--- imach/src/imach.c 2003/02/05 12:40:38 1.70 +++ imach/src/imach.c 2016/07/12 08:40:03 1.225 @@ -1,4 +1,637 @@ -/* $Id: imach.c,v 1.70 2003/02/05 12:40:38 brouard Exp $ +/* $Id: imach.c,v 1.225 2016/07/12 08:40:03 brouard Exp $ + $State: Exp $ + $Log: imach.c,v $ + Revision 1.225 2016/07/12 08:40:03 brouard + Summary: saving but not running + + Revision 1.224 2016/07/01 13:16:01 brouard + Summary: Fixes + + Revision 1.223 2016/02/19 09:23:35 brouard + Summary: temporary + + Revision 1.222 2016/02/17 08:14:50 brouard + Summary: Probably last 0.98 stable version 0.98r6 + + Revision 1.221 2016/02/15 23:35:36 brouard + Summary: minor bug + + Revision 1.219 2016/02/15 00:48:12 brouard + *** empty log message *** + + Revision 1.218 2016/02/12 11:29:23 brouard + Summary: 0.99 Back projections + + Revision 1.217 2015/12/23 17:18:31 brouard + Summary: Experimental backcast + + Revision 1.216 2015/12/18 17:32:11 brouard + Summary: 0.98r4 Warning and status=-2 + + Version 0.98r4 is now: + - displaying an error when status is -1, date of interview unknown and date of death known; + - permitting a status -2 when the vital status is unknown at a known date of right truncation. + Older changes concerning s=-2, dating from 2005 have been supersed. + + Revision 1.215 2015/12/16 08:52:24 brouard + Summary: 0.98r4 working + + Revision 1.214 2015/12/16 06:57:54 brouard + Summary: temporary not working + + Revision 1.213 2015/12/11 18:22:17 brouard + Summary: 0.98r4 + + Revision 1.212 2015/11/21 12:47:24 brouard + Summary: minor typo + + Revision 1.211 2015/11/21 12:41:11 brouard + Summary: 0.98r3 with some graph of projected cross-sectional + + Author: Nicolas Brouard + + Revision 1.210 2015/11/18 17:41:20 brouard + Summary: Start working on projected prevalences + + Revision 1.209 2015/11/17 22:12:03 brouard + Summary: Adding ftolpl parameter + Author: N Brouard + + We had difficulties to get smoothed confidence intervals. It was due + to the period prevalence which wasn't computed accurately. The inner + parameter ftolpl is now an outer parameter of the .imach parameter + file after estepm. If ftolpl is small 1.e-4 and estepm too, + computation are long. + + Revision 1.208 2015/11/17 14:31:57 brouard + Summary: temporary + + Revision 1.207 2015/10/27 17:36:57 brouard + *** empty log message *** + + Revision 1.206 2015/10/24 07:14:11 brouard + *** empty log message *** + + Revision 1.205 2015/10/23 15:50:53 brouard + Summary: 0.98r3 some clarification for graphs on likelihood contributions + + Revision 1.204 2015/10/01 16:20:26 brouard + Summary: Some new graphs of contribution to likelihood + + Revision 1.203 2015/09/30 17:45:14 brouard + Summary: looking at better estimation of the hessian + + Also a better criteria for convergence to the period prevalence And + therefore adding the number of years needed to converge. (The + prevalence in any alive state shold sum to one + + Revision 1.202 2015/09/22 19:45:16 brouard + Summary: Adding some overall graph on contribution to likelihood. Might change + + Revision 1.201 2015/09/15 17:34:58 brouard + Summary: 0.98r0 + + - Some new graphs like suvival functions + - Some bugs fixed like model=1+age+V2. + + Revision 1.200 2015/09/09 16:53:55 brouard + Summary: Big bug thanks to Flavia + + Even model=1+age+V2. did not work anymore + + Revision 1.199 2015/09/07 14:09:23 brouard + Summary: 0.98q6 changing default small png format for graph to vectorized svg. + + Revision 1.198 2015/09/03 07:14:39 brouard + Summary: 0.98q5 Flavia + + Revision 1.197 2015/09/01 18:24:39 brouard + *** empty log message *** + + Revision 1.196 2015/08/18 23:17:52 brouard + Summary: 0.98q5 + + Revision 1.195 2015/08/18 16:28:39 brouard + Summary: Adding a hack for testing purpose + + After reading the title, ftol and model lines, if the comment line has + a q, starting with #q, the answer at the end of the run is quit. It + permits to run test files in batch with ctest. The former workaround was + $ echo q | imach foo.imach + + Revision 1.194 2015/08/18 13:32:00 brouard + Summary: Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line. + + Revision 1.193 2015/08/04 07:17:42 brouard + Summary: 0.98q4 + + Revision 1.192 2015/07/16 16:49:02 brouard + Summary: Fixing some outputs + + Revision 1.191 2015/07/14 10:00:33 brouard + Summary: Some fixes + + Revision 1.190 2015/05/05 08:51:13 brouard + Summary: Adding digits in output parameters (7 digits instead of 6) + + Fix 1+age+. + + Revision 1.189 2015/04/30 14:45:16 brouard + Summary: 0.98q2 + + Revision 1.188 2015/04/30 08:27:53 brouard + *** empty log message *** + + Revision 1.187 2015/04/29 09:11:15 brouard + *** empty log message *** + + Revision 1.186 2015/04/23 12:01:52 brouard + Summary: V1*age is working now, version 0.98q1 + + Some codes had been disabled in order to simplify and Vn*age was + working in the optimization phase, ie, giving correct MLE parameters, + but, as usual, outputs were not correct and program core dumped. + + Revision 1.185 2015/03/11 13:26:42 brouard + Summary: Inclusion of compile and links command line for Intel Compiler + + Revision 1.184 2015/03/11 11:52:39 brouard + Summary: Back from Windows 8. Intel Compiler + + Revision 1.183 2015/03/10 20:34:32 brouard + Summary: 0.98q0, trying with directest, mnbrak fixed + + We use directest instead of original Powell test; probably no + incidence on the results, but better justifications; + We fixed Numerical Recipes mnbrak routine which was wrong and gave + wrong results. + + Revision 1.182 2015/02/12 08:19:57 brouard + Summary: Trying to keep directest which seems simpler and more general + Author: Nicolas Brouard + + Revision 1.181 2015/02/11 23:22:24 brouard + Summary: Comments on Powell added + + Author: + + Revision 1.180 2015/02/11 17:33:45 brouard + Summary: Finishing move from main to function (hpijx and prevalence_limit) + + Revision 1.179 2015/01/04 09:57:06 brouard + Summary: back to OS/X + + Revision 1.178 2015/01/04 09:35:48 brouard + *** empty log message *** + + Revision 1.177 2015/01/03 18:40:56 brouard + Summary: Still testing ilc32 on OSX + + Revision 1.176 2015/01/03 16:45:04 brouard + *** empty log message *** + + Revision 1.175 2015/01/03 16:33:42 brouard + *** empty log message *** + + Revision 1.174 2015/01/03 16:15:49 brouard + Summary: Still in cross-compilation + + Revision 1.173 2015/01/03 12:06:26 brouard + Summary: trying to detect cross-compilation + + Revision 1.172 2014/12/27 12:07:47 brouard + Summary: Back from Visual Studio and Intel, options for compiling for Windows XP + + Revision 1.171 2014/12/23 13:26:59 brouard + Summary: Back from Visual C + + Still problem with utsname.h on Windows + + Revision 1.170 2014/12/23 11:17:12 brouard + Summary: Cleaning some \%% back to %% + + The escape was mandatory for a specific compiler (which one?), but too many warnings. + + Revision 1.169 2014/12/22 23:08:31 brouard + Summary: 0.98p + + Outputs some informations on compiler used, OS etc. Testing on different platforms. + + Revision 1.168 2014/12/22 15:17:42 brouard + Summary: update + + Revision 1.167 2014/12/22 13:50:56 brouard + Summary: Testing uname and compiler version and if compiled 32 or 64 + + Testing on Linux 64 + + Revision 1.166 2014/12/22 11:40:47 brouard + *** empty log message *** + + Revision 1.165 2014/12/16 11:20:36 brouard + Summary: After compiling on Visual C + + * imach.c (Module): Merging 1.61 to 1.162 + + Revision 1.164 2014/12/16 10:52:11 brouard + Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn + + * imach.c (Module): Merging 1.61 to 1.162 + + Revision 1.163 2014/12/16 10:30:11 brouard + * imach.c (Module): Merging 1.61 to 1.162 + + Revision 1.162 2014/09/25 11:43:39 brouard + Summary: temporary backup 0.99! + + Revision 1.1 2014/09/16 11:06:58 brouard + Summary: With some code (wrong) for nlopt + + Author: + + Revision 1.161 2014/09/15 20:41:41 brouard + Summary: Problem with macro SQR on Intel compiler + + Revision 1.160 2014/09/02 09:24:05 brouard + *** empty log message *** + + Revision 1.159 2014/09/01 10:34:10 brouard + Summary: WIN32 + Author: Brouard + + Revision 1.158 2014/08/27 17:11:51 brouard + *** empty log message *** + + Revision 1.157 2014/08/27 16:26:55 brouard + Summary: Preparing windows Visual studio version + Author: Brouard + + In order to compile on Visual studio, time.h is now correct and time_t + and tm struct should be used. difftime should be used but sometimes I + just make the differences in raw time format (time(&now). + Trying to suppress #ifdef LINUX + Add xdg-open for __linux in order to open default browser. + + Revision 1.156 2014/08/25 20:10:10 brouard + *** empty log message *** + + Revision 1.155 2014/08/25 18:32:34 brouard + Summary: New compile, minor changes + Author: Brouard + + Revision 1.154 2014/06/20 17:32:08 brouard + Summary: Outputs now all graphs of convergence to period prevalence + + Revision 1.153 2014/06/20 16:45:46 brouard + Summary: If 3 live state, convergence to period prevalence on same graph + Author: Brouard + + Revision 1.152 2014/06/18 17:54:09 brouard + Summary: open browser, use gnuplot on same dir than imach if not found in the path + + Revision 1.151 2014/06/18 16:43:30 brouard + *** empty log message *** + + Revision 1.150 2014/06/18 16:42:35 brouard + Summary: If gnuplot is not in the path try on same directory than imach binary (OSX) + Author: brouard + + Revision 1.149 2014/06/18 15:51:14 brouard + Summary: Some fixes in parameter files errors + Author: Nicolas Brouard + + Revision 1.148 2014/06/17 17:38:48 brouard + Summary: Nothing new + Author: Brouard + + Just a new packaging for OS/X version 0.98nS + + Revision 1.147 2014/06/16 10:33:11 brouard + *** empty log message *** + + Revision 1.146 2014/06/16 10:20:28 brouard + Summary: Merge + Author: Brouard + + Merge, before building revised version. + + Revision 1.145 2014/06/10 21:23:15 brouard + Summary: Debugging with valgrind + Author: Nicolas Brouard + + Lot of changes in order to output the results with some covariates + After the Edimburgh REVES conference 2014, it seems mandatory to + improve the code. + No more memory valgrind error but a lot has to be done in order to + continue the work of splitting the code into subroutines. + Also, decodemodel has been improved. Tricode is still not + optimal. nbcode should be improved. Documentation has been added in + the source code. + + Revision 1.143 2014/01/26 09:45:38 brouard + Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising + + * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... + (Module): Version 0.98nR Running ok, but output format still only works for three covariates. + + Revision 1.142 2014/01/26 03:57:36 brouard + Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2 + + * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... + + Revision 1.141 2014/01/26 02:42:01 brouard + * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested... + + Revision 1.140 2011/09/02 10:37:54 brouard + Summary: times.h is ok with mingw32 now. + + Revision 1.139 2010/06/14 07:50:17 brouard + After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree. + I remember having already fixed agemin agemax which are pointers now but not cvs saved. + + Revision 1.138 2010/04/30 18:19:40 brouard + *** empty log message *** + + Revision 1.137 2010/04/29 18:11:38 brouard + (Module): Checking covariates for more complex models + than V1+V2. A lot of change to be done. Unstable. + + Revision 1.136 2010/04/26 20:30:53 brouard + (Module): merging some libgsl code. Fixing computation + of likelione (using inter/intrapolation if mle = 0) in order to + get same likelihood as if mle=1. + Some cleaning of code and comments added. + + Revision 1.135 2009/10/29 15:33:14 brouard + (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code. + + Revision 1.134 2009/10/29 13:18:53 brouard + (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code. + + Revision 1.133 2009/07/06 10:21:25 brouard + just nforces + + Revision 1.132 2009/07/06 08:22:05 brouard + Many tings + + Revision 1.131 2009/06/20 16:22:47 brouard + Some dimensions resccaled + + Revision 1.130 2009/05/26 06:44:34 brouard + (Module): Max Covariate is now set to 20 instead of 8. A + lot of cleaning with variables initialized to 0. Trying to make + V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better. + + Revision 1.129 2007/08/31 13:49:27 lievre + Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting + + Revision 1.128 2006/06/30 13:02:05 brouard + (Module): Clarifications on computing e.j + + Revision 1.127 2006/04/28 18:11:50 brouard + (Module): Yes the sum of survivors was wrong since + imach-114 because nhstepm was no more computed in the age + loop. Now we define nhstepma in the age loop. + (Module): In order to speed up (in case of numerous covariates) we + compute health expectancies (without variances) in a first step + and then all the health expectancies with variances or standard + deviation (needs data from the Hessian matrices) which slows the + computation. + In the future we should be able to stop the program is only health + expectancies and graph are needed without standard deviations. + + Revision 1.126 2006/04/28 17:23:28 brouard + (Module): Yes the sum of survivors was wrong since + imach-114 because nhstepm was no more computed in the age + loop. Now we define nhstepma in the age loop. + Version 0.98h + + Revision 1.125 2006/04/04 15:20:31 lievre + Errors in calculation of health expectancies. Age was not initialized. + Forecasting file added. + + Revision 1.124 2006/03/22 17:13:53 lievre + Parameters are printed with %lf instead of %f (more numbers after the comma). + The log-likelihood is printed in the log file + + Revision 1.123 2006/03/20 10:52:43 brouard + * imach.c (Module):
=(p+1))(v[j-p-1] = t[j]); */
+/* } */
+/* } */
- for(j=0; j<= lg; j++) {
- if (j>=(p+1))(v[j-p-1] = t[j]);
- }
+#ifdef _WIN32
+char * strsep(char **pp, const char *delim)
+{
+ char *p, *q;
+
+ if ((p = *pp) == NULL)
+ return 0;
+ if ((q = strpbrk (p, delim)) != NULL)
+ {
+ *pp = q + 1;
+ *q = '\0';
+ }
+ else
+ *pp = 0;
+ return p;
}
+#endif
/********************** nrerror ********************/
@@ -311,9 +1300,24 @@ void free_ivector(int *v, long nl, long
free((FREE_ARG)(v+nl-NR_END));
}
-/******************* imatrix *******************************/
-int **imatrix(long nrl, long nrh, long ncl, long nch)
- /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
+/************************lvector *******************************/
+long *lvector(long nl,long nh)
+{
+ long *v;
+ v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
+ if (!v) nrerror("allocation failure in ivector");
+ return v-nl+NR_END;
+}
+
+/******************free lvector **************************/
+void free_lvector(long *v, long nl, long nh)
+{
+ free((FREE_ARG)(v+nl-NR_END));
+}
+
+/******************* imatrix *******************************/
+int **imatrix(long nrl, long nrh, long ncl, long nch)
+ /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
{
long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
int **m;
@@ -365,6 +1369,10 @@ double **matrix(long nrl, long nrh, long
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
return m;
+ /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
+m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
+that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
+ */
}
/*************************free matrix ************************/
@@ -404,7 +1412,10 @@ double ***ma3x(long nrl, long nrh, long
for (j=ncl+1; j<=nch; j++)
m[i][j]=m[i][j-1]+nlay;
}
- return m;
+ return m;
+ /* gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
+ &(m[i][j][k]) <=> *((*(m+i) + j)+k)
+ */
}
/*************************free ma3x ************************/
@@ -415,6 +1426,77 @@ void free_ma3x(double ***m, long nrl, lo
free((FREE_ARG)(m+nrl-NR_END));
}
+/*************** function subdirf ***********/
+char *subdirf(char fileres[])
+{
+ /* Caution optionfilefiname is hidden */
+ strcpy(tmpout,optionfilefiname);
+ strcat(tmpout,"/"); /* Add to the right */
+ strcat(tmpout,fileres);
+ return tmpout;
+}
+
+/*************** function subdirf2 ***********/
+char *subdirf2(char fileres[], char *preop)
+{
+
+ /* Caution optionfilefiname is hidden */
+ strcpy(tmpout,optionfilefiname);
+ strcat(tmpout,"/");
+ strcat(tmpout,preop);
+ strcat(tmpout,fileres);
+ return tmpout;
+}
+
+/*************** function subdirf3 ***********/
+char *subdirf3(char fileres[], char *preop, char *preop2)
+{
+
+ /* Caution optionfilefiname is hidden */
+ strcpy(tmpout,optionfilefiname);
+ strcat(tmpout,"/");
+ strcat(tmpout,preop);
+ strcat(tmpout,preop2);
+ strcat(tmpout,fileres);
+ return tmpout;
+}
+
+/*************** function subdirfext ***********/
+char *subdirfext(char fileres[], char *preop, char *postop)
+{
+
+ strcpy(tmpout,preop);
+ strcat(tmpout,fileres);
+ strcat(tmpout,postop);
+ return tmpout;
+}
+
+/*************** function subdirfext3 ***********/
+char *subdirfext3(char fileres[], char *preop, char *postop)
+{
+
+ /* Caution optionfilefiname is hidden */
+ strcpy(tmpout,optionfilefiname);
+ strcat(tmpout,"/");
+ strcat(tmpout,preop);
+ strcat(tmpout,fileres);
+ strcat(tmpout,postop);
+ return tmpout;
+}
+
+char *asc_diff_time(long time_sec, char ascdiff[])
+{
+ long sec_left, days, hours, minutes;
+ days = (time_sec) / (60*60*24);
+ sec_left = (time_sec) % (60*60*24);
+ hours = (sec_left) / (60*60) ;
+ sec_left = (sec_left) %(60*60);
+ minutes = (sec_left) /60;
+ sec_left = (sec_left) % (60);
+ sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);
+ return ascdiff;
+}
+
/***************** f1dim *************************/
extern int ncom;
extern double *pcom,*xicom;
@@ -435,11 +1517,17 @@ double f1dim(double x)
/*****************brent *************************/
double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin)
-{
+{
+ /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
+ * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
+ * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
+ * the minimum is returned as xmin, and the minimum function value is returned as brent , the
+ * returned function value.
+ */
int iter;
double a,b,d,etemp;
- double fu,fv,fw,fx;
- double ftemp;
+ double fu=0,fv,fw,fx;
+ double ftemp=0.;
double p,q,r,tol1,tol2,u,v,w,x,xm;
double e=0.0;
@@ -453,7 +1541,7 @@ double brent(double ax, double bx, doubl
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
printf(".");fflush(stdout);
fprintf(ficlog,".");fflush(ficlog);
-#ifdef DEBUG
+#ifdef DEBUGBRENT
printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
/* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
@@ -473,12 +1561,12 @@ double brent(double ax, double bx, doubl
etemp=e;
e=d;
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
- d=CGOLD*(e=(x >= xm ? a-x : b-x));
+ d=CGOLD*(e=(x >= xm ? a-x : b-x));
else {
- d=p/q;
- u=x+d;
- if (u-a < tol2 || b-u < tol2)
- d=SIGN(tol1,xm-x);
+ d=p/q;
+ u=x+d;
+ if (u-a < tol2 || b-u < tol2)
+ d=SIGN(tol1,xm-x);
}
} else {
d=CGOLD*(e=(x >= xm ? a-x : b-x));
@@ -488,19 +1576,19 @@ double brent(double ax, double bx, doubl
if (fu <= fx) {
if (u >= x) a=x; else b=x;
SHFT(v,w,x,u)
- SHFT(fv,fw,fx,fu)
- } else {
- if (u < x) a=u; else b=u;
- if (fu <= fw || w == x) {
- v=w;
- w=u;
- fv=fw;
- fw=fu;
- } else if (fu <= fv || v == x || v == w) {
- v=u;
- fv=fu;
- }
- }
+ SHFT(fv,fw,fx,fu)
+ } else {
+ if (u < x) a=u; else b=u;
+ if (fu <= fw || w == x) {
+ v=w;
+ w=u;
+ fv=fw;
+ fw=fu;
+ } else if (fu <= fv || v == x || v == w) {
+ v=u;
+ fv=fu;
+ }
+ }
}
nrerror("Too many iterations in brent");
*xmin=x;
@@ -511,51 +1599,158 @@ double brent(double ax, double bx, doubl
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
double (*func)(double))
-{
+{ /* Given a function func , and given distinct initial points ax and bx , this routine searches in
+the downhill direction (defined by the function as evaluated at the initial points) and returns
+new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
+values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
+ */
double ulim,u,r,q, dum;
double fu;
-
- *fa=(*func)(*ax);
- *fb=(*func)(*bx);
+
+ double scale=10.;
+ int iterscale=0;
+
+ *fa=(*func)(*ax); /* xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
+ *fb=(*func)(*bx); /* xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
+
+
+ /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
+ /* printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
+ /* *bx = *ax - (*ax - *bx)/scale; */
+ /* *fb=(*func)(*bx); /\* xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
+ /* } */
+
if (*fb > *fa) {
SHFT(dum,*ax,*bx,dum)
- SHFT(dum,*fb,*fa,dum)
- }
+ SHFT(dum,*fb,*fa,dum)
+ }
*cx=(*bx)+GOLD*(*bx-*ax);
*fc=(*func)(*cx);
- while (*fb > *fc) {
+#ifdef DEBUG
+ printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
+ fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
+#endif
+ while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
r=(*bx-*ax)*(*fb-*fc);
- q=(*bx-*cx)*(*fb-*fa);
+ q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
- (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
- ulim=(*bx)+GLIMIT*(*cx-*bx);
- if ((*bx-u)*(u-*cx) > 0.0) {
+ (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
+ ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
+ if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
fu=(*func)(u);
- } else if ((*cx-u)*(u-ulim) > 0.0) {
+#ifdef DEBUG
+ /* f(x)=A(x-u)**2+f(u) */
+ double A, fparabu;
+ A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
+ fparabu= *fa - A*(*ax-u)*(*ax-u);
+ printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
+ fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
+ /* And thus,it can be that fu > *fc even if fparabu < *fc */
+ /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
+ (*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
+ /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
+#endif
+#ifdef MNBRAKORIGINAL
+#else
+/* if (fu > *fc) { */
+/* #ifdef DEBUG */
+/* printf("mnbrak4 fu > fc \n"); */
+/* fprintf(ficlog, "mnbrak4 fu > fc\n"); */
+/* #endif */
+/* /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/ *\/ */
+/* /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc will exit *\\/ *\/ */
+/* dum=u; /\* Shifting c and u *\/ */
+/* u = *cx; */
+/* *cx = dum; */
+/* dum = fu; */
+/* fu = *fc; */
+/* *fc =dum; */
+/* } else { /\* end *\/ */
+/* #ifdef DEBUG */
+/* printf("mnbrak3 fu < fc \n"); */
+/* fprintf(ficlog, "mnbrak3 fu < fc\n"); */
+/* #endif */
+/* dum=u; /\* Shifting c and u *\/ */
+/* u = *cx; */
+/* *cx = dum; */
+/* dum = fu; */
+/* fu = *fc; */
+/* *fc =dum; */
+/* } */
+#ifdef DEBUGMNBRAK
+ double A, fparabu;
+ A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
+ fparabu= *fa - A*(*ax-u)*(*ax-u);
+ printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
+ fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
+#endif
+ dum=u; /* Shifting c and u */
+ u = *cx;
+ *cx = dum;
+ dum = fu;
+ fu = *fc;
+ *fc =dum;
+#endif
+ } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
+#ifdef DEBUG
+ printf("\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx);
+ fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx);
+#endif
fu=(*func)(u);
if (fu < *fc) {
- SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
- SHFT(*fb,*fc,fu,(*func)(u))
- }
- } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
+#ifdef DEBUG
+ printf("\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
+ fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
+#endif
+ SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
+ SHFT(*fb,*fc,fu,(*func)(u))
+#ifdef DEBUG
+ printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
+#endif
+ }
+ } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
+#ifdef DEBUG
+ printf("\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
+ fprintf(ficlog,"\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
+#endif
u=ulim;
fu=(*func)(u);
- } else {
+ } else { /* u could be left to b (if r > q parabola has a maximum) */
+#ifdef DEBUG
+ printf("\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
+ fprintf(ficlog,"\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
+#endif
u=(*cx)+GOLD*(*cx-*bx);
fu=(*func)(u);
- }
+#ifdef DEBUG
+ printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
+ fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
+#endif
+ } /* end tests */
SHFT(*ax,*bx,*cx,u)
- SHFT(*fa,*fb,*fc,fu)
- }
+ SHFT(*fa,*fb,*fc,fu)
+#ifdef DEBUG
+ printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
+ fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
+#endif
+ } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
}
/*************** linmin ************************/
-
+/* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
+resets p to where the function func(p) takes on a minimum along the direction xi from p ,
+and replaces xi by the actual vector displacement that p was moved. Also returns as fret
+the value of func at the returned location p . This is actually all accomplished by calling the
+routines mnbrak and brent .*/
int ncom;
double *pcom,*xicom;
double (*nrfunc)(double []);
+#ifdef LINMINORIGINAL
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
+#else
+void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat)
+#endif
{
double brent(double ax, double bx, double cx,
double (*f)(double), double tol, double *xmin);
@@ -565,89 +1760,262 @@ void linmin(double p[], double xi[], int
int j;
double xx,xmin,bx,ax;
double fx,fb,fa;
-
+
+#ifdef LINMINORIGINAL
+#else
+ double scale=10., axs, xxs; /* Scale added for infinity */
+#endif
+
ncom=n;
pcom=vector(1,n);
xicom=vector(1,n);
nrfunc=func;
for (j=1;j<=n;j++) {
pcom[j]=p[j];
- xicom[j]=xi[j];
+ xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
}
- ax=0.0;
- xx=1.0;
- mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
- *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
+
+#ifdef LINMINORIGINAL
+ xx=1.;
+#else
+ axs=0.0;
+ xxs=1.;
+ do{
+ xx= xxs;
+#endif
+ ax=0.;
+ mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
+ /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
+ /* xt[x,j]=pcom[j]+x*xicom[j] f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j)) */
+ /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
+ /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
+ /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
+ /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus [0:xi[j]]*/
+#ifdef LINMINORIGINAL
+#else
+ if (fx != fx){
+ xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
+ printf("|");
+ fprintf(ficlog,"|");
+#ifdef DEBUGLINMIN
+ printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx);
+#endif
+ }
+ }while(fx != fx && xxs > 1.e-5);
+#endif
+
+#ifdef DEBUGLINMIN
+ printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb);
+ fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb);
+#endif
+#ifdef LINMINORIGINAL
+#else
+ if(fb == fx){ /* Flat function in the direction */
+ xmin=xx;
+ *flat=1;
+ }else{
+ *flat=0;
+#endif
+ /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
+ *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
+ /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
+ /* fmin = f(p[j] + xmin * xi[j]) */
+ /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
+ /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
#ifdef DEBUG
- printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
- fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
+ printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
+ fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
+#endif
+#ifdef LINMINORIGINAL
+#else
+ }
+#endif
+#ifdef DEBUGLINMIN
+ printf("linmin end ");
+ fprintf(ficlog,"linmin end ");
#endif
for (j=1;j<=n;j++) {
+#ifdef LINMINORIGINAL
xi[j] *= xmin;
- p[j] += xi[j];
+#else
+#ifdef DEBUGLINMIN
+ if(xxs <1.0)
+ printf(" before xi[%d]=%12.8f", j,xi[j]);
+#endif
+ xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
+#ifdef DEBUGLINMIN
+ if(xxs <1.0)
+ printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
+#endif
+#endif
+ p[j] += xi[j]; /* Parameters values are updated accordingly */
}
+#ifdef DEBUGLINMIN
+ printf("\n");
+ printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
+ fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
+ for (j=1;j<=n;j++) {
+ printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
+ fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
+ if(j % ncovmodel == 0){
+ printf("\n");
+ fprintf(ficlog,"\n");
+ }
+ }
+#else
+#endif
free_vector(xicom,1,n);
free_vector(pcom,1,n);
}
+
/*************** powell ************************/
+/*
+Minimization of a function func of n variables. Input consists of an initial starting point
+p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
+rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
+such that failure to decrease by more than this amount on one iteration signals doneness. On
+output, p is set to the best point found, xi is the then-current direction set, fret is the returned
+function value at p , and iter is the number of iterations taken. The routine linmin is used.
+ */
+#ifdef LINMINORIGINAL
+#else
+ int *flatdir; /* Function is vanishing in that direction */
+ int flat=0, flatd=0; /* Function is vanishing in that direction */
+#endif
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
double (*func)(double []))
{
- void linmin(double p[], double xi[], int n, double *fret,
+#ifdef LINMINORIGINAL
+ void linmin(double p[], double xi[], int n, double *fret,
double (*func)(double []));
+#else
+ void linmin(double p[], double xi[], int n, double *fret,
+ double (*func)(double []),int *flat);
+#endif
int i,ibig,j;
double del,t,*pt,*ptt,*xit;
+ double directest;
double fp,fptt;
double *xits;
+ int niterf, itmp;
+#ifdef LINMINORIGINAL
+#else
+
+ flatdir=ivector(1,n);
+ for (j=1;j<=n;j++) flatdir[j]=0;
+#endif
+
pt=vector(1,n);
ptt=vector(1,n);
xit=vector(1,n);
xits=vector(1,n);
*fret=(*func)(p);
for (j=1;j<=n;j++) pt[j]=p[j];
+ rcurr_time = time(NULL);
for (*iter=1;;++(*iter)) {
- fp=(*fret);
+ fp=(*fret); /* From former iteration or initial value */
ibig=0;
del=0.0;
- printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
- fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
- for (i=1;i<=n;i++)
+ rlast_time=rcurr_time;
+ /* (void) gettimeofday(&curr_time,&tzp); */
+ rcurr_time = time(NULL);
+ curr_time = *localtime(&rcurr_time);
+ printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
+ fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
+/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
+ for (i=1;i<=n;i++) {
printf(" %d %.12f",i, p[i]);
- fprintf(ficlog," %d %.12f",i, p[i]);
+ fprintf(ficlog," %d %.12lf",i, p[i]);
+ fprintf(ficrespow," %.12lf", p[i]);
+ }
printf("\n");
fprintf(ficlog,"\n");
- for (i=1;i<=n;i++) {
- for (j=1;j<=n;j++) xit[j]=xi[j][i];
+ fprintf(ficrespow,"\n");fflush(ficrespow);
+ if(*iter <=3){
+ tml = *localtime(&rcurr_time);
+ strcpy(strcurr,asctime(&tml));
+ rforecast_time=rcurr_time;
+ itmp = strlen(strcurr);
+ if(strcurr[itmp-1]=='\n') /* Windows outputs with a new line */
+ strcurr[itmp-1]='\0';
+ printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
+ fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
+ for(niterf=10;niterf<=30;niterf+=10){
+ rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
+ forecast_time = *localtime(&rforecast_time);
+ strcpy(strfor,asctime(&forecast_time));
+ itmp = strlen(strfor);
+ if(strfor[itmp-1]=='\n')
+ strfor[itmp-1]='\0';
+ printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
+ fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
+ }
+ }
+ for (i=1;i<=n;i++) { /* For each direction i */
+ for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
fptt=(*fret);
#ifdef DEBUG
- printf("fret=%lf \n",*fret);
- fprintf(ficlog,"fret=%lf \n",*fret);
+ printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
+ fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
#endif
- printf("%d",i);fflush(stdout);
+ printf("%d",i);fflush(stdout); /* print direction (parameter) i */
fprintf(ficlog,"%d",i);fflush(ficlog);
- linmin(p,xit,n,fret,func);
- if (fabs(fptt-(*fret)) > del) {
- del=fabs(fptt-(*fret));
- ibig=i;
+#ifdef LINMINORIGINAL
+ linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
+#else
+ linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
+ flatdir[i]=flat; /* Function is vanishing in that direction i */
+#endif
+ /* Outputs are fret(new point p) p is updated and xit rescaled */
+ if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
+ /* because that direction will be replaced unless the gain del is small */
+ /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
+ /* Unless the n directions are conjugate some gain in the determinant may be obtained */
+ /* with the new direction. */
+ del=fabs(fptt-(*fret));
+ ibig=i;
}
#ifdef DEBUG
printf("%d %.12e",i,(*fret));
fprintf(ficlog,"%d %.12e",i,(*fret));
for (j=1;j<=n;j++) {
- xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
- printf(" x(%d)=%.12e",j,xit[j]);
- fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
+ xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
+ printf(" x(%d)=%.12e",j,xit[j]);
+ fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
}
for(j=1;j<=n;j++) {
- printf(" p=%.12e",p[j]);
- fprintf(ficlog," p=%.12e",p[j]);
+ printf(" p(%d)=%.12e",j,p[j]);
+ fprintf(ficlog," p(%d)=%.12e",j,p[j]);
}
printf("\n");
fprintf(ficlog,"\n");
#endif
- }
- if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
+ } /* end loop on each direction i */
+ /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */
+ /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */
+ /* New value of last point Pn is not computed, P(n-1) */
+ for(j=1;j<=n;j++) {
+ if(flatdir[j] >0){
+ printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
+ fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
+ }
+ /* printf("\n"); */
+ /* fprintf(ficlog,"\n"); */
+ }
+ if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /* Did we reach enough precision? */
+ /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
+ /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
+ /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
+ /* decreased of more than 3.84 */
+ /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
+ /* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */
+ /* By adding 10 parameters more the gain should be 18.31 */
+
+ /* Starting the program with initial values given by a former maximization will simply change */
+ /* the scales of the directions and the directions, because the are reset to canonical directions */
+ /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
+ /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long. */
#ifdef DEBUG
int k[2],l;
k[0]=1;
@@ -671,183 +2039,657 @@ void powell(double p[], double **xi, int
}
#endif
-
+#ifdef LINMINORIGINAL
+#else
+ free_ivector(flatdir,1,n);
+#endif
free_vector(xit,1,n);
free_vector(xits,1,n);
free_vector(ptt,1,n);
free_vector(pt,1,n);
return;
- }
+ } /* enough precision */
if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
- for (j=1;j<=n;j++) {
+ for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
ptt[j]=2.0*p[j]-pt[j];
xit[j]=p[j]-pt[j];
pt[j]=p[j];
}
- fptt=(*func)(ptt);
- if (fptt < fp) {
- t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
- if (t < 0.0) {
- linmin(p,xit,n,fret,func);
- for (j=1;j<=n;j++) {
- xi[j][ibig]=xi[j][n];
- xi[j][n]=xit[j];
- }
+ fptt=(*func)(ptt); /* f_3 */
+#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */
+ if (*iter <=4) {
+#else
+#endif
+#ifdef POWELLNOF3INFF1TEST /* skips test F3 This combination (%d) is not valid and no result will be produced This combination (%d) is not valid and no result will be produced This combination (%d) is valid and result will be produced. ");
-
- m=cptcoveff;
- if (cptcovn < 1) {m=1;ncodemax[1]=1;}
-
- jj1=0;
- for(k1=1; k1<=m;k1++){
- for(i1=1; i1<=ncodemax[k1];i1++){
+
+ fprintf(fichtm," ");
+
+ m=pow(2,cptcoveff);
+ if (cptcovn < 1) {m=1;ncodemax[1]=1;}
+
+ jj1=0;
+ for(k1=1; k1<=m;k1++){
+
+ /* for(i1=1; i1<=ncodemax[k1];i1++){ */
jj1++;
if (cptcovn > 0) {
fprintf(fichtm," ");
-
- m=cptcoveff;
- if (cptcovn < 1) {m=1;ncodemax[1]=1;}
-
- jj1=0;
- for(k1=1; k1<=m;k1++){
- for(i1=1; i1<=ncodemax[k1];i1++){
+ /* } /\* end i1 *\/ */
+ }/* End k1 */
+ fprintf(fichtm," ");
+
+ m=pow(2,cptcoveff);
+ if (cptcovn < 1) {m=1;ncodemax[1]=1;}
+
+ jj1=0;
+ for(k1=1; k1<=m;k1++){
+ /* for(i1=1; i1<=ncodemax[k1];i1++){ */
jj1++;
if (cptcovn > 0) {
fprintf(fichtm,"
File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
+ else if(mle >=1)
+ fprintf(fichtm,"\n
File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
+ fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: %s
\n",subdirf(fileresilk),subdirf(fileresilk));
+
+
+ for (k=1; k<= nlstate ; k++) {
+ fprintf(fichtm,"
- Probability p%dj by origin %d and destination j. Dot's sizes are related to corresponding weight: %s-p%dj.png
\
+",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
+ }
+ fprintf(fichtm,"
- The function drawn is -2Log(L) in Log scale: by state of origin %s-ori.png
\
+",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
+ fprintf(fichtm,"
- and by state of destination %s-dest.png
\
+",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
+ fflush(fichtm);
+ }
+ return;
+}
+
+
/*********** Maximum Likelihood Estimation ***************/
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
{
- int i,j, iter;
- double **xi,*delti;
+ int i,j, iter=0;
+ double **xi;
double fret;
+ double fretone; /* Only one call to likelihood */
+ /* char filerespow[FILENAMELENGTH];*/
+
+#ifdef NLOPT
+ int creturn;
+ nlopt_opt opt;
+ /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
+ double *lb;
+ double minf; /* the minimum objective value, upon return */
+ double * p1; /* Shifted parameters from 0 instead of 1 */
+ myfunc_data dinst, *d = &dinst;
+#endif
+
+
xi=matrix(1,npar,1,npar);
for (i=1;i<=npar;i++)
for (j=1;j<=npar;j++)
xi[i][j]=(i==j ? 1.0 : 0.0);
printf("Powell\n"); fprintf(ficlog,"Powell\n");
+ strcpy(filerespow,"POW_");
+ strcat(filerespow,fileres);
+ if((ficrespow=fopen(filerespow,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", filerespow);
+ fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
+ }
+ fprintf(ficrespow,"# Powell\n# iter -2*LL");
+ for (i=1;i<=nlstate;i++)
+ for(j=1;j<=nlstate+ndeath;j++)
+ if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
+ fprintf(ficrespow,"\n");
+#ifdef POWELL
powell(p,xi,npar,ftol,&iter,&fret,func);
+#endif
- printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
- fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
- fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
+#ifdef NLOPT
+#ifdef NEWUOA
+ opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
+#else
+ opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
+#endif
+ lb=vector(0,npar-1);
+ for (i=0;i
%s \
+
\n\
+Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n",\
+ fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
+ }
+ fprintf(ficresphtm,"Current page is file %s
\n\nFrequencies and prevalence by age at begin of transition
\n",fileresphtm, fileresphtm);
+
+ strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
+ if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
+ printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
+ fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
+ fflush(ficlog);
+ exit(70);
+ }
+ else{
+ fprintf(ficresphtmfr,"\n
%s \
+
\n\
+Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n",\
+ fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
+ }
+ fprintf(ficresphtmfr,"Current page is file %s
\n\nFrequencies of all effective transitions by age at begin of transition
Unknown status is -1
\n",fileresphtmfr, fileresphtmfr);
+
+ freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
+ j1=0;
+
+ j=ncoveff;
+ if (cptcovn<1) {j=1;ncodemax[1]=1;}
+
+ first=1;
+
+ /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
+ reference=low_education V1=0,V2=0
+ med_educ V1=1 V2=0,
+ high_educ V1=0 V2=1
+ Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff
+ */
- for(jk=1,pos=0; jk <=nlstate ; jk++)
- pos += pp[jk];
- for(jk=1; jk <=nlstate ; jk++){
- if(pos>=1.e-5){
- if(first==1)
- printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
- fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
- }else{
- if(first==1)
- printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
- fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
- }
- if( i <= (int) agemax){
- if(pos>=1.e-5){
- fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
- probs[i][jk][j1]= pp[jk]/pos;
- /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
- }
- else
- fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
- }
- }
-
- for(jk=-1; jk <=nlstate+ndeath; jk++)
- for(m=-1; m <=nlstate+ndeath; m++)
- if(freq[jk][m][i] !=0 ) {
- if(first==1)
- printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
- fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
- }
- if(i <= (int) agemax)
- fprintf(ficresp,"\n");
- if(first==1)
- printf("Others in log...\n");
- fprintf(ficlog,"\n");
- }
- }
- }
- dateintmean=dateintsum/k2cpt;
-
- fclose(ficresp);
- free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
- free_vector(pp,1,nlstate);
-
- /* End of Freq */
-}
+ for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination excluding varying and quantitatives */
+ posproptt=0.;
+ /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
+ scanf("%d", i);*/
+ for (i=-5; i<=nlstate+ndeath; i++)
+ for (jk=-5; jk<=nlstate+ndeath; jk++)
+ for(m=iagemin; m <= iagemax+3; m++)
+ freq[i][jk][m]=0;
+
+ for (i=1; i<=nlstate; i++) {
+ for(m=iagemin; m <= iagemax+3; m++)
+ prop[i][m]=0;
+ posprop[i]=0;
+ pospropt[i]=0;
+ }
+ for (z1=1; z1<= nqfveff; z1++) {
+ meanq[z1]+=0.;
+ for(m=1;m<=lastpass;m++){
+ meanqt[m][z1]=0.;
+ }
+ }
+
+ dateintsum=0;
+ k2cpt=0;
+ /* For that comination of covariate j1, we count and print the frequencies */
+ for (iind=1; iind<=imx; iind++) { /* For each individual iind */
+ bool=1;
+ if (nqfveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
+ for (z1=1; z1<= nqfveff; z1++) {
+ meanq[z1]+=coqvar[Tvar[z1]][iind];
+ }
+ for (z1=1; z1<=ncoveff; z1++) {
+ /* if(Tvaraff[z1] ==-20){ */
+ /* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
+ /* }else if(Tvaraff[z1] ==-10){ */
+ /* /\* sumnew+=coqvar[z1][iind]; *\/ */
+ /* }else */
+ if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
+ /* Tests if this individual i responded to j1 (V4=1 V3=0) */
+ bool=0;
+ /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n",
+ bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
+ j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
+ /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
+ }
+ } /* end z1 */
+ } /* cptcovn > 0 */
+
+ if (bool==1){ /* We selected an individual iin satisfying combination j1 */
+ /* for(m=firstpass; m<=lastpass; m++){ */
+ for(mi=1; mi********** Variable ");
+ fprintf(ficresphtmfr, "\n
\n");
+ fprintf(ficlog, "\n#********** Variable ");
+ for (z1=1; z1<=ncoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficlog, "**********\n");
+ }
+ fprintf(ficresphtm,"********** Variable ");
+ for (z1=1; z1<=ncoveff; z1++){
+ fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresphtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresphtmfr, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ }
+ fprintf(ficresp, "**********\n#");
+ fprintf(ficresphtm, "**********
\n");
+ fprintf(ficresphtmfr, "**********");
+ for(i=1; i<=nlstate;i++) {
+ fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
+ fprintf(ficresphtm, "
\n");
+ if(posproptt < 1.e-5){
+ fprintf(ficresphtm,"\n Age Prev(%d) N(%d) N ",i,i);
+ }
+ fprintf(ficresp, "\n");
+ fprintf(ficresphtm, "\n");
+
+ /* Header of frequency table by age */
+ fprintf(ficresphtmfr,"");
+ fprintf(ficresphtmfr,"
\n");
+ fprintf(ficresphtmfr,"Age ");
+ for(jk=-1; jk <=nlstate+ndeath; jk++){
+ for(m=-1; m <=nlstate+ndeath; m++){
+ if(jk!=0 && m!=0)
+ fprintf(ficresphtmfr,"%d%d ",jk,m);
+ }
+ }
+ fprintf(ficresphtmfr, "\n");
+
+ /* For each age */
+ for(iage=iagemin; iage <= iagemax+3; iage++){
+ fprintf(ficresphtm,"");
+ if(iage==iagemax+1){
+ fprintf(ficlog,"1");
+ fprintf(ficresphtmfr," 0 ");
+ }else if(iage==iagemax+2){
+ fprintf(ficlog,"0");
+ fprintf(ficresphtmfr,"Unknown ");
+ }else if(iage==iagemax+3){
+ fprintf(ficlog,"Total");
+ fprintf(ficresphtmfr,"Total ");
+ }else{
+ if(first==1){
+ first=0;
+ printf("See log file for details...\n");
+ }
+ fprintf(ficresphtmfr," \n ");
+ if(iage <= iagemax){
+ fprintf(ficresp,"\n");
+ fprintf(ficresphtm,"\n");
+ }
+ if(first==1)
+ printf("Others in log...\n");
+ fprintf(ficlog,"\n");
+ } /* end loop age iage */
+ fprintf(ficresphtm,"%d ",iage);
+ fprintf(ficlog,"Age %d", iage);
+ }
+ for(jk=1; jk <=nlstate ; jk++){
+ for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
+ pp[jk] += freq[jk][m][iage];
+ }
+ for(jk=1; jk <=nlstate ; jk++){
+ for(m=-1, pos=0; m <=0 ; m++)
+ pos += freq[jk][m][iage];
+ if(pp[jk]>=1.e-10){
+ if(first==1){
+ printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
+ }
+ fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
+ }else{
+ if(first==1)
+ printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
+ fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
+ }
+ }
+
+ for(jk=1; jk <=nlstate ; jk++){
+ /* posprop[jk]=0; */
+ for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
+ pp[jk] += freq[jk][m][iage];
+ } /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */
+
+ for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){
+ pos += pp[jk]; /* pos is the total number of transitions until this age */
+ posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state
+ from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
+ pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state
+ from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
+ }
+ for(jk=1; jk <=nlstate ; jk++){
+ if(pos>=1.e-5){
+ if(first==1)
+ printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
+ fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
+ }else{
+ if(first==1)
+ printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
+ fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
+ }
+ if( iage <= iagemax){
+ if(pos>=1.e-5){
+ fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
+ fprintf(ficresphtm,"%d %.5f %.0f %.0f ",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
+ /*probs[iage][jk][j1]= pp[jk]/pos;*/
+ /*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/
+ }
+ else{
+ fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta);
+ fprintf(ficresphtm,"%d NaNq %.0f %.0f ",iage, prop[jk][iage],pospropta);
+ }
+ }
+ pospropt[jk] +=posprop[jk];
+ } /* end loop jk */
+ /* pospropt=0.; */
+ for(jk=-1; jk <=nlstate+ndeath; jk++){
+ for(m=-1; m <=nlstate+ndeath; m++){
+ if(freq[jk][m][iage] !=0 ) { /* minimizing output */
+ if(first==1){
+ printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);
+ }
+ fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);
+ }
+ if(jk!=0 && m!=0)
+ fprintf(ficresphtmfr,"%.0f ",freq[jk][m][iage]);
+ }
+ } /* end loop jk */
+ posproptt=0.;
+ for(jk=1; jk <=nlstate; jk++){
+ posproptt += pospropt[jk];
+ }
+ fprintf(ficresphtmfr," \n");
+ fprintf(ficresphtm,"Tot ");
+ for(jk=1; jk <=nlstate ; jk++){
+ if(posproptt < 1.e-5){
+ fprintf(ficresphtm,"Nanq %.0f %.0f ",pospropt[jk],posproptt);
+ }else{
+ fprintf(ficresphtm,"%.5f %.0f %.0f ",pospropt[jk]/posproptt,pospropt[jk],posproptt);
+ }
+ }
+ fprintf(ficresphtm," Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)
%s
\n",digitp);
+ varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
+ xp=vector(1,npar);
+ xm=vector(1,npar);
+ dnewm=matrix(1,nlstate*nlstate,1,npar);
+ doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
+
+ pstamp(ficresstdeij);
+ fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
+ fprintf(ficresstdeij,"# Age");
+ for(i=1; i<=nlstate;i++){
+ for(j=1; j<=nlstate;j++)
+ fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
+ fprintf(ficresstdeij," e%1d. ",i);
}
- varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+ fprintf(ficresstdeij,"\n");
- fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are the stable prevalence in health states i\n");
- fprintf(ficresvij,"# Age");
+ pstamp(ficrescveij);
+ fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
+ fprintf(ficrescveij,"# Age");
for(i=1; i<=nlstate;i++)
- for(j=1; j<=nlstate;j++)
- fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
- fprintf(ficresvij,"\n");
-
- xp=vector(1,npar);
- dnewm=matrix(1,nlstate,1,npar);
- doldm=matrix(1,nlstate,1,nlstate);
- dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
- doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
-
- gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
- gpp=vector(nlstate+1,nlstate+ndeath);
- gmp=vector(nlstate+1,nlstate+ndeath);
- trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
+ for(j=1; j<=nlstate;j++){
+ cptj= (j-1)*nlstate+i;
+ for(i2=1; i2<=nlstate;i2++)
+ for(j2=1; j2<=nlstate;j2++){
+ cptj2= (j2-1)*nlstate+i2;
+ if(cptj2 <= cptj)
+ fprintf(ficrescveij," %1d%1d,%1d%1d",i,j,i2,j2);
+ }
+ }
+ fprintf(ficrescveij,"\n");
if(estepm < stepm){
printf ("Problem %d lower than %d\n",estepm, stepm);
}
else hstepm=estepm;
+ /* We compute the life expectancy from trapezoids spaced every estepm months
+ * This is mainly to measure the difference between two models: for example
+ * if stepm=24 months pijx are given only every 2 years and by summing them
+ * we are calculating an estimate of the Life Expectancy assuming a linear
+ * progression in between and thus overestimating or underestimating according
+ * to the curvature of the survival function. If, for the same date, we
+ * estimate the model with stepm=1 month, we can keep estepm to 24 months
+ * to compare the new estimate of Life expectancy with the same linear
+ * hypothesis. A more precise result, taking into account a more precise
+ * curvature will be obtained if estepm is as small as stepm. */
+
/* For example we decided to compute the life expectancy with the smallest unit */
/* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
nhstepm is the number of hstepm from age to agelim
nstepm is the number of stepm from age to agelin.
Look at hpijx to understand the reason of that which relies in memory size
- and note for a fixed period like k years */
+ and note for a fixed period like estepm months */
/* We decided (b) to get a life expectancy respecting the most precise curvature of the
survival function given by stepm (the optimization length). Unfortunately it
- means that if the survival funtion is printed every two years of age and if
+ means that if the survival funtion is printed only each two years of age and if
you sum them up and add 1 year (area under the trapezoids) you won't get the same
results. So we changed our mind and took the option of the best precision.
*/
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
- agelim = AGESUP;
- for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
- nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
- nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
- p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
- gp=matrix(0,nhstepm,1,nlstate);
- gm=matrix(0,nhstepm,1,nlstate);
+ /* If stepm=6 months */
+ /* nhstepm age range expressed in number of stepm */
+ agelim=AGESUP;
+ nstepm=(int) rint((agelim-bage)*YEARM/stepm);
+ /* Typically if 20 years nstepm = 20*12/6=40 stepm */
+ /* if (stepm >= YEARM) hstepm=1;*/
+ nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
+
+ p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
+ trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
+ gp=matrix(0,nhstepm,1,nlstate*nlstate);
+ gm=matrix(0,nhstepm,1,nlstate*nlstate);
+ for (age=bage; age<=fage; age ++){
+ nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
+ /* Typically if 20 years nstepm = 20*12/6=40 stepm */
+ /* if (stepm >= YEARM) hstepm=1;*/
+ nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
+
+ /* If stepm=6 months */
+ /* Computed by stepm unit matrices, product of hstepma matrices, stored
+ in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
+
+ hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
+
+ /* Computing Variances of health expectancies */
+ /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
+ decrease memory allocation */
for(theta=1; theta <=npar; theta++){
- for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
+ for(i=1; i<=npar; i++){
xp[i] = x[i] + (i==theta ?delti[theta]:0);
+ xm[i] = x[i] - (i==theta ?delti[theta]:0);
}
- hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
- prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
-
- if (popbased==1) {
- if(mobilav ==0){
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=probs[(int)age][i][ij];
- }else{ /* mobilav */
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=mobaverage[(int)age][i][ij];
- }
- }
-
- for(j=1; j<= nlstate; j++){
- for(h=0; h<=nhstepm; h++){
- for(i=1, gp[h][j]=0.;i<=nlstate;i++)
- gp[h][j] += prlim[i][i]*p3mat[i][j][h];
- }
- }
- /* This for computing probability of death (h=1 means
- computed over hstepm matrices product = hstepm*stepm months)
- as a weighted average of prlim.
- */
- for(j=nlstate+1;j<=nlstate+ndeath;j++){
- for(i=1,gpp[j]=0.; i<= nlstate; i++)
- gpp[j] += prlim[i][i]*p3mat[i][j][1];
- }
- /* end probability of death */
-
- for(i=1; i<=npar; i++) /* Computes gradient x - delta */
- xp[i] = x[i] - (i==theta ?delti[theta]:0);
- hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
- prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
-
- if (popbased==1) {
- if(mobilav ==0){
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=probs[(int)age][i][ij];
- }else{ /* mobilav */
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=mobaverage[(int)age][i][ij];
- }
- }
-
+ hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);
+ hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);
+
for(j=1; j<= nlstate; j++){
- for(h=0; h<=nhstepm; h++){
- for(i=1, gm[h][j]=0.;i<=nlstate;i++)
- gm[h][j] += prlim[i][i]*p3mat[i][j][h];
+ for(i=1; i<=nlstate; i++){
+ for(h=0; h<=nhstepm-1; h++){
+ gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
+ gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
+ }
}
}
- /* This for computing probability of death (h=1 means
- computed over hstepm matrices product = hstepm*stepm months)
- as a weighted average of prlim.
- */
- for(j=nlstate+1;j<=nlstate+ndeath;j++){
- for(i=1,gmp[j]=0.; i<= nlstate; i++)
- gmp[j] += prlim[i][i]*p3mat[i][j][1];
- }
- /* end probability of death */
-
- for(j=1; j<= nlstate; j++) /* vareij */
- for(h=0; h<=nhstepm; h++){
- gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
+
+ for(ij=1; ij<= nlstate*nlstate; ij++)
+ for(h=0; h<=nhstepm-1; h++){
+ gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
}
-
- for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
- gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
- }
-
- } /* End theta */
-
- trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
-
- for(h=0; h<=nhstepm; h++) /* veij */
- for(j=1; j<=nlstate;j++)
+ }/* End theta */
+
+
+ for(h=0; h<=nhstepm-1; h++)
+ for(j=1; j<=nlstate*nlstate;j++)
for(theta=1; theta <=npar; theta++)
trgradg[h][j][theta]=gradg[h][theta][j];
-
- for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
- for(theta=1; theta <=npar; theta++)
- trgradgp[j][theta]=gradgp[theta][j];
-
-
- hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
- for(i=1;i<=nlstate;i++)
- for(j=1;j<=nlstate;j++)
- vareij[i][j][(int)age] =0.;
-
- for(h=0;h<=nhstepm;h++){
- for(k=0;k<=nhstepm;k++){
- matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
- matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
- for(i=1;i<=nlstate;i++)
- for(j=1;j<=nlstate;j++)
- vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
- }
- }
-
- /* pptj */
- matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
- matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
- for(j=nlstate+1;j<=nlstate+ndeath;j++)
- for(i=nlstate+1;i<=nlstate+ndeath;i++)
- varppt[j][i]=doldmp[j][i];
- /* end ppptj */
- /* x centered again */
- hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);
- prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
-
- if (popbased==1) {
- if(mobilav ==0){
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=probs[(int)age][i][ij];
- }else{ /* mobilav */
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=mobaverage[(int)age][i][ij];
+
+
+ for(ij=1;ij<=nlstate*nlstate;ij++)
+ for(ji=1;ji<=nlstate*nlstate;ji++)
+ varhe[ij][ji][(int)age] =0.;
+
+ printf("%d|",(int)age);fflush(stdout);
+ fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
+ for(h=0;h<=nhstepm-1;h++){
+ for(k=0;k<=nhstepm-1;k++){
+ matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
+ matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
+ for(ij=1;ij<=nlstate*nlstate;ij++)
+ for(ji=1;ji<=nlstate*nlstate;ji++)
+ varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
}
}
-
- /* This for computing probability of death (h=1 means
- computed over hstepm (estepm) matrices product = hstepm*stepm months)
- as a weighted average of prlim.
- */
- for(j=nlstate+1;j<=nlstate+ndeath;j++){
- for(i=1,gmp[j]=0.;i<= nlstate; i++)
- gmp[j] += prlim[i][i]*p3mat[i][j][1];
- }
- /* end probability of death */
-
- fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
- for(j=nlstate+1; j<=(nlstate+ndeath);j++){
- fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
- for(i=1; i<=nlstate;i++){
- fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
- }
- }
- fprintf(ficresprobmorprev,"\n");
-
- fprintf(ficresvij,"%.0f ",age );
+
+ /* Computing expectancies */
+ hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=nlstate;j++)
+ for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
+ eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
+
+ /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
+
+ }
+
+ fprintf(ficresstdeij,"%3.0f",age );
+ for(i=1; i<=nlstate;i++){
+ eip=0.;
+ vip=0.;
+ for(j=1; j<=nlstate;j++){
+ eip += eij[i][j][(int)age];
+ for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
+ vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
+ fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
+ }
+ fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
+ }
+ fprintf(ficresstdeij,"\n");
+
+ fprintf(ficrescveij,"%3.0f",age );
for(i=1; i<=nlstate;i++)
for(j=1; j<=nlstate;j++){
- fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
+ cptj= (j-1)*nlstate+i;
+ for(i2=1; i2<=nlstate;i2++)
+ for(j2=1; j2<=nlstate;j2++){
+ cptj2= (j2-1)*nlstate+i2;
+ if(cptj2 <= cptj)
+ fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
+ }
}
- fprintf(ficresvij,"\n");
- free_matrix(gp,0,nhstepm,1,nlstate);
- free_matrix(gm,0,nhstepm,1,nlstate);
- free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
- free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
- free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- } /* End age */
- free_vector(gpp,nlstate+1,nlstate+ndeath);
- free_vector(gmp,nlstate+1,nlstate+ndeath);
- free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
- free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
- fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
- /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
- fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
-/* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
-/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
-/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
- fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l 1 ",fileresprobmorprev);
- fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
- fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
- fprintf(fichtm,"\n
File (multiple files are possible if covariates are present): %s\n",fileresprobmorprev,fileresprobmorprev);
- fprintf(fichtm,"\n
Probability is computed over estepm=%d months.
\n", estepm,digitp,digit);
- /* fprintf(fichtm,"\n
Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year
\n", stepm,YEARM,digitp,digit);
-*/
- fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
-
+ fprintf(ficrescveij,"\n");
+
+ }
+ free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
+ free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
+ free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
+ free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
+ free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ printf("\n");
+ fprintf(ficlog,"\n");
+
+ free_vector(xm,1,npar);
free_vector(xp,1,npar);
- free_matrix(doldm,1,nlstate,1,nlstate);
- free_matrix(dnewm,1,nlstate,1,npar);
- free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
- free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
- free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
- if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- fclose(ficresprobmorprev);
- fclose(ficgp);
- fclose(fichtm);
-}
+ free_matrix(dnewm,1,nlstate*nlstate,1,npar);
+ free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
+ free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
+}
+
+/************ Variance ******************/
+ void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
+ {
+ /* Variance of health expectancies */
+ /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
+ /* double **newm;*/
+ /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
+
+ /* int movingaverage(); */
+ double **dnewm,**doldm;
+ double **dnewmp,**doldmp;
+ int i, j, nhstepm, hstepm, h, nstepm ;
+ int k;
+ double *xp;
+ double **gp, **gm; /* for var eij */
+ double ***gradg, ***trgradg; /*for var eij */
+ double **gradgp, **trgradgp; /* for var p point j */
+ double *gpp, *gmp; /* for var p point j */
+ double **varppt; /* for var p point j nlstate to nlstate+ndeath */
+ double ***p3mat;
+ double age,agelim, hf;
+ /* double ***mobaverage; */
+ int theta;
+ char digit[4];
+ char digitp[25];
+
+ char fileresprobmorprev[FILENAMELENGTH];
+
+ if(popbased==1){
+ if(mobilav!=0)
+ strcpy(digitp,"-POPULBASED-MOBILAV_");
+ else strcpy(digitp,"-POPULBASED-NOMOBIL_");
+ }
+ else
+ strcpy(digitp,"-STABLBASED_");
+
+ /* if (mobilav!=0) { */
+ /* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
+ /* if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
+ /* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
+ /* printf(" Error in movingaverage mobilav=%d\n",mobilav); */
+ /* } */
+ /* } */
+
+ strcpy(fileresprobmorprev,"PRMORPREV-");
+ sprintf(digit,"%-d",ij);
+ /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
+ strcat(fileresprobmorprev,digit); /* Tvar to be done */
+ strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
+ strcat(fileresprobmorprev,fileresu);
+ if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", fileresprobmorprev);
+ fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
+ }
+ printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
+ fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
+ pstamp(ficresprobmorprev);
+ fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
+ fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
+ for(j=nlstate+1; j<=(nlstate+ndeath);j++){
+ fprintf(ficresprobmorprev," p.%-d SE",j);
+ for(i=1; i<=nlstate;i++)
+ fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
+ }
+ fprintf(ficresprobmorprev,"\n");
+
+ fprintf(ficgp,"\n# Routine varevsij");
+ fprintf(ficgp,"\nunset title \n");
+ /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
+ fprintf(fichtm,"\n Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)
%s
\n",digitp);
+ /* } */
+ varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+ pstamp(ficresvij);
+ fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are ");
+ if(popbased==1)
+ fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
+ else
+ fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
+ fprintf(ficresvij,"# Age");
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=nlstate;j++)
+ fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
+ fprintf(ficresvij,"\n");
+
+ xp=vector(1,npar);
+ dnewm=matrix(1,nlstate,1,npar);
+ doldm=matrix(1,nlstate,1,nlstate);
+ dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
+ doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+
+ gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
+ gpp=vector(nlstate+1,nlstate+ndeath);
+ gmp=vector(nlstate+1,nlstate+ndeath);
+ trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
+
+ if(estepm < stepm){
+ printf ("Problem %d lower than %d\n",estepm, stepm);
+ }
+ else hstepm=estepm;
+ /* For example we decided to compute the life expectancy with the smallest unit */
+ /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
+ nhstepm is the number of hstepm from age to agelim
+ nstepm is the number of stepm from age to agelim.
+ Look at function hpijx to understand why because of memory size limitations,
+ we decided (b) to get a life expectancy respecting the most precise curvature of the
+ survival function given by stepm (the optimization length). Unfortunately it
+ means that if the survival funtion is printed every two years of age and if
+ you sum them up and add 1 year (area under the trapezoids) you won't get the same
+ results. So we changed our mind and took the option of the best precision.
+ */
+ hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
+ agelim = AGESUP;
+ for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
+ nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
+ nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
+ p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
+ gp=matrix(0,nhstepm,1,nlstate);
+ gm=matrix(0,nhstepm,1,nlstate);
+
+
+ for(theta=1; theta <=npar; theta++){
+ for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
+ xp[i] = x[i] + (i==theta ?delti[theta]:0);
+ }
+
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
+
+ if (popbased==1) {
+ if(mobilav ==0){
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=probs[(int)age][i][ij];
+ }else{ /* mobilav */
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=mobaverage[(int)age][i][ij];
+ }
+ }
+
+ hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij); /* Returns p3mat[i][j][h] for h=1 to nhstepm */
+ for(j=1; j<= nlstate; j++){
+ for(h=0; h<=nhstepm; h++){
+ for(i=1, gp[h][j]=0.;i<=nlstate;i++)
+ gp[h][j] += prlim[i][i]*p3mat[i][j][h];
+ }
+ }
+ /* Next for computing probability of death (h=1 means
+ computed over hstepm matrices product = hstepm*stepm months)
+ as a weighted average of prlim.
+ */
+ for(j=nlstate+1;j<=nlstate+ndeath;j++){
+ for(i=1,gpp[j]=0.; i<= nlstate; i++)
+ gpp[j] += prlim[i][i]*p3mat[i][j][1];
+ }
+ /* end probability of death */
+
+ for(i=1; i<=npar; i++) /* Computes gradient x - delta */
+ xp[i] = x[i] - (i==theta ?delti[theta]:0);
+
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij);
+
+ if (popbased==1) {
+ if(mobilav ==0){
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=probs[(int)age][i][ij];
+ }else{ /* mobilav */
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=mobaverage[(int)age][i][ij];
+ }
+ }
+
+ hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
+
+ for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */
+ for(h=0; h<=nhstepm; h++){
+ for(i=1, gm[h][j]=0.;i<=nlstate;i++)
+ gm[h][j] += prlim[i][i]*p3mat[i][j][h];
+ }
+ }
+ /* This for computing probability of death (h=1 means
+ computed over hstepm matrices product = hstepm*stepm months)
+ as a weighted average of prlim.
+ */
+ for(j=nlstate+1;j<=nlstate+ndeath;j++){
+ for(i=1,gmp[j]=0.; i<= nlstate; i++)
+ gmp[j] += prlim[i][i]*p3mat[i][j][1];
+ }
+ /* end probability of death */
+
+ for(j=1; j<= nlstate; j++) /* vareij */
+ for(h=0; h<=nhstepm; h++){
+ gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
+ }
+
+ for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
+ gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
+ }
+
+ } /* End theta */
+
+ trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
+
+ for(h=0; h<=nhstepm; h++) /* veij */
+ for(j=1; j<=nlstate;j++)
+ for(theta=1; theta <=npar; theta++)
+ trgradg[h][j][theta]=gradg[h][theta][j];
+
+ for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
+ for(theta=1; theta <=npar; theta++)
+ trgradgp[j][theta]=gradgp[theta][j];
+
+
+ hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
+ for(i=1;i<=nlstate;i++)
+ for(j=1;j<=nlstate;j++)
+ vareij[i][j][(int)age] =0.;
+
+ for(h=0;h<=nhstepm;h++){
+ for(k=0;k<=nhstepm;k++){
+ matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
+ matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
+ for(i=1;i<=nlstate;i++)
+ for(j=1;j<=nlstate;j++)
+ vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
+ }
+ }
+
+ /* pptj */
+ matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
+ matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
+ for(j=nlstate+1;j<=nlstate+ndeath;j++)
+ for(i=nlstate+1;i<=nlstate+ndeath;i++)
+ varppt[j][i]=doldmp[j][i];
+ /* end ppptj */
+ /* x centered again */
+
+ prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij);
+
+ if (popbased==1) {
+ if(mobilav ==0){
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=probs[(int)age][i][ij];
+ }else{ /* mobilav */
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=mobaverage[(int)age][i][ij];
+ }
+ }
+
+ /* This for computing probability of death (h=1 means
+ computed over hstepm (estepm) matrices product = hstepm*stepm months)
+ as a weighted average of prlim.
+ */
+ hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);
+ for(j=nlstate+1;j<=nlstate+ndeath;j++){
+ for(i=1,gmp[j]=0.;i<= nlstate; i++)
+ gmp[j] += prlim[i][i]*p3mat[i][j][1];
+ }
+ /* end probability of death */
+
+ fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
+ for(j=nlstate+1; j<=(nlstate+ndeath);j++){
+ fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
+ for(i=1; i<=nlstate;i++){
+ fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
+ }
+ }
+ fprintf(ficresprobmorprev,"\n");
+
+ fprintf(ficresvij,"%.0f ",age );
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=nlstate;j++){
+ fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
+ }
+ fprintf(ficresvij,"\n");
+ free_matrix(gp,0,nhstepm,1,nlstate);
+ free_matrix(gm,0,nhstepm,1,nlstate);
+ free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
+ free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
+ free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ } /* End age */
+ free_vector(gpp,nlstate+1,nlstate+ndeath);
+ free_vector(gmp,nlstate+1,nlstate+ndeath);
+ free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
+ free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
+ /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
+ fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
+ /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
+ fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
+ fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
+ /* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
+ /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
+ /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
+ fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
+ fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
+ fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
+ fprintf(fichtm,"\n
File (multiple files are possible if covariates are present): %s\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
+ fprintf(fichtm,"\n
Probability is computed over estepm=%d months.
\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
+ /* fprintf(fichtm,"\n
Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year
\n", stepm,YEARM,digitp,digit);
+ */
+ /* fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
+ fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
+
+ free_vector(xp,1,npar);
+ free_matrix(doldm,1,nlstate,1,nlstate);
+ free_matrix(dnewm,1,nlstate,1,npar);
+ free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+ free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
+ free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+ /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
+ fclose(ficresprobmorprev);
+ fflush(ficgp);
+ fflush(fichtm);
+ } /* end varevsij */
/************ Variance of prevlim ******************/
-void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
+ void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[])
{
- /* Variance of prevalence limit */
+ /* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
- double **newm;
+
double **dnewm,**doldm;
int i, j, nhstepm, hstepm;
- int k, cptcode;
double *xp;
double *gp, *gm;
double **gradg, **trgradg;
+ double **mgm, **mgp;
double age,agelim;
int theta;
-
- fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
+
+ pstamp(ficresvpl);
+ fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
fprintf(ficresvpl,"# Age");
for(i=1; i<=nlstate;i++)
fprintf(ficresvpl," %1d-%1d",i,i);
@@ -2329,6 +5300,8 @@ void varprevlim(char fileres[], double *
if (stepm >= YEARM) hstepm=1;
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
gradg=matrix(1,npar,1,nlstate);
+ mgp=matrix(1,npar,1,nlstate);
+ mgm=matrix(1,npar,1,nlstate);
gp=vector(1,nlstate);
gm=vector(1,nlstate);
@@ -2336,18 +5309,27 @@ void varprevlim(char fileres[], double *
for(i=1; i<=npar; i++){ /* Computes gradient */
xp[i] = x[i] + (i==theta ?delti[theta]:0);
}
- prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
- for(i=1;i<=nlstate;i++)
+ if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
+ else
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
+ for(i=1;i<=nlstate;i++){
gp[i] = prlim[i][i];
-
+ mgp[theta][i] = prlim[i][i];
+ }
for(i=1; i<=npar; i++) /* Computes gradient */
xp[i] = x[i] - (i==theta ?delti[theta]:0);
- prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
- for(i=1;i<=nlstate;i++)
+ if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
+ else
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij);
+ for(i=1;i<=nlstate;i++){
gm[i] = prlim[i][i];
-
+ mgm[theta][i] = prlim[i][i];
+ }
for(i=1;i<=nlstate;i++)
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
+ /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
} /* End theta */
trgradg =matrix(1,nlstate,1,npar);
@@ -2355,11 +5337,34 @@ void varprevlim(char fileres[], double *
for(j=1; j<=nlstate;j++)
for(theta=1; theta <=npar; theta++)
trgradg[j][theta]=gradg[theta][j];
+ /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
+ /* printf("\nmgm mgp %d ",(int)age); */
+ /* for(j=1; j<=nlstate;j++){ */
+ /* printf(" %d ",j); */
+ /* for(theta=1; theta <=npar; theta++) */
+ /* printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
+ /* printf("\n "); */
+ /* } */
+ /* } */
+ /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
+ /* printf("\n gradg %d ",(int)age); */
+ /* for(j=1; j<=nlstate;j++){ */
+ /* printf("%d ",j); */
+ /* for(theta=1; theta <=npar; theta++) */
+ /* printf("%d %lf ",theta,gradg[theta][j]); */
+ /* printf("\n "); */
+ /* } */
+ /* } */
for(i=1;i<=nlstate;i++)
varpl[i][(int)age] =0.;
+ if((int)age==79 ||(int)age== 80 ||(int)age== 81){
+ matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
+ matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
+ }else{
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
+ }
for(i=1;i<=nlstate;i++)
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
@@ -2369,6 +5374,8 @@ void varprevlim(char fileres[], double *
fprintf(ficresvpl,"\n");
free_vector(gp,1,nlstate);
free_vector(gm,1,nlstate);
+ free_matrix(mgm,1,npar,1,nlstate);
+ free_matrix(mgp,1,npar,1,nlstate);
free_matrix(gradg,1,npar,1,nlstate);
free_matrix(trgradg,1,nlstate,1,npar);
} /* End age */
@@ -2380,681 +5387,1369 @@ void varprevlim(char fileres[], double *
}
/************ Variance of one-step probabilities ******************/
-void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
-{
- int i, j=0, i1, k1, l1, t, tj;
- int k2, l2, j1, z1;
- int k=0,l, cptcode;
- int first=1, first1;
- double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
- double **dnewm,**doldm;
- double *xp;
- double *gp, *gm;
- double **gradg, **trgradg;
- double **mu;
- double age,agelim, cov[NCOVMAX];
- double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
- int theta;
- char fileresprob[FILENAMELENGTH];
- char fileresprobcov[FILENAMELENGTH];
- char fileresprobcor[FILENAMELENGTH];
-
- double ***varpij;
-
- strcpy(fileresprob,"prob");
- strcat(fileresprob,fileres);
- if((ficresprob=fopen(fileresprob,"w"))==NULL) {
- printf("Problem with resultfile: %s\n", fileresprob);
- fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
- }
- strcpy(fileresprobcov,"probcov");
- strcat(fileresprobcov,fileres);
- if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
- printf("Problem with resultfile: %s\n", fileresprobcov);
- fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
- }
- strcpy(fileresprobcor,"probcor");
- strcat(fileresprobcor,fileres);
- if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
- printf("Problem with resultfile: %s\n", fileresprobcor);
- fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
- }
- printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
- fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
- printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
- fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
- printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
- fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
-
- fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
- fprintf(ficresprob,"# Age");
- fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
- fprintf(ficresprobcov,"# Age");
- fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
- fprintf(ficresprobcov,"# Age");
-
+void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
+ {
+ int i, j=0, k1, l1, tj;
+ int k2, l2, j1, z1;
+ int k=0, l;
+ int first=1, first1, first2;
+ double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
+ double **dnewm,**doldm;
+ double *xp;
+ double *gp, *gm;
+ double **gradg, **trgradg;
+ double **mu;
+ double age, cov[NCOVMAX+1];
+ double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
+ int theta;
+ char fileresprob[FILENAMELENGTH];
+ char fileresprobcov[FILENAMELENGTH];
+ char fileresprobcor[FILENAMELENGTH];
+ double ***varpij;
+
+ strcpy(fileresprob,"PROB_");
+ strcat(fileresprob,fileres);
+ if((ficresprob=fopen(fileresprob,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", fileresprob);
+ fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
+ }
+ strcpy(fileresprobcov,"PROBCOV_");
+ strcat(fileresprobcov,fileresu);
+ if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", fileresprobcov);
+ fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
+ }
+ strcpy(fileresprobcor,"PROBCOR_");
+ strcat(fileresprobcor,fileresu);
+ if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", fileresprobcor);
+ fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
+ }
+ printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
+ fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
+ printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
+ fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
+ printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
+ fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
+ pstamp(ficresprob);
+ fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
+ fprintf(ficresprob,"# Age");
+ pstamp(ficresprobcov);
+ fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
+ fprintf(ficresprobcov,"# Age");
+ pstamp(ficresprobcor);
+ fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
+ fprintf(ficresprobcor,"# Age");
+
+
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=(nlstate+ndeath);j++){
+ fprintf(ficresprob," p%1d-%1d (SE)",i,j);
+ fprintf(ficresprobcov," p%1d-%1d ",i,j);
+ fprintf(ficresprobcor," p%1d-%1d ",i,j);
+ }
+ /* fprintf(ficresprob,"\n");
+ fprintf(ficresprobcov,"\n");
+ fprintf(ficresprobcor,"\n");
+ */
+ xp=vector(1,npar);
+ dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
+ doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
+ mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
+ varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
+ first=1;
+ fprintf(ficgp,"\n# Routine varprob");
+ fprintf(fichtm,"\n Computing and drawing one step probabilities with their confidence intervals
Matrix of variance-covariance of one-step probabilities (drawings)
this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.
\n\nMatrix of variance-covariance of pairs of step probabilities
\n",optionfilehtmcov, optionfilehtmcov);
+ fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p
\n");
+ fprintf(fichtmcov,"\n
Contour plot corresponding to x'cov-1x = 4 (where x is the column vector (pij,pkl)) are drawn. \
+It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
+would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
+standard deviations wide on each axis.
\
+ Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
+ and made the appropriate rotation to look at the uncorrelated principal directions.
\
+To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.
\n");
+
+ cov[1]=1;
+ /* tj=cptcoveff; */
+ tj = (int) pow(2,cptcoveff);
+ if (cptcovn<1) {tj=1;ncodemax[1]=1;}
+ j1=0;
+ for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates or only once*/
+ if (cptcovn>0) {
+ fprintf(ficresprob, "\n#********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresprob, "**********\n#\n");
+ fprintf(ficresprobcov, "\n#********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresprobcov, "**********\n#\n");
+
+ fprintf(ficgp, "\n#********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficgp, "**********\n#\n");
+
+
+ fprintf(fichtmcov, "\n
********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(fichtmcov, "**********\n
");
+
+ fprintf(ficresprobcor, "\n#********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresprobcor, "**********\n#");
+ if(invalidvarcomb[j1]){
+ fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1);
+ fprintf(fichtmcov,"\nCombination (%d) ignored because no cases
\n",j1);
+ continue;
+ }
+ }
+ gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
+ trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
+ gp=vector(1,(nlstate)*(nlstate+ndeath));
+ gm=vector(1,(nlstate)*(nlstate+ndeath));
+ for (age=bage; age<=fage; age ++){
+ cov[2]=age;
+ if(nagesqr==1)
+ cov[3]= age*age;
+ for (k=1; k<=cptcovn;k++) {
+ cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
+ /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
+ * 1 1 1 1 1
+ * 2 2 1 1 1
+ * 3 1 2 1 1
+ */
+ /* nbcode[1][1]=0 nbcode[1][2]=1;*/
+ }
+ /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
+ for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
+ for (k=1; k<=cptcovprod;k++)
+ cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
+
+
+ for(theta=1; theta <=npar; theta++){
+ for(i=1; i<=npar; i++)
+ xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
+
+ pmij(pmmij,cov,ncovmodel,xp,nlstate);
+
+ k=0;
+ for(i=1; i<= (nlstate); i++){
+ for(j=1; j<=(nlstate+ndeath);j++){
+ k=k+1;
+ gp[k]=pmmij[i][j];
+ }
+ }
+
+ for(i=1; i<=npar; i++)
+ xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
+
+ pmij(pmmij,cov,ncovmodel,xp,nlstate);
+ k=0;
+ for(i=1; i<=(nlstate); i++){
+ for(j=1; j<=(nlstate+ndeath);j++){
+ k=k+1;
+ gm[k]=pmmij[i][j];
+ }
+ }
+
+ for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
+ gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];
+ }
- for(i=1; i<=nlstate;i++)
- for(j=1; j<=(nlstate+ndeath);j++){
- fprintf(ficresprob," p%1d-%1d (SE)",i,j);
- fprintf(ficresprobcov," p%1d-%1d ",i,j);
- fprintf(ficresprobcor," p%1d-%1d ",i,j);
- }
- /* fprintf(ficresprob,"\n");
- fprintf(ficresprobcov,"\n");
- fprintf(ficresprobcor,"\n");
- */
- xp=vector(1,npar);
- dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
- doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
- mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
- varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
- first=1;
- if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
- printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
- fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
- exit(0);
- }
- else{
- fprintf(ficgp,"\n# Routine varprob");
- }
- if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
- printf("Problem with html file: %s\n", optionfilehtm);
- fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
- exit(0);
- }
- else{
- fprintf(fichtm,"\n Computing and drawing one step probabilities with their confidence intervals
Computing matrix of variance-covariance of step probabilities
\n");
- fprintf(fichtm,"\n
We have drawn x'cov-1x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis.
When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.
\n");
-
- }
-
- cov[1]=1;
- tj=cptcoveff;
- if (cptcovn<1) {tj=1;ncodemax[1]=1;}
- j1=0;
- for(t=1; t<=tj;t++){
- for(i1=1; i1<=ncodemax[t];i1++){
- j1++;
- if (cptcovn>0) {
- fprintf(ficresprob, "\n#********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(ficresprob, "**********\n#\n");
- fprintf(ficresprobcov, "\n#********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(ficresprobcov, "**********\n#\n");
-
- fprintf(ficgp, "\n#********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(ficgp, "**********\n#\n");
-
-
- fprintf(fichtm, "\n
********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(fichtm, "**********\n
");
-
- fprintf(ficresprobcor, "\n#********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(ficresprobcor, "**********\n#");
- }
-
- for (age=bage; age<=fage; age ++){
- cov[2]=age;
- for (k=1; k<=cptcovn;k++) {
- cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
- }
- for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
- for (k=1; k<=cptcovprod;k++)
- cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
-
- gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
- trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
- gp=vector(1,(nlstate)*(nlstate+ndeath));
- gm=vector(1,(nlstate)*(nlstate+ndeath));
-
- for(theta=1; theta <=npar; theta++){
- for(i=1; i<=npar; i++)
- xp[i] = x[i] + (i==theta ?delti[theta]:0);
-
- pmij(pmmij,cov,ncovmodel,xp,nlstate);
-
- k=0;
- for(i=1; i<= (nlstate); i++){
- for(j=1; j<=(nlstate+ndeath);j++){
- k=k+1;
- gp[k]=pmmij[i][j];
- }
- }
-
- for(i=1; i<=npar; i++)
- xp[i] = x[i] - (i==theta ?delti[theta]:0);
+ for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
+ for(theta=1; theta <=npar; theta++)
+ trgradg[j][theta]=gradg[theta][j];
+
+ matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
+ matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
+
+ pmij(pmmij,cov,ncovmodel,x,nlstate);
+
+ k=0;
+ for(i=1; i<=(nlstate); i++){
+ for(j=1; j<=(nlstate+ndeath);j++){
+ k=k+1;
+ mu[k][(int) age]=pmmij[i][j];
+ }
+ }
+ for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
+ for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
+ varpij[i][j][(int)age] = doldm[i][j];
+
+ /*printf("\n%d ",(int)age);
+ for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
+ printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
+ fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
+ }*/
+
+ fprintf(ficresprob,"\n%d ",(int)age);
+ fprintf(ficresprobcov,"\n%d ",(int)age);
+ fprintf(ficresprobcor,"\n%d ",(int)age);
+
+ for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
+ fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
+ for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
+ fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
+ fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
+ }
+ i=0;
+ for (k=1; k<=(nlstate);k++){
+ for (l=1; l<=(nlstate+ndeath);l++){
+ i++;
+ fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
+ fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
+ for (j=1; j<=i;j++){
+ /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
+ fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
+ fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
+ }
+ }
+ }/* end of loop for state */
+ } /* end of loop for age */
+ free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
+ free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
+ free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
+ free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
- pmij(pmmij,cov,ncovmodel,xp,nlstate);
- k=0;
- for(i=1; i<=(nlstate); i++){
- for(j=1; j<=(nlstate+ndeath);j++){
- k=k+1;
- gm[k]=pmmij[i][j];
- }
- }
-
- for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
- gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];
- }
-
- for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
- for(theta=1; theta <=npar; theta++)
- trgradg[j][theta]=gradg[theta][j];
-
- matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
- matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
- free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
- free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
- free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
- free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
-
- pmij(pmmij,cov,ncovmodel,x,nlstate);
-
- k=0;
- for(i=1; i<=(nlstate); i++){
- for(j=1; j<=(nlstate+ndeath);j++){
- k=k+1;
- mu[k][(int) age]=pmmij[i][j];
- }
- }
- for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
- for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
- varpij[i][j][(int)age] = doldm[i][j];
-
- /*printf("\n%d ",(int)age);
- for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
- printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
- fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
- }*/
-
- fprintf(ficresprob,"\n%d ",(int)age);
- fprintf(ficresprobcov,"\n%d ",(int)age);
- fprintf(ficresprobcor,"\n%d ",(int)age);
-
- for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
- fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
- for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
- fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
- fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
- }
- i=0;
- for (k=1; k<=(nlstate);k++){
- for (l=1; l<=(nlstate+ndeath);l++){
- i=i++;
- fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
- fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
- for (j=1; j<=i;j++){
- fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
- fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
- }
- }
- }/* end of loop for state */
- } /* end of loop for age */
-
- /* Confidence intervalle of pij */
- /*
- fprintf(ficgp,"\nset noparametric;unset label");
- fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
- fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
- fprintf(fichtm,"\n
Probability with confidence intervals expressed in year-1 :pijgr%s.png, ",optionfilefiname,optionfilefiname);
- fprintf(fichtm,"\n
",optionfilefiname);
- fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
- fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
- */
-
- /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
- first1=1;
- for (k2=1; k2<=(nlstate);k2++){
- for (l2=1; l2<=(nlstate+ndeath);l2++){
- if(l2==k2) continue;
- j=(k2-1)*(nlstate+ndeath)+l2;
- for (k1=1; k1<=(nlstate);k1++){
- for (l1=1; l1<=(nlstate+ndeath);l1++){
- if(l1==k1) continue;
- i=(k1-1)*(nlstate+ndeath)+l1;
- if(i<=j) continue;
- for (age=bage; age<=fage; age ++){
- if ((int)age %5==0){
- v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
- v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
- cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
- mu1=mu[i][(int) age]/stepm*YEARM ;
- mu2=mu[j][(int) age]/stepm*YEARM;
- c12=cv12/sqrt(v1*v2);
- /* Computing eigen value of matrix of covariance */
- lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
- lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
- /* Eigen vectors */
- v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
- /*v21=sqrt(1.-v11*v11); *//* error */
- v21=(lc1-v1)/cv12*v11;
- v12=-v21;
- v22=v11;
- tnalp=v21/v11;
- if(first1==1){
- first1=0;
- printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
- }
- fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
- /*printf(fignu*/
- /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
- /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
- if(first==1){
- first=0;
- fprintf(ficgp,"\nset parametric;unset label");
- fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
- fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
- fprintf(fichtm,"\n
Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year-1 :varpijgr%s%d%1d%1d-%1d%1d.png, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
- fprintf(fichtm,"\n
",optionfilefiname, j1,k1,l1,k2,l2);
- fprintf(fichtm,"\n
Correlation at age %d (%.3f),",(int) age, c12);
- fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
- fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
- fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
- fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
- mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
- mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
- }else{
- first=0;
- fprintf(fichtm," %d (%.3f),",(int) age, c12);
- fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
- fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
- fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
- mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
- mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
- }/* if first */
- } /* age mod 5 */
- } /* end loop age */
- fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
- first=1;
- } /*l12 */
- } /* k12 */
- } /*l1 */
- }/* k1 */
- } /* loop covariates */
- }
- free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
- free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
- free_vector(xp,1,npar);
- fclose(ficresprob);
- fclose(ficresprobcov);
- fclose(ficresprobcor);
- fclose(ficgp);
- fclose(fichtm);
-}
+ /* Confidence intervalle of pij */
+ /*
+ fprintf(ficgp,"\nunset parametric;unset label");
+ fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
+ fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
+ fprintf(fichtm,"\n
Probability with confidence intervals expressed in year-1 :pijgr%s.png, ",optionfilefiname,optionfilefiname);
+ fprintf(fichtm,"\n
",optionfilefiname);
+ fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
+ fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
+ */
+
+ /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
+ first1=1;first2=2;
+ for (k2=1; k2<=(nlstate);k2++){
+ for (l2=1; l2<=(nlstate+ndeath);l2++){
+ if(l2==k2) continue;
+ j=(k2-1)*(nlstate+ndeath)+l2;
+ for (k1=1; k1<=(nlstate);k1++){
+ for (l1=1; l1<=(nlstate+ndeath);l1++){
+ if(l1==k1) continue;
+ i=(k1-1)*(nlstate+ndeath)+l1;
+ if(i<=j) continue;
+ for (age=bage; age<=fage; age ++){
+ if ((int)age %5==0){
+ v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
+ v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
+ cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
+ mu1=mu[i][(int) age]/stepm*YEARM ;
+ mu2=mu[j][(int) age]/stepm*YEARM;
+ c12=cv12/sqrt(v1*v2);
+ /* Computing eigen value of matrix of covariance */
+ lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
+ lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
+ if ((lc2 <0) || (lc1 <0) ){
+ if(first2==1){
+ first1=0;
+ printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
+ }
+ fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
+ /* lc1=fabs(lc1); */ /* If we want to have them positive */
+ /* lc2=fabs(lc2); */
+ }
+
+ /* Eigen vectors */
+ v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
+ /*v21=sqrt(1.-v11*v11); *//* error */
+ v21=(lc1-v1)/cv12*v11;
+ v12=-v21;
+ v22=v11;
+ tnalp=v21/v11;
+ if(first1==1){
+ first1=0;
+ printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
+ }
+ fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
+ /*printf(fignu*/
+ /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
+ /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
+ if(first==1){
+ first=0;
+ fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
+ fprintf(ficgp,"\nset parametric;unset label");
+ fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
+ fprintf(ficgp,"\nset ter svg size 640, 480");
+ fprintf(fichtmcov,"\n
Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year-1\
+ : \
+%s_%d%1d%1d-%1d%1d.svg, ",k1,l1,k2,l2,\
+ subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \
+ subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
+ fprintf(fichtmcov,"\n
",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
+ fprintf(fichtmcov,"\n
Correlation at age %d (%.3f),",(int) age, c12);
+ fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
+ fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
+ fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
+ fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
+ mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \
+ mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
+ }else{
+ first=0;
+ fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
+ fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
+ fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
+ fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
+ mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \
+ mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
+ }/* if first */
+ } /* age mod 5 */
+ } /* end loop age */
+ fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
+ first=1;
+ } /*l12 */
+ } /* k12 */
+ } /*l1 */
+ }/* k1 */
+ } /* loop on combination of covariates j1 */
+ free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
+ free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
+ free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
+ free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
+ free_vector(xp,1,npar);
+ fclose(ficresprob);
+ fclose(ficresprobcov);
+ fclose(ficresprobcor);
+ fflush(ficgp);
+ fflush(fichtmcov);
+ }
/******************* Printing html file ***********/
-void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
+void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
int lastpass, int stepm, int weightopt, char model[],\
int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
- int popforecast, int estepm ,\
- double jprev1, double mprev1,double anprev1, \
- double jprev2, double mprev2,double anprev2){
+ int popforecast, int prevfcast, int backcast, int estepm , \
+ double jprev1, double mprev1,double anprev1, double dateprev1, \
+ double jprev2, double mprev2,double anprev2, double dateprev2){
int jj1, k1, i1, cpt;
- /*char optionfilehtm[FILENAMELENGTH];*/
- if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
- printf("Problem with %s \n",optionfilehtm), exit(0);
- fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
- }
-
- fprintf(fichtm,"Result files (first order: no variance)
\n
- - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): p%s
\n
- - Estimated transition probabilities over %d (stepm) months: pij%s
\n
- - Stable prevalence in each health state: pl%s
\n
- - Life expectancies by age and initial health status (estepm=%2d months):
- e%s
\n
");
+ fflush(fichtm);
}
/******************* Gnuplot file **************/
-void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
+void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){
- int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
- int ng;
- if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
- printf("Problem with file %s",optionfilegnuplot);
- fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
- }
+ char dirfileres[132],optfileres[132];
+ char gplotcondition[132];
+ int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
+ int lv=0, vlv=0, kl=0;
+ int ng=0;
+ int vpopbased;
+ int ioffset; /* variable offset for columns */
+
+/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
+/* printf("Problem with file %s",optionfilegnuplot); */
+/* fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
+/* } */
/*#ifdef windows */
- fprintf(ficgp,"cd \"%s\" \n",pathc);
- /*#endif */
-m=pow(2,cptcoveff);
-
- /* 1eme*/
- for (cpt=1; cpt<= nlstate ; cpt ++) {
- for (k1=1; k1<= m ; k1 ++) {
- fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
- fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
-
- for (i=1; i<= nlstate ; i ++) {
- if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
- for (i=1; i<= nlstate ; i ++) {
- if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",fileres,k1-1,k1-1);
- for (i=1; i<= nlstate ; i ++) {
- if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
- }
- }
+ fprintf(ficgp,"cd \"%s\" \n",pathc);
+ /*#endif */
+ m=pow(2,cptcoveff);
+
+ /* Contribution to likelihood */
+ /* Plot the probability implied in the likelihood */
+ fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
+ fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
+ /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
+ fprintf(ficgp,"\nset ter pngcairo size 640, 480");
+/* nice for mle=4 plot by number of matrix products.
+ replot "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
+/* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)" */
+ /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
+ fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
+ fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
+ fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
+ fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
+ for (i=1; i<= nlstate ; i ++) {
+ fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
+ fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot \"%s\"",subdirf(fileresilk));
+ fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
+ for (j=2; j<= nlstate+ndeath ; j ++) {
+ fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
+ }
+ fprintf(ficgp,";\nset out; unset ylabel;\n");
+ }
+ /* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */
+ /* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
+ /* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
+ fprintf(ficgp,"\nset out;unset log\n");
+ /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
+
+ strcpy(dirfileres,optionfilefiname);
+ strcpy(optfileres,"vpl");
+ /* 1eme*/
+ for (cpt=1; cpt<= nlstate ; cpt ++) { /* For each live state */
+ for (k1=1; k1<= m ; k1 ++) { /* For each valid combination of covariate */
+ /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
+ fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files ");
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
+ /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
+
+ fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1);
+ fprintf(ficgp,"\n#set out \"V_%s_%d-%d.svg\" \n",optionfilefiname,cpt,k1);
+ fprintf(ficgp,"set xlabel \"Age\" \n\
+set ylabel \"Probability\" \n \
+set ter svg size 640, 480\n \
+plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"%%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1);
+
+ for (i=1; i<= nlstate ; i ++) {
+ if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
+ for (i=1; i<= nlstate ; i ++) {
+ if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"%%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1);
+ for (i=1; i<= nlstate ; i ++) {
+ if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
+ if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
+ /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
+ fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1 */
+ if(cptcoveff ==0){
+ fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line ", 2+(cpt-1), cpt );
+ }else{
+ kl=0;
+ for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ kl++;
+ /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
+ /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */
+ /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */
+ /* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
+ if(k==cptcoveff){
+ fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' with line ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
+ 6+(cpt-1), cpt );
+ }else{
+ fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
+ kl++;
+ }
+ } /* end covariate */
+ } /* end if no covariate */
+ } /* end if backcast */
+ fprintf(ficgp,"\nset out \n");
+ } /* k1 */
+ } /* cpt */
/*2 eme*/
-
for (k1=1; k1<= m ; k1 ++) {
- fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
- fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
-
- for (i=1; i<= nlstate+1 ; i ++) {
- k=2*i;
- fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
- for (j=1; j<= nlstate+1 ; j ++) {
- if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
- else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
- fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
- for (j=1; j<= nlstate+1 ; j ++) {
- if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- fprintf(ficgp,"\" t\"\" w l 0,");
- fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
- for (j=1; j<= nlstate+1 ; j ++) {
- if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
- else fprintf(ficgp,"\" t\"\" w l 0,");
- }
- }
-
+
+ fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
+
+ fprintf(ficgp,"\nset out \"%s_%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1);
+ for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
+ if(vpopbased==0)
+ fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
+ else
+ fprintf(ficgp,"\nreplot ");
+ for (i=1; i<= nlstate+1 ; i ++) {
+ k=2*i;
+ fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
+ for (j=1; j<= nlstate+1 ; j ++) {
+ if (j==i) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
+ else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
+ fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
+ for (j=1; j<= nlstate+1 ; j ++) {
+ if (j==i) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ fprintf(ficgp,"\" t\"\" w l lt 0,");
+ fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
+ for (j=1; j<= nlstate+1 ; j ++) {
+ if (j==i) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
+ else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
+ } /* state */
+ } /* vpopbased */
+ fprintf(ficgp,"\nset out;set out \"%s_%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1); /* Buggy gnuplot */
+ } /* k1 */
+
+
/*3eme*/
-
for (k1=1; k1<= m ; k1 ++) {
+
for (cpt=1; cpt<= nlstate ; cpt ++) {
- k=2+nlstate*(2*cpt-2);
- fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
- fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
+ fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files: cov=%d state=%d",k1, cpt);
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
+
+ /* k=2+nlstate*(2*cpt-2); */
+ k=2+(nlstate+1)*(cpt-1);
+ fprintf(ficgp,"\nset out \"%s_%d%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1);
+ fprintf(ficgp,"set ter svg size 640, 480\n\
+plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
/*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
-
+
*/
for (i=1; i< nlstate ; i ++) {
- fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
-
+ fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
+ /* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
+
}
+ fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
}
}
- /* CV preval stat */
- for (k1=1; k1<= m ; k1 ++) {
- for (cpt=1; cptResult files (first order: no variance)
\n");
+ fprintf(fichtm,"
\n",
+ jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
+ fprintf(fichtm,"
\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
+ fprintf(fichtm,"\
+ - Estimated transition probabilities over %d (stepm) months: %s
\n ",
+ stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
+ fprintf(fichtm,"\
+ - Estimated back transition probabilities over %d (stepm) months: %s
\n ",
+ stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
+ fprintf(fichtm,"\
+ - Period (stable) prevalence in each health state: %s
\n",
+ subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
+ fprintf(fichtm,"\
+ - Period (stable) back prevalence in each health state: %s
\n",
+ subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
+ fprintf(fichtm,"\
+ - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
+ %s
\n",
+ estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
+ if(prevfcast==1){
+ fprintf(fichtm,"\
+ - Prevalence projections by age and states: \
+ %s
\n
");
-
-
- fprintf(fichtm,"\n
************ Results for covariates");
- for (cpt=1; cpt<=cptcoveff;cpt++)
- fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
+ for (cpt=1; cpt<=cptcoveff;cpt++){
+ fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
+ printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout);
+ }
fprintf(fichtm," ************\n
");
+ if(invalidvarcomb[k1]){
+ fprintf(fichtm,"\nCombination (%d) ignored because no cases
\n",k1);
+ printf("\nCombination (%d) ignored because no cases \n",k1);
+ continue;
+ }
}
+ /* aij, bij */
+ fprintf(fichtm,"
- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: %s_%d-1.svg
\
+",model,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
/* Pij */
- fprintf(fichtm,"
- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png
-",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
+ fprintf(fichtm,"
\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s_%d-2.svg
\
+",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
/* Quasi-incidences */
- fprintf(fichtm,"
- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png
-",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
- /* Stable prevalence in each health state */
- for(cpt=1; cpt
-",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
+ fprintf(fichtm,"
\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
+ before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
+ incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \
+divided by h: hPij/h : %s_%d-3.svg
\
+",stepm,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1,subdirf2(optionfilefiname,"PE_"),jj1);
+ /* Survival functions (period) in state j */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. %s%d_%d.svg
\
+", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1,subdirf2(optionfilefiname,"LIJ_"),cpt,jj1);
+ }
+ /* State specific survival functions (period) */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Survival functions from state %d in each live state and total.\
+ Or probability to survive in various states (1 to %d) being in state %d at different ages. \
+ %s%d_%d.svg
", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1,subdirf2(optionfilefiname,"LIJT_"),cpt,jj1);
+ }
+ /* Period (stable) prevalence in each health state */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. %s_%d-%d.svg
\
+", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1,subdirf2(optionfilefiname,"P_"),cpt,jj1);
+ }
+ if(backcast==1){
+ /* Period (stable) back prevalence in each health state */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. %s_%d-%d.svg
\
+", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1,subdirf2(optionfilefiname,"PB_"),cpt,jj1);
+ }
+ }
+ if(prevfcast==1){
+ /* Projection of prevalence up to period (stable) prevalence in each health state */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. %s%d_%d.svg
\
+", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1,subdirf2(optionfilefiname,"PROJ_"),cpt,jj1);
}
+ }
+
for(cpt=1; cpt<=nlstate;cpt++) {
- fprintf(fichtm,"\n
- Health life expectancies by age and initial health state (%d): exp%s%d%d.png
-",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
+ fprintf(fichtm,"\n
- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): %s_%d%d.svg
\
+",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1,subdirf2(optionfilefiname,"EXP_"),cpt,jj1);
}
- fprintf(fichtm,"\n
- Total life expectancy by age and
-health expectancies in states (1) and (2): e%s%d.png
-",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
- } /* end i1 */
- }/* End k1 */
- fprintf(fichtm," Result files (second order: variances)
\n
- - Parameter file with estimated parameters and covariance matrix: %s
\n
- - Variance of one-step probabilities: prob%s
\n
- - Variance-covariance of one-step probabilities: probcov%s
\n
- - Correlation matrix of one-step probabilities: probcor%s
\n
- - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): v%s
\n
- - Health expectancies with their variances (no covariance): t%s
\n
- - Standard deviation of stable prevalences: vpl%s
\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
-
- if(popforecast==1) fprintf(fichtm,"\n
- - Prevalences forecasting: f%s
\n
- - Population forecasting (if popforecast=1): pop%s
\n
-
",fileres,fileres,fileres,fileres);
- else
- fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)
");
+
+ fprintf(fichtm,"\
+\n Result files (second order: variances)
\n\
+ - Parameter file with estimated parameters and covariance matrix: %s
\
+ - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).
\
+But because parameters are usually highly correlated (a higher incidence of disability \
+and a higher incidence of recovery can give very close observed transition) it might \
+be very useful to look not only at linear confidence intervals estimated from the \
+variances but at the covariance matrix. And instead of looking at the estimated coefficients \
+(parameters) of the logistic regression, it might be more meaningful to visualize the \
+covariance matrix of the one-step probabilities. \
+See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
+
+ fprintf(fichtm," - Standard deviation of one-step probabilities: %s
\n",
+ subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
+ fprintf(fichtm,"\
+ - Variance-covariance of one-step probabilities: %s
\n",
+ subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
+
+ fprintf(fichtm,"\
+ - Correlation matrix of one-step probabilities: %s
\n",
+ subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
+ fprintf(fichtm,"\
+ - Variances and covariances of health expectancies by age and initial health status (cov(eij,ekl)(estepm=%2d months): \
+ %s
\n
\n",
+ estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
+ fprintf(fichtm,"\
+ - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): %s
\n",
+ estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
+ fprintf(fichtm,"\
+ - Total life expectancy and total health expectancies to be spent in each health state e.j with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): %s
\n",
+ estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
+ fprintf(fichtm,"\
+ - Standard deviation of period (stable) prevalences: %s
\n",\
+ subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
+
+/* if(popforecast==1) fprintf(fichtm,"\n */
+/* - Prevalences forecasting: f%s
\n */
+/* - Population forecasting (if popforecast=1): pop%s
\n */
+/*
",fileres,fileres,fileres,fileres); */
+/* else */
+/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)
\n",popforecast, stepm, model); */
+ fflush(fichtm);
+ fprintf(fichtm,"
");
-fclose(fichtm);
+ fprintf(fichtm,"\n
************ Results for covariates");
- for (cpt=1; cpt<=cptcoveff;cpt++)
- fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
+ for (cpt=1; cpt<=cptcoveff;cpt++) /**< cptcoveff number of variables */
+ fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);
fprintf(fichtm," ************\n
");
+
+ if(invalidvarcomb[k1]){
+ fprintf(fichtm,"\nCombination (%d) ignored because no cases
\n",k1);
+ continue;
+ }
}
for(cpt=1; cpt<=nlstate;cpt++) {
- fprintf(fichtm,"
- Observed and stationary prevalence (with confident
-interval) in state (%d): v%s%d%d.png
-",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
+ fprintf(fichtm,"\n
- Observed (cross-sectional) and period (incidence based) \
+prevalence (with 95%% confidence interval) in state (%d): %s_%d-%d.svg\n
\
+",cpt,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1,subdirf2(optionfilefiname,"V_"),cpt,jj1);
}
- } /* end i1 */
- }/* End k1 */
- fprintf(fichtm,"
- Total life expectancy by age and \
+health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
+true period expectancies (those weighted with period prevalences are also\
+ drawn in addition to the population based expectancies computed using\
+ observed and cahotic prevalences: %s_%d.svg\n
\
+",subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1,subdirf2(optionfilefiname,"E_"),jj1);
+ /* } /\* end i1 *\/ */
+ }/* End k1 */
+ fprintf(fichtm,"
");
- /* */
- strcpy(fileres,"r");
- strcat(fileres, optionfilefiname);
- strcat(fileres,".txt"); /* Other files have txt extension */
+fprintf(fichtm,"Result files
\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):
");
+ fprintf(fichtm," mu(age) =%lf*exp(%lf*(age-%d)) per year
",p[1],p[2],agegomp);
+ for (i=1;i<=2;i++)
+ fprintf(fichtm," p[%d] = %lf [%f ; %f]
\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
+ fprintf(fichtm,"
");
+ fprintf(fichtm,"Life table
\n
");
- /*---------arguments file --------*/
+ fprintf(fichtm,"\nAge l
");
- if((ficpar=fopen(optionfile,"r"))==NULL) {
- printf("Problem with optionfile %s\n",optionfile);
- fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
- goto end;
- }
+ for (k=agegomp;k<(agemortsup-2);k++)
+ fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf
\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
- strcpy(filereso,"o");
- strcat(filereso,fileres);
- if((ficparo=fopen(filereso,"w"))==NULL) {
- printf("Problem with Output resultfile: %s\n", filereso);
- fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
- goto end;
- }
+
+ fflush(fichtm);
+}
- /* Reads comments: lines beginning with '#' */
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
+/******************* Gnuplot file **************/
+void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
- fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
- printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
- fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
-
-
- covar=matrix(0,NCOVMAX,1,n);
- cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
- if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
+ char dirfileres[132],optfileres[132];
- ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
- nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
-
- /* Read guess parameters */
- /* Reads comments: lines beginning with '#' */
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
-
- param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
- for(i=1; i <=nlstate; i++)
- for(j=1; j <=nlstate+ndeath-1; j++){
- fscanf(ficpar,"%1d%1d",&i1,&j1);
- fprintf(ficparo,"%1d%1d",i1,j1);
- if(mle==1)
- printf("%1d%1d",i,j);
- fprintf(ficlog,"%1d%1d",i,j);
- for(k=1; k<=ncovmodel;k++){
- fscanf(ficpar," %lf",¶m[i][j][k]);
- if(mle==1){
- printf(" %lf",param[i][j][k]);
- fprintf(ficlog," %lf",param[i][j][k]);
- }
- else
- fprintf(ficlog," %lf",param[i][j][k]);
- fprintf(ficparo," %lf",param[i][j][k]);
- }
- fscanf(ficpar,"\n");
- if(mle==1)
- printf("\n");
- fprintf(ficlog,"\n");
- fprintf(ficparo,"\n");
- }
-
- npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
+ int ng;
- p=param[1][1];
-
- /* Reads comments: lines beginning with '#' */
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
- delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
- delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
- for(i=1; i <=nlstate; i++){
- for(j=1; j <=nlstate+ndeath-1; j++){
- fscanf(ficpar,"%1d%1d",&i1,&j1);
- printf("%1d%1d",i,j);
- fprintf(ficparo,"%1d%1d",i1,j1);
- for(k=1; k<=ncovmodel;k++){
- fscanf(ficpar,"%le",&delti3[i][j][k]);
- printf(" %le",delti3[i][j][k]);
- fprintf(ficparo," %le",delti3[i][j][k]);
- }
- fscanf(ficpar,"\n");
- printf("\n");
- fprintf(ficparo,"\n");
- }
- }
- delti=delti3[1][1];
-
- /* Reads comments: lines beginning with '#' */
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
-
- matcov=matrix(1,npar,1,npar);
- for(i=1; i <=npar; i++){
- fscanf(ficpar,"%s",&str);
- if(mle==1)
- printf("%s",str);
- fprintf(ficlog,"%s",str);
- fprintf(ficparo,"%s",str);
- for(j=1; j <=i; j++){
- fscanf(ficpar," %le",&matcov[i][j]);
- if(mle==1){
- printf(" %.5le",matcov[i][j]);
- fprintf(ficlog," %.5le",matcov[i][j]);
- }
- else
- fprintf(ficlog," %.5le",matcov[i][j]);
- fprintf(ficparo," %.5le",matcov[i][j]);
- }
- fscanf(ficpar,"\n");
- if(mle==1)
- printf("\n");
- fprintf(ficlog,"\n");
- fprintf(ficparo,"\n");
- }
- for(i=1; i <=npar; i++)
- for(j=i+1;j<=npar;j++)
- matcov[i][j]=matcov[j][i];
-
- if(mle==1)
- printf("\n");
- fprintf(ficlog,"\n");
+ /*#ifdef windows */
+ fprintf(ficgp,"cd \"%s\" \n",pathc);
+ /*#endif */
- /*-------- Rewriting paramater file ----------*/
- strcpy(rfileres,"r"); /* "Rparameterfile */
- strcat(rfileres,optionfilefiname); /* Parameter file first name*/
- strcat(rfileres,"."); /* */
- strcat(rfileres,optionfilext); /* Other files have txt extension */
- if((ficres =fopen(rfileres,"w"))==NULL) {
- printf("Problem writing new parameter file: %s\n", fileres);goto end;
- fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
- }
- fprintf(ficres,"#%s\n",version);
-
+ strcpy(dirfileres,optionfilefiname);
+ strcpy(optfileres,"vpl");
+ fprintf(ficgp,"set out \"graphmort.svg\"\n ");
+ fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
+ fprintf(ficgp, "set ter svg size 640, 480\n set log y\n");
+ /* fprintf(ficgp, "set size 0.65,0.65\n"); */
+ fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
+
+}
+
+int readdata(char datafile[], int firstobs, int lastobs, int *imax)
+{
+
/*-------- data file ----------*/
+ FILE *fic;
+ char dummy[]=" ";
+ int i=0, j=0, n=0, iv=0;
+ int lstra;
+ int linei, month, year,iout;
+ char line[MAXLINE], linetmp[MAXLINE];
+ char stra[MAXLINE], strb[MAXLINE];
+ char *stratrunc;
+
+
+
if((fic=fopen(datafile,"r"))==NULL) {
- printf("Problem with datafile: %s\n", datafile);goto end;
- fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
+ printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
+ fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
}
- n= lastobs;
- severity = vector(1,maxwav);
- outcome=imatrix(1,maxwav+1,1,n);
- num=ivector(1,n);
- moisnais=vector(1,n);
- annais=vector(1,n);
- moisdc=vector(1,n);
- andc=vector(1,n);
- agedc=vector(1,n);
- cod=ivector(1,n);
- weight=vector(1,n);
- for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
- mint=matrix(1,maxwav,1,n);
- anint=matrix(1,maxwav,1,n);
- s=imatrix(1,maxwav+1,1,n);
- tab=ivector(1,NCOVMAX);
- ncodemax=ivector(1,8);
-
i=1;
- while (fgets(line, MAXLINE, fic) != NULL) {
- if ((i >= firstobs) && (i <=lastobs)) {
-
- for (j=maxwav;j>=1;j--){
- cutv(stra, strb,line,' '); s[j][i]=atoi(strb);
+ linei=0;
+ while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
+ linei=linei+1;
+ for(j=strlen(line); j>=0;j--){ /* Untabifies line */
+ if(line[j] == '\t')
+ line[j] = ' ';
+ }
+ for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
+ ;
+ };
+ line[j+1]=0; /* Trims blanks at end of line */
+ if(line[0]=='#'){
+ fprintf(ficlog,"Comment line\n%s\n",line);
+ printf("Comment line\n%s\n",line);
+ continue;
+ }
+ trimbb(linetmp,line); /* Trims multiple blanks in line */
+ strcpy(line, linetmp);
+
+ /* Loops on waves */
+ for (j=maxwav;j>=1;j--){
+ for (iv=nqtv;iv>=1;iv--){ /* Loop on time varying quantitative variables */
+ cutv(stra, strb, line, ' ');
+ if(strb[0]=='.') { /* Missing value */
+ lval=-1;
+ cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
+ if(isalpha(strb[1])) { /* .m or .d Really Missing value */
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
+ return 1;
+ }
+ }else{
+ errno=0;
+ /* what_kind_of_number(strb); */
+ dval=strtod(strb,&endptr);
+ /* if( strb[0]=='\0' || (*endptr != '\0')){ */
+ /* if(strb != endptr && *endptr == '\0') */
+ /* dval=dlval; */
+ /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
+ return 1;
+ }
+ cotqvar[j][iv][i]=dval;
+ }
strcpy(line,stra);
- cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
- cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
+ }/* end loop ntqv */
+
+ for (iv=ntv;iv>=1;iv--){ /* Loop on time varying dummies */
+ cutv(stra, strb, line, ' ');
+ if(strb[0]=='.') { /* Missing value */
+ lval=-1;
+ }else{
+ errno=0;
+ lval=strtol(strb,&endptr,10);
+ /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
+ return 1;
+ }
+ }
+ if(lval <-1 || lval >1){
+ printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
+ Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
+ for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
+ For example, for multinomial values like 1, 2 and 3,\n \
+ build V1=0 V2=0 for the reference value (1),\n \
+ V1=1 V2=0 for (2) \n \
+ and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
+ output of IMaCh is often meaningless.\n \
+ Exiting.\n",lval,linei, i,line,j);
+ fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
+ Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
+ for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
+ For example, for multinomial values like 1, 2 and 3,\n \
+ build V1=0 V2=0 for the reference value (1),\n \
+ V1=1 V2=0 for (2) \n \
+ and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
+ output of IMaCh is often meaningless.\n \
+ Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
+ return 1;
+ }
+ cotvar[j][iv][i]=(double)(lval);
+ strcpy(line,stra);
+ }/* end loop ntv */
+
+ /* Statuses at wave */
+ cutv(stra, strb, line, ' ');
+ if(strb[0]=='.') { /* Missing value */
+ lval=-1;
+ }else{
+ errno=0;
+ lval=strtol(strb,&endptr,10);
+ /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
+ return 1;
+ }
}
-
- cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
- cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
-
- cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
- cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
-
- cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
- for (j=ncovcol;j>=1;j--){
- cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
- }
- num[i]=atol(stra);
-
- /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
- printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
-
- i=i+1;
+
+ s[j][i]=lval;
+
+ /* Date of Interview */
+ strcpy(line,stra);
+ cutv(stra, strb,line,' ');
+ if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
+ }
+ else if( (iout=sscanf(strb,"%s.",dummy)) != 0){
+ month=99;
+ year=9999;
+ }else{
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
+ return 1;
+ }
+ anint[j][i]= (double) year;
+ mint[j][i]= (double)month;
+ strcpy(line,stra);
+ } /* End loop on waves */
+
+ /* Date of death */
+ cutv(stra, strb,line,' ');
+ if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
+ }
+ else if( (iout=sscanf(strb,"%s.",dummy)) != 0){
+ month=99;
+ year=9999;
+ }else{
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog);
+ return 1;
+ }
+ andc[i]=(double) year;
+ moisdc[i]=(double) month;
+ strcpy(line,stra);
+
+ /* Date of birth */
+ cutv(stra, strb,line,' ');
+ if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
+ }
+ else if( (iout=sscanf(strb,"%s.", dummy)) != 0){
+ month=99;
+ year=9999;
+ }else{
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog);
+ return 1;
+ }
+ if (year==9999) {
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
+ return 1;
+
}
- }
- /* printf("ii=%d", ij);
- scanf("%d",i);*/
- imx=i-1; /* Number of individuals */
-
- /* for (i=1; i<=imx; i++){
- if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
- if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
- if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
- }*/
- /* for (i=1; i<=imx; i++){
- if (s[4][i]==9) s[4][i]=-1;
- printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
-
-
- /* Calculation of the number of parameter from char model*/
- Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
- Tprod=ivector(1,15);
- Tvaraff=ivector(1,15);
- Tvard=imatrix(1,15,1,2);
- Tage=ivector(1,15);
-
- if (strlen(model) >1){ /* If there is at least 1 covariate */
- j=0, j1=0, k1=1, k2=1;
- j=nbocc(model,'+'); /* j=Number of '+' */
- j1=nbocc(model,'*'); /* j1=Number of '*' */
- cptcovn=j+1;
- cptcovprod=j1; /*Number of products */
+ annais[i]=(double)(year);
+ moisnais[i]=(double)(month);
+ strcpy(line,stra);
- strcpy(modelsav,model);
- if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
- printf("Error. Non available option model=%s ",model);
- fprintf(ficlog,"Error. Non available option model=%s ",model);
- goto end;
+ /* Sample weight */
+ cutv(stra, strb,line,' ');
+ errno=0;
+ dval=strtod(strb,&endptr);
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei);
+ fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei);
+ fflush(ficlog);
+ return 1;
}
+ weight[i]=dval;
+ strcpy(line,stra);
- /* This loop fills the array Tvar from the string 'model'.*/
-
- for(i=(j+1); i>=1;i--){
- cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
- if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
- /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
- /*scanf("%d",i);*/
- if (strchr(strb,'*')) { /* Model includes a product */
- cutv(strd,strc,strb,'*'); /* strd*strc Vm*Vn (if not *age)*/
- if (strcmp(strc,"age")==0) { /* Vn*age */
- cptcovprod--;
- cutv(strb,stre,strd,'V');
- Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
- cptcovage++;
- Tage[cptcovage]=i;
- /*printf("stre=%s ", stre);*/
- }
- else if (strcmp(strd,"age")==0) { /* or age*Vn */
- cptcovprod--;
- cutv(strb,stre,strc,'V');
- Tvar[i]=atoi(stre);
- cptcovage++;
- Tage[cptcovage]=i;
- }
- else { /* Age is not in the model */
- cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
- Tvar[i]=ncovcol+k1;
- cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
- Tprod[k1]=i;
- Tvard[k1][1]=atoi(strc); /* m*/
- Tvard[k1][2]=atoi(stre); /* n */
- Tvar[cptcovn+k2]=Tvard[k1][1];
- Tvar[cptcovn+k2+1]=Tvard[k1][2];
- for (k=1; k<=lastobs;k++)
- covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
- k1++;
- k2=k2+2;
+ for (iv=nqv;iv>=1;iv--){ /* Loop on fixed quantitative variables */
+ cutv(stra, strb, line, ' ');
+ if(strb[0]=='.') { /* Missing value */
+ lval=-1;
+ }else{
+ errno=0;
+ /* what_kind_of_number(strb); */
+ dval=strtod(strb,&endptr);
+ /* if(strb != endptr && *endptr == '\0') */
+ /* dval=dlval; */
+ /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
+ return 1;
}
+ coqvar[iv][i]=dval;
}
- else { /* no more sum */
- /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
- /* scanf("%d",i);*/
- cutv(strd,strc,strb,'V');
- Tvar[i]=atoi(strc);
- }
- strcpy(modelsav,stra);
- /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
- scanf("%d",i);*/
- } /* end of loop + */
- } /* end model */
+ strcpy(line,stra);
+ }/* end loop nqv */
+
+ /* Covariate values */
+ for (j=ncovcol;j>=1;j--){
+ cutv(stra, strb,line,' ');
+ if(strb[0]=='.') { /* Missing covariate value */
+ lval=-1;
+ }else{
+ errno=0;
+ lval=strtol(strb,&endptr,10);
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);
+ fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);fflush(ficlog);
+ return 1;
+ }
+ }
+ if(lval <-1 || lval >1){
+ printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
+ Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
+ for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
+ For example, for multinomial values like 1, 2 and 3,\n \
+ build V1=0 V2=0 for the reference value (1),\n \
+ V1=1 V2=0 for (2) \n \
+ and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
+ output of IMaCh is often meaningless.\n \
+ Exiting.\n",lval,linei, i,line,j);
+ fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
+ Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
+ for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
+ For example, for multinomial values like 1, 2 and 3,\n \
+ build V1=0 V2=0 for the reference value (1),\n \
+ V1=1 V2=0 for (2) \n \
+ and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
+ output of IMaCh is often meaningless.\n \
+ Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
+ return 1;
+ }
+ covar[j][i]=(double)(lval);
+ strcpy(line,stra);
+ }
+ lstra=strlen(stra);
+
+ if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
+ stratrunc = &(stra[lstra-9]);
+ num[i]=atol(stratrunc);
+ }
+ else
+ num[i]=atol(stra);
+ /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
+ printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
+
+ i=i+1;
+ } /* End loop reading data */
- /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
- If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
+ *imax=i-1; /* Number of individuals */
+ fclose(fic);
+
+ return (0);
+ /* endread: */
+ printf("Exiting readdata: ");
+ fclose(fic);
+ return (1);
+}
- /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
- printf("cptcovprod=%d ", cptcovprod);
- fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
+void removespace(char *str) {
+ char *p1 = str, *p2 = str;
+ do
+ while (*p2 == ' ')
+ p2++;
+ while (*p1++ == *p2++);
+}
- scanf("%d ",i);
- fclose(fic);*/
+int decodemodel ( char model[], int lastobs)
+ /**< This routine decode the model and returns:
+ * Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
+ * - nagesqr = 1 if age*age in the model, otherwise 0.
+ * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
+ * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
+ * - cptcovage number of covariates with age*products =2
+ * - cptcovs number of simple covariates
+ * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
+ * which is a new column after the 9 (ncovcol) variables.
+ * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
+ * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
+ * Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
+ * - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
+ */
+{
+ int i, j, k, ks;
+ int j1, k1, k2;
+ char modelsav[80];
+ char stra[80], strb[80], strc[80], strd[80],stre[80];
+ char *strpt;
- /* if(mle==1){*/
- if (weightopt != 1) { /* Maximisation without weights*/
- for(i=1;i<=n;i++) weight[i]=1.0;
+ /*removespace(model);*/
+ if (strlen(model) >1){ /* If there is at least 1 covariate */
+ j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
+ if (strstr(model,"AGE") !=0){
+ printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
+ fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
+ return 1;
+ }
+ if (strstr(model,"v") !=0){
+ printf("Error. 'v' must be in upper case 'V' model=%s ",model);
+ fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
+ return 1;
+ }
+ strcpy(modelsav,model);
+ if ((strpt=strstr(model,"age*age")) !=0){
+ printf(" strpt=%s, model=%s\n",strpt, model);
+ if(strpt != model){
+ printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
+ 'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
+ corresponding column of parameters.\n",model);
+ fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
+ 'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
+ corresponding column of parameters.\n",model); fflush(ficlog);
+ return 1;
+ }
+ nagesqr=1;
+ if (strstr(model,"+age*age") !=0)
+ substrchaine(modelsav, model, "+age*age");
+ else if (strstr(model,"age*age+") !=0)
+ substrchaine(modelsav, model, "age*age+");
+ else
+ substrchaine(modelsav, model, "age*age");
+ }else
+ nagesqr=0;
+ if (strlen(modelsav) >1){
+ j=nbocc(modelsav,'+'); /**< j=Number of '+' */
+ j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
+ cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2 */
+ cptcovt= j+1; /* Number of total covariates in the model, not including
+ * cst, age and age*age
+ * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
+ /* including age products which are counted in cptcovage.
+ * but the covariates which are products must be treated
+ * separately: ncovn=4- 2=2 (V1+V3). */
+ cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */
+ cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */
+
+
+ /* Design
+ * V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight
+ * < ncovcol=8 >
+ * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
+ * k= 1 2 3 4 5 6 7 8
+ * cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
+ * covar[k,i], value of kth covariate if not including age for individual i:
+ * covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
+ * Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
+ * if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and
+ * Tage[++cptcovage]=k
+ * if products, new covar are created after ncovcol with k1
+ * Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11
+ * Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
+ * Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
+ * Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
+ * Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
+ * V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
+ * < ncovcol=8 >
+ * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2
+ * k= 1 2 3 4 5 6 7 8 9 10 11 12
+ * Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8
+ * p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6}
+ * p Tprod[1]@2={ 6, 5}
+ *p Tvard[1][1]@4= {7, 8, 5, 6}
+ * covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8
+ * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
+ *How to reorganize?
+ * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
+ * Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6}
+ * {2, 1, 4, 8, 5, 6, 3, 7}
+ * Struct []
+ */
+
+ /* This loop fills the array Tvar from the string 'model'.*/
+ /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
+ /* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */
+ /* k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
+ /* k=3 V4 Tvar[k=3]= 4 (from V4) */
+ /* k=2 V1 Tvar[k=2]= 1 (from V1) */
+ /* k=1 Tvar[1]=2 (from V2) */
+ /* k=5 Tvar[5] */
+ /* for (k=1; k<=cptcovn;k++) { */
+ /* cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
+ /* } */
+ /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
+ /*
+ * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
+ for(k=cptcovt; k>=1;k--) /**< Number of covariates not including constant and age, neither age*age*/
+ Tvar[k]=0;
+ cptcovage=0;
+ for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
+ cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+'
+ modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */
+ if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
+ /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
+ /*scanf("%d",i);*/
+ if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
+ cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
+ if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
+ /* covar is not filled and then is empty */
+ cptcovprod--;
+ cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
+ Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
+ Typevar[k]=1; /* 2 for age product */
+ cptcovage++; /* Sums the number of covariates which include age as a product */
+ Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
+ /*printf("stre=%s ", stre);*/
+ } else if (strcmp(strd,"age")==0) { /* or age*Vn */
+ cptcovprod--;
+ cutl(stre,strb,strc,'V');
+ Tvar[k]=atoi(stre);
+ Typevar[k]=1; /* 1 for age product */
+ cptcovage++;
+ Tage[cptcovage]=k;
+ } else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/
+ /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
+ cptcovn++;
+ cptcovprodnoage++;k1++;
+ cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
+ Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
+ because this model-covariate is a construction we invent a new column
+ which is after existing variables ncovcol+nqv+ntv+nqtv + k1
+ If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
+ Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
+ Typevar[k]=2; /* 2 for double fixed dummy covariates */
+ cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
+ Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */
+ Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
+ Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
+ k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
+ /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
+ /* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
+ /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
+ /* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */
+ for (i=1; i<=lastobs;i++){
+ /* Computes the new covariate which is a product of
+ covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
+ covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
+ }
+ } /* End age is not in the model */
+ } /* End if model includes a product */
+ else { /* no more sum */
+ /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
+ /* scanf("%d",i);*/
+ cutl(strd,strc,strb,'V');
+ ks++; /**< Number of simple covariates*/
+ cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
+ Tvar[k]=atoi(strd);
+ Typevar[k]=0; /* 0 for simple covariates */
+ }
+ strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */
+ /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
+ scanf("%d",i);*/
+ } /* end of loop + on total covariates */
+ } /* end if strlen(modelsave == 0) age*age might exist */
+ } /* end if strlen(model == 0) */
+
+ /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
+ If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
+
+ /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
+ printf("cptcovprod=%d ", cptcovprod);
+ fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
+ scanf("%d ",i);*/
+
+
+/* Decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
+ of variable (dummy vs quantitative, fixed vs time varying) is behind */
+/* ncovcol= 1, nqv=1, ntv=2, nqtv= 1 = 5 possible variables data
+ model= V2 + V4 +V3 + V4*V3 + V5*age + V5 , V1 is not used saving its place
+ k = 1 2 3 4 5 6
+ Tvar[k]= 2 4 3 1+1+2+1+1=6 5 5
+ Typevar[k]=0 0 0 2 1 0
+*/
+/* Dispatching between quantitative and time varying covariates */
+ /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */
+ for(k=1, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
+ if (Tvar[k] <=ncovcol){ /* Simple fixed dummy covariatee */
+ ncoveff++;
+ }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){ /* Remind that product Vn*Vm are added in k*/
+ nqfveff++; /* Only simple fixed quantitative variable */
+ }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){
+ ntveff++; /* Only simple time varying dummy variable */
+ }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){
+ nqtveff++;/* Only simple time varying quantitative variable */
+ }else{
+ printf("Other types in effective covariates \n");
+ }
}
- /*-calculation of age at interview from date of interview and age at death -*/
- agev=matrix(1,maxwav,1,imx);
+
+ printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
+ fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
+ return (0); /* with covar[new additional covariate if product] and Tage if age */
+ /*endread:*/
+ printf("Exiting decodemodel: ");
+ return (1);
+}
+int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
+{
+ int i, m;
+ int firstone=0;
+
for (i=1; i<=imx; i++) {
for(m=2; (m<= maxwav); m++) {
- if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
+ if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
anint[m][i]=9999;
+ if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
+ s[m][i]=-1;
+ }
+ if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
+ *nberr = *nberr + 1;
+ if(firstone == 0){
+ firstone=1;
+ printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
+ }
+ fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
s[m][i]=-1;
}
- if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
+ if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
+ (*nberr)++;
+ printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
+ fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
+ s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
+ }
}
}
for (i=1; i<=imx; i++) {
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
- for(m=1; (m<= maxwav); m++){
- if(s[m][i] >0){
+ for(m=firstpass; (m<= lastpass); m++){
+ if(s[m][i] >0 || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
if (s[m][i] >= nlstate+1) {
- if(agedc[i]>0)
- if(moisdc[i]!=99 && andc[i]!=9999)
+ if(agedc[i]>0){
+ if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
agev[m][i]=agedc[i];
- /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
- else {
- if (andc[i]!=9999){
- printf("Warning negative age at death: %d line:%d\n",num[i],i);
- fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
+ /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
+ }else {
+ if ((int)andc[i]!=9999){
+ nbwarn++;
+ printf("Warning negative age at death: %ld line:%d\n",num[i],i);
+ fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
agev[m][i]=-1;
}
}
- }
+ } /* agedc > 0 */
+ } /* end if */
else if(s[m][i] !=9){ /* Standard case, age in fractional
- years but with the precision of a
- month */
+ years but with the precision of a month */
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
- if(mint[m][i]==99 || anint[m][i]==9999)
+ if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
agev[m][i]=1;
- else if(agev[m][i]
\n
-Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s
\n
-\n
-Total number of observations=%d
\n
-Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf
\n
-
-
\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
- fclose(fichtm);
+/* Main decodemodel */
- printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
-
- /*------------ free_vector -------------*/
- chdir(path);
-
- free_ivector(wav,1,imx);
- free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
- free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
- free_imatrix(mw,1,lastpass-firstpass+1,1,imx);
- free_ivector(num,1,n);
- free_vector(agedc,1,n);
- /*free_matrix(covar,0,NCOVMAX,1,n);*/
- /*free_matrix(covar,1,NCOVMAX,1,n);*/
- fclose(ficparo);
- fclose(ficres);
+ if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3 = {4, 3, 5}*/
+ goto end;
- /*--------------- Prevalence limit (stable prevalence) --------------*/
-
- strcpy(filerespl,"pl");
- strcat(filerespl,fileres);
- if((ficrespl=fopen(filerespl,"w"))==NULL) {
- printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
- fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
+ if((double)(lastobs-imx)/(double)imx > 1.10){
+ nbwarn++;
+ printf("Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx);
+ fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx);
}
- printf("Computing stable prevalence: result on file '%s' \n", filerespl);
- fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
- fprintf(ficrespl,"#Stable prevalence \n");
- fprintf(ficrespl,"#Age ");
- for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
- fprintf(ficrespl,"\n");
-
- prlim=matrix(1,nlstate,1,nlstate);
-
- agebase=ageminpar;
- agelim=agemaxpar;
- ftolpl=1.e-10;
- i1=cptcoveff;
- if (cptcovn < 1){i1=1;}
-
- for(cptcov=1,k=0;cptcov<=i1;cptcov++){
- for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
- k=k+1;
- /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
- fprintf(ficrespl,"\n#******");
- printf("\n#******");
- fprintf(ficlog,"\n#******");
- for(j=1;j<=cptcoveff;j++) {
- fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- }
- fprintf(ficrespl,"******\n");
- printf("******\n");
- fprintf(ficlog,"******\n");
-
- for (age=agebase; age<=agelim; age++){
- prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
- fprintf(ficrespl,"%.0f ",age );
- for(j=1;j<=cptcoveff;j++)
- fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- for(i=1; i<=nlstate;i++)
- fprintf(ficrespl," %.5f", prlim[i][i]);
- fprintf(ficrespl,"\n");
- }
- }
+ /* if(mle==1){*/
+ if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
+ for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
}
- fclose(ficrespl);
- /*------------- h Pij x at various ages ------------*/
-
- strcpy(filerespij,"pij"); strcat(filerespij,fileres);
- if((ficrespij=fopen(filerespij,"w"))==NULL) {
- printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
- fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
- }
- printf("Computing pij: result on file '%s' \n", filerespij);
- fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
-
- stepsize=(int) (stepm+YEARM-1)/YEARM;
- /*if (stepm<=24) stepsize=2;*/
+ /*-calculation of age at interview from date of interview and age at death -*/
+ agev=matrix(1,maxwav,1,imx);
- agelim=AGESUP;
- hstepm=stepsize*YEARM; /* Every year of age */
- hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
+ if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
+ goto end;
- /* hstepm=1; aff par mois*/
- fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
- for(cptcov=1,k=0;cptcov<=i1;cptcov++){
- for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
- k=k+1;
- fprintf(ficrespij,"\n#****** ");
- for(j=1;j<=cptcoveff;j++)
- fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- fprintf(ficrespij,"******\n");
-
- for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
- nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
- nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
+ agegomp=(int)agemin;
+ free_vector(moisnais,1,n);
+ free_vector(annais,1,n);
+ /* free_matrix(mint,1,maxwav,1,n);
+ free_matrix(anint,1,maxwav,1,n);*/
+ /* free_vector(moisdc,1,n); */
+ /* free_vector(andc,1,n); */
+ /* */
+
+ wav=ivector(1,imx);
+ /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
+ /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
+ /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
+ dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
+ bh=imatrix(1,lastpass-firstpass+2,1,imx);
+ mw=imatrix(1,lastpass-firstpass+2,1,imx);
+
+ /* Concatenates waves */
+ /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
+ Death is a valid wave (if date is known).
+ mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
+ dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
+ and mw[mi+1][i]. dh depends on stepm.
+ */
- /* nhstepm=nhstepm*YEARM; aff par mois*/
+ concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm);
+ /* */
+
+ free_vector(moisdc,1,n);
+ free_vector(andc,1,n);
- p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- oldm=oldms;savm=savms;
- hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
- fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
- for(i=1; i<=nlstate;i++)
- for(j=1; j<=nlstate+ndeath;j++)
- fprintf(ficrespij," %1d-%1d",i,j);
- fprintf(ficrespij,"\n");
- for (h=0; h<=nhstepm; h++){
- fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
- for(i=1; i<=nlstate;i++)
- for(j=1; j<=nlstate+ndeath;j++)
- fprintf(ficrespij," %.5f", p3mat[i][j][h]);
- fprintf(ficrespij,"\n");
+ /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
+ nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
+ ncodemax[1]=1;
+ Ndum =ivector(-1,NCOVMAX);
+ cptcoveff=0;
+ if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
+ tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
}
- free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- fprintf(ficrespij,"\n");
- }
- }
- }
+
+ ncovcombmax=pow(2,cptcoveff);
+ invalidvarcomb=ivector(1, ncovcombmax);
+ for(i=1;iParameter files
\n
- - Copy of the parameter file: o%s
\n
- - Log file of the run: %s
\n
- - Gnuplot file name: %s
%s \
+
\n\
+Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n",\
+ optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
+ }
+
+ fprintf(fichtm,"\n\n\n
\nSponsored by Copyright (C) 2002-2015 INED-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本å¦è¡“振興会 (Grant-in-Aid for Scientific Research 25293121) - Intel Software 2015-2018
\
+
\n\
+IMaCh-%s
%s \
+
\n\
+Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n\
+\n\
+
\
+
\n",\
+ optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
+ optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
+ fileres,fileres,\
+ filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
+ fflush(fichtm);
+
+ strcpy(pathr,path);
+ strcat(pathr,optionfilefiname);
+#ifdef WIN32
+ _chdir(optionfilefiname); /* Move to directory named optionfile */
+#else
+ chdir(optionfilefiname); /* Move to directory named optionfile */
+#endif
+
+
+ /* Calculates basic frequencies. Computes observed prevalence at single age
+ and for any valid combination of covariates
+ and prints on file fileres'p'. */
+ freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
+ firstpass, lastpass, stepm, weightopt, model);
- prevalence(ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
+ fprintf(fichtm,"\n");
+ fprintf(fichtm,"Parameter files
\n\
+ - Parameter file: %s.%s
\n\
+ - Copy of the parameter file: o%s
\n\
+ - Log file of the run: %s
\n\
+ - Gnuplot file name: %s
\n\
+ - Date and time at start: %s
Total number of observations=%d
\n\
+Youngest age at first (selected) pass %.2f, oldest age %.2f
\n\
+Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf
\n",\
+ imx,agemin,agemax,jmin,jmax,jmean);
+ pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
+ oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
+ newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
+ savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
+ oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
- if (mobilav!=0) {
- mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
- fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
- printf(" Error in movingaverage mobilav=%d\n",mobilav);
- }
- }
+ /* For Powell, parameters are in a vector p[] starting at p[1]
+ so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
+ p=param[1][1]; /* *(*(*(param +1)+1)+0) */
- for(cptcov=1,k=0;cptcov<=i1;cptcov++){
- for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
- k=k+1;
- fprintf(ficrest,"\n#****** ");
- for(j=1;j<=cptcoveff;j++)
- fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- fprintf(ficrest,"******\n");
+ globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
+ /* For mortality only */
+ if (mle==-3){
+ ximort=matrix(1,NDIM,1,NDIM);
+ for(i=1;i<=NDIM;i++)
+ for(j=1;j<=NDIM;j++)
+ ximort[i][j]=0.;
+ /* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
+ cens=ivector(1,n);
+ ageexmed=vector(1,n);
+ agecens=vector(1,n);
+ dcwave=ivector(1,n);
+
+ for (i=1; i<=imx; i++){
+ dcwave[i]=-1;
+ for (m=firstpass; m<=lastpass; m++)
+ if (s[m][i]>nlstate) {
+ dcwave[i]=m;
+ /* printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
+ break;
+ }
+ }
+
+ for (i=1; i<=imx; i++) {
+ if (wav[i]>0){
+ ageexmed[i]=agev[mw[1][i]][i];
+ j=wav[i];
+ agecens[i]=1.;
+
+ if (ageexmed[i]> 1 && wav[i] > 0){
+ agecens[i]=agev[mw[j][i]][i];
+ cens[i]= 1;
+ }else if (ageexmed[i]< 1)
+ cens[i]= -1;
+ if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
+ cens[i]=0 ;
+ }
+ else cens[i]=-1;
+ }
+
+ for (i=1;i<=NDIM;i++) {
+ for (j=1;j<=NDIM;j++)
+ ximort[i][j]=(i == j ? 1.0 : 0.0);
+ }
+
+ /*p[1]=0.0268; p[NDIM]=0.083;*/
+ /*printf("%lf %lf", p[1], p[2]);*/
+
+
+#ifdef GSL
+ printf("GSL optimization\n"); fprintf(ficlog,"Powell\n");
+#else
+ printf("Powell\n"); fprintf(ficlog,"Powell\n");
+#endif
+ strcpy(filerespow,"POW-MORT_");
+ strcat(filerespow,fileresu);
+ if((ficrespow=fopen(filerespow,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", filerespow);
+ fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
+ }
+#ifdef GSL
+ fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
+#else
+ fprintf(ficrespow,"# Powell\n# iter -2*LL");
+#endif
+ /* for (i=1;i<=nlstate;i++)
+ for(j=1;j<=nlstate+ndeath;j++)
+ if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
+ */
+ fprintf(ficrespow,"\n");
+#ifdef GSL
+ /* gsl starts here */
+ T = gsl_multimin_fminimizer_nmsimplex;
+ gsl_multimin_fminimizer *sfm = NULL;
+ gsl_vector *ss, *x;
+ gsl_multimin_function minex_func;
- fprintf(ficreseij,"\n#****** ");
- for(j=1;j<=cptcoveff;j++)
- fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- fprintf(ficreseij,"******\n");
+ /* Initial vertex size vector */
+ ss = gsl_vector_alloc (NDIM);
+
+ if (ss == NULL){
+ GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
+ }
+ /* Set all step sizes to 1 */
+ gsl_vector_set_all (ss, 0.001);
- fprintf(ficresvij,"\n#****** ");
- for(j=1;j<=cptcoveff;j++)
- fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- fprintf(ficresvij,"******\n");
+ /* Starting point */
+
+ x = gsl_vector_alloc (NDIM);
+
+ if (x == NULL){
+ gsl_vector_free(ss);
+ GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
+ }
+
+ /* Initialize method and iterate */
+ /* p[1]=0.0268; p[NDIM]=0.083; */
+ /* gsl_vector_set(x, 0, 0.0268); */
+ /* gsl_vector_set(x, 1, 0.083); */
+ gsl_vector_set(x, 0, p[1]);
+ gsl_vector_set(x, 1, p[2]);
+
+ minex_func.f = &gompertz_f;
+ minex_func.n = NDIM;
+ minex_func.params = (void *)&p; /* ??? */
+
+ sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
+ gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
+
+ printf("Iterations beginning .....\n\n");
+ printf("Iter. # Intercept Slope -Log Likelihood Simplex size\n");
- eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
- oldm=oldms;savm=savms;
- evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);
-
- vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
- oldm=oldms;savm=savms;
- varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
- if(popbased==1){
- varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
+ iteri=0;
+ while (rval == GSL_CONTINUE){
+ iteri++;
+ status = gsl_multimin_fminimizer_iterate(sfm);
+
+ if (status) printf("error: %s\n", gsl_strerror (status));
+ fflush(0);
+
+ if (status)
+ break;
+
+ rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
+ ssval = gsl_multimin_fminimizer_size (sfm);
+
+ if (rval == GSL_SUCCESS)
+ printf ("converged to a local maximum at\n");
+
+ printf("%5d ", iteri);
+ for (it = 0; it < NDIM; it++){
+ printf ("%10.5f ", gsl_vector_get (sfm->x, it));
}
+ printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
+ }
+
+ printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
+
+ gsl_vector_free(x); /* initial values */
+ gsl_vector_free(ss); /* inital step size */
+ for (it=0; it
Local time at start %s
Local time at end %s
\n",strstart, strtend);
+ fclose(fichtm);
+ fprintf(fichtmcov,"
Local time at start %s
Local time at end %s
\n",strstart, strtend);
+ fclose(fichtmcov);
+ fclose(ficgp);
+ fclose(ficlog);
/*------ End -----------*/
- end:
-#ifdef windows
- /* chdir(pathcd);*/
+
+ printf("Before Current directory %s!\n",pathcd);
+#ifdef WIN32
+ if (_chdir(pathcd) != 0)
+ printf("Can't move to directory %s!\n",path);
+ if(_getcwd(pathcd,MAXLINE) > 0)
+#else
+ if(chdir(pathcd) != 0)
+ printf("Can't move to directory %s!\n", path);
+ if (getcwd(pathcd, MAXLINE) > 0)
#endif
- /*system("wgnuplot graph.plt");*/
- /*system("../gp37mgw/wgnuplot graph.plt");*/
- /*system("cd ../gp37mgw");*/
- /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
- strcpy(plotcmd,GNUPLOTPROGRAM);
- strcat(plotcmd," ");
- strcat(plotcmd,optionfilegnuplot);
- printf("Starting: %s\n",plotcmd);fflush(stdout);
- system(plotcmd);
+ printf("Current directory %s!\n",pathcd);
+ /*strcat(plotcmd,CHARSEPARATOR);*/
+ sprintf(plotcmd,"gnuplot");
+#ifdef _WIN32
+ sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
+#endif
+ if(!stat(plotcmd,&info)){
+ printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
+ if(!stat(getenv("GNUPLOTBIN"),&info)){
+ printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
+ }else
+ strcpy(pplotcmd,plotcmd);
+#ifdef __unix
+ strcpy(plotcmd,GNUPLOTPROGRAM);
+ if(!stat(plotcmd,&info)){
+ printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
+ }else
+ strcpy(pplotcmd,plotcmd);
+#endif
+ }else
+ strcpy(pplotcmd,plotcmd);
+
+ sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
+ printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
- /*#ifdef windows*/
+ if((outcmd=system(plotcmd)) != 0){
+ printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
+ printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
+ sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
+ if((outcmd=system(plotcmd)) != 0)
+ printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
+ }
+ printf(" Successful, please wait...");
while (z[0] != 'q') {
/* chdir(path); */
- printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
+ printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
scanf("%s",z);
- if (z[0] == 'c') system("./imach");
- else if (z[0] == 'e') system(optionfilehtm);
+/* if (z[0] == 'c') system("./imach"); */
+ if (z[0] == 'e') {
+#ifdef __APPLE__
+ sprintf(pplotcmd, "open %s", optionfilehtm);
+#elif __linux
+ sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
+#else
+ sprintf(pplotcmd, "%s", optionfilehtm);
+#endif
+ printf("Starting browser with: %s",pplotcmd);fflush(stdout);
+ system(pplotcmd);
+ }
else if (z[0] == 'g') system(plotcmd);
else if (z[0] == 'q') exit(0);
}
- /*#endif */
+ end:
+ while (z[0] != 'q') {
+ printf("\nType q for exiting: "); fflush(stdout);
+ scanf("%s",z);
+ }
}
-
-