--- imach/src/imach.c 2022/08/31 09:52:36 1.336 +++ imach/src/imach.c 2022/09/11 07:58:42 1.341 @@ -1,6 +1,40 @@ -/* $Id: imach.c,v 1.336 2022/08/31 09:52:36 brouard Exp $ +/* $Id: imach.c,v 1.341 2022/09/11 07:58:42 brouard Exp $ $State: Exp $ $Log: imach.c,v $ + Revision 1.341 2022/09/11 07:58:42 brouard + Summary: Version 0.99r38 + + After adding change in cotvar. + + Revision 1.340 2022/09/11 07:53:11 brouard + Summary: Version imach 0.99r37 + + * imach.c (Module): Adding timevarying products of any kinds, + should work before shifting cotvar from ncovcol+nqv columns in + order to have a correspondance between the column of cotvar and + the id of column. + + Revision 1.339 2022/09/09 17:55:22 brouard + Summary: version 0.99r37 + + * imach.c (Module): Many improvements for fixing products of fixed + timevarying as well as fixed * fixed, and test with quantitative + covariate. + + Revision 1.338 2022/09/04 17:40:33 brouard + Summary: 0.99r36 + + * imach.c (Module): Now the easy runs i.e. without result or + model=1+age only did not work. The defautl combination should be 1 + and not 0 because everything hasn't been tranformed yet. + + Revision 1.337 2022/09/02 14:26:02 brouard + Summary: version 0.99r35 + + * src/imach.c: Version 0.99r35 because it outputs same results with + 1+age+V1+V1*age for females and 1+age for females only + (education=1 noweight) + Revision 1.336 2022/08/31 09:52:36 brouard *** empty log message *** @@ -1287,12 +1321,12 @@ typedef struct { #define ODIRSEPARATOR '\\' #endif -/* $Id: imach.c,v 1.336 2022/08/31 09:52:36 brouard Exp $ */ +/* $Id: imach.c,v 1.341 2022/09/11 07:58:42 brouard Exp $ */ /* $State: Exp $ */ #include "version.h" char version[]=__IMACH_VERSION__; -char copyright[]="August 2022,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022"; -char fullversion[]="$Revision: 1.336 $ $Date: 2022/08/31 09:52:36 $"; +char copyright[]="September 2022,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022"; +char fullversion[]="$Revision: 1.341 $ $Date: 2022/09/11 07:58:42 $"; char strstart[80]; char optionfilext[10], optionfilefiname[FILENAMELENGTH]; int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings */ @@ -1308,6 +1342,7 @@ int cptcovprodnoage=0; /**< Number of co int cptcoveff=0; /* Total number of single dummy covariates (fixed or time varying) to vary for printing results (2**cptcoveff combinations of dummies)(computed in tricode as cptcov) */ int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */ int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */ +int ncovvt=0; /* Total number of effective (wave) varying covariates (dummy or quantitative or products [without age]) in the model */ int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */ int nsd=0; /**< Total number of single dummy variables (output) */ int nsq=0; /**< Total number of single quantitative variables (output) */ @@ -1323,7 +1358,8 @@ int npar=NPARMAX; /* Number of parameter int nlstate=2; /* Number of live states */ int ndeath=1; /* Number of dead states */ int ncovmodel=0, ncovcol=0; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */ -int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ +int nqv=0, ntv=0, nqtv=0; /* Total number of quantitative variables, time variable (dummy), quantitative and time variable*/ +int ncovcolt=0; /* ncovcolt=ncovcol+nqv+ntv+nqtv; total of covariates in the data, not in the model equation*/ int popbased=0; int *wav; /* Number of waves for this individuual 0 is possible */ @@ -1472,7 +1508,7 @@ double **covar; /**< covar[j,i], value * covar=matrix(0,NCOVMAX,1,n); * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */ double **coqvar; /* Fixed quantitative covariate nqv */ -double ***cotvar; /* Time varying covariate ntv */ +double ***cotvar; /* Time varying covariate start at ncovcol + nqv + (1 to ntv) */ double ***cotqvar; /* Time varying quantitative covariate itqv */ double idx; int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */ @@ -1484,7 +1520,7 @@ int **nbcode, *Tvar; /**< model=V2 => Tv * cptcovn number of covariates (not including constant and age or age*age) = number of plus sign + 1 = 10+1=11 * For time varying covariate, quanti or dummies * cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti - * cotvar[wav][ntv+iv][i]= [3+(1 to nqtv)][i]=(V12) quanti + * cotvar[wav][ncovcol+nqv+ iv(1 to nqtv)][i]= [(1 to nqtv)][i]=(V12) quanti * cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1 * cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1 * covar[Vk,i], value of the Vkth fixed covariate dummy or quanti for individual i: @@ -1508,8 +1544,9 @@ int **nbcode, *Tvar; /**< model=V2 => Tv /*Tvar[k]= 5 4 3 6 5 2 7 1 1 */ /* nsd 1 2 3 */ /* Counting single dummies covar fixed or tv */ /*TnsdVar[Tvar] 1 2 3 */ +/*Tvaraff[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ /*TvarsD[nsd] 4 3 1 */ /* ID of single dummy cova fixed or timevary*/ -/*TvarsDind[k] 2 3 9 */ /* position K of single dummy cova */ +/*TvarsDind[nsd] 2 3 9 */ /* position K of single dummy cova */ /* nsq 1 2 */ /* Counting single quantit tv */ /* TvarsQ[k] 5 2 */ /* Number of single quantitative cova */ /* TvarsQind 1 6 */ /* position K of single quantitative cova */ @@ -1564,7 +1601,13 @@ int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3 int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */ - +int *TvarVV; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ +int *TvarVVind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */ + /*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ + /* model V1+V3+age*V1+age*V3+V1*V3 */ + /* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ + /* TvarVV={3,1,3}, for V3 and then the product V1*V3 is decomposed into V1 and V3 */ + /* TvarVVind={2,5,5}, for V3 and then the product V1*V3 is decomposed into V1 and V3 */ int *Tvarsel; /**< Selected covariates for output */ double *Tvalsel; /**< Selected modality value of covariate for output */ int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */ @@ -2502,7 +2545,8 @@ void powell(double p[], double **xi, int xits=vector(1,n); *fret=(*func)(p); for (j=1;j<=n;j++) pt[j]=p[j]; - rcurr_time = time(NULL); + rcurr_time = time(NULL); + fp=(*fret); /* Initialisation */ for (*iter=1;;++(*iter)) { ibig=0; del=0.0; @@ -2510,8 +2554,10 @@ void powell(double p[], double **xi, int /* (void) gettimeofday(&curr_time,&tzp); */ rcurr_time = time(NULL); curr_time = *localtime(&rcurr_time); - printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); - fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); + /* printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); */ + /* fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); */ + printf("\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); + fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); /* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */ fp=(*fret); /* From former iteration or initial value */ for (i=1;i<=n;i++) { @@ -2814,7 +2860,7 @@ void powell(double p[], double **xi, int double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres) { - /**< Computes the prevalence limit in each live state at age x and for covariate combination ij + /**< Computes the prevalence limit in each live state at age x and for covariate combination ij . Nicely done * (and selected quantitative values in nres) * by left multiplying the unit * matrix by transitions matrix until convergence is reached with precision ftolpl @@ -3262,12 +3308,12 @@ double **pmij(double **ps, double *cov, for(i=1; i<= nlstate; i++){ s1=0; for(j=1; ji} pij/pii=(1-pii)/pii and thus pii is known from s1 */ ps[i][i]=1./(s1+1.); @@ -3845,6 +3891,9 @@ double func( double *x) { int i, ii, j, k, mi, d, kk, kf=0; int ioffset=0; + int ipos=0,iposold=0,ncovv=0; + + double cotvarv, cotvarvold; double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; double **out; double lli; /* Individual log likelihood */ @@ -3892,16 +3941,45 @@ double func( double *x) mw[mi][i] is real wave of the mi th effectve wave */ /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; s2=s[mw[mi+1][i]][i]; - And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] + And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] because now is moved after nvocol+nqv But if the variable is not in the model TTvar[iv] is the real variable effective in the model: meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] */ for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ /* Wave varying (but not age varying) */ - for(k=1; k <= ncovv ; k++){ /* Varying covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3) Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*/ - /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? */ - cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; - } + /* for(k=1; k <= ncovv ; k++){ /\* Varying covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3) Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*\/ */ + /* /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? *\/ */ + /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */ + /* } */ + for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age )*/ + itv=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ + ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ + if(TvarFind[itv]==0){ /* Not a fixed covariate */ + cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i]; /* cotvar[wav][ncovcol+nqv+iv][i] */ + }else{ /* fixed covariate */ + cotvarv=covar[Tvar[TvarFind[itv]]][i]; + } + if(ipos!=iposold){ /* Not a product or first of a product */ + cotvarvold=cotvarv; + }else{ /* A second product */ + cotvarv=cotvarv*cotvarvold; + } + iposold=ipos; + cov[ioffset+ipos]=cotvarv; + } + /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ + /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ + /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ + /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ + /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ + /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ + /* } */ + /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ + /* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ + /* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ + /* cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */ + /* } */ + /* for products of time varying to be done */ for (ii=1;ii<=nlstate+ndeath;ii++) for (j=1;j<=nlstate+ndeath;j++){ oldm[ii][j]=(ii==j ? 1.0 : 0.0); @@ -3920,7 +3998,7 @@ double func( double *x) if(!FixedV[Tvar[Tage[kk]]]) cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ else - cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; + cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ } out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); @@ -4016,7 +4094,7 @@ double func( double *x) } /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/ /*if(lli ==000.0)*/ - /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ + /* printf("num[i], i=%d, bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */ ipmx +=1; sw += weight[i]; ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; @@ -4033,7 +4111,7 @@ double func( double *x) cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i]; for(mi=1; mi<= wav[i]-1; mi++){ for(k=1; k <= ncovv ; k++){ - cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; + cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ } for (ii=1;ii<=nlstate+ndeath;ii++) for (j=1;j<=nlstate+ndeath;j++){ @@ -4080,7 +4158,10 @@ double func( double *x) if(nagesqr==1) cov[3]= agexact*agexact; for (kk=1; kk<=cptcovage;kk++) { - cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; + if(!FixedV[Tvar[Tage[kk]]]) + cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ + else + cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ } out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); @@ -4136,7 +4217,7 @@ double func( double *x) ipmx +=1; sw += weight[i]; ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; -/* printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ + /* printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */ } /* end of wave */ } /* end of individual */ }else{ /* ml=5 no inter-extrapolation no jackson =0.8a */ @@ -4155,7 +4236,10 @@ double func( double *x) if(nagesqr==1) cov[3]= agexact*agexact; for (kk=1; kk<=cptcovage;kk++) { - cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; + if(!FixedV[Tvar[Tage[kk]]]) + cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */ + else + cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ } out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, @@ -4186,6 +4270,9 @@ double funcone( double *x) /* Same as func but slower because of a lot of printf and if */ int i, ii, j, k, mi, d, kk, kf=0; int ioffset=0; + int ipos=0,iposold=0,ncovv=0; + + double cotvarv, cotvarvold; double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1]; double **out; double lli; /* Individual log likelihood */ @@ -4218,6 +4305,9 @@ double funcone( double *x) /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */ /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */ for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */ + /* printf("Debug3 TvarFind[%d]=%d",kf, TvarFind[kf]); */ + /* printf(" Tvar[TvarFind[kf]]=%d", Tvar[TvarFind[kf]]); */ + /* printf(" i=%d covar[Tvar[TvarFind[kf]]][i]=%f\n",i,covar[Tvar[TvarFind[kf]]][i]); */ cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/ /* cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i]; */ /* cov[2+6]=covar[Tvar[6]][i]; */ @@ -4237,9 +4327,7 @@ double funcone( double *x) mw[mi][i] is real wave of the mi th effectve wave */ /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i]; s2=s[mw[mi+1][i]][i]; - And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] - But if the variable is not in the model TTvar[iv] is the real variable effective in the model: - meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i] + And the iv th varying covariate in the DATA is the cotvar[mw[mi+1][i]][ncovcol+nqv+iv][i] */ /* This part may be useless now because everythin should be in covar */ /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */ @@ -4251,17 +4339,59 @@ double funcone( double *x) for(mi=1; mi<= wav[i]-1; mi++){ /* Varying with waves */ - /* Wave varying (but not age varying) */ - for(k=1; k <= ncovv ; k++){ /* Varying covariates (single and product but no age )*/ - /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */ - cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; - } - /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */ - /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */ - /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */ - /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */ - /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */ - /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */ + /* Wave varying (but not age varying) *//* V1+V3+age*V1+age*V3+V1*V3 with V4 tv and V5 tvq k= 1 to 5 and extra at V(5+1)=6 for V1*V3 */ + /* for(k=1; k <= ncovv ; k++){ /\* Varying covariates (single and product but no age )*\/ */ + /* /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; *\/ */ + /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */ + /* } */ + + /*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ + /* model V1+V3+age*V1+age*V3+V1*V3 */ + /* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ + /* TvarVV[1]=V3 (first time varying in the model equation, TvarVV[2]=V1 (in V1*V3) TvarVV[3]=3(V3) */ + /* We need the position of the time varying or product in the model */ + /* TvarVVind={2,5,5}, for V3 at position 2 and then the product V1*V3 is decomposed into V1 and V3 but at same position 5 */ + /* TvarVV gives the variable name */ + /* Other example V1 + V3 + V5 + age*V1 + age*V3 + age*V5 + V1*V3 + V3*V5 + V1*V5 + * k= 1 2 3 4 5 6 7 8 9 + * varying 1 2 3 4 5 + * ncovv 1 2 3 4 5 6 7 8 + * TvarVV V3 5 1 3 3 5 1 5 + * TvarVVind 2 3 7 7 8 8 9 9 + * TvarFind[k] 1 0 0 0 0 0 0 0 0 + * cotvar starts at ntv=2 (because of V3 V4) + */ + for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age) including individual from products */ + itv=TvarVV[ncovv]; /* TvarVV={3, 1, 3} gives the name of each varying covariate */ + ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ + if(TvarFind[itv]==0){ /* Not a fixed covariate */ + cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i]; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ + }else{ /* fixed covariate */ + cotvarv=covar[Tvar[TvarFind[itv]]][i]; + } + if(ipos!=iposold){ /* Not a product or first of a product */ + cotvarvold=cotvarv; + }else{ /* A second product */ + cotvarv=cotvarv*cotvarvold; + } + iposold=ipos; + cov[ioffset+ipos]=cotvarv; + /* For products */ + } + /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates single *\/ */ + /* iv=TvarVDind[itv]; /\* iv, position in the model equation of time varying covariate itv *\/ */ + /* /\* "V1+V3+age*V1+age*V3+V1*V3" with V3 time varying *\/ */ + /* /\* 1 2 3 4 5 *\/ */ + /* /\*itv 1 *\/ */ + /* /\* TvarVInd[1]= 2 *\/ */ + /* /\* iv= Tvar[Tmodelind[itv]]-ncovcol-nqv; /\\* Counting the # varying covariate from 1 to ntveff *\\/ *\/ */ + /* /\* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; *\/ */ + /* /\* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; *\/ */ + /* /\* k=ioffset-2-nagesqr-cptcovage+itv; /\\* position in simple model *\\/ *\/ */ + /* /\* cov[ioffset+iv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; *\/ */ + /* cov[ioffset+iv]=cotvar[mw[mi][i]][itv][i]; */ + /* /\* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][itv][i]=%f\n", i, mi, itv, TvarVDind[itv],cotvar[mw[mi][i]][itv][i]); *\/ */ + /* } */ /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */ /* iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */ /* /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */ @@ -4288,7 +4418,7 @@ double funcone( double *x) if(!FixedV[Tvar[Tage[kk]]]) cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; else - cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact; + cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ } /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */ /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */ @@ -4343,7 +4473,26 @@ double funcone( double *x) ipmx +=1; sw += weight[i]; ll[s[mw[mi][i]][i]] += 2*weight[i]*lli; - /* printf("Funcone i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */ + printf("Funcone num[i]=%ld i=%6d V= ", num[i], i); + for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */ + printf("%g",covar[Tvar[TvarFind[kf]]][i]); + } + for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying covariates (single and product but no age) including individual from products */ + ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/ + if(ipos!=iposold){ /* Not a product or first of a product */ + printf(" %g",cov[ioffset+ipos]); + }else{ + printf("*"); + } + iposold=ipos; + } + for (kk=1; kk<=cptcovage;kk++) { + if(!FixedV[Tvar[Tage[kk]]]) + printf(" %g*age",covar[Tvar[Tage[kk]]][i]); + else + printf(" %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ + } + printf(" s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); if(globpr){ fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ %11.6f %11.6f %11.6f ", \ @@ -5119,7 +5268,7 @@ Title=%s
Datafile=%s Firstpass=%d La /* }else */ /* TODO TODO codtabm(j1,z1) or codtabm(j1,Tvaraff[z1]]z1)*/ /* if( iind >=imx-3) printf("Searching error iind=%d Tvaraff[z1]=%d covar[Tvaraff[z1]][iind]=%.f TnsdVar[Tvaraff[z1]]=%d, cptcoveff=%d, cptcovs=%d \n",iind, Tvaraff[z1], covar[Tvaraff[z1]][iind],TnsdVar[Tvaraff[z1]],cptcoveff, cptcovs); */ if(Tvaraff[z1]<1 || Tvaraff[z1]>=NCOVMAX) - printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model); + printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=1+age+%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model); if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]){ /* for combination j1 of covariates */ /* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */ bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */ @@ -5140,7 +5289,8 @@ Title=%s
Datafile=%s Firstpass=%d La if(anyvaryingduminmodel==1){ /* Some are varying covariates */ for (z1=1; z1<=cptcoveff; z1++) { if( Fixed[Tmodelind[z1]]==1){ - iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; + /* iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; /\* Good *\/ */ + iv= Tvar[Tmodelind[z1]]; /* Good *//* because cotvar starts now at first at ncovcol+nqv+ntv */ if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality. If covariate's value is -1, we don't select. It differs from the constant and age model which counts them. */ @@ -5221,7 +5371,7 @@ Title=%s
Datafile=%s Firstpass=%d La fprintf(ficresphtm, "\n

********** Variable "); fprintf(ficresphtmfr, "\n

********** Variable "); fprintf(ficlog, "\n#********** Variable "); - for (z1=1; z1<=cptcovs; z1++){ + for (z1=1; z1<=cptcoveff; z1++){ if(!FixedV[Tvaraff[z1]]){ printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); @@ -5429,7 +5579,7 @@ Title=%s
Datafile=%s Firstpass=%d La printf("# This combination (%d) is not valid and no result will be produced\n",j1); invalidvarcomb[j1]=1; }else{ - fprintf(ficresphtm,"\n

This combination (%d) is valid and result will be produced.

",j1); + fprintf(ficresphtm,"\n

This combination (%d) is valid and result will be produced (or no resultline).

",j1); invalidvarcomb[j1]=0; } fprintf(ficresphtmfr,"\n"); @@ -5677,7 +5827,7 @@ void prevalence(double ***probs, double /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */ for (z1=1; z1<=cptcoveff; z1++){ if( Fixed[Tmodelind[z1]]==1){ - iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; + iv= Tvar[Tmodelind[z1]];/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality */ bool=0; }else if( Fixed[Tmodelind[z1]]== 0) /* fixed */ @@ -5986,12 +6136,14 @@ void concatwav(int wav[], int **dh, int /* Loop on covariates without age and products and no quantitative variable */ for (k=1; k<=cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */ for (j=-1; (j < maxncov); j++) Ndum[j]=0; - if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ + printf("Testing k=%d, cptcovt=%d\n",k, cptcovt); + if(Dummy[k]==0 && Typevar[k] !=1 && Typevar[k] != 2){ /* Dummy covariate and not age product nor fixed product */ switch(Fixed[k]) { case 0: /* Testing on fixed dummy covariate, simple or product of fixed */ modmaxcovj=0; modmincovj=0; for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/ + /* printf("Waiting for error tricode Tvar[%d]=%d i=%d (int)(covar[Tvar[k]][i]=%d\n",k,Tvar[k], i, (int)(covar[Tvar[k]][i])); */ ij=(int)(covar[Tvar[k]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i * If product of Vn*Vm, still boolean *: @@ -6542,11 +6694,16 @@ void concatwav(int wav[], int **dh, int pstamp(ficresprobmorprev); fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm); fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies"); - for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ /* To be done*/ - fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); + + /* We use TinvDoQresult[nres][resultmodel[nres][j] we sort according to the equation model and the resultline: it is a choice */ + /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ /\* To be done*\/ */ + /* fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + /* } */ + for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ /* To be done*/ + fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); } - for(j=1;j<=cptcoveff;j++) - fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); + /* for(j=1;j<=cptcoveff;j++) */ + /* fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); */ fprintf(ficresprobmorprev,"\n"); fprintf(ficresprobmorprev,"# Age cov=%-d",ij); @@ -7193,9 +7350,9 @@ To be simple, these graphs help to under /* Including quantitative variables of the resultline to be done */ for (z1=1; z1<=cptcovs; z1++){ /* Loop on each variable of this resultline */ - printf("Varprob modelresult[%d][%d]=%d model=%s \n",nres, z1, modelresult[nres][z1], model); - fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=%s \n",nres, z1, modelresult[nres][z1], model); - /* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */ + printf("Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); + fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); + /* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */ if(Dummy[modelresult[nres][z1]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to z1 in resultline */ if(Fixed[modelresult[nres][z1]]==0){ /* Fixed referenced to model equation */ fprintf(ficresprob,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ @@ -7217,7 +7374,7 @@ To be simple, these graphs help to under } }else if(Dummy[modelresult[nres][z1]]==1){ /* Quanti variable */ /* For each selected (single) quantitative value */ - fprintf(ficresprob," V%d=%f ",Tvqresult[nres][z1],Tqresult[nres][z1]); + fprintf(ficresprob," V%d=%lg ",Tvqresult[nres][z1],Tqresult[nres][z1]); if(Fixed[modelresult[nres][z1]]==0){ /* Fixed */ fprintf(ficresprob,"fixed "); fprintf(ficresprobcov,"fixed "); @@ -7564,29 +7721,39 @@ void printinghtml(char fileresu[], char jj1=0; fprintf(fichtm," \n"); fprintf(fichtm,"\ @@ -7748,7 +7914,7 @@ See page 'Matrix of variance-covariance /* - Population forecasting (if popforecast=1): pop%s
\n */ /*
",fileres,fileres,fileres,fileres); */ /* else */ -/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)

\n",popforecast, stepm, model); */ +/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=1+age+%s (instead of .)

\n",popforecast, stepm, model); */ fflush(fichtm); m=pow(2,cptcoveff); @@ -7759,28 +7925,24 @@ See page 'Matrix of variance-covariance jj1=0; fprintf(fichtm," \n"); jj1=0; for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - for(k1=1; k1<=m;k1++){ - if(m != 1 && TKresult[nres]!= k1) - continue; + /* k1=nres; */ + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + /* for(k1=1; k1<=m;k1++){ */ + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ /* for(i1=1; i1<=ncodemax[k1];i1++){ */ jj1++; if (cptcovn > 0) { fprintf(fichtm,"\n

"); fprintf(fichtm,"


************ Results for covariates"); - for (cpt=1; cpt<=cptcoveff;cpt++){ /**< cptcoveff number of variables */ - fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]); - printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout); + for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcoveff number of variables */ + fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); + printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]); /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */ } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); - } - fprintf(fichtm," (model=%s) ************\n
",model); + fprintf(fichtm," (model=1+age+%s) ************\n
",model); if(invalidvarcomb[k1]){ fprintf(fichtm,"\n

Combination (%d) ignored because no cases

\n",k1); continue; } - } + } /* If cptcovn >0 */ for(cpt=1; cpt<=nlstate;cpt++) { fprintf(fichtm,"\n
- Observed (cross-sectional with mov_average=%d) and period (incidence based) \ prevalence (with 95%% confidence interval) in state (%d):
%s_%d-%d-%d.svg",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres); @@ -7840,7 +7999,6 @@ true period expectancies (those weighted fprintf(fichtm," (data from text file %s.txt) \n
",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_")); fprintf(fichtm,"",subdirf2(optionfilefiname,"E_"),k1,nres); /* } /\* end i1 *\/ */ - }/* End k1 */ }/* End nres */ fprintf(fichtm,""); fflush(fichtm); @@ -7918,31 +8076,37 @@ void printinggnuplot(char fileresu[], ch strcpy(optfileres,"vpl"); /* 1eme*/ for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */ - for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */ + /* for (k1=1; k1<= m ; k1 ++){ /\* For each valid combination of covariate *\/ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */ - if(m != 1 && TKresult[nres]!= k1) - continue; + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ /* We are interested in selected combination by the resultline */ /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */ fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files and live state =%d ", cpt); strcpy(gplotlabel,"("); - for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */ - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the value of the covariate corresponding to k1 combination *\/ */ - lv=codtabm(k1,TnsdVar[Tvaraff[k]]); - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */ - /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */ - /* printf(" V%d=%d ",Tvaraff[k],vlv); */ - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ - fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); + for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + + /* for (k=1; k<=cptcoveff; k++){ /\* For each covariate k get corresponding value lv for combination k1 *\/ */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the value of the covariate corresponding to k1 combination *\\/ *\/ */ + /* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* vlv= nbcode[Tvaraff[k]][lv]; /\* vlv is the value of the covariate lv, 0 or 1 *\/ */ + /* /\* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv *\/ */ + /* /\* printf(" V%d=%d ",Tvaraff[k],vlv); *\/ */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* /\* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); *\/ */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ } strcpy(gplotlabel+strlen(gplotlabel),")"); /* printf("\n#\n"); */ @@ -7956,7 +8120,7 @@ void printinggnuplot(char fileresu[], ch fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres); fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres); /* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */ - fprintf(ficgp,"set title \"Alive state %d %s model=%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model); + fprintf(ficgp,"set title \"Alive state %d %s model=1+age+%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model); fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); /* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */ /* k1-1 error should be nres-1*/ @@ -8055,33 +8219,38 @@ void printinggnuplot(char fileresu[], ch /* fprintf(ficgp,"\nset out ;unset label;\n"); */ fprintf(ficgp,"\nset out ;unset title;\n"); } /* nres */ - } /* k1 */ + /* } /\* k1 *\/ */ } /* cpt */ /*2 eme*/ - for (k1=1; k1<= m ; k1 ++){ + /* for (k1=1; k1<= m ; k1 ++){ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(m != 1 && TKresult[nres]!= k1) - continue; + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files "); strcpy(gplotlabel,"("); - for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate number corresponding to k1 combination *\/ */ - lv=codtabm(k1,TnsdVar[Tvaraff[k]]); - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - /* for(k=1; k <= ncovds; k++){ */ - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); - fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); + for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + /* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ + /* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* /\* for(k=1; k <= ncovds; k++){ *\/ */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ } strcpy(gplotlabel+strlen(gplotlabel),")"); fprintf(ficgp,"\n#\n"); @@ -8123,33 +8292,38 @@ void printinggnuplot(char fileresu[], ch } /* vpopbased */ fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */ } /* end nres */ - } /* k1 end 2 eme*/ + /* } /\* k1 end 2 eme*\/ */ /*3eme*/ - for (k1=1; k1<= m ; k1 ++){ + /* for (k1=1; k1<= m ; k1 ++){ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(m != 1 && TKresult[nres]!= k1) - continue; + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ for (cpt=1; cpt<= nlstate ; cpt ++) { /* Fragile no verification of covariate values */ fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files: combination=%d state=%d",k1, cpt); strcpy(gplotlabel,"("); - for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate number corresponding to k1 combination *\/ */ - lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /* Should be the covariate value corresponding to combination k1 and covariate k */ - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); - } + for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + /* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ + /* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */ + } strcpy(gplotlabel+strlen(gplotlabel),")"); fprintf(ficgp,"\n#\n"); if(invalidvarcomb[k1]){ @@ -8180,31 +8354,36 @@ plot [%.f:%.f] \"%s\" every :::%d::%d u } fprintf(ficgp,"\nunset label;\n"); } /* end nres */ - } /* end kl 3eme */ + /* } /\* end kl 3eme *\/ */ /* 4eme */ /* Survival functions (period) from state i in state j by initial state i */ - for (k1=1; k1<=m; k1++){ /* For each covariate and each value */ + /* for (k1=1; k1<=m; k1++){ /\* For each covariate and each value *\/ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(m != 1 && TKresult[nres]!= k1) - continue; + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/ strcpy(gplotlabel,"("); - fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt); - for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ - lv=codtabm(k1,TnsdVar[Tvaraff[k]]); - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate number corresponding to k1 combination *\/ */ - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); + fprintf(ficgp,"\n#\n#\n# Survival functions in state %d : 'LIJ_' files, cov=%d state=%d", cpt, k1, cpt); + for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + /* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ + /* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ } strcpy(gplotlabel+strlen(gplotlabel),")"); fprintf(ficgp,"\n#\n"); @@ -8233,31 +8412,36 @@ set ter svg size 640, 480\nunset log y\n fprintf(ficgp,"\nset out; unset label;\n"); } /* end cpt state*/ } /* end nres */ - } /* end covariate k1 */ + /* } /\* end covariate k1 *\/ */ /* 5eme */ /* Survival functions (period) from state i in state j by final state j */ - for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */ + /* for (k1=1; k1<= m ; k1++){ /\* For each covariate combination if any *\/ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(m != 1 && TKresult[nres]!= k1) - continue; + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */ strcpy(gplotlabel,"("); fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt); - for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ - lv=codtabm(k1,TnsdVar[Tvaraff[k]]); - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate number corresponding to k1 combination *\/ */ - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); + for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + /* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ + /* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ } strcpy(gplotlabel+strlen(gplotlabel),")"); fprintf(ficgp,"\n#\n"); @@ -8293,32 +8477,37 @@ set ter svg size 640, 480\nunset log y\n } fprintf(ficgp,"\nset out; unset label;\n"); } /* end cpt state*/ - } /* end covariate */ + /* } /\* end covariate *\/ */ } /* end nres */ /* 6eme */ /* CV preval stable (period) for each covariate */ - for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ + /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(m != 1 && TKresult[nres]!= k1) - continue; + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */ strcpy(gplotlabel,"("); fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt); - for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate number corresponding to k1 combination *\/ */ - lv=codtabm(k1,TnsdVar[Tvaraff[k]]); - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); + for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + /* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ + /* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ } strcpy(gplotlabel+strlen(gplotlabel),")"); fprintf(ficgp,"\n#\n"); @@ -8351,27 +8540,32 @@ set ter svg size 640, 480\nunset log y\n /* 7eme */ if(prevbcast == 1){ /* CV backward prevalence for each covariate */ - for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ + /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(m != 1 && TKresult[nres]!= k1) - continue; + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */ strcpy(gplotlabel,"("); fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt); - for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */ - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate number corresponding to k1 combination *\/ */ - lv=codtabm(k1,TnsdVar[Tvaraff[k]]); - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); + for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + /* for (k=1; k<=cptcoveff; k++){ /\* For each covariate and each value *\/ */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */ + /* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ } strcpy(gplotlabel+strlen(gplotlabel),")"); fprintf(ficgp,"\n#\n"); @@ -8409,27 +8603,32 @@ set ter svg size 640, 480\nunset log y\n if(prevfcast==1){ /* Projection from cross-sectional to forward stable (period) prevalence for each covariate */ - for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ + /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(m != 1 && TKresult[nres]!= k1) - continue; + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ strcpy(gplotlabel,"("); fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt); - for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */ - lv=codtabm(k1,TnsdVar[Tvaraff[k]]); - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); + for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + /* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ + /* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ } strcpy(gplotlabel+strlen(gplotlabel),")"); fprintf(ficgp,"\n#\n"); @@ -8526,27 +8725,32 @@ set ter svg size 640, 480\nunset log y\n if(prevbcast==1){ /* Back projection from cross-sectional to stable (mixed) for each covariate */ - for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */ + /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(m != 1 && TKresult[nres]!= k1) - continue; + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */ strcpy(gplotlabel,"("); fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt); - for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */ - lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /* Should be the covariate value corresponding to combination k1 and covariate k */ - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); + for (k=1; k<=cptcovs; k++){ /* For each covariate k get corresponding value lv for combination k1 */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + /* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ + /* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ } strcpy(gplotlabel+strlen(gplotlabel),")"); fprintf(ficgp,"\n#\n"); @@ -8601,19 +8805,25 @@ set ter svg size 640, 480\nunset log y\n fprintf(ficgp," u %d:(",ioffset); kl=0; strcpy(gplotcondition,"("); - for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */ - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ - lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /* Should be the covariate value corresponding to combination k1 and covariate k */ - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - kl++; - sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); - kl++; - if(k 1) - sprintf(gplotcondition+strlen(gplotcondition)," && "); + for (k=1; k<=cptcovs; k++){ /* For each covariate k of the resultline, get corresponding value lv for combination k1 */ + if(Dummy[modelresult[nres][k]]==0){ /* To be verified */ + /* for (k=1; k<=cptcoveff; k++){ /\* For each covariate writing the chain of conditions *\/ */ + /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ + /* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ + lv=Tvresult[nres][k]; + vlv=TinvDoQresult[nres][Tvresult[nres][k]]; + /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ + /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ + /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ + /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + kl++; + /* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */ + sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,Tvresult[nres][k], kl+1,TinvDoQresult[nres][Tvresult[nres][k]]); + kl++; + if(k 1) + sprintf(gplotcondition+strlen(gplotcondition)," && "); + } } strcpy(gplotcondition+strlen(gplotcondition),")"); /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */ @@ -8678,31 +8888,43 @@ set ter svg size 640, 480\nunset log y\n fprintf(ficgp,"#\n"); for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/ fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n"); - fprintf(ficgp,"#model=%s \n",model); + fprintf(ficgp,"#model=1+age+%s \n",model); fprintf(ficgp,"# Type of graphic ng=%d\n",ng); fprintf(ficgp,"# k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */ - for(k1=1; k1 <=m; k1++) /* For each combination of covariate */ + /* for(k1=1; k1 <=m; k1++) /\* For each combination of covariate *\/ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(m != 1 && TKresult[nres]!= k1) - continue; - fprintf(ficgp,"\n\n# Combination of dummy k1=%d which is ",k1); + /* k1=nres; */ + k1=TKresult[nres]; + if(TKresult[nres]==0) k1=1; /* To be checked for noresult */ + fprintf(ficgp,"\n\n# Resultline k1=%d ",k1); strcpy(gplotlabel,"("); /*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/ - for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */ - /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */ - lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /* Should be the covariate value corresponding to combination k1 and covariate k */ - /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */ - /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */ - /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */ - /* vlv= nbcode[Tvaraff[k]][lv]; */ - vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; - fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); - sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); - } + for (k=1; k<=cptcovs; k++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */ + /* for each resultline nres, and position k, Tvresult[nres][k] gives the name of the variable and + TinvDoQresult[nres][Tvresult[nres][k]] gives its value double or integer) */ + fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]); + } + /* if(m != 1 && TKresult[nres]!= k1) */ + /* continue; */ + /* fprintf(ficgp,"\n\n# Combination of dummy k1=%d which is ",k1); */ + /* strcpy(gplotlabel,"("); */ + /* /\*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*\/ */ + /* for (k=1; k<=cptcoveff; k++){ /\* For each correspondig covariate value *\/ */ + /* /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */ + /* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */ + /* /\* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 *\/ */ + /* /\* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 *\/ */ + /* /\* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 *\/ */ + /* /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */ + /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */ + /* fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */ + /* } */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ + /* sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */ + /* } */ strcpy(gplotlabel+strlen(gplotlabel),")"); fprintf(ficgp,"\n#\n"); fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres); @@ -8918,7 +9140,7 @@ set ter svg size 640, 480\nunset log y\n } /* end k2 */ /* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */ fprintf(ficgp,"\n set out; unset title;set key default;\n"); - } /* end k1 */ + } /* end resultline */ } /* end ng */ /* avoid: */ fflush(ficgp); @@ -9487,23 +9709,27 @@ void prevforecast(char fileres[], double i1=pow(2,cptcoveff); if (cptcovn < 1){i1=1;} - for(nres=1; nres <= nresult; nres++) /* For each resultline */ - for(k=1; k<=i1;k++){ /* We find the combination equivalent to result line values of dummies */ + for(nres=1; nres <= nresult; nres++){ /* For each resultline */ + k=TKresult[nres]; + if(TKresult[nres]==0) k=1; /* To be checked for noresult */ + /* for(k=1; k<=i1;k++){ /\* We find the combination equivalent to result line values of dummies *\/ */ if(i1 != 1 && TKresult[nres]!= k) continue; fprintf(ficresvpl,"\n#****** "); printf("\n#****** "); fprintf(ficlog,"\n#****** "); - for(j=1;j<=cptcoveff;j++) { - fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); + for(j=1;j<=cptcovs;j++) { + fprintf(ficresvpl,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ } - for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ - printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); - fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); - fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); - } + /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ + /* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + /* fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + /* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + /* } */ fprintf(ficresvpl,"******\n"); printf("******\n"); fprintf(ficlog,"******\n"); @@ -9544,22 +9770,28 @@ void prevforecast(char fileres[], double i1=pow(2,cptcoveff); if (cptcovn < 1){i1=1;} - for(nres=1; nres <= nresult; nres++) /* For each resultline */ - for(k=1; k<=i1;k++){ - if(i1 != 1 && TKresult[nres]!= k) - continue; + for(nres=1; nres <= nresult; nres++){ /* For each resultline */ + k=TKresult[nres]; + if(TKresult[nres]==0) k=1; /* To be checked for noresult */ + /* for(k=1; k<=i1;k++){ */ + /* if(i1 != 1 && TKresult[nres]!= k) */ + /* continue; */ fprintf(ficresvbl,"\n#****** "); printf("\n#****** "); fprintf(ficlog,"\n#****** "); - for(j=1;j<=cptcoveff;j++) { - fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - } - for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ - printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); - fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); - fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); + for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ + printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); + fprintf(ficresvbl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); + fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]); + /* for(j=1;j<=cptcoveff;j++) { */ + /* fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* } */ + /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ + /* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + /* fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + /* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ } fprintf(ficresvbl,"******\n"); printf("******\n"); @@ -10046,7 +10278,9 @@ int readdata(char datafile[], int firsto printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]); } - + + ncovcolt=ncovcol+nqv+ntv+nqtv; /* total of covariates in the data, not in the model equation */ + if((fic=fopen(datafile,"r"))==NULL) { printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout); fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1; @@ -10124,7 +10358,7 @@ int readdata(char datafile[], int firsto if(strb[0]=='.') { /* Missing value */ lval=-1; cotqvar[j][iv][i]=-1; /* 0.0/0.0 */ - cotvar[j][ntv+iv][i]=-1; /* For performance reasons */ + cotvar[j][ncovcol+nqv+ntv+iv][i]=-1; /* For performance reasons */ if(isalpha(strb[1])) { /* .m or .d Really Missing value */ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j); fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog); @@ -10144,7 +10378,7 @@ int readdata(char datafile[], int firsto return 1; } cotqvar[j][iv][i]=dval; - cotvar[j][ntv+iv][i]=dval; + cotvar[j][ncovcol+nqv+ntv+iv][i]=dval; /* because cotvar starts now at first ntv */ } strcpy(line,stra); }/* end loop ntqv */ @@ -10184,7 +10418,7 @@ int readdata(char datafile[], int firsto Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog); return 1; } - cotvar[j][iv][i]=(double)(lval); + cotvar[j][ncovcol+nqv+iv][i]=(double)(lval); strcpy(line,stra); }/* end loop ntv */ @@ -10446,8 +10680,8 @@ int decoderesult( char resultline[], int } } if(match == 0){ - printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]); - fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=%s\n",Tvar[k1], resultline, model); + printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]); + fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s\n",Tvar[k1], resultline, model); return 1; } }else if(Typevar[k1]==1){ /* Product with age We want to get the position k2 in the resultline of the product k1 in the model line*/ @@ -10463,8 +10697,8 @@ int decoderesult( char resultline[], int } } if(match == 0){ - printf("Error in result line (Product with age): V%d is missing in result: %s according to model=%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); - fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); + printf("Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); + fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]); return 1; } }else if(Typevar[k1]==2){ /* Product No age We want to get the position in the resultline of the product in the model line*/ @@ -10479,8 +10713,8 @@ int decoderesult( char resultline[], int } } if(match == 0){ - printf("Error in result line (Product without age first variable): V%d is missing in result: %s according to model=%s\n",Tvardk[k1][1], resultline, model); - fprintf(ficlog,"Error in result line (Product without age first variable): V%d is missing in result: %s according to model=%s\n",Tvardk[k1][1], resultline, model); + printf("Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model); + fprintf(ficlog,"Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model); return 1; } match=0; @@ -10493,8 +10727,8 @@ int decoderesult( char resultline[], int } } if(match == 0){ - printf("Error in result line (Product without age second variable): V%d is missing in result: %s according to model=%s\n",Tvardk[k1][2], resultline, model); - fprintf(ficlog,"Error in result line (Product without age second variable): V%d is missing in result : %s according to model=%s\n",Tvardk[k1][2], resultline, model); + printf("Error in result line (Product without age second variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model); + fprintf(ficlog,"Error in result line (Product without age second variable): V%d is missing in result : %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model); return 1; } }/* End of testing */ @@ -10514,12 +10748,12 @@ int decoderesult( char resultline[], int } } if(match == 0){ - printf("Error in result line: variable V%d is missing in model; result: %s, model=%s\n",Tvarsel[k2], resultline, model); - fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=%s\n",Tvarsel[k2], resultline, model); + printf("Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model); + fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model); return 1; }else if(match > 1){ - printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model); - fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model); + printf("Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model); + fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model); return 1; } } @@ -10627,8 +10861,9 @@ int decodemodel( char model[], int lasto * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age * - cptcovage number of covariates with age*products =2 * - cptcovs number of simple covariates + * ncovcolt=ncovcol+nqv+ntv+nqtv total of covariates in the data, not in the model equation * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10 - * which is a new column after the 9 (ncovcol) variables. + * which is a new column after the 9 (ncovcol+nqv+ntv+nqtv) variables. * - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage * Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6. @@ -10651,18 +10886,18 @@ int decodemodel( char model[], int lasto return 1; } if (strstr(model,"v") !=0){ - printf("Error. 'v' must be in upper case 'V' model=%s ",model); - fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog); + printf("Error. 'v' must be in upper case 'V' model=1+age+%s ",model); + fprintf(ficlog,"Error. 'v' must be in upper case model=1+age+%s ",model);fflush(ficlog); return 1; } strcpy(modelsav,model); if ((strpt=strstr(model,"age*age")) !=0){ - printf(" strpt=%s, model=%s\n",strpt, model); + printf(" strpt=%s, model=1+age+%s\n",strpt, model); if(strpt != model){ - printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ + printf("Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \ 'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ corresponding column of parameters.\n",model); - fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \ + fprintf(ficlog,"Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \ 'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \ corresponding column of parameters.\n",model); fflush(ficlog); return 1; @@ -10772,12 +11007,12 @@ int decodemodel( char model[], int lasto cptcovn++; cptcovprodnoage++;k1++; cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/ - Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but + Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* ncovcolt+k1; For model-covariate k tells which data-covariate to use but because this model-covariate is a construction we invent a new column which is after existing variables ncovcol+nqv+ntv+nqtv + k1 If already ncovcol=4 and model= V2 + V1 + V1*V4 + age*V3 + V3*V2 thus after V4 we invent V5 and V6 because age*V3 will be computed in 4 - Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=4 etc */ + Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=3 etc */ /* Please remark that the new variables are model dependent */ /* If we have 4 variable but the model uses only 3, like in * model= V1 + age*V1 + V2 + V3 + age*V2 + age*V3 + V1*V2 + V1*V3 @@ -10786,7 +11021,7 @@ int decodemodel( char model[], int lasto * Tage[kk] [1]= 2 [2]=5 [3]=6 kk=1 to cptcovage=3 * Tvar[Tage[kk]][1]=2 [2]=2 [3]=3 */ - Typevar[k]=2; /* 2 for double fixed dummy covariates */ + Typevar[k]=2; /* 2 for product */ cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */ Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */ Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */ @@ -10799,11 +11034,13 @@ int decodemodel( char model[], int lasto /* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */ /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */ /* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */ - for (i=1; i<=lastobs;i++){ + if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */ + for (i=1; i<=lastobs;i++){/* For fixed product */ /* Computes the new covariate which is a product of covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */ - covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; - } + covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i]; + } + } /*End of FixedV */ } /* End age is not in the model */ } /* End if model includes a product */ else { /* not a product */ @@ -10855,7 +11092,7 @@ Typevar: 0 for simple covariate (dummy, Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\ Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model); for(k=-1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;} - for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */ + for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0, ncovvt=0;k<=cptcovt; k++){ /* or cptocvt */ if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */ Fixed[k]= 0; Dummy[k]= 0; @@ -10870,7 +11107,8 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( TvarFind[ncovf]=k; TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ - }else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */ + /* }else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /\* Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol *\/ */ + }else if( Tposprod[k]>0 && Typevar[k]==2 && FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* Needs a fixed product Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol */ Fixed[k]= 0; Dummy[k]= 0; ncoveff++; @@ -10896,6 +11134,13 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */ }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */ + /*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ + /* model V1+V3+age*V1+age*V3+V1*V3 */ + /* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ + ncovvt++; + TvarVV[ncovvt]=Tvar[k]; /* TvarVV[1]=V3 (first time varying in the model equation */ + TvarVVind[ncovvt]=k; /* TvarVVind[1]=2 (second position in the model equation */ + Fixed[k]= 1; Dummy[k]= 0; ntveff++; /* Only simple time varying dummy variable */ @@ -10913,6 +11158,13 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv); printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv); }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/ + /*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ + /* model V1+V3+age*V1+age*V3+V1*V3 */ + /* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ + ncovvt++; + TvarVV[ncovvt]=Tvar[k]; /* TvarVV[1]=V3 (first time varying in the model equation */ + TvarVVind[ncovvt]=k; /* TvarVV[1]=V3 (first time varying in the model equation */ + Fixed[k]= 1; Dummy[k]= 1; nqtveff++; @@ -10959,10 +11211,21 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( modell[k].subtype= APVQ; /* Product age * varying quantitative */ /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */ } - }else if (Typevar[k] == 2) { /* product without age */ - k1=Tposprod[k]; - if(Tvard[k1][1] <=ncovcol){ - if(Tvard[k1][2] <=ncovcol){ + }else if (Typevar[k] == 2) { /* product Vn * Vm without age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product */ + /*# ID V1 V2 weight birth death 1st s1 V3 V4 V5 2nd s2 */ + /* model V1+V3+age*V1+age*V3+V1*V3 */ + /* Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */ + k1=Tposprod[k]; /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1} k1=1 first product but second time varying because of V3 */ + ncovvt++; + TvarVV[ncovvt]=Tvard[k1][1]; /* TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */ + TvarVVind[ncovvt]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ + ncovvt++; + TvarVV[ncovvt]=Tvard[k1][2]; /* TvarVV[3]=V3 */ + TvarVVind[ncovvt]=k; /* TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */ + + + if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */ + if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */ Fixed[k]= 1; Dummy[k]= 0; modell[k].maintype= FTYPE; @@ -10970,23 +11233,23 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( ncovf++; /* Fixed variables without age */ TvarF[ncovf]=Tvar[k]; TvarFind[ncovf]=k; - }else if(Tvard[k1][2] <=ncovcol+nqv){ - Fixed[k]= 0; /* or 2 ?*/ + }else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */ + Fixed[k]= 0; /* Fixed product */ Dummy[k]= 1; modell[k].maintype= FTYPE; modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */ ncovf++; /* Varying variables without age */ TvarF[ncovf]=Tvar[k]; TvarFind[ncovf]=k; - }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ + }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */ Fixed[k]= 1; Dummy[k]= 0; modell[k].maintype= VTYPE; modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */ ncovv++; /* Varying variables without age */ - TvarV[ncovv]=Tvar[k]; - TvarVind[ncovv]=k; - }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ + TvarV[ncovv]=Tvar[k]; /* TvarV[1]=Tvar[5]=5 because there is a V4 */ + TvarVind[ncovv]=k;/* TvarVind[1]=5 */ + }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */ Fixed[k]= 1; Dummy[k]= 1; modell[k].maintype= VTYPE; @@ -10995,16 +11258,16 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( TvarV[ncovv]=Tvar[k]; TvarVind[ncovv]=k; } - }else if(Tvard[k1][1] <=ncovcol+nqv){ - if(Tvard[k1][2] <=ncovcol){ - Fixed[k]= 0; /* or 2 ?*/ + }else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti */ + if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */ + Fixed[k]= 0; /* Fixed product */ Dummy[k]= 1; modell[k].maintype= FTYPE; modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */ ncovf++; /* Fixed variables without age */ TvarF[ncovf]=Tvar[k]; TvarFind[ncovf]=k; - }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ + }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */ Fixed[k]= 1; Dummy[k]= 1; modell[k].maintype= VTYPE; @@ -11012,7 +11275,7 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( ncovv++; /* Varying variables without age */ TvarV[ncovv]=Tvar[k]; TvarVind[ncovv]=k; - }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ + }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */ Fixed[k]= 1; Dummy[k]= 1; modell[k].maintype= VTYPE; @@ -11024,7 +11287,7 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( TvarV[ncovv]=Tvar[k]; TvarVind[ncovv]=k; } - }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ + }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */ if(Tvard[k1][2] <=ncovcol){ Fixed[k]= 1; Dummy[k]= 1; @@ -11058,7 +11321,7 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( TvarV[ncovv]=Tvar[k]; TvarVind[ncovv]=k; } - }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ + }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */ if(Tvard[k1][2] <=ncovcol){ Fixed[k]= 1; Dummy[k]= 1; @@ -11111,16 +11374,16 @@ Dummy[k] 0=dummy (0 1), 1 quantitative ( if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){ if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */ if(Tvar[k1]==Tvar[k2]){ - printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); - fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog); + printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); + fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog); return(1); } }else if (Typevar[k1] ==2){ k3=Tposprod[k1]; k4=Tposprod[k2]; if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){ - printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); - fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); + printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); + fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog); return(1); } } @@ -11476,10 +11739,12 @@ int prevalence_limit(double *p, double * i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */ if (cptcovn < 1){i1=1;} - for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */ + /* for(k=1; k<=i1;k++){ /\* For each combination k of dummy covariates in the model *\/ */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - if(i1 != 1 && TKresult[nres]!= k) - continue; + k=TKresult[nres]; + if(TKresult[nres]==0) k=1; /* To be checked for noresult */ + /* if(i1 != 1 && TKresult[nres]!= k) /\* We found the combination k corresponding to the resultline value of dummies *\/ */ + /* continue; */ /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */ @@ -11490,17 +11755,19 @@ int prevalence_limit(double *p, double * fprintf(ficrespl,"#******"); printf("#******"); fprintf(ficlog,"#******"); - for(j=1;j<=cptcoveff ;j++) {/* all covariates */ + for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */ /* fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Here problem for varying dummy*\/ */ - fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /* Here problem for varying dummy*/ - printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - } - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); - fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); - fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); - } + /* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + fprintf(ficrespl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + } + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ + /* fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ + /* fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ + /* } */ fprintf(ficrespl,"******\n"); printf("******\n"); fprintf(ficlog,"******\n"); @@ -11512,18 +11779,24 @@ int prevalence_limit(double *p, double * } fprintf(ficrespl,"#Age "); - for(j=1;j<=cptcoveff;j++) { - fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); + /* for(j=1;j<=cptcoveff;j++) { */ + /* fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* } */ + for(j=1;j<=cptcovs;j++) { /* New the quanti variable is added */ + fprintf(ficrespl,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); } for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i); fprintf(ficrespl,"Total Years_to_converge\n"); for (age=agebase; age<=agelim; age++){ /* for (age=agebase; age<=agebase; age++){ */ - prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); + /**< Computes the prevalence limit in each live state at age x and for covariate combination (k and) nres */ + prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); /* Nicely done */ fprintf(ficrespl,"%.0f ",age ); - for(j=1;j<=cptcoveff;j++) - fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); + /* for(j=1;j<=cptcoveff;j++) */ + /* fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + for(j=1;j<=cptcovs;j++) + fprintf(ficrespl,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); tot=0.; for(i=1; i<=nlstate;i++){ tot += prlim[i][i]; @@ -11532,8 +11805,8 @@ int prevalence_limit(double *p, double * fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp); } /* Age */ /* was end of cptcod */ - } /* cptcov */ - } /* nres */ + } /* nres */ + /* } /\* for each combination *\/ */ return 0; } @@ -11575,23 +11848,30 @@ int back_prevalence_limit(double *p, dou if (cptcovn < 1){i1=1;} for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ - if(i1 != 1 && TKresult[nres]!= k) - continue; - /*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*/ + /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ + k=TKresult[nres]; + if(TKresult[nres]==0) k=1; /* To be checked for noresult */ + /* if(i1 != 1 && TKresult[nres]!= k) */ + /* continue; */ + /* /\*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*\/ */ fprintf(ficresplb,"#******"); printf("#******"); fprintf(ficlog,"#******"); - for(j=1;j<=cptcoveff ;j++) {/* all covariates */ - fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - } - for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ - printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); - fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); - fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); - } + for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */ + printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + fprintf(ficresplb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + } + /* for(j=1;j<=cptcoveff ;j++) {/\* all covariates *\/ */ + /* fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* } */ + /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ + /* printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + /* fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + /* fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + /* } */ fprintf(ficresplb,"******\n"); printf("******\n"); fprintf(ficlog,"******\n"); @@ -11603,8 +11883,8 @@ int back_prevalence_limit(double *p, dou } fprintf(ficresplb,"#Age "); - for(j=1;j<=cptcoveff;j++) { - fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); + for(j=1;j<=cptcovs;j++) { + fprintf(ficresplb,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); } for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i); fprintf(ficresplb,"Total Years_to_converge\n"); @@ -11627,8 +11907,8 @@ int back_prevalence_limit(double *p, dou /* exit(1); */ } fprintf(ficresplb,"%.0f ",age ); - for(j=1;j<=cptcoveff;j++) - fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); + for(j=1;j<=cptcovs;j++) + fprintf(ficresplb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); tot=0.; for(i=1; i<=nlstate;i++){ tot += bprlim[i][i]; @@ -11638,7 +11918,7 @@ int back_prevalence_limit(double *p, dou } /* Age */ /* was end of cptcod */ /*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */ - } /* end of any combination */ + /* } /\* end of any combination *\/ */ } /* end of nres */ /* hBijx(p, bage, fage); */ /* fclose(ficrespijb); */ @@ -11658,69 +11938,72 @@ int hPijx(double *p, int bage, int fage) double agedeb; double ***p3mat; - strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); - if((ficrespij=fopen(filerespij,"w"))==NULL) { - printf("Problem with Pij resultfile: %s\n", filerespij); return 1; - fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; - } - printf("Computing pij: result on file '%s' \n", filerespij); - fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); - - stepsize=(int) (stepm+YEARM-1)/YEARM; - /*if (stepm<=24) stepsize=2;*/ - - agelim=AGESUP; - hstepm=stepsize*YEARM; /* Every year of age */ - hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ - - /* hstepm=1; aff par mois*/ - pstamp(ficrespij); - fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); - i1= pow(2,cptcoveff); - /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ - /* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ - /* k=k+1; */ - for(nres=1; nres <= nresult; nres++) /* For each resultline */ - for(k=1; k<=i1;k++){ - if(i1 != 1 && TKresult[nres]!= k) - continue; - fprintf(ficrespij,"\n#****** "); - for(j=1;j<=cptcoveff;j++) - fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */ - printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); - fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); - } - fprintf(ficrespij,"******\n"); - - for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ - nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ - nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ - - /* nhstepm=nhstepm*YEARM; aff par mois*/ - - p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); - oldm=oldms;savm=savms; - hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); - fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); + strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu); + if((ficrespij=fopen(filerespij,"w"))==NULL) { + printf("Problem with Pij resultfile: %s\n", filerespij); return 1; + fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1; + } + printf("Computing pij: result on file '%s' \n", filerespij); + fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij); + + stepsize=(int) (stepm+YEARM-1)/YEARM; + /*if (stepm<=24) stepsize=2;*/ + + agelim=AGESUP; + hstepm=stepsize*YEARM; /* Every year of age */ + hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ + + /* hstepm=1; aff par mois*/ + pstamp(ficrespij); + fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x "); + i1= pow(2,cptcoveff); + /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */ + /* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ + /* k=k+1; */ + for(nres=1; nres <= nresult; nres++){ /* For each resultline */ + k=TKresult[nres]; + if(TKresult[nres]==0) k=1; /* To be checked for noresult */ + /* for(k=1; k<=i1;k++){ */ + /* if(i1 != 1 && TKresult[nres]!= k) */ + /* continue; */ + fprintf(ficrespij,"\n#****** "); + for(j=1;j<=cptcovs;j++){ + fprintf(ficrespij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + /* fprintf(ficrespij,"@wV%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */ + /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ + /* fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */ + } + fprintf(ficrespij,"******\n"); + + for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */ + nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ + nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */ + + /* nhstepm=nhstepm*YEARM; aff par mois*/ + + p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); + oldm=oldms;savm=savms; + hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres); + fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j="); + for(i=1; i<=nlstate;i++) + for(j=1; j<=nlstate+ndeath;j++) + fprintf(ficrespij," %1d-%1d",i,j); + fprintf(ficrespij,"\n"); + for (h=0; h<=nhstepm; h++){ + /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ + fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); for(i=1; i<=nlstate;i++) for(j=1; j<=nlstate+ndeath;j++) - fprintf(ficrespij," %1d-%1d",i,j); - fprintf(ficrespij,"\n"); - for (h=0; h<=nhstepm; h++){ - /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ - fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); - for(i=1; i<=nlstate;i++) - for(j=1; j<=nlstate+ndeath;j++) - fprintf(ficrespij," %.5f", p3mat[i][j][h]); - fprintf(ficrespij,"\n"); - } - free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); + fprintf(ficrespij," %.5f", p3mat[i][j][h]); fprintf(ficrespij,"\n"); } - /*}*/ + free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); + fprintf(ficrespij,"\n"); } - return 0; + } + /*}*/ + return 0; } int hBijx(double *p, int bage, int fage, double ***prevacurrent){ @@ -11760,54 +12043,58 @@ int hPijx(double *p, int bage, int fage) /* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */ /* k=k+1; */ for(nres=1; nres <= nresult; nres++){ /* For each resultline */ - for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */ - if(i1 != 1 && TKresult[nres]!= k) - continue; - fprintf(ficrespijb,"\n#****** "); - for(j=1;j<=cptcoveff;j++) - fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); - for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ - fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); - } - fprintf(ficrespijb,"******\n"); - if(invalidvarcomb[k]){ /* Is it necessary here? */ - fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); - continue; - } - - /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ - for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ - /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ - nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */ - nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/ - - /* nhstepm=nhstepm*YEARM; aff par mois*/ - - p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */ - /* and memory limitations if stepm is small */ - - /* oldm=oldms;savm=savms; */ - /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ - hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */ - /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ - fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j="); + k=TKresult[nres]; + if(TKresult[nres]==0) k=1; /* To be checked for noresult */ + /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */ + /* if(i1 != 1 && TKresult[nres]!= k) */ + /* continue; */ + fprintf(ficrespijb,"\n#****** "); + for(j=1;j<=cptcovs;j++){ + fprintf(ficrespijb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); + /* for(j=1;j<=cptcoveff;j++) */ + /* fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ + /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */ + /* fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */ + } + fprintf(ficrespijb,"******\n"); + if(invalidvarcomb[k]){ /* Is it necessary here? */ + fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); + continue; + } + + /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */ + for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */ + /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */ + nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */ + nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/ + + /* nhstepm=nhstepm*YEARM; aff par mois*/ + + p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */ + /* and memory limitations if stepm is small */ + + /* oldm=oldms;savm=savms; */ + /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */ + hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */ + /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */ + fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j="); + for(i=1; i<=nlstate;i++) + for(j=1; j<=nlstate+ndeath;j++) + fprintf(ficrespijb," %1d-%1d",i,j); + fprintf(ficrespijb,"\n"); + for (h=0; h<=nhstepm; h++){ + /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ + fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); + /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ for(i=1; i<=nlstate;i++) for(j=1; j<=nlstate+ndeath;j++) - fprintf(ficrespijb," %1d-%1d",i,j); + fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */ fprintf(ficrespijb,"\n"); - for (h=0; h<=nhstepm; h++){ - /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/ - fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm ); - /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */ - for(i=1; i<=nlstate;i++) - for(j=1; j<=nlstate+ndeath;j++) - fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */ - fprintf(ficrespijb,"\n"); - } - free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); - fprintf(ficrespijb,"\n"); - } /* end age deb */ - } /* end combination */ + } + free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); + fprintf(ficrespijb,"\n"); + } /* end age deb */ + /* } /\* end combination *\/ */ } /* end nres */ return 0; } /* hBijx */ @@ -12203,7 +12490,7 @@ int main(int argc, char *argv[]) strcpy(model,modeltemp); } } - /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */ + /* printf(" model=1+age%s modeltemp= %s, model=1+age+%s\n",model, modeltemp, model);fflush(stdout); */ printf("model=1+age+%s\n",model);fflush(stdout); fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout); fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout); @@ -12244,7 +12531,8 @@ int main(int argc, char *argv[]) covar=matrix(0,NCOVMAX,firstobs,lastobs); /**< used in readdata */ if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs); /**< Fixed quantitative covariate */ if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs); /**< Time varying quantitative covariate */ - if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs); /**< Time varying covariate (dummy and quantitative)*/ + /* if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs); /\**< Time varying covariate (dummy and quantitative)*\/ */ + if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs); /**< Might be better */ cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/ /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5 v1+v2*age+v2*v3 makes cptcovn = 3 @@ -12525,6 +12813,8 @@ Please run with mle=-1 to get a correct TvarVDind=ivector(1,NCOVMAX); /* */ TvarVQ=ivector(1,NCOVMAX); /* */ TvarVQind=ivector(1,NCOVMAX); /* */ + TvarVV=ivector(1,NCOVMAX); /* */ + TvarVVind=ivector(1,NCOVMAX); /* */ Tvalsel=vector(1,NCOVMAX); /* */ Tvarsel=ivector(1,NCOVMAX); /* */ @@ -12634,8 +12924,8 @@ Please run with mle=-1 to get a correct } ncovcombmax=pow(2,cptcoveff); - invalidvarcomb=ivector(1, ncovcombmax); - for(i=1;iDatafile=%s Firstpass=%d La fprintf(fichtm,"
\n\ IMaCh-%s
%s
\
\n\ -This file: %sTitle=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n\ +This file: %s
Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n\ \n\
\
  • Parameter files

    \n\ @@ -13782,8 +14072,8 @@ Please run with mle=-1 to get a correct printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); } for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ - printf(" V%d=%f ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */ - fprintf(ficreseij,"V%d=%f ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); + printf(" V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */ + fprintf(ficreseij,"V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); } fprintf(ficreseij,"******\n"); printf("******\n"); @@ -13875,9 +14165,9 @@ Please run with mle=-1 to get a correct printf("\n j=%d In computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d Fixed[modelresult[nres][j]]=%d\n", j, nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff,Fixed[modelresult[nres][j]]); /* end if dummy or quanti */ if(Dummy[modelresult[nres][j]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to j in resultline */ - printf("V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ - fprintf(ficlog,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ - fprintf(ficrest,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ + printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ + fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ + fprintf(ficrest,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline */ if(Fixed[modelresult[nres][j]]==0){ /* Fixed */ printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed "); }else{ @@ -13887,7 +14177,9 @@ Please run with mle=-1 to get a correct /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ }else if(Dummy[modelresult[nres][j]]==1){ /* Quanti variable */ /* For each selected (single) quantitative value */ - printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); + printf(" V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); + fprintf(ficlog," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); + fprintf(ficrest," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]); if(Fixed[modelresult[nres][j]]==0){ /* Fixed */ printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed "); }else{ @@ -13910,14 +14202,16 @@ Please run with mle=-1 to get a correct fprintf(ficresstdeij,"\n#****** "); fprintf(ficrescveij,"\n#****** "); + /* It could have been: for(j=1;j<=cptcoveff;j++) {printf("V=%d=%lg",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);} */ + /* But it won't be sorted and depends on how the resultline is ordered */ for(j=1;j<=cptcoveff;j++) { fprintf(ficresstdeij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]); /* fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ /* fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */ } for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value, TvarsQind gives the position of a quantitative in model equation */ - fprintf(ficresstdeij," V%d=%f ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); - fprintf(ficrescveij," V%d=%f ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); + fprintf(ficresstdeij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); + fprintf(ficrescveij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]); } fprintf(ficresstdeij,"******\n"); fprintf(ficrescveij,"******\n"); @@ -13929,7 +14223,7 @@ Please run with mle=-1 to get a correct /* fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[TnsdVar[Tvaraff[j]]])]); */ for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */ /* fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); /\* To solve *\/ */ - fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */ + fprintf(ficresvij," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */ } fprintf(ficresvij,"******\n"); @@ -14042,7 +14336,8 @@ Please run with mle=-1 to get a correct free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath); free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath); free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath); - if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs); + /* if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs); */ + if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs); if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs); if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs); free_matrix(covar,0,NCOVMAX,firstobs,lastobs); @@ -14081,12 +14376,15 @@ Please run with mle=-1 to get a correct free_ivector(TvarVDind,1,NCOVMAX); free_ivector(TvarVQ,1,NCOVMAX); free_ivector(TvarVQind,1,NCOVMAX); + free_ivector(TvarVV,1,NCOVMAX); + free_ivector(TvarVVind,1,NCOVMAX); + free_ivector(Tvarsel,1,NCOVMAX); free_vector(Tvalsel,1,NCOVMAX); free_ivector(Tposprod,1,NCOVMAX); free_ivector(Tprod,1,NCOVMAX); free_ivector(Tvaraff,1,NCOVMAX); - free_ivector(invalidvarcomb,1,ncovcombmax); + free_ivector(invalidvarcomb,0,ncovcombmax); free_ivector(Tage,1,NCOVMAX); free_ivector(Tmodelind,1,NCOVMAX); free_ivector(TmodelInvind,1,NCOVMAX);