Diff for /imach/src/imach.c between versions 1.4 and 1.93

version 1.4, 2001/05/02 17:34:41 version 1.93, 2003/06/25 16:33:55
Line 1 Line 1
      /* $Id$
 /*********************** Imach **************************************            $State$
   This program computes Healthy Life Expectancies from cross-longitudinal    $Log$
   data. Cross-longitudinal consist in a first survey ("cross") where    Revision 1.93  2003/06/25 16:33:55  brouard
   individuals from different ages are interviewed on their health status    (Module): On windows (cygwin) function asctime_r doesn't
   or degree of  disability. At least a second wave of interviews    exist so I changed back to asctime which exists.
   ("longitudinal") should  measure each new individual health status.    (Module): Version 0.96b
   Health expectancies are computed from the transistions observed between  
   waves and are computed for each degree of severity of disability (number    Revision 1.92  2003/06/25 16:30:45  brouard
   of life states). More degrees you consider, more time is necessary to    (Module): On windows (cygwin) function asctime_r doesn't
   reach the Maximum Likelihood of the parameters involved in the model.    exist so I changed back to asctime which exists.
   The simplest model is the multinomial logistic model where pij is  
   the probabibility to be observed in state j at the second wave conditional    Revision 1.91  2003/06/25 15:30:29  brouard
   to be observed in state i at the first wave. Therefore the model is:    * imach.c (Repository): Duplicated warning errors corrected.
   log(pij/pii)= aij + bij*age+ cij*sex + etc , where 'age' is age and 'sex'    (Repository): Elapsed time after each iteration is now output. It
   is a covariate. If you want to have a more complex model than "constant and    helps to forecast when convergence will be reached. Elapsed time
   age", you should modify the program where the markup    is stamped in powell.  We created a new html file for the graphs
     *Covariates have to be included here again* invites you to do it.    concerning matrix of covariance. It has extension -cov.htm.
   More covariates you add, less is the speed of the convergence.  
     Revision 1.90  2003/06/24 12:34:15  brouard
   The advantage that this computer programme claims, comes from that if the    (Module): Some bugs corrected for windows. Also, when
   delay between waves is not identical for each individual, or if some    mle=-1 a template is output in file "or"mypar.txt with the design
   individual missed an interview, the information is not rounded or lost, but    of the covariance matrix to be input.
   taken into account using an interpolation or extrapolation.  
   hPijx is the probability to be    Revision 1.89  2003/06/24 12:30:52  brouard
   observed in state i at age x+h conditional to the observed state i at age    (Module): Some bugs corrected for windows. Also, when
   x. The delay 'h' can be split into an exact number (nh*stepm) of    mle=-1 a template is output in file "or"mypar.txt with the design
   unobserved intermediate  states. This elementary transition (by month or    of the covariance matrix to be input.
   quarter trimester, semester or year) is model as a multinomial logistic.  
   The hPx matrix is simply the matrix product of nh*stepm elementary matrices    Revision 1.88  2003/06/23 17:54:56  brouard
   and the contribution of each individual to the likelihood is simply hPijx.    * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
   
   Also this programme outputs the covariance matrix of the parameters but also    Revision 1.87  2003/06/18 12:26:01  brouard
   of the life expectancies. It also computes the prevalence limits.    Version 0.96
    
   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).    Revision 1.86  2003/06/17 20:04:08  brouard
            Institut national d'études démographiques, Paris.    (Module): Change position of html and gnuplot routines and added
   This software have been partly granted by Euro-REVES, a concerted action    routine fileappend.
   from the European Union.  
   It is copyrighted identically to a GNU software product, ie programme and    Revision 1.85  2003/06/17 13:12:43  brouard
   software can be distributed freely for non commercial use. Latest version    * imach.c (Repository): Check when date of death was earlier that
   can be accessed at http://euroreves.ined.fr/imach .    current date of interview. It may happen when the death was just
   **********************************************************************/    prior to the death. In this case, dh was negative and likelihood
      was wrong (infinity). We still send an "Error" but patch by
 #include <math.h>    assuming that the date of death was just one stepm after the
 #include <stdio.h>    interview.
 #include <stdlib.h>    (Repository): Because some people have very long ID (first column)
 #include <unistd.h>    we changed int to long in num[] and we added a new lvector for
     memory allocation. But we also truncated to 8 characters (left
 #define MAXLINE 256    truncation)
 #define FILENAMELENGTH 80    (Repository): No more line truncation errors.
 /*#define DEBUG*/  
 #define windows    Revision 1.84  2003/06/13 21:44:43  brouard
     * imach.c (Repository): Replace "freqsummary" at a correct
 #define MAXPARM 30 /* Maximum number of parameters for the optimization */    place. It differs from routine "prevalence" which may be called
 #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */    many times. Probs is memory consuming and must be used with
     parcimony.
 #define NINTERVMAX 8    Version 0.95a3 (should output exactly the same maximization than 0.8a2)
 #define NLSTATEMAX 8 /* Maximum number of live states (for func) */  
 #define NDEATHMAX 8 /* Maximum number of dead states (for func) */    Revision 1.83  2003/06/10 13:39:11  lievre
 #define NCOVMAX 8 /* Maximum number of covariates */    *** empty log message ***
 #define MAXN 20000  
 #define YEARM 12. /* Number of months per year */    Revision 1.82  2003/06/05 15:57:20  brouard
 #define AGESUP 130    Add log in  imach.c and  fullversion number is now printed.
 #define AGEBASE 40  
   */
   /*
 int nvar;     Interpolated Markov Chain
 static int cptcov;  
 int cptcovn;    Short summary of the programme:
 int npar=NPARMAX;    
 int nlstate=2; /* Number of live states */    This program computes Healthy Life Expectancies from
 int ndeath=1; /* Number of dead states */    cross-longitudinal data. Cross-longitudinal data consist in: -1- a
 int ncovmodel, ncov;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */    first survey ("cross") where individuals from different ages are
     interviewed on their health status or degree of disability (in the
 int *wav; /* Number of waves for this individuual 0 is possible */    case of a health survey which is our main interest) -2- at least a
 int maxwav; /* Maxim number of waves */    second wave of interviews ("longitudinal") which measure each change
 int mle, weightopt;    (if any) in individual health status.  Health expectancies are
 int **mw; /* mw[mi][i] is number of the mi wave for this individual */    computed from the time spent in each health state according to a
 int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */    model. More health states you consider, more time is necessary to reach the
 double **oldm, **newm, **savm; /* Working pointers to matrices */    Maximum Likelihood of the parameters involved in the model.  The
 double **oldms, **newms, **savms; /* Fixed working pointers to matrices */    simplest model is the multinomial logistic model where pij is the
 FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest;    probability to be observed in state j at the second wave
 FILE *ficgp, *fichtm;    conditional to be observed in state i at the first wave. Therefore
 FILE *ficreseij;    the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
   char filerese[FILENAMELENGTH];    'age' is age and 'sex' is a covariate. If you want to have a more
  FILE  *ficresvij;    complex model than "constant and age", you should modify the program
   char fileresv[FILENAMELENGTH];    where the markup *Covariates have to be included here again* invites
  FILE  *ficresvpl;    you to do it.  More covariates you add, slower the
   char fileresvpl[FILENAMELENGTH];    convergence.
   
     The advantage of this computer programme, compared to a simple
     multinomial logistic model, is clear when the delay between waves is not
     identical for each individual. Also, if a individual missed an
 #define NR_END 1    intermediate interview, the information is lost, but taken into
 #define FREE_ARG char*    account using an interpolation or extrapolation.  
 #define FTOL 1.0e-10  
     hPijx is the probability to be observed in state i at age x+h
 #define NRANSI    conditional to the observed state i at age x. The delay 'h' can be
 #define ITMAX 200    split into an exact number (nh*stepm) of unobserved intermediate
     states. This elementary transition (by month, quarter,
 #define TOL 2.0e-4    semester or year) is modelled as a multinomial logistic.  The hPx
     matrix is simply the matrix product of nh*stepm elementary matrices
 #define CGOLD 0.3819660    and the contribution of each individual to the likelihood is simply
 #define ZEPS 1.0e-10    hPijx.
 #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);  
     Also this programme outputs the covariance matrix of the parameters but also
 #define GOLD 1.618034    of the life expectancies. It also computes the stable prevalence. 
 #define GLIMIT 100.0    
 #define TINY 1.0e-20    Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
              Institut national d'études démographiques, Paris.
 static double maxarg1,maxarg2;    This software have been partly granted by Euro-REVES, a concerted action
 #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))    from the European Union.
 #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))    It is copyrighted identically to a GNU software product, ie programme and
      software can be distributed freely for non commercial use. Latest version
 #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))    can be accessed at http://euroreves.ined.fr/imach .
 #define rint(a) floor(a+0.5)  
     Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
 static double sqrarg;    or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
 #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)    
 #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}    **********************************************************************/
   /*
 int imx;    main
 int stepm;    read parameterfile
 /* Stepm, step in month: minimum step interpolation*/    read datafile
     concatwav
 int m,nb;    freqsummary
 int *num, firstpass=0, lastpass=4,*cod, *ncodemax;    if (mle >= 1)
 double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;      mlikeli
 double **pmmij;    print results files
     if mle==1 
 double *weight;       computes hessian
 int **s; /* Status */    read end of parameter file: agemin, agemax, bage, fage, estepm
 double *agedc, **covar, idx;        begin-prev-date,...
 int **nbcode, *Tcode, *Tvar, **codtab;    open gnuplot file
     open html file
 double ftol=FTOL; /* Tolerance for computing Max Likelihood */    stable prevalence
 double ftolhess; /* Tolerance for computing hessian */     for age prevalim()
     h Pij x
     variance of p varprob
 /******************************************/    forecasting if prevfcast==1 prevforecast call prevalence()
     health expectancies
 void replace(char *s, char*t)    Variance-covariance of DFLE
 {    prevalence()
   int i;     movingaverage()
   int lg=20;    varevsij() 
   i=0;    if popbased==1 varevsij(,popbased)
   lg=strlen(t);    total life expectancies
   for(i=0; i<= lg; i++) {    Variance of stable prevalence
     (s[i] = t[i]);   end
     if (t[i]== '\\') s[i]='/';  */
   }  
 }  
   
 int nbocc(char *s, char occ)   
 {  #include <math.h>
   int i,j=0;  #include <stdio.h>
   int lg=20;  #include <stdlib.h>
   i=0;  #include <unistd.h>
   lg=strlen(s);  
   for(i=0; i<= lg; i++) {  #include <sys/time.h>
   if  (s[i] == occ ) j++;  #include <time.h>
   }  #include "timeval.h"
   return j;  
 }  #define MAXLINE 256
   #define GNUPLOTPROGRAM "gnuplot"
 void cutv(char *u,char *v, char*t, char occ)  /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
 {  #define FILENAMELENGTH 132
   int i,lg,j,p;  /*#define DEBUG*/
   i=0;  /*#define windows*/
   for(j=0; j<=strlen(t)-1; j++) {  #define GLOCK_ERROR_NOPATH              -1      /* empty path */
     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;  #define GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
   }  
   #define MAXPARM 30 /* Maximum number of parameters for the optimization */
   lg=strlen(t);  #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
   for(j=0; j<p; j++) {  
     (u[j] = t[j]);  #define NINTERVMAX 8
     u[p]='\0';  #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
   }  #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
   #define NCOVMAX 8 /* Maximum number of covariates */
    for(j=0; j<= lg; j++) {  #define MAXN 20000
     if (j>=(p+1))(v[j-p-1] = t[j]);  #define YEARM 12. /* Number of months per year */
   }  #define AGESUP 130
 }  #define AGEBASE 40
   #ifdef unix
 /********************** nrerror ********************/  #define DIRSEPARATOR '/'
   #define ODIRSEPARATOR '\\'
 void nrerror(char error_text[])  #else
 {  #define DIRSEPARATOR '\\'
   fprintf(stderr,"ERREUR ...\n");  #define ODIRSEPARATOR '/'
   fprintf(stderr,"%s\n",error_text);  #endif
   exit(1);  
 }  /* $Id$ */
 /*********************** vector *******************/  /* $State$ */
 double *vector(int nl, int nh)  
 {  char version[]="Imach version 0.96b, June 2003, INED-EUROREVES ";
   double *v;  char fullversion[]="$Revision$ $Date$"; 
   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));  int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
   if (!v) nrerror("allocation failure in vector");  int nvar;
   return v-nl+NR_END;  int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
 }  int npar=NPARMAX;
   int nlstate=2; /* Number of live states */
 /************************ free vector ******************/  int ndeath=1; /* Number of dead states */
 void free_vector(double*v, int nl, int nh)  int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
 {  int popbased=0;
   free((FREE_ARG)(v+nl-NR_END));  
 }  int *wav; /* Number of waves for this individuual 0 is possible */
   int maxwav; /* Maxim number of waves */
 /************************ivector *******************************/  int jmin, jmax; /* min, max spacing between 2 waves */
 int *ivector(long nl,long nh)  int gipmx, gsw; /* Global variables on the number of contributions 
 {                     to the likelihood and the sum of weights (done by funcone)*/
   int *v;  int mle, weightopt;
   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));  int **mw; /* mw[mi][i] is number of the mi wave for this individual */
   if (!v) nrerror("allocation failure in ivector");  int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
   return v-nl+NR_END;  int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
 }             * wave mi and wave mi+1 is not an exact multiple of stepm. */
   double jmean; /* Mean space between 2 waves */
 /******************free ivector **************************/  double **oldm, **newm, **savm; /* Working pointers to matrices */
 void free_ivector(int *v, long nl, long nh)  double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
 {  FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
   free((FREE_ARG)(v+nl-NR_END));  FILE *ficlog, *ficrespow;
 }  int globpr; /* Global variable for printing or not */
   double fretone; /* Only one call to likelihood */
 /******************* imatrix *******************************/  long ipmx; /* Number of contributions */
 int **imatrix(long nrl, long nrh, long ncl, long nch)  double sw; /* Sum of weights */
      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */  char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
 {  FILE *ficresilk;
   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;  FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
   int **m;  FILE *ficresprobmorprev;
    FILE *fichtm, *fichtmcov; /* Html File */
   /* allocate pointers to rows */  FILE *ficreseij;
   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));  char filerese[FILENAMELENGTH];
   if (!m) nrerror("allocation failure 1 in matrix()");  FILE  *ficresvij;
   m += NR_END;  char fileresv[FILENAMELENGTH];
   m -= nrl;  FILE  *ficresvpl;
    char fileresvpl[FILENAMELENGTH];
    char title[MAXLINE];
   /* allocate rows and set pointers to them */  char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));  char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  char tmpout[FILENAMELENGTH]; 
   m[nrl] += NR_END;  char command[FILENAMELENGTH];
   m[nrl] -= ncl;  int  outcmd=0;
    
   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;  char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
    char lfileres[FILENAMELENGTH];
   /* return pointer to array of pointers to rows */  char filelog[FILENAMELENGTH]; /* Log file */
   return m;  char filerest[FILENAMELENGTH];
 }  char fileregp[FILENAMELENGTH];
   char popfile[FILENAMELENGTH];
 /****************** free_imatrix *************************/  
 void free_imatrix(m,nrl,nrh,ncl,nch)  char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
       int **m;  
       long nch,ncl,nrh,nrl;  struct timeval start_time, end_time, curr_time, last_time, forecast_time;
      /* free an int matrix allocated by imatrix() */  struct timezone tzp;
 {  extern int gettimeofday();
   free((FREE_ARG) (m[nrl]+ncl-NR_END));  struct tm tmg, tm, tmf, *gmtime(), *localtime();
   free((FREE_ARG) (m+nrl-NR_END));  long time_value;
 }  extern long time();
   char strcurr[80], strfor[80];
 /******************* matrix *******************************/  
 double **matrix(long nrl, long nrh, long ncl, long nch)  #define NR_END 1
 {  #define FREE_ARG char*
   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;  #define FTOL 1.0e-10
   double **m;  
   #define NRANSI 
   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  #define ITMAX 200 
   if (!m) nrerror("allocation failure 1 in matrix()");  
   m += NR_END;  #define TOL 2.0e-4 
   m -= nrl;  
   #define CGOLD 0.3819660 
   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  #define ZEPS 1.0e-10 
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
   m[nrl] += NR_END;  
   m[nrl] -= ncl;  #define GOLD 1.618034 
   #define GLIMIT 100.0 
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  #define TINY 1.0e-20 
   return m;  
 }  static double maxarg1,maxarg2;
   #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
 /*************************free matrix ************************/  #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
 void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)    
 {  #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
   free((FREE_ARG)(m[nrl]+ncl-NR_END));  #define rint(a) floor(a+0.5)
   free((FREE_ARG)(m+nrl-NR_END));  
 }  static double sqrarg;
   #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
 /******************* ma3x *******************************/  #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
 double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)  
 {  int imx; 
   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;  int stepm;
   double ***m;  /* Stepm, step in month: minimum step interpolation*/
   
   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));  int estepm;
   if (!m) nrerror("allocation failure 1 in matrix()");  /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
   m += NR_END;  
   m -= nrl;  int m,nb;
   long *num;
   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));  int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");  double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
   m[nrl] += NR_END;  double **pmmij, ***probs;
   m[nrl] -= ncl;  double dateintmean=0;
   
   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;  double *weight;
   int **s; /* Status */
   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));  double *agedc, **covar, idx;
   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");  int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
   m[nrl][ncl] += NR_END;  
   m[nrl][ncl] -= nll;  double ftol=FTOL; /* Tolerance for computing Max Likelihood */
   for (j=ncl+1; j<=nch; j++)  double ftolhess; /* Tolerance for computing hessian */
     m[nrl][j]=m[nrl][j-1]+nlay;  
    /**************** split *************************/
   for (i=nrl+1; i<=nrh; i++) {  static  int split( char *path, char *dirc, char *name, char *ext, char *finame )
     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;  {
     for (j=ncl+1; j<=nch; j++)    char  *ss;                            /* pointer */
       m[i][j]=m[i][j-1]+nlay;    int   l1, l2;                         /* length counters */
   }  
   return m;    l1 = strlen(path );                   /* length of path */
 }    if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
     ss= strrchr( path, DIRSEPARATOR );            /* find last / */
 /*************************free ma3x ************************/    if ( ss == NULL ) {                   /* no directory, so use current */
 void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)      /*if(strrchr(path, ODIRSEPARATOR )==NULL)
 {        printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));      /* get current working directory */
   free((FREE_ARG)(m[nrl]+ncl-NR_END));      /*    extern  char* getcwd ( char *buf , int len);*/
   free((FREE_ARG)(m+nrl-NR_END));      if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
 }        return( GLOCK_ERROR_GETCWD );
       }
 /***************** f1dim *************************/      strcpy( name, path );               /* we've got it */
 extern int ncom;    } else {                              /* strip direcotry from path */
 extern double *pcom,*xicom;      ss++;                               /* after this, the filename */
 extern double (*nrfunc)(double []);      l2 = strlen( ss );                  /* length of filename */
        if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
 double f1dim(double x)      strcpy( name, ss );         /* save file name */
 {      strncpy( dirc, path, l1 - l2 );     /* now the directory */
   int j;      dirc[l1-l2] = 0;                    /* add zero */
   double f;    }
   double *xt;    l1 = strlen( dirc );                  /* length of directory */
      /*#ifdef windows
   xt=vector(1,ncom);    if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];  #else
   f=(*nrfunc)(xt);    if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
   free_vector(xt,1,ncom);  #endif
   return f;    */
 }    ss = strrchr( name, '.' );            /* find last / */
     ss++;
 /*****************brent *************************/    strcpy(ext,ss);                       /* save extension */
 double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin)    l1= strlen( name);
 {    l2= strlen(ss)+1;
   int iter;    strncpy( finame, name, l1-l2);
   double a,b,d,etemp;    finame[l1-l2]= 0;
   double fu,fv,fw,fx;    return( 0 );                          /* we're done */
   double ftemp;  }
   double p,q,r,tol1,tol2,u,v,w,x,xm;  
   double e=0.0;  
    /******************************************/
   a=(ax < cx ? ax : cx);  
   b=(ax > cx ? ax : cx);  void replace_back_to_slash(char *s, char*t)
   x=w=v=bx;  {
   fw=fv=fx=(*f)(x);    int i;
   for (iter=1;iter<=ITMAX;iter++) {    int lg=0;
     xm=0.5*(a+b);    i=0;
     tol2=2.0*(tol1=tol*fabs(x)+ZEPS);    lg=strlen(t);
     /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/    for(i=0; i<= lg; i++) {
     printf(".");fflush(stdout);      (s[i] = t[i]);
 #ifdef DEBUG      if (t[i]== '\\') s[i]='/';
     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);    }
     /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */  }
 #endif  
     if (fabs(x-xm) <= (tol2-0.5*(b-a))){  int nbocc(char *s, char occ)
       *xmin=x;  {
       return fx;    int i,j=0;
     }    int lg=20;
     ftemp=fu;    i=0;
     if (fabs(e) > tol1) {    lg=strlen(s);
       r=(x-w)*(fx-fv);    for(i=0; i<= lg; i++) {
       q=(x-v)*(fx-fw);    if  (s[i] == occ ) j++;
       p=(x-v)*q-(x-w)*r;    }
       q=2.0*(q-r);    return j;
       if (q > 0.0) p = -p;  }
       q=fabs(q);  
       etemp=e;  void cutv(char *u,char *v, char*t, char occ)
       e=d;  {
       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))    /* cuts string t into u and v where u is ended by char occ excluding it
         d=CGOLD*(e=(x >= xm ? a-x : b-x));       and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
       else {       gives u="abcedf" and v="ghi2j" */
         d=p/q;    int i,lg,j,p=0;
         u=x+d;    i=0;
         if (u-a < tol2 || b-u < tol2)    for(j=0; j<=strlen(t)-1; j++) {
           d=SIGN(tol1,xm-x);      if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
       }    }
     } else {  
       d=CGOLD*(e=(x >= xm ? a-x : b-x));    lg=strlen(t);
     }    for(j=0; j<p; j++) {
     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));      (u[j] = t[j]);
     fu=(*f)(u);    }
     if (fu <= fx) {       u[p]='\0';
       if (u >= x) a=x; else b=x;  
       SHFT(v,w,x,u)     for(j=0; j<= lg; j++) {
         SHFT(fv,fw,fx,fu)      if (j>=(p+1))(v[j-p-1] = t[j]);
         } else {    }
           if (u < x) a=u; else b=u;  }
           if (fu <= fw || w == x) {  
             v=w;  /********************** nrerror ********************/
             w=u;  
             fv=fw;  void nrerror(char error_text[])
             fw=fu;  {
           } else if (fu <= fv || v == x || v == w) {    fprintf(stderr,"ERREUR ...\n");
             v=u;    fprintf(stderr,"%s\n",error_text);
             fv=fu;    exit(EXIT_FAILURE);
           }  }
         }  /*********************** vector *******************/
   }  double *vector(int nl, int nh)
   nrerror("Too many iterations in brent");  {
   *xmin=x;    double *v;
   return fx;    v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
 }    if (!v) nrerror("allocation failure in vector");
     return v-nl+NR_END;
 /****************** mnbrak ***********************/  }
   
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,  /************************ free vector ******************/
             double (*func)(double))  void free_vector(double*v, int nl, int nh)
 {  {
   double ulim,u,r,q, dum;    free((FREE_ARG)(v+nl-NR_END));
   double fu;  }
    
   *fa=(*func)(*ax);  /************************ivector *******************************/
   *fb=(*func)(*bx);  int *ivector(long nl,long nh)
   if (*fb > *fa) {  {
     SHFT(dum,*ax,*bx,dum)    int *v;
       SHFT(dum,*fb,*fa,dum)    v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
       }    if (!v) nrerror("allocation failure in ivector");
   *cx=(*bx)+GOLD*(*bx-*ax);    return v-nl+NR_END;
   *fc=(*func)(*cx);  }
   while (*fb > *fc) {  
     r=(*bx-*ax)*(*fb-*fc);  /******************free ivector **************************/
     q=(*bx-*cx)*(*fb-*fa);  void free_ivector(int *v, long nl, long nh)
     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/  {
       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));    free((FREE_ARG)(v+nl-NR_END));
     ulim=(*bx)+GLIMIT*(*cx-*bx);  }
     if ((*bx-u)*(u-*cx) > 0.0) {  
       fu=(*func)(u);  /************************lvector *******************************/
     } else if ((*cx-u)*(u-ulim) > 0.0) {  long *lvector(long nl,long nh)
       fu=(*func)(u);  {
       if (fu < *fc) {    long *v;
         SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))    v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
           SHFT(*fb,*fc,fu,(*func)(u))    if (!v) nrerror("allocation failure in ivector");
           }    return v-nl+NR_END;
     } else if ((u-ulim)*(ulim-*cx) >= 0.0) {  }
       u=ulim;  
       fu=(*func)(u);  /******************free lvector **************************/
     } else {  void free_lvector(long *v, long nl, long nh)
       u=(*cx)+GOLD*(*cx-*bx);  {
       fu=(*func)(u);    free((FREE_ARG)(v+nl-NR_END));
     }  }
     SHFT(*ax,*bx,*cx,u)  
       SHFT(*fa,*fb,*fc,fu)  /******************* imatrix *******************************/
       }  int **imatrix(long nrl, long nrh, long ncl, long nch) 
 }       /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
   { 
 /*************** linmin ************************/    long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
     int **m; 
 int ncom;    
 double *pcom,*xicom;    /* allocate pointers to rows */ 
 double (*nrfunc)(double []);    m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
      if (!m) nrerror("allocation failure 1 in matrix()"); 
 void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))    m += NR_END; 
 {    m -= nrl; 
   double brent(double ax, double bx, double cx,    
                double (*f)(double), double tol, double *xmin);    
   double f1dim(double x);    /* allocate rows and set pointers to them */ 
   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,    m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
               double *fc, double (*func)(double));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
   int j;    m[nrl] += NR_END; 
   double xx,xmin,bx,ax;    m[nrl] -= ncl; 
   double fx,fb,fa;    
      for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
   ncom=n;    
   pcom=vector(1,n);    /* return pointer to array of pointers to rows */ 
   xicom=vector(1,n);    return m; 
   nrfunc=func;  } 
   for (j=1;j<=n;j++) {  
     pcom[j]=p[j];  /****************** free_imatrix *************************/
     xicom[j]=xi[j];  void free_imatrix(m,nrl,nrh,ncl,nch)
   }        int **m;
   ax=0.0;        long nch,ncl,nrh,nrl; 
   xx=1.0;       /* free an int matrix allocated by imatrix() */ 
   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  { 
   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);    free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 #ifdef DEBUG    free((FREE_ARG) (m+nrl-NR_END)); 
   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);  } 
 #endif  
   for (j=1;j<=n;j++) {  /******************* matrix *******************************/
     xi[j] *= xmin;  double **matrix(long nrl, long nrh, long ncl, long nch)
     p[j] += xi[j];  {
   }    long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
   free_vector(xicom,1,n);    double **m;
   free_vector(pcom,1,n);  
 }    m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
     if (!m) nrerror("allocation failure 1 in matrix()");
 /*************** powell ************************/    m += NR_END;
 void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,    m -= nrl;
             double (*func)(double []))  
 {    m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
   void linmin(double p[], double xi[], int n, double *fret,    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
               double (*func)(double []));    m[nrl] += NR_END;
   int i,ibig,j;    m[nrl] -= ncl;
   double del,t,*pt,*ptt,*xit;  
   double fp,fptt;    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
   double *xits;    return m;
   pt=vector(1,n);    /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
   ptt=vector(1,n);     */
   xit=vector(1,n);  }
   xits=vector(1,n);  
   *fret=(*func)(p);  /*************************free matrix ************************/
   for (j=1;j<=n;j++) pt[j]=p[j];  void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
   for (*iter=1;;++(*iter)) {  {
     fp=(*fret);    free((FREE_ARG)(m[nrl]+ncl-NR_END));
     ibig=0;    free((FREE_ARG)(m+nrl-NR_END));
     del=0.0;  }
     printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);  
     for (i=1;i<=n;i++)  /******************* ma3x *******************************/
       printf(" %d %.12f",i, p[i]);  double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
     printf("\n");  {
     for (i=1;i<=n;i++) {    long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
       for (j=1;j<=n;j++) xit[j]=xi[j][i];    double ***m;
       fptt=(*fret);  
 #ifdef DEBUG    m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
       printf("fret=%lf \n",*fret);    if (!m) nrerror("allocation failure 1 in matrix()");
 #endif    m += NR_END;
       printf("%d",i);fflush(stdout);    m -= nrl;
       linmin(p,xit,n,fret,func);  
       if (fabs(fptt-(*fret)) > del) {    m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
         del=fabs(fptt-(*fret));    if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
         ibig=i;    m[nrl] += NR_END;
       }    m[nrl] -= ncl;
 #ifdef DEBUG  
       printf("%d %.12e",i,(*fret));    for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
       for (j=1;j<=n;j++) {  
         xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);    m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
         printf(" x(%d)=%.12e",j,xit[j]);    if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
       }    m[nrl][ncl] += NR_END;
       for(j=1;j<=n;j++)    m[nrl][ncl] -= nll;
         printf(" p=%.12e",p[j]);    for (j=ncl+1; j<=nch; j++) 
       printf("\n");      m[nrl][j]=m[nrl][j-1]+nlay;
 #endif    
     }    for (i=nrl+1; i<=nrh; i++) {
     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {      m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
 #ifdef DEBUG      for (j=ncl+1; j<=nch; j++) 
       int k[2],l;        m[i][j]=m[i][j-1]+nlay;
       k[0]=1;    }
       k[1]=-1;    return m; 
       printf("Max: %.12e",(*func)(p));    /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
       for (j=1;j<=n;j++)             &(m[i][j][k]) <=> *((*(m+i) + j)+k)
         printf(" %.12e",p[j]);    */
       printf("\n");  }
       for(l=0;l<=1;l++) {  
         for (j=1;j<=n;j++) {  /*************************free ma3x ************************/
           ptt[j]=p[j]+(p[j]-pt[j])*k[l];  void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
           printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);  {
         }    free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
         printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));    free((FREE_ARG)(m[nrl]+ncl-NR_END));
       }    free((FREE_ARG)(m+nrl-NR_END));
 #endif  }
   
   /***************** f1dim *************************/
       free_vector(xit,1,n);  extern int ncom; 
       free_vector(xits,1,n);  extern double *pcom,*xicom;
       free_vector(ptt,1,n);  extern double (*nrfunc)(double []); 
       free_vector(pt,1,n);   
       return;  double f1dim(double x) 
     }  { 
     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");    int j; 
     for (j=1;j<=n;j++) {    double f;
       ptt[j]=2.0*p[j]-pt[j];    double *xt; 
       xit[j]=p[j]-pt[j];   
       pt[j]=p[j];    xt=vector(1,ncom); 
     }    for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
     fptt=(*func)(ptt);    f=(*nrfunc)(xt); 
     if (fptt < fp) {    free_vector(xt,1,ncom); 
       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);    return f; 
       if (t < 0.0) {  } 
         linmin(p,xit,n,fret,func);  
         for (j=1;j<=n;j++) {  /*****************brent *************************/
           xi[j][ibig]=xi[j][n];  double brent(double ax, double bx, double cx, double (*f)(double), double tol,  double *xmin) 
           xi[j][n]=xit[j];  { 
         }    int iter; 
 #ifdef DEBUG    double a,b,d,etemp;
         printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);    double fu,fv,fw,fx;
         for(j=1;j<=n;j++)    double ftemp;
           printf(" %.12e",xit[j]);    double p,q,r,tol1,tol2,u,v,w,x,xm; 
         printf("\n");    double e=0.0; 
 #endif   
       }    a=(ax < cx ? ax : cx); 
     }    b=(ax > cx ? ax : cx); 
   }    x=w=v=bx; 
 }    fw=fv=fx=(*f)(x); 
     for (iter=1;iter<=ITMAX;iter++) { 
 /**** Prevalence limit ****************/      xm=0.5*(a+b); 
       tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
 double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)      /*          if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
 {      printf(".");fflush(stdout);
   /* Computes the prevalence limit in each live state at age x by left multiplying the unit      fprintf(ficlog,".");fflush(ficlog);
      matrix by transitions matrix until convergence is reached */  #ifdef DEBUG
       printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   int i, ii,j,k;      fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
   double min, max, maxmin, maxmax,sumnew=0.;      /*          if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
   double **matprod2();  #endif
   double **out, cov[NCOVMAX], **pmij();      if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
   double **newm;        *xmin=x; 
   double agefin, delaymax=50 ; /* Max number of years to converge */        return fx; 
       } 
   for (ii=1;ii<=nlstate+ndeath;ii++)      ftemp=fu;
     for (j=1;j<=nlstate+ndeath;j++){      if (fabs(e) > tol1) { 
       oldm[ii][j]=(ii==j ? 1.0 : 0.0);        r=(x-w)*(fx-fv); 
     }        q=(x-v)*(fx-fw); 
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */        p=(x-v)*q-(x-w)*r; 
   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){        q=2.0*(q-r); 
     newm=savm;        if (q > 0.0) p = -p; 
     /* Covariates have to be included here again */        q=fabs(q); 
     cov[1]=1.;        etemp=e; 
     cov[2]=agefin;        e=d; 
     if (cptcovn>0){        if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
       for (k=1; k<=cptcovn;k++) {cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];/*printf("Tcode[ij]=%d nbcode=%d\n",Tcode[ij],nbcode[k][Tcode[ij]]);*/}          d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
     }        else { 
     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);          d=p/q; 
           u=x+d; 
     savm=oldm;          if (u-a < tol2 || b-u < tol2) 
     oldm=newm;            d=SIGN(tol1,xm-x); 
     maxmax=0.;        } 
     for(j=1;j<=nlstate;j++){      } else { 
       min=1.;        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
       max=0.;      } 
       for(i=1; i<=nlstate; i++) {      u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
         sumnew=0;      fu=(*f)(u); 
         for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];      if (fu <= fx) { 
         prlim[i][j]= newm[i][j]/(1-sumnew);        if (u >= x) a=x; else b=x; 
         max=FMAX(max,prlim[i][j]);        SHFT(v,w,x,u) 
         min=FMIN(min,prlim[i][j]);          SHFT(fv,fw,fx,fu) 
       }          } else { 
       maxmin=max-min;            if (u < x) a=u; else b=u; 
       maxmax=FMAX(maxmax,maxmin);            if (fu <= fw || w == x) { 
     }              v=w; 
     if(maxmax < ftolpl){              w=u; 
       return prlim;              fv=fw; 
     }              fw=fu; 
   }            } else if (fu <= fv || v == x || v == w) { 
 }              v=u; 
               fv=fu; 
 /*************** transition probabilities **********/            } 
           } 
 double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )    } 
 {    nrerror("Too many iterations in brent"); 
   double s1, s2;    *xmin=x; 
   /*double t34;*/    return fx; 
   int i,j,j1, nc, ii, jj;  } 
   
     for(i=1; i<= nlstate; i++){  /****************** mnbrak ***********************/
     for(j=1; j<i;j++){  
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){  void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
         /*s2 += param[i][j][nc]*cov[nc];*/              double (*func)(double)) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];  { 
         /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/    double ulim,u,r,q, dum;
       }    double fu; 
       ps[i][j]=s2;   
       /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/    *fa=(*func)(*ax); 
     }    *fb=(*func)(*bx); 
     for(j=i+1; j<=nlstate+ndeath;j++){    if (*fb > *fa) { 
       for (nc=1, s2=0.;nc <=ncovmodel; nc++){      SHFT(dum,*ax,*bx,dum) 
         s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];        SHFT(dum,*fb,*fa,dum) 
         /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/        } 
       }    *cx=(*bx)+GOLD*(*bx-*ax); 
       ps[i][j]=s2;    *fc=(*func)(*cx); 
     }    while (*fb > *fc) { 
   }      r=(*bx-*ax)*(*fb-*fc); 
   for(i=1; i<= nlstate; i++){      q=(*bx-*cx)*(*fb-*fa); 
      s1=0;      u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
     for(j=1; j<i; j++)        (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
       s1+=exp(ps[i][j]);      ulim=(*bx)+GLIMIT*(*cx-*bx); 
     for(j=i+1; j<=nlstate+ndeath; j++)      if ((*bx-u)*(u-*cx) > 0.0) { 
       s1+=exp(ps[i][j]);        fu=(*func)(u); 
     ps[i][i]=1./(s1+1.);      } else if ((*cx-u)*(u-ulim) > 0.0) { 
     for(j=1; j<i; j++)        fu=(*func)(u); 
       ps[i][j]= exp(ps[i][j])*ps[i][i];        if (fu < *fc) { 
     for(j=i+1; j<=nlstate+ndeath; j++)          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
       ps[i][j]= exp(ps[i][j])*ps[i][i];            SHFT(*fb,*fc,fu,(*func)(u)) 
     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */            } 
   } /* end i */      } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
         u=ulim; 
   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){        fu=(*func)(u); 
     for(jj=1; jj<= nlstate+ndeath; jj++){      } else { 
       ps[ii][jj]=0;        u=(*cx)+GOLD*(*cx-*bx); 
       ps[ii][ii]=1;        fu=(*func)(u); 
     }      } 
   }      SHFT(*ax,*bx,*cx,u) 
         SHFT(*fa,*fb,*fc,fu) 
   /*   for(ii=1; ii<= nlstate+ndeath; ii++){        } 
     for(jj=1; jj<= nlstate+ndeath; jj++){  } 
      printf("%lf ",ps[ii][jj]);  
    }  /*************** linmin ************************/
     printf("\n ");  
     }  int ncom; 
     printf("\n ");printf("%lf ",cov[2]);*/  double *pcom,*xicom;
 /*  double (*nrfunc)(double []); 
   for(i=1; i<= npar; i++) printf("%f ",x[i]);   
   goto end;*/  void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
     return ps;  { 
 }    double brent(double ax, double bx, double cx, 
                  double (*f)(double), double tol, double *xmin); 
 /**************** Product of 2 matrices ******************/    double f1dim(double x); 
     void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
 double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)                double *fc, double (*func)(double)); 
 {    int j; 
   /* Computes the matric product of in(1,nrh-nrl+1)(1,nch-ncl+1) times    double xx,xmin,bx,ax; 
      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */    double fx,fb,fa;
   /* in, b, out are matrice of pointers which should have been initialized   
      before: only the contents of out is modified. The function returns    ncom=n; 
      a pointer to pointers identical to out */    pcom=vector(1,n); 
   long i, j, k;    xicom=vector(1,n); 
   for(i=nrl; i<= nrh; i++)    nrfunc=func; 
     for(k=ncolol; k<=ncoloh; k++)    for (j=1;j<=n;j++) { 
       for(j=ncl,out[i][k]=0.; j<=nch; j++)      pcom[j]=p[j]; 
         out[i][k] +=in[i][j]*b[j][k];      xicom[j]=xi[j]; 
     } 
   return out;    ax=0.0; 
 }    xx=1.0; 
     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
     *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
 /************* Higher Matrix Product ***************/  #ifdef DEBUG
     printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )    fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
 {  #endif
   /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month    for (j=1;j<=n;j++) { 
      duration (i.e. until      xi[j] *= xmin; 
      age (in years)  age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.      p[j] += xi[j]; 
      Output is stored in matrix po[i][j][h] for h every 'hstepm' step    } 
      (typically every 2 years instead of every month which is too big).    free_vector(xicom,1,n); 
      Model is determined by parameters x and covariates have to be    free_vector(pcom,1,n); 
      included manually here.  } 
   
      */  char *asc_diff_time(long time_sec, char ascdiff[])
   {
   int i, j, d, h, k;    long sec_left, days, hours, minutes;
   double **out, cov[NCOVMAX];    days = (time_sec) / (60*60*24);
   double **newm;    sec_left = (time_sec) % (60*60*24);
     hours = (sec_left) / (60*60) ;
   /* Hstepm could be zero and should return the unit matrix */    sec_left = (sec_left) %(60*60);
   for (i=1;i<=nlstate+ndeath;i++)    minutes = (sec_left) /60;
     for (j=1;j<=nlstate+ndeath;j++){    sec_left = (sec_left) % (60);
       oldm[i][j]=(i==j ? 1.0 : 0.0);    sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
       po[i][j][0]=(i==j ? 1.0 : 0.0);    return ascdiff;
     }  }
   /* Even if hstepm = 1, at least one multiplication by the unit matrix */  
   for(h=1; h <=nhstepm; h++){  /*************** powell ************************/
     for(d=1; d <=hstepm; d++){  void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
       newm=savm;              double (*func)(double [])) 
       /* Covariates have to be included here again */  { 
       cov[1]=1.;    void linmin(double p[], double xi[], int n, double *fret, 
       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;                double (*func)(double [])); 
       if (cptcovn>0){    int i,ibig,j; 
       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][k]];    double del,t,*pt,*ptt,*xit;
     }    double fp,fptt;
       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/    double *xits;
       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/    int niterf, itmp;
       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,  
                    pmij(pmmij,cov,ncovmodel,x,nlstate));    pt=vector(1,n); 
       savm=oldm;    ptt=vector(1,n); 
       oldm=newm;    xit=vector(1,n); 
     }    xits=vector(1,n); 
     for(i=1; i<=nlstate+ndeath; i++)    *fret=(*func)(p); 
       for(j=1;j<=nlstate+ndeath;j++) {    for (j=1;j<=n;j++) pt[j]=p[j]; 
         po[i][j][h]=newm[i][j];    for (*iter=1;;++(*iter)) { 
         /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);      fp=(*fret); 
          */      ibig=0; 
       }      del=0.0; 
   } /* end h */      last_time=curr_time;
   return po;      (void) gettimeofday(&curr_time,&tzp);
 }      printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
       fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
       fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
 /*************** log-likelihood *************/      for (i=1;i<=n;i++) {
 double func( double *x)        printf(" %d %.12f",i, p[i]);
 {        fprintf(ficlog," %d %.12lf",i, p[i]);
   int i, ii, j, k, mi, d;        fprintf(ficrespow," %.12lf", p[i]);
   double l, ll[NLSTATEMAX], cov[NCOVMAX];      }
   double **out;      printf("\n");
   double sw; /* Sum of weights */      fprintf(ficlog,"\n");
   double lli; /* Individual log likelihood */      fprintf(ficrespow,"\n");fflush(ficrespow);
   long ipmx;      if(*iter <=3){
   /*extern weight */        tm = *localtime(&curr_time.tv_sec);
   /* We are differentiating ll according to initial status */        strcpy(strcurr,asctime(&tmf));
   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/  /*       asctime_r(&tm,strcurr); */
   /*for(i=1;i<imx;i++)        forecast_time=curr_time;
 printf(" %d\n",s[4][i]);        itmp = strlen(strcurr);
   */        if(strcurr[itmp-1]=='\n')
           strcurr[itmp-1]='\0';
   for(k=1; k<=nlstate; k++) ll[k]=0.;        printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
   for (i=1,ipmx=0, sw=0.; i<=imx; i++){        fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
        for(mi=1; mi<= wav[i]-1; mi++){        for(niterf=10;niterf<=30;niterf+=10){
       for (ii=1;ii<=nlstate+ndeath;ii++)          forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
         for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);          tmf = *localtime(&forecast_time.tv_sec);
             for(d=0; d<dh[mi][i]; d++){  /*      asctime_r(&tmf,strfor); */
         newm=savm;          strcpy(strfor,asctime(&tmf));
           cov[1]=1.;          itmp = strlen(strfor);
           cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;          if(strfor[itmp-1]=='\n')
           if (cptcovn>0){          strfor[itmp-1]='\0';
             for (k=1; k<=cptcovn;k++) cov[2+k]=covar[1+k-1][i];          printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
             }          fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s or\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
           out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,        }
                        1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));      }
           savm=oldm;      for (i=1;i<=n;i++) { 
           oldm=newm;        for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
         fptt=(*fret); 
   #ifdef DEBUG
       } /* end mult */        printf("fret=%lf \n",*fret);
            fprintf(ficlog,"fret=%lf \n",*fret);
       lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);  #endif
       /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/        printf("%d",i);fflush(stdout);
       ipmx +=1;        fprintf(ficlog,"%d",i);fflush(ficlog);
       sw += weight[i];        linmin(p,xit,n,fret,func); 
       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;        if (fabs(fptt-(*fret)) > del) { 
     } /* end of wave */          del=fabs(fptt-(*fret)); 
   } /* end of individual */          ibig=i; 
         } 
   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];  #ifdef DEBUG
   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */        printf("%d %.12e",i,(*fret));
   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */        fprintf(ficlog,"%d %.12e",i,(*fret));
   return -l;        for (j=1;j<=n;j++) {
 }          xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
           printf(" x(%d)=%.12e",j,xit[j]);
           fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
 /*********** Maximum Likelihood Estimation ***************/        }
         for(j=1;j<=n;j++) {
 void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))          printf(" p=%.12e",p[j]);
 {          fprintf(ficlog," p=%.12e",p[j]);
   int i,j, iter;        }
   double **xi,*delti;        printf("\n");
   double fret;        fprintf(ficlog,"\n");
   xi=matrix(1,npar,1,npar);  #endif
   for (i=1;i<=npar;i++)      } 
     for (j=1;j<=npar;j++)      if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
       xi[i][j]=(i==j ? 1.0 : 0.0);  #ifdef DEBUG
   printf("Powell\n");        int k[2],l;
   powell(p,xi,npar,ftol,&iter,&fret,func);        k[0]=1;
         k[1]=-1;
    printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));        printf("Max: %.12e",(*func)(p));
   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f ",iter,func(p));        fprintf(ficlog,"Max: %.12e",(*func)(p));
         for (j=1;j<=n;j++) {
 }          printf(" %.12e",p[j]);
           fprintf(ficlog," %.12e",p[j]);
 /**** Computes Hessian and covariance matrix ***/        }
 void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))        printf("\n");
 {        fprintf(ficlog,"\n");
   double  **a,**y,*x,pd;        for(l=0;l<=1;l++) {
   double **hess;          for (j=1;j<=n;j++) {
   int i, j,jk;            ptt[j]=p[j]+(p[j]-pt[j])*k[l];
   int *indx;            printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
             fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
   double hessii(double p[], double delta, int theta, double delti[]);          }
   double hessij(double p[], double delti[], int i, int j);          printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   void lubksb(double **a, int npar, int *indx, double b[]) ;          fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
   void ludcmp(double **a, int npar, int *indx, double *d) ;        }
   #endif
   
   hess=matrix(1,npar,1,npar);  
         free_vector(xit,1,n); 
   printf("\nCalculation of the hessian matrix. Wait...\n");        free_vector(xits,1,n); 
   for (i=1;i<=npar;i++){        free_vector(ptt,1,n); 
     printf("%d",i);fflush(stdout);        free_vector(pt,1,n); 
     hess[i][i]=hessii(p,ftolhess,i,delti);        return; 
     /*printf(" %f ",p[i]);*/      } 
   }      if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
       for (j=1;j<=n;j++) { 
   for (i=1;i<=npar;i++) {        ptt[j]=2.0*p[j]-pt[j]; 
     for (j=1;j<=npar;j++)  {        xit[j]=p[j]-pt[j]; 
       if (j>i) {        pt[j]=p[j]; 
         printf(".%d%d",i,j);fflush(stdout);      } 
         hess[i][j]=hessij(p,delti,i,j);      fptt=(*func)(ptt); 
         hess[j][i]=hess[i][j];      if (fptt < fp) { 
       }        t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
     }        if (t < 0.0) { 
   }          linmin(p,xit,n,fret,func); 
   printf("\n");          for (j=1;j<=n;j++) { 
             xi[j][ibig]=xi[j][n]; 
   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");            xi[j][n]=xit[j]; 
            }
   a=matrix(1,npar,1,npar);  #ifdef DEBUG
   y=matrix(1,npar,1,npar);          printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   x=vector(1,npar);          fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
   indx=ivector(1,npar);          for(j=1;j<=n;j++){
   for (i=1;i<=npar;i++)            printf(" %.12e",xit[j]);
     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];            fprintf(ficlog," %.12e",xit[j]);
   ludcmp(a,npar,indx,&pd);          }
           printf("\n");
   for (j=1;j<=npar;j++) {          fprintf(ficlog,"\n");
     for (i=1;i<=npar;i++) x[i]=0;  #endif
     x[j]=1;        }
     lubksb(a,npar,indx,x);      } 
     for (i=1;i<=npar;i++){    } 
       matcov[i][j]=x[i];  } 
     }  
   }  /**** Prevalence limit (stable prevalence)  ****************/
   
   printf("\n#Hessian matrix#\n");  double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
   for (i=1;i<=npar;i++) {  {
     for (j=1;j<=npar;j++) {    /* Computes the prevalence limit in each live state at age x by left multiplying the unit
       printf("%.3e ",hess[i][j]);       matrix by transitions matrix until convergence is reached */
     }  
     printf("\n");    int i, ii,j,k;
   }    double min, max, maxmin, maxmax,sumnew=0.;
     double **matprod2();
   /* Recompute Inverse */    double **out, cov[NCOVMAX], **pmij();
   for (i=1;i<=npar;i++)    double **newm;
     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];    double agefin, delaymax=50 ; /* Max number of years to converge */
   ludcmp(a,npar,indx,&pd);  
     for (ii=1;ii<=nlstate+ndeath;ii++)
   /*  printf("\n#Hessian matrix recomputed#\n");      for (j=1;j<=nlstate+ndeath;j++){
         oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   for (j=1;j<=npar;j++) {      }
     for (i=1;i<=npar;i++) x[i]=0;  
     x[j]=1;     cov[1]=1.;
     lubksb(a,npar,indx,x);   
     for (i=1;i<=npar;i++){   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
       y[i][j]=x[i];    for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
       printf("%.3e ",y[i][j]);      newm=savm;
     }      /* Covariates have to be included here again */
     printf("\n");       cov[2]=agefin;
   }    
   */        for (k=1; k<=cptcovn;k++) {
           cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
   free_matrix(a,1,npar,1,npar);          /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
   free_matrix(y,1,npar,1,npar);        }
   free_vector(x,1,npar);        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
   free_ivector(indx,1,npar);        for (k=1; k<=cptcovprod;k++)
   free_matrix(hess,1,npar,1,npar);          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
   
         /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
 }        /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
         /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
 /*************** hessian matrix ****************/      out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
 double hessii( double x[], double delta, int theta, double delti[])  
 {      savm=oldm;
   int i;      oldm=newm;
   int l=1, lmax=20;      maxmax=0.;
   double k1,k2;      for(j=1;j<=nlstate;j++){
   double p2[NPARMAX+1];        min=1.;
   double res;        max=0.;
   double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;        for(i=1; i<=nlstate; i++) {
   double fx;          sumnew=0;
   int k=0,kmax=10;          for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
   double l1;          prlim[i][j]= newm[i][j]/(1-sumnew);
           max=FMAX(max,prlim[i][j]);
   fx=func(x);          min=FMIN(min,prlim[i][j]);
   for (i=1;i<=npar;i++) p2[i]=x[i];        }
   for(l=0 ; l <=lmax; l++){        maxmin=max-min;
     l1=pow(10,l);        maxmax=FMAX(maxmax,maxmin);
     delts=delt;      }
     for(k=1 ; k <kmax; k=k+1){      if(maxmax < ftolpl){
       delt = delta*(l1*k);        return prlim;
       p2[theta]=x[theta] +delt;      }
       k1=func(p2)-fx;    }
       p2[theta]=x[theta]-delt;  }
       k2=func(p2)-fx;  
       /*res= (k1-2.0*fx+k2)/delt/delt; */  /*************** transition probabilities ***************/ 
       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */  
        double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
 #ifdef DEBUG  {
       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);    double s1, s2;
 #endif    /*double t34;*/
       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */    int i,j,j1, nc, ii, jj;
       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){  
         k=kmax;      for(i=1; i<= nlstate; i++){
       }      for(j=1; j<i;j++){
       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
         k=kmax; l=lmax*10.;          /*s2 += param[i][j][nc]*cov[nc];*/
       }          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){          /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
         delts=delt;        }
       }        ps[i][j]=s2;
     }        /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
   }      }
   delti[theta]=delts;      for(j=i+1; j<=nlstate+ndeath;j++){
   return res;        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
            s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
 }          /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
         }
 double hessij( double x[], double delti[], int thetai,int thetaj)        ps[i][j]=s2;
 {      }
   int i;    }
   int l=1, l1, lmax=20;      /*ps[3][2]=1;*/
   double k1,k2,k3,k4,res,fx;  
   double p2[NPARMAX+1];    for(i=1; i<= nlstate; i++){
   int k;       s1=0;
       for(j=1; j<i; j++)
   fx=func(x);        s1+=exp(ps[i][j]);
   for (k=1; k<=2; k++) {      for(j=i+1; j<=nlstate+ndeath; j++)
     for (i=1;i<=npar;i++) p2[i]=x[i];        s1+=exp(ps[i][j]);
     p2[thetai]=x[thetai]+delti[thetai]/k;      ps[i][i]=1./(s1+1.);
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(j=1; j<i; j++)
     k1=func(p2)-fx;        ps[i][j]= exp(ps[i][j])*ps[i][i];
        for(j=i+1; j<=nlstate+ndeath; j++)
     p2[thetai]=x[thetai]+delti[thetai]/k;        ps[i][j]= exp(ps[i][j])*ps[i][i];
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;      /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
     k2=func(p2)-fx;    } /* end i */
    
     p2[thetai]=x[thetai]-delti[thetai]/k;    for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
     p2[thetaj]=x[thetaj]+delti[thetaj]/k;      for(jj=1; jj<= nlstate+ndeath; jj++){
     k3=func(p2)-fx;        ps[ii][jj]=0;
          ps[ii][ii]=1;
     p2[thetai]=x[thetai]-delti[thetai]/k;      }
     p2[thetaj]=x[thetaj]-delti[thetaj]/k;    }
     k4=func(p2)-fx;  
     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */  
 #ifdef DEBUG    /*   for(ii=1; ii<= nlstate+ndeath; ii++){
     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);      for(jj=1; jj<= nlstate+ndeath; jj++){
 #endif       printf("%lf ",ps[ii][jj]);
   }     }
   return res;      printf("\n ");
 }      }
       printf("\n ");printf("%lf ",cov[2]);*/
 /************** Inverse of matrix **************/  /*
 void ludcmp(double **a, int n, int *indx, double *d)    for(i=1; i<= npar; i++) printf("%f ",x[i]);
 {    goto end;*/
   int i,imax,j,k;      return ps;
   double big,dum,sum,temp;  }
   double *vv;  
    /**************** Product of 2 matrices ******************/
   vv=vector(1,n);  
   *d=1.0;  double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
   for (i=1;i<=n;i++) {  {
     big=0.0;    /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
     for (j=1;j<=n;j++)       b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
       if ((temp=fabs(a[i][j])) > big) big=temp;    /* in, b, out are matrice of pointers which should have been initialized 
     if (big == 0.0) nrerror("Singular matrix in routine ludcmp");       before: only the contents of out is modified. The function returns
     vv[i]=1.0/big;       a pointer to pointers identical to out */
   }    long i, j, k;
   for (j=1;j<=n;j++) {    for(i=nrl; i<= nrh; i++)
     for (i=1;i<j;i++) {      for(k=ncolol; k<=ncoloh; k++)
       sum=a[i][j];        for(j=ncl,out[i][k]=0.; j<=nch; j++)
       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];          out[i][k] +=in[i][j]*b[j][k];
       a[i][j]=sum;  
     }    return out;
     big=0.0;  }
     for (i=j;i<=n;i++) {  
       sum=a[i][j];  
       for (k=1;k<j;k++)  /************* Higher Matrix Product ***************/
         sum -= a[i][k]*a[k][j];  
       a[i][j]=sum;  double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
       if ( (dum=vv[i]*fabs(sum)) >= big) {  {
         big=dum;    /* Computes the transition matrix starting at age 'age' over 
         imax=i;       'nhstepm*hstepm*stepm' months (i.e. until
       }       age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
     }       nhstepm*hstepm matrices. 
     if (j != imax) {       Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
       for (k=1;k<=n;k++) {       (typically every 2 years instead of every month which is too big 
         dum=a[imax][k];       for the memory).
         a[imax][k]=a[j][k];       Model is determined by parameters x and covariates have to be 
         a[j][k]=dum;       included manually here. 
       }  
       *d = -(*d);       */
       vv[imax]=vv[j];  
     }    int i, j, d, h, k;
     indx[j]=imax;    double **out, cov[NCOVMAX];
     if (a[j][j] == 0.0) a[j][j]=TINY;    double **newm;
     if (j != n) {  
       dum=1.0/(a[j][j]);    /* Hstepm could be zero and should return the unit matrix */
       for (i=j+1;i<=n;i++) a[i][j] *= dum;    for (i=1;i<=nlstate+ndeath;i++)
     }      for (j=1;j<=nlstate+ndeath;j++){
   }        oldm[i][j]=(i==j ? 1.0 : 0.0);
   free_vector(vv,1,n);  /* Doesn't work */        po[i][j][0]=(i==j ? 1.0 : 0.0);
 ;      }
 }    /* Even if hstepm = 1, at least one multiplication by the unit matrix */
     for(h=1; h <=nhstepm; h++){
 void lubksb(double **a, int n, int *indx, double b[])      for(d=1; d <=hstepm; d++){
 {        newm=savm;
   int i,ii=0,ip,j;        /* Covariates have to be included here again */
   double sum;        cov[1]=1.;
          cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
   for (i=1;i<=n;i++) {        for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
     ip=indx[i];        for (k=1; k<=cptcovage;k++)
     sum=b[ip];          cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
     b[ip]=b[i];        for (k=1; k<=cptcovprod;k++)
     if (ii)          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];  
     else if (sum) ii=i;  
     b[i]=sum;        /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
   }        /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
   for (i=n;i>=1;i--) {        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
     sum=b[i];                     pmij(pmmij,cov,ncovmodel,x,nlstate));
     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];        savm=oldm;
     b[i]=sum/a[i][i];        oldm=newm;
   }      }
 }      for(i=1; i<=nlstate+ndeath; i++)
         for(j=1;j<=nlstate+ndeath;j++) {
 /************ Frequencies ********************/          po[i][j][h]=newm[i][j];
 void  freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax)          /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
 {  /* Some frequencies */           */
          }
   int i, m, jk, k1, i1, j1, bool, z1,z2,j;    } /* end h */
   double ***freq; /* Frequencies */    return po;
   double *pp;  }
   double pos;  
   FILE *ficresp;  
   char fileresp[FILENAMELENGTH];  /*************** log-likelihood *************/
   double func( double *x)
   pp=vector(1,nlstate);  {
     int i, ii, j, k, mi, d, kk;
   strcpy(fileresp,"p");    double l, ll[NLSTATEMAX], cov[NCOVMAX];
   strcat(fileresp,fileres);    double **out;
   if((ficresp=fopen(fileresp,"w"))==NULL) {    double sw; /* Sum of weights */
     printf("Problem with prevalence resultfile: %s\n", fileresp);    double lli; /* Individual log likelihood */
     exit(0);    int s1, s2;
   }    double bbh, survp;
   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);    long ipmx;
   j1=0;    /*extern weight */
     /* We are differentiating ll according to initial status */
   j=cptcovn;    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
   if (cptcovn<1) {j=1;ncodemax[1]=1;}    /*for(i=1;i<imx;i++) 
       printf(" %d\n",s[4][i]);
   for(k1=1; k1<=j;k1++){    */
    for(i1=1; i1<=ncodemax[k1];i1++){    cov[1]=1.;
        j1++;  
     for(k=1; k<=nlstate; k++) ll[k]=0.;
         for (i=-1; i<=nlstate+ndeath; i++)    
          for (jk=-1; jk<=nlstate+ndeath; jk++)      if(mle==1){
            for(m=agemin; m <= agemax+3; m++)      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
              freq[i][jk][m]=0;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                for(mi=1; mi<= wav[i]-1; mi++){
        for (i=1; i<=imx; i++) {          for (ii=1;ii<=nlstate+ndeath;ii++)
          bool=1;            for (j=1;j<=nlstate+ndeath;j++){
          if  (cptcovn>0) {              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
            for (z1=1; z1<=cptcovn; z1++)              savm[ii][j]=(ii==j ? 1.0 : 0.0);
              if (covar[Tvar[z1]][i]!= nbcode[Tvar[z1]][codtab[j1][z1]]) bool=0;            }
          }          for(d=0; d<dh[mi][i]; d++){
           if (bool==1) {            newm=savm;
            for(m=firstpass; m<=lastpass-1; m++){            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
              if(agev[m][i]==0) agev[m][i]=agemax+1;            for (kk=1; kk<=cptcovage;kk++) {
              if(agev[m][i]==1) agev[m][i]=agemax+2;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
              freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];            }
              freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
            }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
          }            savm=oldm;
        }            oldm=newm;
         if  (cptcovn>0) {          } /* end mult */
          fprintf(ficresp, "\n#Variable");        
          for (z1=1; z1<=cptcovn; z1++) fprintf(ficresp, " V%d=%d",Tvar[z1],nbcode[Tvar[z1]][codtab[j1][z1]]);          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
        }          /* But now since version 0.9 we anticipate for bias and large stepm.
        fprintf(ficresp, "\n#");           * If stepm is larger than one month (smallest stepm) and if the exact delay 
        for(i=1; i<=nlstate;i++)           * (in months) between two waves is not a multiple of stepm, we rounded to 
          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);           * the nearest (and in case of equal distance, to the lowest) interval but now
        fprintf(ficresp, "\n");           * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
   for(i=(int)agemin; i <= (int)agemax+3; i++){           * probability in order to take into account the bias as a fraction of the way
     if(i==(int)agemax+3)           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       printf("Total");           * -stepm/2 to stepm/2 .
     else           * For stepm=1 the results are the same as for previous versions of Imach.
       printf("Age %d", i);           * For stepm > 1 the results are less biased than in previous versions. 
     for(jk=1; jk <=nlstate ; jk++){           */
       for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)          s1=s[mw[mi][i]][i];
         pp[jk] += freq[jk][m][i];          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
     for(jk=1; jk <=nlstate ; jk++){          /* bias is positive if real duration
       for(m=-1, pos=0; m <=0 ; m++)           * is higher than the multiple of stepm and negative otherwise.
         pos += freq[jk][m][i];           */
       if(pp[jk]>=1.e-10)          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
         printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);          if( s2 > nlstate){ 
       else            /* i.e. if s2 is a death state and if the date of death is known then the contribution
         printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);               to the likelihood is the probability to die between last step unit time and current 
     }               step unit time, which is also the differences between probability to die before dh 
     for(jk=1; jk <=nlstate ; jk++){               and probability to die before dh-stepm . 
       for(m=1, pp[jk]=0; m <=nlstate+ndeath; m++)               In version up to 0.92 likelihood was computed
         pp[jk] += freq[jk][m][i];          as if date of death was unknown. Death was treated as any other
     }          health state: the date of the interview describes the actual state
     for(jk=1,pos=0; jk <=nlstate ; jk++)          and not the date of a change in health state. The former idea was
       pos += pp[jk];          to consider that at each interview the state was recorded
     for(jk=1; jk <=nlstate ; jk++){          (healthy, disable or death) and IMaCh was corrected; but when we
       if(pos>=1.e-5)          introduced the exact date of death then we should have modified
         printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);          the contribution of an exact death to the likelihood. This new
       else          contribution is smaller and very dependent of the step unit
         printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);          stepm. It is no more the probability to die between last interview
       if( i <= (int) agemax){          and month of death but the probability to survive from last
         if(pos>=1.e-5)          interview up to one month before death multiplied by the
           fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);          probability to die within a month. Thanks to Chris
       else          Jackson for correcting this bug.  Former versions increased
           fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);          mortality artificially. The bad side is that we add another loop
       }          which slows down the processing. The difference can be up to 10%
     }          lower mortality.
     for(jk=-1; jk <=nlstate+ndeath; jk++)            */
       for(m=-1; m <=nlstate+ndeath; m++)            lli=log(out[s1][s2] - savm[s1][s2]);
         if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);          }else{
     if(i <= (int) agemax)            lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
       fprintf(ficresp,"\n");            /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
     printf("\n");          } 
     }          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
     }          /*if(lli ==000.0)*/
  }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
            ipmx +=1;
   fclose(ficresp);          sw += weight[i];
   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   free_vector(pp,1,nlstate);        } /* end of wave */
       } /* end of individual */
 }  /* End of Freq */    }  else if(mle==2){
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /************* Waves Concatenation ***************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void  concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
      Death is a valid wave (if date is known).              savm[ii][j]=(ii==j ? 1.0 : 0.0);
      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i            }
      dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]          for(d=0; d<=dh[mi][i]; d++){
      and mw[mi+1][i]. dh depends on stepm.            newm=savm;
      */            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
             for (kk=1; kk<=cptcovage;kk++) {
   int i, mi, m;              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;            }
 float sum=0.;            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   for(i=1; i<=imx; i++){            savm=oldm;
     mi=0;            oldm=newm;
     m=firstpass;          } /* end mult */
     while(s[m][i] <= nlstate){        
       if(s[m][i]>=1)          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
         mw[++mi][i]=m;          /* But now since version 0.9 we anticipate for bias and large stepm.
       if(m >=lastpass)           * If stepm is larger than one month (smallest stepm) and if the exact delay 
         break;           * (in months) between two waves is not a multiple of stepm, we rounded to 
       else           * the nearest (and in case of equal distance, to the lowest) interval but now
         m++;           * we keep into memory the bias bh[mi][i] and also the previous matrix product
     }/* end while */           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     if (s[m][i] > nlstate){           * probability in order to take into account the bias as a fraction of the way
       mi++;     /* Death is another wave */           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       /* if(mi==0)  never been interviewed correctly before death */           * -stepm/2 to stepm/2 .
          /* Only death is a correct wave */           * For stepm=1 the results are the same as for previous versions of Imach.
       mw[mi][i]=m;           * For stepm > 1 the results are less biased than in previous versions. 
     }           */
           s1=s[mw[mi][i]][i];
     wav[i]=mi;          s2=s[mw[mi+1][i]][i];
     if(mi==0)          bbh=(double)bh[mi][i]/(double)stepm; 
       printf("Warning, no any valid information for:%d line=%d\n",num[i],i);          /* bias is positive if real duration
   }           * is higher than the multiple of stepm and negative otherwise.
            */
   for(i=1; i<=imx; i++){          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
     for(mi=1; mi<wav[i];mi++){          /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
       if (stepm <=0)          /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
         dh[mi][i]=1;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
       else{          /*if(lli ==000.0)*/
         if (s[mw[mi+1][i]][i] > nlstate) {          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
           j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);          ipmx +=1;
           if(j=0) j=1;  /* Survives at least one month after exam */          sw += weight[i];
         }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
         else{        } /* end of wave */
           j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));      } /* end of individual */
           k=k+1;    }  else if(mle==3){  /* exponential inter-extrapolation */
           if (j >= jmax) jmax=j;      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           else if (j <= jmin)jmin=j;        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
           sum=sum+j;        for(mi=1; mi<= wav[i]-1; mi++){
         }          for (ii=1;ii<=nlstate+ndeath;ii++)
         jk= j/stepm;            for (j=1;j<=nlstate+ndeath;j++){
         jl= j -jk*stepm;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
         ju= j -(jk+1)*stepm;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
         if(jl <= -ju)            }
           dh[mi][i]=jk;          for(d=0; d<dh[mi][i]; d++){
         else            newm=savm;
           dh[mi][i]=jk+1;            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         if(dh[mi][i]==0)            for (kk=1; kk<=cptcovage;kk++) {
           dh[mi][i]=1; /* At least one step */              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       }            }
     }            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
   }                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,sum/k);            savm=oldm;
 }            oldm=newm;
 /*********** Tricode ****************************/          } /* end mult */
 void tricode(int *Tvar, int **nbcode, int imx)        
 {          /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
   int Ndum[80],ij, k, j, i;          /* But now since version 0.9 we anticipate for bias and large stepm.
   int cptcode=0;           * If stepm is larger than one month (smallest stepm) and if the exact delay 
   for (k=0; k<79; k++) Ndum[k]=0;           * (in months) between two waves is not a multiple of stepm, we rounded to 
   for (k=1; k<=7; k++) ncodemax[k]=0;           * the nearest (and in case of equal distance, to the lowest) interval but now
             * we keep into memory the bias bh[mi][i] and also the previous matrix product
   for (j=1; j<=cptcovn; j++) {           * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
     for (i=1; i<=imx; i++) {           * probability in order to take into account the bias as a fraction of the way
       ij=(int)(covar[Tvar[j]][i]);           * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
       Ndum[ij]++;           * -stepm/2 to stepm/2 .
       if (ij > cptcode) cptcode=ij;           * For stepm=1 the results are the same as for previous versions of Imach.
     }           * For stepm > 1 the results are less biased than in previous versions. 
     /*printf("cptcode=%d cptcovn=%d ",cptcode,cptcovn);*/           */
     for (i=0; i<=cptcode; i++) {          s1=s[mw[mi][i]][i];
       if(Ndum[i]!=0) ncodemax[j]++;          s2=s[mw[mi+1][i]][i];
     }          bbh=(double)bh[mi][i]/(double)stepm; 
            /* bias is positive if real duration
     ij=1;           * is higher than the multiple of stepm and negative otherwise.
     for (i=1; i<=ncodemax[j]; i++) {           */
       for (k=0; k<=79; k++) {          /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
         if (Ndum[k] != 0) {          lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
           nbcode[Tvar[j]][ij]=k;          /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
           ij++;          /*if(lli ==000.0)*/
         }          /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
         if (ij > ncodemax[j]) break;          ipmx +=1;
       }            sw += weight[i];
     }          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   }          } /* end of wave */
       } /* end of individual */
   }    }else if (mle==4){  /* ml=4 no inter-extrapolation */
       for (i=1,ipmx=0, sw=0.; i<=imx; i++){
 /*********** Health Expectancies ****************/        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         for(mi=1; mi<= wav[i]-1; mi++){
 void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)          for (ii=1;ii<=nlstate+ndeath;ii++)
 {            for (j=1;j<=nlstate+ndeath;j++){
   /* Health expectancies */              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
   int i, j, nhstepm, hstepm, h;              savm[ii][j]=(ii==j ? 1.0 : 0.0);
   double age, agelim,hf;            }
   double ***p3mat;          for(d=0; d<dh[mi][i]; d++){
              newm=savm;
   fprintf(ficreseij,"# Health expectancies\n");            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
   fprintf(ficreseij,"# Age");            for (kk=1; kk<=cptcovage;kk++) {
   for(i=1; i<=nlstate;i++)              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
     for(j=1; j<=nlstate;j++)            }
       fprintf(ficreseij," %1d-%1d",i,j);          
   fprintf(ficreseij,"\n");            out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                          1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
   hstepm=1*YEARM; /*  Every j years of age (in month) */            savm=oldm;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */            oldm=newm;
           } /* end mult */
   agelim=AGESUP;        
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */          s1=s[mw[mi][i]][i];
     /* nhstepm age range expressed in number of stepm */          s2=s[mw[mi+1][i]][i];
     nhstepm=(int) rint((agelim-age)*YEARM/stepm);          if( s2 > nlstate){ 
     /* Typically if 20 years = 20*12/6=40 stepm */            lli=log(out[s1][s2] - savm[s1][s2]);
     if (stepm >= YEARM) hstepm=1;          }else{
     nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */            lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);          }
     /* Computed by stepm unit matrices, product of hstepm matrices, stored          ipmx +=1;
        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */          sw += weight[i];
     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);            ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   /*      printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
         } /* end of wave */
     for(i=1; i<=nlstate;i++)      } /* end of individual */
       for(j=1; j<=nlstate;j++)    }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
         for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){      for (i=1,ipmx=0, sw=0.; i<=imx; i++){
           eij[i][j][(int)age] +=p3mat[i][j][h];        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
         }        for(mi=1; mi<= wav[i]-1; mi++){
              for (ii=1;ii<=nlstate+ndeath;ii++)
     hf=1;            for (j=1;j<=nlstate+ndeath;j++){
     if (stepm >= YEARM) hf=stepm/YEARM;              oldm[ii][j]=(ii==j ? 1.0 : 0.0);
     fprintf(ficreseij,"%.0f",age );              savm[ii][j]=(ii==j ? 1.0 : 0.0);
     for(i=1; i<=nlstate;i++)            }
       for(j=1; j<=nlstate;j++){          for(d=0; d<dh[mi][i]; d++){
         fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);            newm=savm;
       }            cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
     fprintf(ficreseij,"\n");            for (kk=1; kk<=cptcovage;kk++) {
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
   }            }
 }          
             out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
 /************ Variance ******************/                         1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
 void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)            savm=oldm;
 {            oldm=newm;
   /* Variance of health expectancies */          } /* end mult */
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/        
   double **newm;          s1=s[mw[mi][i]][i];
   double **dnewm,**doldm;          s2=s[mw[mi+1][i]][i];
   int i, j, nhstepm, hstepm, h;          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
   int k, cptcode;          ipmx +=1;
    double *xp;          sw += weight[i];
   double **gp, **gm;          ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
   double ***gradg, ***trgradg;          /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
   double ***p3mat;        } /* end of wave */
   double age,agelim;      } /* end of individual */
   int theta;    } /* End of if */
     for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
    fprintf(ficresvij,"# Covariances of life expectancies\n");    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   fprintf(ficresvij,"# Age");    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
   for(i=1; i<=nlstate;i++)    return -l;
     for(j=1; j<=nlstate;j++)  }
       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);  
   fprintf(ficresvij,"\n");  /*************** log-likelihood *************/
   double funcone( double *x)
   xp=vector(1,npar);  {
   dnewm=matrix(1,nlstate,1,npar);    /* Same as likeli but slower because of a lot of printf and if */
   doldm=matrix(1,nlstate,1,nlstate);    int i, ii, j, k, mi, d, kk;
      double l, ll[NLSTATEMAX], cov[NCOVMAX];
   hstepm=1*YEARM; /* Every year of age */    double **out;
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    double lli; /* Individual log likelihood */
   agelim = AGESUP;    double llt;
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */    int s1, s2;
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */    double bbh, survp;
     if (stepm >= YEARM) hstepm=1;    /*extern weight */
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* We are differentiating ll according to initial status */
     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);    /*for(i=1;i<imx;i++) 
     gp=matrix(0,nhstepm,1,nlstate);      printf(" %d\n",s[4][i]);
     gm=matrix(0,nhstepm,1,nlstate);    */
     cov[1]=1.;
     for(theta=1; theta <=npar; theta++){  
       for(i=1; i<=npar; i++){ /* Computes gradient */    for(k=1; k<=nlstate; k++) ll[k]=0.;
         xp[i] = x[i] + (i==theta ?delti[theta]:0);  
       }    for (i=1,ipmx=0, sw=0.; i<=imx; i++){
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);        for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      for(mi=1; mi<= wav[i]-1; mi++){
       for(j=1; j<= nlstate; j++){        for (ii=1;ii<=nlstate+ndeath;ii++)
         for(h=0; h<=nhstepm; h++){          for (j=1;j<=nlstate+ndeath;j++){
           for(i=1, gp[h][j]=0.;i<=nlstate;i++)            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
             gp[h][j] += prlim[i][i]*p3mat[i][j][h];            savm[ii][j]=(ii==j ? 1.0 : 0.0);
         }          }
       }        for(d=0; d<dh[mi][i]; d++){
              newm=savm;
       for(i=1; i<=npar; i++) /* Computes gradient */          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
         xp[i] = x[i] - (i==theta ?delti[theta]:0);          for (kk=1; kk<=cptcovage;kk++) {
       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);              cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);          }
       for(j=1; j<= nlstate; j++){          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
         for(h=0; h<=nhstepm; h++){                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
           for(i=1, gm[h][j]=0.;i<=nlstate;i++)          savm=oldm;
             gm[h][j] += prlim[i][i]*p3mat[i][j][h];          oldm=newm;
         }        } /* end mult */
       }        
       for(j=1; j<= nlstate; j++)        s1=s[mw[mi][i]][i];
         for(h=0; h<=nhstepm; h++){        s2=s[mw[mi+1][i]][i];
           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];        bbh=(double)bh[mi][i]/(double)stepm; 
         }        /* bias is positive if real duration
     } /* End theta */         * is higher than the multiple of stepm and negative otherwise.
          */
     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);        if( s2 > nlstate && (mle <5) ){  /* Jackson */
           lli=log(out[s1][s2] - savm[s1][s2]);
     for(h=0; h<=nhstepm; h++)        } else if (mle==1){
       for(j=1; j<=nlstate;j++)          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
         for(theta=1; theta <=npar; theta++)        } else if(mle==2){
           trgradg[h][j][theta]=gradg[h][theta][j];          lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
         } else if(mle==3){  /* exponential inter-extrapolation */
     for(i=1;i<=nlstate;i++)          lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
       for(j=1;j<=nlstate;j++)        } else if (mle==4){  /* mle=4 no inter-extrapolation */
         vareij[i][j][(int)age] =0.;          lli=log(out[s1][s2]); /* Original formula */
     for(h=0;h<=nhstepm;h++){        } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
       for(k=0;k<=nhstepm;k++){          lli=log(out[s1][s2]); /* Original formula */
         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);        } /* End of if */
         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);        ipmx +=1;
         for(i=1;i<=nlstate;i++)        sw += weight[i];
           for(j=1;j<=nlstate;j++)        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
             vareij[i][j][(int)age] += doldm[i][j];  /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
       }        if(globpr){
     }          fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
     h=1;   %10.6f %10.6f %10.6f ", \
     if (stepm >= YEARM) h=stepm/YEARM;                  num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
     fprintf(ficresvij,"%.0f ",age );                  2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
     for(i=1; i<=nlstate;i++)          for(k=1,llt=0.,l=0.; k<=nlstate; k++){
       for(j=1; j<=nlstate;j++){            llt +=ll[k]*gipmx/gsw;
         fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);            fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
       }          }
     fprintf(ficresvij,"\n");          fprintf(ficresilk," %10.6f\n", -llt);
     free_matrix(gp,0,nhstepm,1,nlstate);        }
     free_matrix(gm,0,nhstepm,1,nlstate);      } /* end of wave */
     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);    } /* end of individual */
     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);    for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);    /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
   } /* End age */    l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
      if(globpr==0){ /* First time we count the contributions and weights */
   free_vector(xp,1,npar);      gipmx=ipmx;
   free_matrix(doldm,1,nlstate,1,npar);      gsw=sw;
   free_matrix(dnewm,1,nlstate,1,nlstate);    }
     return -l;
 }  }
   
 /************ Variance of prevlim ******************/  char *subdirf(char fileres[])
 void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)  {
 {    /* Caution optionfilefiname is hidden */
   /* Variance of prevalence limit */    strcpy(tmpout,optionfilefiname);
   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/    strcat(tmpout,"/"); /* Add to the right */
   double **newm;    strcat(tmpout,fileres);
   double **dnewm,**doldm;    return tmpout;
   int i, j, nhstepm, hstepm;  }
   int k, cptcode;  
   double *xp;  char *subdirf2(char fileres[], char *preop)
   double *gp, *gm;  {
   double **gradg, **trgradg;    
   double age,agelim;    strcpy(tmpout,optionfilefiname);
   int theta;    strcat(tmpout,"/");
        strcat(tmpout,preop);
   fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");    strcat(tmpout,fileres);
   fprintf(ficresvpl,"# Age");    return tmpout;
   for(i=1; i<=nlstate;i++)  }
       fprintf(ficresvpl," %1d-%1d",i,i);  char *subdirf3(char fileres[], char *preop, char *preop2)
   fprintf(ficresvpl,"\n");  {
     
   xp=vector(1,npar);    strcpy(tmpout,optionfilefiname);
   dnewm=matrix(1,nlstate,1,npar);    strcat(tmpout,"/");
   doldm=matrix(1,nlstate,1,nlstate);    strcat(tmpout,preop);
      strcat(tmpout,preop2);
   hstepm=1*YEARM; /* Every year of age */    strcat(tmpout,fileres);
   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */    return tmpout;
   agelim = AGESUP;  }
   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */  
     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */  void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
     if (stepm >= YEARM) hstepm=1;  {
     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */    /* This routine should help understanding what is done with 
     gradg=matrix(1,npar,1,nlstate);       the selection of individuals/waves and
     gp=vector(1,nlstate);       to check the exact contribution to the likelihood.
     gm=vector(1,nlstate);       Plotting could be done.
      */
     for(theta=1; theta <=npar; theta++){    int k;
       for(i=1; i<=npar; i++){ /* Computes gradient */  
         xp[i] = x[i] + (i==theta ?delti[theta]:0);    if(*globpri !=0){ /* Just counts and sums, no printings */
       }      strcpy(fileresilk,"ilk"); 
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      strcat(fileresilk,fileres);
       for(i=1;i<=nlstate;i++)      if((ficresilk=fopen(fileresilk,"w"))==NULL) {
         gp[i] = prlim[i][i];        printf("Problem with resultfile: %s\n", fileresilk);
            fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
       for(i=1; i<=npar; i++) /* Computes gradient */      }
         xp[i] = x[i] - (i==theta ?delti[theta]:0);      fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);      fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
       for(i=1;i<=nlstate;i++)      /*  i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
         gm[i] = prlim[i][i];      for(k=1; k<=nlstate; k++) 
         fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
       for(i=1;i<=nlstate;i++)      fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
         gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];    }
     } /* End theta */  
     *fretone=(*funcone)(p);
     trgradg =matrix(1,nlstate,1,npar);    if(*globpri !=0){
       fclose(ficresilk);
     for(j=1; j<=nlstate;j++)      fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
       for(theta=1; theta <=npar; theta++)      fflush(fichtm); 
         trgradg[j][theta]=gradg[theta][j];    } 
     return;
     for(i=1;i<=nlstate;i++)  }
       varpl[i][(int)age] =0.;  
     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);  
     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);  /*********** Maximum Likelihood Estimation ***************/
     for(i=1;i<=nlstate;i++)  
       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */  void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
   {
     fprintf(ficresvpl,"%.0f ",age );    int i,j, iter;
     for(i=1; i<=nlstate;i++)    double **xi;
       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));    double fret;
     fprintf(ficresvpl,"\n");    double fretone; /* Only one call to likelihood */
     free_vector(gp,1,nlstate);    char filerespow[FILENAMELENGTH];
     free_vector(gm,1,nlstate);    xi=matrix(1,npar,1,npar);
     free_matrix(gradg,1,npar,1,nlstate);    for (i=1;i<=npar;i++)
     free_matrix(trgradg,1,nlstate,1,npar);      for (j=1;j<=npar;j++)
   } /* End age */        xi[i][j]=(i==j ? 1.0 : 0.0);
     printf("Powell\n");  fprintf(ficlog,"Powell\n");
   free_vector(xp,1,npar);    strcpy(filerespow,"pow"); 
   free_matrix(doldm,1,nlstate,1,npar);    strcat(filerespow,fileres);
   free_matrix(dnewm,1,nlstate,1,nlstate);    if((ficrespow=fopen(filerespow,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", filerespow);
 }      fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
     }
     fprintf(ficrespow,"# Powell\n# iter -2*LL");
     for (i=1;i<=nlstate;i++)
 /***********************************************/      for(j=1;j<=nlstate+ndeath;j++)
 /**************** Main Program *****************/        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
 /***********************************************/    fprintf(ficrespow,"\n");
   
 /*int main(int argc, char *argv[])*/    powell(p,xi,npar,ftol,&iter,&fret,func);
 int main()  
 {    fclose(ficrespow);
     printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
   int i,j, k, n=MAXN,iter,m,size,cptcode, aaa, cptcod;    fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double agedeb, agefin,hf;    fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
   double agemin=1.e20, agemax=-1.e20;  
   }
   double fret;  
   double **xi,tmp,delta;  /**** Computes Hessian and covariance matrix ***/
   void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
   double dum; /* Dummy variable */  {
   double ***p3mat;    double  **a,**y,*x,pd;
   int *indx;    double **hess;
   char line[MAXLINE], linepar[MAXLINE];    int i, j,jk;
   char title[MAXLINE];    int *indx;
   char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];  
   char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH];    double hessii(double p[], double delta, int theta, double delti[]);
   char filerest[FILENAMELENGTH];    double hessij(double p[], double delti[], int i, int j);
   char fileregp[FILENAMELENGTH];    void lubksb(double **a, int npar, int *indx, double b[]) ;
   char path[80],pathc[80],pathcd[80],pathtot[80],model[20];    void ludcmp(double **a, int npar, int *indx, double *d) ;
   int firstobs=1, lastobs=10;  
   int sdeb, sfin; /* Status at beginning and end */    hess=matrix(1,npar,1,npar);
   int c,  h , cpt,l;  
   int ju,jl, mi;    printf("\nCalculation of the hessian matrix. Wait...\n");
   int i1,j1, k1,jk,aa,bb, stepsize;    fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;    for (i=1;i<=npar;i++){
        printf("%d",i);fflush(stdout);
   int hstepm, nhstepm;      fprintf(ficlog,"%d",i);fflush(ficlog);
   double bage, fage, age, agelim, agebase;      hess[i][i]=hessii(p,ftolhess,i,delti);
   double ftolpl=FTOL;      /*printf(" %f ",p[i]);*/
   double **prlim;      /*printf(" %lf ",hess[i][i]);*/
   double *severity;    }
   double ***param; /* Matrix of parameters */    
   double  *p;    for (i=1;i<=npar;i++) {
   double **matcov; /* Matrix of covariance */      for (j=1;j<=npar;j++)  {
   double ***delti3; /* Scale */        if (j>i) { 
   double *delti; /* Scale */          printf(".%d%d",i,j);fflush(stdout);
   double ***eij, ***vareij;          fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
   double **varpl; /* Variances of prevalence limits by age */          hess[i][j]=hessij(p,delti,i,j);
   double *epj, vepp;          hess[j][i]=hess[i][j];    
   char version[80]="Imach version 0.64, May 2000, INED-EUROREVES ";          /*printf(" %lf ",hess[i][j]);*/
   char *alph[]={"a","a","b","c","d","e"}, str[4];        }
   char z[1]="c", occ;      }
 #include <sys/time.h>    }
 #include <time.h>    printf("\n");
   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];    fprintf(ficlog,"\n");
   /* long total_usecs;  
   struct timeval start_time, end_time;    printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
      fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */    
     a=matrix(1,npar,1,npar);
     y=matrix(1,npar,1,npar);
   printf("\nIMACH, Version 0.64a");    x=vector(1,npar);
   printf("\nEnter the parameter file name: ");    indx=ivector(1,npar);
     for (i=1;i<=npar;i++)
 #ifdef windows      for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
   scanf("%s",pathtot);    ludcmp(a,npar,indx,&pd);
   cygwin_split_path(pathtot,path,optionfile);  
      printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);    for (j=1;j<=npar;j++) {
      chdir(path);      for (i=1;i<=npar;i++) x[i]=0;
        x[j]=1;
   /*size=30;      lubksb(a,npar,indx,x);
   getcwd(pathcd, size);        for (i=1;i<=npar;i++){ 
   printf("pathcd=%s, path=%s, optionfile=%s\n",pathcd,path,optionfile);        matcov[i][j]=x[i];
   cutv(path,optionfile,pathtot,'\\');      }
   chdir(path);    }
   replace(pathc,path);  
   printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);    printf("\n#Hessian matrix#\n");
   */    fprintf(ficlog,"\n#Hessian matrix#\n");
 #endif    for (i=1;i<=npar;i++) { 
 #ifdef unix      for (j=1;j<=npar;j++) { 
   scanf("%s",optionfile);        printf("%.3e ",hess[i][j]);
 #endif        fprintf(ficlog,"%.3e ",hess[i][j]);
       }
 /*-------- arguments in the command line --------*/      printf("\n");
       fprintf(ficlog,"\n");
   strcpy(fileres,"r");    }
   strcat(fileres, optionfile);  
     /* Recompute Inverse */
   /*---------arguments file --------*/    for (i=1;i<=npar;i++)
       for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
   if((ficpar=fopen(optionfile,"r"))==NULL)    {    ludcmp(a,npar,indx,&pd);
     printf("Problem with optionfile %s\n",optionfile);  
     goto end;    /*  printf("\n#Hessian matrix recomputed#\n");
   }  
     for (j=1;j<=npar;j++) {
   strcpy(filereso,"o");      for (i=1;i<=npar;i++) x[i]=0;
   strcat(filereso,fileres);      x[j]=1;
   if((ficparo=fopen(filereso,"w"))==NULL) {      lubksb(a,npar,indx,x);
     printf("Problem with Output resultfile: %s\n", filereso);goto end;      for (i=1;i<=npar;i++){ 
   }        y[i][j]=x[i];
         printf("%.3e ",y[i][j]);
   /* Reads comments: lines beginning with '#' */        fprintf(ficlog,"%.3e ",y[i][j]);
   while((c=getc(ficpar))=='#' && c!= EOF){      }
     ungetc(c,ficpar);      printf("\n");
     fgets(line, MAXLINE, ficpar);      fprintf(ficlog,"\n");
     puts(line);    }
     fputs(line,ficparo);    */
   }  
   ungetc(c,ficpar);    free_matrix(a,1,npar,1,npar);
     free_matrix(y,1,npar,1,npar);
   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);    free_vector(x,1,npar);
   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);    free_ivector(indx,1,npar);
   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);    free_matrix(hess,1,npar,1,npar);
   
   covar=matrix(1,NCOVMAX,1,n);      
   if (strlen(model)<=1) cptcovn=0;  }
   else {  
     j=0;  /*************** hessian matrix ****************/
     j=nbocc(model,'+');  double hessii( double x[], double delta, int theta, double delti[])
     cptcovn=j+1;  {
   }    int i;
     int l=1, lmax=20;
   ncovmodel=2+cptcovn;    double k1,k2;
   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */    double p2[NPARMAX+1];
      double res;
   /* Read guess parameters */    double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
   /* Reads comments: lines beginning with '#' */    double fx;
   while((c=getc(ficpar))=='#' && c!= EOF){    int k=0,kmax=10;
     ungetc(c,ficpar);    double l1;
     fgets(line, MAXLINE, ficpar);  
     puts(line);    fx=func(x);
     fputs(line,ficparo);    for (i=1;i<=npar;i++) p2[i]=x[i];
   }    for(l=0 ; l <=lmax; l++){
   ungetc(c,ficpar);      l1=pow(10,l);
        delts=delt;
   param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);      for(k=1 ; k <kmax; k=k+1){
     for(i=1; i <=nlstate; i++)        delt = delta*(l1*k);
     for(j=1; j <=nlstate+ndeath-1; j++){        p2[theta]=x[theta] +delt;
       fscanf(ficpar,"%1d%1d",&i1,&j1);        k1=func(p2)-fx;
       fprintf(ficparo,"%1d%1d",i1,j1);        p2[theta]=x[theta]-delt;
       printf("%1d%1d",i,j);        k2=func(p2)-fx;
       for(k=1; k<=ncovmodel;k++){        /*res= (k1-2.0*fx+k2)/delt/delt; */
         fscanf(ficpar," %lf",&param[i][j][k]);        res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
         printf(" %lf",param[i][j][k]);        
         fprintf(ficparo," %lf",param[i][j][k]);  #ifdef DEBUG
       }        printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       fscanf(ficpar,"\n");        fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
       printf("\n");  #endif
       fprintf(ficparo,"\n");        /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
     }        if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
            k=kmax;
   npar= (nlstate+ndeath-1)*nlstate*ncovmodel;        }
   p=param[1][1];        else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
            k=kmax; l=lmax*10.;
   /* Reads comments: lines beginning with '#' */        }
   while((c=getc(ficpar))=='#' && c!= EOF){        else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
     ungetc(c,ficpar);          delts=delt;
     fgets(line, MAXLINE, ficpar);        }
     puts(line);      }
     fputs(line,ficparo);    }
   }    delti[theta]=delts;
   ungetc(c,ficpar);    return res; 
     
   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);  }
   delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */  
   for(i=1; i <=nlstate; i++){  double hessij( double x[], double delti[], int thetai,int thetaj)
     for(j=1; j <=nlstate+ndeath-1; j++){  {
       fscanf(ficpar,"%1d%1d",&i1,&j1);    int i;
       printf("%1d%1d",i,j);    int l=1, l1, lmax=20;
       fprintf(ficparo,"%1d%1d",i1,j1);    double k1,k2,k3,k4,res,fx;
       for(k=1; k<=ncovmodel;k++){    double p2[NPARMAX+1];
         fscanf(ficpar,"%le",&delti3[i][j][k]);    int k;
         printf(" %le",delti3[i][j][k]);  
         fprintf(ficparo," %le",delti3[i][j][k]);    fx=func(x);
       }    for (k=1; k<=2; k++) {
       fscanf(ficpar,"\n");      for (i=1;i<=npar;i++) p2[i]=x[i];
       printf("\n");      p2[thetai]=x[thetai]+delti[thetai]/k;
       fprintf(ficparo,"\n");      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     }      k1=func(p2)-fx;
   }    
   delti=delti3[1][1];      p2[thetai]=x[thetai]+delti[thetai]/k;
        p2[thetaj]=x[thetaj]-delti[thetaj]/k;
   /* Reads comments: lines beginning with '#' */      k2=func(p2)-fx;
   while((c=getc(ficpar))=='#' && c!= EOF){    
     ungetc(c,ficpar);      p2[thetai]=x[thetai]-delti[thetai]/k;
     fgets(line, MAXLINE, ficpar);      p2[thetaj]=x[thetaj]+delti[thetaj]/k;
     puts(line);      k3=func(p2)-fx;
     fputs(line,ficparo);    
   }      p2[thetai]=x[thetai]-delti[thetai]/k;
   ungetc(c,ficpar);      p2[thetaj]=x[thetaj]-delti[thetaj]/k;
        k4=func(p2)-fx;
   matcov=matrix(1,npar,1,npar);      res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
   for(i=1; i <=npar; i++){  #ifdef DEBUG
     fscanf(ficpar,"%s",&str);      printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     printf("%s",str);      fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
     fprintf(ficparo,"%s",str);  #endif
     for(j=1; j <=i; j++){    }
       fscanf(ficpar," %le",&matcov[i][j]);    return res;
       printf(" %.5le",matcov[i][j]);  }
       fprintf(ficparo," %.5le",matcov[i][j]);  
     }  /************** Inverse of matrix **************/
     fscanf(ficpar,"\n");  void ludcmp(double **a, int n, int *indx, double *d) 
     printf("\n");  { 
     fprintf(ficparo,"\n");    int i,imax,j,k; 
   }    double big,dum,sum,temp; 
   for(i=1; i <=npar; i++)    double *vv; 
     for(j=i+1;j<=npar;j++)   
       matcov[i][j]=matcov[j][i];    vv=vector(1,n); 
        *d=1.0; 
   printf("\n");    for (i=1;i<=n;i++) { 
       big=0.0; 
       for (j=1;j<=n;j++) 
    if(mle==1){        if ((temp=fabs(a[i][j])) > big) big=temp; 
     /*-------- data file ----------*/      if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
     if((ficres =fopen(fileres,"w"))==NULL) {      vv[i]=1.0/big; 
       printf("Problem with resultfile: %s\n", fileres);goto end;    } 
     }    for (j=1;j<=n;j++) { 
     fprintf(ficres,"#%s\n",version);      for (i=1;i<j;i++) { 
            sum=a[i][j]; 
     if((fic=fopen(datafile,"r"))==NULL)    {        for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
       printf("Problem with datafile: %s\n", datafile);goto end;        a[i][j]=sum; 
     }      } 
       big=0.0; 
     n= lastobs;      for (i=j;i<=n;i++) { 
     severity = vector(1,maxwav);        sum=a[i][j]; 
     outcome=imatrix(1,maxwav+1,1,n);        for (k=1;k<j;k++) 
     num=ivector(1,n);          sum -= a[i][k]*a[k][j]; 
     moisnais=vector(1,n);        a[i][j]=sum; 
     annais=vector(1,n);        if ( (dum=vv[i]*fabs(sum)) >= big) { 
     moisdc=vector(1,n);          big=dum; 
     andc=vector(1,n);          imax=i; 
     agedc=vector(1,n);        } 
     cod=ivector(1,n);      } 
     weight=vector(1,n);      if (j != imax) { 
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */        for (k=1;k<=n;k++) { 
     mint=matrix(1,maxwav,1,n);          dum=a[imax][k]; 
     anint=matrix(1,maxwav,1,n);          a[imax][k]=a[j][k]; 
     s=imatrix(1,maxwav+1,1,n);          a[j][k]=dum; 
     adl=imatrix(1,maxwav+1,1,n);            } 
     tab=ivector(1,NCOVMAX);        *d = -(*d); 
     ncodemax=ivector(1,8);        vv[imax]=vv[j]; 
       } 
     i=1;      indx[j]=imax; 
     while (fgets(line, MAXLINE, fic) != NULL)    {      if (a[j][j] == 0.0) a[j][j]=TINY; 
       if ((i >= firstobs) && (i <=lastobs)) {      if (j != n) { 
                dum=1.0/(a[j][j]); 
         for (j=maxwav;j>=1;j--){        for (i=j+1;i<=n;i++) a[i][j] *= dum; 
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb);      } 
           strcpy(line,stra);    } 
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);    free_vector(vv,1,n);  /* Doesn't work */
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);  ;
         }  } 
          
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);  void lubksb(double **a, int n, int *indx, double b[]) 
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);  { 
     int i,ii=0,ip,j; 
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);    double sum; 
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);   
     for (i=1;i<=n;i++) { 
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);      ip=indx[i]; 
         for (j=ncov;j>=1;j--){      sum=b[ip]; 
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);      b[ip]=b[i]; 
         }      if (ii) 
         num[i]=atol(stra);        for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
       else if (sum) ii=i; 
         /*printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]),  (mint[5][i]), (anint[5][i]), (s[5][i]),  (mint[6][i]), (anint[6][i]), (s[6][i]));*/      b[i]=sum; 
     } 
         i=i+1;    for (i=n;i>=1;i--) { 
       }      sum=b[i]; 
     }      for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
       b[i]=sum/a[i][i]; 
     /*scanf("%d",i);*/    } 
   imx=i-1; /* Number of individuals */  } 
   
   /* Calculation of the number of parameter from char model*/  /************ Frequencies ********************/
   Tvar=ivector(1,8);      void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
      {  /* Some frequencies */
   if (strlen(model) >1){    
     j=0;    int i, m, jk, k1,i1, j1, bool, z1,z2,j;
     j=nbocc(model,'+');    int first;
     cptcovn=j+1;    double ***freq; /* Frequencies */
        double *pp, **prop;
     strcpy(modelsav,model);    double pos,posprop, k2, dateintsum=0,k2cpt=0;
     if (j==0) {    FILE *ficresp;
       cutv(stra,strb,modelsav,'V'); Tvar[1]=atoi(strb);    char fileresp[FILENAMELENGTH];
     }    
     else {    pp=vector(1,nlstate);
       for(i=j; i>=1;i--){    prop=matrix(1,nlstate,iagemin,iagemax+3);
         cutv(stra,strb,modelsav,'+');    strcpy(fileresp,"p");
         if (strchr(strb,'*')) {    strcat(fileresp,fileres);
           cutv(strd,strc,strb,'*');    if((ficresp=fopen(fileresp,"w"))==NULL) {
           cutv(strb,stre,strc,'V');Tvar[i+1]=ncov+1;      printf("Problem with prevalence resultfile: %s\n", fileresp);
           cutv(strb,strc,strd,'V');      fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
           for (k=1; k<=lastobs;k++)      exit(0);
             covar[ncov+1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];    }
         }    freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
         else {cutv(strd,strc,strb,'V');    j1=0;
         Tvar[i+1]=atoi(strc);    
         }    j=cptcoveff;
         strcpy(modelsav,stra);      if (cptcovn<1) {j=1;ncodemax[1]=1;}
       }  
       cutv(strd,strc,stra,'V');    first=1;
       Tvar[1]=atoi(strc);  
     }    for(k1=1; k1<=j;k1++){
   }      for(i1=1; i1<=ncodemax[k1];i1++){
   /*printf("tvar=%d ",Tvar[1]);        j1++;
   scanf("%d ",i);*/        /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
     fclose(fic);          scanf("%d", i);*/
         for (i=-1; i<=nlstate+ndeath; i++)  
     if (weightopt != 1) { /* Maximisation without weights*/          for (jk=-1; jk<=nlstate+ndeath; jk++)  
       for(i=1;i<=n;i++) weight[i]=1.0;            for(m=iagemin; m <= iagemax+3; m++)
     }              freq[i][jk][m]=0;
     /*-calculation of age at interview from date of interview and age at death -*/  
     agev=matrix(1,maxwav,1,imx);      for (i=1; i<=nlstate; i++)  
            for(m=iagemin; m <= iagemax+3; m++)
     for (i=1; i<=imx; i++)  {          prop[i][m]=0;
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);        
       for(m=1; (m<= maxwav); m++){        dateintsum=0;
         if(s[m][i] >0){        k2cpt=0;
           if (s[m][i] == nlstate+1) {        for (i=1; i<=imx; i++) {
             if(agedc[i]>0)          bool=1;
               if(moisdc[i]!=99 && andc[i]!=9999)          if  (cptcovn>0) {
               agev[m][i]=agedc[i];            for (z1=1; z1<=cptcoveff; z1++) 
             else{              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
               printf("Warning negative age at death: %d line:%d\n",num[i],i);                bool=0;
               agev[m][i]=-1;          }
             }          if (bool==1){
           }            for(m=firstpass; m<=lastpass; m++){
           else if(s[m][i] !=9){ /* Should no more exist */              k2=anint[m][i]+(mint[m][i]/12.);
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
             if(mint[m][i]==99 || anint[m][i]==9999)                if(agev[m][i]==0) agev[m][i]=iagemax+1;
               agev[m][i]=1;                if(agev[m][i]==1) agev[m][i]=iagemax+2;
             else if(agev[m][i] <agemin){                if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
               agemin=agev[m][i];                if (m<lastpass) {
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/                  freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
             }                  freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
             else if(agev[m][i] >agemax){                }
               agemax=agev[m][i];                
              /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/                if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
             }                  dateintsum=dateintsum+k2;
             /*agev[m][i]=anint[m][i]-annais[i];*/                  k2cpt++;
             /*   agev[m][i] = age[i]+2*m;*/                }
           }                /*}*/
           else { /* =9 */            }
             agev[m][i]=1;          }
             s[m][i]=-1;        }
           }         
         }        /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
         else /*= 0 Unknown */  
           agev[m][i]=1;        if  (cptcovn>0) {
       }          fprintf(ficresp, "\n#********** Variable "); 
              for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
     }          fprintf(ficresp, "**********\n#");
     for (i=1; i<=imx; i++)  {        }
       for(m=1; (m<= maxwav); m++){        for(i=1; i<=nlstate;i++) 
         if (s[m][i] > (nlstate+ndeath)) {          fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
           printf("Error: Wrong value in nlstate or ndeath\n");          fprintf(ficresp, "\n");
           goto end;        
         }        for(i=iagemin; i <= iagemax+3; i++){
       }          if(i==iagemax+3){
     }            fprintf(ficlog,"Total");
           }else{
 printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);            if(first==1){
               first=0;
     free_vector(severity,1,maxwav);              printf("See log file for details...\n");
     free_imatrix(outcome,1,maxwav+1,1,n);            }
     free_vector(moisnais,1,n);            fprintf(ficlog,"Age %d", i);
     free_vector(annais,1,n);          }
     free_matrix(mint,1,maxwav,1,n);          for(jk=1; jk <=nlstate ; jk++){
     free_matrix(anint,1,maxwav,1,n);            for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
     free_vector(moisdc,1,n);              pp[jk] += freq[jk][m][i]; 
     free_vector(andc,1,n);          }
           for(jk=1; jk <=nlstate ; jk++){
                for(m=-1, pos=0; m <=0 ; m++)
     wav=ivector(1,imx);              pos += freq[jk][m][i];
     dh=imatrix(1,lastpass-firstpass+1,1,imx);            if(pp[jk]>=1.e-10){
     mw=imatrix(1,lastpass-firstpass+1,1,imx);              if(first==1){
                  printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
     /* Concatenates waves */              }
       concatwav(wav, dh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);              fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
             }else{
               if(first==1)
 Tcode=ivector(1,100);                printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    nbcode=imatrix(1,nvar,1,8);                fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
    ncodemax[1]=1;            }
    if (cptcovn > 0) tricode(Tvar,nbcode,imx);          }
    
    codtab=imatrix(1,100,1,10);          for(jk=1; jk <=nlstate ; jk++){
    h=0;            for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
    m=pow(2,cptcovn);              pp[jk] += freq[jk][m][i];
            }       
    for(k=1;k<=cptcovn; k++){          for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
      for(i=1; i <=(m/pow(2,k));i++){            pos += pp[jk];
        for(j=1; j <= ncodemax[k]; j++){            posprop += prop[jk][i];
          for(cpt=1; cpt <=(m/pow(2,cptcovn+1-k)); cpt++){          }
            h++;          for(jk=1; jk <=nlstate ; jk++){
            if (h>m) h=1;codtab[h][k]=j;            if(pos>=1.e-5){
          }              if(first==1)
        }                printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
      }              fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
    }            }else{
               if(first==1)
    /*for(i=1; i <=m ;i++){                printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
      for(k=1; k <=cptcovn; k++){              fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
        printf("i=%d k=%d %d ",i,k,codtab[i][k]);            }
      }            if( i <= iagemax){
      printf("\n");              if(pos>=1.e-5){
    }*/                fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
    /*scanf("%d",i);*/                /*probs[i][jk][j1]= pp[jk]/pos;*/
                    /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
    /* Calculates basic frequencies. Computes observed prevalence at single age              }
        and prints on file fileres'p'. */              else
   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax);                fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
             }
           }
   /*scanf("%d ",i);*/          
           for(jk=-1; jk <=nlstate+ndeath; jk++)
             for(m=-1; m <=nlstate+ndeath; m++)
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if(freq[jk][m][i] !=0 ) {
     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */              if(first==1)
     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */                fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */              }
              if(i <= iagemax)
     /* For Powell, parameters are in a vector p[] starting at p[1]            fprintf(ficresp,"\n");
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */          if(first==1)
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */            printf("Others in log...\n");
              fprintf(ficlog,"\n");
     mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);        }
       }
        }
     /*--------- results files --------------*/    dateintmean=dateintsum/k2cpt; 
     fprintf(ficres,"\ntitle=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);   
        fclose(ficresp);
    jk=1;    free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
    fprintf(ficres,"# Parameters\n");    free_vector(pp,1,nlstate);
    printf("# Parameters\n");    free_matrix(prop,1,nlstate,iagemin, iagemax+3);
    for(i=1,jk=1; i <=nlstate; i++){    /* End of Freq */
      for(k=1; k <=(nlstate+ndeath); k++){  }
        if (k != i)  
          {  /************ Prevalence ********************/
            printf("%d%d ",i,k);  void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
            fprintf(ficres,"%1d%1d ",i,k);  {  
            for(j=1; j <=ncovmodel; j++){    /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
              printf("%f ",p[jk]);       in each health status at the date of interview (if between dateprev1 and dateprev2).
              fprintf(ficres,"%f ",p[jk]);       We still use firstpass and lastpass as another selection.
              jk++;    */
            }   
            printf("\n");    int i, m, jk, k1, i1, j1, bool, z1,z2,j;
            fprintf(ficres,"\n");    double ***freq; /* Frequencies */
          }    double *pp, **prop;
      }    double pos,posprop; 
    }    double  y2; /* in fractional years */
     int iagemin, iagemax;
     /* Computing hessian and covariance matrix */  
     ftolhess=ftol; /* Usually correct */    iagemin= (int) agemin;
     hesscov(matcov, p, npar, delti, ftolhess, func);    iagemax= (int) agemax;
     fprintf(ficres,"# Scales\n");    /*pp=vector(1,nlstate);*/
     printf("# Scales\n");    prop=matrix(1,nlstate,iagemin,iagemax+3); 
      for(i=1,jk=1; i <=nlstate; i++){    /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
       for(j=1; j <=nlstate+ndeath; j++){    j1=0;
         if (j!=i) {    
           fprintf(ficres,"%1d%1d",i,j);    j=cptcoveff;
           printf("%1d%1d",i,j);    if (cptcovn<1) {j=1;ncodemax[1]=1;}
           for(k=1; k<=ncovmodel;k++){    
             printf(" %.5e",delti[jk]);    for(k1=1; k1<=j;k1++){
             fprintf(ficres," %.5e",delti[jk]);      for(i1=1; i1<=ncodemax[k1];i1++){
             jk++;        j1++;
           }        
           printf("\n");        for (i=1; i<=nlstate; i++)  
           fprintf(ficres,"\n");          for(m=iagemin; m <= iagemax+3; m++)
         }            prop[i][m]=0.0;
       }       
       }        for (i=1; i<=imx; i++) { /* Each individual */
              bool=1;
     k=1;          if  (cptcovn>0) {
     fprintf(ficres,"# Covariance\n");            for (z1=1; z1<=cptcoveff; z1++) 
     printf("# Covariance\n");              if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
     for(i=1;i<=npar;i++){                bool=0;
       /*  if (k>nlstate) k=1;          } 
       i1=(i-1)/(ncovmodel*nlstate)+1;          if (bool==1) { 
       fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);            for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
       printf("%s%d%d",alph[k],i1,tab[i]);*/              y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
       fprintf(ficres,"%3d",i);              if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
       printf("%3d",i);                if(agev[m][i]==0) agev[m][i]=iagemax+1;
       for(j=1; j<=i;j++){                if(agev[m][i]==1) agev[m][i]=iagemax+2;
         fprintf(ficres," %.5e",matcov[i][j]);                if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
         printf(" %.5e",matcov[i][j]);                if (s[m][i]>0 && s[m][i]<=nlstate) { 
       }                  /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
       fprintf(ficres,"\n");                  prop[s[m][i]][(int)agev[m][i]] += weight[i];
       printf("\n");                  prop[s[m][i]][iagemax+3] += weight[i]; 
       k++;                } 
     }              }
                } /* end selection of waves */
     while((c=getc(ficpar))=='#' && c!= EOF){          }
       ungetc(c,ficpar);        }
       fgets(line, MAXLINE, ficpar);        for(i=iagemin; i <= iagemax+3; i++){  
       puts(line);          
       fputs(line,ficparo);          for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
     }            posprop += prop[jk][i]; 
     ungetc(c,ficpar);          } 
    
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);          for(jk=1; jk <=nlstate ; jk++){     
                if( i <=  iagemax){ 
     if (fage <= 2) {              if(posprop>=1.e-5){ 
       bage = agemin;                probs[i][jk][j1]= prop[jk][i]/posprop;
       fage = agemax;              } 
     }            } 
           }/* end jk */ 
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");        }/* end i */ 
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);      } /* end i1 */
 /*------------ gnuplot -------------*/    } /* end k1 */
 chdir(pathcd);    
   if((ficgp=fopen("graph.plt","w"))==NULL) {    /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
     printf("Problem with file graph.plt");goto end;    /*free_vector(pp,1,nlstate);*/
   }    free_matrix(prop,1,nlstate, iagemin,iagemax+3);
 #ifdef windows  }  /* End of prevalence */
   fprintf(ficgp,"cd \"%s\" \n",pathc);  
 #endif  /************* Waves Concatenation ***************/
 m=pow(2,cptcovn);  
    void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
  /* 1eme*/  {
   for (cpt=1; cpt<= nlstate ; cpt ++) {    /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
    for (k1=1; k1<= m ; k1 ++) {       Death is a valid wave (if date is known).
        mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
 #ifdef windows       dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
     fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);       and mw[mi+1][i]. dh depends on stepm.
 #endif       */
 #ifdef unix  
 fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);    int i, mi, m;
 #endif    /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
        double sum=0., jmean=0.;*/
 for (i=1; i<= nlstate ; i ++) {    int first;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    int j, k=0,jk, ju, jl;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    double sum=0.;
 }    first=0;
     fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);    jmin=1e+5;
     for (i=1; i<= nlstate ; i ++) {    jmax=-1;
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");    jmean=0.;
   else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=imx; i++){
 }      mi=0;
   fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);      m=firstpass;
      for (i=1; i<= nlstate ; i ++) {      while(s[m][i] <= nlstate){
   if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");        if(s[m][i]>=1)
   else fprintf(ficgp," \%%*lf (\%%*lf)");          mw[++mi][i]=m;
 }          if(m >=lastpass)
      fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));          break;
 #ifdef unix        else
 fprintf(ficgp,"\nset ter gif small size 400,300");          m++;
 #endif      }/* end while */
 fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);      if (s[m][i] > nlstate){
    }        mi++;     /* Death is another wave */
   }        /* if(mi==0)  never been interviewed correctly before death */
   /*2 eme*/           /* Only death is a correct wave */
         mw[mi][i]=m;
   for (k1=1; k1<= m ; k1 ++) {      }
     fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);  
          wav[i]=mi;
     for (i=1; i<= nlstate+1 ; i ++) {      if(mi==0){
       k=2*i;        nbwarn++;
       fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);        if(first==0){
       for (j=1; j<= nlstate+1 ; j ++) {          printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          first=1;
   else fprintf(ficgp," \%%*lf (\%%*lf)");        }
 }          if(first==1){
       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");          fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);        }
     fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);      } /* end mi==0 */
       for (j=1; j<= nlstate+1 ; j ++) {    } /* End individuals */
         if (j==i) fprintf(ficgp," \%%lf (\%%lf)");  
         else fprintf(ficgp," \%%*lf (\%%*lf)");    for(i=1; i<=imx; i++){
 }        for(mi=1; mi<wav[i];mi++){
       fprintf(ficgp,"\" t\"\" w l 0,");        if (stepm <=0)
      fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);          dh[mi][i]=1;
       for (j=1; j<= nlstate+1 ; j ++) {        else{
   if (j==i) fprintf(ficgp," \%%lf (\%%lf)");          if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
   else fprintf(ficgp," \%%*lf (\%%*lf)");            if (agedc[i] < 2*AGESUP) {
 }                j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");              if(j==0) j=1;  /* Survives at least one month after exam */
       else fprintf(ficgp,"\" t\"\" w l 0,");              else if(j<0){
     }                nberr++;
     fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);                printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
   }                j=1; /* Temporary Dangerous patch */
                  printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
   /*3eme*/                fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                 fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
    for (k1=1; k1<= m ; k1 ++) {              }
     for (cpt=1; cpt<= nlstate ; cpt ++) {              k=k+1;
       k=2+nlstate*(cpt-1);              if (j >= jmax) jmax=j;
       fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);              if (j <= jmin) jmin=j;
       for (i=1; i< nlstate ; i ++) {              sum=sum+j;
         fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);              /*if (j<0) printf("j=%d num=%d \n",j,i);*/
       }              /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
       fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);            }
     }          }
    }          else{
              j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
   /* CV preval stat */            /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
     for (k1=1; k1<= m ; k1 ++) {            k=k+1;
     for (cpt=1; cpt<nlstate ; cpt ++) {            if (j >= jmax) jmax=j;
       k=3;            else if (j <= jmin)jmin=j;
       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);            /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
       for (i=1; i< nlstate ; i ++)            /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
         fprintf(ficgp,"+$%d",k+i+1);            if(j<0){
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);              nberr++;
                    printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       l=3+(nlstate+ndeath)*cpt;              fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
       fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);            }
       for (i=1; i< nlstate ; i ++) {            sum=sum+j;
         l=3+(nlstate+ndeath)*cpt;          }
         fprintf(ficgp,"+$%d",l+i+1);          jk= j/stepm;
       }          jl= j -jk*stepm;
       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);            ju= j -(jk+1)*stepm;
       fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);          if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
     }            if(jl==0){
   }              dh[mi][i]=jk;
                bh[mi][i]=0;
   /* proba elementaires */            }else{ /* We want a negative bias in order to only have interpolation ie
   for(i=1,jk=1; i <=nlstate; i++){                    * at the price of an extra matrix product in likelihood */
     for(k=1; k <=(nlstate+ndeath); k++){              dh[mi][i]=jk+1;
       if (k != i) {              bh[mi][i]=ju;
         /*  fprintf(ficgp,"%1d%1d ",i,k);*/            }
         for(j=1; j <=ncovmodel; j++){          }else{
           fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);            if(jl <= -ju){
           jk++;              dh[mi][i]=jk;
           fprintf(ficgp,"\n");              bh[mi][i]=jl;       /* bias is positive if real duration
         }                                   * is higher than the multiple of stepm and negative otherwise.
       }                                   */
     }            }
   }            else{
   for(jk=1; jk <=m; jk++) {              dh[mi][i]=jk+1;
   fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot  [%.f:%.f] ",agemin,agemax);              bh[mi][i]=ju;
   for(i=1; i <=nlstate; i++) {            }
     for(k=1; k <=(nlstate+ndeath); k++){            if(dh[mi][i]==0){
       if (k != i) {              dh[mi][i]=1; /* At least one step */
         fprintf(ficgp," exp(a%d%d+b%d%d*x",i,k,i,k);              bh[mi][i]=ju; /* At least one step */
         for(j=3; j <=ncovmodel; j++)              /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
           fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);            }
         fprintf(ficgp,")/(1");          } /* end if mle */
         for(k1=1; k1 <=(nlstate+ndeath); k1++)        }
           if (k1 != i) {      } /* end wave */
             fprintf(ficgp,"+exp(a%d%d+b%d%d*x",i,k1,i,k1);    }
             for(j=3; j <=ncovmodel; j++)    jmean=sum/k;
               fprintf(ficgp,"+%s%d%d*%d",alph[j],i,k,nbcode[Tvar[j-2]][codtab[jk][j-2]]);    printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
             fprintf(ficgp,")");    fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
           }   }
         fprintf(ficgp,") t \"p%d%d\" ", i,k);  
       if ((i+k)!= (nlstate*2+ndeath)) fprintf(ficgp,",");  /*********** Tricode ****************************/
       }  void tricode(int *Tvar, int **nbcode, int imx)
     }  {
   }    
 fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);      int Ndum[20],ij=1, k, j, i, maxncov=19;
   }    int cptcode=0;
      cptcoveff=0; 
  fclose(ficgp);   
     for (k=0; k<maxncov; k++) Ndum[k]=0;
     chdir(path);    for (k=1; k<=7; k++) ncodemax[k]=0;
     free_matrix(agev,1,maxwav,1,imx);  
     free_ivector(wav,1,imx);    for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);      for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);                                 modality*/ 
            ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
     free_imatrix(s,1,maxwav+1,1,n);        Ndum[ij]++; /*store the modality */
            /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
            if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
     free_ivector(num,1,n);                                         Tvar[j]. If V=sex and male is 0 and 
     free_vector(agedc,1,n);                                         female is 1, then  cptcode=1.*/
     free_vector(weight,1,n);      }
     /*free_matrix(covar,1,NCOVMAX,1,n);*/  
     fclose(ficparo);      for (i=0; i<=cptcode; i++) {
     fclose(ficres);        if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
    }      }
      
    /*________fin mle=1_________*/      ij=1; 
          for (i=1; i<=ncodemax[j]; i++) {
         for (k=0; k<= maxncov; k++) {
            if (Ndum[k] != 0) {
     /* No more information from the sample is required now */            nbcode[Tvar[j]][ij]=k; 
   /* Reads comments: lines beginning with '#' */            /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
   while((c=getc(ficpar))=='#' && c!= EOF){            
     ungetc(c,ficpar);            ij++;
     fgets(line, MAXLINE, ficpar);          }
     puts(line);          if (ij > ncodemax[j]) break; 
     fputs(line,ficparo);        }  
   }      } 
   ungetc(c,ficpar);    }  
    
    for (k=0; k< maxncov; k++) Ndum[k]=0;
   fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);  
   printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);   for (i=1; i<=ncovmodel-2; i++) { 
   fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);     /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
 /*--------- index.htm --------*/     ij=Tvar[i];
      Ndum[ij]++;
   if((fichtm=fopen("index.htm","w"))==NULL)    {   }
     printf("Problem with index.htm \n");goto end;  
   }   ij=1;
    for (i=1; i<= maxncov; i++) {
  fprintf(fichtm,"<body><ul> Imach, Version 0.63<hr> <li>Outputs files<br><br>\n     if((Ndum[i]!=0) && (i<=ncovcol)){
         - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n       Tvaraff[ij]=i; /*For printing */
 - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>       ij++;
         - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>     }
         - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>   }
         - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>   
         - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>   cptcoveff=ij-1; /*Number of simple covariates*/
         - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>  }
         - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>  
         - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br><br>",fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);  /*********** Health Expectancies ****************/
   
  fprintf(fichtm," <li>Graphs</li>\n<p>");  void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
   
  m=cptcovn;  {
  if (cptcovn < 1) {m=1;ncodemax[1]=1;}    /* Health expectancies */
     int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
  j1=0;    double age, agelim, hf;
  for(k1=1; k1<=m;k1++){    double ***p3mat,***varhe;
    for(i1=1; i1<=ncodemax[k1];i1++){    double **dnewm,**doldm;
        j1++;    double *xp;
        if (cptcovn > 0) {    double **gp, **gm;
          fprintf(fichtm,"<hr>************ Results for covariates");    double ***gradg, ***trgradg;
          for (cpt=1; cpt<=cptcovn;cpt++)    int theta;
            fprintf(fichtm," V%d=%d ",Tvar[cpt],nbcode[Tvar[cpt]][codtab[j1][cpt]]);  
          fprintf(fichtm," ************\n<hr>");    varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
        }    xp=vector(1,npar);
        fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>    dnewm=matrix(1,nlstate*nlstate,1,npar);
 <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);        doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
        for(cpt=1; cpt<nlstate;cpt++){    
          fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>    fprintf(ficreseij,"# Health expectancies\n");
 <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    fprintf(ficreseij,"# Age");
        }    for(i=1; i<=nlstate;i++)
     for(cpt=1; cpt<=nlstate;cpt++) {      for(j=1; j<=nlstate;j++)
        fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident        fprintf(ficreseij," %1d-%1d (SE)",i,j);
 interval) in state (%d): v%s%d%d.gif <br>    fprintf(ficreseij,"\n");
 <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    
      }    if(estepm < stepm){
      for(cpt=1; cpt<=nlstate;cpt++) {      printf ("Problem %d lower than %d\n",estepm, stepm);
         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>    }
 <img src=\"ex%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);    else  hstepm=estepm;   
      }    /* We compute the life expectancy from trapezoids spaced every estepm months
      fprintf(fichtm,"\n<br>- Total life expectancy by age and     * This is mainly to measure the difference between two models: for example
 health expectancies in states (1) and (2): e%s%d.gif<br>     * if stepm=24 months pijx are given only every 2 years and by summing them
 <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);     * we are calculating an estimate of the Life Expectancy assuming a linear 
 fprintf(fichtm,"\n</body>");     * progression in between and thus overestimating or underestimating according
    }     * to the curvature of the survival function. If, for the same date, we 
  }     * estimate the model with stepm=1 month, we can keep estepm to 24 months
 fclose(fichtm);     * to compare the new estimate of Life expectancy with the same linear 
      * hypothesis. A more precise result, taking into account a more precise
   /*--------------- Prevalence limit --------------*/     * curvature will be obtained if estepm is as small as stepm. */
    
   strcpy(filerespl,"pl");    /* For example we decided to compute the life expectancy with the smallest unit */
   strcat(filerespl,fileres);    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   if((ficrespl=fopen(filerespl,"w"))==NULL) {       nhstepm is the number of hstepm from age to agelim 
     printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;       nstepm is the number of stepm from age to agelin. 
   }       Look at hpijx to understand the reason of that which relies in memory size
   printf("Computing prevalence limit: result on file '%s' \n", filerespl);       and note for a fixed period like estepm months */
   fprintf(ficrespl,"#Prevalence limit\n");    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   fprintf(ficrespl,"#Age ");       survival function given by stepm (the optimization length). Unfortunately it
   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);       means that if the survival funtion is printed only each two years of age and if
   fprintf(ficrespl,"\n");       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
         results. So we changed our mind and took the option of the best precision.
   prlim=matrix(1,nlstate,1,nlstate);    */
   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */  
   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    agelim=AGESUP;
   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */      /* nhstepm age range expressed in number of stepm */
   k=0;      nstepm=(int) rint((agelim-age)*YEARM/stepm); 
   agebase=agemin;      /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
   agelim=agemax;      /* if (stepm >= YEARM) hstepm=1;*/
   ftolpl=1.e-10;      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
   i1=cptcovn;      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
   if (cptcovn < 1){i1=1;}      gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
       gp=matrix(0,nhstepm,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i1;cptcov++){      gm=matrix(0,nhstepm,1,nlstate*nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){  
         k=k+1;      /* Computed by stepm unit matrices, product of hstepm matrices, stored
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/         in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
         fprintf(ficrespl,"\n#****** ");      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
         for(j=1;j<=cptcovn;j++)   
           fprintf(ficrespl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);  
         fprintf(ficrespl,"******\n");      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
          
         for (age=agebase; age<=agelim; age++){      /* Computing Variances of health expectancies */
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);  
           fprintf(ficrespl,"%.0f",age );       for(theta=1; theta <=npar; theta++){
           for(i=1; i<=nlstate;i++)        for(i=1; i<=npar; i++){ 
           fprintf(ficrespl," %.5f", prlim[i][i]);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
           fprintf(ficrespl,"\n");        }
         }        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
       }    
     }        cptj=0;
   fclose(ficrespl);        for(j=1; j<= nlstate; j++){
   /*------------- h Pij x at various ages ------------*/          for(i=1; i<=nlstate; i++){
              cptj=cptj+1;
   strcpy(filerespij,"pij");  strcat(filerespij,fileres);            for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
   if((ficrespij=fopen(filerespij,"w"))==NULL) {              gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
     printf("Problem with Pij resultfile: %s\n", filerespij);goto end;            }
   }          }
   printf("Computing pij: result on file '%s' \n", filerespij);        }
         
   stepsize=(int) (stepm+YEARM-1)/YEARM;       
   if (stepm<=24) stepsize=2;        for(i=1; i<=npar; i++) 
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
   agelim=AGESUP;        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
   hstepm=stepsize*YEARM; /* Every year of age */        
   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */        cptj=0;
          for(j=1; j<= nlstate; j++){
   k=0;          for(i=1;i<=nlstate;i++){
   for(cptcov=1;cptcov<=i1;cptcov++){            cptj=cptj+1;
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){            for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
       k=k+1;  
         fprintf(ficrespij,"\n#****** ");              gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
         for(j=1;j<=cptcovn;j++)            }
           fprintf(ficrespij,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);          }
         fprintf(ficrespij,"******\n");        }
                for(j=1; j<= nlstate*nlstate; j++)
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */          for(h=0; h<=nhstepm-1; h++){
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */            gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */          }
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);       } 
           oldm=oldms;savm=savms;     
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);    /* End theta */
           fprintf(ficrespij,"# Age");  
           for(i=1; i<=nlstate;i++)       trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
             for(j=1; j<=nlstate+ndeath;j++)  
               fprintf(ficrespij," %1d-%1d",i,j);       for(h=0; h<=nhstepm-1; h++)
           fprintf(ficrespij,"\n");        for(j=1; j<=nlstate*nlstate;j++)
           for (h=0; h<=nhstepm; h++){          for(theta=1; theta <=npar; theta++)
             fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );            trgradg[h][j][theta]=gradg[h][theta][j];
             for(i=1; i<=nlstate;i++)       
               for(j=1; j<=nlstate+ndeath;j++)  
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);       for(i=1;i<=nlstate*nlstate;i++)
             fprintf(ficrespij,"\n");        for(j=1;j<=nlstate*nlstate;j++)
           }          varhe[i][j][(int)age] =0.;
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);  
           fprintf(ficrespij,"\n");       printf("%d|",(int)age);fflush(stdout);
         }       fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
     }       for(h=0;h<=nhstepm-1;h++){
   }        for(k=0;k<=nhstepm-1;k++){
           matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
   fclose(ficrespij);          matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
           for(i=1;i<=nlstate*nlstate;i++)
   /*---------- Health expectancies and variances ------------*/            for(j=1;j<=nlstate*nlstate;j++)
               varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
   strcpy(filerest,"t");        }
   strcat(filerest,fileres);      }
   if((ficrest=fopen(filerest,"w"))==NULL) {      /* Computing expectancies */
     printf("Problem with total LE resultfile: %s\n", filerest);goto end;      for(i=1; i<=nlstate;i++)
   }        for(j=1; j<=nlstate;j++)
   printf("Computing Total LEs with variances: file '%s' \n", filerest);          for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
             eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
             
   strcpy(filerese,"e");  /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
   strcat(filerese,fileres);  
   if((ficreseij=fopen(filerese,"w"))==NULL) {          }
     printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);  
   }      fprintf(ficreseij,"%3.0f",age );
   printf("Computing Health Expectancies: result on file '%s' \n", filerese);      cptj=0;
       for(i=1; i<=nlstate;i++)
  strcpy(fileresv,"v");        for(j=1; j<=nlstate;j++){
   strcat(fileresv,fileres);          cptj++;
   if((ficresvij=fopen(fileresv,"w"))==NULL) {          fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
     printf("Problem with variance resultfile: %s\n", fileresv);exit(0);        }
   }      fprintf(ficreseij,"\n");
   printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);     
       free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
   k=0;      free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
   for(cptcov=1;cptcov<=i1;cptcov++){      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
     for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){      free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
       k=k+1;      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
       fprintf(ficrest,"\n#****** ");    }
       for(j=1;j<=cptcovn;j++)    printf("\n");
         fprintf(ficrest,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    fprintf(ficlog,"\n");
       fprintf(ficrest,"******\n");  
     free_vector(xp,1,npar);
       fprintf(ficreseij,"\n#****** ");    free_matrix(dnewm,1,nlstate*nlstate,1,npar);
       for(j=1;j<=cptcovn;j++)    free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
         fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);    free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
       fprintf(ficreseij,"******\n");  }
   
       fprintf(ficresvij,"\n#****** ");  /************ Variance ******************/
       for(j=1;j<=cptcovn;j++)  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
         fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);  {
       fprintf(ficresvij,"******\n");    /* Variance of health expectancies */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    /* double **newm;*/
       oldm=oldms;savm=savms;    double **dnewm,**doldm;
       evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);      double **dnewmp,**doldmp;
       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);    int i, j, nhstepm, hstepm, h, nstepm ;
       oldm=oldms;savm=savms;    int k, cptcode;
       varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    double *xp;
          double **gp, **gm;  /* for var eij */
       fprintf(ficrest,"#Total LEs with variances: e.. (std) ");    double ***gradg, ***trgradg; /*for var eij */
       for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);    double **gradgp, **trgradgp; /* for var p point j */
       fprintf(ficrest,"\n");    double *gpp, *gmp; /* for var p point j */
            double **varppt; /* for var p point j nlstate to nlstate+ndeath */
       hf=1;    double ***p3mat;
       if (stepm >= YEARM) hf=stepm/YEARM;    double age,agelim, hf;
       epj=vector(1,nlstate+1);    double ***mobaverage;
       for(age=bage; age <=fage ;age++){    int theta;
         prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);    char digit[4];
         fprintf(ficrest," %.0f",age);    char digitp[25];
         for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){  
           for(i=1, epj[j]=0.;i <=nlstate;i++) {    char fileresprobmorprev[FILENAMELENGTH];
             epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];  
           }    if(popbased==1){
           epj[nlstate+1] +=epj[j];      if(mobilav!=0)
         }        strcpy(digitp,"-populbased-mobilav-");
         for(i=1, vepp=0.;i <=nlstate;i++)      else strcpy(digitp,"-populbased-nomobil-");
           for(j=1;j <=nlstate;j++)    }
             vepp += vareij[i][j][(int)age];    else 
         fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));      strcpy(digitp,"-stablbased-");
         for(j=1;j <=nlstate;j++){  
           fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));    if (mobilav!=0) {
         }      mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
         fprintf(ficrest,"\n");      if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
       }        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
     }        printf(" Error in movingaverage mobilav=%d\n",mobilav);
   }      }
            }
  fclose(ficreseij);  
  fclose(ficresvij);    strcpy(fileresprobmorprev,"prmorprev"); 
   fclose(ficrest);    sprintf(digit,"%-d",ij);
   fclose(ficpar);    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
   free_vector(epj,1,nlstate+1);    strcat(fileresprobmorprev,digit); /* Tvar to be done */
   /*scanf("%d ",i); */    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
     strcat(fileresprobmorprev,fileres);
   /*------- Variance limit prevalence------*/      if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobmorprev);
 strcpy(fileresvpl,"vpl");      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
   strcat(fileresvpl,fileres);    }
   if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
     exit(0);    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
   }    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
   printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
       fprintf(ficresprobmorprev," p.%-d SE",j);
  k=0;      for(i=1; i<=nlstate;i++)
  for(cptcov=1;cptcov<=i1;cptcov++){        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
    for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){    }  
      k=k+1;    fprintf(ficresprobmorprev,"\n");
      fprintf(ficresvpl,"\n#****** ");    fprintf(ficgp,"\n# Routine varevsij");
      for(j=1;j<=cptcovn;j++)    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
        fprintf(ficresvpl,"V%d=%d ",Tvar[j],nbcode[Tvar[j]][codtab[k][j]]);    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
      fprintf(ficresvpl,"******\n");  /*   } */
          varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
      varpl=matrix(1,nlstate,(int) bage, (int) fage);  
      oldm=oldms;savm=savms;    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
      varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);    fprintf(ficresvij,"# Age");
    }    for(i=1; i<=nlstate;i++)
  }      for(j=1; j<=nlstate;j++)
         fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
   fclose(ficresvpl);    fprintf(ficresvij,"\n");
   
   /*---------- End : free ----------------*/    xp=vector(1,npar);
   free_matrix(varpl,1,nlstate,(int) bage, (int)fage);    dnewm=matrix(1,nlstate,1,npar);
      doldm=matrix(1,nlstate,1,nlstate);
   free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
   free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
    
      gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
   free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);    gpp=vector(nlstate+1,nlstate+ndeath);
   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);    gmp=vector(nlstate+1,nlstate+ndeath);
   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);    
      if(estepm < stepm){
   free_matrix(matcov,1,npar,1,npar);      printf ("Problem %d lower than %d\n",estepm, stepm);
   free_vector(delti,1,npar);    }
      else  hstepm=estepm;   
   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);    /* For example we decided to compute the life expectancy with the smallest unit */
     /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
   printf("End of Imach\n");       nhstepm is the number of hstepm from age to agelim 
   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */       nstepm is the number of stepm from age to agelin. 
         Look at hpijx to understand the reason of that which relies in memory size
   /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/       and note for a fixed period like k years */
   /*printf("Total time was %d uSec.\n", total_usecs);*/    /* We decided (b) to get a life expectancy respecting the most precise curvature of the
   /*------ End -----------*/       survival function given by stepm (the optimization length). Unfortunately it
        means that if the survival funtion is printed every two years of age and if
  end:       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
 #ifdef windows       results. So we changed our mind and took the option of the best precision.
  chdir(pathcd);    */
 #endif    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
  system("wgnuplot graph.plt");    agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
 #ifdef windows      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
   while (z[0] != 'q') {      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
     chdir(pathcd);      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     printf("\nType e to edit output files, c to start again, and q for exiting: ");      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
     scanf("%s",z);      gp=matrix(0,nhstepm,1,nlstate);
     if (z[0] == 'c') system("./imach");      gm=matrix(0,nhstepm,1,nlstate);
     else if (z[0] == 'e') {  
       chdir(path);  
       system("index.htm");      for(theta=1; theta <=npar; theta++){
     }        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
     else if (z[0] == 'q') exit(0);          xp[i] = x[i] + (i==theta ?delti[theta]:0);
   }        }
 #endif        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
 }        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
   
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
     
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gp[h][j]=0.;i<=nlstate;i++)
               gp[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gpp[j]=0.; i<= nlstate; i++)
             gpp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(i=1; i<=npar; i++) /* Computes gradient x - delta */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
    
         if (popbased==1) {
           if(mobilav ==0){
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=probs[(int)age][i][ij];
           }else{ /* mobilav */ 
             for(i=1; i<=nlstate;i++)
               prlim[i][i]=mobaverage[(int)age][i][ij];
           }
         }
   
         for(j=1; j<= nlstate; j++){
           for(h=0; h<=nhstepm; h++){
             for(i=1, gm[h][j]=0.;i<=nlstate;i++)
               gm[h][j] += prlim[i][i]*p3mat[i][j][h];
           }
         }
         /* This for computing probability of death (h=1 means
            computed over hstepm matrices product = hstepm*stepm months) 
            as a weighted average of prlim.
         */
         for(j=nlstate+1;j<=nlstate+ndeath;j++){
           for(i=1,gmp[j]=0.; i<= nlstate; i++)
            gmp[j] += prlim[i][i]*p3mat[i][j][1];
         }    
         /* end probability of death */
   
         for(j=1; j<= nlstate; j++) /* vareij */
           for(h=0; h<=nhstepm; h++){
             gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
           }
   
         for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
           gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
         }
   
       } /* End theta */
   
       trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
   
       for(h=0; h<=nhstepm; h++) /* veij */
         for(j=1; j<=nlstate;j++)
           for(theta=1; theta <=npar; theta++)
             trgradg[h][j][theta]=gradg[h][theta][j];
   
       for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
         for(theta=1; theta <=npar; theta++)
           trgradgp[j][theta]=gradgp[theta][j];
     
   
       hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
       for(i=1;i<=nlstate;i++)
         for(j=1;j<=nlstate;j++)
           vareij[i][j][(int)age] =0.;
   
       for(h=0;h<=nhstepm;h++){
         for(k=0;k<=nhstepm;k++){
           matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
           matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
           for(i=1;i<=nlstate;i++)
             for(j=1;j<=nlstate;j++)
               vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
         }
       }
     
       /* pptj */
       matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
       matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
       for(j=nlstate+1;j<=nlstate+ndeath;j++)
         for(i=nlstate+1;i<=nlstate+ndeath;i++)
           varppt[j][i]=doldmp[j][i];
       /* end ppptj */
       /*  x centered again */
       hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
       prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
    
       if (popbased==1) {
         if(mobilav ==0){
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=probs[(int)age][i][ij];
         }else{ /* mobilav */ 
           for(i=1; i<=nlstate;i++)
             prlim[i][i]=mobaverage[(int)age][i][ij];
         }
       }
                
       /* This for computing probability of death (h=1 means
          computed over hstepm (estepm) matrices product = hstepm*stepm months) 
          as a weighted average of prlim.
       */
       for(j=nlstate+1;j<=nlstate+ndeath;j++){
         for(i=1,gmp[j]=0.;i<= nlstate; i++) 
           gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
       }    
       /* end probability of death */
   
       fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
       for(j=nlstate+1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
         for(i=1; i<=nlstate;i++){
           fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
         }
       } 
       fprintf(ficresprobmorprev,"\n");
   
       fprintf(ficresvij,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         for(j=1; j<=nlstate;j++){
           fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
         }
       fprintf(ficresvij,"\n");
       free_matrix(gp,0,nhstepm,1,nlstate);
       free_matrix(gm,0,nhstepm,1,nlstate);
       free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
       free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
     } /* End age */
     free_vector(gpp,nlstate+1,nlstate+ndeath);
     free_vector(gmp,nlstate+1,nlstate+ndeath);
     free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
     free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
     fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
     /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
     fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
   /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
   /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
     fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
     fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
     fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
     /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
   */
   /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
     fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,nlstate);
     free_matrix(dnewm,1,nlstate,1,npar);
     free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
     free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficresprobmorprev);
     fflush(ficgp);
     fflush(fichtm); 
   }  /* end varevsij */
   
   /************ Variance of prevlim ******************/
   void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
   {
     /* Variance of prevalence limit */
     /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
     double **newm;
     double **dnewm,**doldm;
     int i, j, nhstepm, hstepm;
     int k, cptcode;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double age,agelim;
     int theta;
      
     fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
     fprintf(ficresvpl,"# Age");
     for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %1d-%1d",i,i);
     fprintf(ficresvpl,"\n");
   
     xp=vector(1,npar);
     dnewm=matrix(1,nlstate,1,npar);
     doldm=matrix(1,nlstate,1,nlstate);
     
     hstepm=1*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
     agelim = AGESUP;
     for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
       nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
       if (stepm >= YEARM) hstepm=1;
       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
       gradg=matrix(1,npar,1,nlstate);
       gp=vector(1,nlstate);
       gm=vector(1,nlstate);
   
       for(theta=1; theta <=npar; theta++){
         for(i=1; i<=npar; i++){ /* Computes gradient */
           xp[i] = x[i] + (i==theta ?delti[theta]:0);
         }
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gp[i] = prlim[i][i];
       
         for(i=1; i<=npar; i++) /* Computes gradient */
           xp[i] = x[i] - (i==theta ?delti[theta]:0);
         prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
         for(i=1;i<=nlstate;i++)
           gm[i] = prlim[i][i];
   
         for(i=1;i<=nlstate;i++)
           gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
       } /* End theta */
   
       trgradg =matrix(1,nlstate,1,npar);
   
       for(j=1; j<=nlstate;j++)
         for(theta=1; theta <=npar; theta++)
           trgradg[j][theta]=gradg[theta][j];
   
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] =0.;
       matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
       matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
       for(i=1;i<=nlstate;i++)
         varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
   
       fprintf(ficresvpl,"%.0f ",age );
       for(i=1; i<=nlstate;i++)
         fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
       fprintf(ficresvpl,"\n");
       free_vector(gp,1,nlstate);
       free_vector(gm,1,nlstate);
       free_matrix(gradg,1,npar,1,nlstate);
       free_matrix(trgradg,1,nlstate,1,npar);
     } /* End age */
   
     free_vector(xp,1,npar);
     free_matrix(doldm,1,nlstate,1,npar);
     free_matrix(dnewm,1,nlstate,1,nlstate);
   
   }
   
   /************ Variance of one-step probabilities  ******************/
   void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
   {
     int i, j=0,  i1, k1, l1, t, tj;
     int k2, l2, j1,  z1;
     int k=0,l, cptcode;
     int first=1, first1;
     double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
     double **dnewm,**doldm;
     double *xp;
     double *gp, *gm;
     double **gradg, **trgradg;
     double **mu;
     double age,agelim, cov[NCOVMAX];
     double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
     int theta;
     char fileresprob[FILENAMELENGTH];
     char fileresprobcov[FILENAMELENGTH];
     char fileresprobcor[FILENAMELENGTH];
   
     double ***varpij;
   
     strcpy(fileresprob,"prob"); 
     strcat(fileresprob,fileres);
     if((ficresprob=fopen(fileresprob,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprob);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
     }
     strcpy(fileresprobcov,"probcov"); 
     strcat(fileresprobcov,fileres);
     if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcov);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
     }
     strcpy(fileresprobcor,"probcor"); 
     strcat(fileresprobcor,fileres);
     if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
       printf("Problem with resultfile: %s\n", fileresprobcor);
       fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
     }
     printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
     printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
     printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
     
     fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
     fprintf(ficresprob,"# Age");
     fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
     fprintf(ficresprobcov,"# Age");
     fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
     fprintf(ficresprobcov,"# Age");
   
   
     for(i=1; i<=nlstate;i++)
       for(j=1; j<=(nlstate+ndeath);j++){
         fprintf(ficresprob," p%1d-%1d (SE)",i,j);
         fprintf(ficresprobcov," p%1d-%1d ",i,j);
         fprintf(ficresprobcor," p%1d-%1d ",i,j);
       }  
    /* fprintf(ficresprob,"\n");
     fprintf(ficresprobcov,"\n");
     fprintf(ficresprobcor,"\n");
    */
    xp=vector(1,npar);
     dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
     doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
     mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
     varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
     first=1;
     fprintf(ficgp,"\n# Routine varprob");
     fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
     fprintf(fichtm,"\n");
   
     fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Computing matrix of variance-covariance of step probabilities</a></h4></li>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\n<h4>Computing matrix of variance-covariance of step probabilities</h4>\n\
     file %s<br>\n",optionfilehtmcov);
     fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
   and drawn. It helps understanding how is the covariance between two incidences.\
    They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
     fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
   It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
   would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
   standard deviations wide on each axis. <br>\
    Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
    and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
   To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
   
     cov[1]=1;
     tj=cptcoveff;
     if (cptcovn<1) {tj=1;ncodemax[1]=1;}
     j1=0;
     for(t=1; t<=tj;t++){
       for(i1=1; i1<=ncodemax[t];i1++){ 
         j1++;
         if  (cptcovn>0) {
           fprintf(ficresprob, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprob, "**********\n#\n");
           fprintf(ficresprobcov, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcov, "**********\n#\n");
           
           fprintf(ficgp, "\n#********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficgp, "**********\n#\n");
           
           
           fprintf(fichtm, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
           for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(fichtm, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
           
           fprintf(ficresprobcor, "\n#********** Variable ");    
           for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
           fprintf(ficresprobcor, "**********\n#");    
         }
         
         for (age=bage; age<=fage; age ++){ 
           cov[2]=age;
           for (k=1; k<=cptcovn;k++) {
             cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
           }
           for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
           for (k=1; k<=cptcovprod;k++)
             cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
           
           gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
           trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
           gp=vector(1,(nlstate)*(nlstate+ndeath));
           gm=vector(1,(nlstate)*(nlstate+ndeath));
       
           for(theta=1; theta <=npar; theta++){
             for(i=1; i<=npar; i++)
               xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
             
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             
             k=0;
             for(i=1; i<= (nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gp[k]=pmmij[i][j];
               }
             }
             
             for(i=1; i<=npar; i++)
               xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
       
             pmij(pmmij,cov,ncovmodel,xp,nlstate);
             k=0;
             for(i=1; i<=(nlstate); i++){
               for(j=1; j<=(nlstate+ndeath);j++){
                 k=k+1;
                 gm[k]=pmmij[i][j];
               }
             }
        
             for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
               gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
           }
   
           for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
             for(theta=1; theta <=npar; theta++)
               trgradg[j][theta]=gradg[theta][j];
           
           matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
           matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
           free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
           free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
           free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
   
           pmij(pmmij,cov,ncovmodel,x,nlstate);
           
           k=0;
           for(i=1; i<=(nlstate); i++){
             for(j=1; j<=(nlstate+ndeath);j++){
               k=k+1;
               mu[k][(int) age]=pmmij[i][j];
             }
           }
           for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
             for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
               varpij[i][j][(int)age] = doldm[i][j];
   
           /*printf("\n%d ",(int)age);
             for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
             }*/
   
           fprintf(ficresprob,"\n%d ",(int)age);
           fprintf(ficresprobcov,"\n%d ",(int)age);
           fprintf(ficresprobcor,"\n%d ",(int)age);
   
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
             fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
           for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
             fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
             fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
           }
           i=0;
           for (k=1; k<=(nlstate);k++){
             for (l=1; l<=(nlstate+ndeath);l++){ 
               i=i++;
               fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
               fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
               for (j=1; j<=i;j++){
                 fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                 fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
               }
             }
           }/* end of loop for state */
         } /* end of loop for age */
   
         /* Confidence intervalle of pij  */
         /*
           fprintf(ficgp,"\nset noparametric;unset label");
           fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
           fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
           fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
           fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
           fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
           fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
         */
   
         /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
         first1=1;
         for (k2=1; k2<=(nlstate);k2++){
           for (l2=1; l2<=(nlstate+ndeath);l2++){ 
             if(l2==k2) continue;
             j=(k2-1)*(nlstate+ndeath)+l2;
             for (k1=1; k1<=(nlstate);k1++){
               for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                 if(l1==k1) continue;
                 i=(k1-1)*(nlstate+ndeath)+l1;
                 if(i<=j) continue;
                 for (age=bage; age<=fage; age ++){ 
                   if ((int)age %5==0){
                     v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                     v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                     mu1=mu[i][(int) age]/stepm*YEARM ;
                     mu2=mu[j][(int) age]/stepm*YEARM;
                     c12=cv12/sqrt(v1*v2);
                     /* Computing eigen value of matrix of covariance */
                     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                     /* Eigen vectors */
                     v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                     /*v21=sqrt(1.-v11*v11); *//* error */
                     v21=(lc1-v1)/cv12*v11;
                     v12=-v21;
                     v22=v11;
                     tnalp=v21/v11;
                     if(first1==1){
                       first1=0;
                       printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     }
                     fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                     /*printf(fignu*/
                     /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                     /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                     if(first==1){
                       first=0;
                       fprintf(ficgp,"\nset parametric;unset label");
                       fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                       fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                       fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
    :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
   %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                               subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }else{
                       first=0;
                       fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                       fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                       fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                       fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                               mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                               mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                     }/* if first */
                   } /* age mod 5 */
                 } /* end loop age */
                 fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                 first=1;
               } /*l12 */
             } /* k12 */
           } /*l1 */
         }/* k1 */
       } /* loop covariates */
     }
     free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
     free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
     free_vector(xp,1,npar);
     fclose(ficresprob);
     fclose(ficresprobcov);
     fclose(ficresprobcor);
     fflush(ficgp);
     fflush(fichtmcov);
   }
   
   
   /******************* Printing html file ***********/
   void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                     int lastpass, int stepm, int weightopt, char model[],\
                     int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                     int popforecast, int estepm ,\
                     double jprev1, double mprev1,double anprev1, \
                     double jprev2, double mprev2,double anprev2){
     int jj1, k1, i1, cpt;
     /*char optionfilehtm[FILENAMELENGTH];*/
   /*   if((fichtm=fopen(optionfilehtm,"a"))==NULL)    { */
   /*     printf("Problem with %s \n",optionfilehtm), exit(0); */
   /*     fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0); */
   /*   } */
   
      fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
    - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n \
    - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n \
    - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n \
    - Life expectancies by age and initial health status (estepm=%2d months): \
      <a href=\"%s\">%s</a> <br>\n</li>", \
              jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"),\
              stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"),\
              subdirf2(fileres,"pl"),subdirf2(fileres,"pl"),\
              estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
   
   fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        /* Pij */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
   <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
        /* Quasi-incidences */
        fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
    before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
   <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
          /* Stable prevalence in each health state */
          for(cpt=1; cpt<nlstate;cpt++){
            fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
   <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
          }
        for(cpt=1; cpt<=nlstate;cpt++) {
           fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
        }
        fprintf(fichtm,"\n<br>- Total life expectancy by age and \
   health expectancies in states (1) and (2): %s%d.png<br>\
   <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
   
   
    fprintf(fichtm,"\n<br><li><h4> Result files (second order: variances)</h4>\n\
    - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n\
    - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n\
    - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n\
    - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n\
    - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
            rfileres,rfileres,\
            subdirf2(fileres,"prob"),subdirf2(fileres,"prob"),\
            subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"),\
            subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"),\
            estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"),\
            subdirf2(fileres,"t"),subdirf2(fileres,"t"),\
            subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
   
   /*  if(popforecast==1) fprintf(fichtm,"\n */
   /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
   /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
   /*      <br>",fileres,fileres,fileres,fileres); */
   /*  else  */
   /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
   fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
   
    m=cptcoveff;
    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
   
    jj1=0;
    for(k1=1; k1<=m;k1++){
      for(i1=1; i1<=ncodemax[k1];i1++){
        jj1++;
        if (cptcovn > 0) {
          fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
          for (cpt=1; cpt<=cptcoveff;cpt++) 
            fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
          fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
        }
        for(cpt=1; cpt<=nlstate;cpt++) {
          fprintf(fichtm,"<br>- Observed and period prevalence (with confident\
   interval) in state (%d): %s%d%d.png <br>\
   <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
        }
      } /* end i1 */
    }/* End k1 */
    fprintf(fichtm,"</ul>");
    fflush(fichtm);
   }
   
   /******************* Gnuplot file **************/
   void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
   
     char dirfileres[132],optfileres[132];
     int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
     int ng;
   /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
   /*     printf("Problem with file %s",optionfilegnuplot); */
   /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
   /*   } */
   
     /*#ifdef windows */
     fprintf(ficgp,"cd \"%s\" \n",pathc);
       /*#endif */
     m=pow(2,cptcoveff);
   
     strcpy(dirfileres,optionfilefiname);
     strcpy(optfileres,"vpl");
    /* 1eme*/
     for (cpt=1; cpt<= nlstate ; cpt ++) {
      for (k1=1; k1<= m ; k1 ++) {
        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
        fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
        fprintf(ficgp,"set xlabel \"Age\" \n\
   set ylabel \"Probability\" \n\
   set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
   
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }
        fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        } 
        fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
        for (i=1; i<= nlstate ; i ++) {
          if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
          else fprintf(ficgp," \%%*lf (\%%*lf)");
        }  
        fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
      }
     }
     /*2 eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
       fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
       
       for (i=1; i<= nlstate+1 ; i ++) {
         k=2*i;
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
         else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         fprintf(ficgp,"\" t\"\" w l 0,");
         fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
         for (j=1; j<= nlstate+1 ; j ++) {
           if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
           else fprintf(ficgp," \%%*lf (\%%*lf)");
         }   
         if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
         else fprintf(ficgp,"\" t\"\" w l 0,");
       }
     }
     
     /*3eme*/
     
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<= nlstate ; cpt ++) {
         k=2+nlstate*(2*cpt-2);
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
         fprintf(ficgp,"set ter png small\n\
   set size 0.65,0.65\n\
   plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
         /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
           for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
           fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
           
         */
         for (i=1; i< nlstate ; i ++) {
           fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
           
         } 
       }
     }
     
     /* CV preval stable (period) */
     for (k1=1; k1<= m ; k1 ++) { 
       for (cpt=1; cpt<=nlstate ; cpt ++) {
         k=3;
         fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
         fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
   set ter png small\nset size 0.65,0.65\n\
   unset log y\n\
   plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
         
         for (i=1; i< nlstate ; i ++)
           fprintf(ficgp,"+$%d",k+i+1);
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
         
         l=3+(nlstate+ndeath)*cpt;
         fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
         for (i=1; i< nlstate ; i ++) {
           l=3+(nlstate+ndeath)*cpt;
           fprintf(ficgp,"+$%d",l+i+1);
         }
         fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
       } 
     }  
     
     /* proba elementaires */
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) {
           for(j=1; j <=ncovmodel; j++){
             fprintf(ficgp,"p%d=%f ",jk,p[jk]);
             jk++; 
             fprintf(ficgp,"\n");
           }
         }
       }
      }
   
      for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
        for(jk=1; jk <=m; jk++) {
          fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
          if (ng==2)
            fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
          else
            fprintf(ficgp,"\nset title \"Probability\"\n");
          fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
          i=1;
          for(k2=1; k2<=nlstate; k2++) {
            k3=i;
            for(k=1; k<=(nlstate+ndeath); k++) {
              if (k != k2){
                if(ng==2)
                  fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                else
                  fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                ij=1;
                for(j=3; j <=ncovmodel; j++) {
                  if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                    fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                    ij++;
                  }
                  else
                    fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                }
                fprintf(ficgp,")/(1");
                
                for(k1=1; k1 <=nlstate; k1++){   
                  fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                  ij=1;
                  for(j=3; j <=ncovmodel; j++){
                    if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                      fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                      ij++;
                    }
                    else
                      fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                  }
                  fprintf(ficgp,")");
                }
                fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                i=i+ncovmodel;
              }
            } /* end k */
          } /* end k2 */
        } /* end jk */
      } /* end ng */
      fflush(ficgp); 
   }  /* end gnuplot */
   
   
   /*************** Moving average **************/
   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
   
     int i, cpt, cptcod;
     int modcovmax =1;
     int mobilavrange, mob;
     double age;
   
     modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                              a covariate has 2 modalities */
     if (cptcovn<1) modcovmax=1; /* At least 1 pass */
   
     if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
       if(mobilav==1) mobilavrange=5; /* default */
       else mobilavrange=mobilav;
       for (age=bage; age<=fage; age++)
         for (i=1; i<=nlstate;i++)
           for (cptcod=1;cptcod<=modcovmax;cptcod++)
             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
       /* We keep the original values on the extreme ages bage, fage and for 
          fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
          we use a 5 terms etc. until the borders are no more concerned. 
       */ 
       for (mob=3;mob <=mobilavrange;mob=mob+2){
         for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
           for (i=1; i<=nlstate;i++){
             for (cptcod=1;cptcod<=modcovmax;cptcod++){
               mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                 for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                 }
               mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
             }
           }
         }/* end age */
       }/* end mob */
     }else return -1;
     return 0;
   }/* End movingaverage */
   
   
   /************** Forecasting ******************/
   prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
     /* proj1, year, month, day of starting projection 
        agemin, agemax range of age
        dateprev1 dateprev2 range of dates during which prevalence is computed
        anproj2 year of en of projection (same day and month as proj1).
     */
     int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
     int *popage;
     double agec; /* generic age */
     double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
     double *popeffectif,*popcount;
     double ***p3mat;
     double ***mobaverage;
     char fileresf[FILENAMELENGTH];
   
     agelim=AGESUP;
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
    
     strcpy(fileresf,"f"); 
     strcat(fileresf,fileres);
     if((ficresf=fopen(fileresf,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", fileresf);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
     }
     printf("Computing forecasting: result on file '%s' \n", fileresf);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     if(estepm < stepm){
       printf ("Problem %d lower than %d\n",estepm, stepm);
     }
     else  hstepm=estepm;   
   
     hstepm=hstepm/stepm; 
     yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                                  fractional in yp1 */
     anprojmean=yp;
     yp2=modf((yp1*12),&yp);
     mprojmean=yp;
     yp1=modf((yp2*30.5),&yp);
     jprojmean=yp;
     if(jprojmean==0) jprojmean=1;
     if(mprojmean==0) jprojmean=1;
   
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
     
     fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
     
     fprintf(ficresf,"#****** Routine prevforecast **\n");
   
   /*            if (h==(int)(YEARM*yearp)){ */
     for(cptcov=1, k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficresf,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficresf,"******\n");
         fprintf(ficresf,"# Covariate valuofcovar yearproj age");
         for(j=1; j<=nlstate+ndeath;j++){ 
           for(i=1; i<=nlstate;i++)              
             fprintf(ficresf," p%d%d",i,j);
           fprintf(ficresf," p.%d",j);
         }
         for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
           fprintf(ficresf,"\n");
           fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
   
           for (agec=fage; agec>=(ageminpar-1); agec--){ 
             nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h*hstepm/YEARM*stepm ==yearp) {
                 fprintf(ficresf,"\n");
                 for(j=1;j<=cptcoveff;j++) 
                   fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                 fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 ppij=0.;
                 for(i=1; i<=nlstate;i++) {
                   if (mobilav==1) 
                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   else {
                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   }
                   if (h*hstepm/YEARM*stepm== yearp) {
                     fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   }
                 } /* end i */
                 if (h*hstepm/YEARM*stepm==yearp) {
                   fprintf(ficresf," %.3f", ppij);
                 }
               }/* end j */
             } /* end h */
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           } /* end agec */
         } /* end yearp */
       } /* end cptcod */
     } /* end  cptcov */
          
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     fclose(ficresf);
   }
   
   /************** Forecasting *****not tested NB*************/
   populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
     
     int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
     int *popage;
     double calagedatem, agelim, kk1, kk2;
     double *popeffectif,*popcount;
     double ***p3mat,***tabpop,***tabpopprev;
     double ***mobaverage;
     char filerespop[FILENAMELENGTH];
   
     tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     agelim=AGESUP;
     calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
     
     prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     
     
     strcpy(filerespop,"pop"); 
     strcat(filerespop,fileres);
     if((ficrespop=fopen(filerespop,"w"))==NULL) {
       printf("Problem with forecast resultfile: %s\n", filerespop);
       fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
     }
     printf("Computing forecasting: result on file '%s' \n", filerespop);
     fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
   
     if (cptcoveff==0) ncodemax[cptcoveff]=1;
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     if (stepm<=12) stepsize=1;
     
     agelim=AGESUP;
     
     hstepm=1;
     hstepm=hstepm/stepm; 
     
     if (popforecast==1) {
       if((ficpop=fopen(popfile,"r"))==NULL) {
         printf("Problem with population file : %s\n",popfile);exit(0);
         fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
       } 
       popage=ivector(0,AGESUP);
       popeffectif=vector(0,AGESUP);
       popcount=vector(0,AGESUP);
       
       i=1;   
       while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
      
       imx=i;
       for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
     }
   
     for(cptcov=1,k=0;cptcov<=i2;cptcov++){
      for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
         k=k+1;
         fprintf(ficrespop,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespop,"******\n");
         fprintf(ficrespop,"# Age");
         for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
         if (popforecast==1)  fprintf(ficrespop," [Population]");
         
         for (cpt=0; cpt<=0;cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   if (mobilav==1) 
                     kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   else {
                     kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   }
                 }
                 if (h==(int)(calagedatem+12*cpt)){
                   tabpop[(int)(agedeb)][j][cptcod]=kk1;
                     /*fprintf(ficrespop," %.3f", kk1);
                       if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                 }
               }
               for(i=1; i<=nlstate;i++){
                 kk1=0.;
                   for(j=1; j<=nlstate;j++){
                     kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   }
                     tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
               }
   
               if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                 fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
    
     /******/
   
         for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
           fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
           for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
             nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
             nhstepm = nhstepm/hstepm; 
             
             p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
             oldm=oldms;savm=savms;
             hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
             for (h=0; h<=nhstepm; h++){
               if (h==(int) (calagedatem+YEARM*cpt)) {
                 fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
               } 
               for(j=1; j<=nlstate+ndeath;j++) {
                 kk1=0.;kk2=0;
                 for(i=1; i<=nlstate;i++) {              
                   kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                 }
                 if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
               }
             }
             free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           }
         }
      } 
     }
    
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     if (popforecast==1) {
       free_ivector(popage,0,AGESUP);
       free_vector(popeffectif,0,AGESUP);
       free_vector(popcount,0,AGESUP);
     }
     free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     fclose(ficrespop);
   } /* End of popforecast */
   
   int fileappend(FILE *fichier, char *optionfich)
   {
     if((fichier=fopen(optionfich,"a"))==NULL) {
       printf("Problem with file: %s\n", optionfich);
       fprintf(ficlog,"Problem with file: %s\n", optionfich);
       return (0);
     }
     fflush(fichier);
     return (1);
   }
   void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
   {
   
     char ca[32], cb[32], cc[32];
     int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
     int numlinepar;
   
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         /*ca[0]= k+'a'-1;ca[1]='\0';*/
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           /*        printf(" %lf",param[i][j][k]); */
           /*        fprintf(ficparo," %lf",param[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
     for(i=1; i <=nlstate; i++){
       jj=0;
       for(j=1; j <=nlstate+ndeath; j++){
         if(j==i) continue;
         jj++;
         fprintf(ficparo,"%1d%1d",i,j);
         printf("%1d%1d",i,j);
         fflush(stdout);
         for(k=1; k<=ncovmodel;k++){
           /*      printf(" %le",delti3[i][j][k]); */
           /*      fprintf(ficparo," %le",delti3[i][j][k]); */
           printf(" 0.");
           fprintf(ficparo," 0.");
         }
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
       }
     }
     printf("# Covariance matrix\n");
   /* # 121 Var(a12)\n\ */
   /* # 122 Cov(b12,a12) Var(b12)\n\ */
   /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
   /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
   /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
   /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
   /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
   /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
     fflush(stdout);
     fprintf(ficparo,"# Covariance matrix\n");
     /* # 121 Var(a12)\n\ */
     /* # 122 Cov(b12,a12) Var(b12)\n\ */
     /* #   ...\n\ */
     /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
     
     for(itimes=1;itimes<=2;itimes++){
       jj=0;
       for(i=1; i <=nlstate; i++){
         for(j=1; j <=nlstate+ndeath; j++){
           if(j==i) continue;
           for(k=1; k<=ncovmodel;k++){
             jj++;
             ca[0]= k+'a'-1;ca[1]='\0';
             if(itimes==1){
               printf("#%1d%1d%d",i,j,k);
               fprintf(ficparo,"#%1d%1d%d",i,j,k);
             }else{
               printf("%1d%1d%d",i,j,k);
               fprintf(ficparo,"%1d%1d%d",i,j,k);
               /*  printf(" %.5le",matcov[i][j]); */
             }
             ll=0;
             for(li=1;li <=nlstate; li++){
               for(lj=1;lj <=nlstate+ndeath; lj++){
                 if(lj==li) continue;
                 for(lk=1;lk<=ncovmodel;lk++){
                   ll++;
                   if(ll<=jj){
                     cb[0]= lk +'a'-1;cb[1]='\0';
                     if(ll<jj){
                       if(itimes==1){
                         printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                         fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }else{
                       if(itimes==1){
                         printf(" Var(%s%1d%1d)",ca,i,j);
                         fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                       }else{
                         printf(" 0.");
                         fprintf(ficparo," 0.");
                       }
                     }
                   }
                 } /* end lk */
               } /* end lj */
             } /* end li */
             printf("\n");
             fprintf(ficparo,"\n");
             numlinepar++;
           } /* end k*/
         } /*end j */
       } /* end i */
     }
   
   } /* end of prwizard */
   
   
   /***********************************************/
   /**************** Main Program *****************/
   /***********************************************/
   
   int main(int argc, char *argv[])
   {
     int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
     int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
     int jj, imk;
     int numlinepar=0; /* Current linenumber of parameter file */
     /*  FILE *fichtm; *//* Html File */
     /* FILE *ficgp;*/ /*Gnuplot File */
     double agedeb, agefin,hf;
     double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
   
     double fret;
     double **xi,tmp,delta;
   
     double dum; /* Dummy variable */
     double ***p3mat;
     double ***mobaverage;
     int *indx;
     char line[MAXLINE], linepar[MAXLINE];
     char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
     char pathr[MAXLINE]; 
     int firstobs=1, lastobs=10;
     int sdeb, sfin; /* Status at beginning and end */
     int c,  h , cpt,l;
     int ju,jl, mi;
     int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
     int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
     int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
     int mobilav=0,popforecast=0;
     int hstepm, nhstepm;
     double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
     double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
   
     double bage, fage, age, agelim, agebase;
     double ftolpl=FTOL;
     double **prlim;
     double *severity;
     double ***param; /* Matrix of parameters */
     double  *p;
     double **matcov; /* Matrix of covariance */
     double ***delti3; /* Scale */
     double *delti; /* Scale */
     double ***eij, ***vareij;
     double **varpl; /* Variances of prevalence limits by age */
     double *epj, vepp;
     double kk1, kk2;
     double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
   
     char *alph[]={"a","a","b","c","d","e"}, str[4];
   
   
     char z[1]="c", occ;
   
     char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
     char strstart[80], *strt, strtend[80];
     char *stratrunc;
     int lstra;
   
     long total_usecs;
    
     /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
     (void) gettimeofday(&start_time,&tzp);
     curr_time=start_time;
     tm = *localtime(&start_time.tv_sec);
     tmg = *gmtime(&start_time.tv_sec);
     strcpy(strstart,asctime(&tm));
   
   /*  printf("Localtime (at start)=%s",strstart); */
   /*  tp.tv_sec = tp.tv_sec +86400; */
   /*  tm = *localtime(&start_time.tv_sec); */
   /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
   /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
   /*   tmg.tm_hour=tmg.tm_hour + 1; */
   /*   tp.tv_sec = mktime(&tmg); */
   /*   strt=asctime(&tmg); */
   /*   printf("Time(after) =%s",strstart);  */
   /*  (void) time (&time_value);
   *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
   *  tm = *localtime(&time_value);
   *  strstart=asctime(&tm);
   *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
   */
   
     nberr=0; /* Number of errors and warnings */
     nbwarn=0;
     getcwd(pathcd, size);
   
     printf("\n%s\n%s",version,fullversion);
     if(argc <=1){
       printf("\nEnter the parameter file name: ");
       scanf("%s",pathtot);
     }
     else{
       strcpy(pathtot,argv[1]);
     }
     /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
     /*cygwin_split_path(pathtot,path,optionfile);
       printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
     /* cutv(path,optionfile,pathtot,'\\');*/
   
     split(pathtot,path,optionfile,optionfilext,optionfilefiname);
     printf("pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
     chdir(path);
     strcpy(command,"mkdir ");
     strcat(command,optionfilefiname);
     if((outcmd=system(command)) != 0){
       printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
       /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
       /* fclose(ficlog); */
   /*     exit(1); */
     }
   /*   if((imk=mkdir(optionfilefiname))<0){ */
   /*     perror("mkdir"); */
   /*   } */
   
     /*-------- arguments in the command line --------*/
   
     /* Log file */
     strcat(filelog, optionfilefiname);
     strcat(filelog,".log");    /* */
     if((ficlog=fopen(filelog,"w"))==NULL)    {
       printf("Problem with logfile %s\n",filelog);
       goto end;
     }
     fprintf(ficlog,"Log filename:%s\n",filelog);
     fprintf(ficlog,"\n%s\n%s",version,fullversion);
     fprintf(ficlog,"\nEnter the parameter file name: ");
     fprintf(ficlog,"pathtot=%s\n\
    path=%s \n\
    optionfile=%s\n\
    optionfilext=%s\n\
    optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
   
     printf("Localtime (at start):%s",strstart);
     fprintf(ficlog,"Localtime (at start): %s",strstart);
     fflush(ficlog);
   /*   (void) gettimeofday(&curr_time,&tzp); */
   /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
   
     /* */
     strcpy(fileres,"r");
     strcat(fileres, optionfilefiname);
     strcat(fileres,".txt");    /* Other files have txt extension */
   
     /*---------arguments file --------*/
   
     if((ficpar=fopen(optionfile,"r"))==NULL)    {
       printf("Problem with optionfile %s\n",optionfile);
       fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
       fflush(ficlog);
       goto end;
     }
   
   
   
     strcpy(filereso,"o");
     strcat(filereso,fileres);
     if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
       printf("Problem with Output resultfile: %s\n", filereso);
       fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
       fflush(ficlog);
       goto end;
     }
   
     /* Reads comments: lines beginning with '#' */
     numlinepar=0;
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
     numlinepar++;
     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
     fflush(ficlog);
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
      
     covar=matrix(0,NCOVMAX,1,n); 
     cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
     if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
   
     ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
     nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
    
     if(mle==-1){ /* Print a wizard for help writing covariance matrix */
       prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
       printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
       fclose (ficparo);
       fclose (ficlog);
       exit(0);
     }
     /* Read guess parameters */
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     for(i=1; i <=nlstate; i++){
       j=0;
       for(jj=1; jj <=nlstate+ndeath; jj++){
         if(jj==i) continue;
         j++;
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1 != i) && (j1 != j)){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         fprintf(ficparo,"%1d%1d",i1,j1);
         if(mle==1)
           printf("%1d%1d",i,j);
         fprintf(ficlog,"%1d%1d",i,j);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar," %lf",&param[i][j][k]);
           if(mle==1){
             printf(" %lf",param[i][j][k]);
             fprintf(ficlog," %lf",param[i][j][k]);
           }
           else
             fprintf(ficlog," %lf",param[i][j][k]);
           fprintf(ficparo," %lf",param[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         if(mle==1)
           printf("\n");
         fprintf(ficlog,"\n");
         fprintf(ficparo,"\n");
       }
     }  
     fflush(ficlog);
   
     npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
   
     p=param[1][1];
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
   
     delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
     /* delti=vector(1,npar); *//* Scale of each paramater (output from hesscov) */
     for(i=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath-1; j++){
         fscanf(ficpar,"%1d%1d",&i1,&j1);
         if ((i1-i)*(j1-j)!=0){
           printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
           exit(1);
         }
         printf("%1d%1d",i,j);
         fprintf(ficparo,"%1d%1d",i1,j1);
         fprintf(ficlog,"%1d%1d",i1,j1);
         for(k=1; k<=ncovmodel;k++){
           fscanf(ficpar,"%le",&delti3[i][j][k]);
           printf(" %le",delti3[i][j][k]);
           fprintf(ficparo," %le",delti3[i][j][k]);
           fprintf(ficlog," %le",delti3[i][j][k]);
         }
         fscanf(ficpar,"\n");
         numlinepar++;
         printf("\n");
         fprintf(ficparo,"\n");
         fprintf(ficlog,"\n");
       }
     }
     fflush(ficlog);
   
     delti=delti3[1][1];
   
   
     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
     
     /* Reads comments: lines beginning with '#' */
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       numlinepar++;
       puts(line);
       fputs(line,ficparo);
       fputs(line,ficlog);
     }
     ungetc(c,ficpar);
     
     matcov=matrix(1,npar,1,npar);
     for(i=1; i <=npar; i++){
       fscanf(ficpar,"%s",&str);
       if(mle==1)
         printf("%s",str);
       fprintf(ficlog,"%s",str);
       fprintf(ficparo,"%s",str);
       for(j=1; j <=i; j++){
         fscanf(ficpar," %le",&matcov[i][j]);
         if(mle==1){
           printf(" %.5le",matcov[i][j]);
         }
         fprintf(ficlog," %.5le",matcov[i][j]);
         fprintf(ficparo," %.5le",matcov[i][j]);
       }
       fscanf(ficpar,"\n");
       numlinepar++;
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       fprintf(ficparo,"\n");
     }
     for(i=1; i <=npar; i++)
       for(j=i+1;j<=npar;j++)
         matcov[i][j]=matcov[j][i];
      
     if(mle==1)
       printf("\n");
     fprintf(ficlog,"\n");
   
     fflush(ficlog);
   
     /*-------- Rewriting paramater file ----------*/
     strcpy(rfileres,"r");    /* "Rparameterfile */
     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
     strcat(rfileres,".");    /* */
     strcat(rfileres,optionfilext);    /* Other files have txt extension */
     if((ficres =fopen(rfileres,"w"))==NULL) {
       printf("Problem writing new parameter file: %s\n", fileres);goto end;
       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
     }
     fprintf(ficres,"#%s\n",version);
       
     /*-------- data file ----------*/
     if((fic=fopen(datafile,"r"))==NULL)    {
       printf("Problem with datafile: %s\n", datafile);goto end;
       fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
     }
   
     n= lastobs;
     severity = vector(1,maxwav);
     outcome=imatrix(1,maxwav+1,1,n);
     num=lvector(1,n);
     moisnais=vector(1,n);
     annais=vector(1,n);
     moisdc=vector(1,n);
     andc=vector(1,n);
     agedc=vector(1,n);
     cod=ivector(1,n);
     weight=vector(1,n);
     for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
     mint=matrix(1,maxwav,1,n);
     anint=matrix(1,maxwav,1,n);
     s=imatrix(1,maxwav+1,1,n);
     tab=ivector(1,NCOVMAX);
     ncodemax=ivector(1,8);
   
     i=1;
     while (fgets(line, MAXLINE, fic) != NULL)    {
       if ((i >= firstobs) && (i <=lastobs)) {
           
         for (j=maxwav;j>=1;j--){
           cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
           strcpy(line,stra);
           cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
           cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         }
           
         cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
         cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
   
         cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
         for (j=ncovcol;j>=1;j--){
           cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
         } 
         lstra=strlen(stra);
         if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
           stratrunc = &(stra[lstra-9]);
           num[i]=atol(stratrunc);
         }
         else
           num[i]=atol(stra);
           
         /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
           printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
   
         i=i+1;
       }
     }
     /* printf("ii=%d", ij);
        scanf("%d",i);*/
     imx=i-1; /* Number of individuals */
   
     /* for (i=1; i<=imx; i++){
       if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
       if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
       if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
       }*/
      /*  for (i=1; i<=imx; i++){
        if (s[4][i]==9)  s[4][i]=-1; 
        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
     
    for (i=1; i<=imx; i++)
    
      /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
        else weight[i]=1;*/
   
     /* Calculation of the number of parameter from char model*/
     Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
     Tprod=ivector(1,15); 
     Tvaraff=ivector(1,15); 
     Tvard=imatrix(1,15,1,2);
     Tage=ivector(1,15);      
      
     if (strlen(model) >1){ /* If there is at least 1 covariate */
       j=0, j1=0, k1=1, k2=1;
       j=nbocc(model,'+'); /* j=Number of '+' */
       j1=nbocc(model,'*'); /* j1=Number of '*' */
       cptcovn=j+1; 
       cptcovprod=j1; /*Number of products */
       
       strcpy(modelsav,model); 
       if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
         printf("Error. Non available option model=%s ",model);
         fprintf(ficlog,"Error. Non available option model=%s ",model);
         goto end;
       }
       
       /* This loop fills the array Tvar from the string 'model'.*/
   
       for(i=(j+1); i>=1;i--){
         cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
         if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
         /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
         /*scanf("%d",i);*/
         if (strchr(strb,'*')) {  /* Model includes a product */
           cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
           if (strcmp(strc,"age")==0) { /* Vn*age */
             cptcovprod--;
             cutv(strb,stre,strd,'V');
             Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
             cptcovage++;
               Tage[cptcovage]=i;
               /*printf("stre=%s ", stre);*/
           }
           else if (strcmp(strd,"age")==0) { /* or age*Vn */
             cptcovprod--;
             cutv(strb,stre,strc,'V');
             Tvar[i]=atoi(stre);
             cptcovage++;
             Tage[cptcovage]=i;
           }
           else {  /* Age is not in the model */
             cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
             Tvar[i]=ncovcol+k1;
             cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
             Tprod[k1]=i;
             Tvard[k1][1]=atoi(strc); /* m*/
             Tvard[k1][2]=atoi(stre); /* n */
             Tvar[cptcovn+k2]=Tvard[k1][1];
             Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
             for (k=1; k<=lastobs;k++) 
               covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
             k1++;
             k2=k2+2;
           }
         }
         else { /* no more sum */
           /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
          /*  scanf("%d",i);*/
         cutv(strd,strc,strb,'V');
         Tvar[i]=atoi(strc);
         }
         strcpy(modelsav,stra);  
         /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
           scanf("%d",i);*/
       } /* end of loop + */
     } /* end model */
     
     /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
       If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
   
     /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
     printf("cptcovprod=%d ", cptcovprod);
     fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
   
     scanf("%d ",i);
     fclose(fic);*/
   
       /*  if(mle==1){*/
     if (weightopt != 1) { /* Maximisation without weights*/
       for(i=1;i<=n;i++) weight[i]=1.0;
     }
       /*-calculation of age at interview from date of interview and age at death -*/
     agev=matrix(1,maxwav,1,imx);
   
     for (i=1; i<=imx; i++) {
       for(m=2; (m<= maxwav); m++) {
         if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
           anint[m][i]=9999;
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
           s[m][i]=-1;
         }
         if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
           nberr++;
           printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
           fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
           s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
         }
       }
     }
   
     for (i=1; i<=imx; i++)  {
       agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
       for(m=firstpass; (m<= lastpass); m++){
         if(s[m][i] >0){
           if (s[m][i] >= nlstate+1) {
             if(agedc[i]>0)
               if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                 agev[m][i]=agedc[i];
             /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
               else {
                 if ((int)andc[i]!=9999){
                   nbwarn++;
                   printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   agev[m][i]=-1;
                 }
               }
           }
           else if(s[m][i] !=9){ /* Standard case, age in fractional
                                    years but with the precision of a
                                    month */
             agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
             if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
               agev[m][i]=1;
             else if(agev[m][i] <agemin){ 
               agemin=agev[m][i];
               /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
             }
             else if(agev[m][i] >agemax){
               agemax=agev[m][i];
               /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
             }
             /*agev[m][i]=anint[m][i]-annais[i];*/
             /*     agev[m][i] = age[i]+2*m;*/
           }
           else { /* =9 */
             agev[m][i]=1;
             s[m][i]=-1;
           }
         }
         else /*= 0 Unknown */
           agev[m][i]=1;
       }
       
     }
     for (i=1; i<=imx; i++)  {
       for(m=firstpass; (m<=lastpass); m++){
         if (s[m][i] > (nlstate+ndeath)) {
           nberr++;
           printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
           goto end;
         }
       }
     }
   
     /*for (i=1; i<=imx; i++){
     for (m=firstpass; (m<lastpass); m++){
        printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
   }
   
   }*/
   
     printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
     fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
   
     free_vector(severity,1,maxwav);
     free_imatrix(outcome,1,maxwav+1,1,n);
     free_vector(moisnais,1,n);
     free_vector(annais,1,n);
     /* free_matrix(mint,1,maxwav,1,n);
        free_matrix(anint,1,maxwav,1,n);*/
     free_vector(moisdc,1,n);
     free_vector(andc,1,n);
   
      
     wav=ivector(1,imx);
     dh=imatrix(1,lastpass-firstpass+1,1,imx);
     bh=imatrix(1,lastpass-firstpass+1,1,imx);
     mw=imatrix(1,lastpass-firstpass+1,1,imx);
      
     /* Concatenates waves */
     concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
   
     /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
   
     Tcode=ivector(1,100);
     nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
     ncodemax[1]=1;
     if (cptcovn > 0) tricode(Tvar,nbcode,imx);
         
     codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                                    the estimations*/
     h=0;
     m=pow(2,cptcoveff);
    
     for(k=1;k<=cptcoveff; k++){
       for(i=1; i <=(m/pow(2,k));i++){
         for(j=1; j <= ncodemax[k]; j++){
           for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
             h++;
             if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
             /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
           } 
         }
       }
     } 
     /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
        codtab[1][2]=1;codtab[2][2]=2; */
     /* for(i=1; i <=m ;i++){ 
        for(k=1; k <=cptcovn; k++){
        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
        }
        printf("\n");
        }
        scanf("%d",i);*/
       
     /*------------ gnuplot -------------*/
     strcpy(optionfilegnuplot,optionfilefiname);
     strcat(optionfilegnuplot,".gp");
     if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
       printf("Problem with file %s",optionfilegnuplot);
     }
     else{
       fprintf(ficgp,"\n# %s\n", version); 
       fprintf(ficgp,"# %s\n", optionfilegnuplot); 
       fprintf(ficgp,"set missing 'NaNq'\n");
     }
     /*  fclose(ficgp);*/
     /*--------- index.htm --------*/
   
     strcpy(optionfilehtm,optionfilefiname); /* Main html file */
     strcat(optionfilehtm,".htm");
     if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtm), exit(0);
     }
   
     strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
     strcat(optionfilehtmcov,"-cov.htm");
     if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
       printf("Problem with %s \n",optionfilehtmcov), exit(0);
     }
     else{
     fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
     }
   
     fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
   <hr size=\"2\" color=\"#EC5E5E\"> \n\
   Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
   \n\
   <hr  size=\"2\" color=\"#EC5E5E\">\
    <ul><li><h4>Parameter files</h4>\n\
    - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
    - Log file of the run: <a href=\"%s\">%s</a><br>\n\
    - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
    - Date and time at start: %s</ul>\n",\
             fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
             fileres,fileres,\
             filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
     fflush(fichtm);
   
     strcpy(pathr,path);
     strcat(pathr,optionfilefiname);
     chdir(optionfilefiname); /* Move to directory named optionfile */
     strcpy(lfileres,fileres);
     strcat(lfileres,"/");
     strcat(lfileres,optionfilefiname);
     
     /* Calculates basic frequencies. Computes observed prevalence at single age
        and prints on file fileres'p'. */
     freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
   
     fprintf(fichtm,"\n");
     fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
   Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
   Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
             imx,agemin,agemax,jmin,jmax,jmean);
     pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
       oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
       
      
     /* For Powell, parameters are in a vector p[] starting at p[1]
        so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
     p=param[1][1]; /* *(*(*(param +1)+1)+0) */
   
     globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     globpr=1; /* to print the contributions */
     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
     for (k=1; k<=npar;k++)
       printf(" %d %8.5f",k,p[k]);
     printf("\n");
     if(mle>=1){ /* Could be 1 or 2 */
       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
     }
       
     /*--------- results files --------------*/
     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
     
   
     jk=1;
     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(k=1; k <=(nlstate+ndeath); k++){
         if (k != i) 
           {
             printf("%d%d ",i,k);
             fprintf(ficlog,"%d%d ",i,k);
             fprintf(ficres,"%1d%1d ",i,k);
             for(j=1; j <=ncovmodel; j++){
               printf("%f ",p[jk]);
               fprintf(ficlog,"%f ",p[jk]);
               fprintf(ficres,"%f ",p[jk]);
               jk++; 
             }
             printf("\n");
             fprintf(ficlog,"\n");
             fprintf(ficres,"\n");
           }
       }
     }
     if(mle!=0){
       /* Computing hessian and covariance matrix */
       ftolhess=ftol; /* Usually correct */
       hesscov(matcov, p, npar, delti, ftolhess, func);
     }
     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
     printf("# Scales (for hessian or gradient estimation)\n");
     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
     for(i=1,jk=1; i <=nlstate; i++){
       for(j=1; j <=nlstate+ndeath; j++){
         if (j!=i) {
           fprintf(ficres,"%1d%1d",i,j);
           printf("%1d%1d",i,j);
           fprintf(ficlog,"%1d%1d",i,j);
           for(k=1; k<=ncovmodel;k++){
             printf(" %.5e",delti[jk]);
             fprintf(ficlog," %.5e",delti[jk]);
             fprintf(ficres," %.5e",delti[jk]);
             jk++;
           }
           printf("\n");
           fprintf(ficlog,"\n");
           fprintf(ficres,"\n");
         }
       }
     }
      
     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     if(mle==1)
       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
     for(i=1,k=1;i<=npar;i++){
       /*  if (k>nlstate) k=1;
           i1=(i-1)/(ncovmodel*nlstate)+1; 
           fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
           printf("%s%d%d",alph[k],i1,tab[i]);
       */
       fprintf(ficres,"%3d",i);
       if(mle==1)
         printf("%3d",i);
       fprintf(ficlog,"%3d",i);
       for(j=1; j<=i;j++){
         fprintf(ficres," %.5e",matcov[i][j]);
         if(mle==1)
           printf(" %.5e",matcov[i][j]);
         fprintf(ficlog," %.5e",matcov[i][j]);
       }
       fprintf(ficres,"\n");
       if(mle==1)
         printf("\n");
       fprintf(ficlog,"\n");
       k++;
     }
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     estepm=0;
     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
     if (estepm==0 || estepm < stepm) estepm=stepm;
     if (fage <= 2) {
       bage = ageminpar;
       fage = agemaxpar;
     }
      
     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
     
     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
      
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
    
   
     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
   
     fscanf(ficpar,"pop_based=%d\n",&popbased);
     fprintf(ficparo,"pop_based=%d\n",popbased);   
     fprintf(ficres,"pop_based=%d\n",popbased);   
     
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
     /* day and month of proj2 are not used but only year anproj2.*/
   
     while((c=getc(ficpar))=='#' && c!= EOF){
       ungetc(c,ficpar);
       fgets(line, MAXLINE, ficpar);
       puts(line);
       fputs(line,ficparo);
     }
     ungetc(c,ficpar);
   
     fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
     fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
     fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
   
     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
   
     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
   
     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                  model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                  jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
    
     /*------------ free_vector  -------------*/
     /*  chdir(path); */
    
     free_ivector(wav,1,imx);
     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
     free_lvector(num,1,n);
     free_vector(agedc,1,n);
     /*free_matrix(covar,0,NCOVMAX,1,n);*/
     /*free_matrix(covar,1,NCOVMAX,1,n);*/
     fclose(ficparo);
     fclose(ficres);
   
   
     /*--------------- Prevalence limit  (stable prevalence) --------------*/
     
     strcpy(filerespl,"pl");
     strcat(filerespl,fileres);
     if((ficrespl=fopen(filerespl,"w"))==NULL) {
       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
     }
     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
     fprintf(ficrespl,"#Stable prevalence \n");
     fprintf(ficrespl,"#Age ");
     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
     fprintf(ficrespl,"\n");
     
     prlim=matrix(1,nlstate,1,nlstate);
   
     agebase=ageminpar;
     agelim=agemaxpar;
     ftolpl=1.e-10;
     i1=cptcoveff;
     if (cptcovn < 1){i1=1;}
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
         fprintf(ficrespl,"\n#******");
         printf("\n#******");
         fprintf(ficlog,"\n#******");
         for(j=1;j<=cptcoveff;j++) {
           fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         }
         fprintf(ficrespl,"******\n");
         printf("******\n");
         fprintf(ficlog,"******\n");
           
         for (age=agebase; age<=agelim; age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           fprintf(ficrespl,"%.0f ",age );
           for(j=1;j<=cptcoveff;j++)
             fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
           for(i=1; i<=nlstate;i++)
             fprintf(ficrespl," %.5f", prlim[i][i]);
           fprintf(ficrespl,"\n");
         }
       }
     }
     fclose(ficrespl);
   
     /*------------- h Pij x at various ages ------------*/
     
     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
     if((ficrespij=fopen(filerespij,"w"))==NULL) {
       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
     }
     printf("Computing pij: result on file '%s' \n", filerespij);
     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
     
     stepsize=(int) (stepm+YEARM-1)/YEARM;
     /*if (stepm<=24) stepsize=2;*/
   
     agelim=AGESUP;
     hstepm=stepsize*YEARM; /* Every year of age */
     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
   
     /* hstepm=1;   aff par mois*/
   
     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficrespij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrespij,"******\n");
           
         for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
           nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
           nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
   
           /*        nhstepm=nhstepm*YEARM; aff par mois*/
   
           p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           oldm=oldms;savm=savms;
           hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
           fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
           for(i=1; i<=nlstate;i++)
             for(j=1; j<=nlstate+ndeath;j++)
               fprintf(ficrespij," %1d-%1d",i,j);
           fprintf(ficrespij,"\n");
           for (h=0; h<=nhstepm; h++){
             fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
             for(i=1; i<=nlstate;i++)
               for(j=1; j<=nlstate+ndeath;j++)
                 fprintf(ficrespij," %.5f", p3mat[i][j][h]);
             fprintf(ficrespij,"\n");
           }
           free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
           fprintf(ficrespij,"\n");
         }
       }
     }
   
     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
   
     fclose(ficrespij);
   
     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     /*---------- Forecasting ------------------*/
     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
     if(prevfcast==1){
       /*    if(stepm ==1){*/
         prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
         /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
   /*      }  */
   /*      else{ */
   /*        erreur=108; */
   /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
   /*      } */
     }
     
   
     /*---------- Health expectancies and variances ------------*/
   
     strcpy(filerest,"t");
     strcat(filerest,fileres);
     if((ficrest=fopen(filerest,"w"))==NULL) {
       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
     }
     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
   
   
     strcpy(filerese,"e");
     strcat(filerese,fileres);
     if((ficreseij=fopen(filerese,"w"))==NULL) {
       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
     }
     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
   
     strcpy(fileresv,"v");
     strcat(fileresv,fileres);
     if((ficresvij=fopen(fileresv,"w"))==NULL) {
       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
     }
     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
   
     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
   ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
     */
   
     if (mobilav!=0) {
       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
         fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
         printf(" Error in movingaverage mobilav=%d\n",mobilav);
       }
     }
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1; 
         fprintf(ficrest,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficrest,"******\n");
   
         fprintf(ficreseij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficreseij,"******\n");
   
         fprintf(ficresvij,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvij,"******\n");
   
         eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
    
         vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
         if(popbased==1){
           varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
         }
   
    
         fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
         for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
         fprintf(ficrest,"\n");
   
         epj=vector(1,nlstate+1);
         for(age=bage; age <=fage ;age++){
           prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
           if (popbased==1) {
             if(mobilav ==0){
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=probs[(int)age][i][k];
             }else{ /* mobilav */ 
               for(i=1; i<=nlstate;i++)
                 prlim[i][i]=mobaverage[(int)age][i][k];
             }
           }
           
           fprintf(ficrest," %4.0f",age);
           for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
             for(i=1, epj[j]=0.;i <=nlstate;i++) {
               epj[j] += prlim[i][i]*eij[i][j][(int)age];
               /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
             }
             epj[nlstate+1] +=epj[j];
           }
   
           for(i=1, vepp=0.;i <=nlstate;i++)
             for(j=1;j <=nlstate;j++)
               vepp += vareij[i][j][(int)age];
           fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
           for(j=1;j <=nlstate;j++){
             fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
           }
           fprintf(ficrest,"\n");
         }
         free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
         free_vector(epj,1,nlstate+1);
       }
     }
     free_vector(weight,1,n);
     free_imatrix(Tvard,1,15,1,2);
     free_imatrix(s,1,maxwav+1,1,n);
     free_matrix(anint,1,maxwav,1,n); 
     free_matrix(mint,1,maxwav,1,n);
     free_ivector(cod,1,n);
     free_ivector(tab,1,NCOVMAX);
     fclose(ficreseij);
     fclose(ficresvij);
     fclose(ficrest);
     fclose(ficpar);
     
     /*------- Variance of stable prevalence------*/   
   
     strcpy(fileresvpl,"vpl");
     strcat(fileresvpl,fileres);
     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
       exit(0);
     }
     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
   
     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
         k=k+1;
         fprintf(ficresvpl,"\n#****** ");
         for(j=1;j<=cptcoveff;j++) 
           fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
         fprintf(ficresvpl,"******\n");
         
         varpl=matrix(1,nlstate,(int) bage, (int) fage);
         oldm=oldms;savm=savms;
         varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
         free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
       }
     }
   
     fclose(ficresvpl);
   
     /*---------- End : free ----------------*/
     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
     
     free_matrix(covar,0,NCOVMAX,1,n);
     free_matrix(matcov,1,npar,1,npar);
     /*free_vector(delti,1,npar);*/
     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
     free_matrix(agev,1,maxwav,1,imx);
     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
   
     free_ivector(ncodemax,1,8);
     free_ivector(Tvar,1,15);
     free_ivector(Tprod,1,15);
     free_ivector(Tvaraff,1,15);
     free_ivector(Tage,1,15);
     free_ivector(Tcode,1,100);
   
     fflush(fichtm);
     fflush(ficgp);
     
   
     if((nberr >0) || (nbwarn>0)){
       printf("End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
       fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
     }else{
       printf("End of Imach\n");
       fprintf(ficlog,"End of Imach\n");
     }
     printf("See log file on %s\n",filelog);
     /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
     (void) gettimeofday(&end_time,&tzp);
     tm = *localtime(&end_time.tv_sec);
     tmg = *gmtime(&end_time.tv_sec);
     strcpy(strtend,asctime(&tm));
     printf("Localtime at start %s\nLocaltime at end   %s",strstart, strtend); 
     fprintf(ficlog,"Localtime at start %s\nLocal time at end   %s\n",strstart, strtend); 
     printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
   
     printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
     fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
     /*  printf("Total time was %d uSec.\n", total_usecs);*/
   /*   if(fileappend(fichtm,optionfilehtm)){ */
     fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
     fclose(fichtm);
     fclose(fichtmcov);
     fclose(ficgp);
     fclose(ficlog);
     /*------ End -----------*/
   
     chdir(path);
     strcpy(plotcmd,GNUPLOTPROGRAM);
     strcat(plotcmd," ");
     strcat(plotcmd,optionfilegnuplot);
     printf("Starting graphs with: %s",plotcmd);fflush(stdout);
     if((outcmd=system(plotcmd)) != 0){
       printf(" Problem with gnuplot\n");
     }
     printf(" Wait...");
     while (z[0] != 'q') {
       /* chdir(path); */
       printf("\nType e to edit output files, g to graph again and q for exiting: ");
       scanf("%s",z);
   /*     if (z[0] == 'c') system("./imach"); */
       if (z[0] == 'e') system(optionfilehtm);
       else if (z[0] == 'g') system(plotcmd);
       else if (z[0] == 'q') exit(0);
     }
     end:
     while (z[0] != 'q') {
       printf("\nType  q for exiting: ");
       scanf("%s",z);
     }
   }
   
   
   

Removed from v.1.4  
changed lines
  Added in v.1.93


FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>