Diff for /imach/src/imach.c between versions 1.39 and 1.83

version 1.39, 2002/04/05 15:45:00 version 1.83, 2003/06/10 13:39:11
Line 1 Line 1
 /* $Id$  /* $Id$
    Interpolated Markov Chain    $State$
     $Log$
   Short summary of the programme:    Revision 1.83  2003/06/10 13:39:11  lievre
      *** empty log message ***
   This program computes Healthy Life Expectancies from  
   cross-longitudinal data. Cross-longitudinal data consist in: -1- a    Revision 1.82  2003/06/05 15:57:20  brouard
   first survey ("cross") where individuals from different ages are    Add log in  imach.c and  fullversion number is now printed.
   interviewed on their health status or degree of disability (in the  
   case of a health survey which is our main interest) -2- at least a  */
   second wave of interviews ("longitudinal") which measure each change  /*
   (if any) in individual health status.  Health expectancies are     Interpolated Markov Chain
   computed from the time spent in each health state according to a  
   model. More health states you consider, more time is necessary to reach the    Short summary of the programme:
   Maximum Likelihood of the parameters involved in the model.  The    
   simplest model is the multinomial logistic model where pij is the    This program computes Healthy Life Expectancies from
   probability to be observed in state j at the second wave    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
   conditional to be observed in state i at the first wave. Therefore    first survey ("cross") where individuals from different ages are
   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where    interviewed on their health status or degree of disability (in the
   'age' is age and 'sex' is a covariate. If you want to have a more    case of a health survey which is our main interest) -2- at least a
   complex model than "constant and age", you should modify the program    second wave of interviews ("longitudinal") which measure each change
   where the markup *Covariates have to be included here again* invites    (if any) in individual health status.  Health expectancies are
   you to do it.  More covariates you add, slower the    computed from the time spent in each health state according to a
   convergence.    model. More health states you consider, more time is necessary to reach the
     Maximum Likelihood of the parameters involved in the model.  The
   The advantage of this computer programme, compared to a simple    simplest model is the multinomial logistic model where pij is the
   multinomial logistic model, is clear when the delay between waves is not    probability to be observed in state j at the second wave
   identical for each individual. Also, if a individual missed an    conditional to be observed in state i at the first wave. Therefore
   intermediate interview, the information is lost, but taken into    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   account using an interpolation or extrapolation.      'age' is age and 'sex' is a covariate. If you want to have a more
     complex model than "constant and age", you should modify the program
   hPijx is the probability to be observed in state i at age x+h    where the markup *Covariates have to be included here again* invites
   conditional to the observed state i at age x. The delay 'h' can be    you to do it.  More covariates you add, slower the
   split into an exact number (nh*stepm) of unobserved intermediate    convergence.
   states. This elementary transition (by month or quarter trimester,  
   semester or year) is model as a multinomial logistic.  The hPx    The advantage of this computer programme, compared to a simple
   matrix is simply the matrix product of nh*stepm elementary matrices    multinomial logistic model, is clear when the delay between waves is not
   and the contribution of each individual to the likelihood is simply    identical for each individual. Also, if a individual missed an
   hPijx.    intermediate interview, the information is lost, but taken into
     account using an interpolation or extrapolation.  
   Also this programme outputs the covariance matrix of the parameters but also  
   of the life expectancies. It also computes the prevalence limits.    hPijx is the probability to be observed in state i at age x+h
      conditional to the observed state i at age x. The delay 'h' can be
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    split into an exact number (nh*stepm) of unobserved intermediate
            Institut national d'études démographiques, Paris.    states. This elementary transition (by month, quarter,
   This software have been partly granted by Euro-REVES, a concerted action    semester or year) is modelled as a multinomial logistic.  The hPx
   from the European Union.    matrix is simply the matrix product of nh*stepm elementary matrices
   It is copyrighted identically to a GNU software product, ie programme and    and the contribution of each individual to the likelihood is simply
   software can be distributed freely for non commercial use. Latest version    hPijx.
   can be accessed at http://euroreves.ined.fr/imach .  
   **********************************************************************/    Also this programme outputs the covariance matrix of the parameters but also
      of the life expectancies. It also computes the stable prevalence. 
 #include <math.h>    
 #include <stdio.h>    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
 #include <stdlib.h>             Institut national d'études démographiques, Paris.
 #include <unistd.h>    This software have been partly granted by Euro-REVES, a concerted action
     from the European Union.
 #define MAXLINE 256    It is copyrighted identically to a GNU software product, ie programme and
 #define GNUPLOTPROGRAM "wgnuplot"    software can be distributed freely for non commercial use. Latest version
 /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/    can be accessed at http://euroreves.ined.fr/imach .
 #define FILENAMELENGTH 80  
 /*#define DEBUG*/    Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 #define windows    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define GLOCK_ERROR_NOPATH              -1      /* empty path */    
 #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */    **********************************************************************/
   /*
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    main
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    read parameterfile
     read datafile
 #define NINTERVMAX 8    concatwav
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */    if (mle >= 1)
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */      mlikeli
 #define NCOVMAX 8 /* Maximum number of covariates */    print results files
 #define MAXN 20000    if mle==1 
 #define YEARM 12. /* Number of months per year */       computes hessian
 #define AGESUP 130    read end of parameter file: agemin, agemax, bage, fage, estepm
 #define AGEBASE 40        begin-prev-date,...
     open gnuplot file
     open html file
 int erreur; /* Error number */    stable prevalence
 int nvar;     for age prevalim()
 int cptcovn, cptcovage=0, cptcoveff=0,cptcov;    h Pij x
 int npar=NPARMAX;    variance of p varprob
 int nlstate=2; /* Number of live states */    forecasting if prevfcast==1 prevforecast call prevalence()
 int ndeath=1; /* Number of dead states */    health expectancies
 int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    Variance-covariance of DFLE
 int popbased=0;    prevalence()
      movingaverage()
 int *wav; /* Number of waves for this individuual 0 is possible */    varevsij() 
 int maxwav; /* Maxim number of waves */    if popbased==1 varevsij(,popbased)
 int jmin, jmax; /* min, max spacing between 2 waves */    total life expectancies
 int mle, weightopt;    Variance of stable prevalence
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */   end
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */  */
 double jmean; /* Mean space between 2 waves */  
 double **oldm, **newm, **savm; /* Working pointers to matrices */  
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */  
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;   
 FILE *ficgp,*ficresprob,*ficpop;  #include <math.h>
 FILE *ficreseij;  #include <stdio.h>
   char filerese[FILENAMELENGTH];  #include <stdlib.h>
  FILE  *ficresvij;  #include <unistd.h>
   char fileresv[FILENAMELENGTH];  
  FILE  *ficresvpl;  #define MAXLINE 256
   char fileresvpl[FILENAMELENGTH];  #define GNUPLOTPROGRAM "gnuplot"
   /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 #define NR_END 1  #define FILENAMELENGTH 80
 #define FREE_ARG char*  /*#define DEBUG*/
 #define FTOL 1.0e-10  #define windows
   #define GLOCK_ERROR_NOPATH              -1      /* empty path */
 #define NRANSI  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
 #define ITMAX 200  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
 #define TOL 2.0e-4  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   
 #define CGOLD 0.3819660  #define NINTERVMAX 8
 #define ZEPS 1.0e-10  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
 #define GOLD 1.618034  #define MAXN 20000
 #define GLIMIT 100.0  #define YEARM 12. /* Number of months per year */
 #define TINY 1.0e-20  #define AGESUP 130
   #define AGEBASE 40
 static double maxarg1,maxarg2;  #ifdef windows
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))  #define DIRSEPARATOR '\\'
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))  #define ODIRSEPARATOR '/'
    #else
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))  #define DIRSEPARATOR '/'
 #define rint(a) floor(a+0.5)  #define ODIRSEPARATOR '\\'
   #endif
 static double sqrarg;  
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)  /* $Id$ */
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}  /* $State$ */
   
 int imx;  char version[]="Imach version 0.95a1, June 2003, INED-EUROREVES ";
 int stepm;  char fullversion[]="$Revision$ $Date$"; 
 /* Stepm, step in month: minimum step interpolation*/  int erreur; /* Error number */
   int nvar;
 int estepm;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 int m,nb;  int ndeath=1; /* Number of dead states */
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;  int popbased=0;
 double **pmmij, ***probs, ***mobaverage;  
 double dateintmean=0;  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 double *weight;  int jmin, jmax; /* min, max spacing between 2 waves */
 int **s; /* Status */  int mle, weightopt;
 double *agedc, **covar, idx;  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
 int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */             * wave mi and wave mi+1 is not an exact multiple of stepm. */
 double ftolhess; /* Tolerance for computing hessian */  double jmean; /* Mean space between 2 waves */
   double **oldm, **newm, **savm; /* Working pointers to matrices */
 /**************** split *************************/  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 static  int split( char *path, char *dirc, char *name, char *ext, char *finame )  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
 {  FILE *ficlog, *ficrespow;
    char *s;                             /* pointer */  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
    int  l1, l2;                         /* length counters */  FILE *ficresprobmorprev;
   FILE *fichtm; /* Html File */
    l1 = strlen( path );                 /* length of path */  FILE *ficreseij;
    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );  char filerese[FILENAMELENGTH];
 #ifdef windows  FILE  *ficresvij;
    s = strrchr( path, '\\' );           /* find last / */  char fileresv[FILENAMELENGTH];
 #else  FILE  *ficresvpl;
    s = strrchr( path, '/' );            /* find last / */  char fileresvpl[FILENAMELENGTH];
 #endif  char title[MAXLINE];
    if ( s == NULL ) {                   /* no directory, so use current */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
 #if     defined(__bsd__)                /* get current working directory */  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
       extern char       *getwd( );  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
       if ( getwd( dirc ) == NULL ) {  char filelog[FILENAMELENGTH]; /* Log file */
 #else  char filerest[FILENAMELENGTH];
       extern char       *getcwd( );  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
       if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {  
 #endif  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
          return( GLOCK_ERROR_GETCWD );  
       }  #define NR_END 1
       strcpy( name, path );             /* we've got it */  #define FREE_ARG char*
    } else {                             /* strip direcotry from path */  #define FTOL 1.0e-10
       s++;                              /* after this, the filename */  
       l2 = strlen( s );                 /* length of filename */  #define NRANSI 
       if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );  #define ITMAX 200 
       strcpy( name, s );                /* save file name */  
       strncpy( dirc, path, l1 - l2 );   /* now the directory */  #define TOL 2.0e-4 
       dirc[l1-l2] = 0;                  /* add zero */  
    }  #define CGOLD 0.3819660 
    l1 = strlen( dirc );                 /* length of directory */  #define ZEPS 1.0e-10 
 #ifdef windows  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }  
 #else  #define GOLD 1.618034 
    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }  #define GLIMIT 100.0 
 #endif  #define TINY 1.0e-20 
    s = strrchr( name, '.' );            /* find last / */  
    s++;  static double maxarg1,maxarg2;
    strcpy(ext,s);                       /* save extension */  #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
    l1= strlen( name);  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
    l2= strlen( s)+1;    
    strncpy( finame, name, l1-l2);  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
    finame[l1-l2]= 0;  #define rint(a) floor(a+0.5)
    return( 0 );                         /* we're done */  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
   #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 /******************************************/  
   int imx; 
 void replace(char *s, char*t)  int stepm;
 {  /* Stepm, step in month: minimum step interpolation*/
   int i;  
   int lg=20;  int estepm;
   i=0;  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   lg=strlen(t);  
   for(i=0; i<= lg; i++) {  int m,nb;
     (s[i] = t[i]);  int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
     if (t[i]== '\\') s[i]='/';  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   }  double **pmmij, ***probs;
 }  double dateintmean=0;
   
 int nbocc(char *s, char occ)  double *weight;
 {  int **s; /* Status */
   int i,j=0;  double *agedc, **covar, idx;
   int lg=20;  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   i=0;  
   lg=strlen(s);  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for(i=0; i<= lg; i++) {  double ftolhess; /* Tolerance for computing hessian */
   if  (s[i] == occ ) j++;  
   }  /**************** split *************************/
   return j;  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
 }  {
     char  *ss;                            /* pointer */
 void cutv(char *u,char *v, char*t, char occ)    int   l1, l2;                         /* length counters */
 {  
   int i,lg,j,p=0;    l1 = strlen(path );                   /* length of path */
   i=0;    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
   for(j=0; j<=strlen(t)-1; j++) {    ss= strrchr( path, DIRSEPARATOR );            /* find last / */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;    if ( ss == NULL ) {                   /* no directory, so use current */
   }      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
         printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   lg=strlen(t);      /* get current working directory */
   for(j=0; j<p; j++) {      /*    extern  char* getcwd ( char *buf , int len);*/
     (u[j] = t[j]);      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
   }        return( GLOCK_ERROR_GETCWD );
      u[p]='\0';      }
       strcpy( name, path );               /* we've got it */
    for(j=0; j<= lg; j++) {    } else {                              /* strip direcotry from path */
     if (j>=(p+1))(v[j-p-1] = t[j]);      ss++;                               /* after this, the filename */
   }      l2 = strlen( ss );                  /* length of filename */
 }      if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
       strcpy( name, ss );         /* save file name */
 /********************** nrerror ********************/      strncpy( dirc, path, l1 - l2 );     /* now the directory */
       dirc[l1-l2] = 0;                    /* add zero */
 void nrerror(char error_text[])    }
 {    l1 = strlen( dirc );                  /* length of directory */
   fprintf(stderr,"ERREUR ...\n");  #ifdef windows
   fprintf(stderr,"%s\n",error_text);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   exit(1);  #else
 }    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
 /*********************** vector *******************/  #endif
 double *vector(int nl, int nh)    ss = strrchr( name, '.' );            /* find last / */
 {    ss++;
   double *v;    strcpy(ext,ss);                       /* save extension */
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));    l1= strlen( name);
   if (!v) nrerror("allocation failure in vector");    l2= strlen(ss)+1;
   return v-nl+NR_END;    strncpy( finame, name, l1-l2);
 }    finame[l1-l2]= 0;
     return( 0 );                          /* we're done */
 /************************ free vector ******************/  }
 void free_vector(double*v, int nl, int nh)  
 {  
   free((FREE_ARG)(v+nl-NR_END));  /******************************************/
 }  
   void replace(char *s, char*t)
 /************************ivector *******************************/  {
 int *ivector(long nl,long nh)    int i;
 {    int lg=20;
   int *v;    i=0;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));    lg=strlen(t);
   if (!v) nrerror("allocation failure in ivector");    for(i=0; i<= lg; i++) {
   return v-nl+NR_END;      (s[i] = t[i]);
 }      if (t[i]== '\\') s[i]='/';
     }
 /******************free ivector **************************/  }
 void free_ivector(int *v, long nl, long nh)  
 {  int nbocc(char *s, char occ)
   free((FREE_ARG)(v+nl-NR_END));  {
 }    int i,j=0;
     int lg=20;
 /******************* imatrix *******************************/    i=0;
 int **imatrix(long nrl, long nrh, long ncl, long nch)    lg=strlen(s);
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */    for(i=0; i<= lg; i++) {
 {    if  (s[i] == occ ) j++;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;    }
   int **m;    return j;
    }
   /* allocate pointers to rows */  
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  void cutv(char *u,char *v, char*t, char occ)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    /* cuts string t into u and v where u is ended by char occ excluding it
   m -= nrl;       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
         gives u="abcedf" and v="ghi2j" */
      int i,lg,j,p=0;
   /* allocate rows and set pointers to them */    i=0;
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));    for(j=0; j<=strlen(t)-1; j++) {
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
   m[nrl] += NR_END;    }
   m[nrl] -= ncl;  
      lg=strlen(t);
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;    for(j=0; j<p; j++) {
        (u[j] = t[j]);
   /* return pointer to array of pointers to rows */    }
   return m;       u[p]='\0';
 }  
      for(j=0; j<= lg; j++) {
 /****************** free_imatrix *************************/      if (j>=(p+1))(v[j-p-1] = t[j]);
 void free_imatrix(m,nrl,nrh,ncl,nch)    }
       int **m;  }
       long nch,ncl,nrh,nrl;  
      /* free an int matrix allocated by imatrix() */  /********************** nrerror ********************/
 {  
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  void nrerror(char error_text[])
   free((FREE_ARG) (m+nrl-NR_END));  {
 }    fprintf(stderr,"ERREUR ...\n");
     fprintf(stderr,"%s\n",error_text);
 /******************* matrix *******************************/    exit(EXIT_FAILURE);
 double **matrix(long nrl, long nrh, long ncl, long nch)  }
 {  /*********************** vector *******************/
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  double *vector(int nl, int nh)
   double **m;  {
     double *v;
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
   if (!m) nrerror("allocation failure 1 in matrix()");    if (!v) nrerror("allocation failure in vector");
   m += NR_END;    return v-nl+NR_END;
   m -= nrl;  }
   
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  /************************ free vector ******************/
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  void free_vector(double*v, int nl, int nh)
   m[nrl] += NR_END;  {
   m[nrl] -= ncl;    free((FREE_ARG)(v+nl-NR_END));
   }
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  
   return m;  /************************ivector *******************************/
 }  char *cvector(long nl,long nh)
   {
 /*************************free matrix ************************/    char *v;
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    v=(char *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(char)));
 {    if (!v) nrerror("allocation failure in cvector");
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    return v-nl+NR_END;
   free((FREE_ARG)(m+nrl-NR_END));  }
 }  
   /******************free ivector **************************/
 /******************* ma3x *******************************/  void free_cvector(char *v, long nl, long nh)
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  {
 {    free((FREE_ARG)(v+nl-NR_END));
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  }
   double ***m;  
   /************************ivector *******************************/
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int *ivector(long nl,long nh)
   if (!m) nrerror("allocation failure 1 in matrix()");  {
   m += NR_END;    int *v;
   m -= nrl;    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
     if (!v) nrerror("allocation failure in ivector");
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));    return v-nl+NR_END;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  }
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  /******************free ivector **************************/
   void free_ivector(int *v, long nl, long nh)
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  {
     free((FREE_ARG)(v+nl-NR_END));
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  }
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  
   m[nrl][ncl] += NR_END;  /******************* imatrix *******************************/
   m[nrl][ncl] -= nll;  int **imatrix(long nrl, long nrh, long ncl, long nch) 
   for (j=ncl+1; j<=nch; j++)       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
     m[nrl][j]=m[nrl][j-1]+nlay;  { 
      long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
   for (i=nrl+1; i<=nrh; i++) {    int **m; 
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;    
     for (j=ncl+1; j<=nch; j++)    /* allocate pointers to rows */ 
       m[i][j]=m[i][j-1]+nlay;    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
   }    if (!m) nrerror("allocation failure 1 in matrix()"); 
   return m;    m += NR_END; 
 }    m -= nrl; 
     
 /*************************free ma3x ************************/    
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)    /* allocate rows and set pointers to them */ 
 {    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   free((FREE_ARG)(m[nrl]+ncl-NR_END));    m[nrl] += NR_END; 
   free((FREE_ARG)(m+nrl-NR_END));    m[nrl] -= ncl; 
 }    
     for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
 /***************** f1dim *************************/    
 extern int ncom;    /* return pointer to array of pointers to rows */ 
 extern double *pcom,*xicom;    return m; 
 extern double (*nrfunc)(double []);  } 
    
 double f1dim(double x)  /****************** free_imatrix *************************/
 {  void free_imatrix(m,nrl,nrh,ncl,nch)
   int j;        int **m;
   double f;        long nch,ncl,nrh,nrl; 
   double *xt;       /* free an int matrix allocated by imatrix() */ 
    { 
   xt=vector(1,ncom);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];    free((FREE_ARG) (m+nrl-NR_END)); 
   f=(*nrfunc)(xt);  } 
   free_vector(xt,1,ncom);  
   return f;  /******************* matrix *******************************/
 }  double **matrix(long nrl, long nrh, long ncl, long nch)
   {
 /*****************brent *************************/    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    double **m;
 {  
   int iter;    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
   double a,b,d,etemp;    if (!m) nrerror("allocation failure 1 in matrix()");
   double fu,fv,fw,fx;    m += NR_END;
   double ftemp;    m -= nrl;
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
      if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
   a=(ax < cx ? ax : cx);    m[nrl] += NR_END;
   b=(ax > cx ? ax : cx);    m[nrl] -= ncl;
   x=w=v=bx;  
   fw=fv=fx=(*f)(x);    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   for (iter=1;iter<=ITMAX;iter++) {    return m;
     xm=0.5*(a+b);    /* print *(*(m+1)+70) ou print m[1][70]; print m+1 or print &(m[1]) 
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);     */
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/  }
     printf(".");fflush(stdout);  
 #ifdef DEBUG  /*************************free matrix ************************/
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  {
 #endif    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){    free((FREE_ARG)(m+nrl-NR_END));
       *xmin=x;  }
       return fx;  
     }  /******************* ma3x *******************************/
     ftemp=fu;  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     if (fabs(e) > tol1) {  {
       r=(x-w)*(fx-fv);    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       q=(x-v)*(fx-fw);    double ***m;
       p=(x-v)*q-(x-w)*r;  
       q=2.0*(q-r);    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       if (q > 0.0) p = -p;    if (!m) nrerror("allocation failure 1 in matrix()");
       q=fabs(q);    m += NR_END;
       etemp=e;    m -= nrl;
       e=d;  
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         d=CGOLD*(e=(x >= xm ? a-x : b-x));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
       else {    m[nrl] += NR_END;
         d=p/q;    m[nrl] -= ncl;
         u=x+d;  
         if (u-a < tol2 || b-u < tol2)    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
           d=SIGN(tol1,xm-x);  
       }    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
     } else {    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    m[nrl][ncl] += NR_END;
     }    m[nrl][ncl] -= nll;
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));    for (j=ncl+1; j<=nch; j++) 
     fu=(*f)(u);      m[nrl][j]=m[nrl][j-1]+nlay;
     if (fu <= fx) {    
       if (u >= x) a=x; else b=x;    for (i=nrl+1; i<=nrh; i++) {
       SHFT(v,w,x,u)      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
         SHFT(fv,fw,fx,fu)      for (j=ncl+1; j<=nch; j++) 
         } else {        m[i][j]=m[i][j-1]+nlay;
           if (u < x) a=u; else b=u;    }
           if (fu <= fw || w == x) {    return m; 
             v=w;    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
             w=u;             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
             fv=fw;    */
             fw=fu;  }
           } else if (fu <= fv || v == x || v == w) {  
             v=u;  /*************************free ma3x ************************/
             fv=fu;  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           }  {
         }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
   }    free((FREE_ARG)(m[nrl]+ncl-NR_END));
   nrerror("Too many iterations in brent");    free((FREE_ARG)(m+nrl-NR_END));
   *xmin=x;  }
   return fx;  
 }  /***************** f1dim *************************/
   extern int ncom; 
 /****************** mnbrak ***********************/  extern double *pcom,*xicom;
   extern double (*nrfunc)(double []); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,   
             double (*func)(double))  double f1dim(double x) 
 {  { 
   double ulim,u,r,q, dum;    int j; 
   double fu;    double f;
      double *xt; 
   *fa=(*func)(*ax);   
   *fb=(*func)(*bx);    xt=vector(1,ncom); 
   if (*fb > *fa) {    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     SHFT(dum,*ax,*bx,dum)    f=(*nrfunc)(xt); 
       SHFT(dum,*fb,*fa,dum)    free_vector(xt,1,ncom); 
       }    return f; 
   *cx=(*bx)+GOLD*(*bx-*ax);  } 
   *fc=(*func)(*cx);  
   while (*fb > *fc) {  /*****************brent *************************/
     r=(*bx-*ax)*(*fb-*fc);  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
     q=(*bx-*cx)*(*fb-*fa);  { 
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/    int iter; 
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    double a,b,d,etemp;
     ulim=(*bx)+GLIMIT*(*cx-*bx);    double fu,fv,fw,fx;
     if ((*bx-u)*(u-*cx) > 0.0) {    double ftemp;
       fu=(*func)(u);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
     } else if ((*cx-u)*(u-ulim) > 0.0) {    double e=0.0; 
       fu=(*func)(u);   
       if (fu < *fc) {    a=(ax < cx ? ax : cx); 
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    b=(ax > cx ? ax : cx); 
           SHFT(*fb,*fc,fu,(*func)(u))    x=w=v=bx; 
           }    fw=fv=fx=(*f)(x); 
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {    for (iter=1;iter<=ITMAX;iter++) { 
       u=ulim;      xm=0.5*(a+b); 
       fu=(*func)(u);      tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
     } else {      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
       u=(*cx)+GOLD*(*cx-*bx);      printf(".");fflush(stdout);
       fu=(*func)(u);      fprintf(ficlog,".");fflush(ficlog);
     }  #ifdef DEBUG
     SHFT(*ax,*bx,*cx,u)      printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       SHFT(*fa,*fb,*fc,fu)      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
       }      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
 }  #endif
       if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
 /*************** linmin ************************/        *xmin=x; 
         return fx; 
 int ncom;      } 
 double *pcom,*xicom;      ftemp=fu;
 double (*nrfunc)(double []);      if (fabs(e) > tol1) { 
          r=(x-w)*(fx-fv); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))        q=(x-v)*(fx-fw); 
 {        p=(x-v)*q-(x-w)*r; 
   double brent(double ax, double bx, double cx,        q=2.0*(q-r); 
                double (*f)(double), double tol, double *xmin);        if (q > 0.0) p = -p; 
   double f1dim(double x);        q=fabs(q); 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,        etemp=e; 
               double *fc, double (*func)(double));        e=d; 
   int j;        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
   double xx,xmin,bx,ax;          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   double fx,fb,fa;        else { 
            d=p/q; 
   ncom=n;          u=x+d; 
   pcom=vector(1,n);          if (u-a < tol2 || b-u < tol2) 
   xicom=vector(1,n);            d=SIGN(tol1,xm-x); 
   nrfunc=func;        } 
   for (j=1;j<=n;j++) {      } else { 
     pcom[j]=p[j];        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     xicom[j]=xi[j];      } 
   }      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
   ax=0.0;      fu=(*f)(u); 
   xx=1.0;      if (fu <= fx) { 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);        if (u >= x) a=x; else b=x; 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);        SHFT(v,w,x,u) 
 #ifdef DEBUG          SHFT(fv,fw,fx,fu) 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);          } else { 
 #endif            if (u < x) a=u; else b=u; 
   for (j=1;j<=n;j++) {            if (fu <= fw || w == x) { 
     xi[j] *= xmin;              v=w; 
     p[j] += xi[j];              w=u; 
   }              fv=fw; 
   free_vector(xicom,1,n);              fw=fu; 
   free_vector(pcom,1,n);            } else if (fu <= fv || v == x || v == w) { 
 }              v=u; 
               fv=fu; 
 /*************** powell ************************/            } 
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,          } 
             double (*func)(double []))    } 
 {    nrerror("Too many iterations in brent"); 
   void linmin(double p[], double xi[], int n, double *fret,    *xmin=x; 
               double (*func)(double []));    return fx; 
   int i,ibig,j;  } 
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;  /****************** mnbrak ***********************/
   double *xits;  
   pt=vector(1,n);  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   ptt=vector(1,n);              double (*func)(double)) 
   xit=vector(1,n);  { 
   xits=vector(1,n);    double ulim,u,r,q, dum;
   *fret=(*func)(p);    double fu; 
   for (j=1;j<=n;j++) pt[j]=p[j];   
   for (*iter=1;;++(*iter)) {    *fa=(*func)(*ax); 
     fp=(*fret);    *fb=(*func)(*bx); 
     ibig=0;    if (*fb > *fa) { 
     del=0.0;      SHFT(dum,*ax,*bx,dum) 
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);        SHFT(dum,*fb,*fa,dum) 
     for (i=1;i<=n;i++)        } 
       printf(" %d %.12f",i, p[i]);    *cx=(*bx)+GOLD*(*bx-*ax); 
     printf("\n");    *fc=(*func)(*cx); 
     for (i=1;i<=n;i++) {    while (*fb > *fc) { 
       for (j=1;j<=n;j++) xit[j]=xi[j][i];      r=(*bx-*ax)*(*fb-*fc); 
       fptt=(*fret);      q=(*bx-*cx)*(*fb-*fa); 
 #ifdef DEBUG      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
       printf("fret=%lf \n",*fret);        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
 #endif      ulim=(*bx)+GLIMIT*(*cx-*bx); 
       printf("%d",i);fflush(stdout);      if ((*bx-u)*(u-*cx) > 0.0) { 
       linmin(p,xit,n,fret,func);        fu=(*func)(u); 
       if (fabs(fptt-(*fret)) > del) {      } else if ((*cx-u)*(u-ulim) > 0.0) { 
         del=fabs(fptt-(*fret));        fu=(*func)(u); 
         ibig=i;        if (fu < *fc) { 
       }          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
 #ifdef DEBUG            SHFT(*fb,*fc,fu,(*func)(u)) 
       printf("%d %.12e",i,(*fret));            } 
       for (j=1;j<=n;j++) {      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);        u=ulim; 
         printf(" x(%d)=%.12e",j,xit[j]);        fu=(*func)(u); 
       }      } else { 
       for(j=1;j<=n;j++)        u=(*cx)+GOLD*(*cx-*bx); 
         printf(" p=%.12e",p[j]);        fu=(*func)(u); 
       printf("\n");      } 
 #endif      SHFT(*ax,*bx,*cx,u) 
     }        SHFT(*fa,*fb,*fc,fu) 
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {        } 
 #ifdef DEBUG  } 
       int k[2],l;  
       k[0]=1;  /*************** linmin ************************/
       k[1]=-1;  
       printf("Max: %.12e",(*func)(p));  int ncom; 
       for (j=1;j<=n;j++)  double *pcom,*xicom;
         printf(" %.12e",p[j]);  double (*nrfunc)(double []); 
       printf("\n");   
       for(l=0;l<=1;l++) {  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
         for (j=1;j<=n;j++) {  { 
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];    double brent(double ax, double bx, double cx, 
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);                 double (*f)(double), double tol, double *xmin); 
         }    double f1dim(double x); 
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
       }                double *fc, double (*func)(double)); 
 #endif    int j; 
     double xx,xmin,bx,ax; 
     double fx,fb,fa;
       free_vector(xit,1,n);   
       free_vector(xits,1,n);    ncom=n; 
       free_vector(ptt,1,n);    pcom=vector(1,n); 
       free_vector(pt,1,n);    xicom=vector(1,n); 
       return;    nrfunc=func; 
     }    for (j=1;j<=n;j++) { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");      pcom[j]=p[j]; 
     for (j=1;j<=n;j++) {      xicom[j]=xi[j]; 
       ptt[j]=2.0*p[j]-pt[j];    } 
       xit[j]=p[j]-pt[j];    ax=0.0; 
       pt[j]=p[j];    xx=1.0; 
     }    mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     fptt=(*func)(ptt);    *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
     if (fptt < fp) {  #ifdef DEBUG
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
       if (t < 0.0) {    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
         linmin(p,xit,n,fret,func);  #endif
         for (j=1;j<=n;j++) {    for (j=1;j<=n;j++) { 
           xi[j][ibig]=xi[j][n];      xi[j] *= xmin; 
           xi[j][n]=xit[j];      p[j] += xi[j]; 
         }    } 
 #ifdef DEBUG    free_vector(xicom,1,n); 
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    free_vector(pcom,1,n); 
         for(j=1;j<=n;j++)  } 
           printf(" %.12e",xit[j]);  
         printf("\n");  /*************** powell ************************/
 #endif  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       }              double (*func)(double [])) 
     }  { 
   }    void linmin(double p[], double xi[], int n, double *fret, 
 }                double (*func)(double [])); 
     int i,ibig,j; 
 /**** Prevalence limit ****************/    double del,t,*pt,*ptt,*xit;
     double fp,fptt;
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)    double *xits;
 {    pt=vector(1,n); 
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit    ptt=vector(1,n); 
      matrix by transitions matrix until convergence is reached */    xit=vector(1,n); 
     xits=vector(1,n); 
   int i, ii,j,k;    *fret=(*func)(p); 
   double min, max, maxmin, maxmax,sumnew=0.;    for (j=1;j<=n;j++) pt[j]=p[j]; 
   double **matprod2();    for (*iter=1;;++(*iter)) { 
   double **out, cov[NCOVMAX], **pmij();      fp=(*fret); 
   double **newm;      ibig=0; 
   double agefin, delaymax=50 ; /* Max number of years to converge */      del=0.0; 
       printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
   for (ii=1;ii<=nlstate+ndeath;ii++)      fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
     for (j=1;j<=nlstate+ndeath;j++){      fprintf(ficrespow,"%d %.12f",*iter,*fret);
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);      for (i=1;i<=n;i++) {
     }        printf(" %d %.12f",i, p[i]);
         fprintf(ficlog," %d %.12lf",i, p[i]);
    cov[1]=1.;        fprintf(ficrespow," %.12lf", p[i]);
        }
  /* Even if hstepm = 1, at least one multiplication by the unit matrix */      printf("\n");
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){      fprintf(ficlog,"\n");
     newm=savm;      fprintf(ficrespow,"\n");
     /* Covariates have to be included here again */      for (i=1;i<=n;i++) { 
      cov[2]=agefin;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
          fptt=(*fret); 
       for (k=1; k<=cptcovn;k++) {  #ifdef DEBUG
         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];        printf("fret=%lf \n",*fret);
         /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/        fprintf(ficlog,"fret=%lf \n",*fret);
       }  #endif
       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];        printf("%d",i);fflush(stdout);
       for (k=1; k<=cptcovprod;k++)        fprintf(ficlog,"%d",i);fflush(ficlog);
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];        linmin(p,xit,n,fret,func); 
         if (fabs(fptt-(*fret)) > del) { 
       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/          del=fabs(fptt-(*fret)); 
       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/          ibig=i; 
       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/        } 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);  #ifdef DEBUG
         printf("%d %.12e",i,(*fret));
     savm=oldm;        fprintf(ficlog,"%d %.12e",i,(*fret));
     oldm=newm;        for (j=1;j<=n;j++) {
     maxmax=0.;          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
     for(j=1;j<=nlstate;j++){          printf(" x(%d)=%.12e",j,xit[j]);
       min=1.;          fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
       max=0.;        }
       for(i=1; i<=nlstate; i++) {        for(j=1;j<=n;j++) {
         sumnew=0;          printf(" p=%.12e",p[j]);
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];          fprintf(ficlog," p=%.12e",p[j]);
         prlim[i][j]= newm[i][j]/(1-sumnew);        }
         max=FMAX(max,prlim[i][j]);        printf("\n");
         min=FMIN(min,prlim[i][j]);        fprintf(ficlog,"\n");
       }  #endif
       maxmin=max-min;      } 
       maxmax=FMAX(maxmax,maxmin);      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
     }  #ifdef DEBUG
     if(maxmax < ftolpl){        int k[2],l;
       return prlim;        k[0]=1;
     }        k[1]=-1;
   }        printf("Max: %.12e",(*func)(p));
 }        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
 /*************** transition probabilities ***************/          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )        }
 {        printf("\n");
   double s1, s2;        fprintf(ficlog,"\n");
   /*double t34;*/        for(l=0;l<=1;l++) {
   int i,j,j1, nc, ii, jj;          for (j=1;j<=n;j++) {
             ptt[j]=p[j]+(p[j]-pt[j])*k[l];
     for(i=1; i<= nlstate; i++){            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
     for(j=1; j<i;j++){            fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){          }
         /*s2 += param[i][j][nc]*cov[nc];*/          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/        }
       }  #endif
       ps[i][j]=s2;  
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/  
     }        free_vector(xit,1,n); 
     for(j=i+1; j<=nlstate+ndeath;j++){        free_vector(xits,1,n); 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){        free_vector(ptt,1,n); 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        free_vector(pt,1,n); 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        return; 
       }      } 
       ps[i][j]=s2;      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
     }      for (j=1;j<=n;j++) { 
   }        ptt[j]=2.0*p[j]-pt[j]; 
     /*ps[3][2]=1;*/        xit[j]=p[j]-pt[j]; 
         pt[j]=p[j]; 
   for(i=1; i<= nlstate; i++){      } 
      s1=0;      fptt=(*func)(ptt); 
     for(j=1; j<i; j++)      if (fptt < fp) { 
       s1+=exp(ps[i][j]);        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     for(j=i+1; j<=nlstate+ndeath; j++)        if (t < 0.0) { 
       s1+=exp(ps[i][j]);          linmin(p,xit,n,fret,func); 
     ps[i][i]=1./(s1+1.);          for (j=1;j<=n;j++) { 
     for(j=1; j<i; j++)            xi[j][ibig]=xi[j][n]; 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            xi[j][n]=xit[j]; 
     for(j=i+1; j<=nlstate+ndeath; j++)          }
       ps[i][j]= exp(ps[i][j])*ps[i][i];  #ifdef DEBUG
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   } /* end i */          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
           for(j=1;j<=n;j++){
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){            printf(" %.12e",xit[j]);
     for(jj=1; jj<= nlstate+ndeath; jj++){            fprintf(ficlog," %.12e",xit[j]);
       ps[ii][jj]=0;          }
       ps[ii][ii]=1;          printf("\n");
     }          fprintf(ficlog,"\n");
   }  #endif
         }
       } 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){    } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  } 
      printf("%lf ",ps[ii][jj]);  
    }  /**** Prevalence limit (stable prevalence)  ****************/
     printf("\n ");  
     }  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
     printf("\n ");printf("%lf ",cov[2]);*/  {
 /*    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
   for(i=1; i<= npar; i++) printf("%f ",x[i]);       matrix by transitions matrix until convergence is reached */
   goto end;*/  
     return ps;    int i, ii,j,k;
 }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
 /**************** Product of 2 matrices ******************/    double **out, cov[NCOVMAX], **pmij();
     double **newm;
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)    double agefin, delaymax=50 ; /* Max number of years to converge */
 {  
   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    for (ii=1;ii<=nlstate+ndeath;ii++)
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */      for (j=1;j<=nlstate+ndeath;j++){
   /* in, b, out are matrice of pointers which should have been initialized        oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      before: only the contents of out is modified. The function returns      }
      a pointer to pointers identical to out */  
   long i, j, k;     cov[1]=1.;
   for(i=nrl; i<= nrh; i++)   
     for(k=ncolol; k<=ncoloh; k++)   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       for(j=ncl,out[i][k]=0.; j<=nch; j++)    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
         out[i][k] +=in[i][j]*b[j][k];      newm=savm;
       /* Covariates have to be included here again */
   return out;       cov[2]=agefin;
 }    
         for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
 /************* Higher Matrix Product ***************/          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
         }
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
 {        for (k=1; k<=cptcovprod;k++)
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
      duration (i.e. until  
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.        /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
      (typically every 2 years instead of every month which is too big).        /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
      Model is determined by parameters x and covariates have to be      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
      included manually here.  
       savm=oldm;
      */      oldm=newm;
       maxmax=0.;
   int i, j, d, h, k;      for(j=1;j<=nlstate;j++){
   double **out, cov[NCOVMAX];        min=1.;
   double **newm;        max=0.;
         for(i=1; i<=nlstate; i++) {
   /* Hstepm could be zero and should return the unit matrix */          sumnew=0;
   for (i=1;i<=nlstate+ndeath;i++)          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
     for (j=1;j<=nlstate+ndeath;j++){          prlim[i][j]= newm[i][j]/(1-sumnew);
       oldm[i][j]=(i==j ? 1.0 : 0.0);          max=FMAX(max,prlim[i][j]);
       po[i][j][0]=(i==j ? 1.0 : 0.0);          min=FMIN(min,prlim[i][j]);
     }        }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        maxmin=max-min;
   for(h=1; h <=nhstepm; h++){        maxmax=FMAX(maxmax,maxmin);
     for(d=1; d <=hstepm; d++){      }
       newm=savm;      if(maxmax < ftolpl){
       /* Covariates have to be included here again */        return prlim;
       cov[1]=1.;      }
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;    }
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];  }
       for (k=1; k<=cptcovage;k++)  
         cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];  /*************** transition probabilities ***************/ 
       for (k=1; k<=cptcovprod;k++)  
         cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];  double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
   {
     double s1, s2;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    /*double t34;*/
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    int i,j,j1, nc, ii, jj;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));      for(i=1; i<= nlstate; i++){
       savm=oldm;      for(j=1; j<i;j++){
       oldm=newm;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
     }          /*s2 += param[i][j][nc]*cov[nc];*/
     for(i=1; i<=nlstate+ndeath; i++)          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       for(j=1;j<=nlstate+ndeath;j++) {          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         po[i][j][h]=newm[i][j];        }
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);        ps[i][j]=s2;
          */        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
       }      }
   } /* end h */      for(j=i+1; j<=nlstate+ndeath;j++){
   return po;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
 }          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
           /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
 /*************** log-likelihood *************/        ps[i][j]=s2;
 double func( double *x)      }
 {    }
   int i, ii, j, k, mi, d, kk;      /*ps[3][2]=1;*/
   double l, ll[NLSTATEMAX], cov[NCOVMAX];  
   double **out;    for(i=1; i<= nlstate; i++){
   double sw; /* Sum of weights */       s1=0;
   double lli; /* Individual log likelihood */      for(j=1; j<i; j++)
   long ipmx;        s1+=exp(ps[i][j]);
   /*extern weight */      for(j=i+1; j<=nlstate+ndeath; j++)
   /* We are differentiating ll according to initial status */        s1+=exp(ps[i][j]);
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/      ps[i][i]=1./(s1+1.);
   /*for(i=1;i<imx;i++)      for(j=1; j<i; j++)
     printf(" %d\n",s[4][i]);        ps[i][j]= exp(ps[i][j])*ps[i][i];
   */      for(j=i+1; j<=nlstate+ndeath; j++)
   cov[1]=1.;        ps[i][j]= exp(ps[i][j])*ps[i][i];
       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
   for(k=1; k<=nlstate; k++) ll[k]=0.;    } /* end i */
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){  
     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     for(mi=1; mi<= wav[i]-1; mi++){      for(jj=1; jj<= nlstate+ndeath; jj++){
       for (ii=1;ii<=nlstate+ndeath;ii++)        ps[ii][jj]=0;
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);        ps[ii][ii]=1;
       for(d=0; d<dh[mi][i]; d++){      }
         newm=savm;    }
         cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;  
         for (kk=1; kk<=cptcovage;kk++) {  
           cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
         }      for(jj=1; jj<= nlstate+ndeath; jj++){
               printf("%lf ",ps[ii][jj]);
         out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,     }
                      1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      printf("\n ");
         savm=oldm;      }
         oldm=newm;      printf("\n ");printf("%lf ",cov[2]);*/
          /*
            for(i=1; i<= npar; i++) printf("%f ",x[i]);
       } /* end mult */    goto end;*/
            return ps;
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  }
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/  
       ipmx +=1;  /**************** Product of 2 matrices ******************/
       sw += weight[i];  
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
     } /* end of wave */  {
   } /* end of individual */    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
        b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];    /* in, b, out are matrice of pointers which should have been initialized 
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */       before: only the contents of out is modified. The function returns
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */       a pointer to pointers identical to out */
   return -l;    long i, j, k;
 }    for(i=nrl; i<= nrh; i++)
       for(k=ncolol; k<=ncoloh; k++)
         for(j=ncl,out[i][k]=0.; j<=nch; j++)
 /*********** Maximum Likelihood Estimation ***************/          out[i][k] +=in[i][j]*b[j][k];
   
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))    return out;
 {  }
   int i,j, iter;  
   double **xi,*delti;  
   double fret;  /************* Higher Matrix Product ***************/
   xi=matrix(1,npar,1,npar);  
   for (i=1;i<=npar;i++)  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
     for (j=1;j<=npar;j++)  {
       xi[i][j]=(i==j ? 1.0 : 0.0);    /* Computes the transition matrix starting at age 'age' over 
   printf("Powell\n");       'nhstepm*hstepm*stepm' months (i.e. until
   powell(p,xi,npar,ftol,&iter,&fret,func);       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
        nhstepm*hstepm matrices. 
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));       (typically every 2 years instead of every month which is too big 
        for the memory).
 }       Model is determined by parameters x and covariates have to be 
        included manually here. 
 /**** Computes Hessian and covariance matrix ***/  
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))       */
 {  
   double  **a,**y,*x,pd;    int i, j, d, h, k;
   double **hess;    double **out, cov[NCOVMAX];
   int i, j,jk;    double **newm;
   int *indx;  
     /* Hstepm could be zero and should return the unit matrix */
   double hessii(double p[], double delta, int theta, double delti[]);    for (i=1;i<=nlstate+ndeath;i++)
   double hessij(double p[], double delti[], int i, int j);      for (j=1;j<=nlstate+ndeath;j++){
   void lubksb(double **a, int npar, int *indx, double b[]) ;        oldm[i][j]=(i==j ? 1.0 : 0.0);
   void ludcmp(double **a, int npar, int *indx, double *d) ;        po[i][j][0]=(i==j ? 1.0 : 0.0);
       }
   hess=matrix(1,npar,1,npar);    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
   printf("\nCalculation of the hessian matrix. Wait...\n");      for(d=1; d <=hstepm; d++){
   for (i=1;i<=npar;i++){        newm=savm;
     printf("%d",i);fflush(stdout);        /* Covariates have to be included here again */
     hess[i][i]=hessii(p,ftolhess,i,delti);        cov[1]=1.;
     /*printf(" %f ",p[i]);*/        cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
     /*printf(" %lf ",hess[i][i]);*/        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   }        for (k=1; k<=cptcovage;k++)
            cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   for (i=1;i<=npar;i++) {        for (k=1; k<=cptcovprod;k++)
     for (j=1;j<=npar;j++)  {          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       if (j>i) {  
         printf(".%d%d",i,j);fflush(stdout);  
         hess[i][j]=hessij(p,delti,i,j);        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
         hess[j][i]=hess[i][j];            /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
         /*printf(" %lf ",hess[i][j]);*/        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
       }                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     }        savm=oldm;
   }        oldm=newm;
   printf("\n");      }
       for(i=1; i<=nlstate+ndeath; i++)
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");        for(j=1;j<=nlstate+ndeath;j++) {
            po[i][j][h]=newm[i][j];
   a=matrix(1,npar,1,npar);          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
   y=matrix(1,npar,1,npar);           */
   x=vector(1,npar);        }
   indx=ivector(1,npar);    } /* end h */
   for (i=1;i<=npar;i++)    return po;
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];  }
   ludcmp(a,npar,indx,&pd);  
   
   for (j=1;j<=npar;j++) {  /*************** log-likelihood *************/
     for (i=1;i<=npar;i++) x[i]=0;  double func( double *x)
     x[j]=1;  {
     lubksb(a,npar,indx,x);    int i, ii, j, k, mi, d, kk;
     for (i=1;i<=npar;i++){    double l, ll[NLSTATEMAX], cov[NCOVMAX];
       matcov[i][j]=x[i];    double **out;
     }    double sw; /* Sum of weights */
   }    double lli; /* Individual log likelihood */
     int s1, s2;
   printf("\n#Hessian matrix#\n");    double bbh, survp;
   for (i=1;i<=npar;i++) {    long ipmx;
     for (j=1;j<=npar;j++) {    /*extern weight */
       printf("%.3e ",hess[i][j]);    /* We are differentiating ll according to initial status */
     }    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     printf("\n");    /*for(i=1;i<imx;i++) 
   }      printf(" %d\n",s[4][i]);
     */
   /* Recompute Inverse */    cov[1]=1.;
   for (i=1;i<=npar;i++)  
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    for(k=1; k<=nlstate; k++) ll[k]=0.;
   ludcmp(a,npar,indx,&pd);  
     if(mle==1){
   /*  printf("\n#Hessian matrix recomputed#\n");      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
         for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (j=1;j<=npar;j++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1;i<=npar;i++) x[i]=0;          for (ii=1;ii<=nlstate+ndeath;ii++)
     x[j]=1;            for (j=1;j<=nlstate+ndeath;j++){
     lubksb(a,npar,indx,x);              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     for (i=1;i<=npar;i++){              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       y[i][j]=x[i];            }
       printf("%.3e ",y[i][j]);          for(d=0; d<dh[mi][i]; d++){
     }            newm=savm;
     printf("\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   }            for (kk=1; kk<=cptcovage;kk++) {
   */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
             }
   free_matrix(a,1,npar,1,npar);            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   free_matrix(y,1,npar,1,npar);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   free_vector(x,1,npar);            savm=oldm;
   free_ivector(indx,1,npar);            oldm=newm;
   free_matrix(hess,1,npar,1,npar);          } /* end mult */
         
           /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
 }          /* But now since version 0.9 we anticipate for bias and large stepm.
            * If stepm is larger than one month (smallest stepm) and if the exact delay 
 /*************** hessian matrix ****************/           * (in months) between two waves is not a multiple of stepm, we rounded to 
 double hessii( double x[], double delta, int theta, double delti[])           * the nearest (and in case of equal distance, to the lowest) interval but now
 {           * we keep into memory the bias bh[mi][i] and also the previous matrix product
   int i;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   int l=1, lmax=20;           * probability in order to take into account the bias as a fraction of the way
   double k1,k2;           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
   double p2[NPARMAX+1];           * -stepm/2 to stepm/2 .
   double res;           * For stepm=1 the results are the same as for previous versions of Imach.
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;           * For stepm > 1 the results are less biased than in previous versions. 
   double fx;           */
   int k=0,kmax=10;          s1=s[mw[mi][i]][i];
   double l1;          s2=s[mw[mi+1][i]][i];
           bbh=(double)bh[mi][i]/(double)stepm; 
   fx=func(x);          /* bias is positive if real duration
   for (i=1;i<=npar;i++) p2[i]=x[i];           * is higher than the multiple of stepm and negative otherwise.
   for(l=0 ; l <=lmax; l++){           */
     l1=pow(10,l);          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     delts=delt;          if( s2 > nlstate){ 
     for(k=1 ; k <kmax; k=k+1){            /* i.e. if s2 is a death state and if the date of death is known then the contribution
       delt = delta*(l1*k);               to the likelihood is the probability to die between last step unit time and current 
       p2[theta]=x[theta] +delt;               step unit time, which is also the differences between probability to die before dh 
       k1=func(p2)-fx;               and probability to die before dh-stepm . 
       p2[theta]=x[theta]-delt;               In version up to 0.92 likelihood was computed
       k2=func(p2)-fx;          as if date of death was unknown. Death was treated as any other
       /*res= (k1-2.0*fx+k2)/delt/delt; */          health state: the date of the interview describes the actual state
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */          and not the date of a change in health state. The former idea was
                to consider that at each interview the state was recorded
 #ifdef DEBUG          (healthy, disable or death) and IMaCh was corrected; but when we
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);          introduced the exact date of death then we should have modified
 #endif          the contribution of an exact death to the likelihood. This new
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */          contribution is smaller and very dependent of the step unit
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){          stepm. It is no more the probability to die between last interview
         k=kmax;          and month of death but the probability to survive from last
       }          interview up to one month before death multiplied by the
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */          probability to die within a month. Thanks to Chris
         k=kmax; l=lmax*10.;          Jackson for correcting this bug.  Former versions increased
       }          mortality artificially. The bad side is that we add another loop
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          which slows down the processing. The difference can be up to 10%
         delts=delt;          lower mortality.
       }            */
     }            lli=log(out[s1][s2] - savm[s1][s2]);
   }          }else{
   delti[theta]=delts;            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
   return res;            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
            } 
 }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           /*if(lli ==000.0)*/
 double hessij( double x[], double delti[], int thetai,int thetaj)          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
 {          ipmx +=1;
   int i;          sw += weight[i];
   int l=1, l1, lmax=20;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double k1,k2,k3,k4,res,fx;        } /* end of wave */
   double p2[NPARMAX+1];      } /* end of individual */
   int k;    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
   fx=func(x);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
   for (k=1; k<=2; k++) {        for(mi=1; mi<= wav[i]-1; mi++){
     for (i=1;i<=npar;i++) p2[i]=x[i];          for (ii=1;ii<=nlstate+ndeath;ii++)
     p2[thetai]=x[thetai]+delti[thetai]/k;            for (j=1;j<=nlstate+ndeath;j++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     k1=func(p2)-fx;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              }
     p2[thetai]=x[thetai]+delti[thetai]/k;          for(d=0; d<=dh[mi][i]; d++){
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            newm=savm;
     k2=func(p2)-fx;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              for (kk=1; kk<=cptcovage;kk++) {
     p2[thetai]=x[thetai]-delti[thetai]/k;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;            }
     k3=func(p2)-fx;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     p2[thetai]=x[thetai]-delti[thetai]/k;            savm=oldm;
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;            oldm=newm;
     k4=func(p2)-fx;          } /* end mult */
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */        
 #ifdef DEBUG          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);          /* But now since version 0.9 we anticipate for bias and large stepm.
 #endif           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   return res;           * the nearest (and in case of equal distance, to the lowest) interval but now
 }           * we keep into memory the bias bh[mi][i] and also the previous matrix product
            * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 /************** Inverse of matrix **************/           * probability in order to take into account the bias as a fraction of the way
 void ludcmp(double **a, int n, int *indx, double *d)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 {           * -stepm/2 to stepm/2 .
   int i,imax,j,k;           * For stepm=1 the results are the same as for previous versions of Imach.
   double big,dum,sum,temp;           * For stepm > 1 the results are less biased than in previous versions. 
   double *vv;           */
            s1=s[mw[mi][i]][i];
   vv=vector(1,n);          s2=s[mw[mi+1][i]][i];
   *d=1.0;          bbh=(double)bh[mi][i]/(double)stepm; 
   for (i=1;i<=n;i++) {          /* bias is positive if real duration
     big=0.0;           * is higher than the multiple of stepm and negative otherwise.
     for (j=1;j<=n;j++)           */
       if ((temp=fabs(a[i][j])) > big) big=temp;          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
     vv[i]=1.0/big;          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
   }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   for (j=1;j<=n;j++) {          /*if(lli ==000.0)*/
     for (i=1;i<j;i++) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
       sum=a[i][j];          ipmx +=1;
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          sw += weight[i];
       a[i][j]=sum;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
     }        } /* end of wave */
     big=0.0;      } /* end of individual */
     for (i=j;i<=n;i++) {    }  else if(mle==3){  /* exponential inter-extrapolation */
       sum=a[i][j];      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       for (k=1;k<j;k++)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         sum -= a[i][k]*a[k][j];        for(mi=1; mi<= wav[i]-1; mi++){
       a[i][j]=sum;          for (ii=1;ii<=nlstate+ndeath;ii++)
       if ( (dum=vv[i]*fabs(sum)) >= big) {            for (j=1;j<=nlstate+ndeath;j++){
         big=dum;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         imax=i;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
       }            }
     }          for(d=0; d<dh[mi][i]; d++){
     if (j != imax) {            newm=savm;
       for (k=1;k<=n;k++) {            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         dum=a[imax][k];            for (kk=1; kk<=cptcovage;kk++) {
         a[imax][k]=a[j][k];              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
         a[j][k]=dum;            }
       }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
       *d = -(*d);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
       vv[imax]=vv[j];            savm=oldm;
     }            oldm=newm;
     indx[j]=imax;          } /* end mult */
     if (a[j][j] == 0.0) a[j][j]=TINY;        
     if (j != n) {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
       dum=1.0/(a[j][j]);          /* But now since version 0.9 we anticipate for bias and large stepm.
       for (i=j+1;i<=n;i++) a[i][j] *= dum;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
     }           * (in months) between two waves is not a multiple of stepm, we rounded to 
   }           * the nearest (and in case of equal distance, to the lowest) interval but now
   free_vector(vv,1,n);  /* Doesn't work */           * we keep into memory the bias bh[mi][i] and also the previous matrix product
 ;           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
 }           * probability in order to take into account the bias as a fraction of the way
            * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
 void lubksb(double **a, int n, int *indx, double b[])           * -stepm/2 to stepm/2 .
 {           * For stepm=1 the results are the same as for previous versions of Imach.
   int i,ii=0,ip,j;           * For stepm > 1 the results are less biased than in previous versions. 
   double sum;           */
            s1=s[mw[mi][i]][i];
   for (i=1;i<=n;i++) {          s2=s[mw[mi+1][i]][i];
     ip=indx[i];          bbh=(double)bh[mi][i]/(double)stepm; 
     sum=b[ip];          /* bias is positive if real duration
     b[ip]=b[i];           * is higher than the multiple of stepm and negative otherwise.
     if (ii)           */
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
     else if (sum) ii=i;          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
     b[i]=sum;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
   }          /*if(lli ==000.0)*/
   for (i=n;i>=1;i--) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
     sum=b[i];          ipmx +=1;
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];          sw += weight[i];
     b[i]=sum/a[i][i];          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }        } /* end of wave */
 }      } /* end of individual */
     }else{  /* ml=4 no inter-extrapolation */
 /************ Frequencies ********************/      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
 {  /* Some frequencies */        for(mi=1; mi<= wav[i]-1; mi++){
            for (ii=1;ii<=nlstate+ndeath;ii++)
   int i, m, jk, k1,i1, j1, bool, z1,z2,j;            for (j=1;j<=nlstate+ndeath;j++){
   double ***freq; /* Frequencies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   double *pp;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double pos, k2, dateintsum=0,k2cpt=0;            }
   FILE *ficresp;          for(d=0; d<dh[mi][i]; d++){
   char fileresp[FILENAMELENGTH];            newm=savm;
              cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   pp=vector(1,nlstate);            for (kk=1; kk<=cptcovage;kk++) {
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   strcpy(fileresp,"p");            }
   strcat(fileresp,fileres);          
   if((ficresp=fopen(fileresp,"w"))==NULL) {            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
     printf("Problem with prevalence resultfile: %s\n", fileresp);                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
     exit(0);            savm=oldm;
   }            oldm=newm;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);          } /* end mult */
   j1=0;        
            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   j=cptcoveff;          ipmx +=1;
   if (cptcovn<1) {j=1;ncodemax[1]=1;}          sw += weight[i];
            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   for(k1=1; k1<=j;k1++){        } /* end of wave */
     for(i1=1; i1<=ncodemax[k1];i1++){      } /* end of individual */
       j1++;    } /* End of if */
       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
         scanf("%d", i);*/    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
       for (i=-1; i<=nlstate+ndeath; i++)      l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
         for (jk=-1; jk<=nlstate+ndeath; jk++)      return -l;
           for(m=agemin; m <= agemax+3; m++)  }
             freq[i][jk][m]=0;  
        
       dateintsum=0;  /*********** Maximum Likelihood Estimation ***************/
       k2cpt=0;  
       for (i=1; i<=imx; i++) {  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
         bool=1;  {
         if  (cptcovn>0) {    int i,j, iter;
           for (z1=1; z1<=cptcoveff; z1++)    double **xi;
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])    double fret;
               bool=0;    char filerespow[FILENAMELENGTH];
         }    xi=matrix(1,npar,1,npar);
         if (bool==1) {    for (i=1;i<=npar;i++)
           for(m=firstpass; m<=lastpass; m++){      for (j=1;j<=npar;j++)
             k2=anint[m][i]+(mint[m][i]/12.);        xi[i][j]=(i==j ? 1.0 : 0.0);
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    printf("Powell\n");  fprintf(ficlog,"Powell\n");
               if(agev[m][i]==0) agev[m][i]=agemax+1;    strcpy(filerespow,"pow"); 
               if(agev[m][i]==1) agev[m][i]=agemax+2;    strcat(filerespow,fileres);
               if (m<lastpass) {    if((ficrespow=fopen(filerespow,"w"))==NULL) {
                 freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];      printf("Problem with resultfile: %s\n", filerespow);
                 freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
               }    }
                  fprintf(ficrespow,"# Powell\n# iter -2*LL");
               if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {    for (i=1;i<=nlstate;i++)
                 dateintsum=dateintsum+k2;      for(j=1;j<=nlstate+ndeath;j++)
                 k2cpt++;        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
               }    fprintf(ficrespow,"\n");
             }    powell(p,xi,npar,ftol,&iter,&fret,func);
           }  
         }    fclose(ficrespow);
       }    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
            fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
       fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   
       if  (cptcovn>0) {  }
         fprintf(ficresp, "\n#********** Variable ");  
         for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);  /**** Computes Hessian and covariance matrix ***/
         fprintf(ficresp, "**********\n#");  void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
       }  {
       for(i=1; i<=nlstate;i++)    double  **a,**y,*x,pd;
         fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);    double **hess;
       fprintf(ficresp, "\n");    int i, j,jk;
          int *indx;
       for(i=(int)agemin; i <= (int)agemax+3; i++){  
         if(i==(int)agemax+3)    double hessii(double p[], double delta, int theta, double delti[]);
           printf("Total");    double hessij(double p[], double delti[], int i, int j);
         else    void lubksb(double **a, int npar, int *indx, double b[]) ;
           printf("Age %d", i);    void ludcmp(double **a, int npar, int *indx, double *d) ;
         for(jk=1; jk <=nlstate ; jk++){  
           for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    hess=matrix(1,npar,1,npar);
             pp[jk] += freq[jk][m][i];  
         }    printf("\nCalculation of the hessian matrix. Wait...\n");
         for(jk=1; jk <=nlstate ; jk++){    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
           for(m=-1, pos=0; m <=0 ; m++)    for (i=1;i<=npar;i++){
             pos += freq[jk][m][i];      printf("%d",i);fflush(stdout);
           if(pp[jk]>=1.e-10)      fprintf(ficlog,"%d",i);fflush(ficlog);
             printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);      hess[i][i]=hessii(p,ftolhess,i,delti);
           else      /*printf(" %f ",p[i]);*/
             printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);      /*printf(" %lf ",hess[i][i]);*/
         }    }
     
         for(jk=1; jk <=nlstate ; jk++){    for (i=1;i<=npar;i++) {
           for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)      for (j=1;j<=npar;j++)  {
             pp[jk] += freq[jk][m][i];        if (j>i) { 
         }          printf(".%d%d",i,j);fflush(stdout);
           fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
         for(jk=1,pos=0; jk <=nlstate ; jk++)          hess[i][j]=hessij(p,delti,i,j);
           pos += pp[jk];          hess[j][i]=hess[i][j];    
         for(jk=1; jk <=nlstate ; jk++){          /*printf(" %lf ",hess[i][j]);*/
           if(pos>=1.e-5)        }
             printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);      }
           else    }
             printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);    printf("\n");
           if( i <= (int) agemax){    fprintf(ficlog,"\n");
             if(pos>=1.e-5){  
               fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
               probs[i][jk][j1]= pp[jk]/pos;    fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
               /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/    
             }    a=matrix(1,npar,1,npar);
             else    y=matrix(1,npar,1,npar);
               fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);    x=vector(1,npar);
           }    indx=ivector(1,npar);
         }    for (i=1;i<=npar;i++)
              for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
         for(jk=-1; jk <=nlstate+ndeath; jk++)    ludcmp(a,npar,indx,&pd);
           for(m=-1; m <=nlstate+ndeath; m++)  
             if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);    for (j=1;j<=npar;j++) {
         if(i <= (int) agemax)      for (i=1;i<=npar;i++) x[i]=0;
           fprintf(ficresp,"\n");      x[j]=1;
         printf("\n");      lubksb(a,npar,indx,x);
       }      for (i=1;i<=npar;i++){ 
     }        matcov[i][j]=x[i];
   }      }
   dateintmean=dateintsum/k2cpt;    }
    
   fclose(ficresp);    printf("\n#Hessian matrix#\n");
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    fprintf(ficlog,"\n#Hessian matrix#\n");
   free_vector(pp,1,nlstate);    for (i=1;i<=npar;i++) { 
        for (j=1;j<=npar;j++) { 
   /* End of Freq */        printf("%.3e ",hess[i][j]);
 }        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
 /************ Prevalence ********************/      printf("\n");
 void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)      fprintf(ficlog,"\n");
 {  /* Some frequencies */    }
    
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    /* Recompute Inverse */
   double ***freq; /* Frequencies */    for (i=1;i<=npar;i++)
   double *pp;      for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   double pos, k2;    ludcmp(a,npar,indx,&pd);
   
   pp=vector(1,nlstate);    /*  printf("\n#Hessian matrix recomputed#\n");
   probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);  
      for (j=1;j<=npar;j++) {
   freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);      for (i=1;i<=npar;i++) x[i]=0;
   j1=0;      x[j]=1;
        lubksb(a,npar,indx,x);
   j=cptcoveff;      for (i=1;i<=npar;i++){ 
   if (cptcovn<1) {j=1;ncodemax[1]=1;}        y[i][j]=x[i];
          printf("%.3e ",y[i][j]);
  for(k1=1; k1<=j;k1++){        fprintf(ficlog,"%.3e ",y[i][j]);
     for(i1=1; i1<=ncodemax[k1];i1++){      }
       j1++;      printf("\n");
        fprintf(ficlog,"\n");
       for (i=-1; i<=nlstate+ndeath; i++)      }
         for (jk=-1; jk<=nlstate+ndeath; jk++)      */
           for(m=agemin; m <= agemax+3; m++)  
             freq[i][jk][m]=0;    free_matrix(a,1,npar,1,npar);
          free_matrix(y,1,npar,1,npar);
       for (i=1; i<=imx; i++) {    free_vector(x,1,npar);
         bool=1;    free_ivector(indx,1,npar);
         if  (cptcovn>0) {    free_matrix(hess,1,npar,1,npar);
           for (z1=1; z1<=cptcoveff; z1++)  
             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])  
               bool=0;  }
         }  
         if (bool==1) {  /*************** hessian matrix ****************/
           for(m=firstpass; m<=lastpass; m++){  double hessii( double x[], double delta, int theta, double delti[])
             k2=anint[m][i]+(mint[m][i]/12.);  {
             if ((k2>=dateprev1) && (k2<=dateprev2)) {    int i;
               if(agev[m][i]==0) agev[m][i]=agemax+1;    int l=1, lmax=20;
               if(agev[m][i]==1) agev[m][i]=agemax+2;    double k1,k2;
               if (m<lastpass) freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];    double p2[NPARMAX+1];
               /* freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];  */    double res;
             }    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
           }    double fx;
         }    int k=0,kmax=10;
       }    double l1;
         for(i=(int)agemin; i <= (int)agemax+3; i++){  
           for(jk=1; jk <=nlstate ; jk++){    fx=func(x);
             for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)    for (i=1;i<=npar;i++) p2[i]=x[i];
               pp[jk] += freq[jk][m][i];    for(l=0 ; l <=lmax; l++){
           }      l1=pow(10,l);
           for(jk=1; jk <=nlstate ; jk++){      delts=delt;
             for(m=-1, pos=0; m <=0 ; m++)      for(k=1 ; k <kmax; k=k+1){
             pos += freq[jk][m][i];        delt = delta*(l1*k);
         }        p2[theta]=x[theta] +delt;
                k1=func(p2)-fx;
          for(jk=1; jk <=nlstate ; jk++){        p2[theta]=x[theta]-delt;
            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)        k2=func(p2)-fx;
              pp[jk] += freq[jk][m][i];        /*res= (k1-2.0*fx+k2)/delt/delt; */
          }        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                  
          for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];  #ifdef DEBUG
         printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
          for(jk=1; jk <=nlstate ; jk++){                  fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
            if( i <= (int) agemax){  #endif
              if(pos>=1.e-5){        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                probs[i][jk][j1]= pp[jk]/pos;        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
              }          k=kmax;
            }        }
          }        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                    k=kmax; l=lmax*10.;
         }        }
     }        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
   }          delts=delt;
          }
        }
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);    }
   free_vector(pp,1,nlstate);    delti[theta]=delts;
      return res; 
 }  /* End of Freq */    
   }
 /************* Waves Concatenation ***************/  
   double hessij( double x[], double delti[], int thetai,int thetaj)
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)  {
 {    int i;
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.    int l=1, l1, lmax=20;
      Death is a valid wave (if date is known).    double k1,k2,k3,k4,res,fx;
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i    double p2[NPARMAX+1];
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]    int k;
      and mw[mi+1][i]. dh depends on stepm.  
      */    fx=func(x);
     for (k=1; k<=2; k++) {
   int i, mi, m;      for (i=1;i<=npar;i++) p2[i]=x[i];
   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;      p2[thetai]=x[thetai]+delti[thetai]/k;
      double sum=0., jmean=0.;*/      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
       k1=func(p2)-fx;
   int j, k=0,jk, ju, jl;    
   double sum=0.;      p2[thetai]=x[thetai]+delti[thetai]/k;
   jmin=1e+5;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   jmax=-1;      k2=func(p2)-fx;
   jmean=0.;    
   for(i=1; i<=imx; i++){      p2[thetai]=x[thetai]-delti[thetai]/k;
     mi=0;      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     m=firstpass;      k3=func(p2)-fx;
     while(s[m][i] <= nlstate){    
       if(s[m][i]>=1)      p2[thetai]=x[thetai]-delti[thetai]/k;
         mw[++mi][i]=m;      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
       if(m >=lastpass)      k4=func(p2)-fx;
         break;      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
       else  #ifdef DEBUG
         m++;      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     }/* end while */      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     if (s[m][i] > nlstate){  #endif
       mi++;     /* Death is another wave */    }
       /* if(mi==0)  never been interviewed correctly before death */    return res;
          /* Only death is a correct wave */  }
       mw[mi][i]=m;  
     }  /************** Inverse of matrix **************/
   void ludcmp(double **a, int n, int *indx, double *d) 
     wav[i]=mi;  { 
     if(mi==0)    int i,imax,j,k; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);    double big,dum,sum,temp; 
   }    double *vv; 
    
   for(i=1; i<=imx; i++){    vv=vector(1,n); 
     for(mi=1; mi<wav[i];mi++){    *d=1.0; 
       if (stepm <=0)    for (i=1;i<=n;i++) { 
         dh[mi][i]=1;      big=0.0; 
       else{      for (j=1;j<=n;j++) 
         if (s[mw[mi+1][i]][i] > nlstate) {        if ((temp=fabs(a[i][j])) > big) big=temp; 
           if (agedc[i] < 2*AGESUP) {      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);      vv[i]=1.0/big; 
           if(j==0) j=1;  /* Survives at least one month after exam */    } 
           k=k+1;    for (j=1;j<=n;j++) { 
           if (j >= jmax) jmax=j;      for (i=1;i<j;i++) { 
           if (j <= jmin) jmin=j;        sum=a[i][j]; 
           sum=sum+j;        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
           /*if (j<0) printf("j=%d num=%d \n",j,i); */        a[i][j]=sum; 
           }      } 
         }      big=0.0; 
         else{      for (i=j;i<=n;i++) { 
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));        sum=a[i][j]; 
           k=k+1;        for (k=1;k<j;k++) 
           if (j >= jmax) jmax=j;          sum -= a[i][k]*a[k][j]; 
           else if (j <= jmin)jmin=j;        a[i][j]=sum; 
           /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */        if ( (dum=vv[i]*fabs(sum)) >= big) { 
           sum=sum+j;          big=dum; 
         }          imax=i; 
         jk= j/stepm;        } 
         jl= j -jk*stepm;      } 
         ju= j -(jk+1)*stepm;      if (j != imax) { 
         if(jl <= -ju)        for (k=1;k<=n;k++) { 
           dh[mi][i]=jk;          dum=a[imax][k]; 
         else          a[imax][k]=a[j][k]; 
           dh[mi][i]=jk+1;          a[j][k]=dum; 
         if(dh[mi][i]==0)        } 
           dh[mi][i]=1; /* At least one step */        *d = -(*d); 
       }        vv[imax]=vv[j]; 
     }      } 
   }      indx[j]=imax; 
   jmean=sum/k;      if (a[j][j] == 0.0) a[j][j]=TINY; 
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);      if (j != n) { 
  }        dum=1.0/(a[j][j]); 
 /*********** Tricode ****************************/        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
 void tricode(int *Tvar, int **nbcode, int imx)      } 
 {    } 
   int Ndum[20],ij=1, k, j, i;    free_vector(vv,1,n);  /* Doesn't work */
   int cptcode=0;  ;
   cptcoveff=0;  } 
    
   for (k=0; k<19; k++) Ndum[k]=0;  void lubksb(double **a, int n, int *indx, double b[]) 
   for (k=1; k<=7; k++) ncodemax[k]=0;  { 
     int i,ii=0,ip,j; 
   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {    double sum; 
     for (i=1; i<=imx; i++) {   
       ij=(int)(covar[Tvar[j]][i]);    for (i=1;i<=n;i++) { 
       Ndum[ij]++;      ip=indx[i]; 
       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/      sum=b[ip]; 
       if (ij > cptcode) cptcode=ij;      b[ip]=b[i]; 
     }      if (ii) 
         for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
     for (i=0; i<=cptcode; i++) {      else if (sum) ii=i; 
       if(Ndum[i]!=0) ncodemax[j]++;      b[i]=sum; 
     }    } 
     ij=1;    for (i=n;i>=1;i--) { 
       sum=b[i]; 
       for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
     for (i=1; i<=ncodemax[j]; i++) {      b[i]=sum/a[i][i]; 
       for (k=0; k<=19; k++) {    } 
         if (Ndum[k] != 0) {  } 
           nbcode[Tvar[j]][ij]=k;  
            /************ Frequencies ********************/
           ij++;  void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
         }  {  /* Some frequencies */
         if (ij > ncodemax[j]) break;    
       }      int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     }    int first;
   }      double ***freq; /* Frequencies */
     double *pp, **prop;
  for (k=0; k<19; k++) Ndum[k]=0;    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     FILE *ficresp;
  for (i=1; i<=ncovmodel-2; i++) {    char fileresp[FILENAMELENGTH];
       ij=Tvar[i];    
       Ndum[ij]++;    pp=vector(1,nlstate);
     }    prop=matrix(1,nlstate,iagemin,iagemax+3);
     strcpy(fileresp,"p");
  ij=1;    strcat(fileresp,fileres);
  for (i=1; i<=10; i++) {    if((ficresp=fopen(fileresp,"w"))==NULL) {
    if((Ndum[i]!=0) && (i<=ncovcol)){      printf("Problem with prevalence resultfile: %s\n", fileresp);
      Tvaraff[ij]=i;      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
      ij++;      exit(0);
    }    }
  }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
      j1=0;
     cptcoveff=ij-1;    
 }    j=cptcoveff;
     if (cptcovn<1) {j=1;ncodemax[1]=1;}
 /*********** Health Expectancies ****************/  
     first=1;
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm)  
 {    for(k1=1; k1<=j;k1++){
   /* Health expectancies */      for(i1=1; i1<=ncodemax[k1];i1++){
   int i, j, nhstepm, hstepm, h, nstepm;        j1++;
   double age, agelim, hf;        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
   double ***p3mat;          scanf("%d", i);*/
          for (i=-1; i<=nlstate+ndeath; i++)  
   fprintf(ficreseij,"# Health expectancies\n");          for (jk=-1; jk<=nlstate+ndeath; jk++)  
   fprintf(ficreseij,"# Age");            for(m=iagemin; m <= iagemax+3; m++)
   for(i=1; i<=nlstate;i++)              freq[i][jk][m]=0;
     for(j=1; j<=nlstate;j++)  
       fprintf(ficreseij," %1d-%1d",i,j);      for (i=1; i<=nlstate; i++)  
   fprintf(ficreseij,"\n");        for(m=iagemin; m <= iagemax+3; m++)
           prop[i][m]=0;
   if(estepm < stepm){        
     printf ("Problem %d lower than %d\n",estepm, stepm);        dateintsum=0;
   }        k2cpt=0;
   else  hstepm=estepm;          for (i=1; i<=imx; i++) {
   /* We compute the life expectancy from trapezoids spaced every estepm months          bool=1;
    * This is mainly to measure the difference between two models: for example          if  (cptcovn>0) {
    * if stepm=24 months pijx are given only every 2 years and by summing them            for (z1=1; z1<=cptcoveff; z1++) 
    * we are calculating an estimate of the Life Expectancy assuming a linear              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
    * progression inbetween and thus overestimating or underestimating according                bool=0;
    * to the curvature of the survival function. If, for the same date, we          }
    * estimate the model with stepm=1 month, we can keep estepm to 24 months          if (bool==1){
    * to compare the new estimate of Life expectancy with the same linear            for(m=firstpass; m<=lastpass; m++){
    * hypothesis. A more precise result, taking into account a more precise              k2=anint[m][i]+(mint[m][i]/12.);
    * curvature will be obtained if estepm is as small as stepm. */              if ((k2>=dateprev1) && (k2<=dateprev2)) {
                 if(agev[m][i]==0) agev[m][i]=iagemax+1;
   /* For example we decided to compute the life expectancy with the smallest unit */                if(agev[m][i]==1) agev[m][i]=iagemax+2;
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
      nhstepm is the number of hstepm from age to agelim                if (m<lastpass) {
      nstepm is the number of stepm from age to agelin.                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
      Look at hpijx to understand the reason of that which relies in memory size                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
      and note for a fixed period like estepm months */                }
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the                
      survival function given by stepm (the optimization length). Unfortunately it                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
      means that if the survival funtion is printed only each two years of age and if                  dateintsum=dateintsum+k2;
      you sum them up and add 1 year (area under the trapezoids) you won't get the same                  k2cpt++;
      results. So we changed our mind and took the option of the best precision.                }
   */              }
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */            }
           }
   agelim=AGESUP;        }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */         
     /* nhstepm age range expressed in number of stepm */        fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
     nstepm=(int) rint((agelim-age)*YEARM/stepm);  
     /* Typically if 20 years nstepm = 20*12/6=40 stepm */        if  (cptcovn>0) {
     /* if (stepm >= YEARM) hstepm=1;*/          fprintf(ficresp, "\n#********** Variable "); 
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          fprintf(ficresp, "**********\n#");
     /* Computed by stepm unit matrices, product of hstepm matrices, stored        }
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */        for(i=1; i<=nlstate;i++) 
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
          fprintf(ficresp, "\n");
     /*for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++) printf("%f %.5f\n", age*12+h, p3mat[1][1][h]);*/        
         for(i=iagemin; i <= iagemax+3; i++){
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */          if(i==iagemax+3){
     for(i=1; i<=nlstate;i++)            fprintf(ficlog,"Total");
       for(j=1; j<=nlstate;j++)          }else{
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){            if(first==1){
           eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;              first=0;
           /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/              printf("See log file for details...\n");
         }            }
     fprintf(ficreseij,"%3.0f",age );            fprintf(ficlog,"Age %d", i);
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++){          for(jk=1; jk <=nlstate ; jk++){
         fprintf(ficreseij," %9.4f", eij[i][j][(int)age]);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
       }              pp[jk] += freq[jk][m][i]; 
     fprintf(ficreseij,"\n");          }
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          for(jk=1; jk <=nlstate ; jk++){
   }            for(m=-1, pos=0; m <=0 ; m++)
 }              pos += freq[jk][m][i];
             if(pp[jk]>=1.e-10){
 /************ Variance ******************/              if(first==1){
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm)              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
 {              }
   /* Variance of health expectancies */              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/            }else{
   double **newm;              if(first==1)
   double **dnewm,**doldm;                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int i, j, nhstepm, hstepm, h, nstepm ;              fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
   int k, cptcode;            }
   double *xp;          }
   double **gp, **gm;  
   double ***gradg, ***trgradg;          for(jk=1; jk <=nlstate ; jk++){
   double ***p3mat;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
   double age,agelim, hf;              pp[jk] += freq[jk][m][i];
   int theta;          }       
           for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
    fprintf(ficresvij,"# Covariances of life expectancies\n");            pos += pp[jk];
   fprintf(ficresvij,"# Age");            posprop += prop[jk][i];
   for(i=1; i<=nlstate;i++)          }
     for(j=1; j<=nlstate;j++)          for(jk=1; jk <=nlstate ; jk++){
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);            if(pos>=1.e-5){
   fprintf(ficresvij,"\n");              if(first==1)
                 printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   xp=vector(1,npar);              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
   dnewm=matrix(1,nlstate,1,npar);            }else{
   doldm=matrix(1,nlstate,1,nlstate);              if(first==1)
                  printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
   if(estepm < stepm){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
     printf ("Problem %d lower than %d\n",estepm, stepm);            }
   }            if( i <= iagemax){
   else  hstepm=estepm;                if(pos>=1.e-5){
   /* For example we decided to compute the life expectancy with the smallest unit */                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.                probs[i][jk][j1]= pp[jk]/pos;
      nhstepm is the number of hstepm from age to agelim                /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
      nstepm is the number of stepm from age to agelin.              }
      Look at hpijx to understand the reason of that which relies in memory size              else
      and note for a fixed period like k years */                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
   /* We decided (b) to get a life expectancy respecting the most precise curvature of the            }
      survival function given by stepm (the optimization length). Unfortunately it          }
      means that if the survival funtion is printed only each two years of age and if          
      you sum them up and add 1 year (area under the trapezoids) you won't get the same          for(jk=-1; jk <=nlstate+ndeath; jk++)
      results. So we changed our mind and took the option of the best precision.            for(m=-1; m <=nlstate+ndeath; m++)
   */              if(freq[jk][m][i] !=0 ) {
   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */              if(first==1)
   agelim = AGESUP;                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */              }
     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */          if(i <= iagemax)
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            fprintf(ficresp,"\n");
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);          if(first==1)
     gp=matrix(0,nhstepm,1,nlstate);            printf("Others in log...\n");
     gm=matrix(0,nhstepm,1,nlstate);          fprintf(ficlog,"\n");
         }
     for(theta=1; theta <=npar; theta++){      }
       for(i=1; i<=npar; i++){ /* Computes gradient */    }
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    dateintmean=dateintsum/k2cpt; 
       }   
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      fclose(ficresp);
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
     free_vector(pp,1,nlstate);
       if (popbased==1) {    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
         for(i=1; i<=nlstate;i++)    /* End of Freq */
           prlim[i][i]=probs[(int)age][i][ij];  }
       }  
    /************ Prevalence ********************/
       for(j=1; j<= nlstate; j++){  void prevalence(double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
         for(h=0; h<=nhstepm; h++){  {  
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];       in each health status at the date of interview (if between dateprev1 and dateprev2).
         }       We still use firstpass and lastpass as another selection.
       }    */
       
       for(i=1; i<=npar; i++) /* Computes gradient */    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);    double ***freq; /* Frequencies */
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);      double *pp, **prop;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);    double pos,posprop; 
      double  y2; /* in fractional years */
       if (popbased==1) {    int iagemin, iagemax;
         for(i=1; i<=nlstate;i++)  
           prlim[i][i]=probs[(int)age][i][ij];    iagemin= (int) agemin;
       }    iagemax= (int) agemax;
     /*pp=vector(1,nlstate);*/
       for(j=1; j<= nlstate; j++){    prop=matrix(1,nlstate,iagemin,iagemax+3); 
         for(h=0; h<=nhstepm; h++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)    j1=0;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];    
         }    j=cptcoveff;
       }    if (cptcovn<1) {j=1;ncodemax[1]=1;}
     
       for(j=1; j<= nlstate; j++)    for(k1=1; k1<=j;k1++){
         for(h=0; h<=nhstepm; h++){      for(i1=1; i1<=ncodemax[k1];i1++){
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        j1++;
         }        
     } /* End theta */        for (i=1; i<=nlstate; i++)  
           for(m=iagemin; m <= iagemax+3; m++)
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);            prop[i][m]=0.0;
        
     for(h=0; h<=nhstepm; h++)        for (i=1; i<=imx; i++) { /* Each individual */
       for(j=1; j<=nlstate;j++)          bool=1;
         for(theta=1; theta <=npar; theta++)          if  (cptcovn>0) {
           trgradg[h][j][theta]=gradg[h][theta][j];            for (z1=1; z1<=cptcoveff; z1++) 
               if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */                bool=0;
     for(i=1;i<=nlstate;i++)          } 
       for(j=1;j<=nlstate;j++)          if (bool==1) { 
         vareij[i][j][(int)age] =0.;            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
               y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
     for(h=0;h<=nhstepm;h++){              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       for(k=0;k<=nhstepm;k++){                if(agev[m][i]==0) agev[m][i]=iagemax+1;
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         for(i=1;i<=nlstate;i++)                if (s[m][i]>0 && s[m][i]<=nlstate) { 
           for(j=1;j<=nlstate;j++)                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       }                  prop[s[m][i]][iagemax+3] += weight[i]; 
     }                } 
               }
     fprintf(ficresvij,"%.0f ",age );            } /* end selection of waves */
     for(i=1; i<=nlstate;i++)          }
       for(j=1; j<=nlstate;j++){        }
         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);        for(i=iagemin; i <= iagemax+3; i++){  
       }          
     fprintf(ficresvij,"\n");          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     free_matrix(gp,0,nhstepm,1,nlstate);            posprop += prop[jk][i]; 
     free_matrix(gm,0,nhstepm,1,nlstate);          } 
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);  
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);          for(jk=1; jk <=nlstate ; jk++){     
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);            if( i <=  iagemax){ 
   } /* End age */              if(posprop>=1.e-5){ 
                  probs[i][jk][j1]= prop[jk][i]/posprop;
   free_vector(xp,1,npar);              } 
   free_matrix(doldm,1,nlstate,1,npar);            } 
   free_matrix(dnewm,1,nlstate,1,nlstate);          }/* end jk */ 
         }/* end i */ 
 }      } /* end i1 */
     } /* end k1 */
 /************ Variance of prevlim ******************/    
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
 {    /*free_vector(pp,1,nlstate);*/
   /* Variance of prevalence limit */    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/  }  /* End of prevalence */
   double **newm;  
   double **dnewm,**doldm;  /************* Waves Concatenation ***************/
   int i, j, nhstepm, hstepm;  
   int k, cptcode;  void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
   double *xp;  {
   double *gp, *gm;    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
   double **gradg, **trgradg;       Death is a valid wave (if date is known).
   double age,agelim;       mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
   int theta;       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
           and mw[mi+1][i]. dh depends on stepm.
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");       */
   fprintf(ficresvpl,"# Age");  
   for(i=1; i<=nlstate;i++)    int i, mi, m;
       fprintf(ficresvpl," %1d-%1d",i,i);    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
   fprintf(ficresvpl,"\n");       double sum=0., jmean=0.;*/
     int first;
   xp=vector(1,npar);    int j, k=0,jk, ju, jl;
   dnewm=matrix(1,nlstate,1,npar);    double sum=0.;
   doldm=matrix(1,nlstate,1,nlstate);    first=0;
      jmin=1e+5;
   hstepm=1*YEARM; /* Every year of age */    jmax=-1;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    jmean=0.;
   agelim = AGESUP;    for(i=1; i<=imx; i++){
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */      mi=0;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */      m=firstpass;
     if (stepm >= YEARM) hstepm=1;      while(s[m][i] <= nlstate){
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */        if(s[m][i]>=1)
     gradg=matrix(1,npar,1,nlstate);          mw[++mi][i]=m;
     gp=vector(1,nlstate);        if(m >=lastpass)
     gm=vector(1,nlstate);          break;
         else
     for(theta=1; theta <=npar; theta++){          m++;
       for(i=1; i<=npar; i++){ /* Computes gradient */      }/* end while */
         xp[i] = x[i] + (i==theta ?delti[theta]:0);      if (s[m][i] > nlstate){
       }        mi++;     /* Death is another wave */
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);        /* if(mi==0)  never been interviewed correctly before death */
       for(i=1;i<=nlstate;i++)           /* Only death is a correct wave */
         gp[i] = prlim[i][i];        mw[mi][i]=m;
          }
       for(i=1; i<=npar; i++) /* Computes gradient */  
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      wav[i]=mi;
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      if(mi==0){
       for(i=1;i<=nlstate;i++)        if(first==0){
         gm[i] = prlim[i][i];          printf("Warning! None valid information for:%d line=%d (skipped) and may be others, see log file\n",num[i],i);
           first=1;
       for(i=1;i<=nlstate;i++)        }
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];        if(first==1){
     } /* End theta */          fprintf(ficlog,"Warning! None valid information for:%d line=%d (skipped)\n",num[i],i);
         }
     trgradg =matrix(1,nlstate,1,npar);      } /* end mi==0 */
     } /* End individuals */
     for(j=1; j<=nlstate;j++)  
       for(theta=1; theta <=npar; theta++)    for(i=1; i<=imx; i++){
         trgradg[j][theta]=gradg[theta][j];      for(mi=1; mi<wav[i];mi++){
         if (stepm <=0)
     for(i=1;i<=nlstate;i++)          dh[mi][i]=1;
       varpl[i][(int)age] =0.;        else{
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);            if (agedc[i] < 2*AGESUP) {
     for(i=1;i<=nlstate;i++)            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */            if(j==0) j=1;  /* Survives at least one month after exam */
             k=k+1;
     fprintf(ficresvpl,"%.0f ",age );            if (j >= jmax) jmax=j;
     for(i=1; i<=nlstate;i++)            if (j <= jmin) jmin=j;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));            sum=sum+j;
     fprintf(ficresvpl,"\n");            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
     free_vector(gp,1,nlstate);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     free_vector(gm,1,nlstate);            if(j<0)printf("Error! Negative delay (%d to death) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
     free_matrix(gradg,1,npar,1,nlstate);            }
     free_matrix(trgradg,1,nlstate,1,npar);          }
   } /* End age */          else{
             j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   free_vector(xp,1,npar);            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
   free_matrix(doldm,1,nlstate,1,npar);            k=k+1;
   free_matrix(dnewm,1,nlstate,1,nlstate);            if (j >= jmax) jmax=j;
             else if (j <= jmin)jmin=j;
 }            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
             /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
 /************ Variance of one-step probabilities  ******************/            if(j<0)printf("Error! Negative delay (%d) between waves %d and %d of individual %d at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
 void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)            sum=sum+j;
 {          }
   int i, j, i1, k1, j1, z1;          jk= j/stepm;
   int k=0, cptcode;          jl= j -jk*stepm;
   double **dnewm,**doldm;          ju= j -(jk+1)*stepm;
   double *xp;          if(mle <=1){ 
   double *gp, *gm;            if(jl==0){
   double **gradg, **trgradg;              dh[mi][i]=jk;
   double age,agelim, cov[NCOVMAX];              bh[mi][i]=0;
   int theta;            }else{ /* We want a negative bias in order to only have interpolation ie
   char fileresprob[FILENAMELENGTH];                    * at the price of an extra matrix product in likelihood */
               dh[mi][i]=jk+1;
   strcpy(fileresprob,"prob");              bh[mi][i]=ju;
   strcat(fileresprob,fileres);            }
   if((ficresprob=fopen(fileresprob,"w"))==NULL) {          }else{
     printf("Problem with resultfile: %s\n", fileresprob);            if(jl <= -ju){
   }              dh[mi][i]=jk;
   printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);              bh[mi][i]=jl;       /* bias is positive if real duration
                                     * is higher than the multiple of stepm and negative otherwise.
                                    */
   xp=vector(1,npar);            }
   dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);            else{
   doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));              dh[mi][i]=jk+1;
                bh[mi][i]=ju;
   cov[1]=1;            }
   j=cptcoveff;            if(dh[mi][i]==0){
   if (cptcovn<1) {j=1;ncodemax[1]=1;}              dh[mi][i]=1; /* At least one step */
   j1=0;              bh[mi][i]=ju; /* At least one step */
   for(k1=1; k1<=1;k1++){              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
     for(i1=1; i1<=ncodemax[k1];i1++){            }
     j1++;          }
         } /* end if mle */
     if  (cptcovn>0) {      } /* end wave */
       fprintf(ficresprob, "\n#********** Variable ");    }
       for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);    jmean=sum/k;
       fprintf(ficresprob, "**********\n#");    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
     }    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
       }
       for (age=bage; age<=fage; age ++){  
         cov[2]=age;  /*********** Tricode ****************************/
         for (k=1; k<=cptcovn;k++) {  void tricode(int *Tvar, int **nbcode, int imx)
           cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];  {
              
         }    int Ndum[20],ij=1, k, j, i, maxncov=19;
         for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];    int cptcode=0;
         for (k=1; k<=cptcovprod;k++)    cptcoveff=0; 
           cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];   
            for (k=0; k<maxncov; k++) Ndum[k]=0;
         gradg=matrix(1,npar,1,9);    for (k=1; k<=7; k++) ncodemax[k]=0;
         trgradg=matrix(1,9,1,npar);  
         gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
         gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                                     modality*/ 
         for(theta=1; theta <=npar; theta++){        ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
           for(i=1; i<=npar; i++)        Ndum[ij]++; /*store the modality */
             xp[i] = x[i] + (i==theta ?delti[theta]:0);        /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                  if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);                                         Tvar[j]. If V=sex and male is 0 and 
                                                   female is 1, then  cptcode=1.*/
           k=0;      }
           for(i=1; i<= (nlstate+ndeath); i++){  
             for(j=1; j<=(nlstate+ndeath);j++){      for (i=0; i<=cptcode; i++) {
               k=k+1;        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
               gp[k]=pmmij[i][j];      }
             }  
           }      ij=1; 
                for (i=1; i<=ncodemax[j]; i++) {
           for(i=1; i<=npar; i++)        for (k=0; k<= maxncov; k++) {
             xp[i] = x[i] - (i==theta ?delti[theta]:0);          if (Ndum[k] != 0) {
                nbcode[Tvar[j]][ij]=k; 
           pmij(pmmij,cov,ncovmodel,xp,nlstate);            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
           k=0;            
           for(i=1; i<=(nlstate+ndeath); i++){            ij++;
             for(j=1; j<=(nlstate+ndeath);j++){          }
               k=k+1;          if (ij > ncodemax[j]) break; 
               gm[k]=pmmij[i][j];        }  
             }      } 
           }    }  
        
           for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)   for (k=0; k< maxncov; k++) Ndum[k]=0;
             gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];    
         }   for (i=1; i<=ncovmodel-2; i++) { 
      /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
         for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)     ij=Tvar[i];
           for(theta=1; theta <=npar; theta++)     Ndum[ij]++;
             trgradg[j][theta]=gradg[theta][j];   }
          
         matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);   ij=1;
         matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);   for (i=1; i<= maxncov; i++) {
             if((Ndum[i]!=0) && (i<=ncovcol)){
         pmij(pmmij,cov,ncovmodel,x,nlstate);       Tvaraff[ij]=i; /*For printing */
               ij++;
         k=0;     }
         for(i=1; i<=(nlstate+ndeath); i++){   }
           for(j=1; j<=(nlstate+ndeath);j++){   
             k=k+1;   cptcoveff=ij-1; /*Number of simple covariates*/
             gm[k]=pmmij[i][j];  }
           }  
         }  /*********** Health Expectancies ****************/
        
      /*printf("\n%d ",(int)age);  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
      for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){  
        printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));  {
      }*/    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
         fprintf(ficresprob,"\n%d ",(int)age);    double age, agelim, hf;
     double ***p3mat,***varhe;
         for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++)    double **dnewm,**doldm;
           fprintf(ficresprob,"%.3e (%.3e) ",gm[i],doldm[i][i]);    double *xp;
      double **gp, **gm;
       }    double ***gradg, ***trgradg;
     }    int theta;
     free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));  
     free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
     free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    xp=vector(1,npar);
     free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);    dnewm=matrix(1,nlstate*nlstate,1,npar);
   }    doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
   free_vector(xp,1,npar);    
   fclose(ficresprob);    fprintf(ficreseij,"# Health expectancies\n");
      fprintf(ficreseij,"# Age");
 }    for(i=1; i<=nlstate;i++)
       for(j=1; j<=nlstate;j++)
 /******************* Printing html file ***********/        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \    fprintf(ficreseij,"\n");
  int lastpass, int stepm, int weightopt, char model[],\  
  int imx,int jmin, int jmax, double jmeanint,char optionfile[], \    if(estepm < stepm){
  char optionfilehtm[],char rfileres[], char optionfilegnuplot[],\      printf ("Problem %d lower than %d\n",estepm, stepm);
  char version[], int popforecast, int estepm ){    }
   int jj1, k1, i1, cpt;    else  hstepm=estepm;   
   FILE *fichtm;    /* We compute the life expectancy from trapezoids spaced every estepm months
   /*char optionfilehtm[FILENAMELENGTH];*/     * This is mainly to measure the difference between two models: for example
      * if stepm=24 months pijx are given only every 2 years and by summing them
   strcpy(optionfilehtm,optionfile);     * we are calculating an estimate of the Life Expectancy assuming a linear 
   strcat(optionfilehtm,".htm");     * progression in between and thus overestimating or underestimating according
   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {     * to the curvature of the survival function. If, for the same date, we 
     printf("Problem with %s \n",optionfilehtm), exit(0);     * estimate the model with stepm=1 month, we can keep estepm to 24 months
   }     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
  fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n     * curvature will be obtained if estepm is as small as stepm. */
 Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n  
 \n    /* For example we decided to compute the life expectancy with the smallest unit */
 Total number of observations=%d <br>\n    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n       nhstepm is the number of hstepm from age to agelim 
 <hr  size=\"2\" color=\"#EC5E5E\">       nstepm is the number of stepm from age to agelin. 
  <ul><li>Outputs files<br>\n       Look at hpijx to understand the reason of that which relies in memory size
  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n       and note for a fixed period like estepm months */
  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
  - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       survival function given by stepm (the optimization length). Unfortunately it
  - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>\n       means that if the survival funtion is printed only each two years of age and if
  - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>\n       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
  - Life expectancies by age and initial health status (estepm=%2d months): <a href=\"e%s\">e%s</a> <br>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,optionfilegnuplot,optionfilegnuplot,fileres,fileres,fileres,fileres,fileres,fileres,estepm,fileres,fileres);       results. So we changed our mind and took the option of the best precision.
     */
  fprintf(fichtm,"\n    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  - Parameter file with estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>\n  
  - Variances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n    agelim=AGESUP;
  - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>\n    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
  - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);      /* nhstepm age range expressed in number of stepm */
       nstepm=(int) rint((agelim-age)*YEARM/stepm); 
  if(popforecast==1) fprintf(fichtm,"\n      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n      /* if (stepm >= YEARM) hstepm=1;*/
  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
         <br>",fileres,fileres,fileres,fileres);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
  else      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model);      gp=matrix(0,nhstepm,1,nlstate*nlstate);
 fprintf(fichtm," <li>Graphs</li><p>");      gm=matrix(0,nhstepm,1,nlstate*nlstate);
   
  m=cptcoveff;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
  jj1=0;   
  for(k1=1; k1<=m;k1++){  
    for(i1=1; i1<=ncodemax[k1];i1++){      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
        jj1++;  
        if (cptcovn > 0) {      /* Computing Variances of health expectancies */
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");  
          for (cpt=1; cpt<=cptcoveff;cpt++)       for(theta=1; theta <=npar; theta++){
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);        for(i=1; i<=npar; i++){ 
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");          xp[i] = x[i] + (i==theta ?delti[theta]:0);
        }        }
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        
        for(cpt=1; cpt<nlstate;cpt++){        cptj=0;
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>        for(j=1; j<= nlstate; j++){
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);          for(i=1; i<=nlstate; i++){
        }            cptj=cptj+1;
     for(cpt=1; cpt<=nlstate;cpt++) {            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 interval) in state (%d): v%s%d%d.gif <br>            }
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);            }
      }        }
      for(cpt=1; cpt<=nlstate;cpt++) {       
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>       
 <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);        for(i=1; i<=npar; i++) 
      }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
      fprintf(fichtm,"\n<br>- Total life expectancy by age and        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 health expectancies in states (1) and (2): e%s%d.gif<br>        
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);        cptj=0;
 fprintf(fichtm,"\n</body>");        for(j=1; j<= nlstate; j++){
    }          for(i=1;i<=nlstate;i++){
    }            cptj=cptj+1;
 fclose(fichtm);            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
 }  
               gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
 /******************* Gnuplot file **************/            }
 void printinggnuplot(char fileres[],char optionfilefiname[],char optionfile[],char optionfilegnuplot[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){          }
         }
   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;        for(j=1; j<= nlstate*nlstate; j++)
           for(h=0; h<=nhstepm-1; h++){
   strcpy(optionfilegnuplot,optionfilefiname);            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
   strcat(optionfilegnuplot,".gp.txt");          }
   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {       } 
     printf("Problem with file %s",optionfilegnuplot);     
   }  /* End theta */
   
 #ifdef windows       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
     fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif       for(h=0; h<=nhstepm-1; h++)
 m=pow(2,cptcoveff);        for(j=1; j<=nlstate*nlstate;j++)
            for(theta=1; theta <=npar; theta++)
  /* 1eme*/            trgradg[h][j][theta]=gradg[h][theta][j];
   for (cpt=1; cpt<= nlstate ; cpt ++) {       
    for (k1=1; k1<= m ; k1 ++) {  
        for(i=1;i<=nlstate*nlstate;i++)
 #ifdef windows        for(j=1;j<=nlstate*nlstate;j++)
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);          varhe[i][j][(int)age] =0.;
 #endif  
 #ifdef unix       printf("%d|",(int)age);fflush(stdout);
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",ageminpar,fage,fileres);       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
 #endif       for(h=0;h<=nhstepm-1;h++){
         for(k=0;k<=nhstepm-1;k++){
 for (i=1; i<= nlstate ; i ++) {          matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
   else fprintf(ficgp," \%%*lf (\%%*lf)");          for(i=1;i<=nlstate*nlstate;i++)
 }            for(j=1;j<=nlstate*nlstate;j++)
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);              varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
     for (i=1; i<= nlstate ; i ++) {        }
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");      }
   else fprintf(ficgp," \%%*lf (\%%*lf)");      /* Computing expectancies */
 }      for(i=1; i<=nlstate;i++)
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);        for(j=1; j<=nlstate;j++)
      for (i=1; i<= nlstate ; i ++) {          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");            eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
   else fprintf(ficgp," \%%*lf (\%%*lf)");            
 }    /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));  
 #ifdef unix          }
 fprintf(ficgp,"\nset ter gif small size 400,300");  
 #endif      fprintf(ficreseij,"%3.0f",age );
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      cptj=0;
    }      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++){
   /*2 eme*/          cptj++;
           fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
   for (k1=1; k1<= m ; k1 ++) {        }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",ageminpar,fage);      fprintf(ficreseij,"\n");
         
     for (i=1; i<= nlstate+1 ; i ++) {      free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
       k=2*i;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
       for (j=1; j<= nlstate+1 ; j ++) {      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   else fprintf(ficgp," \%%*lf (\%%*lf)");    }
 }      printf("\n");
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");    fprintf(ficlog,"\n");
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);  
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);    free_vector(xp,1,npar);
       for (j=1; j<= nlstate+1 ; j ++) {    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         else fprintf(ficgp," \%%*lf (\%%*lf)");    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
 }    }
       fprintf(ficgp,"\" t\"\" w l 0,");  
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);  /************ Variance ******************/
       for (j=1; j<= nlstate+1 ; j ++) {  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  {
   else fprintf(ficgp," \%%*lf (\%%*lf)");    /* Variance of health expectancies */
 }      /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");    /* double **newm;*/
       else fprintf(ficgp,"\" t\"\" w l 0,");    double **dnewm,**doldm;
     }    double **dnewmp,**doldmp;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);    int i, j, nhstepm, hstepm, h, nstepm ;
   }    int k, cptcode;
      double *xp;
   /*3eme*/    double **gp, **gm;  /* for var eij */
     double ***gradg, ***trgradg; /*for var eij */
   for (k1=1; k1<= m ; k1 ++) {    double **gradgp, **trgradgp; /* for var p point j */
     for (cpt=1; cpt<= nlstate ; cpt ++) {    double *gpp, *gmp; /* for var p point j */
       k=2+nlstate*(cpt-1);    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);    double ***p3mat;
       for (i=1; i< nlstate ; i ++) {    double age,agelim, hf;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);    double ***mobaverage;
       }    int theta;
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    char digit[4];
     }    char digitp[25];
     }  
      char fileresprobmorprev[FILENAMELENGTH];
   /* CV preval stat */  
     for (k1=1; k1<= m ; k1 ++) {    if(popbased==1){
     for (cpt=1; cpt<nlstate ; cpt ++) {      if(mobilav!=0)
       k=3;        strcpy(digitp,"-populbased-mobilav-");
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);      else strcpy(digitp,"-populbased-nomobil-");
     }
       for (i=1; i< nlstate ; i ++)    else 
         fprintf(ficgp,"+$%d",k+i+1);      strcpy(digitp,"-stablbased-");
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);  
          if (mobilav!=0) {
       l=3+(nlstate+ndeath)*cpt;      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       for (i=1; i< nlstate ; i ++) {        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         l=3+(nlstate+ndeath)*cpt;        printf(" Error in movingaverage mobilav=%d\n",mobilav);
         fprintf(ficgp,"+$%d",l+i+1);      }
       }    }
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);    
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);    strcpy(fileresprobmorprev,"prmorprev"); 
     }    sprintf(digit,"%-d",ij);
   }      /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
      strcat(fileresprobmorprev,digit); /* Tvar to be done */
   /* proba elementaires */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
    for(i=1,jk=1; i <=nlstate; i++){    strcat(fileresprobmorprev,fileres);
     for(k=1; k <=(nlstate+ndeath); k++){    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       if (k != i) {      printf("Problem with resultfile: %s\n", fileresprobmorprev);
         for(j=1; j <=ncovmodel; j++){      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
            }
           fprintf(ficgp,"p%d=%f ",jk,p[jk]);    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           jk++;    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
           fprintf(ficgp,"\n");    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
         }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
       }    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
     }      fprintf(ficresprobmorprev," p.%-d SE",j);
     }      for(i=1; i<=nlstate;i++)
         fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
     for(jk=1; jk <=m; jk++) {    }  
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);    fprintf(ficresprobmorprev,"\n");
    i=1;    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
    for(k2=1; k2<=nlstate; k2++) {      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
      k3=i;      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
      for(k=1; k<=(nlstate+ndeath); k++) {      exit(0);
        if (k != k2){    }
         fprintf(ficgp," exp(p%d+p%d*x",i,i+1);    else{
 ij=1;      fprintf(ficgp,"\n# Routine varevsij");
         for(j=3; j <=ncovmodel; j++) {    }
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
             fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      printf("Problem with html file: %s\n", optionfilehtm);
             ij++;      fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
           }      exit(0);
           else    }
           fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    else{
         }      fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
           fprintf(ficgp,")/(1");      fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
            }
         for(k1=1; k1 <=nlstate; k1++){      varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);  
 ij=1;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
           for(j=3; j <=ncovmodel; j++){    fprintf(ficresvij,"# Age");
           if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {    for(i=1; i<=nlstate;i++)
             fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);      for(j=1; j<=nlstate;j++)
             ij++;        fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
           }    fprintf(ficresvij,"\n");
           else  
             fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    xp=vector(1,npar);
           }    dnewm=matrix(1,nlstate,1,npar);
           fprintf(ficgp,")");    doldm=matrix(1,nlstate,1,nlstate);
         }    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
         fprintf(ficgp,") t \"p%d%d\" ", k2,k);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
         if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  
         i=i+ncovmodel;    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
        }    gpp=vector(nlstate+1,nlstate+ndeath);
      }    gmp=vector(nlstate+1,nlstate+ndeath);
    }    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
    fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);    
    }    if(estepm < stepm){
          printf ("Problem %d lower than %d\n",estepm, stepm);
   fclose(ficgp);    }
 }  /* end gnuplot */    else  hstepm=estepm;   
     /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
 /*************** Moving average **************/       nhstepm is the number of hstepm from age to agelim 
 void movingaverage(double agedeb, double fage,double ageminpar, double ***mobaverage){       nstepm is the number of stepm from age to agelin. 
        Look at hpijx to understand the reason of that which relies in memory size
   int i, cpt, cptcod;       and note for a fixed period like k years */
     for (agedeb=ageminpar; agedeb<=fage; agedeb++)    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
       for (i=1; i<=nlstate;i++)       survival function given by stepm (the optimization length). Unfortunately it
         for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)       means that if the survival funtion is printed every two years of age and if
           mobaverage[(int)agedeb][i][cptcod]=0.;       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
           results. So we changed our mind and took the option of the best precision.
     for (agedeb=ageminpar+4; agedeb<=fage; agedeb++){    */
       for (i=1; i<=nlstate;i++){    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
         for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    agelim = AGESUP;
           for (cpt=0;cpt<=4;cpt++){    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
             mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           }      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
           mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         }      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
       }      gp=matrix(0,nhstepm,1,nlstate);
     }      gm=matrix(0,nhstepm,1,nlstate);
      
 }  
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
 /************** Forecasting ******************/          xp[i] = x[i] + (i==theta ?delti[theta]:0);
 prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){        }
          hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   int *popage;  
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;        if (popbased==1) {
   double *popeffectif,*popcount;          if(mobilav ==0){
   double ***p3mat;            for(i=1; i<=nlstate;i++)
   char fileresf[FILENAMELENGTH];              prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
  agelim=AGESUP;            for(i=1; i<=nlstate;i++)
 calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;              prlim[i][i]=mobaverage[(int)age][i][ij];
           }
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);        }
      
          for(j=1; j<= nlstate; j++){
   strcpy(fileresf,"f");          for(h=0; h<=nhstepm; h++){
   strcat(fileresf,fileres);            for(i=1, gp[h][j]=0.;i<=nlstate;i++)
   if((ficresf=fopen(fileresf,"w"))==NULL) {              gp[h][j] += prlim[i][i]*p3mat[i][j][h];
     printf("Problem with forecast resultfile: %s\n", fileresf);          }
   }        }
   printf("Computing forecasting: result on file '%s' \n", fileresf);        /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;           as a weighted average of prlim.
         */
   if (mobilav==1) {        for(j=nlstate+1;j<=nlstate+ndeath;j++){
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1,gpp[j]=0.; i<= nlstate; i++)
     movingaverage(agedeb, fage, ageminpar, mobaverage);            gpp[j] += prlim[i][i]*p3mat[i][j][1];
   }        }    
         /* end probability of death */
   stepsize=(int) (stepm+YEARM-1)/YEARM;  
   if (stepm<=12) stepsize=1;        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
            xp[i] = x[i] - (i==theta ?delti[theta]:0);
   agelim=AGESUP;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
          prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   hstepm=1;   
   hstepm=hstepm/stepm;        if (popbased==1) {
   yp1=modf(dateintmean,&yp);          if(mobilav ==0){
   anprojmean=yp;            for(i=1; i<=nlstate;i++)
   yp2=modf((yp1*12),&yp);              prlim[i][i]=probs[(int)age][i][ij];
   mprojmean=yp;          }else{ /* mobilav */ 
   yp1=modf((yp2*30.5),&yp);            for(i=1; i<=nlstate;i++)
   jprojmean=yp;              prlim[i][i]=mobaverage[(int)age][i][ij];
   if(jprojmean==0) jprojmean=1;          }
   if(mprojmean==0) jprojmean=1;        }
    
   fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);        for(j=1; j<= nlstate; j++){
            for(h=0; h<=nhstepm; h++){
   for(cptcov=1;cptcov<=i2;cptcov++){            for(i=1, gm[h][j]=0.;i<=nlstate;i++)
     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){              gm[h][j] += prlim[i][i]*p3mat[i][j][h];
       k=k+1;          }
       fprintf(ficresf,"\n#******");        }
       for(j=1;j<=cptcoveff;j++) {        /* This for computing probability of death (h=1 means
         fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);           computed over hstepm matrices product = hstepm*stepm months) 
       }           as a weighted average of prlim.
       fprintf(ficresf,"******\n");        */
       fprintf(ficresf,"# StartingAge FinalAge");        for(j=nlstate+1;j<=nlstate+ndeath;j++){
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);          for(i=1,gmp[j]=0.; i<= nlstate; i++)
                 gmp[j] += prlim[i][i]*p3mat[i][j][1];
              }    
       for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {        /* end probability of death */
         fprintf(ficresf,"\n");  
         fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);          for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);          }
           nhstepm = nhstepm/hstepm;  
                  for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
           oldm=oldms;savm=savms;        }
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    
              } /* End theta */
           for (h=0; h<=nhstepm; h++){  
             if (h==(int) (calagedate+YEARM*cpt)) {      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
               fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);  
             }      for(h=0; h<=nhstepm; h++) /* veij */
             for(j=1; j<=nlstate+ndeath;j++) {        for(j=1; j<=nlstate;j++)
               kk1=0.;kk2=0;          for(theta=1; theta <=npar; theta++)
               for(i=1; i<=nlstate;i++) {                          trgradg[h][j][theta]=gradg[h][theta][j];
                 if (mobilav==1)  
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                 else {        for(theta=1; theta <=npar; theta++)
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];          trgradgp[j][theta]=gradgp[theta][j];
                 }    
                  
               }      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
               if (h==(int)(calagedate+12*cpt)){      for(i=1;i<=nlstate;i++)
                 fprintf(ficresf," %.3f", kk1);        for(j=1;j<=nlstate;j++)
                                  vareij[i][j][(int)age] =0.;
               }  
             }      for(h=0;h<=nhstepm;h++){
           }        for(k=0;k<=nhstepm;k++){
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
         }          matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
       }          for(i=1;i<=nlstate;i++)
     }            for(j=1;j<=nlstate;j++)
   }              vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                }
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      }
     
   fclose(ficresf);      /* pptj */
 }      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
 /************** Forecasting ******************/      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
 populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){      for(j=nlstate+1;j<=nlstate+ndeath;j++)
          for(i=nlstate+1;i<=nlstate+ndeath;i++)
   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;          varppt[j][i]=doldmp[j][i];
   int *popage;      /* end ppptj */
   double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;      /*  x centered again */
   double *popeffectif,*popcount;      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
   double ***p3mat,***tabpop,***tabpopprev;      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
   char filerespop[FILENAMELENGTH];   
       if (popbased==1) {
   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);        if(mobilav ==0){
   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);          for(i=1; i<=nlstate;i++)
   agelim=AGESUP;            prlim[i][i]=probs[(int)age][i][ij];
   calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;        }else{ /* mobilav */ 
            for(i=1; i<=nlstate;i++)
   prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);            prlim[i][i]=mobaverage[(int)age][i][ij];
          }
        }
   strcpy(filerespop,"pop");               
   strcat(filerespop,fileres);      /* This for computing probability of death (h=1 means
   if((ficrespop=fopen(filerespop,"w"))==NULL) {         computed over hstepm (estepm) matrices product = hstepm*stepm months) 
     printf("Problem with forecast resultfile: %s\n", filerespop);         as a weighted average of prlim.
   }      */
   printf("Computing forecasting: result on file '%s' \n", filerespop);      for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
   if (cptcoveff==0) ncodemax[cptcoveff]=1;          gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
   if (mobilav==1) {      /* end probability of death */
     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);  
     movingaverage(agedeb, fage, ageminpar, mobaverage);      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
   }      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
   stepsize=(int) (stepm+YEARM-1)/YEARM;        for(i=1; i<=nlstate;i++){
   if (stepm<=12) stepsize=1;          fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
          }
   agelim=AGESUP;      } 
        fprintf(ficresprobmorprev,"\n");
   hstepm=1;  
   hstepm=hstepm/stepm;      fprintf(ficresvij,"%.0f ",age );
        for(i=1; i<=nlstate;i++)
   if (popforecast==1) {        for(j=1; j<=nlstate;j++){
     if((ficpop=fopen(popfile,"r"))==NULL) {          fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
       printf("Problem with population file : %s\n",popfile);exit(0);        }
     }      fprintf(ficresvij,"\n");
     popage=ivector(0,AGESUP);      free_matrix(gp,0,nhstepm,1,nlstate);
     popeffectif=vector(0,AGESUP);      free_matrix(gm,0,nhstepm,1,nlstate);
     popcount=vector(0,AGESUP);      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
          free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
     i=1;        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;    } /* End age */
        free_vector(gpp,nlstate+1,nlstate+ndeath);
     imx=i;    free_vector(gmp,nlstate+1,nlstate+ndeath);
     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
   }    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
   for(cptcov=1;cptcov<=i2;cptcov++){    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){    fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
       k=k+1;  /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
       fprintf(ficrespop,"\n#******");  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
       for(j=1;j<=cptcoveff;j++) {  /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
         fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",fileresprobmorprev);
       }    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
       fprintf(ficrespop,"******\n");    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
       fprintf(ficrespop,"# Age");    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",fileresprobmorprev,fileresprobmorprev);
       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"varmuptjgr%s%s%s.png\"> <br>\n", estepm,digitp,optionfilefiname,digit);
       if (popforecast==1)  fprintf(ficrespop," [Population]");    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
        */
       for (cpt=0; cpt<=0;cpt++) {    fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    
            free_vector(xp,1,npar);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){    free_matrix(doldm,1,nlstate,1,nlstate);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);    free_matrix(dnewm,1,nlstate,1,npar);
           nhstepm = nhstepm/hstepm;    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
              free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
           oldm=oldms;savm=savms;    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);      fclose(ficresprobmorprev);
            fclose(ficgp);
           for (h=0; h<=nhstepm; h++){    fclose(fichtm);
             if (h==(int) (calagedate+YEARM*cpt)) {  }  
               fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);  
             }  /************ Variance of prevlim ******************/
             for(j=1; j<=nlstate+ndeath;j++) {  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
               kk1=0.;kk2=0;  {
               for(i=1; i<=nlstate;i++) {                  /* Variance of prevalence limit */
                 if (mobilav==1)    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                   kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];    double **newm;
                 else {    double **dnewm,**doldm;
                   kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];    int i, j, nhstepm, hstepm;
                 }    int k, cptcode;
               }    double *xp;
               if (h==(int)(calagedate+12*cpt)){    double *gp, *gm;
                 tabpop[(int)(agedeb)][j][cptcod]=kk1;    double **gradg, **trgradg;
                   /*fprintf(ficrespop," %.3f", kk1);    double age,agelim;
                     if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/    int theta;
               }     
             }    fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
             for(i=1; i<=nlstate;i++){    fprintf(ficresvpl,"# Age");
               kk1=0.;    for(i=1; i<=nlstate;i++)
                 for(j=1; j<=nlstate;j++){        fprintf(ficresvpl," %1d-%1d",i,i);
                   kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];    fprintf(ficresvpl,"\n");
                 }  
                   tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];    xp=vector(1,npar);
             }    dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
             if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)    
               fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);    hstepm=1*YEARM; /* Every year of age */
           }    hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    agelim = AGESUP;
         }    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       }      nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
        if (stepm >= YEARM) hstepm=1;
   /******/      nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {      gp=vector(1,nlstate);
         fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);        gm=vector(1,nlstate);
         for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){  
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);      for(theta=1; theta <=npar; theta++){
           nhstepm = nhstepm/hstepm;        for(i=1; i<=npar; i++){ /* Computes gradient */
                    xp[i] = x[i] + (i==theta ?delti[theta]:0);
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);        }
           oldm=oldms;savm=savms;        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);          for(i=1;i<=nlstate;i++)
           for (h=0; h<=nhstepm; h++){          gp[i] = prlim[i][i];
             if (h==(int) (calagedate+YEARM*cpt)) {      
               fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);        for(i=1; i<=npar; i++) /* Computes gradient */
             }          xp[i] = x[i] - (i==theta ?delti[theta]:0);
             for(j=1; j<=nlstate+ndeath;j++) {        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
               kk1=0.;kk2=0;        for(i=1;i<=nlstate;i++)
               for(i=1; i<=nlstate;i++) {                        gm[i] = prlim[i][i];
                 kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];      
               }        for(i=1;i<=nlstate;i++)
               if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);          gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
             }      } /* End theta */
           }  
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);      trgradg =matrix(1,nlstate,1,npar);
         }  
       }      for(j=1; j<=nlstate;j++)
    }        for(theta=1; theta <=npar; theta++)
   }          trgradg[j][theta]=gradg[theta][j];
    
   if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
   if (popforecast==1) {      matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
     free_ivector(popage,0,AGESUP);      matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
     free_vector(popeffectif,0,AGESUP);      for(i=1;i<=nlstate;i++)
     free_vector(popcount,0,AGESUP);        varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   }  
   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      fprintf(ficresvpl,"%.0f ",age );
   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);      for(i=1; i<=nlstate;i++)
   fclose(ficrespop);        fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
 }      fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
 /***********************************************/      free_vector(gm,1,nlstate);
 /**************** Main Program *****************/      free_matrix(gradg,1,npar,1,nlstate);
 /***********************************************/      free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
 int main(int argc, char *argv[])  
 {    free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
   int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;    free_matrix(dnewm,1,nlstate,1,nlstate);
   double agedeb, agefin,hf;  
   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;  }
   
   double fret;  /************ Variance of one-step probabilities  ******************/
   double **xi,tmp,delta;  void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
   double dum; /* Dummy variable */    int i, j=0,  i1, k1, l1, t, tj;
   double ***p3mat;    int k2, l2, j1,  z1;
   int *indx;    int k=0,l, cptcode;
   char line[MAXLINE], linepar[MAXLINE];    int first=1, first1;
   char title[MAXLINE];    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];    double **dnewm,**doldm;
   char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];    double *xp;
      double *gp, *gm;
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];    double **gradg, **trgradg;
     double **mu;
   char filerest[FILENAMELENGTH];    double age,agelim, cov[NCOVMAX];
   char fileregp[FILENAMELENGTH];    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
   char popfile[FILENAMELENGTH];    int theta;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    char fileresprob[FILENAMELENGTH];
   int firstobs=1, lastobs=10;    char fileresprobcov[FILENAMELENGTH];
   int sdeb, sfin; /* Status at beginning and end */    char fileresprobcor[FILENAMELENGTH];
   int c,  h , cpt,l;  
   int ju,jl, mi;    double ***varpij;
   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;  
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    strcpy(fileresprob,"prob"); 
   int mobilav=0,popforecast=0;    strcat(fileresprob,fileres);
   int hstepm, nhstepm;    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
   double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1;      printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
   double bage, fage, age, agelim, agebase;    }
   double ftolpl=FTOL;    strcpy(fileresprobcov,"probcov"); 
   double **prlim;    strcat(fileresprobcov,fileres);
   double *severity;    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
   double ***param; /* Matrix of parameters */      printf("Problem with resultfile: %s\n", fileresprobcov);
   double  *p;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
   double **matcov; /* Matrix of covariance */    }
   double ***delti3; /* Scale */    strcpy(fileresprobcor,"probcor"); 
   double *delti; /* Scale */    strcat(fileresprobcor,fileres);
   double ***eij, ***vareij;    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
   double **varpl; /* Variances of prevalence limits by age */      printf("Problem with resultfile: %s\n", fileresprobcor);
   double *epj, vepp;      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
   double kk1, kk2;    }
   double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
      fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   char version[80]="Imach version 0.8b, March 2002, INED-EUROREVES ";    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
   char *alph[]={"a","a","b","c","d","e"}, str[4];    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
   char z[1]="c", occ;    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
 #include <sys/time.h>    fprintf(ficresprob,"# Age");
 #include <time.h>    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficresprobcov,"# Age");
      fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
   /* long total_usecs;    fprintf(ficresprobcov,"# Age");
   struct timeval start_time, end_time;  
    
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    for(i=1; i<=nlstate;i++)
   getcwd(pathcd, size);      for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
   printf("\n%s",version);        fprintf(ficresprobcov," p%1d-%1d ",i,j);
   if(argc <=1){        fprintf(ficresprobcor," p%1d-%1d ",i,j);
     printf("\nEnter the parameter file name: ");      }  
     scanf("%s",pathtot);   /* fprintf(ficresprob,"\n");
   }    fprintf(ficresprobcov,"\n");
   else{    fprintf(ficresprobcor,"\n");
     strcpy(pathtot,argv[1]);   */
   }   xp=vector(1,npar);
   /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
   /*cygwin_split_path(pathtot,path,optionfile);    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
   /* cutv(path,optionfile,pathtot,'\\');*/    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
   split(pathtot,path,optionfile,optionfilext,optionfilefiname);    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
    printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);      printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
   chdir(path);      fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
   replace(pathc,path);      exit(0);
     }
 /*-------- arguments in the command line --------*/    else{
       fprintf(ficgp,"\n# Routine varprob");
   strcpy(fileres,"r");    }
   strcat(fileres, optionfilefiname);    if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
   strcat(fileres,".txt");    /* Other files have txt extension */      printf("Problem with html file: %s\n", optionfilehtm);
       fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
   /*---------arguments file --------*/      exit(0);
     }
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    else{
     printf("Problem with optionfile %s\n",optionfile);      fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     goto end;      fprintf(fichtm,"\n");
   }  
       fprintf(fichtm,"\n<li><h4> Computing matrix of variance-covariance of step probabilities</h4></li>\n");
   strcpy(filereso,"o");      fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the p<inf>ij</inf>, p<inf>kl</inf> to understand the covariance between two incidences. They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
   strcat(filereso,fileres);      fprintf(fichtm,"\n<br> We have drawn x'cov<sup>-1</sup>x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis. <br> When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.<br> \n");
   if((ficparo=fopen(filereso,"w"))==NULL) {  
     printf("Problem with Output resultfile: %s\n", filereso);goto end;    }
   }  
     cov[1]=1;
   /* Reads comments: lines beginning with '#' */    tj=cptcoveff;
   while((c=getc(ficpar))=='#' && c!= EOF){    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     ungetc(c,ficpar);    j1=0;
     fgets(line, MAXLINE, ficpar);    for(t=1; t<=tj;t++){
     puts(line);      for(i1=1; i1<=ncodemax[t];i1++){ 
     fputs(line,ficparo);        j1++;
   }        if  (cptcovn>0) {
   ungetc(c,ficpar);          fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);          fprintf(ficresprob, "**********\n#\n");
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);          fprintf(ficresprobcov, "\n#********** Variable "); 
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
 while((c=getc(ficpar))=='#' && c!= EOF){          fprintf(ficresprobcov, "**********\n#\n");
     ungetc(c,ficpar);          
     fgets(line, MAXLINE, ficpar);          fprintf(ficgp, "\n#********** Variable "); 
     puts(line);          for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     fputs(line,ficparo);          fprintf(ficgp, "**********\n#\n");
   }          
   ungetc(c,ficpar);          
            fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   covar=matrix(0,NCOVMAX,1,n);          fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
   cptcovn=0;          
   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;          fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
   ncovmodel=2+cptcovn;          fprintf(ficresprobcor, "**********\n#");    
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */        }
          
   /* Read guess parameters */        for (age=bage; age<=fage; age ++){ 
   /* Reads comments: lines beginning with '#' */          cov[2]=age;
   while((c=getc(ficpar))=='#' && c!= EOF){          for (k=1; k<=cptcovn;k++) {
     ungetc(c,ficpar);            cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     fputs(line,ficparo);          for (k=1; k<=cptcovprod;k++)
   }            cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   ungetc(c,ficpar);          
            gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);          trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     for(i=1; i <=nlstate; i++)          gp=vector(1,(nlstate)*(nlstate+ndeath));
     for(j=1; j <=nlstate+ndeath-1; j++){          gm=vector(1,(nlstate)*(nlstate+ndeath));
       fscanf(ficpar,"%1d%1d",&i1,&j1);      
       fprintf(ficparo,"%1d%1d",i1,j1);          for(theta=1; theta <=npar; theta++){
       printf("%1d%1d",i,j);            for(i=1; i<=npar; i++)
       for(k=1; k<=ncovmodel;k++){              xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
         fscanf(ficpar," %lf",&param[i][j][k]);            
         printf(" %lf",param[i][j][k]);            pmij(pmmij,cov,ncovmodel,xp,nlstate);
         fprintf(ficparo," %lf",param[i][j][k]);            
       }            k=0;
       fscanf(ficpar,"\n");            for(i=1; i<= (nlstate); i++){
       printf("\n");              for(j=1; j<=(nlstate+ndeath);j++){
       fprintf(ficparo,"\n");                k=k+1;
     }                gp[k]=pmmij[i][j];
                }
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel;            }
             
   p=param[1][1];            for(i=1; i<=npar; i++)
                xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
   /* Reads comments: lines beginning with '#' */      
   while((c=getc(ficpar))=='#' && c!= EOF){            pmij(pmmij,cov,ncovmodel,xp,nlstate);
     ungetc(c,ficpar);            k=0;
     fgets(line, MAXLINE, ficpar);            for(i=1; i<=(nlstate); i++){
     puts(line);              for(j=1; j<=(nlstate+ndeath);j++){
     fputs(line,ficparo);                k=k+1;
   }                gm[k]=pmmij[i][j];
   ungetc(c,ficpar);              }
             }
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);       
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */            for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
   for(i=1; i <=nlstate; i++){              gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
     for(j=1; j <=nlstate+ndeath-1; j++){          }
       fscanf(ficpar,"%1d%1d",&i1,&j1);  
       printf("%1d%1d",i,j);          for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
       fprintf(ficparo,"%1d%1d",i1,j1);            for(theta=1; theta <=npar; theta++)
       for(k=1; k<=ncovmodel;k++){              trgradg[j][theta]=gradg[theta][j];
         fscanf(ficpar,"%le",&delti3[i][j][k]);          
         printf(" %le",delti3[i][j][k]);          matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
         fprintf(ficparo," %le",delti3[i][j][k]);          matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
       }          free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
       fscanf(ficpar,"\n");          free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
       printf("\n");          free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
       fprintf(ficparo,"\n");          free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
     }  
   }          pmij(pmmij,cov,ncovmodel,x,nlstate);
   delti=delti3[1][1];          
            k=0;
   /* Reads comments: lines beginning with '#' */          for(i=1; i<=(nlstate); i++){
   while((c=getc(ficpar))=='#' && c!= EOF){            for(j=1; j<=(nlstate+ndeath);j++){
     ungetc(c,ficpar);              k=k+1;
     fgets(line, MAXLINE, ficpar);              mu[k][(int) age]=pmmij[i][j];
     puts(line);            }
     fputs(line,ficparo);          }
   }          for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
   ungetc(c,ficpar);            for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                varpij[i][j][(int)age] = doldm[i][j];
   matcov=matrix(1,npar,1,npar);  
   for(i=1; i <=npar; i++){          /*printf("\n%d ",(int)age);
     fscanf(ficpar,"%s",&str);            for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
     printf("%s",str);            printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     fprintf(ficparo,"%s",str);            fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
     for(j=1; j <=i; j++){            }*/
       fscanf(ficpar," %le",&matcov[i][j]);  
       printf(" %.5le",matcov[i][j]);          fprintf(ficresprob,"\n%d ",(int)age);
       fprintf(ficparo," %.5le",matcov[i][j]);          fprintf(ficresprobcov,"\n%d ",(int)age);
     }          fprintf(ficresprobcor,"\n%d ",(int)age);
     fscanf(ficpar,"\n");  
     printf("\n");          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
     fprintf(ficparo,"\n");            fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
   }          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
   for(i=1; i <=npar; i++)            fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
     for(j=i+1;j<=npar;j++)            fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
       matcov[i][j]=matcov[j][i];          }
              i=0;
   printf("\n");          for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
     /*-------- Rewriting paramater file ----------*/              fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
      strcpy(rfileres,"r");    /* "Rparameterfile */              fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
      strcat(rfileres,optionfilefiname);    /* Parameter file first name*/              for (j=1; j<=i;j++){
      strcat(rfileres,".");    /* */                fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
      strcat(rfileres,optionfilext);    /* Other files have txt extension */                fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
     if((ficres =fopen(rfileres,"w"))==NULL) {              }
       printf("Problem writing new parameter file: %s\n", fileres);goto end;            }
     }          }/* end of loop for state */
     fprintf(ficres,"#%s\n",version);        } /* end of loop for age */
      
     /*-------- data file ----------*/        /* Confidence intervalle of pij  */
     if((fic=fopen(datafile,"r"))==NULL)    {        /*
       printf("Problem with datafile: %s\n", datafile);goto end;          fprintf(ficgp,"\nset noparametric;unset label");
     }          fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     n= lastobs;          fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
     severity = vector(1,maxwav);          fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
     outcome=imatrix(1,maxwav+1,1,n);          fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
     num=ivector(1,n);          fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
     moisnais=vector(1,n);        */
     annais=vector(1,n);  
     moisdc=vector(1,n);        /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
     andc=vector(1,n);        first1=1;
     agedc=vector(1,n);        for (k2=1; k2<=(nlstate);k2++){
     cod=ivector(1,n);          for (l2=1; l2<=(nlstate+ndeath);l2++){ 
     weight=vector(1,n);            if(l2==k2) continue;
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */            j=(k2-1)*(nlstate+ndeath)+l2;
     mint=matrix(1,maxwav,1,n);            for (k1=1; k1<=(nlstate);k1++){
     anint=matrix(1,maxwav,1,n);              for (l1=1; l1<=(nlstate+ndeath);l1++){ 
     s=imatrix(1,maxwav+1,1,n);                if(l1==k1) continue;
     adl=imatrix(1,maxwav+1,1,n);                    i=(k1-1)*(nlstate+ndeath)+l1;
     tab=ivector(1,NCOVMAX);                if(i<=j) continue;
     ncodemax=ivector(1,8);                for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
     i=1;                    v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
     while (fgets(line, MAXLINE, fic) != NULL)    {                    v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
       if ((i >= firstobs) && (i <=lastobs)) {                    cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                            mu1=mu[i][(int) age]/stepm*YEARM ;
         for (j=maxwav;j>=1;j--){                    mu2=mu[j][(int) age]/stepm*YEARM;
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);                    c12=cv12/sqrt(v1*v2);
           strcpy(line,stra);                    /* Computing eigen value of matrix of covariance */
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                    lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);                    lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
         }                    /* Eigen vectors */
                            v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);                    /*v21=sqrt(1.-v11*v11); *//* error */
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);                    v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);                    v22=v11;
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);                    tnalp=v21/v11;
                     if(first1==1){
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);                      first1=0;
         for (j=ncovcol;j>=1;j--){                      printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);                    }
         }                    fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
         num[i]=atol(stra);                    /*printf(fignu*/
                            /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){                    /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/                    if(first==1){
                       first=0;
         i=i+1;                      fprintf(ficgp,"\nset parametric;unset label");
       }                      fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
     }                      fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
     /* printf("ii=%d", ij);                      fprintf(fichtm,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup> :<a href=\"varpijgr%s%d%1d%1d-%1d%1d.png\">varpijgr%s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
        scanf("%d",i);*/                      fprintf(fichtm,"\n<br><img src=\"varpijgr%s%d%1d%1d-%1d%1d.png\"> ",optionfilefiname, j1,k1,l1,k2,l2);
   imx=i-1; /* Number of individuals */                      fprintf(fichtm,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
   /* for (i=1; i<=imx; i++){                      fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;                      fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;                      fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
     }*/                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
    /*  for (i=1; i<=imx; i++){                    }else{
      if (s[4][i]==9)  s[4][i]=-1;                      first=0;
      printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/                      fprintf(fichtm," %d (%.3f),",(int) age, c12);
                        fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                        fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
   /* Calculation of the number of parameter from char model*/                      fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
   Tvar=ivector(1,15);                              mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
   Tprod=ivector(1,15);                              mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
   Tvaraff=ivector(1,15);                    }/* if first */
   Tvard=imatrix(1,15,1,2);                  } /* age mod 5 */
   Tage=ivector(1,15);                      } /* end loop age */
                    fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
   if (strlen(model) >1){                first=1;
     j=0, j1=0, k1=1, k2=1;              } /*l12 */
     j=nbocc(model,'+');            } /* k12 */
     j1=nbocc(model,'*');          } /*l1 */
     cptcovn=j+1;        }/* k1 */
     cptcovprod=j1;      } /* loop covariates */
        }
     strcpy(modelsav,model);    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
       printf("Error. Non available option model=%s ",model);    free_vector(xp,1,npar);
       goto end;    fclose(ficresprob);
     }    fclose(ficresprobcov);
        fclose(ficresprobcor);
     for(i=(j+1); i>=1;i--){    fclose(ficgp);
       cutv(stra,strb,modelsav,'+');    fclose(fichtm);
       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);  }
       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/  
       /*scanf("%d",i);*/  
       if (strchr(strb,'*')) {  /******************* Printing html file ***********/
         cutv(strd,strc,strb,'*');  void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
         if (strcmp(strc,"age")==0) {                    int lastpass, int stepm, int weightopt, char model[],\
           cptcovprod--;                    int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
           cutv(strb,stre,strd,'V');                    int popforecast, int estepm ,\
           Tvar[i]=atoi(stre);                    double jprev1, double mprev1,double anprev1, \
           cptcovage++;                    double jprev2, double mprev2,double anprev2){
             Tage[cptcovage]=i;    int jj1, k1, i1, cpt;
             /*printf("stre=%s ", stre);*/    /*char optionfilehtm[FILENAMELENGTH];*/
         }    if((fichtm=fopen(optionfilehtm,"a"))==NULL)    {
         else if (strcmp(strd,"age")==0) {      printf("Problem with %s \n",optionfilehtm), exit(0);
           cptcovprod--;      fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
           cutv(strb,stre,strc,'V');    }
           Tvar[i]=atoi(stre);  
           cptcovage++;     fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n
           Tage[cptcovage]=i;   - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"p%s\">p%s</a> <br>\n
         }   - Estimated transition probabilities over %d (stepm) months: <a href=\"pij%s\">pij%s</a><br>\n
         else {   - Stable prevalence in each health state: <a href=\"pl%s\">pl%s</a> <br>\n
           cutv(strb,stre,strc,'V');   - Life expectancies by age and initial health status (estepm=%2d months): 
           Tvar[i]=ncovcol+k1;     <a href=\"e%s\">e%s</a> <br>\n</li>", \
           cutv(strb,strc,strd,'V');    jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
           Tprod[k1]=i;  
           Tvard[k1][1]=atoi(strc);  fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
           Tvard[k1][2]=atoi(stre);  
           Tvar[cptcovn+k2]=Tvard[k1][1];   m=cptcoveff;
           Tvar[cptcovn+k2+1]=Tvard[k1][2];   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
           for (k=1; k<=lastobs;k++)  
             covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];   jj1=0;
           k1++;   for(k1=1; k1<=m;k1++){
           k2=k2+2;     for(i1=1; i1<=ncodemax[k1];i1++){
         }       jj1++;
       }       if (cptcovn > 0) {
       else {         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
         /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/         for (cpt=1; cpt<=cptcoveff;cpt++) 
        /*  scanf("%d",i);*/           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
       cutv(strd,strc,strb,'V');         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
       Tvar[i]=atoi(strc);       }
       }       /* Pij */
       strcpy(modelsav,stra);         fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: pe%s%d1.png<br>
       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);  <img src=\"pe%s%d1.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);     
         scanf("%d",i);*/       /* Quasi-incidences */
     }       fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png<br>
 }  <img src=\"pe%s%d2.png\">",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1); 
           /* Stable prevalence in each health state */
   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);         for(cpt=1; cpt<nlstate;cpt++){
   printf("cptcovprod=%d ", cptcovprod);           fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br>
   scanf("%d ",i);*/  <img src=\"p%s%d%d.png\">",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
     fclose(fic);         }
        for(cpt=1; cpt<=nlstate;cpt++) {
     /*  if(mle==1){*/          fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.png <br>
     if (weightopt != 1) { /* Maximisation without weights*/  <img src=\"exp%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
       for(i=1;i<=n;i++) weight[i]=1.0;       }
     }       fprintf(fichtm,"\n<br>- Total life expectancy by age and
     /*-calculation of age at interview from date of interview and age at death -*/  health expectancies in states (1) and (2): e%s%d.png<br>
     agev=matrix(1,maxwav,1,imx);  <img src=\"e%s%d.png\">",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
      } /* end i1 */
     for (i=1; i<=imx; i++) {   }/* End k1 */
       for(m=2; (m<= maxwav); m++) {   fprintf(fichtm,"</ul>");
        if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){  
          anint[m][i]=9999;  
          s[m][i]=-1;   fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n
        }   - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n
      if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;   - Variance of one-step probabilities: <a href=\"prob%s\">prob%s</a> <br>\n
       }   - Variance-covariance of one-step probabilities: <a href=\"probcov%s\">probcov%s</a> <br>\n
     }   - Correlation matrix of one-step probabilities: <a href=\"probcor%s\">probcor%s</a> <br>\n
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"v%s\">v%s</a><br>\n 
     for (i=1; i<=imx; i++)  {   - Health expectancies with their variances (no covariance): <a href=\"t%s\">t%s</a> <br>\n
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);   - Standard deviation of stable prevalences: <a href=\"vpl%s\">vpl%s</a> <br>\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
       for(m=1; (m<= maxwav); m++){  
         if(s[m][i] >0){  /*  if(popforecast==1) fprintf(fichtm,"\n */
           if (s[m][i] >= nlstate+1) {  /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
             if(agedc[i]>0)  /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
               if(moisdc[i]!=99 && andc[i]!=9999)  /*      <br>",fileres,fileres,fileres,fileres); */
                 agev[m][i]=agedc[i];  /*  else  */
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/  /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
            else {  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
               if (andc[i]!=9999){  
               printf("Warning negative age at death: %d line:%d\n",num[i],i);   m=cptcoveff;
               agev[m][i]=-1;   if (cptcovn < 1) {m=1;ncodemax[1]=1;}
               }  
             }   jj1=0;
           }   for(k1=1; k1<=m;k1++){
           else if(s[m][i] !=9){ /* Should no more exist */     for(i1=1; i1<=ncodemax[k1];i1++){
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);       jj1++;
             if(mint[m][i]==99 || anint[m][i]==9999)       if (cptcovn > 0) {
               agev[m][i]=1;         fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
             else if(agev[m][i] <agemin){         for (cpt=1; cpt<=cptcoveff;cpt++) 
               agemin=agev[m][i];           fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/         fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
             }       }
             else if(agev[m][i] >agemax){       for(cpt=1; cpt<=nlstate;cpt++) {
               agemax=agev[m][i];         fprintf(fichtm,"<br>- Observed and period prevalence (with confident
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/  interval) in state (%d): v%s%d%d.png <br>
             }  <img src=\"v%s%d%d.png\">",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);  
             /*agev[m][i]=anint[m][i]-annais[i];*/       }
             /*   agev[m][i] = age[i]+2*m;*/     } /* end i1 */
           }   }/* End k1 */
           else { /* =9 */   fprintf(fichtm,"</ul>");
             agev[m][i]=1;  fclose(fichtm);
             s[m][i]=-1;  }
           }  
         }  /******************* Gnuplot file **************/
         else /*= 0 Unknown */  void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
           agev[m][i]=1;  
       }    int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
        int ng;
     }    if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
     for (i=1; i<=imx; i++)  {      printf("Problem with file %s",optionfilegnuplot);
       for(m=1; (m<= maxwav); m++){      fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
         if (s[m][i] > (nlstate+ndeath)) {    }
           printf("Error: Wrong value in nlstate or ndeath\n");    
           goto end;    /*#ifdef windows */
         }      fprintf(ficgp,"cd \"%s\" \n",pathc);
       }      /*#endif */
     }  m=pow(2,cptcoveff);
     
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);   /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
     free_vector(severity,1,maxwav);     for (k1=1; k1<= m ; k1 ++) {
     free_imatrix(outcome,1,maxwav+1,1,n);       fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
     free_vector(moisnais,1,n);       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
     free_vector(annais,1,n);  
     /* free_matrix(mint,1,maxwav,1,n);       for (i=1; i<= nlstate ; i ++) {
        free_matrix(anint,1,maxwav,1,n);*/         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     free_vector(moisdc,1,n);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     free_vector(andc,1,n);       }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
           for (i=1; i<= nlstate ; i ++) {
     wav=ivector(1,imx);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
     dh=imatrix(1,lastpass-firstpass+1,1,imx);         else fprintf(ficgp," \%%*lf (\%%*lf)");
     mw=imatrix(1,lastpass-firstpass+1,1,imx);       } 
           fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1); 
     /* Concatenates waves */       for (i=1; i<= nlstate ; i ++) {
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);         if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
       Tcode=ivector(1,100);       fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
       nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);     }
       ncodemax[1]=1;    }
       if (cptcovn > 0) tricode(Tvar,nbcode,imx);    /*2 eme*/
          
    codtab=imatrix(1,100,1,10);    for (k1=1; k1<= m ; k1 ++) { 
    h=0;      fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
    m=pow(2,cptcoveff);      fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
        
    for(k=1;k<=cptcoveff; k++){      for (i=1; i<= nlstate+1 ; i ++) {
      for(i=1; i <=(m/pow(2,k));i++){        k=2*i;
        for(j=1; j <= ncodemax[k]; j++){        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
          for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){        for (j=1; j<= nlstate+1 ; j ++) {
            h++;          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
            if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;          else fprintf(ficgp," \%%*lf (\%%*lf)");
            /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/        }   
          }        if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
        }        else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
      }        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
    }        for (j=1; j<= nlstate+1 ; j ++) {
    /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       codtab[1][2]=1;codtab[2][2]=2; */          else fprintf(ficgp," \%%*lf (\%%*lf)");
    /* for(i=1; i <=m ;i++){        }   
       for(k=1; k <=cptcovn; k++){        fprintf(ficgp,"\" t\"\" w l 0,");
       printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);        fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
       }        for (j=1; j<= nlstate+1 ; j ++) {
       printf("\n");          if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
       }          else fprintf(ficgp," \%%*lf (\%%*lf)");
       scanf("%d",i);*/        }   
            if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
    /* Calculates basic frequencies. Computes observed prevalence at single age        else fprintf(ficgp,"\" t\"\" w l 0,");
        and prints on file fileres'p'. */      }
     }
        
        /*3eme*/
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (k1=1; k1<= m ; k1 ++) { 
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */      for (cpt=1; cpt<= nlstate ; cpt ++) {
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */        k=2+nlstate*(2*cpt-2);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */        fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
              fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
     /* For Powell, parameters are in a vector p[] starting at p[1]        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
     if(mle==1){          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
     }          
            */
     /*--------- results files --------------*/        for (i=1; i< nlstate ; i ++) {
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);          fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
            
         } 
    jk=1;      }
    fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    }
    printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");    
    for(i=1,jk=1; i <=nlstate; i++){    /* CV preval stable (period) */
      for(k=1; k <=(nlstate+ndeath); k++){    for (k1=1; k1<= m ; k1 ++) { 
        if (k != i)      for (cpt=1; cpt<=nlstate ; cpt ++) {
          {        k=3;
            printf("%d%d ",i,k);        fprintf(ficgp,"\nset out \"p%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
            fprintf(ficres,"%1d%1d ",i,k);        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,fileres,k1,k+cpt+1,k+1);
            for(j=1; j <=ncovmodel; j++){        
              printf("%f ",p[jk]);        for (i=1; i< nlstate ; i ++)
              fprintf(ficres,"%f ",p[jk]);          fprintf(ficgp,"+$%d",k+i+1);
              jk++;        fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
            }        
            printf("\n");        l=3+(nlstate+ndeath)*cpt;
            fprintf(ficres,"\n");        fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
          }        for (i=1; i< nlstate ; i ++) {
      }          l=3+(nlstate+ndeath)*cpt;
    }          fprintf(ficgp,"+$%d",l+i+1);
  if(mle==1){        }
     /* Computing hessian and covariance matrix */        fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
     ftolhess=ftol; /* Usually correct */      } 
     hesscov(matcov, p, npar, delti, ftolhess, func);    }  
  }    
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");    /* proba elementaires */
     printf("# Scales (for hessian or gradient estimation)\n");    for(i=1,jk=1; i <=nlstate; i++){
      for(i=1,jk=1; i <=nlstate; i++){      for(k=1; k <=(nlstate+ndeath); k++){
       for(j=1; j <=nlstate+ndeath; j++){        if (k != i) {
         if (j!=i) {          for(j=1; j <=ncovmodel; j++){
           fprintf(ficres,"%1d%1d",i,j);            fprintf(ficgp,"p%d=%f ",jk,p[jk]);
           printf("%1d%1d",i,j);            jk++; 
           for(k=1; k<=ncovmodel;k++){            fprintf(ficgp,"\n");
             printf(" %.5e",delti[jk]);          }
             fprintf(ficres," %.5e",delti[jk]);        }
             jk++;      }
           }     }
           printf("\n");  
           fprintf(ficres,"\n");     for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
         }       for(jk=1; jk <=m; jk++) {
       }         fprintf(ficgp,"\nset out \"pe%s%d%d.png\" \n",strtok(optionfile, "."),jk,ng); 
      }         if (ng==2)
               fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
     k=1;         else
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");           fprintf(ficgp,"\nset title \"Probability\"\n");
     printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");         fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
     for(i=1;i<=npar;i++){         i=1;
       /*  if (k>nlstate) k=1;         for(k2=1; k2<=nlstate; k2++) {
       i1=(i-1)/(ncovmodel*nlstate)+1;           k3=i;
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);           for(k=1; k<=(nlstate+ndeath); k++) {
       printf("%s%d%d",alph[k],i1,tab[i]);*/             if (k != k2){
       fprintf(ficres,"%3d",i);               if(ng==2)
       printf("%3d",i);                 fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
       for(j=1; j<=i;j++){               else
         fprintf(ficres," %.5e",matcov[i][j]);                 fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
         printf(" %.5e",matcov[i][j]);               ij=1;
       }               for(j=3; j <=ncovmodel; j++) {
       fprintf(ficres,"\n");                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
       printf("\n");                   fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
       k++;                   ij++;
     }                 }
                     else
     while((c=getc(ficpar))=='#' && c!= EOF){                   fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
       ungetc(c,ficpar);               }
       fgets(line, MAXLINE, ficpar);               fprintf(ficgp,")/(1");
       puts(line);               
       fputs(line,ficparo);               for(k1=1; k1 <=nlstate; k1++){   
     }                 fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
     ungetc(c,ficpar);                 ij=1;
     estepm=0;                 for(j=3; j <=ncovmodel; j++){
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);                   if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
     if (estepm==0 || estepm < stepm) estepm=stepm;                     fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
     if (fage <= 2) {                     ij++;
       bage = ageminpar;                   }
       fage = agemaxpar;                   else
     }                     fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                     }
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");                 fprintf(ficgp,")");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);               }
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);               fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                 if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
     while((c=getc(ficpar))=='#' && c!= EOF){               i=i+ncovmodel;
     ungetc(c,ficpar);             }
     fgets(line, MAXLINE, ficpar);           } /* end k */
     puts(line);         } /* end k2 */
     fputs(line,ficparo);       } /* end jk */
   }     } /* end ng */
   ungetc(c,ficpar);     fclose(ficgp); 
    }  /* end gnuplot */
   fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2);  
   fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  
  fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  /*************** Moving average **************/
        int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   while((c=getc(ficpar))=='#' && c!= EOF){  
     ungetc(c,ficpar);    int i, cpt, cptcod;
     fgets(line, MAXLINE, ficpar);    int modcovmax =1;
     puts(line);    int mobilavrange, mob;
     fputs(line,ficparo);    double age;
   }  
   ungetc(c,ficpar);    modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                               a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
    dateprev1=anprev1+mprev1/12.+jprev1/365.;  
    dateprev2=anprev2+mprev2/12.+jprev2/365.;    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
   fscanf(ficpar,"pop_based=%d\n",&popbased);      else mobilavrange=mobilav;
   fprintf(ficparo,"pop_based=%d\n",popbased);        for (age=bage; age<=fage; age++)
   fprintf(ficres,"pop_based=%d\n",popbased);          for (i=1; i<=nlstate;i++)
            for (cptcod=1;cptcod<=modcovmax;cptcod++)
   while((c=getc(ficpar))=='#' && c!= EOF){            mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
     ungetc(c,ficpar);      /* We keep the original values on the extreme ages bage, fage and for 
     fgets(line, MAXLINE, ficpar);         fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
     puts(line);         we use a 5 terms etc. until the borders are no more concerned. 
     fputs(line,ficparo);      */ 
   }      for (mob=3;mob <=mobilavrange;mob=mob+2){
   ungetc(c,ficpar);        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
   fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mov_average=%d\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilav);            for (cptcod=1;cptcod<=modcovmax;cptcod++){
 fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);              mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
 fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mov_average=%d\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilav);                for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
 while((c=getc(ficpar))=='#' && c!= EOF){                }
     ungetc(c,ficpar);              mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
     fgets(line, MAXLINE, ficpar);            }
     puts(line);          }
     fputs(line,ficparo);        }/* end age */
   }      }/* end mob */
   ungetc(c,ficpar);    }else return -1;
     return 0;
   fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);  }/* End movingaverage */
   fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);  
   /************** Forecasting ******************/
  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);  prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
 /*------------ gnuplot -------------*/       agemin, agemax range of age
  printinggnuplot(fileres,optionfilefiname,optionfile,optionfilegnuplot, ageminpar,agemaxpar,fage, pathc,p);       dateprev1 dateprev2 range of dates during which prevalence is computed
         anproj2 year of en of projection (same day and month as proj1).
 /*------------ free_vector  -------------*/    */
  chdir(path);    int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
      int *popage;
  free_ivector(wav,1,imx);    double agec; /* generic age */
  free_imatrix(dh,1,lastpass-firstpass+1,1,imx);    double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
  free_imatrix(mw,1,lastpass-firstpass+1,1,imx);      double *popeffectif,*popcount;
  free_ivector(num,1,n);    double ***p3mat;
  free_vector(agedc,1,n);    double ***mobaverage;
  /*free_matrix(covar,1,NCOVMAX,1,n);*/    char fileresf[FILENAMELENGTH];
  fclose(ficparo);  
  fclose(ficres);    agelim=AGESUP;
     prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
 /*--------- index.htm --------*/   
     strcpy(fileresf,"f"); 
   printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,optionfile,optionfilehtm,rfileres,optionfilegnuplot,version,popforecast,estepm);    strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
        printf("Problem with forecast resultfile: %s\n", fileresf);
   /*--------------- Prevalence limit --------------*/      fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
      }
   strcpy(filerespl,"pl");    printf("Computing forecasting: result on file '%s' \n", fileresf);
   strcat(filerespl,fileres);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   if((ficrespl=fopen(filerespl,"w"))==NULL) {  
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   }  
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);    if (mobilav!=0) {
   fprintf(ficrespl,"#Prevalence limit\n");      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   fprintf(ficrespl,"#Age ");      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
   fprintf(ficrespl,"\n");        printf(" Error in movingaverage mobilav=%d\n",mobilav);
        }
   prlim=matrix(1,nlstate,1,nlstate);    }
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    stepsize=(int) (stepm+YEARM-1)/YEARM;
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if (stepm<=12) stepsize=1;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    if(estepm < stepm){
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      printf ("Problem %d lower than %d\n",estepm, stepm);
   k=0;    }
   agebase=ageminpar;    else  hstepm=estepm;   
   agelim=agemaxpar;  
   ftolpl=1.e-10;    hstepm=hstepm/stepm; 
   i1=cptcoveff;    yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
   if (cptcovn < 1){i1=1;}                                 fractional in yp1 */
     anprojmean=yp;
   for(cptcov=1;cptcov<=i1;cptcov++){    yp2=modf((yp1*12),&yp);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    mprojmean=yp;
         k=k+1;    yp1=modf((yp2*30.5),&yp);
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/    jprojmean=yp;
         fprintf(ficrespl,"\n#******");    if(jprojmean==0) jprojmean=1;
         for(j=1;j<=cptcoveff;j++)    if(mprojmean==0) jprojmean=1;
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");    i1=cptcoveff;
            if (cptcovn < 1){i1=1;}
         for (age=agebase; age<=agelim; age++){    
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
           fprintf(ficrespl,"%.0f",age );    
           for(i=1; i<=nlstate;i++)    fprintf(ficresf,"#****** Routine prevforecast **\n");
           fprintf(ficrespl," %.5f", prlim[i][i]);  
           fprintf(ficrespl,"\n");  /*            if (h==(int)(YEARM*yearp)){ */
         }    for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       }      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
     }        k=k+1;
   fclose(ficrespl);        fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
   /*------------- h Pij x at various ages ------------*/          fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
          }
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);        fprintf(ficresf,"******\n");
   if((ficrespij=fopen(filerespij,"w"))==NULL) {        fprintf(ficresf,"# Covariate valuofcovar yearproj age");
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;        for(j=1; j<=nlstate+ndeath;j++){ 
   }          for(i=1; i<=nlstate;i++)              
   printf("Computing pij: result on file '%s' \n", filerespij);            fprintf(ficresf," p%d%d",i,j);
            fprintf(ficresf," p.%d",j);
   stepsize=(int) (stepm+YEARM-1)/YEARM;        }
   /*if (stepm<=24) stepsize=2;*/        for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
   agelim=AGESUP;          fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   hstepm=stepsize*YEARM; /* Every year of age */  
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */          for (agec=fage; agec>=(ageminpar-1); agec--){ 
              nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
   k=0;            nhstepm = nhstepm/hstepm; 
   for(cptcov=1;cptcov<=i1;cptcov++){            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            oldm=oldms;savm=savms;
       k=k+1;            hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
         fprintf(ficrespij,"\n#****** ");          
         for(j=1;j<=cptcoveff;j++)            for (h=0; h<=nhstepm; h++){
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);              if (h*hstepm/YEARM*stepm ==yearp) {
         fprintf(ficrespij,"******\n");                fprintf(ficresf,"\n");
                        for(j=1;j<=cptcoveff;j++) 
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */                  fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */                fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */              } 
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              for(j=1; j<=nlstate+ndeath;j++) {
           oldm=oldms;savm=savms;                ppij=0.;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);                  for(i=1; i<=nlstate;i++) {
           fprintf(ficrespij,"# Age");                  if (mobilav==1) 
           for(i=1; i<=nlstate;i++)                    ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
             for(j=1; j<=nlstate+ndeath;j++)                  else {
               fprintf(ficrespij," %1d-%1d",i,j);                    ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
           fprintf(ficrespij,"\n");                  }
           for (h=0; h<=nhstepm; h++){                  if (h*hstepm/YEARM*stepm== yearp) {
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );                    fprintf(ficresf," %.3f", p3mat[i][j][h]);
             for(i=1; i<=nlstate;i++)                  }
               for(j=1; j<=nlstate+ndeath;j++)                } /* end i */
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);                if (h*hstepm/YEARM*stepm==yearp) {
             fprintf(ficrespij,"\n");                  fprintf(ficresf," %.3f", ppij);
           }                }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              }/* end j */
           fprintf(ficrespij,"\n");            } /* end h */
         }            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     }          } /* end agec */
   }        } /* end yearp */
       } /* end cptcod */
   varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);    } /* end  cptcov */
          
   fclose(ficrespij);    if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   /*---------- Forecasting ------------------*/  }
   if((stepm == 1) && (strcmp(model,".")==0)){  
     prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);  /************** Forecasting *****not tested NB*************/
     if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);  populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     free_matrix(mint,1,maxwav,1,n);    
     free_matrix(anint,1,maxwav,1,n); free_imatrix(s,1,maxwav+1,1,n);    int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     free_vector(weight,1,n);}    int *popage;
   else{    double calagedatem, agelim, kk1, kk2;
     erreur=108;    double *popeffectif,*popcount;
     printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);    double ***p3mat,***tabpop,***tabpopprev;
   }    double ***mobaverage;
      char filerespop[FILENAMELENGTH];
   
   /*---------- Health expectancies and variances ------------*/    tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   strcpy(filerest,"t");    agelim=AGESUP;
   strcat(filerest,fileres);    calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
   if((ficrest=fopen(filerest,"w"))==NULL) {    
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;    prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
   }    
   printf("Computing Total LEs with variances: file '%s' \n", filerest);    
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
   strcpy(filerese,"e");    if((ficrespop=fopen(filerespop,"w"))==NULL) {
   strcat(filerese,fileres);      printf("Problem with forecast resultfile: %s\n", filerespop);
   if((ficreseij=fopen(filerese,"w"))==NULL) {      fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);    }
   }    printf("Computing forecasting: result on file '%s' \n", filerespop);
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);    fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
  strcpy(fileresv,"v");    if (cptcoveff==0) ncodemax[cptcoveff]=1;
   strcat(fileresv,fileres);  
   if((ficresvij=fopen(fileresv,"w"))==NULL) {    if (mobilav!=0) {
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   }      if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
   k=0;      }
   for(cptcov=1;cptcov<=i1;cptcov++){    }
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
       k=k+1;    stepsize=(int) (stepm+YEARM-1)/YEARM;
       fprintf(ficrest,"\n#****** ");    if (stepm<=12) stepsize=1;
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    agelim=AGESUP;
       fprintf(ficrest,"******\n");    
     hstepm=1;
       fprintf(ficreseij,"\n#****** ");    hstepm=hstepm/stepm; 
       for(j=1;j<=cptcoveff;j++)    
         fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);    if (popforecast==1) {
       fprintf(ficreseij,"******\n");      if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
       fprintf(ficresvij,"\n#****** ");        fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       for(j=1;j<=cptcoveff;j++)      } 
         fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);      popage=ivector(0,AGESUP);
       fprintf(ficresvij,"******\n");      popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);      
       oldm=oldms;savm=savms;      i=1;   
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm);        while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);     
       oldm=oldms;savm=savms;      imx=i;
        varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm);      for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
        }
   
      for(cptcov=1,k=0;cptcov<=i2;cptcov++){
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);        k=k+1;
       fprintf(ficrest,"\n");        fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
       epj=vector(1,nlstate+1);          fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
       for(age=bage; age <=fage ;age++){        }
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);        fprintf(ficrespop,"******\n");
         if (popbased==1) {        fprintf(ficrespop,"# Age");
           for(i=1; i<=nlstate;i++)        for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
             prlim[i][i]=probs[(int)age][i][k];        if (popforecast==1)  fprintf(ficrespop," [Population]");
         }        
                for (cpt=0; cpt<=0;cpt++) { 
         fprintf(ficrest," %4.0f",age);          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){          
           for(i=1, epj[j]=0.;i <=nlstate;i++) {          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             epj[j] += prlim[i][i]*eij[i][j][(int)age];            nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
           }            nhstepm = nhstepm/hstepm; 
           epj[nlstate+1] +=epj[j];            
         }            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         for(i=1, vepp=0.;i <=nlstate;i++)            oldm=oldms;savm=savms;
           for(j=1;j <=nlstate;j++)            hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             vepp += vareij[i][j][(int)age];          
         fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));            for (h=0; h<=nhstepm; h++){
         for(j=1;j <=nlstate;j++){              if (h==(int) (calagedatem+YEARM*cpt)) {
           fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));                fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
         }              } 
         fprintf(ficrest,"\n");              for(j=1; j<=nlstate+ndeath;j++) {
       }                kk1=0.;kk2=0;
     }                for(i=1; i<=nlstate;i++) {              
   }                  if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
   fclose(ficreseij);                  else {
   fclose(ficresvij);                    kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
   fclose(ficrest);                  }
   fclose(ficpar);                }
   free_vector(epj,1,nlstate+1);                if (h==(int)(calagedatem+12*cpt)){
                    tabpop[(int)(agedeb)][j][cptcod]=kk1;
   /*------- Variance limit prevalence------*/                      /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
   strcpy(fileresvpl,"vpl");                }
   strcat(fileresvpl,fileres);              }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {              for(i=1; i<=nlstate;i++){
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);                kk1=0.;
     exit(0);                  for(j=1; j<=nlstate;j++){
   }                    kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);                  }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
   k=0;              }
   for(cptcov=1;cptcov<=i1;cptcov++){  
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){              if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
       k=k+1;                fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
       fprintf(ficresvpl,"\n#****** ");            }
       for(j=1;j<=cptcoveff;j++)            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
         fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);          }
       fprintf(ficresvpl,"******\n");        }
         
       varpl=matrix(1,nlstate,(int) bage, (int) fage);    /******/
       oldm=oldms;savm=savms;  
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);        for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
     }          fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
  }          for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
   fclose(ficresvpl);            nhstepm = nhstepm/hstepm; 
             
   /*---------- End : free ----------------*/            p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);            oldm=oldms;savm=savms;
              hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);            for (h=0; h<=nhstepm; h++){
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);              if (h==(int) (calagedatem+YEARM*cpt)) {
                  fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                } 
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);              for(j=1; j<=nlstate+ndeath;j++) {
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);                kk1=0.;kk2=0;
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);                for(i=1; i<=nlstate;i++) {              
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);                  kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                  }
   free_matrix(matcov,1,npar,1,npar);                if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
   free_vector(delti,1,npar);              }
   free_matrix(agev,1,maxwav,1,imx);            }
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);            free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
   if(erreur >0)        }
     printf("End of Imach with error or warning %d\n",erreur);     } 
   else   printf("End of Imach\n");    }
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */   
      if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/  
   /*printf("Total time was %d uSec.\n", total_usecs);*/    if (popforecast==1) {
   /*------ End -----------*/      free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
  end:    }
 #ifdef windows    free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   /* chdir(pathcd);*/    free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
 #endif    fclose(ficrespop);
  /*system("wgnuplot graph.plt");*/  }
  /*system("../gp37mgw/wgnuplot graph.plt");*/  
  /*system("cd ../gp37mgw");*/  /***********************************************/
  /* system("..\\gp37mgw\\wgnuplot graph.plt");*/  /**************** Main Program *****************/
  strcpy(plotcmd,GNUPLOTPROGRAM);  /***********************************************/
  strcat(plotcmd," ");  
  strcat(plotcmd,optionfilegnuplot);  int main(int argc, char *argv[])
  system(plotcmd);  {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
 #ifdef windows    int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
   while (z[0] != 'q') {    double agedeb, agefin,hf;
     /* chdir(path); */    double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
     printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");  
     scanf("%s",z);    double fret;
     if (z[0] == 'c') system("./imach");    double **xi,tmp,delta;
     else if (z[0] == 'e') system(optionfilehtm);  
     else if (z[0] == 'g') system(plotcmd);    double dum; /* Dummy variable */
     else if (z[0] == 'q') exit(0);    double ***p3mat;
   }    double ***mobaverage;
 #endif    int *indx;
 }    char line[MAXLINE], linepar[MAXLINE];
     char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   #include <sys/time.h>
   #include <time.h>
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
    
     /* long total_usecs;
        struct timeval start_time, end_time;
     
        gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     replace(pathc,path);
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s",version);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     fflush(ficlog);
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       goto end;
     }
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) {
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
     
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++)
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
           fprintf(ficlog," %.5le",matcov[i][j]);
         }
         else
           fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=ivector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           printf("Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %d on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           printf("Error! Month of death of individual %d on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %d on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1;
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   printf("Warning negative age at death: %d line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%d %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
   
       pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle==1){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
   
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     fclose(ficgp);
     printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfile);
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     fprintf(fichtm,"<body> <font size=\"2\">%s </font> <hr size=\"2\" color=\"#EC5E5E\"> \n
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n
   \n
   Total number of observations=%d <br>\n
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n
   <hr  size=\"2\" color=\"#EC5E5E\">
    <ul><li><h4>Parameter files</h4>\n
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n
    - Log file of the run: <a href=\"%s\">%s</a><br>\n
    - Gnuplot file name: <a href=\"%s\">%s</a></ul>\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,agemin,agemax,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
      fclose(fichtm);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     chdir(path);
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_ivector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     /*  fclose(fichtm);*/
     /*  fclose(ficgp);*/ /* ALready done */
     
   
     if(erreur >0){
       printf("End of Imach with error or warning %d\n",erreur);
       fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
     }else{
      printf("End of Imach\n");
      fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     fclose(ficlog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     
     /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
     /*printf("Total time was %d uSec.\n", total_usecs);*/
     /*------ End -----------*/
   
     end:
   #ifdef windows
     /* chdir(pathcd);*/
   #endif 
    /*system("wgnuplot graph.plt");*/
    /*system("../gp37mgw/wgnuplot graph.plt");*/
    /*system("cd ../gp37mgw");*/
    /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     system(plotcmd);
     printf(" Wait...");
   
    /*#ifdef windows*/
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
       scanf("%s",z);
       if (z[0] == 'c') system("./imach");
       else if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     /*#endif */
   }
   
   

Removed from v.1.39  
changed lines
  Added in v.1.83


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>