age<=fage; age ++){ 
       nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
       /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
       /* if (stepm >= YEARM) hstepm=1;*/
       nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
   
       /* If stepm=6 months */
       /* Computed by stepm unit matrices, product of hstepma matrices, stored
          in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
       
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
   
       /* Computing  Variances of health expectancies */
       /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
          decrease memory allocation */
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ 
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
           xm[i] = x[i] - (i==theta ?delti[theta]:0);
         }
         hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
         hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
     
         for(j=1; j<= nlstate; j++){
           for(i=1; i<=nlstate; i++){
             for(h=0; h<=nhstepm-1; h++){
               gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
               gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
             }
           }
         }
        
         for(ij=1; ij<= nlstate*nlstate; ij++)
           for(h=0; h<=nhstepm-1; h++){
             gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
           }
       }/* End theta */
       
       
       for(h=0; h<=nhstepm-1; h++)
         for(j=1; j<=nlstate*nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
       
   
        for(ij=1;ij<=nlstate*nlstate;ij++)
         for(ji=1;ji<=nlstate*nlstate;ji++)
           varhe[ij][ji][(int)age] =0.;
   
        printf("%d|",(int)age);fflush(stdout);
        fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
        for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(ij=1;ij<=nlstate*nlstate;ij++)
             for(ji=1;ji<=nlstate*nlstate;ji++)
               varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
         }
       }
   
       /* Computing expectancies */
       hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++)
           for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
             
             /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   
           }
   
       fprintf(ficresstdeij,"%3.0f",age );
       for(i=1; i<=nlstate;i++){
         eip=0.;
         vip=0.;
         for(j=1; j<=nlstate;j++){
           eip += eij[i][j][(int)age];
           for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
             vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
           fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
         }
         fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
       }
       fprintf(ficresstdeij,"\n");
   
       fprintf(ficrescveij,"%3.0f",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           cptj= (j-1)*nlstate+i;
           for(i2=1; i2<=nlstate;i2++)
             for(j2=1; j2<=nlstate;j2++){
               cptj2= (j2-1)*nlstate+i2;
               if(cptj2 <= cptj)
                 fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
             }
         }
       fprintf(ficrescveij,"\n");
      
     }
     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
     free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\n");
     fprintf(ficlog,"\n");
   
     free_vector(xm,1,npar);
     free_vector(xp,1,npar);
     free_matrix(dnewm,1,nlstate*nlstate,1,npar);
     free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
     free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
   }
   
   /************ Variance ******************/
   void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
   {
     /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
     /* double **newm;*/
     double **dnewm,**doldm;
     double **dnewmp,**doldmp;
     int i, j, nhstepm, hstepm, h, nstepm ;
     int k, cptcode;
     double *xp;
     double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
     double **gradgp, **trgradgp; /* for var p point j */
     double *gpp, *gmp; /* for var p point j */
     double **varppt; /* for var p point j nlstate to nlstate+ndeath */
     double ***p3mat;
     double age,agelim, hf;
     double ***mobaverage;
     int theta;
     char digit[4];
     char digitp[25];
   
     char fileresprobmorprev[FILENAMELENGTH];
   
     if(popbased==1){
       if(mobilav!=0)
         strcpy(digitp,"-populbased-mobilav-");
       else strcpy(digitp,"-populbased-nomobil-");
     }
     else 
       strcpy(digitp,"-stablbased-");
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     strcpy(fileresprobmorprev,"prmorprev"); 
     sprintf(digit,"%-d",ij);
     /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
     strcat(fileresprobmorprev,digit); /* Tvar to be done */
     strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
     if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
     }
     printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
    
     fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     pstamp(ficresprobmorprev);
     fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
     fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
       for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     }  
     fprintf(ficresprobmorprev,"\n");
     fprintf(ficgp,"\n# Routine varevsij");
     /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
     fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
     fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
   /*   } */
     varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     pstamp(ficresvij);
     fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
     if(popbased==1)
       fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
     else
       fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
     fprintf(ficresvij,"# Age");
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
     fprintf(ficresvij,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
     doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
   
     gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
     gpp=vector(nlstate+1,nlstate+ndeath);
     gmp=vector(nlstate+1,nlstate+ndeath);
     trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
        nhstepm is the number of hstepm from age to agelim 
        nstepm is the number of stepm from age to agelin. 
        Look at function hpijx to understand why (it is linked to memory size questions) */
     /* We decided (b) to get a life expectancy respecting the most precise curvature of the
        survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
        you sum them up and add 1 year (area under the trapezoids) you won't get the same 
        results. So we changed our mind and took the option of the best precision.
     */
     hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       gp=matrix(0,nhstepm,1,nlstate);
       gm=matrix(0,nhstepm,1,nlstate);
   
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
     
     pstamp(ficresvpl);
     fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1, first2;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX+1];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     pstamp(ficresprob);
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     pstamp(ficresprobcov);
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     pstamp(ficresprobcor);
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcor,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
     xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     /* tj=cptcoveff; */
     tj = (int) pow(2,cptcoveff);
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(j1=1; j1<=tj;j1++){
       /*for(i1=1; i1<=ncodemax[t];i1++){ */
       /*j1++;*/
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
         trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
         gp=vector(1,(nlstate)*(nlstate+ndeath));
         gm=vector(1,(nlstate)*(nlstate+ndeath));
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                                                            * 1  1 1 1 1
                                                            * 2  2 1 1 1
                                                            * 3  1 2 1 1
                                                            */
             /* nbcode[1][1]=0 nbcode[1][2]=1;*/
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
         free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
         free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
         
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nunset parametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;first2=2;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     if ((lc2 <0) || (lc1 <0) ){
                       if(first2==1){
                         first1=0;
                       printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                       }
                       fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                       /* lc1=fabs(lc1); */ /* If we want to have them positive */
                       /* lc2=fabs(lc2); */
                     }
   
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small size 320, 240");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
         /* } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
   
      fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
      <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
   </ul>");
      fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
      fprintf(fichtm,"\
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
      fprintf(fichtm,"\
    - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
      fprintf(fichtm,"\
    - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n",
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
      fprintf(fichtm,"\
    - Population projections by age and states: \
      <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
   <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
   <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Period (stable) prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Period (stable) prevalence in each health state : <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
   <img src=\"%s%d_%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\
   \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
   
    fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
    fprintf(fichtm,"\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
   
    fprintf(fichtm,"\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
    fprintf(fichtm,"\
    - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>",
              estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
    fprintf(fichtm,"\
    - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
    fprintf(fichtm,"\
    - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
            estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
    fprintf(fichtm,"\
    - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
    fflush(fichtm);
    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=pow(2,cptcoveff);
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
   prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
   <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
   true period expectancies (those weighted with period prevalences are also\
    drawn in addition to the population based expectancies computed using\
    observed and cahotic prevalences: %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m0,cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
     int ng=0;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
       for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else        fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l lt 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
         else fprintf(ficgp,"\" t\"\" w l lt 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         /*       k=2+nlstate*(2*cpt-2); */
         k=2+(nlstate+1)*(cpt-1);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small size 320, 240\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
           /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
           
         } 
         fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small size 320, 240\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
     /*goto avoid;*/
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;/* To be checked else nbcode[0][0] wrong */
                for(j=3; j <=ncovmodel; j++) {
                  /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                  /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                  /*        ij++; */
                  /* } */
                  /* else */
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                    /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                    /*   ij++; */
                    /* } */
                    /* else */
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
    avoid:
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   
   
   /**************** function prwizard **********************/
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     /* Wizard to print covariance matrix template */
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     } /* end itimes */
   
   } /* end of prwizard */
   /******************* Gompertz Likelihood ******************************/
   double gompertz(double x[])
   { 
     double A,B,L=0.0,sump=0.,num=0.;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
   
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           L=L+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
    
     return -2*L*num/sump;
   }
   
   #ifdef GSL
   /******************* Gompertz_f Likelihood ******************************/
   double gompertz_f(const gsl_vector *v, void *params)
   { 
     double A,B,LL=0.0,sump=0.,num=0.;
     double *x= (double *) v->data;
     int i,n=0; /* n is the size of the sample */
   
     for (i=0;i<=imx-1 ; i++) {
       sump=sump+weight[i];
       /*    sump=sump+1;*/
       num=num+1;
     }
    
    
     /* for (i=0; i<=imx; i++) 
        if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
     printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
     for (i=1;i<=imx ; i++)
       {
         if (cens[i] == 1 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
         
         if (cens[i] == 0 && wav[i]>1)
           A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
         
         /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
         if (wav[i] > 1 ) { /* ??? */
           LL=LL+A*weight[i];
           /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
         }
       }
   
    /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
     printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
    
     return -2*LL*num/sump;
   }
   #endif
   
   /******************* Printing html file ***********/
   void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,  double p[],double **matcov,double agemortsup){
     int i,k;
   
     fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
     fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
     for (i=1;i<=2;i++) 
       fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
     fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
     fprintf(fichtm,"</ul>");
   
   fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
   
    fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
   
    for (k=agegomp;k<(agemortsup-2);k++) 
      fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
   
    
     fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
   
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
     fprintf(ficgp,"set out \"graphmort.png\"\n "); 
     fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
     fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
     /* fprintf(ficgp, "set size 0.65,0.65\n"); */
     fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
   
   } 
   
   int readdata(char datafile[], int firstobs, int lastobs, int *imax)
   {
   
     /*-------- data file ----------*/
     FILE *fic;
     char dummy[]="                         ";
     int i, j, n;
     int linei, month, year,iout;
     char line[MAXLINE], linetmp[MAXLINE];
     char stra[80], strb[80];
     char *stratrunc;
     int lstra;
   
   
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem while opening datafile: %s\n", datafile);return 1;
       fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
     }
   
     i=1;
     linei=0;
     while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
       linei=linei+1;
       for(j=strlen(line); j>=0;j--){  /* Untabifies line */
         if(line[j] == '\t')
           line[j] = ' ';
       }
       for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
         ;
       };
       line[j+1]=0;  /* Trims blanks at end of line */
       if(line[0]=='#'){
         fprintf(ficlog,"Comment line\n%s\n",line);
         printf("Comment line\n%s\n",line);
         continue;
       }
       trimbb(linetmp,line); /* Trims multiple blanks in line */
       for (j=0; line[j]!='\0';j++){
         line[j]=linetmp[j];
       }
     
   
       for (j=maxwav;j>=1;j--){
         cutv(stra, strb, line, ' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
         /*        if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
             fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
             return 1;
           }
         }
         s[j][i]=lval;
         
         strcpy(line,stra);
         cutv(stra, strb,line,' ');
         if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
         }
         else  if(iout=sscanf(strb,"%s.",dummy) != 0){
           month=99;
           year=9999;
         }else{
           printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
           return 1;
         }
         anint[j][i]= (double) year; 
         mint[j][i]= (double)month; 
         strcpy(line,stra);
       } /* ENd Waves */
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
           fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       andc[i]=(double) year; 
       moisdc[i]=(double) month; 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
       }
       else  if(iout=sscanf(strb,"%s.", dummy) != 0){
         month=99;
         year=9999;
       }else{
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
       }
       if (year==9999) {
         printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
         fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
           return 1;
   
       }
       annais[i]=(double)(year);
       moisnais[i]=(double)(month); 
       strcpy(line,stra);
       
       cutv(stra, strb,line,' '); 
       errno=0;
       dval=strtod(strb,&endptr); 
       if( strb[0]=='\0' || (*endptr != '\0')){
         printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
         fflush(ficlog);
         return 1;
       }
       weight[i]=dval; 
       strcpy(line,stra);
       
       for (j=ncovcol;j>=1;j--){
         cutv(stra, strb,line,' '); 
         if(strb[0]=='.') { /* Missing status */
           lval=-1;
         }else{
           errno=0;
           lval=strtol(strb,&endptr,10); 
           if( strb[0]=='\0' || (*endptr != '\0')){
             printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
             fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
             return 1;
           }
         }
         if(lval <-1 || lval >1){
           printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);
           fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
    Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
    for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
    For example, for multinomial values like 1, 2 and 3,\n \
    build V1=0 V2=0 for the reference value (1),\n \
           V1=1 V2=0 for (2) \n \
    and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
    output of IMaCh is often meaningless.\n \
    Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
           return 1;
         }
         covar[j][i]=(double)(lval);
         strcpy(line,stra);
       }  
       lstra=strlen(stra);
        
       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
         stratrunc = &(stra[lstra-9]);
         num[i]=atol(stratrunc);
       }
       else
         num[i]=atol(stra);
       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
         printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
       
       i=i+1;
     } /* End loop reading  data */
   
     *imax=i-1; /* Number of individuals */
     fclose(fic);
    
     return (0);
     endread:
       printf("Exiting readdata: ");
       fclose(fic);
       return (1);
   
   
   
   }
   void removespace(char *str) {
     char *p1 = str, *p2 = str;
     do
       while (*p2 == ' ')
         p2++;
     while (*p1++ = *p2++);
   }
   
   int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
      * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
      * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
      * - cptcovn or number of covariates k of the models excluding age*products =6
      * - cptcovage number of covariates with age*products =2
      * - cptcovs number of simple covariates
      * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
      *     which is a new column after the 9 (ncovcol) variables. 
      * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
      * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
      *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
      * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
    */
   {
     int i, j, k, ks;
     int i1, j1, k1, k2;
     char modelsav[80];
     char stra[80], strb[80], strc[80], strd[80],stre[80];
   
     /*removespace(model);*/
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
       j=nbocc(model,'+'); /**< j=Number of '+' */
       j1=nbocc(model,'*'); /**< j1=Number of '*' */
       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
       cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                     /* including age products which are counted in cptcovage.
                     /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
       strcpy(modelsav,model); 
       if (strstr(model,"AGE") !=0){
         printf("Error. AGE must be in lower case 'age' model=%s ",model);
         fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
         return 1;
       }
       if (strstr(model,"v") !=0){
         printf("Error. 'v' must be in upper case 'V' model=%s ",model);
         fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
         return 1;
       }
       
       /*   Design
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
        *  <          ncovcol=8                >
        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
        *   k=  1    2      3       4     5       6      7        8
        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
        *  covar[k,i], value of kth covariate if not including age for individual i:
        *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
        *  Tage[++cptcovage]=k
        *       if products, new covar are created after ncovcol with k1
        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
        *  <          ncovcol=8                >
        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        * p Tprod[1]@2={                         6, 5}
        *p Tvard[1][1]@4= {7, 8, 5, 6}
        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
        *How to reorganize?
        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
        *       {2,   1,     4,      8,    5,      6,     3,       7}
        * Struct []
        */
   
       /* This loop fills the array Tvar from the string 'model'.*/
       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
       /*  k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
       /*  k=3 V4 Tvar[k=3]= 4 (from V4) */
       /*  k=2 V1 Tvar[k=2]= 1 (from V1) */
       /*  k=1 Tvar[1]=2 (from V2) */
       /*  k=5 Tvar[5] */
       /* for (k=1; k<=cptcovn;k++) { */
       /*  cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
       /*  } */
       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
       /*
        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
       for(k=cptcovt; k>=1;k--) /**< Number of covariates */
           Tvar[k]=0;
       cptcovage=0;
       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
         cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                                        modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
           cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
           if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
             /* covar is not filled and then is empty */
             cptcovprod--;
             cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
             Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
             cptcovage++; /* Sums the number of covariates which include age as a product */
             Tage[cptcovage]=k;  /* Tage[1] = 4 */
             /*printf("stre=%s ", stre);*/
           } else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutl(stre,strb,strc,'V');
             Tvar[k]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=k;
           } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
             /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
             cptcovn++;
             cptcovprodnoage++;k1++;
             cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
             Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
                                     because this model-covariate is a construction we invent a new column
                                     ncovcol + k1
                                     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                                     Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
             cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
             Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
             Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
             k2=k2+2;
             Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
             Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
             for (i=1; i<=lastobs;i++){
               /* Computes the new covariate which is a product of
                  covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
               covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
             }
           } /* End age is not in the model */
         } /* End if model includes a product */
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
           cutl(strd,strc,strb,'V');
           ks++; /**< Number of simple covariates */
           cptcovn++;
           Tvar[k]=atoi(strd);
         }
         strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);*/
   
   
     return (0); /* with covar[new additional covariate if product] and Tage if age */ 
     endread:
       printf("Exiting decodemodel: ");
       return (1);
   }
   
   calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
   {
     int i, m;
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           *nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] < *agemin){ 
               *agemin=agev[m][i];
               printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
             }
             else if(agev[m][i] >*agemax){
               *agemax=agev[m][i];
               printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           *nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           return 1;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
   
     return (0);
     endread:
       printf("Exiting calandcheckages: ");
       return (1);
   }
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
   #ifdef GSL
     const gsl_multimin_fminimizer_type *T;
     size_t iteri = 0, it;
     int rval = GSL_CONTINUE;
     int status = GSL_SUCCESS;
     double ssval;
   #endif
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int linei, month, year,iout;
     int jj, ll, li, lj, lk, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     int itimes;
     int NDIM=2;
     int vpopbased=0;
   
     char ca[32], cb[32], cc[32];
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     struct stat info;
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE], pathimach[MAXLINE]; 
     char **bp, *tok, *val; /* pathtot */
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     int agemortsup;
     float  sumlpop=0.;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
     double **ximort;
     char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
     int *dcwave;
   
     char z[1]="c", occ;
   
     /*char  *strt;*/
     char strtend[80];
   
     long total_usecs;
    
   /*   setlocale (LC_ALL, ""); */
   /*   bindtextdomain (PACKAGE, LOCALEDIR); */
   /*   textdomain (PACKAGE); */
   /*   setlocale (LC_CTYPE, ""); */
   /*   setlocale (LC_MESSAGES, ""); */
   
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       fgets(pathr,FILENAMELENGTH,stdin);
       i=strlen(pathr);
       if(pathr[i-1]=='\n')
         pathr[i-1]='\0';
      for (tok = pathr; tok != NULL; ){
         printf("Pathr |%s|\n",pathr);
         while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
         printf("val= |%s| pathr=%s\n",val,pathr);
         strcpy (pathtot, val);
         if(pathr[0] == '\0') break; /* Dirty */
       }
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     /* Split argv[0], imach program to get pathimach */
     printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
     split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
     printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
    /*   strcpy(pathimach,argv[0]); */
     /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path); /* Can be a relative path */
     if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
       printf("Current directory %s!\n",pathcd);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: \n");
     fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Local time (at start):%s",strstart);
     fprintf(ficlog,"Local time (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fprintf(ficlog,"Problem with optionfile %s with errno=%s\n",optionfile,strerror(errno));
       fflush(ficlog);
       /* goto end; */
       exit(70); 
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line,stdout);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       fputs(line, stdout);
       //puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
     /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
        v1+v2*age+v2*v3 makes cptcovn = 3
     */
     if (strlen(model)>1) 
       ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
     else
       ncovmodel=2;
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
     npar= nforce*ncovmodel; /* Number of parameters like aij*/
     if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
       printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
       fflush(stdout);
       fclose (ficlog);
       goto end;
     }
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     delti=delti3[1][1];
     /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       fclose (ficparo);
       fclose (ficlog);
       goto end;
       exit(0);
     }
     else if(mle==-3) {
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       matcov=matrix(1,npar,1,npar);
     }
     else{
       /* Read guessed parameters */
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
       
       param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
       for(i=1; i <=nlstate; i++){
         j=0;
         for(jj=1; jj <=nlstate+ndeath; jj++){
           if(jj==i) continue;
           j++;
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1 != i) && (j1 != j)){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
   It might be a problem of design; if ncovcol and the model are correct\n \
   run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           fprintf(ficparo,"%1d%1d",i1,j1);
           if(mle==1)
             printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar," %lf",&param[i][j][k]);
             if(mle==1){
               printf(" %lf",param[i][j][k]);
               fprintf(ficlog," %lf",param[i][j][k]);
             }
             else
               fprintf(ficlog," %lf",param[i][j][k]);
             fprintf(ficparo," %lf",param[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           if(mle==1)
             printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficparo,"\n");
         }
       }  
       fflush(ficlog);
   
       /* Reads scales values */
       p=param[1][1];
       
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
   
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath-1; j++){
           fscanf(ficpar,"%1d%1d",&i1,&j1);
           if ((i1-i)*(j1-j)!=0){
             printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
             exit(1);
           }
           printf("%1d%1d",i,j);
           fprintf(ficparo,"%1d%1d",i1,j1);
           fprintf(ficlog,"%1d%1d",i1,j1);
           for(k=1; k<=ncovmodel;k++){
             fscanf(ficpar,"%le",&delti3[i][j][k]);
             printf(" %le",delti3[i][j][k]);
             fprintf(ficparo," %le",delti3[i][j][k]);
             fprintf(ficlog," %le",delti3[i][j][k]);
           }
           fscanf(ficpar,"\n");
           numlinepar++;
           printf("\n");
           fprintf(ficparo,"\n");
           fprintf(ficlog,"\n");
         }
       }
       fflush(ficlog);
   
       /* Reads covariance matrix */
       delti=delti3[1][1];
   
   
       /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
       /* Reads comments: lines beginning with '#' */
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         numlinepar++;
         fputs(line,stdout);
         fputs(line,ficparo);
         fputs(line,ficlog);
       }
       ungetc(c,ficpar);
     
       matcov=matrix(1,npar,1,npar);
       for(i=1; i <=npar; i++)
         for(j=1; j <=npar; j++) matcov[i][j]=0.;
         
       for(i=1; i <=npar; i++){
         fscanf(ficpar,"%s",str);
         if(mle==1)
           printf("%s",str);
         fprintf(ficlog,"%s",str);
         fprintf(ficparo,"%s",str);
         for(j=1; j <=i; j++){
           fscanf(ficpar," %le",&matcov[i][j]);
           if(mle==1){
             printf(" %.5le",matcov[i][j]);
           }
           fprintf(ficlog," %.5le",matcov[i][j]);
           fprintf(ficparo," %.5le",matcov[i][j]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
       for(i=1; i <=npar; i++)
         for(j=i+1;j<=npar;j++)
           matcov[i][j]=matcov[j][i];
       
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       
       fflush(ficlog);
       
       /*-------- Rewriting parameter file ----------*/
       strcpy(rfileres,"r");    /* "Rparameterfile */
       strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
       strcat(rfileres,".");    /* */
       strcat(rfileres,optionfilext);    /* Other files have txt extension */
       if((ficres =fopen(rfileres,"w"))==NULL) {
         printf("Problem writing new parameter file: %s\n", fileres);goto end;
         fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
       }
       fprintf(ficres,"#%s\n",version);
     }    /* End of mle != -3 */
   
   
     n= lastobs;
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
   
     /* Reads data from file datafile */
     if (readdata(datafile, firstobs, lastobs, &imx)==1)
       goto end;
   
     /* Calculation of the number of parameters from char model */
       /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
           k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
           k=3 V4 Tvar[k=3]= 4 (from V4)
           k=2 V1 Tvar[k=2]= 1 (from V1)
           k=1 Tvar[1]=2 (from V2)
       */
     Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
     /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
         For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
         Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
     */
     /* For model-covariate k tells which data-covariate to use but
       because this model-covariate is a construction we invent a new column
       ncovcol + k1
       If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
       Tvar[3=V1*V4]=4+1 etc */
     Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
     /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
        if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
     */
     Tvaraff=ivector(1,NCOVMAX); /* Unclear */
     Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
                               * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                               * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
     Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
                            4 covariates (3 plus signs)
                            Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                         */  
   
     if(decodemodel(model, lastobs) == 1)
       goto end;
   
     if((double)(lastobs-imx)/(double)imx > 1.10){
       nbwarn++;
       printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
       fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
     }
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
       for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
     }
   
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
       goto end;
   
   
     agegomp=(int)agemin;
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
     /* */
     
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
     /* */
    
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     Ndum =ivector(-1,NCOVMAX);  
     if (ncovmodel > 2)
       tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
   
     codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
     /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
     h=0;
   
   
     /*if (cptcovn > 0) */
         
    
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
       for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
         for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
           for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
             h++;
             if (h>m) 
               h=1;
             /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
              *     h     1     2     3     4
              *______________________________  
              *     1 i=1 1 i=1 1 i=1 1 i=1 1
              *     2     2     1     1     1
              *     3 i=2 1     2     1     1
              *     4     2     2     1     1
              *     5 i=3 1 i=2 1     2     1
              *     6     2     1     2     1
              *     7 i=4 1     2     2     1
              *     8     2     2     2     1
              *     9 i=5 1 i=3 1 i=2 1     1
              *    10     2     1     1     1
              *    11 i=6 1     2     1     1
              *    12     2     2     1     1
              *    13 i=7 1 i=4 1     2     1    
              *    14     2     1     2     1
              *    15 i=8 1     2     2     1
              *    16     2     2     2     1
              */
             codtab[h][k]=j;
             /*codtab[h][Tvar[k]]=j;*/
             printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
          printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
   
    free_ivector(Ndum,-1,NCOVMAX);
   
   
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     if(mle==-3)
       strcat(optionfilegnuplot,"-mort");
     strcat(optionfilegnuplot,".gp");
   
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       //fprintf(ficgp,"set missing 'NaNq'\n");
       fprintf(ficgp,"set datafile missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     if(mle==-3)
       strcat(optionfilehtm,"-mort");
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm);
       exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
   
     if (mle==-3){
       ximort=matrix(1,NDIM,1,NDIM); 
   /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
       cens=ivector(1,n);
       ageexmed=vector(1,n);
       agecens=vector(1,n);
       dcwave=ivector(1,n);
    
       for (i=1; i<=imx; i++){
         dcwave[i]=-1;
         for (m=firstpass; m<=lastpass; m++)
           if (s[m][i]>nlstate) {
             dcwave[i]=m;
             /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
             break;
           }
       }
   
       for (i=1; i<=imx; i++) {
         if (wav[i]>0){
           ageexmed[i]=agev[mw[1][i]][i];
           j=wav[i];
           agecens[i]=1.; 
   
           if (ageexmed[i]> 1 && wav[i] > 0){
             agecens[i]=agev[mw[j][i]][i];
             cens[i]= 1;
           }else if (ageexmed[i]< 1) 
             cens[i]= -1;
           if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
             cens[i]=0 ;
         }
         else cens[i]=-1;
       }
       
       for (i=1;i<=NDIM;i++) {
         for (j=1;j<=NDIM;j++)
           ximort[i][j]=(i == j ? 1.0 : 0.0);
       }
       
       /*p[1]=0.0268; p[NDIM]=0.083;*/
       /*printf("%lf %lf", p[1], p[2]);*/
       
       
   #ifdef GSL
       printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
   #elsedef
       printf("Powell\n");  fprintf(ficlog,"Powell\n");
   #endif
       strcpy(filerespow,"pow-mort"); 
       strcat(filerespow,fileres);
       if((ficrespow=fopen(filerespow,"w"))==NULL) {
         printf("Problem with resultfile: %s\n", filerespow);
         fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
       }
   #ifdef GSL
       fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
   #elsedef
       fprintf(ficrespow,"# Powell\n# iter -2*LL");
   #endif
       /*  for (i=1;i<=nlstate;i++)
           for(j=1;j<=nlstate+ndeath;j++)
           if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
       */
       fprintf(ficrespow,"\n");
   #ifdef GSL
       /* gsl starts here */ 
       T = gsl_multimin_fminimizer_nmsimplex;
       gsl_multimin_fminimizer *sfm = NULL;
       gsl_vector *ss, *x;
       gsl_multimin_function minex_func;
   
       /* Initial vertex size vector */
       ss = gsl_vector_alloc (NDIM);
       
       if (ss == NULL){
         GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
       }
       /* Set all step sizes to 1 */
       gsl_vector_set_all (ss, 0.001);
   
       /* Starting point */
       
       x = gsl_vector_alloc (NDIM);
       
       if (x == NULL){
         gsl_vector_free(ss);
         GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
       }
     
       /* Initialize method and iterate */
       /*     p[1]=0.0268; p[NDIM]=0.083; */
   /*     gsl_vector_set(x, 0, 0.0268); */
   /*     gsl_vector_set(x, 1, 0.083); */
       gsl_vector_set(x, 0, p[1]);
       gsl_vector_set(x, 1, p[2]);
   
       minex_func.f = &gompertz_f;
       minex_func.n = NDIM;
       minex_func.params = (void *)&p; /* ??? */
       
       sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
       gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
       
       printf("Iterations beginning .....\n\n");
       printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
   
       iteri=0;
       while (rval == GSL_CONTINUE){
         iteri++;
         status = gsl_multimin_fminimizer_iterate(sfm);
         
         if (status) printf("error: %s\n", gsl_strerror (status));
         fflush(0);
         
         if (status) 
           break;
         
         rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
         ssval = gsl_multimin_fminimizer_size (sfm);
         
         if (rval == GSL_SUCCESS)
           printf ("converged to a local maximum at\n");
         
         printf("%5d ", iteri);
         for (it = 0; it < NDIM; it++){
           printf ("%10.5f ", gsl_vector_get (sfm->x, it));
         }
         printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
       }
       
       printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
       
       gsl_vector_free(x); /* initial values */
       gsl_vector_free(ss); /* inital step size */
       for (it=0; it<NDIM; it++){
         p[it+1]=gsl_vector_get(sfm->x,it);
         fprintf(ficrespow," %.12lf", p[it]);
       }
       gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
   #endif
   #ifdef POWELL
        powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
   #endif  
       fclose(ficrespow);
       
       hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
   
       for(i=1; i <=NDIM; i++)
         for(j=i+1;j<=NDIM;j++)
           matcov[i][j]=matcov[j][i];
       
       printf("\nCovariance matrix\n ");
       for(i=1; i <=NDIM; i++) {
         for(j=1;j<=NDIM;j++){ 
           printf("%f ",matcov[i][j]);
         }
         printf("\n ");
       }
       
       printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
       for (i=1;i<=NDIM;i++) 
         printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
   
       lsurv=vector(1,AGESUP);
       lpop=vector(1,AGESUP);
       tpop=vector(1,AGESUP);
       lsurv[agegomp]=100000;
       
       for (k=agegomp;k<=AGESUP;k++) {
         agemortsup=k;
         if (p[1]*exp(p[2]*(k-agegomp))>1) break;
       }
       
       for (k=agegomp;k<agemortsup;k++)
         lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
       
       for (k=agegomp;k<agemortsup;k++){
         lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
         sumlpop=sumlpop+lpop[k];
       }
       
       tpop[agegomp]=sumlpop;
       for (k=agegomp;k<(agemortsup-3);k++){
         /*  tpop[k+1]=2;*/
         tpop[k+1]=tpop[k]-lpop[k];
       }
       
       
       printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
       for (k=agegomp;k<(agemortsup-2);k++) 
         printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
       
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                        stepm, weightopt,\
                        model,imx,p,matcov,agemortsup);
       
       free_vector(lsurv,1,AGESUP);
       free_vector(lpop,1,AGESUP);
       free_vector(tpop,1,AGESUP);
   #ifdef GSL
       free_ivector(cens,1,n);
       free_vector(agecens,1,n);
       free_ivector(dcwave,1,n);
       free_matrix(ximort,1,NDIM,1,NDIM);
   #endif
     } /* Endof if mle==-3 */
     
     else{ /* For mle >=1 */
       globpr=0;/* debug */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       globpr=1; /* to print the contributions */
       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
       printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
       for (k=1; k<=npar;k++)
         printf(" %d %8.5f",k,p[k]);
       printf("\n");
       if(mle>=1){ /* Could be 1 or 2 */
         mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
       }
       
       /*--------- results files --------------*/
       fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
       
       
       fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(k=1; k <=(nlstate+ndeath); k++){
           if (k != i) {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%lf ",p[jk]);
               fprintf(ficlog,"%lf ",p[jk]);
               fprintf(ficres,"%lf ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       if(mle!=0){
         /* Computing hessian and covariance matrix */
         ftolhess=ftol; /* Usually correct */
         hesscov(matcov, p, npar, delti, ftolhess, func);
       }
       fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
       printf("# Scales (for hessian or gradient estimation)\n");
       fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
       for(i=1,jk=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if (j!=i) {
             fprintf(ficres,"%1d%1d",i,j);
             printf("%1d%1d",i,j);
             fprintf(ficlog,"%1d%1d",i,j);
             for(k=1; k<=ncovmodel;k++){
               printf(" %.5e",delti[jk]);
               fprintf(ficlog," %.5e",delti[jk]);
               fprintf(ficres," %.5e",delti[jk]);
               jk++;
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
         }
       }
       
       fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       if(mle>=1)
         printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
       /* # 121 Var(a12)\n\ */
       /* # 122 Cov(b12,a12) Var(b12)\n\ */
       /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
       /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
       /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
       /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
       /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
       /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
       
       
       /* Just to have a covariance matrix which will be more understandable
          even is we still don't want to manage dictionary of variables
       */
       for(itimes=1;itimes<=2;itimes++){
         jj=0;
         for(i=1; i <=nlstate; i++){
           for(j=1; j <=nlstate+ndeath; j++){
             if(j==i) continue;
             for(k=1; k<=ncovmodel;k++){
               jj++;
               ca[0]= k+'a'-1;ca[1]='\0';
               if(itimes==1){
                 if(mle>=1)
                   printf("#%1d%1d%d",i,j,k);
                 fprintf(ficlog,"#%1d%1d%d",i,j,k);
                 fprintf(ficres,"#%1d%1d%d",i,j,k);
               }else{
                 if(mle>=1)
                   printf("%1d%1d%d",i,j,k);
                 fprintf(ficlog,"%1d%1d%d",i,j,k);
                 fprintf(ficres,"%1d%1d%d",i,j,k);
               }
               ll=0;
               for(li=1;li <=nlstate; li++){
                 for(lj=1;lj <=nlstate+ndeath; lj++){
                   if(lj==li) continue;
                   for(lk=1;lk<=ncovmodel;lk++){
                     ll++;
                     if(ll<=jj){
                       cb[0]= lk +'a'-1;cb[1]='\0';
                       if(ll<jj){
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                           fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }else{
                         if(itimes==1){
                           if(mle>=1)
                             printf(" Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                           fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                         }else{
                           if(mle>=1)
                             printf(" %.5e",matcov[jj][ll]); 
                           fprintf(ficlog," %.5e",matcov[jj][ll]); 
                           fprintf(ficres," %.5e",matcov[jj][ll]); 
                         }
                       }
                     }
                   } /* end lk */
                 } /* end lj */
               } /* end li */
               if(mle>=1)
                 printf("\n");
               fprintf(ficlog,"\n");
               fprintf(ficres,"\n");
               numlinepar++;
             } /* end k*/
           } /*end j */
         } /* end i */
       } /* end itimes */
       
       fflush(ficlog);
       fflush(ficres);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       estepm=0;
       fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
       if (estepm==0 || estepm < stepm) estepm=stepm;
       if (fage <= 2) {
         bage = ageminpar;
         fage = agemaxpar;
       }
       
       fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
       fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       
       dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
       dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
       
       fscanf(ficpar,"pop_based=%d\n",&popbased);
       fprintf(ficparo,"pop_based=%d\n",popbased);   
       fprintf(ficres,"pop_based=%d\n",popbased);   
       
       while((c=getc(ficpar))=='#' && c!= EOF){
         ungetc(c,ficpar);
         fgets(line, MAXLINE, ficpar);
         fputs(line,stdout);
         fputs(line,ficparo);
       }
       ungetc(c,ficpar);
       
       fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
       fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
       /* day and month of proj2 are not used but only year anproj2.*/
       
       
       
        /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
       /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
       
       replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
       printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
       
       printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                    model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                    jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
         
      /*------------ free_vector  -------------*/
      /*  chdir(path); */
    
       free_ivector(wav,1,imx);
       free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
       free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
       free_lvector(num,1,n);
       free_vector(agedc,1,n);
       /*free_matrix(covar,0,NCOVMAX,1,n);*/
       /*free_matrix(covar,1,NCOVMAX,1,n);*/
       fclose(ficparo);
       fclose(ficres);
   
   
       /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
   #include "prevlim.h"  /* Use ficrespl, ficlog */
       fclose(ficrespl);
   
   #ifdef FREEEXIT2
   #include "freeexit2.h"
   #endif
   
       /*------------- h Pij x at various ages ------------*/
   #include "hpijx.h"
       fclose(ficrespij);
   
     /*-------------- Variance of one-step probabilities---*/
       k=1;
       varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
   
   
       probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
       for(i=1;i<=AGESUP;i++)
         for(j=1;j<=NCOVMAX;j++)
           for(k=1;k<=NCOVMAX;k++)
             probs[i][j][k]=0.;
   
       /*---------- Forecasting ------------------*/
       /*if((stepm == 1) && (strcmp(model,".")==0)){*/
       if(prevfcast==1){
         /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
         /*      }  */
         /*      else{ */
         /*        erreur=108; */
         /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
         /*      } */
       }
     
   
       /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
   
       prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
       /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
           ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
       */
   
       if (mobilav!=0) {
         mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
           fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
           printf(" Error in movingaverage mobilav=%d\n",mobilav);
         }
       }
   
   
       /*---------- Health expectancies, no variances ------------*/
   
       strcpy(filerese,"e");
       strcat(filerese,fileres);
       if((ficreseij=fopen(filerese,"w"))==NULL) {
         printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
         fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       }
       printf("Computing Health Expectancies: result on file '%s' \n", filerese);
       fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficreseij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficreseij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
         
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
       fclose(ficreseij);
   
   
       /*---------- Health expectancies and variances ------------*/
   
   
       strcpy(filerest,"t");
       strcat(filerest,fileres);
       if((ficrest=fopen(filerest,"w"))==NULL) {
         printf("Problem with total LE resultfile: %s\n", filerest);goto end;
         fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
       }
       printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
       fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
   
   
       strcpy(fileresstde,"stde");
       strcat(fileresstde,fileres);
       if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
         printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
         fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
       }
       printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
       fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
   
       strcpy(filerescve,"cve");
       strcat(filerescve,fileres);
       if((ficrescveij=fopen(filerescve,"w"))==NULL) {
         printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
         fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
       }
       printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
       fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
   
       strcpy(fileresv,"v");
       strcat(fileresv,fileres);
       if((ficresvij=fopen(fileresv,"w"))==NULL) {
         printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
         fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
       }
       printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
       fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficrest,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficrest,"******\n");
   
           fprintf(ficresstdeij,"\n#****** ");
           fprintf(ficrescveij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) {
             fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
             fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           }
           fprintf(ficresstdeij,"******\n");
           fprintf(ficrescveij,"******\n");
   
           fprintf(ficresvij,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvij,"******\n");
   
           eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
           /*
            */
           /* goto endfree; */
    
           vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
           pstamp(ficrest);
   
   
           for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
             oldm=oldms;savm=savms; /* Segmentation fault */
             varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart);
             fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
             if(vpopbased==1)
               fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
             else
               fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
             fprintf(ficrest,"# Age e.. (std) ");
             for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
             fprintf(ficrest,"\n");
   
             epj=vector(1,nlstate+1);
             for(age=bage; age <=fage ;age++){
               prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
               if (vpopbased==1) {
                 if(mobilav ==0){
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=probs[(int)age][i][k];
                 }else{ /* mobilav */ 
                   for(i=1; i<=nlstate;i++)
                     prlim[i][i]=mobaverage[(int)age][i][k];
                 }
               }
           
               fprintf(ficrest," %4.0f",age);
               for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                 for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                 }
                 epj[nlstate+1] +=epj[j];
               }
   
               for(i=1, vepp=0.;i <=nlstate;i++)
                 for(j=1;j <=nlstate;j++)
                   vepp += vareij[i][j][(int)age];
               fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
               for(j=1;j <=nlstate;j++){
                 fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
               }
               fprintf(ficrest,"\n");
             }
           }
           free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
           free_vector(epj,1,nlstate+1);
         /*}*/
       }
       free_vector(weight,1,n);
       free_imatrix(Tvard,1,NCOVMAX,1,2);
       free_imatrix(s,1,maxwav+1,1,n);
       free_matrix(anint,1,maxwav,1,n); 
       free_matrix(mint,1,maxwav,1,n);
       free_ivector(cod,1,n);
       free_ivector(tab,1,NCOVMAX);
       fclose(ficresstdeij);
       fclose(ficrescveij);
       fclose(ficresvij);
       fclose(ficrest);
       fclose(ficpar);
     
       /*------- Variance of period (stable) prevalence------*/   
   
       strcpy(fileresvpl,"vpl");
       strcat(fileresvpl,fileres);
       if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
         printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
         exit(0);
       }
       printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
   
       /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
         for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
             
       for (k=1; k <= (int) pow(2,cptcoveff); k++){
           fprintf(ficresvpl,"\n#****** ");
           for(j=1;j<=cptcoveff;j++) 
             fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficresvpl,"******\n");
         
           varpl=matrix(1,nlstate,(int) bage, (int) fage);
           oldm=oldms;savm=savms;
           varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
           free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
         /*}*/
       }
   
       fclose(ficresvpl);
   
       /*---------- End : free ----------------*/
       if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     }  /* mle==-3 arrives here for freeing */
    endfree:
       free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
       free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
       free_matrix(covar,0,NCOVMAX,1,n);
       free_matrix(matcov,1,npar,1,npar);
       /*free_vector(delti,1,npar);*/
       free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
       free_matrix(agev,1,maxwav,1,imx);
       free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
   
       free_ivector(ncodemax,1,NCOVMAX);
       free_ivector(Tvar,1,NCOVMAX);
       free_ivector(Tprod,1,NCOVMAX);
       free_ivector(Tvaraff,1,NCOVMAX);
       free_ivector(Tage,1,NCOVMAX);
   
       free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
       free_imatrix(codtab,1,100,1,10);
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
     fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %ld Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtm);
     fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
   
      printf("Before Current directory %s!\n",pathcd);
      if(chdir(pathcd) != 0)
       printf("Can't move to directory %s!\n",path);
     if(getcwd(pathcd,MAXLINE) > 0)
       printf("Current directory %s!\n",pathcd);
     /*strcat(plotcmd,CHARSEPARATOR);*/
     sprintf(plotcmd,"gnuplot");
   #ifndef UNIX
     sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
   #endif
     if(!stat(plotcmd,&info)){
       printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       if(!stat(getenv("GNUPLOTBIN"),&info)){
         printf("Error gnuplot program not found: %s Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #ifdef UNIX
       strcpy(plotcmd,GNUPLOTPROGRAM);
       if(!stat(plotcmd,&info)){
         printf("Error gnuplot program not found: %s\n",plotcmd);fflush(stdout);
       }else
         strcpy(pplotcmd,plotcmd);
   #endif
     }else
       strcpy(pplotcmd,plotcmd);
     
     sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
     printf("Starting graphs with: %s\n",plotcmd);fflush(stdout);
   
     if((outcmd=system(plotcmd)) != 0){
       printf("\n Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') {
         printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
         system(optionfilehtm);
       }
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.8  
changed lines
  Added in v.1.149


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>