Tvar[1]= 2 */
+/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+/*k 1 2 3 4 5 6 7 8 9 */
+/*Tvar[k]= 5 4 3 6 5 2 7 1 1 */
+/* Tndvar[k] 1 2 3 4 5 */
+/*TDvar 4 3 6 7 1 */ /* For outputs only; combination of dummies fixed or varying */
+/* Tns[k] 1 2 2 4 5 */ /* Number of single cova */
+/* TvarsD[k] 1 2 3 */ /* Number of single dummy cova */
+/* TvarsDind 2 3 9 */ /* position K of single dummy cova */
+/* TvarsQ[k] 1 2 */ /* Number of single quantitative cova */
+/* TvarsQind 1 6 */ /* position K of single quantitative cova */
+/* Tprod[i]=k 4 7 */
+/* Tage[i]=k 5 8 */
+/* */
+/* Type */
+/* V 1 2 3 4 5 */
+/* F F V V V */
+/* D Q D D Q */
+/* */
+int *TvarsD;
+int *TvarsDind;
+int *TvarsQ;
+int *TvarsQind;
+
+#define MAXRESULTLINES 10
+int nresult=0;
+int TKresult[MAXRESULTLINES];
+int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
+int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
+int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */
+double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
+double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
+int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */
+
+/* int *TDvar; /\**< TDvar[1]=4, TDvarF[2]=3, TDvar[3]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
+int *TvarF; /**< TvarF[1]=Tvar[6]=2, TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+int *TvarFind; /**< TvarFind[1]=6, TvarFind[2]=7, Tvarind[3]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
+int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
+int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
+int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
+int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
+int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
+
+int *Tvarsel; /**< Selected covariates for output */
+double *Tvalsel; /**< Selected modality value of covariate for output */
+int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */
+int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */
+int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */
+int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
+int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
+int *Tage;
+int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */
+int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
+int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
+int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+int *Ndum; /** Freq of modality (tricode */
+/* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
+int **Tvard;
+int *Tprod;/**< Gives the k position of the k1 product */
+/* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3 */
+int *Tposprod; /**< Gives the k1 product from the k position */
+ /* if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2) */
+ /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
+int cptcovprod, *Tvaraff, *invalidvarcomb;
+double *lsurv, *lpop, *tpop;
+
+#define FD 1; /* Fixed dummy covariate */
+#define FQ 2; /* Fixed quantitative covariate */
+#define FP 3; /* Fixed product covariate */
+#define FPDD 7; /* Fixed product dummy*dummy covariate */
+#define FPDQ 8; /* Fixed product dummy*quantitative covariate */
+#define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
+#define VD 10; /* Varying dummy covariate */
+#define VQ 11; /* Varying quantitative covariate */
+#define VP 12; /* Varying product covariate */
+#define VPDD 13; /* Varying product dummy*dummy covariate */
+#define VPDQ 14; /* Varying product dummy*quantitative covariate */
+#define VPQQ 15; /* Varying product quantitative*quantitative covariate */
+#define APFD 16; /* Age product * fixed dummy covariate */
+#define APFQ 17; /* Age product * fixed quantitative covariate */
+#define APVD 18; /* Age product * varying dummy covariate */
+#define APVQ 19; /* Age product * varying quantitative covariate */
+
+#define FTYPE 1; /* Fixed covariate */
+#define VTYPE 2; /* Varying covariate (loop in wave) */
+#define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
+
+struct kmodel{
+ int maintype; /* main type */
+ int subtype; /* subtype */
+};
+struct kmodel modell[NCOVMAX];
-double ftol=FTOL; /* Tolerance for computing Max Likelihood */
-double ftolhess; /* Tolerance for computing hessian */
+double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
+double ftolhess; /**< Tolerance for computing hessian */
/**************** split *************************/
static int split( char *path, char *dirc, char *name, char *ext, char *finame )
{
+ /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
+ the name of the file (name), its extension only (ext) and its first part of the name (finame)
+ */
char *ss; /* pointer */
- int l1, l2; /* length counters */
+ int l1=0, l2=0; /* length counters */
l1 = strlen(path ); /* length of path */
if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
ss= strrchr( path, DIRSEPARATOR ); /* find last / */
- if ( ss == NULL ) { /* no directory, so use current */
+ if ( ss == NULL ) { /* no directory, so determine current directory */
+ strcpy( name, path ); /* we got the fullname name because no directory */
/*if(strrchr(path, ODIRSEPARATOR )==NULL)
printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
-#if defined(__bsd__) /* get current working directory */
- extern char *getwd( );
-
- if ( getwd( dirc ) == NULL ) {
+ /* get current working directory */
+ /* extern char* getcwd ( char *buf , int len);*/
+#ifdef WIN32
+ if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
#else
- extern char *getcwd( );
-
- if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
+ if (getcwd(dirc, FILENAME_MAX) == NULL) {
#endif
return( GLOCK_ERROR_GETCWD );
}
- strcpy( name, path ); /* we've got it */
- } else { /* strip direcotry from path */
+ /* got dirc from getcwd*/
+ printf(" DIRC = %s \n",dirc);
+ } else { /* strip directory from path */
ss++; /* after this, the filename */
l2 = strlen( ss ); /* length of filename */
if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
strcpy( name, ss ); /* save file name */
strncpy( dirc, path, l1 - l2 ); /* now the directory */
- dirc[l1-l2] = 0; /* add zero */
+ dirc[l1-l2] = '\0'; /* add zero */
+ printf(" DIRC2 = %s \n",dirc);
}
+ /* We add a separator at the end of dirc if not exists */
l1 = strlen( dirc ); /* length of directory */
-#ifdef windows
- if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
-#else
- if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
-#endif
+ if( dirc[l1-1] != DIRSEPARATOR ){
+ dirc[l1] = DIRSEPARATOR;
+ dirc[l1+1] = 0;
+ printf(" DIRC3 = %s \n",dirc);
+ }
ss = strrchr( name, '.' ); /* find last / */
- ss++;
- strcpy(ext,ss); /* save extension */
- l1= strlen( name);
- l2= strlen(ss)+1;
- strncpy( finame, name, l1-l2);
- finame[l1-l2]= 0;
+ if (ss >0){
+ ss++;
+ strcpy(ext,ss); /* save extension */
+ l1= strlen( name);
+ l2= strlen(ss)+1;
+ strncpy( finame, name, l1-l2);
+ finame[l1-l2]= 0;
+ }
+
return( 0 ); /* we're done */
}
/******************************************/
-void replace(char *s, char*t)
+void replace_back_to_slash(char *s, char*t)
{
int i;
- int lg=20;
+ int lg=0;
i=0;
lg=strlen(t);
for(i=0; i<= lg; i++) {
@@ -239,39 +1297,171 @@ void replace(char *s, char*t)
}
}
-int nbocc(char *s, char occ)
-{
- int i,j=0;
- int lg=20;
- i=0;
- lg=strlen(s);
- for(i=0; i<= lg; i++) {
- if (s[i] == occ ) j++;
+char *trimbb(char *out, char *in)
+{ /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
+ char *s;
+ s=out;
+ while (*in != '\0'){
+ while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
+ in++;
+ }
+ *out++ = *in++;
}
- return j;
+ *out='\0';
+ return s;
}
-void cutv(char *u,char *v, char*t, char occ)
+/* char *substrchaine(char *out, char *in, char *chain) */
+/* { */
+/* /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
+/* char *s, *t; */
+/* t=in;s=out; */
+/* while ((*in != *chain) && (*in != '\0')){ */
+/* *out++ = *in++; */
+/* } */
+
+/* /\* *in matches *chain *\/ */
+/* while ((*in++ == *chain++) && (*in != '\0')){ */
+/* printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain); */
+/* } */
+/* in--; chain--; */
+/* while ( (*in != '\0')){ */
+/* printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain); */
+/* *out++ = *in++; */
+/* printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain); */
+/* } */
+/* *out='\0'; */
+/* out=s; */
+/* return out; */
+/* } */
+char *substrchaine(char *out, char *in, char *chain)
{
- /* cuts string t into u and v where u is ended by char occ excluding it
- and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
- gives u="abcedf" and v="ghi2j" */
- int i,lg,j,p=0;
- i=0;
- for(j=0; j<=strlen(t)-1; j++) {
- if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
+ /* Substract chain 'chain' from 'in', return and output 'out' */
+ /* in="V1+V1*age+age*age+V2", chain="age*age" */
+
+ char *strloc;
+
+ strcpy (out, in);
+ strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
+ printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
+ if(strloc != NULL){
+ /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
+ memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
+ /* strcpy (strloc, strloc +strlen(chain));*/
}
+ printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
+ return out;
+}
- lg=strlen(t);
- for(j=0; j=(p+1))(v[j-p-1] = t[j]);
+ *alocc='\0';
+ return s;
+}
+
+int nbocc(char *s, char occ)
+{
+ int i,j=0;
+ int lg=20;
+ i=0;
+ lg=strlen(s);
+ for(i=0; i<= lg; i++) {
+ if (s[i] == occ ) j++;
}
+ return j;
+}
+
+/* void cutv(char *u,char *v, char*t, char occ) */
+/* { */
+/* /\* cuts string t into u and v where u ends before last occurence of char 'occ' */
+/* and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
+/* gives u="abcdef2ghi" and v="j" *\/ */
+/* int i,lg,j,p=0; */
+/* i=0; */
+/* lg=strlen(t); */
+/* for(j=0; j<=lg-1; j++) { */
+/* if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
+/* } */
+
+/* for(j=0; j
=(p+1))(v[j-p-1] = t[j]); */
+/* } */
+/* } */
+
+#ifdef _WIN32
+char * strsep(char **pp, const char *delim)
+{
+ char *p, *q;
+
+ if ((p = *pp) == NULL)
+ return 0;
+ if ((q = strpbrk (p, delim)) != NULL)
+ {
+ *pp = q + 1;
+ *q = '\0';
+ }
+ else
+ *pp = 0;
+ return p;
}
+#endif
/********************** nrerror ********************/
@@ -311,6 +1501,21 @@ void free_ivector(int *v, long nl, long
free((FREE_ARG)(v+nl-NR_END));
}
+/************************lvector *******************************/
+long *lvector(long nl,long nh)
+{
+ long *v;
+ v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
+ if (!v) nrerror("allocation failure in ivector");
+ return v-nl+NR_END;
+}
+
+/******************free lvector **************************/
+void free_lvector(long *v, long nl, long nh)
+{
+ free((FREE_ARG)(v+nl-NR_END));
+}
+
/******************* imatrix *******************************/
int **imatrix(long nrl, long nrh, long ncl, long nch)
/* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
@@ -365,6 +1570,10 @@ double **matrix(long nrl, long nrh, long
for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
return m;
+ /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
+m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
+that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
+ */
}
/*************************free matrix ************************/
@@ -404,7 +1613,10 @@ double ***ma3x(long nrl, long nrh, long
for (j=ncl+1; j<=nch; j++)
m[i][j]=m[i][j-1]+nlay;
}
- return m;
+ return m;
+ /* gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
+ &(m[i][j][k]) <=> *((*(m+i) + j)+k)
+ */
}
/*************************free ma3x ************************/
@@ -415,6 +1627,77 @@ void free_ma3x(double ***m, long nrl, lo
free((FREE_ARG)(m+nrl-NR_END));
}
+/*************** function subdirf ***********/
+char *subdirf(char fileres[])
+{
+ /* Caution optionfilefiname is hidden */
+ strcpy(tmpout,optionfilefiname);
+ strcat(tmpout,"/"); /* Add to the right */
+ strcat(tmpout,fileres);
+ return tmpout;
+}
+
+/*************** function subdirf2 ***********/
+char *subdirf2(char fileres[], char *preop)
+{
+
+ /* Caution optionfilefiname is hidden */
+ strcpy(tmpout,optionfilefiname);
+ strcat(tmpout,"/");
+ strcat(tmpout,preop);
+ strcat(tmpout,fileres);
+ return tmpout;
+}
+
+/*************** function subdirf3 ***********/
+char *subdirf3(char fileres[], char *preop, char *preop2)
+{
+
+ /* Caution optionfilefiname is hidden */
+ strcpy(tmpout,optionfilefiname);
+ strcat(tmpout,"/");
+ strcat(tmpout,preop);
+ strcat(tmpout,preop2);
+ strcat(tmpout,fileres);
+ return tmpout;
+}
+
+/*************** function subdirfext ***********/
+char *subdirfext(char fileres[], char *preop, char *postop)
+{
+
+ strcpy(tmpout,preop);
+ strcat(tmpout,fileres);
+ strcat(tmpout,postop);
+ return tmpout;
+}
+
+/*************** function subdirfext3 ***********/
+char *subdirfext3(char fileres[], char *preop, char *postop)
+{
+
+ /* Caution optionfilefiname is hidden */
+ strcpy(tmpout,optionfilefiname);
+ strcat(tmpout,"/");
+ strcat(tmpout,preop);
+ strcat(tmpout,fileres);
+ strcat(tmpout,postop);
+ return tmpout;
+}
+
+char *asc_diff_time(long time_sec, char ascdiff[])
+{
+ long sec_left, days, hours, minutes;
+ days = (time_sec) / (60*60*24);
+ sec_left = (time_sec) % (60*60*24);
+ hours = (sec_left) / (60*60) ;
+ sec_left = (sec_left) %(60*60);
+ minutes = (sec_left) /60;
+ sec_left = (sec_left) % (60);
+ sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);
+ return ascdiff;
+}
+
/***************** f1dim *************************/
extern int ncom;
extern double *pcom,*xicom;
@@ -435,11 +1718,17 @@ double f1dim(double x)
/*****************brent *************************/
double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin)
-{
+{
+ /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
+ * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
+ * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
+ * the minimum is returned as xmin, and the minimum function value is returned as brent , the
+ * returned function value.
+ */
int iter;
double a,b,d,etemp;
- double fu,fv,fw,fx;
- double ftemp;
+ double fu=0,fv,fw,fx;
+ double ftemp=0.;
double p,q,r,tol1,tol2,u,v,w,x,xm;
double e=0.0;
@@ -453,7 +1742,7 @@ double brent(double ax, double bx, doubl
/* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
printf(".");fflush(stdout);
fprintf(ficlog,".");fflush(ficlog);
-#ifdef DEBUG
+#ifdef DEBUGBRENT
printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
/* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
@@ -473,12 +1762,12 @@ double brent(double ax, double bx, doubl
etemp=e;
e=d;
if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
- d=CGOLD*(e=(x >= xm ? a-x : b-x));
+ d=CGOLD*(e=(x >= xm ? a-x : b-x));
else {
- d=p/q;
- u=x+d;
- if (u-a < tol2 || b-u < tol2)
- d=SIGN(tol1,xm-x);
+ d=p/q;
+ u=x+d;
+ if (u-a < tol2 || b-u < tol2)
+ d=SIGN(tol1,xm-x);
}
} else {
d=CGOLD*(e=(x >= xm ? a-x : b-x));
@@ -488,19 +1777,19 @@ double brent(double ax, double bx, doubl
if (fu <= fx) {
if (u >= x) a=x; else b=x;
SHFT(v,w,x,u)
- SHFT(fv,fw,fx,fu)
- } else {
- if (u < x) a=u; else b=u;
- if (fu <= fw || w == x) {
- v=w;
- w=u;
- fv=fw;
- fw=fu;
- } else if (fu <= fv || v == x || v == w) {
- v=u;
- fv=fu;
- }
- }
+ SHFT(fv,fw,fx,fu)
+ } else {
+ if (u < x) a=u; else b=u;
+ if (fu <= fw || w == x) {
+ v=w;
+ w=u;
+ fv=fw;
+ fw=fu;
+ } else if (fu <= fv || v == x || v == w) {
+ v=u;
+ fv=fu;
+ }
+ }
}
nrerror("Too many iterations in brent");
*xmin=x;
@@ -511,51 +1800,158 @@ double brent(double ax, double bx, doubl
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
double (*func)(double))
-{
+{ /* Given a function func , and given distinct initial points ax and bx , this routine searches in
+the downhill direction (defined by the function as evaluated at the initial points) and returns
+new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
+values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
+ */
double ulim,u,r,q, dum;
double fu;
-
- *fa=(*func)(*ax);
- *fb=(*func)(*bx);
+
+ double scale=10.;
+ int iterscale=0;
+
+ *fa=(*func)(*ax); /* xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
+ *fb=(*func)(*bx); /* xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
+
+
+ /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
+ /* printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
+ /* *bx = *ax - (*ax - *bx)/scale; */
+ /* *fb=(*func)(*bx); /\* xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
+ /* } */
+
if (*fb > *fa) {
SHFT(dum,*ax,*bx,dum)
- SHFT(dum,*fb,*fa,dum)
- }
+ SHFT(dum,*fb,*fa,dum)
+ }
*cx=(*bx)+GOLD*(*bx-*ax);
*fc=(*func)(*cx);
- while (*fb > *fc) {
+#ifdef DEBUG
+ printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
+ fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
+#endif
+ while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
r=(*bx-*ax)*(*fb-*fc);
- q=(*bx-*cx)*(*fb-*fa);
+ q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
- (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
- ulim=(*bx)+GLIMIT*(*cx-*bx);
- if ((*bx-u)*(u-*cx) > 0.0) {
+ (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
+ ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
+ if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
fu=(*func)(u);
- } else if ((*cx-u)*(u-ulim) > 0.0) {
+#ifdef DEBUG
+ /* f(x)=A(x-u)**2+f(u) */
+ double A, fparabu;
+ A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
+ fparabu= *fa - A*(*ax-u)*(*ax-u);
+ printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
+ fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf), (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
+ /* And thus,it can be that fu > *fc even if fparabu < *fc */
+ /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
+ (*cx=10.098840694817, *fc=298946.631474258087), (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
+ /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
+#endif
+#ifdef MNBRAKORIGINAL
+#else
+/* if (fu > *fc) { */
+/* #ifdef DEBUG */
+/* printf("mnbrak4 fu > fc \n"); */
+/* fprintf(ficlog, "mnbrak4 fu > fc\n"); */
+/* #endif */
+/* /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/ *\/ */
+/* /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc will exit *\\/ *\/ */
+/* dum=u; /\* Shifting c and u *\/ */
+/* u = *cx; */
+/* *cx = dum; */
+/* dum = fu; */
+/* fu = *fc; */
+/* *fc =dum; */
+/* } else { /\* end *\/ */
+/* #ifdef DEBUG */
+/* printf("mnbrak3 fu < fc \n"); */
+/* fprintf(ficlog, "mnbrak3 fu < fc\n"); */
+/* #endif */
+/* dum=u; /\* Shifting c and u *\/ */
+/* u = *cx; */
+/* *cx = dum; */
+/* dum = fu; */
+/* fu = *fc; */
+/* *fc =dum; */
+/* } */
+#ifdef DEBUGMNBRAK
+ double A, fparabu;
+ A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
+ fparabu= *fa - A*(*ax-u)*(*ax-u);
+ printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
+ fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
+#endif
+ dum=u; /* Shifting c and u */
+ u = *cx;
+ *cx = dum;
+ dum = fu;
+ fu = *fc;
+ *fc =dum;
+#endif
+ } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
+#ifdef DEBUG
+ printf("\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx);
+ fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim\n",u,*cx);
+#endif
fu=(*func)(u);
if (fu < *fc) {
- SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
- SHFT(*fb,*fc,fu,(*func)(u))
- }
- } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
+#ifdef DEBUG
+ printf("\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
+ fprintf(ficlog,"\nmnbrak2 u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
+#endif
+ SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
+ SHFT(*fb,*fc,fu,(*func)(u))
+#ifdef DEBUG
+ printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
+#endif
+ }
+ } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
+#ifdef DEBUG
+ printf("\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
+ fprintf(ficlog,"\nmnbrak2 u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
+#endif
u=ulim;
fu=(*func)(u);
- } else {
+ } else { /* u could be left to b (if r > q parabola has a maximum) */
+#ifdef DEBUG
+ printf("\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
+ fprintf(ficlog,"\nmnbrak2 u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
+#endif
u=(*cx)+GOLD*(*cx-*bx);
fu=(*func)(u);
- }
+#ifdef DEBUG
+ printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
+ fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
+#endif
+ } /* end tests */
SHFT(*ax,*bx,*cx,u)
- SHFT(*fa,*fb,*fc,fu)
- }
+ SHFT(*fa,*fb,*fc,fu)
+#ifdef DEBUG
+ printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
+ fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
+#endif
+ } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
}
/*************** linmin ************************/
-
+/* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
+resets p to where the function func(p) takes on a minimum along the direction xi from p ,
+and replaces xi by the actual vector displacement that p was moved. Also returns as fret
+the value of func at the returned location p . This is actually all accomplished by calling the
+routines mnbrak and brent .*/
int ncom;
double *pcom,*xicom;
double (*nrfunc)(double []);
+#ifdef LINMINORIGINAL
void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
+#else
+void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat)
+#endif
{
double brent(double ax, double bx, double cx,
double (*f)(double), double tol, double *xmin);
@@ -565,89 +1961,296 @@ void linmin(double p[], double xi[], int
int j;
double xx,xmin,bx,ax;
double fx,fb,fa;
-
+
+#ifdef LINMINORIGINAL
+#else
+ double scale=10., axs, xxs; /* Scale added for infinity */
+#endif
+
ncom=n;
pcom=vector(1,n);
xicom=vector(1,n);
nrfunc=func;
for (j=1;j<=n;j++) {
pcom[j]=p[j];
- xicom[j]=xi[j];
+ xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
}
- ax=0.0;
- xx=1.0;
- mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
- *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
+
+#ifdef LINMINORIGINAL
+ xx=1.;
+#else
+ axs=0.0;
+ xxs=1.;
+ do{
+ xx= xxs;
+#endif
+ ax=0.;
+ mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
+ /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
+ /* xt[x,j]=pcom[j]+x*xicom[j] f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j)) */
+ /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
+ /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
+ /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
+ /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus [0:xi[j]]*/
+#ifdef LINMINORIGINAL
+#else
+ if (fx != fx){
+ xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
+ printf("|");
+ fprintf(ficlog,"|");
+#ifdef DEBUGLINMIN
+ printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n", axs, xxs, fx,fb, fa, xx, ax, bx);
+#endif
+ }
+ }while(fx != fx && xxs > 1.e-5);
+#endif
+
+#ifdef DEBUGLINMIN
+ printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb);
+ fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n", ax,xx,bx,fa,fx,fb);
+#endif
+#ifdef LINMINORIGINAL
+#else
+ if(fb == fx){ /* Flat function in the direction */
+ xmin=xx;
+ *flat=1;
+ }else{
+ *flat=0;
+#endif
+ /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
+ *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
+ /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
+ /* fmin = f(p[j] + xmin * xi[j]) */
+ /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
+ /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
#ifdef DEBUG
- printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
- fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
+ printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
+ fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
+#endif
+#ifdef LINMINORIGINAL
+#else
+ }
+#endif
+#ifdef DEBUGLINMIN
+ printf("linmin end ");
+ fprintf(ficlog,"linmin end ");
#endif
for (j=1;j<=n;j++) {
+#ifdef LINMINORIGINAL
xi[j] *= xmin;
- p[j] += xi[j];
+#else
+#ifdef DEBUGLINMIN
+ if(xxs <1.0)
+ printf(" before xi[%d]=%12.8f", j,xi[j]);
+#endif
+ xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
+#ifdef DEBUGLINMIN
+ if(xxs <1.0)
+ printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
+#endif
+#endif
+ p[j] += xi[j]; /* Parameters values are updated accordingly */
}
+#ifdef DEBUGLINMIN
+ printf("\n");
+ printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
+ fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
+ for (j=1;j<=n;j++) {
+ printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
+ fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
+ if(j % ncovmodel == 0){
+ printf("\n");
+ fprintf(ficlog,"\n");
+ }
+ }
+#else
+#endif
free_vector(xicom,1,n);
free_vector(pcom,1,n);
}
+
/*************** powell ************************/
+/*
+Minimization of a function func of n variables. Input consists of an initial starting point
+p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
+rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
+such that failure to decrease by more than this amount on one iteration signals doneness. On
+output, p is set to the best point found, xi is the then-current direction set, fret is the returned
+function value at p , and iter is the number of iterations taken. The routine linmin is used.
+ */
+#ifdef LINMINORIGINAL
+#else
+ int *flatdir; /* Function is vanishing in that direction */
+ int flat=0, flatd=0; /* Function is vanishing in that direction */
+#endif
void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
double (*func)(double []))
{
- void linmin(double p[], double xi[], int n, double *fret,
+#ifdef LINMINORIGINAL
+ void linmin(double p[], double xi[], int n, double *fret,
double (*func)(double []));
- int i,ibig,j;
+#else
+ void linmin(double p[], double xi[], int n, double *fret,
+ double (*func)(double []),int *flat);
+#endif
+ int i,ibig,j,jk,k;
double del,t,*pt,*ptt,*xit;
+ double directest;
double fp,fptt;
double *xits;
+ int niterf, itmp;
+#ifdef LINMINORIGINAL
+#else
+
+ flatdir=ivector(1,n);
+ for (j=1;j<=n;j++) flatdir[j]=0;
+#endif
+
pt=vector(1,n);
ptt=vector(1,n);
xit=vector(1,n);
xits=vector(1,n);
*fret=(*func)(p);
for (j=1;j<=n;j++) pt[j]=p[j];
+ rcurr_time = time(NULL);
for (*iter=1;;++(*iter)) {
- fp=(*fret);
+ fp=(*fret); /* From former iteration or initial value */
ibig=0;
del=0.0;
- printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
- fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
- for (i=1;i<=n;i++)
- printf(" %d %.12f",i, p[i]);
- fprintf(ficlog," %d %.12f",i, p[i]);
+ rlast_time=rcurr_time;
+ /* (void) gettimeofday(&curr_time,&tzp); */
+ rcurr_time = time(NULL);
+ curr_time = *localtime(&rcurr_time);
+ printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
+ fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
+/* fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
+ for (i=1;i<=n;i++) {
+ fprintf(ficrespow," %.12lf", p[i]);
+ }
+ fprintf(ficrespow,"\n");fflush(ficrespow);
+ printf("\n#model= 1 + age ");
+ fprintf(ficlog,"\n#model= 1 + age ");
+ if(nagesqr==1){
+ printf(" + age*age ");
+ fprintf(ficlog," + age*age ");
+ }
+ for(j=1;j <=ncovmodel-2;j++){
+ if(Typevar[j]==0) {
+ printf(" + V%d ",Tvar[j]);
+ fprintf(ficlog," + V%d ",Tvar[j]);
+ }else if(Typevar[j]==1) {
+ printf(" + V%d*age ",Tvar[j]);
+ fprintf(ficlog," + V%d*age ",Tvar[j]);
+ }else if(Typevar[j]==2) {
+ printf(" + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
+ fprintf(ficlog," + V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
+ }
+ }
printf("\n");
+/* printf("12 47.0114589 0.0154322 33.2424412 0.3279905 2.3731903 */
+/* 13 -21.5392400 0.1118147 1.2680506 1.2973408 -1.0663662 */
fprintf(ficlog,"\n");
- for (i=1;i<=n;i++) {
- for (j=1;j<=n;j++) xit[j]=xi[j][i];
+ for(i=1,jk=1; i <=nlstate; i++){
+ for(k=1; k <=(nlstate+ndeath); k++){
+ if (k != i) {
+ printf("%d%d ",i,k);
+ fprintf(ficlog,"%d%d ",i,k);
+ for(j=1; j <=ncovmodel; j++){
+ printf("%12.7f ",p[jk]);
+ fprintf(ficlog,"%12.7f ",p[jk]);
+ jk++;
+ }
+ printf("\n");
+ fprintf(ficlog,"\n");
+ }
+ }
+ }
+ if(*iter <=3 && *iter >1){
+ tml = *localtime(&rcurr_time);
+ strcpy(strcurr,asctime(&tml));
+ rforecast_time=rcurr_time;
+ itmp = strlen(strcurr);
+ if(strcurr[itmp-1]=='\n') /* Windows outputs with a new line */
+ strcurr[itmp-1]='\0';
+ printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
+ fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
+ for(niterf=10;niterf<=30;niterf+=10){
+ rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
+ forecast_time = *localtime(&rforecast_time);
+ strcpy(strfor,asctime(&forecast_time));
+ itmp = strlen(strfor);
+ if(strfor[itmp-1]=='\n')
+ strfor[itmp-1]='\0';
+ printf(" - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
+ fprintf(ficlog," - if your program needs %d iterations to converge, convergence will be \n reached in %s i.e.\n on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
+ }
+ }
+ for (i=1;i<=n;i++) { /* For each direction i */
+ for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
fptt=(*fret);
#ifdef DEBUG
- printf("fret=%lf \n",*fret);
- fprintf(ficlog,"fret=%lf \n",*fret);
+ printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
+ fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
#endif
- printf("%d",i);fflush(stdout);
+ printf("%d",i);fflush(stdout); /* print direction (parameter) i */
fprintf(ficlog,"%d",i);fflush(ficlog);
- linmin(p,xit,n,fret,func);
- if (fabs(fptt-(*fret)) > del) {
- del=fabs(fptt-(*fret));
- ibig=i;
+#ifdef LINMINORIGINAL
+ linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
+#else
+ linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
+ flatdir[i]=flat; /* Function is vanishing in that direction i */
+#endif
+ /* Outputs are fret(new point p) p is updated and xit rescaled */
+ if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
+ /* because that direction will be replaced unless the gain del is small */
+ /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
+ /* Unless the n directions are conjugate some gain in the determinant may be obtained */
+ /* with the new direction. */
+ del=fabs(fptt-(*fret));
+ ibig=i;
}
#ifdef DEBUG
printf("%d %.12e",i,(*fret));
fprintf(ficlog,"%d %.12e",i,(*fret));
for (j=1;j<=n;j++) {
- xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
- printf(" x(%d)=%.12e",j,xit[j]);
- fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
+ xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
+ printf(" x(%d)=%.12e",j,xit[j]);
+ fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
}
for(j=1;j<=n;j++) {
- printf(" p=%.12e",p[j]);
- fprintf(ficlog," p=%.12e",p[j]);
+ printf(" p(%d)=%.12e",j,p[j]);
+ fprintf(ficlog," p(%d)=%.12e",j,p[j]);
}
printf("\n");
fprintf(ficlog,"\n");
#endif
- }
- if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
+ } /* end loop on each direction i */
+ /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */
+ /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit */
+ /* New value of last point Pn is not computed, P(n-1) */
+ for(j=1;j<=n;j++) {
+ if(flatdir[j] >0){
+ printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
+ fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
+ }
+ /* printf("\n"); */
+ /* fprintf(ficlog,"\n"); */
+ }
+ /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */
+ if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */
+ /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
+ /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
+ /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
+ /* decreased of more than 3.84 */
+ /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
+ /* By using V1+V2+V3, the gain should be 7.82, compared with basic 1+age. */
+ /* By adding 10 parameters more the gain should be 18.31 */
+
+ /* Starting the program with initial values given by a former maximization will simply change */
+ /* the scales of the directions and the directions, because the are reset to canonical directions */
+ /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
+ /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long. */
#ifdef DEBUG
int k[2],l;
k[0]=1;
@@ -671,192 +2274,728 @@ void powell(double p[], double **xi, int
}
#endif
-
+#ifdef LINMINORIGINAL
+#else
+ free_ivector(flatdir,1,n);
+#endif
free_vector(xit,1,n);
free_vector(xits,1,n);
free_vector(ptt,1,n);
free_vector(pt,1,n);
return;
- }
- if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
- for (j=1;j<=n;j++) {
+ } /* enough precision */
+ if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations.");
+ for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
ptt[j]=2.0*p[j]-pt[j];
xit[j]=p[j]-pt[j];
pt[j]=p[j];
}
- fptt=(*func)(ptt);
- if (fptt < fp) {
- t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
- if (t < 0.0) {
- linmin(p,xit,n,fret,func);
+ fptt=(*func)(ptt); /* f_3 */
+#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */
+ if (*iter <=4) {
+#else
+#endif
+#ifdef POWELLNOF3INFF1TEST /* skips test F3 0 */
+ /* mu² and del² are equal when f3=f1 */
+ /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
+ /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
+ /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0 */
+ /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0 */
+#ifdef NRCORIGINAL
+ t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
+#else
+ t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
+ t= t- del*SQR(fp-fptt);
+#endif
+ directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
+#ifdef DEBUG
+ printf("t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
+ fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
+ printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
+ (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
+ fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
+ (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
+ printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
+ fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
+#endif
+#ifdef POWELLORIGINAL
+ if (t < 0.0) { /* Then we use it for new direction */
+#else
+ if (directest*t < 0.0) { /* Contradiction between both tests */
+ printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
+ printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
+ fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
+ fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
+ }
+ if (directest < 0.0) { /* Then we use it for new direction */
+#endif
+#ifdef DEBUGLINMIN
+ printf("Before linmin in direction P%d-P0\n",n);
+ for (j=1;j<=n;j++) {
+ printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
+ fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
+ if(j % ncovmodel == 0){
+ printf("\n");
+ fprintf(ficlog,"\n");
+ }
+ }
+#endif
+#ifdef LINMINORIGINAL
+ linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
+#else
+ linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
+ flatdir[i]=flat; /* Function is vanishing in that direction i */
+#endif
+
+#ifdef DEBUGLINMIN
+ for (j=1;j<=n;j++) {
+ printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
+ fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
+ if(j % ncovmodel == 0){
+ printf("\n");
+ fprintf(ficlog,"\n");
+ }
+ }
+#endif
for (j=1;j<=n;j++) {
- xi[j][ibig]=xi[j][n];
- xi[j][n]=xit[j];
+ xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
+ xi[j][n]=xit[j]; /* and this nth direction by the by the average p_0 p_n */
+ }
+#ifdef LINMINORIGINAL
+#else
+ for (j=1, flatd=0;j<=n;j++) {
+ if(flatdir[j]>0)
+ flatd++;
+ }
+ if(flatd >0){
+ printf("%d flat directions\n",flatd);
+ fprintf(ficlog,"%d flat directions\n",flatd);
+ for (j=1;j<=n;j++) {
+ if(flatdir[j]>0){
+ printf("%d ",j);
+ fprintf(ficlog,"%d ",j);
+ }
+ }
+ printf("\n");
+ fprintf(ficlog,"\n");
}
+#endif
+ printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
+ fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
+
#ifdef DEBUG
printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
fprintf(ficlog,"Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
for(j=1;j<=n;j++){
- printf(" %.12e",xit[j]);
- fprintf(ficlog," %.12e",xit[j]);
+ printf(" %lf",xit[j]);
+ fprintf(ficlog," %lf",xit[j]);
}
printf("\n");
fprintf(ficlog,"\n");
#endif
- }
- }
- }
+ } /* end of t or directest negative */
+#ifdef POWELLNOF3INFF1TEST
+#else
+ } /* end if (fptt < fp) */
+#endif
+#ifdef NODIRECTIONCHANGEDUNTILNITER /* No change in drections until some iterations are done */
+ } /*NODIRECTIONCHANGEDUNTILNITER No change in drections until some iterations are done */
+#else
+#endif
+ } /* loop iteration */
}
-
-/**** Prevalence limit (stable prevalence) ****************/
-
-double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
-{
- /* Computes the prevalence limit in each live state at age x by left multiplying the unit
- matrix by transitions matrix until convergence is reached */
-
+
+/**** Prevalence limit (stable or period prevalence) ****************/
+
+ double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
+ {
+ /* Computes the prevalence limit in each live state at age x and for covariate combination ij
+ (and selected quantitative values in nres)
+ by left multiplying the unit
+ matrix by transitions matrix until convergence is reached with precision ftolpl */
+ /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */
+ /* Wx is row vector: population in state 1, population in state 2, population dead */
+ /* or prevalence in state 1, prevalence in state 2, 0 */
+ /* newm is the matrix after multiplications, its rows are identical at a factor */
+ /* Initial matrix pimij */
+ /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
+ /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
+ /* 0, 0 , 1} */
+ /*
+ * and after some iteration: */
+ /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
+ /* 0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
+ /* 0, 0 , 1} */
+ /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
+ /* {0.51571254859325999, 0.4842874514067399, */
+ /* 0.51326036147820708, 0.48673963852179264} */
+ /* If we start from prlim again, prlim tends to a constant matrix */
+
int i, ii,j,k;
- double min, max, maxmin, maxmax,sumnew=0.;
- double **matprod2();
- double **out, cov[NCOVMAX], **pmij();
+ double *min, *max, *meandiff, maxmax,sumnew=0.;
+ /* double **matprod2(); */ /* test */
+ double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
double **newm;
- double agefin, delaymax=50 ; /* Max number of years to converge */
+ double agefin, delaymax=200. ; /* 100 Max number of years to converge */
+ int ncvloop=0;
+
+ min=vector(1,nlstate);
+ max=vector(1,nlstate);
+ meandiff=vector(1,nlstate);
+ /* Starting with matrix unity */
for (ii=1;ii<=nlstate+ndeath;ii++)
for (j=1;j<=nlstate+ndeath;j++){
oldm[ii][j]=(ii==j ? 1.0 : 0.0);
}
-
- cov[1]=1.;
-
- /* Even if hstepm = 1, at least one multiplication by the unit matrix */
+
+ cov[1]=1.;
+
+ /* Even if hstepm = 1, at least one multiplication by the unit matrix */
+ /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
+ ncvloop++;
newm=savm;
/* Covariates have to be included here again */
- cov[2]=agefin;
-
- for (k=1; k<=cptcovn;k++) {
- cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
- /* printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
- }
- for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
- for (k=1; k<=cptcovprod;k++)
- cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
-
- /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
- /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
- /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
- out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
-
+ cov[2]=agefin;
+ if(nagesqr==1)
+ cov[3]= agefin*agefin;;
+ for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
+ /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
+ cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
+ /* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
+ }
+ for (k=1; k<=nsq;k++) { /* For single varying covariates only */
+ /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
+ cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];
+ /* printf("prevalim Quantitative k=%d TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
+ }
+ for (k=1; k<=cptcovage;k++){ /* For product with age */
+ if(Dummy[Tvar[Tage[k]]]){
+ cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
+ } else{
+ cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];
+ }
+ /* printf("prevalim Age combi=%d k=%d Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
+ }
+ for (k=1; k<=cptcovprod;k++){ /* For product without age */
+ /* printf("prevalim Prod ij=%d k=%d Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
+ if(Dummy[Tvard[k][1]==0]){
+ if(Dummy[Tvard[k][2]==0]){
+ cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
+ }else{
+ cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];
+ }
+ }else{
+ if(Dummy[Tvard[k][2]==0]){
+ cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];
+ }else{
+ cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]* Tqinvresult[nres][Tvard[k][2]];
+ }
+ }
+ }
+ /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
+ /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
+ /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
+ /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
+ /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
+ /* age and covariate values of ij are in 'cov' */
+ out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
+
savm=oldm;
oldm=newm;
- maxmax=0.;
- for(j=1;j<=nlstate;j++){
- min=1.;
- max=0.;
- for(i=1; i<=nlstate; i++) {
- sumnew=0;
- for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
+
+ for(j=1; j<=nlstate; j++){
+ max[j]=0.;
+ min[j]=1.;
+ }
+ for(i=1;i<=nlstate;i++){
+ sumnew=0;
+ for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
+ for(j=1; j<=nlstate; j++){
prlim[i][j]= newm[i][j]/(1-sumnew);
- max=FMAX(max,prlim[i][j]);
- min=FMIN(min,prlim[i][j]);
+ max[j]=FMAX(max[j],prlim[i][j]);
+ min[j]=FMIN(min[j],prlim[i][j]);
}
- maxmin=max-min;
- maxmax=FMAX(maxmax,maxmin);
}
+
+ maxmax=0.;
+ for(j=1; j<=nlstate; j++){
+ meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
+ maxmax=FMAX(maxmax,meandiff[j]);
+ /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
+ } /* j loop */
+ *ncvyear= (int)age- (int)agefin;
+ /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
if(maxmax < ftolpl){
+ /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
+ free_vector(min,1,nlstate);
+ free_vector(max,1,nlstate);
+ free_vector(meandiff,1,nlstate);
return prlim;
}
- }
+ } /* age loop */
+ /* After some age loop it doesn't converge */
+ printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
+Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
+ /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
+ free_vector(min,1,nlstate);
+ free_vector(max,1,nlstate);
+ free_vector(meandiff,1,nlstate);
+
+ return prlim; /* should not reach here */
}
-/*************** transition probabilities ***************/
-double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
+ /**** Back Prevalence limit (stable or period prevalence) ****************/
+
+ /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
+ /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
+ double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres)
{
- double s1, s2;
- /*double t34;*/
- int i,j,j1, nc, ii, jj;
+ /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit
+ matrix by transitions matrix until convergence is reached with precision ftolpl */
+ /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1 = Wx-n Px-n ... Px-2 Px-1 I */
+ /* Wx is row vector: population in state 1, population in state 2, population dead */
+ /* or prevalence in state 1, prevalence in state 2, 0 */
+ /* newm is the matrix after multiplications, its rows are identical at a factor */
+ /* Initial matrix pimij */
+ /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
+ /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
+ /* 0, 0 , 1} */
+ /*
+ * and after some iteration: */
+ /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
+ /* 0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
+ /* 0, 0 , 1} */
+ /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
+ /* {0.51571254859325999, 0.4842874514067399, */
+ /* 0.51326036147820708, 0.48673963852179264} */
+ /* If we start from prlim again, prlim tends to a constant matrix */
- for(i=1; i<= nlstate; i++){
- for(j=1; ji s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
- }
- ps[i][j]=s2;
- }
- }
- /*ps[3][2]=1;*/
+ int i, ii,j,k;
+ int first=0;
+ double *min, *max, *meandiff, maxmax,sumnew=0.;
+ /* double **matprod2(); */ /* test */
+ double **out, cov[NCOVMAX+1], **bmij();
+ double **newm;
+ double **dnewm, **doldm, **dsavm; /* for use */
+ double **oldm, **savm; /* for use */
+
+ double agefin, delaymax=200. ; /* 100 Max number of years to converge */
+ int ncvloop=0;
+
+ min=vector(1,nlstate);
+ max=vector(1,nlstate);
+ meandiff=vector(1,nlstate);
+
+ dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
+ oldm=oldms; savm=savms;
+
+ /* Starting with matrix unity */
+ for (ii=1;ii<=nlstate+ndeath;ii++)
+ for (j=1;j<=nlstate+ndeath;j++){
+ oldm[ii][j]=(ii==j ? 1.0 : 0.0);
+ }
+
+ cov[1]=1.;
+
+ /* Even if hstepm = 1, at least one multiplication by the unit matrix */
+ /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
+ /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
+ for(agefin=age; agefin ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\
+Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
+ }
+ fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
+Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
+ /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
+ free_vector(min,1,nlstate);
+ free_vector(max,1,nlstate);
+ free_vector(meandiff,1,nlstate);
+
+ return bprlim; /* should not reach here */
+}
+
+/*************** transition probabilities ***************/
+
+double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
+{
+ /* According to parameters values stored in x and the covariate's values stored in cov,
+ computes the probability to be observed in state j being in state i by appying the
+ model to the ncovmodel covariates (including constant and age).
+ lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
+ and, according on how parameters are entered, the position of the coefficient xij(nc) of the
+ ncth covariate in the global vector x is given by the formula:
+ j=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
+ Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
+ sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
+ Outputs ps[i][j] the probability to be observed in j being in j according to
+ the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
+ */
+ double s1, lnpijopii;
+ /*double t34;*/
+ int i,j, nc, ii, jj;
for(i=1; i<= nlstate; i++){
- s1=0;
- for(j=1; ji s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
+ }
+ ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
+ }
+ }
+
+ for(i=1; i<= nlstate; i++){
+ s1=0;
+ for(j=1; ji} pij/pii=(1-pii)/pii and thus pii is known from s1 */
ps[i][i]=1./(s1+1.);
+ /* Computing other pijs */
for(j=1; j= 1.e-10){
+ /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
+ /* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
+ /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
+ /* doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
+ /* }else */
+ doldm[ii][j]=(ii==j ? 1./sumnew : 0.0);
+ }else{
+ ;
+ /* printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin); */
+ }
+ } /*End ii */
+ } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */
+ /* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */
+ bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */
+ /* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */
+ /* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
+ /* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
+ /* left Product of this matrix by diag matrix of prevalences (savm) */
+ for (j=1;j<=nlstate+ndeath;j++){
+ for (ii=1;ii<=nlstate+ndeath;ii++){
+ dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0);
+ }
+ } /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */
+ ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */
+ /* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
+ /* end bmij */
+ return ps;
+}
+/*************** transition probabilities ***************/
+double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
+{
+ /* According to parameters values stored in x and the covariate's values stored in cov,
+ computes the probability to be observed in state j being in state i by appying the
+ model to the ncovmodel covariates (including constant and age).
+ lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
+ and, according on how parameters are entered, the position of the coefficient xij(nc) of the
+ ncth covariate in the global vector x is given by the formula:
+ j=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
+ Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
+ sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
+ Outputs ps[i][j] the probability to be observed in j being in j according to
+ the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
+ */
+ double s1, lnpijopii;
+ /*double t34;*/
+ int i,j, nc, ii, jj;
- /* for(ii=1; ii<= nlstate+ndeath; ii++){
+ for(i=1; i<= nlstate; i++){
+ for(j=1; ji s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
+ }
+ ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
+ }
+ }
+
+ for(i=1; i<= nlstate; i++){
+ s1=0;
+ for(j=1; ji} pij/pii=(1-pii)/pii and thus pii is known from s1 */
+ ps[i][i]=1./(s1+1.);
+ /* Computing other pijs */
+ for(j=1; jfunction)(xt); /* p xt[1]@8 is fine */
+ /* fret=(*func)(xt); /\* p xt[1]@8 is fine *\/ */
+ printf("Function = %.12lf ",fret);
+ for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]);
+ printf("\n");
+ free_vector(xt,1,n);
+ return fret;
+}
+#endif
+
/*************** log-likelihood *************/
double func( double *x)
{
int i, ii, j, k, mi, d, kk;
- double l, ll[NLSTATEMAX], cov[NCOVMAX];
+ int ioffset=0;
+ double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
double **out;
- double sw; /* Sum of weights */
double lli; /* Individual log likelihood */
int s1, s2;
- double bbh;
+ int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
+ double bbh, survp;
long ipmx;
+ double agexact;
/*extern weight */
/* We are differentiating ll according to initial status */
/* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
/*for(i=1;i 1 the results are less biased than in previous versions.
- */
+ * from savm to out if bh is negative or even beyond if bh is positive. bh varies
+ * -stepm/2 to stepm/2 .
+ * For stepm=1 the results are the same as for previous versions of Imach.
+ * For stepm > 1 the results are less biased than in previous versions.
+ */
s1=s[mw[mi][i]][i];
s2=s[mw[mi+1][i]][i];
bbh=(double)bh[mi][i]/(double)stepm;
- /* bias is positive if real duration
+ /* bias bh is positive if real duration
* is higher than the multiple of stepm and negative otherwise.
*/
/* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
- lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
+ if( s2 > nlstate){
+ /* i.e. if s2 is a death state and if the date of death is known
+ then the contribution to the likelihood is the probability to
+ die between last step unit time and current step unit time,
+ which is also equal to probability to die before dh
+ minus probability to die before dh-stepm .
+ In version up to 0.92 likelihood was computed
+ as if date of death was unknown. Death was treated as any other
+ health state: the date of the interview describes the actual state
+ and not the date of a change in health state. The former idea was
+ to consider that at each interview the state was recorded
+ (healthy, disable or death) and IMaCh was corrected; but when we
+ introduced the exact date of death then we should have modified
+ the contribution of an exact death to the likelihood. This new
+ contribution is smaller and very dependent of the step unit
+ stepm. It is no more the probability to die between last interview
+ and month of death but the probability to survive from last
+ interview up to one month before death multiplied by the
+ probability to die within a month. Thanks to Chris
+ Jackson for correcting this bug. Former versions increased
+ mortality artificially. The bad side is that we add another loop
+ which slows down the processing. The difference can be up to 10%
+ lower mortality.
+ */
+ /* If, at the beginning of the maximization mostly, the
+ cumulative probability or probability to be dead is
+ constant (ie = 1) over time d, the difference is equal to
+ 0. out[s1][3] = savm[s1][3]: probability, being at state
+ s1 at precedent wave, to be dead a month before current
+ wave is equal to probability, being at state s1 at
+ precedent wave, to be dead at mont of the current
+ wave. Then the observed probability (that this person died)
+ is null according to current estimated parameter. In fact,
+ it should be very low but not zero otherwise the log go to
+ infinity.
+ */
+/* #ifdef INFINITYORIGINAL */
+/* lli=log(out[s1][s2] - savm[s1][s2]); */
+/* #else */
+/* if ((out[s1][s2] - savm[s1][s2]) < mytinydouble) */
+/* lli=log(mytinydouble); */
+/* else */
+/* lli=log(out[s1][s2] - savm[s1][s2]); */
+/* #endif */
+ lli=log(out[s1][s2] - savm[s1][s2]);
+
+ } else if ( s2==-1 ) { /* alive */
+ for (j=1,survp=0. ; j<=nlstate; j++)
+ survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
+ /*survp += out[s1][j]; */
+ lli= log(survp);
+ }
+ else if (s2==-4) {
+ for (j=3,survp=0. ; j<=nlstate; j++)
+ survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
+ lli= log(survp);
+ }
+ else if (s2==-5) {
+ for (j=1,survp=0. ; j<=2; j++)
+ survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
+ lli= log(survp);
+ }
+ else{
+ lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
+ /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
+ }
/*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
/*if(lli ==000.0)*/
/*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
ipmx +=1;
sw += weight[i];
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
+ /* if (lli < log(mytinydouble)){ */
+ /* printf("Close to inf lli = %.10lf < %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
+ /* fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
+ /* } */
} /* end of wave */
} /* end of individual */
} else if(mle==2){
for (i=1,ipmx=0, sw=0.; i<=imx; i++){
- for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
+ for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
for(mi=1; mi<= wav[i]-1; mi++){
for (ii=1;ii<=nlstate+ndeath;ii++)
for (j=1;j<=nlstate+ndeath;j++){
@@ -992,9 +3389,12 @@ double func( double *x)
}
for(d=0; d<=dh[mi][i]; d++){
newm=savm;
- cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
+ agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
+ cov[2]=agexact;
+ if(nagesqr==1)
+ cov[3]= agexact*agexact;
for (kk=1; kk<=cptcovage;kk++) {
- cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
+ cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
}
out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
@@ -1002,31 +3402,10 @@ double func( double *x)
oldm=newm;
} /* end mult */
- /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
- /* But now since version 0.9 we anticipate for bias and large stepm.
- * If stepm is larger than one month (smallest stepm) and if the exact delay
- * (in months) between two waves is not a multiple of stepm, we rounded to
- * the nearest (and in case of equal distance, to the lowest) interval but now
- * we keep into memory the bias bh[mi][i] and also the previous matrix product
- * (i.e to dh[mi][i]-1) saved in 'savm'. The we inter(extra)polate the
- * probability in order to take into account the bias as a fraction of the way
- * from savm to out if bh is neagtive or even beyond if bh is positive. bh varies
- * -stepm/2 to stepm/2 .
- * For stepm=1 the results are the same as for previous versions of Imach.
- * For stepm > 1 the results are less biased than in previous versions.
- */
s1=s[mw[mi][i]][i];
s2=s[mw[mi+1][i]][i];
bbh=(double)bh[mi][i]/(double)stepm;
- /* bias is positive if real duration
- * is higher than the multiple of stepm and negative otherwise.
- */
lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
- /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
- /*lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.-+bh)*out[s1][s2])); */ /* exponential interpolation */
- /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
- /*if(lli ==000.0)*/
- /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
ipmx +=1;
sw += weight[i];
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
@@ -1034,7 +3413,7 @@ double func( double *x)
} /* end of individual */
} else if(mle==3){ /* exponential inter-extrapolation */
for (i=1,ipmx=0, sw=0.; i<=imx; i++){
- for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
+ for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
for(mi=1; mi<= wav[i]-1; mi++){
for (ii=1;ii<=nlstate+ndeath;ii++)
for (j=1;j<=nlstate+ndeath;j++){
@@ -1043,9 +3422,12 @@ double func( double *x)
}
for(d=0; d 1 the results are less biased than in previous versions.
- */
s1=s[mw[mi][i]][i];
s2=s[mw[mi+1][i]][i];
bbh=(double)bh[mi][i]/(double)stepm;
- /* bias is positive if real duration
- * is higher than the multiple of stepm and negative otherwise.
- */
- /* lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); */ /* linear interpolation */
lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
- /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
- /*if(lli ==000.0)*/
- /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
ipmx +=1;
sw += weight[i];
ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
} /* end of wave */
} /* end of individual */
- }else{ /* ml=4 no inter-extrapolation */
+ }else if (mle==4){ /* ml=4 no inter-extrapolation */
+ for (i=1,ipmx=0, sw=0.; i<=imx; i++){
+ for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
+ for(mi=1; mi<= wav[i]-1; mi++){
+ for (ii=1;ii<=nlstate+ndeath;ii++)
+ for (j=1;j<=nlstate+ndeath;j++){
+ oldm[ii][j]=(ii==j ? 1.0 : 0.0);
+ savm[ii][j]=(ii==j ? 1.0 : 0.0);
+ }
+ for(d=0; d nlstate){
+ lli=log(out[s1][s2] - savm[s1][s2]);
+ } else if ( s2==-1 ) { /* alive */
+ for (j=1,survp=0. ; j<=nlstate; j++)
+ survp += out[s1][j];
+ lli= log(survp);
+ }else{
+ lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
+ }
+ ipmx +=1;
+ sw += weight[i];
+ ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
+/* printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
+ } /* end of wave */
+ } /* end of individual */
+ }else{ /* ml=5 no inter-extrapolation no jackson =0.8a */
for (i=1,ipmx=0, sw=0.; i<=imx; i++){
- for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
+ for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
for(mi=1; mi<= wav[i]-1; mi++){
for (ii=1;ii<=nlstate+ndeath;ii++)
for (j=1;j<=nlstate+ndeath;j++){
@@ -1093,9 +3497,12 @@ double func( double *x)
}
for(d=0; d nlstate && (mle <5) ){ /* Jackson */
+ lli=log(out[s1][s2] - savm[s1][s2]);
+ } else if ( s2==-1 ) { /* alive */
+ for (j=1,survp=0. ; j<=nlstate; j++)
+ survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
+ lli= log(survp);
+ }else if (mle==1){
+ lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
+ } else if(mle==2){
+ lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
+ } else if(mle==3){ /* exponential inter-extrapolation */
+ lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
+ } else if (mle==4){ /* mle=4 no inter-extrapolation */
+ lli=log(out[s1][s2]); /* Original formula */
+ } else{ /* mle=0 back to 1 */
+ lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
+ /*lli=log(out[s1][s2]); */ /* Original formula */
+ } /* End of if */
+ ipmx +=1;
+ sw += weight[i];
+ ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
+ /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
+ if(globpr){
+ fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
+ %11.6f %11.6f %11.6f ", \
+ num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
+ 2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
+ for(k=1,llt=0.,l=0.; k<=nlstate; k++){
+ llt +=ll[k]*gipmx/gsw;
+ fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
+ }
+ fprintf(ficresilk," %10.6f\n", -llt);
+ }
+ } /* end of wave */
+} /* end of individual */
+for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
+/* printf("l1=%f l2=%f ",ll[1],ll[2]); */
+l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
+if(globpr==0){ /* First time we count the contributions and weights */
+ gipmx=ipmx;
+ gsw=sw;
+}
+return -l;
+}
+
+
+/*************** function likelione ***********/
+void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
+{
+ /* This routine should help understanding what is done with
+ the selection of individuals/waves and
+ to check the exact contribution to the likelihood.
+ Plotting could be done.
+ */
+ int k;
+
+ if(*globpri !=0){ /* Just counts and sums, no printings */
+ strcpy(fileresilk,"ILK_");
+ strcat(fileresilk,fileresu);
+ if((ficresilk=fopen(fileresilk,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", fileresilk);
+ fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
+ }
+ fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
+ fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
+ /* i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
+ for(k=1; k<=nlstate; k++)
+ fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
+ fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
+ }
+
+ *fretone=(*funcone)(p);
+ if(*globpri !=0){
+ fclose(ficresilk);
+ if (mle ==0)
+ fprintf(fichtm,"\n
File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
+ else if(mle >=1)
+ fprintf(fichtm,"\n
File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
+ fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: %s
\n",subdirf(fileresilk),subdirf(fileresilk));
+
+
+ for (k=1; k<= nlstate ; k++) {
+ fprintf(fichtm,"
- Probability p%dj by origin %d and destination j. Dot's sizes are related to corresponding weight: %s-p%dj.png
\
+",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
+ }
+ fprintf(fichtm,"
- The function drawn is -2Log(L) in Log scale: by state of origin %s-ori.png
\
+",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
+ fprintf(fichtm,"
- and by state of destination %s-dest.png
\
+",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
+ fflush(fichtm);
+ }
+ return;
+}
+
/*********** Maximum Likelihood Estimation ***************/
void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
{
- int i,j, iter;
- double **xi,*delti;
+ int i,j, iter=0;
+ double **xi;
double fret;
+ double fretone; /* Only one call to likelihood */
+ /* char filerespow[FILENAMELENGTH];*/
+
+#ifdef NLOPT
+ int creturn;
+ nlopt_opt opt;
+ /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
+ double *lb;
+ double minf; /* the minimum objective value, upon return */
+ double * p1; /* Shifted parameters from 0 instead of 1 */
+ myfunc_data dinst, *d = &dinst;
+#endif
+
+
xi=matrix(1,npar,1,npar);
for (i=1;i<=npar;i++)
for (j=1;j<=npar;j++)
xi[i][j]=(i==j ? 1.0 : 0.0);
printf("Powell\n"); fprintf(ficlog,"Powell\n");
+ strcpy(filerespow,"POW_");
+ strcat(filerespow,fileres);
+ if((ficrespow=fopen(filerespow,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", filerespow);
+ fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
+ }
+ fprintf(ficrespow,"# Powell\n# iter -2*LL");
+ for (i=1;i<=nlstate;i++)
+ for(j=1;j<=nlstate+ndeath;j++)
+ if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
+ fprintf(ficrespow,"\n");
+#ifdef POWELL
powell(p,xi,npar,ftol,&iter,&fret,func);
+#endif
- printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
- fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
- fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
+#ifdef NLOPT
+#ifdef NEWUOA
+ opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
+#else
+ opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
+#endif
+ lb=vector(0,npar-1);
+ for (i=0;ifunction = func;
+ printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
+ nlopt_set_min_objective(opt, myfunc, d);
+ nlopt_set_xtol_rel(opt, ftol);
+ if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
+ printf("nlopt failed! %d\n",creturn);
+ }
+ else {
+ printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
+ printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
+ iter=1; /* not equal */
+ }
+ nlopt_destroy(opt);
+#endif
+ free_matrix(xi,1,npar,1,npar);
+ fclose(ficrespow);
+ printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
+ fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
+ fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
}
/**** Computes Hessian and covariance matrix ***/
-void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
+void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
{
double **a,**y,*x,pd;
- double **hess;
- int i, j,jk;
+ /* double **hess; */
+ int i, j;
int *indx;
- double hessii(double p[], double delta, int theta, double delti[]);
- double hessij(double p[], double delti[], int i, int j);
+ double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
+ double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
void lubksb(double **a, int npar, int *indx, double b[]) ;
void ludcmp(double **a, int npar, int *indx, double *d) ;
-
- hess=matrix(1,npar,1,npar);
+ double gompertz(double p[]);
+ /* hess=matrix(1,npar,1,npar); */
printf("\nCalculation of the hessian matrix. Wait...\n");
fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
for (i=1;i<=npar;i++){
- printf("%d",i);fflush(stdout);
- fprintf(ficlog,"%d",i);fflush(ficlog);
- hess[i][i]=hessii(p,ftolhess,i,delti);
- /*printf(" %f ",p[i]);*/
- /*printf(" %lf ",hess[i][i]);*/
+ printf("%d-",i);fflush(stdout);
+ fprintf(ficlog,"%d-",i);fflush(ficlog);
+
+ hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
+
+ /* printf(" %f ",p[i]);
+ printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
}
for (i=1;i<=npar;i++) {
for (j=1;j<=npar;j++) {
if (j>i) {
- printf(".%d%d",i,j);fflush(stdout);
- fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
- hess[i][j]=hessij(p,delti,i,j);
+ printf(".%d-%d",i,j);fflush(stdout);
+ fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
+ hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
+
hess[j][i]=hess[i][j];
/*printf(" %lf ",hess[i][j]);*/
}
@@ -1201,71 +3875,96 @@ void hesscov(double **matcov, double p[]
fprintf(ficlog,"\n#Hessian matrix#\n");
for (i=1;i<=npar;i++) {
for (j=1;j<=npar;j++) {
- printf("%.3e ",hess[i][j]);
- fprintf(ficlog,"%.3e ",hess[i][j]);
+ printf("%.6e ",hess[i][j]);
+ fprintf(ficlog,"%.6e ",hess[i][j]);
}
printf("\n");
fprintf(ficlog,"\n");
}
+ /* printf("\n#Covariance matrix#\n"); */
+ /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
+ /* for (i=1;i<=npar;i++) { */
+ /* for (j=1;j<=npar;j++) { */
+ /* printf("%.6e ",matcov[i][j]); */
+ /* fprintf(ficlog,"%.6e ",matcov[i][j]); */
+ /* } */
+ /* printf("\n"); */
+ /* fprintf(ficlog,"\n"); */
+ /* } */
+
/* Recompute Inverse */
- for (i=1;i<=npar;i++)
- for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
- ludcmp(a,npar,indx,&pd);
+ /* for (i=1;i<=npar;i++) */
+ /* for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
+ /* ludcmp(a,npar,indx,&pd); */
+
+ /* printf("\n#Hessian matrix recomputed#\n"); */
+
+ /* for (j=1;j<=npar;j++) { */
+ /* for (i=1;i<=npar;i++) x[i]=0; */
+ /* x[j]=1; */
+ /* lubksb(a,npar,indx,x); */
+ /* for (i=1;i<=npar;i++){ */
+ /* y[i][j]=x[i]; */
+ /* printf("%.3e ",y[i][j]); */
+ /* fprintf(ficlog,"%.3e ",y[i][j]); */
+ /* } */
+ /* printf("\n"); */
+ /* fprintf(ficlog,"\n"); */
+ /* } */
+
+ /* Verifying the inverse matrix */
+#ifdef DEBUGHESS
+ y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
- /* printf("\n#Hessian matrix recomputed#\n");
+ printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
+ fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
for (j=1;j<=npar;j++) {
- for (i=1;i<=npar;i++) x[i]=0;
- x[j]=1;
- lubksb(a,npar,indx,x);
for (i=1;i<=npar;i++){
- y[i][j]=x[i];
- printf("%.3e ",y[i][j]);
- fprintf(ficlog,"%.3e ",y[i][j]);
+ printf("%.2f ",y[i][j]);
+ fprintf(ficlog,"%.2f ",y[i][j]);
}
printf("\n");
fprintf(ficlog,"\n");
}
- */
+#endif
free_matrix(a,1,npar,1,npar);
free_matrix(y,1,npar,1,npar);
free_vector(x,1,npar);
free_ivector(indx,1,npar);
- free_matrix(hess,1,npar,1,npar);
+ /* free_matrix(hess,1,npar,1,npar); */
}
/*************** hessian matrix ****************/
-double hessii( double x[], double delta, int theta, double delti[])
-{
+double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
+{ /* Around values of x, computes the function func and returns the scales delti and hessian */
int i;
int l=1, lmax=20;
- double k1,k2;
- double p2[NPARMAX+1];
- double res;
- double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
- double fx;
+ double k1,k2, res, fx;
+ double p2[MAXPARM+1]; /* identical to x */
+ double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
int k=0,kmax=10;
double l1;
fx=func(x);
for (i=1;i<=npar;i++) p2[i]=x[i];
- for(l=0 ; l <=lmax; l++){
+ for(l=0 ; l <=lmax; l++){ /* Enlarging the zone around the Maximum */
l1=pow(10,l);
delts=delt;
for(k=1 ; k khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
- k=kmax; l=lmax*10.;
+ k=kmax; l=lmax*10;
}
else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
delts=delt;
}
- }
+ } /* End loop k */
}
delti[theta]=delts;
return res;
}
-double hessij( double x[], double delti[], int thetai,int thetaj)
+double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
{
int i;
- int l=1, l1, lmax=20;
+ int l=1, lmax=20;
double k1,k2,k3,k4,res,fx;
- double p2[NPARMAX+1];
- int k;
+ double p2[MAXPARM+1];
+ int k, kmax=1;
+ double v1, v2, cv12, lc1, lc2;
+ int firstime=0;
+
fx=func(x);
- for (k=1; k<=2; k++) {
+ for (k=1; k<=kmax; k=k+10) {
for (i=1;i<=npar;i++) p2[i]=x[i];
- p2[thetai]=x[thetai]+delti[thetai]/k;
- p2[thetaj]=x[thetaj]+delti[thetaj]/k;
+ p2[thetai]=x[thetai]+delti[thetai]*k;
+ p2[thetaj]=x[thetaj]+delti[thetaj]*k;
k1=func(p2)-fx;
- p2[thetai]=x[thetai]+delti[thetai]/k;
- p2[thetaj]=x[thetaj]-delti[thetaj]/k;
+ p2[thetai]=x[thetai]+delti[thetai]*k;
+ p2[thetaj]=x[thetaj]-delti[thetaj]*k;
k2=func(p2)-fx;
- p2[thetai]=x[thetai]-delti[thetai]/k;
- p2[thetaj]=x[thetaj]+delti[thetaj]/k;
+ p2[thetai]=x[thetai]-delti[thetai]*k;
+ p2[thetaj]=x[thetaj]+delti[thetaj]*k;
k3=func(p2)-fx;
- p2[thetai]=x[thetai]-delti[thetai]/k;
- p2[thetaj]=x[thetaj]-delti[thetaj]/k;
+ p2[thetai]=x[thetai]-delti[thetai]*k;
+ p2[thetaj]=x[thetaj]-delti[thetaj]*k;
k4=func(p2)-fx;
- res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
-#ifdef DEBUG
- printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
- fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
+ res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
+ if(k1*k2*k3*k4 <0.){
+ firstime=1;
+ kmax=kmax+10;
+ }
+ if(kmax >=10 || firstime ==1){
+ printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
+ fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
+ printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
+ fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
+ }
+#ifdef DEBUGHESSIJ
+ v1=hess[thetai][thetai];
+ v2=hess[thetaj][thetaj];
+ cv12=res;
+ /* Computing eigen value of Hessian matrix */
+ lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
+ lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
+ if ((lc2 <0) || (lc1 <0) ){
+ printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
+ fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
+ printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
+ fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
+ }
#endif
}
return res;
}
+ /* Not done yet: Was supposed to fix if not exactly at the maximum */
+/* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
+/* { */
+/* int i; */
+/* int l=1, lmax=20; */
+/* double k1,k2,k3,k4,res,fx; */
+/* double p2[MAXPARM+1]; */
+/* double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
+/* int k=0,kmax=10; */
+/* double l1; */
+
+/* fx=func(x); */
+/* for(l=0 ; l <=lmax; l++){ /\* Enlarging the zone around the Maximum *\/ */
+/* l1=pow(10,l); */
+/* delts=delt; */
+/* for(k=1 ; k khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
+/* k=kmax; l=lmax*10; */
+/* } */
+/* else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ */
+/* delts=delt; */
+/* } */
+/* } /\* End loop k *\/ */
+/* } */
+/* delti[theta]=delts; */
+/* return res; */
+/* } */
+
+
/************** Inverse of matrix **************/
void ludcmp(double **a, int n, int *indx, double *d)
{
@@ -1395,249 +4171,477 @@ void lubksb(double **a, int n, int *indx
}
}
+void pstamp(FILE *fichier)
+{
+ fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
+}
+
/************ Frequencies ********************/
-void freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2,double jprev1, double mprev1,double anprev1,double jprev2, double mprev2,double anprev2)
+void freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
+ int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
+ int firstpass, int lastpass, int stepm, int weightopt, char model[])
{ /* Some frequencies */
- int i, m, jk, k1,i1, j1, bool, z1,z2,j;
+ int i, m, jk, j1, bool, z1,j, k, iv;
+ int iind=0, iage=0;
+ int mi; /* Effective wave */
int first;
double ***freq; /* Frequencies */
- double *pp;
- double pos, k2, dateintsum=0,k2cpt=0;
- FILE *ficresp;
- char fileresp[FILENAMELENGTH];
-
+ double *meanq;
+ double **meanqt;
+ double *pp, **prop, *posprop, *pospropt;
+ double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
+ char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
+ double agebegin, ageend;
+
pp=vector(1,nlstate);
- probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
- strcpy(fileresp,"p");
- strcat(fileresp,fileres);
+ prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
+ posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */
+ pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */
+ /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
+ meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
+ meanqt=matrix(1,lastpass,1,nqtveff);
+ strcpy(fileresp,"P_");
+ strcat(fileresp,fileresu);
+ /*strcat(fileresphtm,fileresu);*/
if((ficresp=fopen(fileresp,"w"))==NULL) {
printf("Problem with prevalence resultfile: %s\n", fileresp);
fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
exit(0);
}
- freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
+
+ strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
+ if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
+ printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
+ fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
+ fflush(ficlog);
+ exit(70);
+ }
+ else{
+ fprintf(ficresphtm,"\nIMaCh PHTM_ %s\n %s
%s \
+
\n \
+Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n",\
+ fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
+ }
+ fprintf(ficresphtm,"Current page is file %s
\n\nFrequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition
\n",fileresphtm, fileresphtm);
+
+ strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
+ if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
+ printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
+ fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
+ fflush(ficlog);
+ exit(70);
+ } else{
+ fprintf(ficresphtmfr,"\nIMaCh PHTM_Frequency table %s\n %s
%s \
+
\n \
+Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n",\
+ fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
+ }
+ fprintf(ficresphtmfr,"Current page is file %s
\n\nFrequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate)
Unknown status is -1
\n",fileresphtmfr, fileresphtmfr);
+
+ freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
j1=0;
- j=cptcoveff;
+ /* j=ncoveff; /\* Only fixed dummy covariates *\/ */
+ j=cptcoveff; /* Only dummy covariates of the model */
if (cptcovn<1) {j=1;ncodemax[1]=1;}
-
+
first=1;
-
- for(k1=1; k1<=j;k1++){
- for(i1=1; i1<=ncodemax[k1];i1++){
- j1++;
- /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
- scanf("%d", i);*/
- for (i=-1; i<=nlstate+ndeath; i++)
- for (jk=-1; jk<=nlstate+ndeath; jk++)
- for(m=agemin; m <= agemax+3; m++)
- freq[i][jk][m]=0;
-
- dateintsum=0;
- k2cpt=0;
- for (i=1; i<=imx; i++) {
- bool=1;
- if (cptcovn>0) {
- for (z1=1; z1<=cptcoveff; z1++)
- if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
+
+ /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
+ reference=low_education V1=0,V2=0
+ med_educ V1=1 V2=0,
+ high_educ V1=0 V2=1
+ Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff
+ */
+
+ for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */
+ posproptt=0.;
+ /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
+ scanf("%d", i);*/
+ for (i=-5; i<=nlstate+ndeath; i++)
+ for (jk=-5; jk<=nlstate+ndeath; jk++)
+ for(m=iagemin; m <= iagemax+3; m++)
+ freq[i][jk][m]=0;
+
+ for (i=1; i<=nlstate; i++) {
+ for(m=iagemin; m <= iagemax+3; m++)
+ prop[i][m]=0;
+ posprop[i]=0;
+ pospropt[i]=0;
+ }
+ /* for (z1=1; z1<= nqfveff; z1++) { */
+ /* meanq[z1]+=0.; */
+ /* for(m=1;m<=lastpass;m++){ */
+ /* meanqt[m][z1]=0.; */
+ /* } */
+ /* } */
+
+ dateintsum=0;
+ k2cpt=0;
+ /* For that combination of covariate j1, we count and print the frequencies in one pass */
+ for (iind=1; iind<=imx; iind++) { /* For each individual iind */
+ bool=1;
+ if(anyvaryingduminmodel==0){ /* If All fixed covariates */
+ if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
+ /* for (z1=1; z1<= nqfveff; z1++) { */
+ /* meanq[z1]+=coqvar[Tvar[z1]][iind]; /\* Computes mean of quantitative with selected filter *\/ */
+ /* } */
+ for (z1=1; z1<=cptcoveff; z1++) {
+ /* if(Tvaraff[z1] ==-20){ */
+ /* /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
+ /* }else if(Tvaraff[z1] ==-10){ */
+ /* /\* sumnew+=coqvar[z1][iind]; *\/ */
+ /* }else */
+ if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
+ /* Tests if this individual iind responded to j1 (V4=1 V3=0) */
bool=0;
- }
- if (bool==1){
- for(m=firstpass; m<=lastpass; m++){
- k2=anint[m][i]+(mint[m][i]/12.);
- if ((k2>=dateprev1) && (k2<=dateprev2)) {
- if(agev[m][i]==0) agev[m][i]=agemax+1;
- if(agev[m][i]==1) agev[m][i]=agemax+2;
- if (m 0 */
+ } /* end any */
+ if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */
+ /* for(m=firstpass; m<=lastpass; m++){ */
+ for(mi=1; mi1) && (agev[m][i]< (agemax+3))) {
- dateintsum=dateintsum+k2;
- k2cpt++;
+ }
+ }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop */
+ /* bool =0 we keep that guy which corresponds to the combination of dummy values */
+ if(bool==1){
+ /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
+ and mw[mi+1][iind]. dh depends on stepm. */
+ agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
+ ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
+ if(m >=firstpass && m <=lastpass){
+ k2=anint[m][iind]+(mint[m][iind]/12.);
+ /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
+ if(agev[m][iind]==0) agev[m][iind]=iagemax+1; /* All ages equal to 0 are in iagemax+1 */
+ if(agev[m][iind]==1) agev[m][iind]=iagemax+2; /* All ages equal to 1 are in iagemax+2 */
+ if (s[m][iind]>0 && s[m][iind]<=nlstate) /* If status at wave m is known and a live state */
+ prop[s[m][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
+ if (m1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) {
+ dateintsum=dateintsum+k2;
+ k2cpt++;
+ /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
}
- }
- }
- }
-
- fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
-
- if (cptcovn>0) {
- fprintf(ficresp, "\n#********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(ficresp, "**********\n#");
- }
- for(i=1; i<=nlstate;i++)
- fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
- fprintf(ficresp, "\n");
-
- for(i=(int)agemin; i <= (int)agemax+3; i++){
- if(i==(int)agemax+3){
- fprintf(ficlog,"Total");
+ } /* end bool 2 */
+ } /* end m */
+ } /* end bool */
+ } /* end iind = 1 to imx */
+ /* prop[s][age] is feeded for any initial and valid live state as well as
+ freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
+
+
+ /* fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
+ pstamp(ficresp);
+ if (cptcoveff>0){
+ fprintf(ficresp, "\n#********** Variable ");
+ fprintf(ficresphtm, "\n
********** Variable ");
+ fprintf(ficresphtmfr, "\n
********** Variable ");
+ fprintf(ficlog, "\n#********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++){
+ if(DummyV[z1]){
+ fprintf(ficresp, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresphtm, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresphtmfr, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficlog, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
}else{
+ fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ }
+ }
+ fprintf(ficresp, "**********\n#");
+ fprintf(ficresphtm, "**********
\n");
+ fprintf(ficresphtmfr, "**********
\n");
+ fprintf(ficlog, "**********\n");
+ }
+ fprintf(ficresphtm,"");
+ for(i=1; i<=nlstate;i++) {
+ fprintf(ficresp, " Age Prev(%d) N(%d) N ",i,i);
+ fprintf(ficresphtm, "Age | Prev(%d) | N(%d) | N | ",i,i);
+ }
+ fprintf(ficresp, "\n");
+ fprintf(ficresphtm, "\n");
+
+ /* Header of frequency table by age */
+ fprintf(ficresphtmfr,"");
+ fprintf(ficresphtmfr,"Age | ");
+ for(jk=-1; jk <=nlstate+ndeath; jk++){
+ for(m=-1; m <=nlstate+ndeath; m++){
+ if(jk!=0 && m!=0)
+ fprintf(ficresphtmfr,"%d%d | ",jk,m);
+ }
+ }
+ fprintf(ficresphtmfr, "\n");
+
+ /* For each age */
+ for(iage=iagemin; iage <= iagemax+3; iage++){
+ fprintf(ficresphtm,"");
+ if(iage==iagemax+1){
+ fprintf(ficlog,"1");
+ fprintf(ficresphtmfr,"
0 | ");
+ }else if(iage==iagemax+2){
+ fprintf(ficlog,"0");
+ fprintf(ficresphtmfr,"
---|
Unknown | ");
+ }else if(iage==iagemax+3){
+ fprintf(ficlog,"Total");
+ fprintf(ficresphtmfr,"
---|
Total | ");
+ }else{
+ if(first==1){
+ first=0;
+ printf("See log file for details...\n");
+ }
+ fprintf(ficresphtmfr,"
---|
%d | ",iage);
+ fprintf(ficlog,"Age %d", iage);
+ }
+ for(jk=1; jk <=nlstate ; jk++){
+ for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
+ pp[jk] += freq[jk][m][iage];
+ }
+ for(jk=1; jk <=nlstate ; jk++){
+ for(m=-1, pos=0; m <=0 ; m++)
+ pos += freq[jk][m][iage];
+ if(pp[jk]>=1.e-10){
if(first==1){
- first=0;
- printf("See log file for details...\n");
- }
- fprintf(ficlog,"Age %d", i);
- }
- for(jk=1; jk <=nlstate ; jk++){
- for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
- pp[jk] += freq[jk][m][i];
- }
- for(jk=1; jk <=nlstate ; jk++){
- for(m=-1, pos=0; m <=0 ; m++)
- pos += freq[jk][m][i];
- if(pp[jk]>=1.e-10){
- if(first==1){
printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
- }
- fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
- }else{
- if(first==1)
- printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
- fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
}
+ fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
+ }else{
+ if(first==1)
+ printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
+ fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
}
-
- for(jk=1; jk <=nlstate ; jk++){
- for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
- pp[jk] += freq[jk][m][i];
+ }
+
+ for(jk=1; jk <=nlstate ; jk++){
+ /* posprop[jk]=0; */
+ for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
+ pp[jk] += freq[jk][m][iage];
+ } /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */
+
+ for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){
+ pos += pp[jk]; /* pos is the total number of transitions until this age */
+ posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state
+ from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
+ pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state
+ from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
+ }
+ for(jk=1; jk <=nlstate ; jk++){
+ if(pos>=1.e-5){
+ if(first==1)
+ printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
+ fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
+ }else{
+ if(first==1)
+ printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
+ fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
}
-
- for(jk=1,pos=0; jk <=nlstate ; jk++)
- pos += pp[jk];
- for(jk=1; jk <=nlstate ; jk++){
+ if( iage <= iagemax){
if(pos>=1.e-5){
- if(first==1)
- printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
- fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
- }else{
- if(first==1)
- printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
- fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
- }
- if( i <= (int) agemax){
- if(pos>=1.e-5){
- fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
- probs[i][jk][j1]= pp[jk]/pos;
- /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
- }
- else
- fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
+ fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
+ fprintf(ficresphtm,"%d | %.5f | %.0f | %.0f | ",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
+ /*probs[iage][jk][j1]= pp[jk]/pos;*/
+ /*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/
+ }
+ else{
+ fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta);
+ fprintf(ficresphtm,"%d | NaNq | %.0f | %.0f | ",iage, prop[jk][iage],pospropta);
}
}
-
- for(jk=-1; jk <=nlstate+ndeath; jk++)
- for(m=-1; m <=nlstate+ndeath; m++)
- if(freq[jk][m][i] !=0 ) {
- if(first==1)
- printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
- fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
+ pospropt[jk] +=posprop[jk];
+ } /* end loop jk */
+ /* pospropt=0.; */
+ for(jk=-1; jk <=nlstate+ndeath; jk++){
+ for(m=-1; m <=nlstate+ndeath; m++){
+ if(freq[jk][m][iage] !=0 ) { /* minimizing output */
+ if(first==1){
+ printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);
}
- if(i <= (int) agemax)
- fprintf(ficresp,"\n");
- if(first==1)
- printf("Others in log...\n");
- fprintf(ficlog,"\n");
+ fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);
+ }
+ if(jk!=0 && m!=0)
+ fprintf(ficresphtmfr,"%.0f | ",freq[jk][m][iage]);
+ }
+ } /* end loop jk */
+ posproptt=0.;
+ for(jk=1; jk <=nlstate; jk++){
+ posproptt += pospropt[jk];
+ }
+ fprintf(ficresphtmfr,"
\n ");
+ if(iage <= iagemax){
+ fprintf(ficresp,"\n");
+ fprintf(ficresphtm,"\n");
}
+ if(first==1)
+ printf("Others in log...\n");
+ fprintf(ficlog,"\n");
+ } /* end loop age iage */
+ fprintf(ficresphtm,"Tot | ");
+ for(jk=1; jk <=nlstate ; jk++){
+ if(posproptt < 1.e-5){
+ fprintf(ficresphtm,"Nanq | %.0f | %.0f | ",pospropt[jk],posproptt);
+ }else{
+ fprintf(ficresphtm,"%.5f | %.0f | %.0f | ",pospropt[jk]/posproptt,pospropt[jk],posproptt);
+ }
+ }
+ fprintf(ficresphtm,"
\n");
+ fprintf(ficresphtm,"
\n");
+ fprintf(ficresphtmfr,"
\n");
+ if(posproptt < 1.e-5){
+ fprintf(ficresphtm,"\n This combination (%d) is not valid and no result will be produced
",j1);
+ fprintf(ficresphtmfr,"\n This combination (%d) is not valid and no result will be produced
",j1);
+ fprintf(ficres,"\n This combination (%d) is not valid and no result will be produced\n\n",j1);
+ invalidvarcomb[j1]=1;
+ }else{
+ fprintf(ficresphtm,"\n This combination (%d) is valid and result will be produced.
",j1);
+ invalidvarcomb[j1]=0;
}
- }
+ fprintf(ficresphtmfr,"\n");
+ } /* end selected combination of covariate j1 */
dateintmean=dateintsum/k2cpt;
-
+
fclose(ficresp);
- free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
+ fclose(ficresphtm);
+ fclose(ficresphtmfr);
+ free_vector(meanq,1,nqfveff);
+ free_matrix(meanqt,1,lastpass,1,nqtveff);
+ free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE);
+ free_vector(pospropt,1,nlstate);
+ free_vector(posprop,1,nlstate);
+ free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE);
free_vector(pp,1,nlstate);
-
- /* End of Freq */
+ /* End of freqsummary */
}
/************ Prevalence ********************/
-void prevalence(int agemin, float agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
-{ /* Some frequencies */
+void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
+{
+ /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
+ in each health status at the date of interview (if between dateprev1 and dateprev2).
+ We still use firstpass and lastpass as another selection.
+ */
- int i, m, jk, k1, i1, j1, bool, z1,z2,j;
- double ***freq; /* Frequencies */
- double *pp;
- double pos, k2;
-
- pp=vector(1,nlstate);
-
- freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
+ int i, m, jk, j1, bool, z1,j, iv;
+ int mi; /* Effective wave */
+ int iage;
+ double agebegin, ageend;
+
+ double **prop;
+ double posprop;
+ double y2; /* in fractional years */
+ int iagemin, iagemax;
+ int first; /** to stop verbosity which is redirected to log file */
+
+ iagemin= (int) agemin;
+ iagemax= (int) agemax;
+ /*pp=vector(1,nlstate);*/
+ prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
+ /* freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
j1=0;
- j=cptcoveff;
+ /*j=cptcoveff;*/
if (cptcovn<1) {j=1;ncodemax[1]=1;}
- for(k1=1; k1<=j;k1++){
- for(i1=1; i1<=ncodemax[k1];i1++){
- j1++;
-
- for (i=-1; i<=nlstate+ndeath; i++)
- for (jk=-1; jk<=nlstate+ndeath; jk++)
- for(m=agemin; m <= agemax+3; m++)
- freq[i][jk][m]=0;
-
- for (i=1; i<=imx; i++) {
- bool=1;
- if (cptcovn>0) {
- for (z1=1; z1<=cptcoveff; z1++)
- if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
+ first=1;
+ for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */
+ for (i=1; i<=nlstate; i++)
+ for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++)
+ prop[i][iage]=0.0;
+ printf("Prevalence combination of varying and fixed dummies %d\n",j1);
+ /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
+ fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
+
+ for (i=1; i<=imx; i++) { /* Each individual */
+ bool=1;
+ /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
+ for(mi=1; mi=dateprev1) && (k2<=dateprev2)) {
- if(agev[m][i]==0) agev[m][i]=agemax+1;
- if(agev[m][i]==1) agev[m][i]=agemax+2;
- if (m0)
- freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
- else
- freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
- freq[s[m][i]][s[m+1][i]][(int)(agemax+3)] += weight[i];
- }
}
- }
}
- }
- for(i=(int)agemin; i <= (int)agemax+3; i++){
- for(jk=1; jk <=nlstate ; jk++){
- for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
- pp[jk] += freq[jk][m][i];
- }
- for(jk=1; jk <=nlstate ; jk++){
- for(m=-1, pos=0; m <=0 ; m++)
- pos += freq[jk][m][i];
- }
-
- for(jk=1; jk <=nlstate ; jk++){
- for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
- pp[jk] += freq[jk][m][i];
- }
-
- for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
-
- for(jk=1; jk <=nlstate ; jk++){
- if( i <= (int) agemax){
- if(pos>=1.e-5){
- probs[i][jk][j1]= pp[jk]/pos;
+ if(bool==1){ /* Otherwise we skip that wave/person */
+ agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
+ /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
+ if(m >=firstpass && m <=lastpass){
+ y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
+ if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
+ if(agev[m][i]==0) agev[m][i]=iagemax+1;
+ if(agev[m][i]==1) agev[m][i]=iagemax+2;
+ if((int)agev[m][i] iagemax+3+AGEMARGE){
+ printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m);
+ exit(1);
+ }
+ if (s[m][i]>0 && s[m][i]<=nlstate) {
+ /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
+ prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
+ prop[s[m][i]][iagemax+3] += weight[i];
+ } /* end valid statuses */
+ } /* end selection of dates */
+ } /* end selection of waves */
+ } /* end bool */
+ } /* end wave */
+ } /* end individual */
+ for(i=iagemin; i <= iagemax+3; i++){
+ for(jk=1,posprop=0; jk <=nlstate ; jk++) {
+ posprop += prop[jk][i];
+ }
+
+ for(jk=1; jk <=nlstate ; jk++){
+ if( i <= iagemax){
+ if(posprop>=1.e-5){
+ probs[i][jk][j1]= prop[jk][i]/posprop;
+ } else{
+ if(first==1){
+ first=0;
+ printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]);
}
}
- }/* end jk */
- }/* end i */
- } /* end i1 */
- } /* end k1 */
-
-
- free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
- free_vector(pp,1,nlstate);
-
-} /* End of Freq */
+ }
+ }/* end jk */
+ }/* end i */
+ /*} *//* end i1 */
+ } /* end j1 */
+
+ /* free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
+ /*free_vector(pp,1,nlstate);*/
+ free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE);
+} /* End of prevalence */
/************* Waves Concatenation ***************/
@@ -1648,81 +4652,185 @@ void concatwav(int wav[], int **dh, int
mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i
dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
and mw[mi+1][i]. dh depends on stepm.
- */
+ */
- int i, mi, m;
+ int i=0, mi=0, m=0, mli=0;
/* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
double sum=0., jmean=0.;*/
- int first;
+ int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
int j, k=0,jk, ju, jl;
double sum=0.;
first=0;
- jmin=1e+5;
+ firstwo=0;
+ firsthree=0;
+ firstfour=0;
+ jmin=100000;
jmax=-1;
jmean=0.;
- for(i=1; i<=imx; i++){
- mi=0;
+
+/* Treating live states */
+ for(i=1; i<=imx; i++){ /* For simple cases and if state is death */
+ mi=0; /* First valid wave */
+ mli=0; /* Last valid wave */
m=firstpass;
- while(s[m][i] <= nlstate){
- if(s[m][i]>=1)
+ while(s[m][i] <= nlstate){ /* a live state */
+ if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
+ mli=m-1;/* mw[++mi][i]=m-1; */
+ }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
mw[++mi][i]=m;
- if(m >=lastpass)
+ mli=m;
+ } /* else might be a useless wave -1 and mi is not incremented and mw[mi] not updated */
+ if(m < lastpass){ /* m < lastpass, standard case */
+ m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
+ }
+ else{ /* m >= lastpass, eventual special issue with warning */
+#ifdef UNKNOWNSTATUSNOTCONTRIBUTING
break;
- else
- m++;
+#else
+ if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
+ if(firsthree == 0){
+ printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
+ firsthree=1;
+ }
+ fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
+ mw[++mi][i]=m;
+ mli=m;
+ }
+ if(s[m][i]==-2){ /* Vital status is really unknown */
+ nbwarn++;
+ if((int)anint[m][i] == 9999){ /* Has the vital status really been verified? */
+ printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
+ fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
+ }
+ break;
+ }
+ break;
+#endif
+ }/* End m >= lastpass */
}/* end while */
- if (s[m][i] > nlstate){
+
+ /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
+ /* After last pass */
+/* Treating death states */
+ if (s[m][i] > nlstate){ /* In a death state */
+ /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
+ /* } */
mi++; /* Death is another wave */
/* if(mi==0) never been interviewed correctly before death */
- /* Only death is a correct wave */
+ /* Only death is a correct wave */
mw[mi][i]=m;
}
-
- wav[i]=mi;
+#ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
+ else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */
+ /* m++; */
+ /* mi++; */
+ /* s[m][i]=nlstate+1; /\* We are setting the status to the last of non live state *\/ */
+ /* mw[mi][i]=m; */
+ if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
+ if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */
+ nbwarn++;
+ if(firstfiv==0){
+ printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
+ firstfiv=1;
+ }else{
+ fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
+ }
+ }else{ /* Death occured afer last wave potential bias */
+ nberr++;
+ if(firstwo==0){
+ printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
+ firstwo=1;
+ }
+ fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
+ }
+ }else{ /* end date of interview is known */
+ /* death is known but not confirmed by death status at any wave */
+ if(firstfour==0){
+ printf("Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
+ firstfour=1;
+ }
+ fprintf(ficlog,"Error! Death for individual %ld line=%d occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
+ }
+ } /* end if date of death is known */
+#endif
+ wav[i]=mi; /* mi should be the last effective wave (or mli) */
+ /* wav[i]=mw[mi][i]; */
if(mi==0){
+ nbwarn++;
if(first==0){
- printf("Warning, no any valid information for:%d line=%d and may be others, see log file\n",num[i],i);
+ printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
first=1;
}
if(first==1){
- fprintf(ficlog,"Warning, no any valid information for:%d line=%d\n",num[i],i);
+ fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
}
} /* end mi==0 */
- }
-
+ } /* End individuals */
+ /* wav and mw are no more changed */
+
+
for(i=1; i<=imx; i++){
for(mi=1; mi nlstate) {
+ if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
if (agedc[i] < 2*AGESUP) {
- j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
- if(j==0) j=1; /* Survives at least one month after exam */
- k=k+1;
- if (j >= jmax) jmax=j;
- if (j <= jmin) jmin=j;
- sum=sum+j;
- /*if (j<0) printf("j=%d num=%d \n",j,i); */
+ j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
+ if(j==0) j=1; /* Survives at least one month after exam */
+ else if(j<0){
+ nberr++;
+ printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
+ j=1; /* Temporary Dangerous patch */
+ printf(" We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
+ fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
+ fprintf(ficlog," We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
+ }
+ k=k+1;
+ if (j >= jmax){
+ jmax=j;
+ ijmax=i;
+ }
+ if (j <= jmin){
+ jmin=j;
+ ijmin=i;
+ }
+ sum=sum+j;
+ /*if (j<0) printf("j=%d num=%d \n",j,i);*/
+ /* printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
}
}
else{
j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
+/* if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
+
k=k+1;
- if (j >= jmax) jmax=j;
- else if (j <= jmin)jmin=j;
+ if (j >= jmax) {
+ jmax=j;
+ ijmax=i;
+ }
+ else if (j <= jmin){
+ jmin=j;
+ ijmin=i;
+ }
/* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
+ /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
+ if(j<0){
+ nberr++;
+ printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
+ fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
+ }
sum=sum+j;
}
jk= j/stepm;
jl= j -jk*stepm;
ju= j -(jk+1)*stepm;
- if(mle <=1){
+ if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
if(jl==0){
dh[mi][i]=jk;
bh[mi][i]=0;
}else{ /* We want a negative bias in order to only have interpolation ie
- * at the price of an extra matrix product in likelihood */
+ * to avoid the price of an extra matrix product in likelihood */
dh[mi][i]=jk+1;
bh[mi][i]=ju;
}
@@ -1740,104 +4848,212 @@ void concatwav(int wav[], int **dh, int
if(dh[mi][i]==0){
dh[mi][i]=1; /* At least one step */
bh[mi][i]=ju; /* At least one step */
- printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);
+ /* printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
}
- if(i==298 || i==287 || i==763 ||i==1061)printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d",bh[mi][i],ju,jl,dh[mi][i],jk,stepm);
- }
- } /* end if mle */
+ } /* end if mle */
+ }
} /* end wave */
}
jmean=sum/k;
- printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
- fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
- }
+ printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
+ fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
+}
/*********** Tricode ****************************/
-void tricode(int *Tvar, int **nbcode, int imx)
-{
-
- int Ndum[20],ij=1, k, j, i, maxncov=19;
- int cptcode=0;
- cptcoveff=0;
-
- for (k=0; k cptcode) cptcode=ij; /* getting the maximum of covariable
- Tvar[j]. If V=sex and male is 0 and
- female is 1, then cptcode=1.*/
- }
-
- for (i=0; i<=cptcode; i++) {
- if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
- }
-
- ij=1;
- for (i=1; i<=ncodemax[j]; i++) {
- for (k=0; k<= maxncov; k++) {
- if (Ndum[k] != 0) {
- nbcode[Tvar[j]][ij]=k;
- /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
-
- ij++;
- }
- if (ij > ncodemax[j]) break;
- }
- }
- }
+ int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
+ int modmaxcovj=0; /* Modality max of covariates j */
+ int cptcode=0; /* Modality max of covariates j */
+ int modmincovj=0; /* Modality min of covariates j */
- for (k=0; k< maxncov; k++) Ndum[k]=0;
- for (i=1; i<=ncovmodel-2; i++) {
- /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
- ij=Tvar[i];
- Ndum[ij]++;
- }
+ /* cptcoveff=0; */
+ /* *cptcov=0; */
+
+ for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
- ij=1;
- for (i=1; i<= maxncov; i++) {
- if((Ndum[i]!=0) && (i<=ncovcol)){
- Tvaraff[ij]=i; /*For printing */
- ij++;
+ /* Loop on covariates without age and products and no quantitative variable */
+ /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */
+ for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */
+ for (j=-1; (j < maxncov); j++) Ndum[j]=0;
+ if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */
+ switch(Fixed[k]) {
+ case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
+ for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the modality of this covariate Vj*/
+ ij=(int)(covar[Tvar[k]][i]);
+ /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
+ * If product of Vn*Vm, still boolean *:
+ * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
+ * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0 */
+ /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
+ modality of the nth covariate of individual i. */
+ if (ij > modmaxcovj)
+ modmaxcovj=ij;
+ else if (ij < modmincovj)
+ modmincovj=ij;
+ if ((ij < -1) && (ij > NCOVMAX)){
+ printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
+ exit(1);
+ }else
+ Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
+ /* If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
+ /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
+ /* getting the maximum value of the modality of the covariate
+ (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
+ female ies 1, then modmaxcovj=1.
+ */
+ } /* end for loop on individuals i */
+ printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
+ fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
+ cptcode=modmaxcovj;
+ /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
+ /*for (i=0; i<=cptcode; i++) {*/
+ for (j=modmincovj; j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
+ printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
+ fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
+ if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
+ if( j != -1){
+ ncodemax[k]++; /* ncodemax[k]= Number of modalities of the k th
+ covariate for which somebody answered excluding
+ undefined. Usually 2: 0 and 1. */
+ }
+ ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
+ covariate for which somebody answered including
+ undefined. Usually 3: -1, 0 and 1. */
+ } /* In fact ncodemax[k]=2 (dichotom. variables only) but it could be more for
+ * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
+ } /* Ndum[-1] number of undefined modalities */
+
+ /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
+ /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
+ /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
+ /* modmincovj=3; modmaxcovj = 7; */
+ /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
+ /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
+ /* defining two dummy variables: variables V1_1 and V1_2.*/
+ /* nbcode[Tvar[j]][ij]=k; */
+ /* nbcode[Tvar[j]][1]=0; */
+ /* nbcode[Tvar[j]][2]=1; */
+ /* nbcode[Tvar[j]][3]=2; */
+ /* To be continued (not working yet). */
+ ij=0; /* ij is similar to i but can jump over null modalities */
+ for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
+ if (Ndum[i] == 0) { /* If nobody responded to this modality k */
+ break;
+ }
+ ij++;
+ nbcode[Tvar[k]][ij]=i; /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/
+ cptcode = ij; /* New max modality for covar j */
+ } /* end of loop on modality i=-1 to 1 or more */
+ break;
+ case 1: /* Testing on varying covariate, could be simple and
+ * should look at waves or product of fixed *
+ * varying. No time to test -1, assuming 0 and 1 only */
+ ij=0;
+ for(i=0; i<=1;i++){
+ nbcode[Tvar[k]][++ij]=i;
+ }
+ break;
+ default:
+ break;
+ } /* end switch */
+ } /* end dummy test */
+
+ /* for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
+ /* /\*recode from 0 *\/ */
+ /* k is a modality. If we have model=V1+V1*sex */
+ /* then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
+ /* But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
+ /* } */
+ /* /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
+ /* if (ij > ncodemax[j]) { */
+ /* printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
+ /* fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
+ /* break; */
+ /* } */
+ /* } /\* end of loop on modality k *\/ */
+ } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/
+
+ for (k=-1; k< maxncov; k++) Ndum[k]=0;
+ /* Look at fixed dummy (single or product) covariates to check empty modalities */
+ for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */
+ /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
+ ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */
+ Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
+ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, {2, 1, 1, 1, 2, 1, 1, 0, 0} */
+ } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
+
+ ij=0;
+ /* for (i=0; i<= maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
+ for (k=1; k<= cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
+ /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
+ /* if((Ndum[i]!=0) && (i<=ncovcol)){ /\* Tvar[i] <= ncovmodel ? *\/ */
+ if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){ /* Only Dummy and non empty in the model */
+ /* If product not in single variable we don't print results */
+ /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
+ ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */
+ Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
+ Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
+ TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
+ if(Fixed[k]!=0)
+ anyvaryingduminmodel=1;
+ /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
+ /* Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
+ /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
+ /* Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
+ /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
+ /* Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
+ }
+ } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
+ /* ij--; */
+ /* cptcoveff=ij; /\*Number of total covariates*\/ */
+ *cptcov=ij; /*Number of total real effective covariates: effective
+ * because they can be excluded from the model and real
+ * if in the model but excluded because missing values, but how to get k from ij?*/
+ for(j=ij+1; j<= cptcovt; j++){
+ Tvaraff[j]=0;
+ Tmodelind[j]=0;
+ }
+ for(j=ntveff+1; j<= cptcovt; j++){
+ TmodelInvind[j]=0;
}
+ /* To be sorted */
+ ;
}
-
- cptcoveff=ij-1; /*Number of simple covariates*/
-}
+
/*********** Health Expectancies ****************/
-void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
+ void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
{
- /* Health expectancies */
- int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
+ /* Health expectancies, no variances */
+ int i, j, nhstepm, hstepm, h, nstepm;
+ int nhstepma, nstepma; /* Decreasing with age */
double age, agelim, hf;
- double ***p3mat,***varhe;
- double **dnewm,**doldm;
- double *xp;
- double **gp, **gm;
- double ***gradg, ***trgradg;
- int theta;
+ double ***p3mat;
+ double eip;
- varhe=ma3x(1,nlstate*2,1,nlstate*2,(int) bage, (int) fage);
- xp=vector(1,npar);
- dnewm=matrix(1,nlstate*2,1,npar);
- doldm=matrix(1,nlstate*2,1,nlstate*2);
-
- fprintf(ficreseij,"# Health expectancies\n");
+ /* pstamp(ficreseij); */
+ fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
fprintf(ficreseij,"# Age");
- for(i=1; i<=nlstate;i++)
- for(j=1; j<=nlstate;j++)
- fprintf(ficreseij," %1d-%1d (SE)",i,j);
+ for(i=1; i<=nlstate;i++){
+ for(j=1; j<=nlstate;j++){
+ fprintf(ficreseij," e%1d%1d ",i,j);
+ }
+ fprintf(ficreseij," e%1d. ",i);
+ }
fprintf(ficreseij,"\n");
+
if(estepm < stepm){
printf ("Problem %d lower than %d\n",estepm, stepm);
}
@@ -1868,446 +5084,613 @@ void evsij(char fileres[], double ***eij
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
agelim=AGESUP;
- for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
- /* nhstepm age range expressed in number of stepm */
- nstepm=(int) rint((agelim-age)*YEARM/stepm);
- /* Typically if 20 years nstepm = 20*12/6=40 stepm */
- /* if (stepm >= YEARM) hstepm=1;*/
- nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
- p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- gradg=ma3x(0,nhstepm,1,npar,1,nlstate*2);
- gp=matrix(0,nhstepm,1,nlstate*2);
- gm=matrix(0,nhstepm,1,nlstate*2);
-
+ /* If stepm=6 months */
/* Computed by stepm unit matrices, product of hstepm matrices, stored
in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
- hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);
-
-
- hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
-
- /* Computing Variances of health expectancies */
-
- for(theta=1; theta <=npar; theta++){
- for(i=1; i<=npar; i++){
- xp[i] = x[i] + (i==theta ?delti[theta]:0);
- }
- hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
-
- cptj=0;
- for(j=1; j<= nlstate; j++){
- for(i=1; i<=nlstate; i++){
- cptj=cptj+1;
- for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
- gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
- }
- }
- }
-
-
- for(i=1; i<=npar; i++)
- xp[i] = x[i] - (i==theta ?delti[theta]:0);
- hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
-
- cptj=0;
- for(j=1; j<= nlstate; j++){
- for(i=1;i<=nlstate;i++){
- cptj=cptj+1;
- for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
- gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
- }
- }
- }
- for(j=1; j<= nlstate*2; j++)
- for(h=0; h<=nhstepm-1; h++){
- gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
- }
- }
-
-/* End theta */
-
- trgradg =ma3x(0,nhstepm,1,nlstate*2,1,npar);
+
+/* nhstepm age range expressed in number of stepm */
+ nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
+ /* Typically if 20 years nstepm = 20*12/6=40 stepm */
+ /* if (stepm >= YEARM) hstepm=1;*/
+ nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
+ p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- for(h=0; h<=nhstepm-1; h++)
- for(j=1; j<=nlstate*2;j++)
- for(theta=1; theta <=npar; theta++)
- trgradg[h][j][theta]=gradg[h][theta][j];
-
+ for (age=bage; age<=fage; age ++){
+ nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
+ /* Typically if 20 years nstepm = 20*12/6=40 stepm */
+ /* if (stepm >= YEARM) hstepm=1;*/
+ nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
- for(i=1;i<=nlstate*2;i++)
- for(j=1;j<=nlstate*2;j++)
- varhe[i][j][(int)age] =0.;
-
- printf("%d|",(int)age);fflush(stdout);
- fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
- for(h=0;h<=nhstepm-1;h++){
- for(k=0;k<=nhstepm-1;k++){
- matprod2(dnewm,trgradg[h],1,nlstate*2,1,npar,1,npar,matcov);
- matprod2(doldm,dnewm,1,nlstate*2,1,npar,1,nlstate*2,gradg[k]);
- for(i=1;i<=nlstate*2;i++)
- for(j=1;j<=nlstate*2;j++)
- varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
- }
- }
+ /* If stepm=6 months */
+ /* Computed by stepm unit matrices, product of hstepma matrices, stored
+ in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
+
+ hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);
+
+ hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
+
+ printf("%d|",(int)age);fflush(stdout);
+ fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
+
/* Computing expectancies */
for(i=1; i<=nlstate;i++)
for(j=1; j<=nlstate;j++)
for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
-/* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
+ /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
}
fprintf(ficreseij,"%3.0f",age );
- cptj=0;
- for(i=1; i<=nlstate;i++)
+ for(i=1; i<=nlstate;i++){
+ eip=0;
for(j=1; j<=nlstate;j++){
- cptj++;
- fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
+ eip +=eij[i][j][(int)age];
+ fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
}
+ fprintf(ficreseij,"%9.4f", eip );
+ }
fprintf(ficreseij,"\n");
-
- free_matrix(gm,0,nhstepm,1,nlstate*2);
- free_matrix(gp,0,nhstepm,1,nlstate*2);
- free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*2);
- free_ma3x(trgradg,0,nhstepm,1,nlstate*2,1,npar);
- free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+
}
+ free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
printf("\n");
fprintf(ficlog,"\n");
-
- free_vector(xp,1,npar);
- free_matrix(dnewm,1,nlstate*2,1,npar);
- free_matrix(doldm,1,nlstate*2,1,nlstate*2);
- free_ma3x(varhe,1,nlstate*2,1,nlstate*2,(int) bage, (int)fage);
+
}
-/************ Variance ******************/
-void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
+ void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
+
{
- /* Variance of health expectancies */
- /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
- /* double **newm;*/
+ /* Covariances of health expectancies eij and of total life expectancies according
+ to initial status i, ei. .
+ */
+ int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
+ int nhstepma, nstepma; /* Decreasing with age */
+ double age, agelim, hf;
+ double ***p3matp, ***p3matm, ***varhe;
double **dnewm,**doldm;
- double **dnewmp,**doldmp;
- int i, j, nhstepm, hstepm, h, nstepm ;
- int k, cptcode;
- double *xp;
- double **gp, **gm; /* for var eij */
- double ***gradg, ***trgradg; /*for var eij */
- double **gradgp, **trgradgp; /* for var p point j */
- double *gpp, *gmp; /* for var p point j */
- double **varppt; /* for var p point j nlstate to nlstate+ndeath */
- double ***p3mat;
- double age,agelim, hf;
- double ***mobaverage;
+ double *xp, *xm;
+ double **gp, **gm;
+ double ***gradg, ***trgradg;
int theta;
- char digit[4];
- char digitp[25];
- char fileresprobmorprev[FILENAMELENGTH];
-
- if(popbased==1){
- if(mobilav!=0)
- strcpy(digitp,"-populbased-mobilav-");
- else strcpy(digitp,"-populbased-nomobil-");
- }
- else
- strcpy(digitp,"-stablbased-");
-
- if (mobilav!=0) {
- mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
- fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
- printf(" Error in movingaverage mobilav=%d\n",mobilav);
- }
- }
+ double eip, vip;
- strcpy(fileresprobmorprev,"prmorprev");
- sprintf(digit,"%-d",ij);
- /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
- strcat(fileresprobmorprev,digit); /* Tvar to be done */
- strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
- strcat(fileresprobmorprev,fileres);
- if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
- printf("Problem with resultfile: %s\n", fileresprobmorprev);
- fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
- }
- printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
- fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
- fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
- fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
- for(j=nlstate+1; j<=(nlstate+ndeath);j++){
- fprintf(ficresprobmorprev," p.%-d SE",j);
- for(i=1; i<=nlstate;i++)
- fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
- }
- fprintf(ficresprobmorprev,"\n");
- if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
- printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
- fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
- exit(0);
- }
- else{
- fprintf(ficgp,"\n# Routine varevsij");
- }
- if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
- printf("Problem with html file: %s\n", optionfilehtm);
- fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
- exit(0);
- }
- else{
- fprintf(fichtm,"\n Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)
\n");
- fprintf(fichtm,"\n
%s
\n",digitp);
+ varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
+ xp=vector(1,npar);
+ xm=vector(1,npar);
+ dnewm=matrix(1,nlstate*nlstate,1,npar);
+ doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
+
+ pstamp(ficresstdeij);
+ fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
+ fprintf(ficresstdeij,"# Age");
+ for(i=1; i<=nlstate;i++){
+ for(j=1; j<=nlstate;j++)
+ fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
+ fprintf(ficresstdeij," e%1d. ",i);
}
- varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+ fprintf(ficresstdeij,"\n");
- fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are the stable prevalence in health states i\n");
- fprintf(ficresvij,"# Age");
+ pstamp(ficrescveij);
+ fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
+ fprintf(ficrescveij,"# Age");
for(i=1; i<=nlstate;i++)
- for(j=1; j<=nlstate;j++)
- fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
- fprintf(ficresvij,"\n");
-
- xp=vector(1,npar);
- dnewm=matrix(1,nlstate,1,npar);
- doldm=matrix(1,nlstate,1,nlstate);
- dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
- doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
-
- gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
- gpp=vector(nlstate+1,nlstate+ndeath);
- gmp=vector(nlstate+1,nlstate+ndeath);
- trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
+ for(j=1; j<=nlstate;j++){
+ cptj= (j-1)*nlstate+i;
+ for(i2=1; i2<=nlstate;i2++)
+ for(j2=1; j2<=nlstate;j2++){
+ cptj2= (j2-1)*nlstate+i2;
+ if(cptj2 <= cptj)
+ fprintf(ficrescveij," %1d%1d,%1d%1d",i,j,i2,j2);
+ }
+ }
+ fprintf(ficrescveij,"\n");
if(estepm < stepm){
printf ("Problem %d lower than %d\n",estepm, stepm);
}
else hstepm=estepm;
- /* For example we decided to compute the life expectancy with the smallest unit */
- /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
- nhstepm is the number of hstepm from age to agelim
- nstepm is the number of stepm from age to agelin.
- Look at hpijx to understand the reason of that which relies in memory size
- and note for a fixed period like k years */
+ /* We compute the life expectancy from trapezoids spaced every estepm months
+ * This is mainly to measure the difference between two models: for example
+ * if stepm=24 months pijx are given only every 2 years and by summing them
+ * we are calculating an estimate of the Life Expectancy assuming a linear
+ * progression in between and thus overestimating or underestimating according
+ * to the curvature of the survival function. If, for the same date, we
+ * estimate the model with stepm=1 month, we can keep estepm to 24 months
+ * to compare the new estimate of Life expectancy with the same linear
+ * hypothesis. A more precise result, taking into account a more precise
+ * curvature will be obtained if estepm is as small as stepm. */
+
+ /* For example we decided to compute the life expectancy with the smallest unit */
+ /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
+ nhstepm is the number of hstepm from age to agelim
+ nstepm is the number of stepm from age to agelin.
+ Look at hpijx to understand the reason of that which relies in memory size
+ and note for a fixed period like estepm months */
/* We decided (b) to get a life expectancy respecting the most precise curvature of the
survival function given by stepm (the optimization length). Unfortunately it
- means that if the survival funtion is printed every two years of age and if
+ means that if the survival funtion is printed only each two years of age and if
you sum them up and add 1 year (area under the trapezoids) you won't get the same
results. So we changed our mind and took the option of the best precision.
*/
hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
- agelim = AGESUP;
- for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
- nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
- nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
- p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
- gp=matrix(0,nhstepm,1,nlstate);
- gm=matrix(0,nhstepm,1,nlstate);
+ /* If stepm=6 months */
+ /* nhstepm age range expressed in number of stepm */
+ agelim=AGESUP;
+ nstepm=(int) rint((agelim-bage)*YEARM/stepm);
+ /* Typically if 20 years nstepm = 20*12/6=40 stepm */
+ /* if (stepm >= YEARM) hstepm=1;*/
+ nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
+
+ p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
+ trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
+ gp=matrix(0,nhstepm,1,nlstate*nlstate);
+ gm=matrix(0,nhstepm,1,nlstate*nlstate);
+ for (age=bage; age<=fage; age ++){
+ nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
+ /* Typically if 20 years nstepm = 20*12/6=40 stepm */
+ /* if (stepm >= YEARM) hstepm=1;*/
+ nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
+
+ /* If stepm=6 months */
+ /* Computed by stepm unit matrices, product of hstepma matrices, stored
+ in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
+
+ hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
+
+ /* Computing Variances of health expectancies */
+ /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
+ decrease memory allocation */
for(theta=1; theta <=npar; theta++){
- for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
+ for(i=1; i<=npar; i++){
xp[i] = x[i] + (i==theta ?delti[theta]:0);
+ xm[i] = x[i] - (i==theta ?delti[theta]:0);
}
- hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
- prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
-
- if (popbased==1) {
- if(mobilav ==0){
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=probs[(int)age][i][ij];
- }else{ /* mobilav */
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=mobaverage[(int)age][i][ij];
- }
- }
-
- for(j=1; j<= nlstate; j++){
- for(h=0; h<=nhstepm; h++){
- for(i=1, gp[h][j]=0.;i<=nlstate;i++)
- gp[h][j] += prlim[i][i]*p3mat[i][j][h];
- }
- }
- /* This for computing probability of death (h=1 means
- computed over hstepm matrices product = hstepm*stepm months)
- as a weighted average of prlim.
- */
- for(j=nlstate+1,gpp[j]=0.;j<=nlstate+ndeath;j++){
- for(i=1; i<= nlstate; i++)
- gpp[j] += prlim[i][i]*p3mat[i][j][1];
- }
- /* end probability of death */
-
- for(i=1; i<=npar; i++) /* Computes gradient x - delta */
- xp[i] = x[i] - (i==theta ?delti[theta]:0);
- hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
- prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
-
- if (popbased==1) {
- if(mobilav ==0){
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=probs[(int)age][i][ij];
- }else{ /* mobilav */
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=mobaverage[(int)age][i][ij];
- }
- }
-
+ hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);
+ hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);
+
for(j=1; j<= nlstate; j++){
- for(h=0; h<=nhstepm; h++){
- for(i=1, gm[h][j]=0.;i<=nlstate;i++)
- gm[h][j] += prlim[i][i]*p3mat[i][j][h];
+ for(i=1; i<=nlstate; i++){
+ for(h=0; h<=nhstepm-1; h++){
+ gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
+ gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
+ }
}
}
- /* This for computing probability of death (h=1 means
- computed over hstepm matrices product = hstepm*stepm months)
- as a weighted average of prlim.
- */
- for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
- for(i=1; i<= nlstate; i++)
- gmp[j] += prlim[i][i]*p3mat[i][j][1];
- }
- /* end probability of death */
-
- for(j=1; j<= nlstate; j++) /* vareij */
- for(h=0; h<=nhstepm; h++){
- gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
+
+ for(ij=1; ij<= nlstate*nlstate; ij++)
+ for(h=0; h<=nhstepm-1; h++){
+ gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
}
- for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
- gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
- }
-
- } /* End theta */
-
- trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
-
- for(h=0; h<=nhstepm; h++) /* veij */
- for(j=1; j<=nlstate;j++)
+ }/* End theta */
+
+
+ for(h=0; h<=nhstepm-1; h++)
+ for(j=1; j<=nlstate*nlstate;j++)
for(theta=1; theta <=npar; theta++)
trgradg[h][j][theta]=gradg[h][theta][j];
-
- for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
- for(theta=1; theta <=npar; theta++)
- trgradgp[j][theta]=gradgp[theta][j];
-
- hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
- for(i=1;i<=nlstate;i++)
- for(j=1;j<=nlstate;j++)
- vareij[i][j][(int)age] =0.;
-
- for(h=0;h<=nhstepm;h++){
- for(k=0;k<=nhstepm;k++){
- matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
- matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
- for(i=1;i<=nlstate;i++)
- for(j=1;j<=nlstate;j++)
- vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
+
+
+ for(ij=1;ij<=nlstate*nlstate;ij++)
+ for(ji=1;ji<=nlstate*nlstate;ji++)
+ varhe[ij][ji][(int)age] =0.;
+
+ printf("%d|",(int)age);fflush(stdout);
+ fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
+ for(h=0;h<=nhstepm-1;h++){
+ for(k=0;k<=nhstepm-1;k++){
+ matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
+ matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
+ for(ij=1;ij<=nlstate*nlstate;ij++)
+ for(ji=1;ji<=nlstate*nlstate;ji++)
+ varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
}
}
-
- /* pptj */
- matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
- matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
- for(j=nlstate+1;j<=nlstate+ndeath;j++)
- for(i=nlstate+1;i<=nlstate+ndeath;i++)
- varppt[j][i]=doldmp[j][i];
- /* end ppptj */
- /* x centered again */
- hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);
- prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
-
- if (popbased==1) {
- if(mobilav ==0){
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=probs[(int)age][i][ij];
- }else{ /* mobilav */
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=mobaverage[(int)age][i][ij];
+
+ /* Computing expectancies */
+ hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=nlstate;j++)
+ for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
+ eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
+
+ /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
+
+ }
+
+ fprintf(ficresstdeij,"%3.0f",age );
+ for(i=1; i<=nlstate;i++){
+ eip=0.;
+ vip=0.;
+ for(j=1; j<=nlstate;j++){
+ eip += eij[i][j][(int)age];
+ for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
+ vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
+ fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
}
+ fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
}
-
- /* This for computing probability of death (h=1 means
- computed over hstepm (estepm) matrices product = hstepm*stepm months)
- as a weighted average of prlim.
- */
- for(j=nlstate+1,gmp[j]=0.;j<=nlstate+ndeath;j++){
- for(i=1; i<= nlstate; i++)
- gmp[j] += prlim[i][i]*p3mat[i][j][1];
- }
- /* end probability of death */
-
- fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
- for(j=nlstate+1; j<=(nlstate+ndeath);j++){
- fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
- for(i=1; i<=nlstate;i++){
- fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
- }
- }
- fprintf(ficresprobmorprev,"\n");
-
- fprintf(ficresvij,"%.0f ",age );
+ fprintf(ficresstdeij,"\n");
+
+ fprintf(ficrescveij,"%3.0f",age );
for(i=1; i<=nlstate;i++)
for(j=1; j<=nlstate;j++){
- fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
+ cptj= (j-1)*nlstate+i;
+ for(i2=1; i2<=nlstate;i2++)
+ for(j2=1; j2<=nlstate;j2++){
+ cptj2= (j2-1)*nlstate+i2;
+ if(cptj2 <= cptj)
+ fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
+ }
}
- fprintf(ficresvij,"\n");
- free_matrix(gp,0,nhstepm,1,nlstate);
- free_matrix(gm,0,nhstepm,1,nlstate);
- free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
- free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
- free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- } /* End age */
- free_vector(gpp,nlstate+1,nlstate+ndeath);
- free_vector(gmp,nlstate+1,nlstate+ndeath);
- free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
- free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
- fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
- /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
- fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
-/* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
-/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
-/* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
- fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l 1 ",fileresprobmorprev);
- fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",fileresprobmorprev);
- fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l 2 ",fileresprobmorprev);
- fprintf(fichtm,"\n
File (multiple files are possible if covariates are present): %s\n",fileresprobmorprev,fileresprobmorprev);
- fprintf(fichtm,"\n
Probability is computed over estepm=%d months.
\n", estepm,digitp,digit);
- /* fprintf(fichtm,"\n
Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year
\n", stepm,YEARM,digitp,digit);
-*/
- fprintf(ficgp,"\nset out \"varmuptjgr%s%s.png\";replot;",digitp,digit);
-
+ fprintf(ficrescveij,"\n");
+
+ }
+ free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
+ free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
+ free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
+ free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
+ free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ printf("\n");
+ fprintf(ficlog,"\n");
+
+ free_vector(xm,1,npar);
free_vector(xp,1,npar);
- free_matrix(doldm,1,nlstate,1,nlstate);
- free_matrix(dnewm,1,nlstate,1,npar);
- free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
- free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
- free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
- if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- fclose(ficresprobmorprev);
- fclose(ficgp);
- fclose(fichtm);
+ free_matrix(dnewm,1,nlstate*nlstate,1,npar);
+ free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
+ free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
}
+
+/************ Variance ******************/
+ void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
+ {
+ /* Variance of health expectancies */
+ /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
+ /* double **newm;*/
+ /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
+
+ /* int movingaverage(); */
+ double **dnewm,**doldm;
+ double **dnewmp,**doldmp;
+ int i, j, nhstepm, hstepm, h, nstepm ;
+ int k;
+ double *xp;
+ double **gp, **gm; /* for var eij */
+ double ***gradg, ***trgradg; /*for var eij */
+ double **gradgp, **trgradgp; /* for var p point j */
+ double *gpp, *gmp; /* for var p point j */
+ double **varppt; /* for var p point j nlstate to nlstate+ndeath */
+ double ***p3mat;
+ double age,agelim, hf;
+ /* double ***mobaverage; */
+ int theta;
+ char digit[4];
+ char digitp[25];
+
+ char fileresprobmorprev[FILENAMELENGTH];
+
+ if(popbased==1){
+ if(mobilav!=0)
+ strcpy(digitp,"-POPULBASED-MOBILAV_");
+ else strcpy(digitp,"-POPULBASED-NOMOBIL_");
+ }
+ else
+ strcpy(digitp,"-STABLBASED_");
+
+ /* if (mobilav!=0) { */
+ /* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
+ /* if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
+ /* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
+ /* printf(" Error in movingaverage mobilav=%d\n",mobilav); */
+ /* } */
+ /* } */
+
+ strcpy(fileresprobmorprev,"PRMORPREV-");
+ sprintf(digit,"%-d",ij);
+ /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
+ strcat(fileresprobmorprev,digit); /* Tvar to be done */
+ strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
+ strcat(fileresprobmorprev,fileresu);
+ if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", fileresprobmorprev);
+ fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
+ }
+ printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
+ fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
+ pstamp(ficresprobmorprev);
+ fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
+ fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
+ for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
+ fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ }
+ for(j=1;j<=cptcoveff;j++)
+ fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]);
+ fprintf(ficresprobmorprev,"\n");
+
+ fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
+ for(j=nlstate+1; j<=(nlstate+ndeath);j++){
+ fprintf(ficresprobmorprev," p.%-d SE",j);
+ for(i=1; i<=nlstate;i++)
+ fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
+ }
+ fprintf(ficresprobmorprev,"\n");
+
+ fprintf(ficgp,"\n# Routine varevsij");
+ fprintf(ficgp,"\nunset title \n");
+ /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
+ fprintf(fichtm,"\n Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)
\n");
+ fprintf(fichtm,"\n
%s
\n",digitp);
+ /* } */
+ varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+ pstamp(ficresvij);
+ fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n# (weighted average of eij where weights are ");
+ if(popbased==1)
+ fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
+ else
+ fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
+ fprintf(ficresvij,"# Age");
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=nlstate;j++)
+ fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
+ fprintf(ficresvij,"\n");
+
+ xp=vector(1,npar);
+ dnewm=matrix(1,nlstate,1,npar);
+ doldm=matrix(1,nlstate,1,nlstate);
+ dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
+ doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+
+ gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
+ gpp=vector(nlstate+1,nlstate+ndeath);
+ gmp=vector(nlstate+1,nlstate+ndeath);
+ trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
+
+ if(estepm < stepm){
+ printf ("Problem %d lower than %d\n",estepm, stepm);
+ }
+ else hstepm=estepm;
+ /* For example we decided to compute the life expectancy with the smallest unit */
+ /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm.
+ nhstepm is the number of hstepm from age to agelim
+ nstepm is the number of stepm from age to agelim.
+ Look at function hpijx to understand why because of memory size limitations,
+ we decided (b) to get a life expectancy respecting the most precise curvature of the
+ survival function given by stepm (the optimization length). Unfortunately it
+ means that if the survival funtion is printed every two years of age and if
+ you sum them up and add 1 year (area under the trapezoids) you won't get the same
+ results. So we changed our mind and took the option of the best precision.
+ */
+ hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */
+ agelim = AGESUP;
+ for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
+ nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
+ nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
+ p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
+ gp=matrix(0,nhstepm,1,nlstate);
+ gm=matrix(0,nhstepm,1,nlstate);
+
+
+ for(theta=1; theta <=npar; theta++){
+ for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
+ xp[i] = x[i] + (i==theta ?delti[theta]:0);
+ }
+
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
+
+ if (popbased==1) {
+ if(mobilav ==0){
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=probs[(int)age][i][ij];
+ }else{ /* mobilav */
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=mobaverage[(int)age][i][ij];
+ }
+ }
+
+ hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres); /* Returns p3mat[i][j][h] for h=1 to nhstepm */
+ for(j=1; j<= nlstate; j++){
+ for(h=0; h<=nhstepm; h++){
+ for(i=1, gp[h][j]=0.;i<=nlstate;i++)
+ gp[h][j] += prlim[i][i]*p3mat[i][j][h];
+ }
+ }
+ /* Next for computing probability of death (h=1 means
+ computed over hstepm matrices product = hstepm*stepm months)
+ as a weighted average of prlim.
+ */
+ for(j=nlstate+1;j<=nlstate+ndeath;j++){
+ for(i=1,gpp[j]=0.; i<= nlstate; i++)
+ gpp[j] += prlim[i][i]*p3mat[i][j][1];
+ }
+ /* end probability of death */
+
+ for(i=1; i<=npar; i++) /* Computes gradient x - delta */
+ xp[i] = x[i] - (i==theta ?delti[theta]:0);
+
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);
+
+ if (popbased==1) {
+ if(mobilav ==0){
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=probs[(int)age][i][ij];
+ }else{ /* mobilav */
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=mobaverage[(int)age][i][ij];
+ }
+ }
+
+ hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);
+
+ for(j=1; j<= nlstate; j++){ /* Sum of wi * eij = e.j */
+ for(h=0; h<=nhstepm; h++){
+ for(i=1, gm[h][j]=0.;i<=nlstate;i++)
+ gm[h][j] += prlim[i][i]*p3mat[i][j][h];
+ }
+ }
+ /* This for computing probability of death (h=1 means
+ computed over hstepm matrices product = hstepm*stepm months)
+ as a weighted average of prlim.
+ */
+ for(j=nlstate+1;j<=nlstate+ndeath;j++){
+ for(i=1,gmp[j]=0.; i<= nlstate; i++)
+ gmp[j] += prlim[i][i]*p3mat[i][j][1];
+ }
+ /* end probability of death */
+
+ for(j=1; j<= nlstate; j++) /* vareij */
+ for(h=0; h<=nhstepm; h++){
+ gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
+ }
+
+ for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
+ gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
+ }
+
+ } /* End theta */
+
+ trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
+
+ for(h=0; h<=nhstepm; h++) /* veij */
+ for(j=1; j<=nlstate;j++)
+ for(theta=1; theta <=npar; theta++)
+ trgradg[h][j][theta]=gradg[h][theta][j];
+
+ for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
+ for(theta=1; theta <=npar; theta++)
+ trgradgp[j][theta]=gradgp[theta][j];
+
+
+ hf=hstepm*stepm/YEARM; /* Duration of hstepm expressed in year unit. */
+ for(i=1;i<=nlstate;i++)
+ for(j=1;j<=nlstate;j++)
+ vareij[i][j][(int)age] =0.;
+
+ for(h=0;h<=nhstepm;h++){
+ for(k=0;k<=nhstepm;k++){
+ matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
+ matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
+ for(i=1;i<=nlstate;i++)
+ for(j=1;j<=nlstate;j++)
+ vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
+ }
+ }
+
+ /* pptj */
+ matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
+ matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
+ for(j=nlstate+1;j<=nlstate+ndeath;j++)
+ for(i=nlstate+1;i<=nlstate+ndeath;i++)
+ varppt[j][i]=doldmp[j][i];
+ /* end ppptj */
+ /* x centered again */
+
+ prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
+
+ if (popbased==1) {
+ if(mobilav ==0){
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=probs[(int)age][i][ij];
+ }else{ /* mobilav */
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=mobaverage[(int)age][i][ij];
+ }
+ }
+
+ /* This for computing probability of death (h=1 means
+ computed over hstepm (estepm) matrices product = hstepm*stepm months)
+ as a weighted average of prlim.
+ */
+ hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);
+ for(j=nlstate+1;j<=nlstate+ndeath;j++){
+ for(i=1,gmp[j]=0.;i<= nlstate; i++)
+ gmp[j] += prlim[i][i]*p3mat[i][j][1];
+ }
+ /* end probability of death */
+
+ fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
+ for(j=nlstate+1; j<=(nlstate+ndeath);j++){
+ fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
+ for(i=1; i<=nlstate;i++){
+ fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
+ }
+ }
+ fprintf(ficresprobmorprev,"\n");
+
+ fprintf(ficresvij,"%.0f ",age );
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=nlstate;j++){
+ fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
+ }
+ fprintf(ficresvij,"\n");
+ free_matrix(gp,0,nhstepm,1,nlstate);
+ free_matrix(gm,0,nhstepm,1,nlstate);
+ free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
+ free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
+ free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ } /* End age */
+ free_vector(gpp,nlstate+1,nlstate+ndeath);
+ free_vector(gmp,nlstate+1,nlstate+ndeath);
+ free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
+ free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
+ /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
+ fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
+ /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
+ fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
+ fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
+ /* fprintf(ficgp,"\n plot \"%s\" u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
+ /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
+ /* fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
+ fprintf(ficgp,"\n plot \"%s\" u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
+ fprintf(ficgp,"\n replot \"%s\" u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
+ fprintf(ficgp,"\n replot \"%s\" u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
+ fprintf(fichtm,"\n
File (multiple files are possible if covariates are present): %s\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
+ fprintf(fichtm,"\n
Probability is computed over estepm=%d months.
\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
+ /* fprintf(fichtm,"\n
Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year
\n", stepm,YEARM,digitp,digit);
+ */
+ /* fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
+ fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
+
+ free_vector(xp,1,npar);
+ free_matrix(doldm,1,nlstate,1,nlstate);
+ free_matrix(dnewm,1,nlstate,1,npar);
+ free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+ free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
+ free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
+ /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
+ fclose(ficresprobmorprev);
+ fflush(ficgp);
+ fflush(fichtm);
+ } /* end varevsij */
/************ Variance of prevlim ******************/
-void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
+ void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
{
- /* Variance of prevalence limit */
+ /* Variance of prevalence limit for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
/* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
- double **newm;
+
double **dnewm,**doldm;
int i, j, nhstepm, hstepm;
- int k, cptcode;
double *xp;
double *gp, *gm;
double **gradg, **trgradg;
+ double **mgm, **mgp;
double age,agelim;
int theta;
-
- fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
- fprintf(ficresvpl,"# Age");
+
+ pstamp(ficresvpl);
+ fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
+ fprintf(ficresvpl,"# Age ");
+ if(nresult >=1)
+ fprintf(ficresvpl," Result# ");
for(i=1; i<=nlstate;i++)
fprintf(ficresvpl," %1d-%1d",i,i);
fprintf(ficresvpl,"\n");
@@ -2324,6 +5707,8 @@ void varprevlim(char fileres[], double *
if (stepm >= YEARM) hstepm=1;
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
gradg=matrix(1,npar,1,nlstate);
+ mgp=matrix(1,npar,1,nlstate);
+ mgm=matrix(1,npar,1,nlstate);
gp=vector(1,nlstate);
gm=vector(1,nlstate);
@@ -2331,18 +5716,27 @@ void varprevlim(char fileres[], double *
for(i=1; i<=npar; i++){ /* Computes gradient */
xp[i] = x[i] + (i==theta ?delti[theta]:0);
}
- prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
- for(i=1;i<=nlstate;i++)
+ if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
+ else
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
+ for(i=1;i<=nlstate;i++){
gp[i] = prlim[i][i];
-
+ mgp[theta][i] = prlim[i][i];
+ }
for(i=1; i<=npar; i++) /* Computes gradient */
xp[i] = x[i] - (i==theta ?delti[theta]:0);
- prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
- for(i=1;i<=nlstate;i++)
+ if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
+ else
+ prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
+ for(i=1;i<=nlstate;i++){
gm[i] = prlim[i][i];
-
+ mgm[theta][i] = prlim[i][i];
+ }
for(i=1;i<=nlstate;i++)
gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
+ /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
} /* End theta */
trgradg =matrix(1,nlstate,1,npar);
@@ -2350,20 +5744,47 @@ void varprevlim(char fileres[], double *
for(j=1; j<=nlstate;j++)
for(theta=1; theta <=npar; theta++)
trgradg[j][theta]=gradg[theta][j];
+ /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
+ /* printf("\nmgm mgp %d ",(int)age); */
+ /* for(j=1; j<=nlstate;j++){ */
+ /* printf(" %d ",j); */
+ /* for(theta=1; theta <=npar; theta++) */
+ /* printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
+ /* printf("\n "); */
+ /* } */
+ /* } */
+ /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
+ /* printf("\n gradg %d ",(int)age); */
+ /* for(j=1; j<=nlstate;j++){ */
+ /* printf("%d ",j); */
+ /* for(theta=1; theta <=npar; theta++) */
+ /* printf("%d %lf ",theta,gradg[theta][j]); */
+ /* printf("\n "); */
+ /* } */
+ /* } */
for(i=1;i<=nlstate;i++)
varpl[i][(int)age] =0.;
+ if((int)age==79 ||(int)age== 80 ||(int)age== 81){
matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
+ }else{
+ matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
+ matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
+ }
for(i=1;i<=nlstate;i++)
varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
fprintf(ficresvpl,"%.0f ",age );
+ if(nresult >=1)
+ fprintf(ficresvpl,"%d ",nres );
for(i=1; i<=nlstate;i++)
fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
fprintf(ficresvpl,"\n");
free_vector(gp,1,nlstate);
free_vector(gm,1,nlstate);
+ free_matrix(mgm,1,npar,1,nlstate);
+ free_matrix(mgp,1,npar,1,nlstate);
free_matrix(gradg,1,npar,1,nlstate);
free_matrix(trgradg,1,nlstate,1,npar);
} /* End age */
@@ -2375,682 +5796,1485 @@ void varprevlim(char fileres[], double *
}
/************ Variance of one-step probabilities ******************/
-void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
-{
- int i, j=0, i1, k1, l1, t, tj;
- int k2, l2, j1, z1;
- int k=0,l, cptcode;
- int first=1, first1;
- double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
- double **dnewm,**doldm;
- double *xp;
- double *gp, *gm;
- double **gradg, **trgradg;
- double **mu;
- double age,agelim, cov[NCOVMAX];
- double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
- int theta;
- char fileresprob[FILENAMELENGTH];
- char fileresprobcov[FILENAMELENGTH];
- char fileresprobcor[FILENAMELENGTH];
-
- double ***varpij;
-
- strcpy(fileresprob,"prob");
- strcat(fileresprob,fileres);
- if((ficresprob=fopen(fileresprob,"w"))==NULL) {
- printf("Problem with resultfile: %s\n", fileresprob);
- fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
- }
- strcpy(fileresprobcov,"probcov");
- strcat(fileresprobcov,fileres);
- if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
- printf("Problem with resultfile: %s\n", fileresprobcov);
- fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
- }
- strcpy(fileresprobcor,"probcor");
- strcat(fileresprobcor,fileres);
- if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
- printf("Problem with resultfile: %s\n", fileresprobcor);
- fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
- }
- printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
- fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
- printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
- fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
- printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
- fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
-
- fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
- fprintf(ficresprob,"# Age");
- fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
- fprintf(ficresprobcov,"# Age");
- fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
- fprintf(ficresprobcov,"# Age");
-
-
- for(i=1; i<=nlstate;i++)
- for(j=1; j<=(nlstate+ndeath);j++){
- fprintf(ficresprob," p%1d-%1d (SE)",i,j);
- fprintf(ficresprobcov," p%1d-%1d ",i,j);
- fprintf(ficresprobcor," p%1d-%1d ",i,j);
- }
- fprintf(ficresprob,"\n");
- fprintf(ficresprobcov,"\n");
- fprintf(ficresprobcor,"\n");
- xp=vector(1,npar);
- dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
- doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
- mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
- varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
- first=1;
- if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
- printf("Problem with gnuplot file: %s\n", optionfilegnuplot);
- fprintf(ficlog,"Problem with gnuplot file: %s\n", optionfilegnuplot);
- exit(0);
- }
- else{
- fprintf(ficgp,"\n# Routine varprob");
- }
- if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
- printf("Problem with html file: %s\n", optionfilehtm);
- fprintf(ficlog,"Problem with html file: %s\n", optionfilehtm);
- exit(0);
- }
- else{
- fprintf(fichtm,"\n Computing and drawing one step probabilities with their confidence intervals
\n");
- fprintf(fichtm,"\n");
-
- fprintf(fichtm,"\n Computing matrix of variance-covariance of step probabilities
\n");
- fprintf(fichtm,"\nWe have drawn ellipsoids of confidence around the pij, pkl to understand the covariance between two incidences. They are expressed in year-1 in order to be less dependent of stepm.
\n");
- fprintf(fichtm,"\n
We have drawn x'cov-1x = 4 where x is the column vector (pij,pkl). It means that if pij and pkl where uncorrelated the (2X2) matrix would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 standard deviations wide on each axis.
When both incidences are correlated we diagonalised the inverse of the covariance matrix and made the appropriate rotation.
\n");
-
- }
+void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
+ {
+ int i, j=0, k1, l1, tj;
+ int k2, l2, j1, z1;
+ int k=0, l;
+ int first=1, first1, first2;
+ double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
+ double **dnewm,**doldm;
+ double *xp;
+ double *gp, *gm;
+ double **gradg, **trgradg;
+ double **mu;
+ double age, cov[NCOVMAX+1];
+ double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
+ int theta;
+ char fileresprob[FILENAMELENGTH];
+ char fileresprobcov[FILENAMELENGTH];
+ char fileresprobcor[FILENAMELENGTH];
+ double ***varpij;
+
+ strcpy(fileresprob,"PROB_");
+ strcat(fileresprob,fileres);
+ if((ficresprob=fopen(fileresprob,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", fileresprob);
+ fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
+ }
+ strcpy(fileresprobcov,"PROBCOV_");
+ strcat(fileresprobcov,fileresu);
+ if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", fileresprobcov);
+ fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
+ }
+ strcpy(fileresprobcor,"PROBCOR_");
+ strcat(fileresprobcor,fileresu);
+ if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", fileresprobcor);
+ fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
+ }
+ printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
+ fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
+ printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
+ fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
+ printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
+ fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
+ pstamp(ficresprob);
+ fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
+ fprintf(ficresprob,"# Age");
+ pstamp(ficresprobcov);
+ fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
+ fprintf(ficresprobcov,"# Age");
+ pstamp(ficresprobcor);
+ fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
+ fprintf(ficresprobcor,"# Age");
+
+
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=(nlstate+ndeath);j++){
+ fprintf(ficresprob," p%1d-%1d (SE)",i,j);
+ fprintf(ficresprobcov," p%1d-%1d ",i,j);
+ fprintf(ficresprobcor," p%1d-%1d ",i,j);
+ }
+ /* fprintf(ficresprob,"\n");
+ fprintf(ficresprobcov,"\n");
+ fprintf(ficresprobcor,"\n");
+ */
+ xp=vector(1,npar);
+ dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
+ doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
+ mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
+ varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
+ first=1;
+ fprintf(ficgp,"\n# Routine varprob");
+ fprintf(fichtm,"\n Computing and drawing one step probabilities with their confidence intervals
\n");
+ fprintf(fichtm,"\n");
+
+ fprintf(fichtm,"\n this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.\n",optionfilehtmcov);
+ fprintf(fichtmcov,"Current page is file %s
\n\nMatrix of variance-covariance of pairs of step probabilities
\n",optionfilehtmcov, optionfilehtmcov);
+ fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (pij, pkl) are estimated \
+and drawn. It helps understanding how is the covariance between two incidences.\
+ They are expressed in year-1 in order to be less dependent of stepm.
\n");
+ fprintf(fichtmcov,"\n
Contour plot corresponding to x'cov-1x = 4 (where x is the column vector (pij,pkl)) are drawn. \
+It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
+would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
+standard deviations wide on each axis.
\
+ Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
+ and made the appropriate rotation to look at the uncorrelated principal directions.
\
+To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.
\n");
+
+ cov[1]=1;
+ /* tj=cptcoveff; */
+ tj = (int) pow(2,cptcoveff);
+ if (cptcovn<1) {tj=1;ncodemax[1]=1;}
+ j1=0;
+ for(j1=1; j1<=tj;j1++){ /* For each valid combination of covariates or only once*/
+ if (cptcovn>0) {
+ fprintf(ficresprob, "\n#********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresprob, "**********\n#\n");
+ fprintf(ficresprobcov, "\n#********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresprobcov, "**********\n#\n");
+
+ fprintf(ficgp, "\n#********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficgp, "**********\n#\n");
+
+
+ fprintf(fichtmcov, "\n
********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(fichtmcov, "**********\n
");
+
+ fprintf(ficresprobcor, "\n#********** Variable ");
+ for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
+ fprintf(ficresprobcor, "**********\n#");
+ if(invalidvarcomb[j1]){
+ fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1);
+ fprintf(fichtmcov,"\nCombination (%d) ignored because no cases
\n",j1);
+ continue;
+ }
+ }
+ gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
+ trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
+ gp=vector(1,(nlstate)*(nlstate+ndeath));
+ gm=vector(1,(nlstate)*(nlstate+ndeath));
+ for (age=bage; age<=fage; age ++){
+ cov[2]=age;
+ if(nagesqr==1)
+ cov[3]= age*age;
+ for (k=1; k<=cptcovn;k++) {
+ cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
+ /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
+ * 1 1 1 1 1
+ * 2 2 1 1 1
+ * 3 1 2 1 1
+ */
+ /* nbcode[1][1]=0 nbcode[1][2]=1;*/
+ }
+ /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
+ for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
+ for (k=1; k<=cptcovprod;k++)
+ cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
+
+
+ for(theta=1; theta <=npar; theta++){
+ for(i=1; i<=npar; i++)
+ xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
+
+ pmij(pmmij,cov,ncovmodel,xp,nlstate);
+
+ k=0;
+ for(i=1; i<= (nlstate); i++){
+ for(j=1; j<=(nlstate+ndeath);j++){
+ k=k+1;
+ gp[k]=pmmij[i][j];
+ }
+ }
+
+ for(i=1; i<=npar; i++)
+ xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
+
+ pmij(pmmij,cov,ncovmodel,xp,nlstate);
+ k=0;
+ for(i=1; i<=(nlstate); i++){
+ for(j=1; j<=(nlstate+ndeath);j++){
+ k=k+1;
+ gm[k]=pmmij[i][j];
+ }
+ }
+
+ for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
+ gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];
+ }
- cov[1]=1;
- tj=cptcoveff;
- if (cptcovn<1) {tj=1;ncodemax[1]=1;}
- j1=0;
- for(t=1; t<=tj;t++){
- for(i1=1; i1<=ncodemax[t];i1++){
- j1++;
- if (cptcovn>0) {
- fprintf(ficresprob, "\n#********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(ficresprob, "**********\n#");
- fprintf(ficresprobcov, "\n#********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(ficresprobcov, "**********\n#");
-
- fprintf(ficgp, "\n#********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, "# V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(ficgp, "**********\n#");
-
-
- fprintf(fichtm, "\n
********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(fichtm, "**********\n
");
-
- fprintf(ficresprobcor, "\n#********** Variable ");
- for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
- fprintf(ficgp, "**********\n#");
- }
-
- for (age=bage; age<=fage; age ++){
- cov[2]=age;
- for (k=1; k<=cptcovn;k++) {
- cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
- }
- for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
- for (k=1; k<=cptcovprod;k++)
- cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
-
- gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
- trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
- gp=vector(1,(nlstate)*(nlstate+ndeath));
- gm=vector(1,(nlstate)*(nlstate+ndeath));
-
- for(theta=1; theta <=npar; theta++){
- for(i=1; i<=npar; i++)
- xp[i] = x[i] + (i==theta ?delti[theta]:0);
-
- pmij(pmmij,cov,ncovmodel,xp,nlstate);
-
- k=0;
- for(i=1; i<= (nlstate); i++){
- for(j=1; j<=(nlstate+ndeath);j++){
- k=k+1;
- gp[k]=pmmij[i][j];
- }
- }
-
- for(i=1; i<=npar; i++)
- xp[i] = x[i] - (i==theta ?delti[theta]:0);
+ for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
+ for(theta=1; theta <=npar; theta++)
+ trgradg[j][theta]=gradg[theta][j];
+
+ matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
+ matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
+
+ pmij(pmmij,cov,ncovmodel,x,nlstate);
+
+ k=0;
+ for(i=1; i<=(nlstate); i++){
+ for(j=1; j<=(nlstate+ndeath);j++){
+ k=k+1;
+ mu[k][(int) age]=pmmij[i][j];
+ }
+ }
+ for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
+ for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
+ varpij[i][j][(int)age] = doldm[i][j];
+
+ /*printf("\n%d ",(int)age);
+ for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
+ printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
+ fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
+ }*/
+
+ fprintf(ficresprob,"\n%d ",(int)age);
+ fprintf(ficresprobcov,"\n%d ",(int)age);
+ fprintf(ficresprobcor,"\n%d ",(int)age);
+
+ for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
+ fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
+ for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
+ fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
+ fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
+ }
+ i=0;
+ for (k=1; k<=(nlstate);k++){
+ for (l=1; l<=(nlstate+ndeath);l++){
+ i++;
+ fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
+ fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
+ for (j=1; j<=i;j++){
+ /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
+ fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
+ fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
+ }
+ }
+ }/* end of loop for state */
+ } /* end of loop for age */
+ free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
+ free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
+ free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
+ free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
- pmij(pmmij,cov,ncovmodel,xp,nlstate);
- k=0;
- for(i=1; i<=(nlstate); i++){
- for(j=1; j<=(nlstate+ndeath);j++){
- k=k+1;
- gm[k]=pmmij[i][j];
- }
- }
-
- for(i=1; i<= (nlstate)*(nlstate+ndeath); i++)
- gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];
- }
+ /* Confidence intervalle of pij */
+ /*
+ fprintf(ficgp,"\nunset parametric;unset label");
+ fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
+ fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
+ fprintf(fichtm,"\n
Probability with confidence intervals expressed in year-1 :pijgr%s.png, ",optionfilefiname,optionfilefiname);
+ fprintf(fichtm,"\n
",optionfilefiname);
+ fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
+ fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
+ */
+
+ /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
+ first1=1;first2=2;
+ for (k2=1; k2<=(nlstate);k2++){
+ for (l2=1; l2<=(nlstate+ndeath);l2++){
+ if(l2==k2) continue;
+ j=(k2-1)*(nlstate+ndeath)+l2;
+ for (k1=1; k1<=(nlstate);k1++){
+ for (l1=1; l1<=(nlstate+ndeath);l1++){
+ if(l1==k1) continue;
+ i=(k1-1)*(nlstate+ndeath)+l1;
+ if(i<=j) continue;
+ for (age=bage; age<=fage; age ++){
+ if ((int)age %5==0){
+ v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
+ v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
+ cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
+ mu1=mu[i][(int) age]/stepm*YEARM ;
+ mu2=mu[j][(int) age]/stepm*YEARM;
+ c12=cv12/sqrt(v1*v2);
+ /* Computing eigen value of matrix of covariance */
+ lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
+ lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
+ if ((lc2 <0) || (lc1 <0) ){
+ if(first2==1){
+ first1=0;
+ printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
+ }
+ fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
+ /* lc1=fabs(lc1); */ /* If we want to have them positive */
+ /* lc2=fabs(lc2); */
+ }
+
+ /* Eigen vectors */
+ v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
+ /*v21=sqrt(1.-v11*v11); *//* error */
+ v21=(lc1-v1)/cv12*v11;
+ v12=-v21;
+ v22=v11;
+ tnalp=v21/v11;
+ if(first1==1){
+ first1=0;
+ printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
+ }
+ fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
+ /*printf(fignu*/
+ /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
+ /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
+ if(first==1){
+ first=0;
+ fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
+ fprintf(ficgp,"\nset parametric;unset label");
+ fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
+ fprintf(ficgp,"\nset ter svg size 640, 480");
+ fprintf(fichtmcov,"\n
Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year-1\
+ : \
+%s_%d%1d%1d-%1d%1d.svg, ",k1,l1,k2,l2,\
+ subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2, \
+ subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
+ fprintf(fichtmcov,"\n
",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
+ fprintf(fichtmcov,"\n
Correlation at age %d (%.3f),",(int) age, c12);
+ fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
+ fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
+ fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
+ fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
+ mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \
+ mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
+ }else{
+ first=0;
+ fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
+ fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
+ fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
+ fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
+ mu1,std,v11,sqrt(lc1),v12,sqrt(lc2), \
+ mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
+ }/* if first */
+ } /* age mod 5 */
+ } /* end loop age */
+ fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
+ first=1;
+ } /*l12 */
+ } /* k12 */
+ } /*l1 */
+ }/* k1 */
+ } /* loop on combination of covariates j1 */
+ free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
+ free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
+ free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
+ free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
+ free_vector(xp,1,npar);
+ fclose(ficresprob);
+ fclose(ficresprobcov);
+ fclose(ficresprobcor);
+ fflush(ficgp);
+ fflush(fichtmcov);
+ }
- for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
- for(theta=1; theta <=npar; theta++)
- trgradg[j][theta]=gradg[theta][j];
-
- matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov);
- matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
- free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
- free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
- free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
- free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
- pmij(pmmij,cov,ncovmodel,x,nlstate);
-
- k=0;
- for(i=1; i<=(nlstate); i++){
- for(j=1; j<=(nlstate+ndeath);j++){
- k=k+1;
- mu[k][(int) age]=pmmij[i][j];
- }
- }
- for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
- for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
- varpij[i][j][(int)age] = doldm[i][j];
-
- /*printf("\n%d ",(int)age);
- for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
- printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
- fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
- }*/
-
- fprintf(ficresprob,"\n%d ",(int)age);
- fprintf(ficresprobcov,"\n%d ",(int)age);
- fprintf(ficresprobcor,"\n%d ",(int)age);
-
- for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
- fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
- for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
- fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
- fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
- }
- i=0;
- for (k=1; k<=(nlstate);k++){
- for (l=1; l<=(nlstate+ndeath);l++){
- i=i++;
- fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
- fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
- for (j=1; j<=i;j++){
- fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
- fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
- }
- }
- }/* end of loop for state */
- } /* end of loop for age */
+/******************* Printing html file ***********/
+void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
+ int lastpass, int stepm, int weightopt, char model[],\
+ int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
+ int popforecast, int prevfcast, int backcast, int estepm , \
+ double jprev1, double mprev1,double anprev1, double dateprev1, \
+ double jprev2, double mprev2,double anprev2, double dateprev2){
+ int jj1, k1, i1, cpt, k4, nres;
+
+ fprintf(fichtm,"");
+ fprintf(fichtm,"", model);
+ fprintf(fichtm,"- \n");
+ fprintf(fichtm,"
- - Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): %s (html file)
\n",
+ jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
+ fprintf(fichtm," - - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): %s (html file) ",
+ jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
+ fprintf(fichtm,", %s (text file)
\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
+ fprintf(fichtm,"\
+ - Estimated transition probabilities over %d (stepm) months: %s
\n ",
+ stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
+ fprintf(fichtm,"\
+ - Estimated back transition probabilities over %d (stepm) months: %s
\n ",
+ stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
+ fprintf(fichtm,"\
+ - Period (stable) prevalence in each health state: %s
\n",
+ subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
+ fprintf(fichtm,"\
+ - Period (stable) back prevalence in each health state: %s
\n",
+ subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
+ fprintf(fichtm,"\
+ - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
+ %s
\n",
+ estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
+ if(prevfcast==1){
+ fprintf(fichtm,"\
+ - Prevalence projections by age and states: \
+ %s
\n ", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
+ }
- /* Confidence intervalle of pij */
- /*
- fprintf(ficgp,"\nset noparametric;unset label");
- fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
- fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
- fprintf(fichtm,"\n
Probability with confidence intervals expressed in year-1 :pijgr%s.png, ",optionfilefiname,optionfilefiname);
- fprintf(fichtm,"\n
",optionfilefiname);
- fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
- fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
- */
+ fprintf(fichtm," \n- Graphs
");
- /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
- first1=1;
- for (k2=1; k2<=(nlstate);k2++){
- for (l2=1; l2<=(nlstate+ndeath);l2++){
- if(l2==k2) continue;
- j=(k2-1)*(nlstate+ndeath)+l2;
- for (k1=1; k1<=(nlstate);k1++){
- for (l1=1; l1<=(nlstate+ndeath);l1++){
- if(l1==k1) continue;
- i=(k1-1)*(nlstate+ndeath)+l1;
- if(i<=j) continue;
- for (age=bage; age<=fage; age ++){
- if ((int)age %5==0){
- v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
- v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
- cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
- mu1=mu[i][(int) age]/stepm*YEARM ;
- mu2=mu[j][(int) age]/stepm*YEARM;
- c12=cv12/sqrt(v1*v2);
- /* Computing eigen value of matrix of covariance */
- lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
- lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
- /* Eigen vectors */
- v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
- /*v21=sqrt(1.-v11*v11); *//* error */
- v21=(lc1-v1)/cv12*v11;
- v12=-v21;
- v22=v11;
- tnalp=v21/v11;
- if(first1==1){
- first1=0;
- printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
- }
- fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
- /*printf(fignu*/
- /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
- /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
- if(first==1){
- first=0;
- fprintf(ficgp,"\nset parametric;unset label");
- fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
- fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
- fprintf(fichtm,"\n
Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year-1 :varpijgr%s%d%1d%1d-%1d%1d.png, ",k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2,optionfilefiname, j1,k1,l1,k2,l2);
- fprintf(fichtm,"\n
",optionfilefiname, j1,k1,l1,k2,l2);
- fprintf(fichtm,"\n
Correlation at age %d (%.3f),",(int) age, c12);
- fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\"",optionfilefiname, j1,k1,l1,k2,l2);
- fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
- fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
- fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
- mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
- mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
- }else{
- first=0;
- fprintf(fichtm," %d (%.3f),",(int) age, c12);
- fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
- fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
- fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
- mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
- mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
- }/* if first */
- } /* age mod 5 */
- } /* end loop age */
- fprintf(ficgp,"\nset out \"varpijgr%s%d%1d%1d-%1d%1d.png\";replot;",optionfilefiname, j1,k1,l1,k2,l2);
- first=1;
- } /*l12 */
- } /* k12 */
- } /*l1 */
- }/* k1 */
- } /* loop covariates */
- }
- free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
- free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
- free_vector(xp,1,npar);
- fclose(ficresprob);
- fclose(ficresprobcov);
- fclose(ficresprobcor);
- fclose(ficgp);
- fclose(fichtm);
-}
+ m=pow(2,cptcoveff);
+ if (cptcovn < 1) {m=1;ncodemax[1]=1;}
+ jj1=0;
-/******************* Printing html file ***********/
-void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
- int lastpass, int stepm, int weightopt, char model[],\
- int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
- int popforecast, int estepm ,\
- double jprev1, double mprev1,double anprev1, \
- double jprev2, double mprev2,double anprev2){
- int jj1, k1, i1, cpt;
- /*char optionfilehtm[FILENAMELENGTH];*/
- if((fichtm=fopen(optionfilehtm,"a"))==NULL) {
- printf("Problem with %s \n",optionfilehtm), exit(0);
- fprintf(ficlog,"Problem with %s \n",optionfilehtm), exit(0);
- }
-
- fprintf(fichtm,"
Result files (first order: no variance)
\n
- - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): p%s
\n
- - Estimated transition probabilities over %d (stepm) months: pij%s
\n
- - Stable prevalence in each health state: pl%s
\n
- - Life expectancies by age and initial health status (estepm=%2d months):
- e%s
\n ", \
- jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,fileres,fileres,stepm,fileres,fileres,fileres,fileres,estepm,fileres,fileres);
-
-fprintf(fichtm," \n- Graphs
");
-
- m=cptcoveff;
- if (cptcovn < 1) {m=1;ncodemax[1]=1;}
-
- jj1=0;
- for(k1=1; k1<=m;k1++){
- for(i1=1; i1<=ncodemax[k1];i1++){
+ for(nres=1; nres <= nresult; nres++) /* For each resultline */
+ for(k1=1; k1<=m;k1++){ /* For each combination of covariate */
+ if(TKresult[nres]!= k1)
+ continue;
+
+ /* for(i1=1; i1<=ncodemax[k1];i1++){ */
jj1++;
if (cptcovn > 0) {
fprintf(fichtm,"
************ Results for covariates");
- for (cpt=1; cpt<=cptcoveff;cpt++)
- fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
+ for (cpt=1; cpt<=cptcoveff;cpt++){
+ fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
+ printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout);
+ /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
+ /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout);
+ }
+
+ /* if(nqfveff+nqtveff 0) */ /* Test to be done */
fprintf(fichtm," ************\n
");
+ if(invalidvarcomb[k1]){
+ fprintf(fichtm,"\nCombination (%d) ignored because no cases
\n",k1);
+ printf("\nCombination (%d) ignored because no cases \n",k1);
+ continue;
+ }
}
+ /* aij, bij */
+ fprintf(fichtm,"
- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: %s_%d-1-%d.svg
\
+",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
/* Pij */
- fprintf(fichtm,"
- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before: pe%s%d1.png
-",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
+ fprintf(fichtm,"
\n- Pij or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s_%d-2-%d.svg
\
+",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
/* Quasi-incidences */
- fprintf(fichtm,"
- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: pe%s%d2.png
-",stepm,strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
- /* Stable prevalence in each health state */
- for(cpt=1; cpt- Stable prevalence in each health state : p%s%d%d.png
-",strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
+ fprintf(fichtm,"
\n- Iij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
+ before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
+ incidence (rates) are the limit when h tends to zero of the ratio of the probability hPij \
+divided by h: hPij/h : %s_%d-3-%d.svg
\
+",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
+ /* Survival functions (period) in state j */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. %s_%d-%d-%d.svg
\
+", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
+ }
+ /* State specific survival functions (period) */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Survival functions from state %d in each live state and total.\
+ Or probability to survive in various states (1 to %d) being in state %d at different ages. \
+ %s_%d%d-%d.svg
", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
+ }
+ /* Period (stable) prevalence in each health state */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. %s_%d-%d-%d.svg
\
+", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
+ }
+ if(backcast==1){
+ /* Period (stable) back prevalence in each health state */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. %s_%d-%d-%d.svg
\
+", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
+ }
+ }
+ if(prevfcast==1){
+ /* Projection of prevalence up to period (stable) prevalence in each health state */
+ for(cpt=1; cpt<=nlstate;cpt++){
+ fprintf(fichtm,"
\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. %s_%d-%d-%d.svg
\
+", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
}
+ }
+
for(cpt=1; cpt<=nlstate;cpt++) {
- fprintf(fichtm,"\n
- Health life expectancies by age and initial health state (%d): exp%s%d%d.png
-",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
+ fprintf(fichtm,"\n
- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): %s_%d-%d-%d.svg
\
+",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
}
- fprintf(fichtm,"\n
- Total life expectancy by age and
-health expectancies in states (1) and (2): e%s%d.png
-",strtok(optionfile, "."),jj1,strtok(optionfile, "."),jj1);
- } /* end i1 */
- }/* End k1 */
- fprintf(fichtm,"
");
-
-
- fprintf(fichtm,"\n
Result files (second order: variances)
\n
- - Parameter file with estimated parameters and covariance matrix: %s
\n
- - Variance of one-step probabilities: prob%s
\n
- - Variance-covariance of one-step probabilities: probcov%s
\n
- - Correlation matrix of one-step probabilities: probcor%s
\n
- - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): v%s
\n
- - Health expectancies with their variances (no covariance): t%s
\n
- - Standard deviation of stable prevalences: vpl%s
\n",rfileres,rfileres,fileres,fileres,fileres,fileres,fileres,fileres, estepm, fileres,fileres,fileres,fileres,fileres,fileres);
-
- if(popforecast==1) fprintf(fichtm,"\n
- - Prevalences forecasting: f%s
\n
- - Population forecasting (if popforecast=1): pop%s
\n
-
",fileres,fileres,fileres,fileres);
- else
- fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)
\n",popforecast, stepm, model);
-fprintf(fichtm," - Graphs
");
-
- m=cptcoveff;
- if (cptcovn < 1) {m=1;ncodemax[1]=1;}
-
- jj1=0;
- for(k1=1; k1<=m;k1++){
- for(i1=1; i1<=ncodemax[k1];i1++){
+ /* } /\* end i1 *\/ */
+ }/* End k1 */
+ fprintf(fichtm,"
");
+
+ fprintf(fichtm,"\
+\n
- \n\
+ - Parameter file with estimated parameters and covariance matrix: %s
\
+ - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).
\
+But because parameters are usually highly correlated (a higher incidence of disability \
+and a higher incidence of recovery can give very close observed transition) it might \
+be very useful to look not only at linear confidence intervals estimated from the \
+variances but at the covariance matrix. And instead of looking at the estimated coefficients \
+(parameters) of the logistic regression, it might be more meaningful to visualize the \
+covariance matrix of the one-step probabilities. \
+See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
+
+ fprintf(fichtm," - Standard deviation of one-step probabilities: %s
\n",
+ subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
+ fprintf(fichtm,"\
+ - Variance-covariance of one-step probabilities: %s
\n",
+ subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
+
+ fprintf(fichtm,"\
+ - Correlation matrix of one-step probabilities: %s
\n",
+ subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
+ fprintf(fichtm,"\
+ - Variances and covariances of health expectancies by age and initial health status (cov(eij,ekl)(estepm=%2d months): \
+ %s
\n ",
+ estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
+ fprintf(fichtm,"\
+ - (a) Health expectancies by health status at initial age (eij) and standard errors (in parentheses) (b) life expectancies and standard errors (ei.=ei1+ei2+...)(estepm=%2d months): \
+ %s
\n",
+ estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
+ fprintf(fichtm,"\
+ - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), eij are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): %s
\n",
+ estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
+ fprintf(fichtm,"\
+ - Total life expectancy and total health expectancies to be spent in each health state e.j with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): %s
\n",
+ estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
+ fprintf(fichtm,"\
+ - Standard deviation of period (stable) prevalences: %s
\n",\
+ subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
+
+/* if(popforecast==1) fprintf(fichtm,"\n */
+/* - Prevalences forecasting: f%s
\n */
+/* - Population forecasting (if popforecast=1): pop%s
\n */
+/*
",fileres,fileres,fileres,fileres); */
+/* else */
+/* fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)
\n",popforecast, stepm, model); */
+ fflush(fichtm);
+ fprintf(fichtm," - Graphs
");
+
+ m=pow(2,cptcoveff);
+ if (cptcovn < 1) {m=1;ncodemax[1]=1;}
+
+ jj1=0;
+
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ for(k1=1; k1<=m;k1++){
+ if(TKresult[nres]!= k1)
+ continue;
+ /* for(i1=1; i1<=ncodemax[k1];i1++){ */
jj1++;
if (cptcovn > 0) {
fprintf(fichtm,"
************ Results for covariates");
- for (cpt=1; cpt<=cptcoveff;cpt++)
- fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
+ for (cpt=1; cpt<=cptcoveff;cpt++) /**< cptcoveff number of variables */
+ fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);
+ /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+
fprintf(fichtm," ************\n
");
+
+ if(invalidvarcomb[k1]){
+ fprintf(fichtm,"\nCombination (%d) ignored because no cases
\n",k1);
+ continue;
+ }
}
for(cpt=1; cpt<=nlstate;cpt++) {
- fprintf(fichtm,"
- Observed and stationary prevalence (with confident
-interval) in state (%d): v%s%d%d.png
-",cpt,strtok(optionfile, "."),cpt,jj1,strtok(optionfile, "."),cpt,jj1);
+ fprintf(fichtm,"\n
- Observed (cross-sectional) and period (incidence based) \
+prevalence (with 95%% confidence interval) in state (%d): %s_%d-%d-%d.svg\n
\
+",cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
}
- } /* end i1 */
- }/* End k1 */
- fprintf(fichtm,"
");
-fclose(fichtm);
+ fprintf(fichtm,"\n
- Total life expectancy by age and \
+health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
+true period expectancies (those weighted with period prevalences are also\
+ drawn in addition to the population based expectancies computed using\
+ observed and cahotic prevalences: %s_%d-%d.svg\n
\
+",subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);
+ /* } /\* end i1 *\/ */
+ }/* End k1 */
+ }/* End nres */
+ fprintf(fichtm,"
");
+ fflush(fichtm);
}
/******************* Gnuplot file **************/
-void printinggnuplot(char fileres[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
+void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){
- int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
- int ng;
- if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) {
- printf("Problem with file %s",optionfilegnuplot);
- fprintf(ficlog,"Problem with file %s",optionfilegnuplot);
- }
+ char dirfileres[132],optfileres[132];
+ char gplotcondition[132];
+ int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0;
+ int lv=0, vlv=0, kl=0;
+ int ng=0;
+ int vpopbased;
+ int ioffset; /* variable offset for columns */
+ int nres=0; /* Index of resultline */
+
+/* if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
+/* printf("Problem with file %s",optionfilegnuplot); */
+/* fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
+/* } */
/*#ifdef windows */
- fprintf(ficgp,"cd \"%s\" \n",pathc);
- /*#endif */
-m=pow(2,cptcoveff);
-
- /* 1eme*/
- for (cpt=1; cpt<= nlstate ; cpt ++) {
- for (k1=1; k1<= m ; k1 ++) {
- fprintf(ficgp,"\nset out \"v%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
- fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,fileres,k1-1,k1-1);
-
- for (i=1; i<= nlstate ; i ++) {
- if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
- for (i=1; i<= nlstate ; i ++) {
- if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);
- for (i=1; i<= nlstate ; i ++) {
- if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
- }
- }
- /*2 eme*/
-
- for (k1=1; k1<= m ; k1 ++) {
- fprintf(ficgp,"\nset out \"e%s%d.png\" \n",strtok(optionfile, "."),k1);
- fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
-
- for (i=1; i<= nlstate+1 ; i ++) {
- k=2*i;
- fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
- for (j=1; j<= nlstate+1 ; j ++) {
- if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
- else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
- fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
- for (j=1; j<= nlstate+1 ; j ++) {
- if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- fprintf(ficgp,"\" t\"\" w l 0,");
- fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
- for (j=1; j<= nlstate+1 ; j ++) {
- if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
- else fprintf(ficgp," \%%*lf (\%%*lf)");
- }
- if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
- else fprintf(ficgp,"\" t\"\" w l 0,");
- }
- }
+ fprintf(ficgp,"cd \"%s\" \n",pathc);
+ /*#endif */
+ m=pow(2,cptcoveff);
+
+ /* Contribution to likelihood */
+ /* Plot the probability implied in the likelihood */
+ fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
+ fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
+ /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
+ fprintf(ficgp,"\nset ter pngcairo size 640, 480");
+/* nice for mle=4 plot by number of matrix products.
+ replot "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
+/* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)" */
+ /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
+ fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
+ fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
+ fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
+ fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
+ for (i=1; i<= nlstate ; i ++) {
+ fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
+ fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot \"%s\"",subdirf(fileresilk));
+ fprintf(ficgp," u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
+ for (j=2; j<= nlstate+ndeath ; j ++) {
+ fprintf(ficgp,",\\\n \"\" u 2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
+ }
+ fprintf(ficgp,";\nset out; unset ylabel;\n");
+ }
+ /* unset log; plot "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */
+ /* fprintf(ficgp,"\nset log y;plot \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
+ /* fprintf(ficgp,"\nreplot \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
+ fprintf(ficgp,"\nset out;unset log\n");
+ /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
+
+ strcpy(dirfileres,optionfilefiname);
+ strcpy(optfileres,"vpl");
+ /* 1eme*/
+ for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
+ for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
+ if(TKresult[nres]!= k1)
+ continue;
+ /* We are interested in selected combination by the resultline */
+ /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */
+ fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt);
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate k get corresponding value lv for combination k1 */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
+ /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
+ /* printf(" V%d=%d ",Tvaraff[k],vlv); */
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
+ fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+ /* printf("\n#\n"); */
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
+
+ fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
+ fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);
+ fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres);
+
+ for (i=1; i<= nlstate ; i ++) {
+ if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres);
+ for (i=1; i<= nlstate ; i ++) {
+ if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres);
+ for (i=1; i<= nlstate ; i ++) {
+ if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
+ if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
+ /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
+ fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */
+ if(cptcoveff ==0){
+ fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3", 2+(cpt-1), cpt );
+ }else{
+ kl=0;
+ for (k=1; k<=cptcoveff; k++){ /* For each combination of covariate */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ kl++;
+ /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
+ /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */
+ /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */
+ /* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
+ if(k==cptcoveff){
+ fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
+ 2+cptcoveff*2+(cpt-1), cpt ); /* 4 or 6 ?*/
+ }else{
+ fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
+ kl++;
+ }
+ } /* end covariate */
+ } /* end if no covariate */
+ } /* end if backcast */
+ fprintf(ficgp,"\nset out \n");
+ } /* nres */
+ } /* k1 */
+ } /* cpt */
+
+ /*2 eme*/
+ for (k1=1; k1<= m ; k1 ++){
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ if(TKresult[nres]!= k1)
+ continue;
+ fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ /* for(k=1; k <= ncovds; k++){ */
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
+
+ fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres);
+ for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
+ if(vpopbased==0)
+ fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
+ else
+ fprintf(ficgp,"\nreplot ");
+ for (i=1; i<= nlstate+1 ; i ++) {
+ k=2*i;
+ fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
+ for (j=1; j<= nlstate+1 ; j ++) {
+ if (j==i) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
+ else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
+ fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
+ for (j=1; j<= nlstate+1 ; j ++) {
+ if (j==i) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ fprintf(ficgp,"\" t\"\" w l lt 0,");
+ fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
+ for (j=1; j<= nlstate+1 ; j ++) {
+ if (j==i) fprintf(ficgp," %%lf (%%lf)");
+ else fprintf(ficgp," %%*lf (%%*lf)");
+ }
+ if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
+ else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
+ } /* state */
+ } /* vpopbased */
+ fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */
+ } /* end nres */
+ } /* k1 end 2 eme*/
+
+
/*3eme*/
+ for (k1=1; k1<= m ; k1 ++){
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ if(TKresult[nres]!= k1)
+ continue;
+
+ for (cpt=1; cpt<= nlstate ; cpt ++) {
+ fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files: combination=%d state=%d",k1, cpt);
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
+
+ /* k=2+nlstate*(2*cpt-2); */
+ k=2+(nlstate+1)*(cpt-1);
+ fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
+ fprintf(ficgp,"set ter svg size 640, 480\n\
+plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
+ /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
+ for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
+ fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
+ fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
+ for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
+ fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
+
+ */
+ for (i=1; i< nlstate ; i ++) {
+ fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
+ /* fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
+
+ }
+ fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
+ }
+ } /* end nres */
+ } /* end kl 3eme */
- for (k1=1; k1<= m ; k1 ++) {
- for (cpt=1; cpt<= nlstate ; cpt ++) {
- k=2+nlstate*(2*cpt-2);
- fprintf(ficgp,"\nset out \"exp%s%d%d.png\" \n",strtok(optionfile, "."),cpt,k1);
- fprintf(ficgp,"set ter png small\nset size 0.65,0.65\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,fileres,k1-1,k1-1,k,cpt);
- /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
- for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
- fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
- fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
- for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
- fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
+ /* 4eme */
+ /* Survival functions (period) from state i in state j by initial state i */
+ for (k1=1; k1<=m; k1++){ /* For each covariate and each value */
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ if(TKresult[nres]!= k1)
+ continue;
+ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
+ fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
+
+ fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
+ fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
+set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar);
+ k=3;
+ for (i=1; i<= nlstate ; i ++){
+ if(i==1){
+ fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
+ }else{
+ fprintf(ficgp,", '' ");
+ }
+ l=(nlstate+ndeath)*(i-1)+1;
+ fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
+ for (j=2; j<= nlstate+ndeath ; j ++)
+ fprintf(ficgp,"+$%d",k+l+j-1);
+ fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
+ } /* nlstate */
+ fprintf(ficgp,"\nset out\n");
+ } /* end cpt state*/
+ } /* end nres */
+ } /* end covariate k1 */
+
+/* 5eme */
+ /* Survival functions (period) from state i in state j by final state j */
+ for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ if(TKresult[nres]!= k1)
+ continue;
+ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state */
+ fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
+
+ fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
+ fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
+set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar);
+ k=3;
+ for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
+ if(j==1)
+ fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
+ else
+ fprintf(ficgp,", '' ");
+ l=(nlstate+ndeath)*(cpt-1) +j;
+ fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
+ /* for (i=2; i<= nlstate+ndeath ; i ++) */
+ /* fprintf(ficgp,"+$%d",k+l+i-1); */
+ fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
+ } /* nlstate */
+ fprintf(ficgp,", '' ");
+ fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
+ for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
+ l=(nlstate+ndeath)*(cpt-1) +j;
+ if(j < nlstate)
+ fprintf(ficgp,"$%d +",k+l);
+ else
+ fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
+ }
+ fprintf(ficgp,"\nset out\n");
+ } /* end cpt state*/
+ } /* end covariate */
+ } /* end nres */
+
+/* 6eme */
+ /* CV preval stable (period) for each covariate */
+ for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ if(TKresult[nres]!= k1)
+ continue;
+ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
+
+ fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
+
+ fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
+ fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
+set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar);
+ k=3; /* Offset */
+ for (i=1; i<= nlstate ; i ++){
+ if(i==1)
+ fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
+ else
+ fprintf(ficgp,", '' ");
+ l=(nlstate+ndeath)*(i-1)+1;
+ fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
+ for (j=2; j<= nlstate ; j ++)
+ fprintf(ficgp,"+$%d",k+l+j-1);
+ fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
+ } /* nlstate */
+ fprintf(ficgp,"\nset out\n");
+ } /* end cpt state*/
+ } /* end covariate */
+
+
+/* 7eme */
+ if(backcast == 1){
+ /* CV back preval stable (period) for each covariate */
+ for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ if(TKresult[nres]!= k1)
+ continue;
+ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
+ fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate and each value */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
- */
- for (i=1; i< nlstate ; i ++) {
- fprintf(ficgp," ,\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+2*i,cpt,i+1);
+ fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
+ fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
+set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar);
+ k=3; /* Offset */
+ for (i=1; i<= nlstate ; i ++){
+ if(i==1)
+ fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
+ else
+ fprintf(ficgp,", '' ");
+ /* l=(nlstate+ndeath)*(i-1)+1; */
+ l=(nlstate+ndeath)*(cpt-1)+1;
+ /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
+ /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
+ fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */
+ /* for (j=2; j<= nlstate ; j ++) */
+ /* fprintf(ficgp,"+$%d",k+l+j-1); */
+ /* /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
+ fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt);
+ } /* nlstate */
+ fprintf(ficgp,"\nset out\n");
+ } /* end cpt state*/
+ } /* end covariate */
+ } /* End if backcast */
+
+ /* 8eme */
+ if(prevfcast==1){
+ /* Projection from cross-sectional to stable (period) for each covariate */
+
+ for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ if(TKresult[nres]!= k1)
+ continue;
+ for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
+ fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
+ for (k=1; k<=cptcoveff; k++){ /* For each correspondig covariate value */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv];
+ fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+ fprintf(ficgp,"\n#\n");
+ if(invalidvarcomb[k1]){
+ fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1);
+ continue;
+ }
- }
- }
- }
+ fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
+ fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
+ fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
+set ter svg size 640, 480\nunset log y\nplot [%.f:%.f] ", ageminpar, agemaxpar);
+ for (i=1; i<= nlstate+1 ; i ++){ /* nlstate +1 p11 p21 p.1 */
+ /*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
+ /*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
+ /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
+ /*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
+ if(i==1){
+ fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
+ }else{
+ fprintf(ficgp,",\\\n '' ");
+ }
+ if(cptcoveff ==0){ /* No covariate */
+ ioffset=2; /* Age is in 2 */
+ /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
+ /*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */
+ /*# V1 = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
+ /*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 */
+ fprintf(ficgp," u %d:(", ioffset);
+ if(i==nlstate+1)
+ fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ", \
+ ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
+ else
+ fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ", \
+ ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
+ }else{ /* more than 2 covariates */
+ if(cptcoveff ==1){
+ ioffset=4; /* Age is in 4 */
+ }else{
+ ioffset=6; /* Age is in 6 */
+ /*# V1 = 1 V2 = 0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
+ /*# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
+ }
+ fprintf(ficgp," u %d:(",ioffset);
+ kl=0;
+ strcpy(gplotcondition,"(");
+ for (k=1; k<=cptcoveff; k++){ /* For each covariate writing the chain of conditions */
+ lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
+ /* decodtabm(1,1,4) = 1 because h=1 k= (1) 1 1 1 */
+ /* decodtabm(1,2,4) = 1 because h=1 k= 1 (1) 1 1 */
+ /* decodtabm(13,3,4)= 2 because h=13 k= 1 1 (2) 2 */
+ vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
+ kl++;
+ sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
+ kl++;
+ if(k 1)
+ sprintf(gplotcondition+strlen(gplotcondition)," && ");
+ }
+ strcpy(gplotcondition+strlen(gplotcondition),")");
+ /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
+ /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */
+ /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */
+ /* '' u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
+ if(i==nlstate+1){
+ fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \
+ ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
+ }else{
+ fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
+ ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
+ }
+ } /* end if covariate */
+ } /* nlstate */
+ fprintf(ficgp,"\nset out\n");
+ } /* end cpt state*/
+ } /* end covariate */
+ } /* End if prevfcast */
- /* CV preval stat */
- for (k1=1; k1<= m ; k1 ++) {
- for (cpt=1; cpt 1 */
+ if( k !=k2) /* logit p11 is hard to draw */
+ fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
+ }
+ if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
+ fprintf(ficgp,",");
+ if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
+ fprintf(ficgp,",");
+ i=i+ncovmodel;
+ } /* end k */
+ } /* end k2 */
+ fprintf(ficgp,"\n set out\n");
+ } /* end jk */
+ } /* end ng */
+ /* avoid: */
+ fflush(ficgp);
} /* end gnuplot */
/*************** Moving average **************/
-int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
-
- int i, cpt, cptcod;
- int modcovmax =1;
- int mobilavrange, mob;
- double age;
-
- modcovmax=2*cptcoveff;/* Max number of modalities. We suppose
- a covariate has 2 modalities */
- if (cptcovn<1) modcovmax=1; /* At least 1 pass */
-
- if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
- if(mobilav==1) mobilavrange=5; /* default */
- else mobilavrange=mobilav;
- for (age=bage; age<=fage; age++)
- for (i=1; i<=nlstate;i++)
- for (cptcod=1;cptcod<=modcovmax;cptcod++)
- mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
- /* We keep the original values on the extreme ages bage, fage and for
- fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
- we use a 5 terms etc. until the borders are no more concerned.
- */
- for (mob=3;mob <=mobilavrange;mob=mob+2){
- for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
- for (i=1; i<=nlstate;i++){
- for (cptcod=1;cptcod<=modcovmax;cptcod++){
- mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
- for (cpt=1;cpt<=(mob-1)/2;cpt++){
- mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
- mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
- }
- mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
- }
- }
- }/* end age */
- }/* end mob */
- }else return -1;
- return 0;
-}/* End movingaverage */
+/* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
+ int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
+
+ int i, cpt, cptcod;
+ int modcovmax =1;
+ int mobilavrange, mob;
+ int iage=0;
+
+ double sum=0.;
+ double age;
+ double *sumnewp, *sumnewm;
+ double *agemingood, *agemaxgood; /* Currently identical for all covariates */
+
+
+ /* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose */
+ /* a covariate has 2 modalities, should be equal to ncovcombmax *\/ */
+
+ sumnewp = vector(1,ncovcombmax);
+ sumnewm = vector(1,ncovcombmax);
+ agemingood = vector(1,ncovcombmax);
+ agemaxgood = vector(1,ncovcombmax);
+
+ for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
+ sumnewm[cptcod]=0.;
+ sumnewp[cptcod]=0.;
+ agemingood[cptcod]=0;
+ agemaxgood[cptcod]=0;
+ }
+ if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
+
+ if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
+ if(mobilav==1) mobilavrange=5; /* default */
+ else mobilavrange=mobilav;
+ for (age=bage; age<=fage; age++)
+ for (i=1; i<=nlstate;i++)
+ for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
+ mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
+ /* We keep the original values on the extreme ages bage, fage and for
+ fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
+ we use a 5 terms etc. until the borders are no more concerned.
+ */
+ for (mob=3;mob <=mobilavrange;mob=mob+2){
+ for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
+ for (i=1; i<=nlstate;i++){
+ for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
+ mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
+ for (cpt=1;cpt<=(mob-1)/2;cpt++){
+ mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
+ mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
+ }
+ mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
+ }
+ }
+ }/* end age */
+ }/* end mob */
+ }else
+ return -1;
+ for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
+ /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
+ if(invalidvarcomb[cptcod]){
+ printf("\nCombination (%d) ignored because no cases \n",cptcod);
+ continue;
+ }
+ agemingood[cptcod]=fage-(mob-1)/2;
+ for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */
+ sumnewm[cptcod]=0.;
+ for (i=1; i<=nlstate;i++){
+ sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
+ }
+ if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
+ agemingood[cptcod]=age;
+ }else{ /* bad */
+ for (i=1; i<=nlstate;i++){
+ mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
+ } /* i */
+ } /* end bad */
+ }/* age */
+ sum=0.;
+ for (i=1; i<=nlstate;i++){
+ sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod];
+ }
+ if(fabs(sum - 1.) > 1.e-3) { /* bad */
+ printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod);
+ /* for (i=1; i<=nlstate;i++){ */
+ /* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
+ /* } /\* i *\/ */
+ } /* end bad */
+ /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
+ /* From youngest, finding the oldest wrong */
+ agemaxgood[cptcod]=bage+(mob-1)/2;
+ for (age=bage+(mob-1)/2; age<=fage; age++){
+ sumnewm[cptcod]=0.;
+ for (i=1; i<=nlstate;i++){
+ sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
+ }
+ if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
+ agemaxgood[cptcod]=age;
+ }else{ /* bad */
+ for (i=1; i<=nlstate;i++){
+ mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
+ } /* i */
+ } /* end bad */
+ }/* age */
+ sum=0.;
+ for (i=1; i<=nlstate;i++){
+ sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
+ }
+ if(fabs(sum - 1.) > 1.e-3) { /* bad */
+ printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod);
+ /* for (i=1; i<=nlstate;i++){ */
+ /* mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
+ /* } /\* i *\/ */
+ } /* end bad */
+
+ for (age=bage; age<=fage; age++){
+ /* printf("%d %d ", cptcod, (int)age); */
+ sumnewp[cptcod]=0.;
+ sumnewm[cptcod]=0.;
+ for (i=1; i<=nlstate;i++){
+ sumnewp[cptcod]+=probs[(int)age][i][cptcod];
+ sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
+ /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
+ }
+ /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
+ }
+ /* printf("\n"); */
+ /* } */
+ /* brutal averaging */
+ for (i=1; i<=nlstate;i++){
+ for (age=1; age<=bage; age++){
+ mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
+ /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
+ }
+ for (age=fage; age<=AGESUP; age++){
+ mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
+ /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
+ }
+ } /* end i status */
+ for (i=nlstate+1; i<=nlstate+ndeath;i++){
+ for (age=1; age<=AGESUP; age++){
+ /*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/
+ mobaverage[(int)age][i][cptcod]=0.;
+ }
+ }
+ }/* end cptcod */
+ free_vector(sumnewm,1, ncovcombmax);
+ free_vector(sumnewp,1, ncovcombmax);
+ free_vector(agemaxgood,1, ncovcombmax);
+ free_vector(agemingood,1, ncovcombmax);
+ return 0;
+ }/* End movingaverage */
+
/************** Forecasting ******************/
-prevforecast(char fileres[], double anproj1,double mproj1,double jproj1,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anproj2,double p[], int i2){
-
- int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
- int *popage;
- double calagedate, agelim, kk1, kk2, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
+ void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
+ /* proj1, year, month, day of starting projection
+ agemin, agemax range of age
+ dateprev1 dateprev2 range of dates during which prevalence is computed
+ anproj2 year of en of projection (same day and month as proj1).
+ */
+ int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
+ double agec; /* generic age */
+ double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
double *popeffectif,*popcount;
double ***p3mat;
- double ***mobaverage;
+ /* double ***mobaverage; */
char fileresf[FILENAMELENGTH];
- agelim=AGESUP;
- calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
-
- prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
-
+ agelim=AGESUP;
+ /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
+ in each health status at the date of interview (if between dateprev1 and dateprev2).
+ We still use firstpass and lastpass as another selection.
+ */
+ /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
+ /* firstpass, lastpass, stepm, weightopt, model); */
- strcpy(fileresf,"f");
- strcat(fileresf,fileres);
+ strcpy(fileresf,"F_");
+ strcat(fileresf,fileresu);
if((ficresf=fopen(fileresf,"w"))==NULL) {
printf("Problem with forecast resultfile: %s\n", fileresf);
fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
}
- printf("Computing forecasting: result on file '%s' \n", fileresf);
- fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
+ printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
+ fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
if (cptcoveff==0) ncodemax[cptcoveff]=1;
- if (mobilav!=0) {
- mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
- fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
- printf(" Error in movingaverage mobilav=%d\n",mobilav);
- }
- }
stepsize=(int) (stepm+YEARM-1)/YEARM;
if (stepm<=12) stepsize=1;
-
- agelim=AGESUP;
-
- hstepm=1;
+ if(estepm < stepm){
+ printf ("Problem %d lower than %d\n",estepm, stepm);
+ }
+ else hstepm=estepm;
+
hstepm=hstepm/stepm;
- yp1=modf(dateintmean,&yp);
+ yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp and
+ fractional in yp1 */
anprojmean=yp;
yp2=modf((yp1*12),&yp);
mprojmean=yp;
@@ -3058,1072 +7282,2132 @@ prevforecast(char fileres[], double anpr
jprojmean=yp;
if(jprojmean==0) jprojmean=1;
if(mprojmean==0) jprojmean=1;
+
+ i1=pow(2,cptcoveff);
+ if (cptcovn < 1){i1=1;}
- fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);
+ fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);
- for(cptcov=1;cptcov<=i2;cptcov++){
- for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
- k=k+1;
- fprintf(ficresf,"\n#******");
- for(j=1;j<=cptcoveff;j++) {
- fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- }
- fprintf(ficresf,"******\n");
- fprintf(ficresf,"# StartingAge FinalAge");
- for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
-
-
- for (cpt=0; cpt<=(anproj2-anproj1);cpt++) {
- fprintf(ficresf,"\n");
- fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);
-
- for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){
- nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
- nhstepm = nhstepm/hstepm;
-
- p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- oldm=oldms;savm=savms;
- hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
+ fprintf(ficresf,"#****** Routine prevforecast **\n");
+
+/* if (h==(int)(YEARM*yearp)){ */
+ for(nres=1; nres <= nresult; nres++) /* For each resultline */
+ for(k=1; k<=i1;k++){
+ if(TKresult[nres]!= k)
+ continue;
+ if(invalidvarcomb[k]){
+ printf("\nCombination (%d) projection ignored because no cases \n",k);
+ continue;
+ }
+ fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
+ for(j=1;j<=cptcoveff;j++) {
+ fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
+ fprintf(ficresf," yearproj age");
+ for(j=1; j<=nlstate+ndeath;j++){
+ for(i=1; i<=nlstate;i++)
+ fprintf(ficresf," p%d%d",i,j);
+ fprintf(ficresf," wp.%d",j);
+ }
+ for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
+ fprintf(ficresf,"\n");
+ fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);
+ for (agec=fage; agec>=(ageminpar-1); agec--){
+ nhstepm=(int) rint((agelim-agec)*YEARM/stepm);
+ nhstepm = nhstepm/hstepm;
+ p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ oldm=oldms;savm=savms;
+ hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
- for (h=0; h<=nhstepm; h++){
- if (h==(int) (calagedate+YEARM*cpt)) {
- fprintf(ficresf,"\n %.f %.f ",anproj1+cpt,agedeb+h*hstepm/YEARM*stepm);
- }
- for(j=1; j<=nlstate+ndeath;j++) {
- kk1=0.;kk2=0;
- for(i=1; i<=nlstate;i++) {
- if (mobilav==1)
- kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
- else {
- kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
- }
-
+ for (h=0; h<=nhstepm; h++){
+ if (h*hstepm/YEARM*stepm ==yearp) {
+ fprintf(ficresf,"\n");
+ for(j=1;j<=cptcoveff;j++)
+ fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
+ }
+ for(j=1; j<=nlstate+ndeath;j++) {
+ ppij=0.;
+ for(i=1; i<=nlstate;i++) {
+ if (mobilav==1)
+ ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k];
+ else {
+ ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
}
- if (h==(int)(calagedate+12*cpt)){
- fprintf(ficresf," %.3f", kk1);
-
+ if (h*hstepm/YEARM*stepm== yearp) {
+ fprintf(ficresf," %.3f", p3mat[i][j][h]);
}
+ } /* end i */
+ if (h*hstepm/YEARM*stepm==yearp) {
+ fprintf(ficresf," %.3f", ppij);
}
- }
- free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- }
- }
- }
- }
-
- if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
-
+ }/* end j */
+ } /* end h */
+ free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ } /* end agec */
+ } /* end yearp */
+ } /* end k */
+
fclose(ficresf);
+ printf("End of Computing forecasting \n");
+ fprintf(ficlog,"End of Computing forecasting\n");
+
}
-/************** Forecasting ******************/
-populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
+
+/* /\************** Back Forecasting ******************\/ */
+/* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
+/* /\* back1, year, month, day of starting backection */
+/* agemin, agemax range of age */
+/* dateprev1 dateprev2 range of dates during which prevalence is computed */
+/* anback2 year of en of backection (same day and month as back1). */
+/* *\/ */
+/* int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */
+/* double agec; /\* generic age *\/ */
+/* double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */
+/* double *popeffectif,*popcount; */
+/* double ***p3mat; */
+/* /\* double ***mobaverage; *\/ */
+/* char fileresfb[FILENAMELENGTH]; */
+
+/* agelim=AGESUP; */
+/* /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */
+/* in each health status at the date of interview (if between dateprev1 and dateprev2). */
+/* We still use firstpass and lastpass as another selection. */
+/* *\/ */
+/* /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */
+/* /\* firstpass, lastpass, stepm, weightopt, model); *\/ */
+/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
+
+/* strcpy(fileresfb,"FB_"); */
+/* strcat(fileresfb,fileresu); */
+/* if((ficresfb=fopen(fileresfb,"w"))==NULL) { */
+/* printf("Problem with back forecast resultfile: %s\n", fileresfb); */
+/* fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */
+/* } */
+/* printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
+/* fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
+
+/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */
+
+/* /\* if (mobilav!=0) { *\/ */
+/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
+/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
+/* /\* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
+/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
+/* /\* } *\/ */
+/* /\* } *\/ */
+
+/* stepsize=(int) (stepm+YEARM-1)/YEARM; */
+/* if (stepm<=12) stepsize=1; */
+/* if(estepm < stepm){ */
+/* printf ("Problem %d lower than %d\n",estepm, stepm); */
+/* } */
+/* else hstepm=estepm; */
+
+/* hstepm=hstepm/stepm; */
+/* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp and */
+/* fractional in yp1 *\/ */
+/* anprojmean=yp; */
+/* yp2=modf((yp1*12),&yp); */
+/* mprojmean=yp; */
+/* yp1=modf((yp2*30.5),&yp); */
+/* jprojmean=yp; */
+/* if(jprojmean==0) jprojmean=1; */
+/* if(mprojmean==0) jprojmean=1; */
+
+/* i1=cptcoveff; */
+/* if (cptcovn < 1){i1=1;} */
- int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
- int *popage;
- double calagedate, agelim, kk1, kk2;
- double *popeffectif,*popcount;
- double ***p3mat,***tabpop,***tabpopprev;
- double ***mobaverage;
- char filerespop[FILENAMELENGTH];
+/* fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); */
+
+/* fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */
+
+/* /\* if (h==(int)(YEARM*yearp)){ *\/ */
+/* for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */
+/* for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
+/* k=k+1; */
+/* fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */
+/* for(j=1;j<=cptcoveff;j++) { */
+/* fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
+/* } */
+/* fprintf(ficresfb," yearbproj age"); */
+/* for(j=1; j<=nlstate+ndeath;j++){ */
+/* for(i=1; i<=nlstate;i++) */
+/* fprintf(ficresfb," p%d%d",i,j); */
+/* fprintf(ficresfb," p.%d",j); */
+/* } */
+/* for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) { */
+/* /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { *\/ */
+/* fprintf(ficresfb,"\n"); */
+/* fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */
+/* for (agec=fage; agec>=(ageminpar-1); agec--){ */
+/* nhstepm=(int) rint((agelim-agec)*YEARM/stepm); */
+/* nhstepm = nhstepm/hstepm; */
+/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
+/* oldm=oldms;savm=savms; */
+/* hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k); */
+/* for (h=0; h<=nhstepm; h++){ */
+/* if (h*hstepm/YEARM*stepm ==yearp) { */
+/* fprintf(ficresfb,"\n"); */
+/* for(j=1;j<=cptcoveff;j++) */
+/* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
+/* fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */
+/* } */
+/* for(j=1; j<=nlstate+ndeath;j++) { */
+/* ppij=0.; */
+/* for(i=1; i<=nlstate;i++) { */
+/* if (mobilav==1) */
+/* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */
+/* else { */
+/* ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */
+/* } */
+/* if (h*hstepm/YEARM*stepm== yearp) { */
+/* fprintf(ficresfb," %.3f", p3mat[i][j][h]); */
+/* } */
+/* } /\* end i *\/ */
+/* if (h*hstepm/YEARM*stepm==yearp) { */
+/* fprintf(ficresfb," %.3f", ppij); */
+/* } */
+/* }/\* end j *\/ */
+/* } /\* end h *\/ */
+/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
+/* } /\* end agec *\/ */
+/* } /\* end yearp *\/ */
+/* } /\* end cptcod *\/ */
+/* } /\* end cptcov *\/ */
+
+/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
+
+/* fclose(ficresfb); */
+/* printf("End of Computing Back forecasting \n"); */
+/* fprintf(ficlog,"End of Computing Back forecasting\n"); */
+
+/* } */
- tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- agelim=AGESUP;
- calagedate=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
+/************** Forecasting *****not tested NB*************/
+/* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
- prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
+/* int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
+/* int *popage; */
+/* double calagedatem, agelim, kk1, kk2; */
+/* double *popeffectif,*popcount; */
+/* double ***p3mat,***tabpop,***tabpopprev; */
+/* /\* double ***mobaverage; *\/ */
+/* char filerespop[FILENAMELENGTH]; */
+
+/* tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
+/* tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
+/* agelim=AGESUP; */
+/* calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
+
+/* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
+
+
+/* strcpy(filerespop,"POP_"); */
+/* strcat(filerespop,fileresu); */
+/* if((ficrespop=fopen(filerespop,"w"))==NULL) { */
+/* printf("Problem with forecast resultfile: %s\n", filerespop); */
+/* fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
+/* } */
+/* printf("Computing forecasting: result on file '%s' \n", filerespop); */
+/* fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
+
+/* if (cptcoveff==0) ncodemax[cptcoveff]=1; */
+
+/* /\* if (mobilav!=0) { *\/ */
+/* /\* mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
+/* /\* if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
+/* /\* fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
+/* /\* printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
+/* /\* } *\/ */
+/* /\* } *\/ */
+
+/* stepsize=(int) (stepm+YEARM-1)/YEARM; */
+/* if (stepm<=12) stepsize=1; */
+/* agelim=AGESUP; */
- strcpy(filerespop,"pop");
- strcat(filerespop,fileres);
- if((ficrespop=fopen(filerespop,"w"))==NULL) {
- printf("Problem with forecast resultfile: %s\n", filerespop);
- fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
+/* hstepm=1; */
+/* hstepm=hstepm/stepm; */
+
+/* if (popforecast==1) { */
+/* if((ficpop=fopen(popfile,"r"))==NULL) { */
+/* printf("Problem with population file : %s\n",popfile);exit(0); */
+/* fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
+/* } */
+/* popage=ivector(0,AGESUP); */
+/* popeffectif=vector(0,AGESUP); */
+/* popcount=vector(0,AGESUP); */
+
+/* i=1; */
+/* while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
+
+/* imx=i; */
+/* for (i=1; i=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */
+/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */
+/* nhstepm = nhstepm/hstepm; */
+
+/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
+/* oldm=oldms;savm=savms; */
+/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */
+
+/* for (h=0; h<=nhstepm; h++){ */
+/* if (h==(int) (calagedatem+YEARM*cpt)) { */
+/* fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
+/* } */
+/* for(j=1; j<=nlstate+ndeath;j++) { */
+/* kk1=0.;kk2=0; */
+/* for(i=1; i<=nlstate;i++) { */
+/* if (mobilav==1) */
+/* kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
+/* else { */
+/* kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
+/* } */
+/* } */
+/* if (h==(int)(calagedatem+12*cpt)){ */
+/* tabpop[(int)(agedeb)][j][cptcod]=kk1; */
+/* /\*fprintf(ficrespop," %.3f", kk1); */
+/* if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
+/* } */
+/* } */
+/* for(i=1; i<=nlstate;i++){ */
+/* kk1=0.; */
+/* for(j=1; j<=nlstate;j++){ */
+/* kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; */
+/* } */
+/* tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
+/* } */
+
+/* if (h==(int)(calagedatem+12*cpt)) */
+/* for(j=1; j<=nlstate;j++) */
+/* fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
+/* } */
+/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
+/* } */
+/* } */
+
+/* /\******\/ */
+
+/* for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { */
+/* fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt); */
+/* for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ */
+/* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); */
+/* nhstepm = nhstepm/hstepm; */
+
+/* p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
+/* oldm=oldms;savm=savms; */
+/* hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */
+/* for (h=0; h<=nhstepm; h++){ */
+/* if (h==(int) (calagedatem+YEARM*cpt)) { */
+/* fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
+/* } */
+/* for(j=1; j<=nlstate+ndeath;j++) { */
+/* kk1=0.;kk2=0; */
+/* for(i=1; i<=nlstate;i++) { */
+/* kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod]; */
+/* } */
+/* if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1); */
+/* } */
+/* } */
+/* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
+/* } */
+/* } */
+/* } */
+/* } */
+
+/* /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
+
+/* if (popforecast==1) { */
+/* free_ivector(popage,0,AGESUP); */
+/* free_vector(popeffectif,0,AGESUP); */
+/* free_vector(popcount,0,AGESUP); */
+/* } */
+/* free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
+/* free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
+/* fclose(ficrespop); */
+/* } /\* End of popforecast *\/ */
+
+int fileappend(FILE *fichier, char *optionfich)
+{
+ if((fichier=fopen(optionfich,"a"))==NULL) {
+ printf("Problem with file: %s\n", optionfich);
+ fprintf(ficlog,"Problem with file: %s\n", optionfich);
+ return (0);
}
- printf("Computing forecasting: result on file '%s' \n", filerespop);
- fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
+ fflush(fichier);
+ return (1);
+}
- if (cptcoveff==0) ncodemax[cptcoveff]=1;
- if (mobilav!=0) {
- mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
- fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
- printf(" Error in movingaverage mobilav=%d\n",mobilav);
+/**************** function prwizard **********************/
+void prwizard(int ncovmodel, int nlstate, int ndeath, char model[], FILE *ficparo)
+{
+
+ /* Wizard to print covariance matrix template */
+
+ char ca[32], cb[32];
+ int i,j, k, li, lj, lk, ll, jj, npar, itimes;
+ int numlinepar;
+
+ printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
+ fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
+ for(i=1; i <=nlstate; i++){
+ jj=0;
+ for(j=1; j <=nlstate+ndeath; j++){
+ if(j==i) continue;
+ jj++;
+ /*ca[0]= k+'a'-1;ca[1]='\0';*/
+ printf("%1d%1d",i,j);
+ fprintf(ficparo,"%1d%1d",i,j);
+ for(k=1; k<=ncovmodel;k++){
+ /* printf(" %lf",param[i][j][k]); */
+ /* fprintf(ficparo," %lf",param[i][j][k]); */
+ printf(" 0.");
+ fprintf(ficparo," 0.");
+ }
+ printf("\n");
+ fprintf(ficparo,"\n");
+ }
+ }
+ printf("# Scales (for hessian or gradient estimation)\n");
+ fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
+ npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
+ for(i=1; i <=nlstate; i++){
+ jj=0;
+ for(j=1; j <=nlstate+ndeath; j++){
+ if(j==i) continue;
+ jj++;
+ fprintf(ficparo,"%1d%1d",i,j);
+ printf("%1d%1d",i,j);
+ fflush(stdout);
+ for(k=1; k<=ncovmodel;k++){
+ /* printf(" %le",delti3[i][j][k]); */
+ /* fprintf(ficparo," %le",delti3[i][j][k]); */
+ printf(" 0.");
+ fprintf(ficparo," 0.");
+ }
+ numlinepar++;
+ printf("\n");
+ fprintf(ficparo,"\n");
}
}
+ printf("# Covariance matrix\n");
+/* # 121 Var(a12)\n\ */
+/* # 122 Cov(b12,a12) Var(b12)\n\ */
+/* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
+/* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
+/* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
+/* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
+/* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
+/* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
+ fflush(stdout);
+ fprintf(ficparo,"# Covariance matrix\n");
+ /* # 121 Var(a12)\n\ */
+ /* # 122 Cov(b12,a12) Var(b12)\n\ */
+ /* # ...\n\ */
+ /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
+
+ for(itimes=1;itimes<=2;itimes++){
+ jj=0;
+ for(i=1; i <=nlstate; i++){
+ for(j=1; j <=nlstate+ndeath; j++){
+ if(j==i) continue;
+ for(k=1; k<=ncovmodel;k++){
+ jj++;
+ ca[0]= k+'a'-1;ca[1]='\0';
+ if(itimes==1){
+ printf("#%1d%1d%d",i,j,k);
+ fprintf(ficparo,"#%1d%1d%d",i,j,k);
+ }else{
+ printf("%1d%1d%d",i,j,k);
+ fprintf(ficparo,"%1d%1d%d",i,j,k);
+ /* printf(" %.5le",matcov[i][j]); */
+ }
+ ll=0;
+ for(li=1;li <=nlstate; li++){
+ for(lj=1;lj <=nlstate+ndeath; lj++){
+ if(lj==li) continue;
+ for(lk=1;lk<=ncovmodel;lk++){
+ ll++;
+ if(ll<=jj){
+ cb[0]= lk +'a'-1;cb[1]='\0';
+ if(ll0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
- for(cptcov=1;cptcov<=i2;cptcov++){
- for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
- k=k+1;
- fprintf(ficrespop,"\n#******");
- for(j=1;j<=cptcoveff;j++) {
- fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- }
- fprintf(ficrespop,"******\n");
- fprintf(ficrespop,"# Age");
- for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
- if (popforecast==1) fprintf(ficrespop," [Population]");
+ for (i=1;i<=imx ; i++)
+ {
+ if (cens[i] == 1 && wav[i]>1)
+ A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
- for (cpt=0; cpt<=0;cpt++) {
- fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);
-
- for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){
- nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
- nhstepm = nhstepm/hstepm;
-
- p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- oldm=oldms;savm=savms;
- hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
-
- for (h=0; h<=nhstepm; h++){
- if (h==(int) (calagedate+YEARM*cpt)) {
- fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
- }
- for(j=1; j<=nlstate+ndeath;j++) {
- kk1=0.;kk2=0;
- for(i=1; i<=nlstate;i++) {
- if (mobilav==1)
- kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
- else {
- kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
- }
- }
- if (h==(int)(calagedate+12*cpt)){
- tabpop[(int)(agedeb)][j][cptcod]=kk1;
- /*fprintf(ficrespop," %.3f", kk1);
- if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
- }
- }
- for(i=1; i<=nlstate;i++){
- kk1=0.;
- for(j=1; j<=nlstate;j++){
- kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];
- }
- tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedate+12*cpt)*hstepm/YEARM*stepm-1)];
- }
-
- if (h==(int)(calagedate+12*cpt)) for(j=1; j<=nlstate;j++)
- fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
- }
- free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- }
+ if (cens[i] == 0 && wav[i]>1)
+ A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
+ +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);
+
+ /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
+ if (wav[i] > 1 ) { /* ??? */
+ L=L+A*weight[i];
+ /* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
}
+ }
+
+ /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
- /******/
+ return -2*L*num/sump;
+}
- for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {
- fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);
- for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(ageminpar-((int)calagedate %12)/12.); agedeb--){
- nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
- nhstepm = nhstepm/hstepm;
-
- p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- oldm=oldms;savm=savms;
- hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
- for (h=0; h<=nhstepm; h++){
- if (h==(int) (calagedate+YEARM*cpt)) {
- fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
- }
- for(j=1; j<=nlstate+ndeath;j++) {
- kk1=0.;kk2=0;
- for(i=1; i<=nlstate;i++) {
- kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];
- }
- if (h==(int)(calagedate+12*cpt)) fprintf(ficresf," %15.2f", kk1);
- }
- }
- free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
- }
- }
- }
+#ifdef GSL
+/******************* Gompertz_f Likelihood ******************************/
+double gompertz_f(const gsl_vector *v, void *params)
+{
+ double A,B,LL=0.0,sump=0.,num=0.;
+ double *x= (double *) v->data;
+ int i,n=0; /* n is the size of the sample */
+
+ for (i=0;i<=imx-1 ; i++) {
+ sump=sump+weight[i];
+ /* sump=sump+1;*/
+ num=num+1;
}
- if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
+
+ /* for (i=0; i<=imx; i++)
+ if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
+ printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
+ for (i=1;i<=imx ; i++)
+ {
+ if (cens[i] == 1 && wav[i]>1)
+ A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
+
+ if (cens[i] == 0 && wav[i]>1)
+ A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
+ +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);
+
+ /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
+ if (wav[i] > 1 ) { /* ??? */
+ LL=LL+A*weight[i];
+ /* printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
+ }
+ }
- if (popforecast==1) {
- free_ivector(popage,0,AGESUP);
- free_vector(popeffectif,0,AGESUP);
- free_vector(popcount,0,AGESUP);
- }
- free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- fclose(ficrespop);
+ /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
+ printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
+
+ return -2*LL*num/sump;
}
+#endif
-/***********************************************/
-/**************** Main Program *****************/
-/***********************************************/
+/******************* Printing html file ***********/
+void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
+ int lastpass, int stepm, int weightopt, char model[],\
+ int imx, double p[],double **matcov,double agemortsup){
+ int i,k;
-int main(int argc, char *argv[])
-{
- int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
- int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
- double agedeb, agefin,hf;
- double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
+ fprintf(fichtm,"Result files
\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):
");
+ fprintf(fichtm," mu(age) =%lf*exp(%lf*(age-%d)) per year
",p[1],p[2],agegomp);
+ for (i=1;i<=2;i++)
+ fprintf(fichtm," p[%d] = %lf [%f ; %f]
\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
+ fprintf(fichtm,"
");
+ fprintf(fichtm,"
");
- double fret;
- double **xi,tmp,delta;
+fprintf(fichtm,"Life table
\n
");
- double dum; /* Dummy variable */
- double ***p3mat;
- double ***mobaverage;
- int *indx;
- char line[MAXLINE], linepar[MAXLINE];
- char path[80],pathc[80],pathcd[80],pathtot[80],model[80];
- int firstobs=1, lastobs=10;
- int sdeb, sfin; /* Status at beginning and end */
- int c, h , cpt,l;
- int ju,jl, mi;
- int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
- int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab;
- int mobilav=0,popforecast=0;
- int hstepm, nhstepm;
- double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,jpyram, mpyram,anpyram,jpyram1, mpyram1,anpyram1, calagedate;
+ fprintf(fichtm,"\nAge lx qx d(x,x+1) Lx Tx e
");
- double bage, fage, age, agelim, agebase;
- double ftolpl=FTOL;
- double **prlim;
- double *severity;
- double ***param; /* Matrix of parameters */
- double *p;
- double **matcov; /* Matrix of covariance */
- double ***delti3; /* Scale */
- double *delti; /* Scale */
- double ***eij, ***vareij;
- double **varpl; /* Variances of prevalence limits by age */
- double *epj, vepp;
- double kk1, kk2;
- double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2;
+ for (k=agegomp;k<(agemortsup-2);k++)
+ fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf
\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
- char *alph[]={"a","a","b","c","d","e"}, str[4];
-
-
- char z[1]="c", occ;
-#include
-#include
- char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
- /* long total_usecs;
- struct timeval start_time, end_time;
-
- gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
- getcwd(pathcd, size);
+ fflush(fichtm);
+}
- printf("\n%s",version);
- if(argc <=1){
- printf("\nEnter the parameter file name: ");
- scanf("%s",pathtot);
- }
- else{
- strcpy(pathtot,argv[1]);
- }
- /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
- /*cygwin_split_path(pathtot,path,optionfile);
- printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
- /* cutv(path,optionfile,pathtot,'\\');*/
+/******************* Gnuplot file **************/
+void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
- split(pathtot,path,optionfile,optionfilext,optionfilefiname);
- printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
- chdir(path);
- replace(pathc,path);
+ char dirfileres[132],optfileres[132];
- /*-------- arguments in the command line --------*/
+ int ng;
- /* Log file */
- strcat(filelog, optionfilefiname);
- strcat(filelog,".log"); /* */
- if((ficlog=fopen(filelog,"w"))==NULL) {
- printf("Problem with logfile %s\n",filelog);
- goto end;
- }
- fprintf(ficlog,"Log filename:%s\n",filelog);
- fprintf(ficlog,"\n%s",version);
- fprintf(ficlog,"\nEnter the parameter file name: ");
- fprintf(ficlog,"pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
- fflush(ficlog);
- /* */
- strcpy(fileres,"r");
- strcat(fileres, optionfilefiname);
- strcat(fileres,".txt"); /* Other files have txt extension */
+ /*#ifdef windows */
+ fprintf(ficgp,"cd \"%s\" \n",pathc);
+ /*#endif */
- /*---------arguments file --------*/
- if((ficpar=fopen(optionfile,"r"))==NULL) {
- printf("Problem with optionfile %s\n",optionfile);
- fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
- goto end;
- }
+ strcpy(dirfileres,optionfilefiname);
+ strcpy(optfileres,"vpl");
+ fprintf(ficgp,"set out \"graphmort.svg\"\n ");
+ fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n ");
+ fprintf(ficgp, "set ter svg size 640, 480\n set log y\n");
+ /* fprintf(ficgp, "set size 0.65,0.65\n"); */
+ fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
- strcpy(filereso,"o");
- strcat(filereso,fileres);
- if((ficparo=fopen(filereso,"w"))==NULL) {
- printf("Problem with Output resultfile: %s\n", filereso);
- fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
- goto end;
- }
+}
- /* Reads comments: lines beginning with '#' */
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
+int readdata(char datafile[], int firstobs, int lastobs, int *imax)
+{
- fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
- printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
- fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
+ /*-------- data file ----------*/
+ FILE *fic;
+ char dummy[]=" ";
+ int i=0, j=0, n=0, iv=0, v;
+ int lstra;
+ int linei, month, year,iout;
+ char line[MAXLINE], linetmp[MAXLINE];
+ char stra[MAXLINE], strb[MAXLINE];
+ char *stratrunc;
+
+ DummyV=ivector(1,NCOVMAX); /* 1 to 3 */
+ FixedV=ivector(1,NCOVMAX); /* 1 to 3 */
+
+ for(v=1; v <=ncovcol;v++){
+ DummyV[v]=0;
+ FixedV[v]=0;
+ }
+ for(v=ncovcol+1; v <=ncovcol+nqv;v++){
+ DummyV[v]=1;
+ FixedV[v]=0;
+ }
+ for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){
+ DummyV[v]=0;
+ FixedV[v]=1;
+ }
+ for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){
+ DummyV[v]=1;
+ FixedV[v]=1;
+ }
+ for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){
+ printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
+ fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
}
- ungetc(c,ficpar);
-
-
- covar=matrix(0,NCOVMAX,1,n);
- cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
- if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
- ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
- nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
-
- /* Read guess parameters */
- /* Reads comments: lines beginning with '#' */
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
+ if((fic=fopen(datafile,"r"))==NULL) {
+ printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
+ fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
}
- ungetc(c,ficpar);
-
- param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
- for(i=1; i <=nlstate; i++)
- for(j=1; j <=nlstate+ndeath-1; j++){
- fscanf(ficpar,"%1d%1d",&i1,&j1);
- fprintf(ficparo,"%1d%1d",i1,j1);
- if(mle==1)
- printf("%1d%1d",i,j);
- fprintf(ficlog,"%1d%1d",i,j);
- for(k=1; k<=ncovmodel;k++){
- fscanf(ficpar," %lf",¶m[i][j][k]);
- if(mle==1){
- printf(" %lf",param[i][j][k]);
- fprintf(ficlog," %lf",param[i][j][k]);
+
+ i=1;
+ linei=0;
+ while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
+ linei=linei+1;
+ for(j=strlen(line); j>=0;j--){ /* Untabifies line */
+ if(line[j] == '\t')
+ line[j] = ' ';
+ }
+ for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
+ ;
+ };
+ line[j+1]=0; /* Trims blanks at end of line */
+ if(line[0]=='#'){
+ fprintf(ficlog,"Comment line\n%s\n",line);
+ printf("Comment line\n%s\n",line);
+ continue;
+ }
+ trimbb(linetmp,line); /* Trims multiple blanks in line */
+ strcpy(line, linetmp);
+
+ /* Loops on waves */
+ for (j=maxwav;j>=1;j--){
+ for (iv=nqtv;iv>=1;iv--){ /* Loop on time varying quantitative variables */
+ cutv(stra, strb, line, ' ');
+ if(strb[0]=='.') { /* Missing value */
+ lval=-1;
+ cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
+ cotvar[j][ntv+iv][i]=-1; /* For performance reasons */
+ if(isalpha(strb[1])) { /* .m or .d Really Missing value */
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value. Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
+ return 1;
+ }
+ }else{
+ errno=0;
+ /* what_kind_of_number(strb); */
+ dval=strtod(strb,&endptr);
+ /* if( strb[0]=='\0' || (*endptr != '\0')){ */
+ /* if(strb != endptr && *endptr == '\0') */
+ /* dval=dlval; */
+ /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
+ return 1;
+ }
+ cotqvar[j][iv][i]=dval;
+ cotvar[j][ntv+iv][i]=dval;
+ }
+ strcpy(line,stra);
+ }/* end loop ntqv */
+
+ for (iv=ntv;iv>=1;iv--){ /* Loop on time varying dummies */
+ cutv(stra, strb, line, ' ');
+ if(strb[0]=='.') { /* Missing value */
+ lval=-1;
+ }else{
+ errno=0;
+ lval=strtol(strb,&endptr,10);
+ /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
+ return 1;
+ }
+ }
+ if(lval <-1 || lval >1){
+ printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
+ Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
+ for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
+ For example, for multinomial values like 1, 2 and 3,\n \
+ build V1=0 V2=0 for the reference value (1),\n \
+ V1=1 V2=0 for (2) \n \
+ and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
+ output of IMaCh is often meaningless.\n \
+ Exiting.\n",lval,linei, i,line,j);
+ fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
+ Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
+ for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
+ For example, for multinomial values like 1, 2 and 3,\n \
+ build V1=0 V2=0 for the reference value (1),\n \
+ V1=1 V2=0 for (2) \n \
+ and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
+ output of IMaCh is often meaningless.\n \
+ Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
+ return 1;
+ }
+ cotvar[j][iv][i]=(double)(lval);
+ strcpy(line,stra);
+ }/* end loop ntv */
+
+ /* Statuses at wave */
+ cutv(stra, strb, line, ' ');
+ if(strb[0]=='.') { /* Missing value */
+ lval=-1;
+ }else{
+ errno=0;
+ lval=strtol(strb,&endptr,10);
+ /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
+ return 1;
}
- else
- fprintf(ficlog," %lf",param[i][j][k]);
- fprintf(ficparo," %lf",param[i][j][k]);
}
- fscanf(ficpar,"\n");
- if(mle==1)
- printf("\n");
- fprintf(ficlog,"\n");
- fprintf(ficparo,"\n");
+
+ s[j][i]=lval;
+
+ /* Date of Interview */
+ strcpy(line,stra);
+ cutv(stra, strb,line,' ');
+ if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
+ }
+ else if( (iout=sscanf(strb,"%s.",dummy)) != 0){
+ month=99;
+ year=9999;
+ }else{
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d. Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
+ return 1;
+ }
+ anint[j][i]= (double) year;
+ mint[j][i]= (double)month;
+ strcpy(line,stra);
+ } /* End loop on waves */
+
+ /* Date of death */
+ cutv(stra, strb,line,' ');
+ if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
+ }
+ else if( (iout=sscanf(strb,"%s.",dummy)) != 0){
+ month=99;
+ year=9999;
+ }else{
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog);
+ return 1;
+ }
+ andc[i]=(double) year;
+ moisdc[i]=(double) month;
+ strcpy(line,stra);
+
+ /* Date of birth */
+ cutv(stra, strb,line,' ');
+ if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
+ }
+ else if( (iout=sscanf(strb,"%s.", dummy)) != 0){
+ month=99;
+ year=9999;
+ }else{
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .). Exiting.\n",strb, linei,i,line);fflush(ficlog);
+ return 1;
+ }
+ if (year==9999) {
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
+ return 1;
+
}
-
- npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
-
- p=param[1][1];
-
- /* Reads comments: lines beginning with '#' */
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
-
- delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
- delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
- for(i=1; i <=nlstate; i++){
- for(j=1; j <=nlstate+ndeath-1; j++){
- fscanf(ficpar,"%1d%1d",&i1,&j1);
- printf("%1d%1d",i,j);
- fprintf(ficparo,"%1d%1d",i1,j1);
- for(k=1; k<=ncovmodel;k++){
- fscanf(ficpar,"%le",&delti3[i][j][k]);
- printf(" %le",delti3[i][j][k]);
- fprintf(ficparo," %le",delti3[i][j][k]);
+ annais[i]=(double)(year);
+ moisnais[i]=(double)(month);
+ strcpy(line,stra);
+
+ /* Sample weight */
+ cutv(stra, strb,line,' ');
+ errno=0;
+ dval=strtod(strb,&endptr);
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei);
+ fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight. Exiting.\n",dval, i,line,linei);
+ fflush(ficlog);
+ return 1;
+ }
+ weight[i]=dval;
+ strcpy(line,stra);
+
+ for (iv=nqv;iv>=1;iv--){ /* Loop on fixed quantitative variables */
+ cutv(stra, strb, line, ' ');
+ if(strb[0]=='.') { /* Missing value */
+ lval=-1;
+ }else{
+ errno=0;
+ /* what_kind_of_number(strb); */
+ dval=strtod(strb,&endptr);
+ /* if(strb != endptr && *endptr == '\0') */
+ /* dval=dlval; */
+ /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
+ fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
+ return 1;
+ }
+ coqvar[iv][i]=dval;
+ covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */
}
- fscanf(ficpar,"\n");
- printf("\n");
- fprintf(ficparo,"\n");
+ strcpy(line,stra);
+ }/* end loop nqv */
+
+ /* Covariate values */
+ for (j=ncovcol;j>=1;j--){
+ cutv(stra, strb,line,' ');
+ if(strb[0]=='.') { /* Missing covariate value */
+ lval=-1;
+ }else{
+ errno=0;
+ lval=strtol(strb,&endptr,10);
+ if( strb[0]=='\0' || (*endptr != '\0')){
+ printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);
+ fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative). Exiting.\n",lval, linei,i, line);fflush(ficlog);
+ return 1;
+ }
+ }
+ if(lval <-1 || lval >1){
+ printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
+ Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
+ for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
+ For example, for multinomial values like 1, 2 and 3,\n \
+ build V1=0 V2=0 for the reference value (1),\n \
+ V1=1 V2=0 for (2) \n \
+ and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
+ output of IMaCh is often meaningless.\n \
+ Exiting.\n",lval,linei, i,line,j);
+ fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
+ Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
+ for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
+ For example, for multinomial values like 1, 2 and 3,\n \
+ build V1=0 V2=0 for the reference value (1),\n \
+ V1=1 V2=0 for (2) \n \
+ and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
+ output of IMaCh is often meaningless.\n \
+ Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
+ return 1;
+ }
+ covar[j][i]=(double)(lval);
+ strcpy(line,stra);
+ }
+ lstra=strlen(stra);
+
+ if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
+ stratrunc = &(stra[lstra-9]);
+ num[i]=atol(stratrunc);
}
- }
- delti=delti3[1][1];
+ else
+ num[i]=atol(stra);
+ /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
+ printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
+
+ i=i+1;
+ } /* End loop reading data */
- /* Reads comments: lines beginning with '#' */
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
+ *imax=i-1; /* Number of individuals */
+ fclose(fic);
- matcov=matrix(1,npar,1,npar);
- for(i=1; i <=npar; i++){
- fscanf(ficpar,"%s",&str);
- if(mle==1)
- printf("%s",str);
- fprintf(ficlog,"%s",str);
- fprintf(ficparo,"%s",str);
- for(j=1; j <=i; j++){
- fscanf(ficpar," %le",&matcov[i][j]);
- if(mle==1){
- printf(" %.5le",matcov[i][j]);
- fprintf(ficlog," %.5le",matcov[i][j]);
- }
- else
- fprintf(ficlog," %.5le",matcov[i][j]);
- fprintf(ficparo," %.5le",matcov[i][j]);
- }
- fscanf(ficpar,"\n");
- if(mle==1)
- printf("\n");
- fprintf(ficlog,"\n");
- fprintf(ficparo,"\n");
- }
- for(i=1; i <=npar; i++)
- for(j=i+1;j<=npar;j++)
- matcov[i][j]=matcov[j][i];
-
- if(mle==1)
- printf("\n");
- fprintf(ficlog,"\n");
+ return (0);
+ /* endread: */
+ printf("Exiting readdata: ");
+ fclose(fic);
+ return (1);
+}
+void removefirstspace(char **stri){/*, char stro[]) {*/
+ char *p1 = *stri, *p2 = *stri;
+ while (*p2 == ' ')
+ p2++;
+ /* while ((*p1++ = *p2++) !=0) */
+ /* ; */
+ /* do */
+ /* while (*p2 == ' ') */
+ /* p2++; */
+ /* while (*p1++ == *p2++); */
+ *stri=p2;
+}
- /*-------- Rewriting paramater file ----------*/
- strcpy(rfileres,"r"); /* "Rparameterfile */
- strcat(rfileres,optionfilefiname); /* Parameter file first name*/
- strcat(rfileres,"."); /* */
- strcat(rfileres,optionfilext); /* Other files have txt extension */
- if((ficres =fopen(rfileres,"w"))==NULL) {
- printf("Problem writing new parameter file: %s\n", fileres);goto end;
- fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
- }
- fprintf(ficres,"#%s\n",version);
+int decoderesult ( char resultline[], int nres)
+/**< This routine decode one result line and returns the combination # of dummy covariates only **/
+{
+ int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
+ char resultsav[MAXLINE];
+ int resultmodel[MAXLINE];
+ int modelresult[MAXLINE];
+ char stra[80], strb[80], strc[80], strd[80],stre[80];
+
+ removefirstspace(&resultline);
+ printf("decoderesult:%s\n",resultline);
+
+ if (strstr(resultline,"v") !=0){
+ printf("Error. 'v' must be in upper case 'V' result: %s ",resultline);
+ fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog);
+ return 1;
+ }
+ trimbb(resultsav, resultline);
+ if (strlen(resultsav) >1){
+ j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */
+ }
+ if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
+ printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
+ fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
+ }
+ for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */
+ if(nbocc(resultsav,'=') >1){
+ cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' '
+ resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */
+ cutl(strc,strd,strb,'='); /* strb:V4=1 strc=1 strd=V4 */
+ }else
+ cutl(strc,strd,resultsav,'=');
+ Tvalsel[k]=atof(strc); /* 1 */
- /*-------- data file ----------*/
- if((fic=fopen(datafile,"r"))==NULL) {
- printf("Problem with datafile: %s\n", datafile);goto end;
- fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
+ cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
+ Tvarsel[k]=atoi(strc);
+ /* Typevarsel[k]=1; /\* 1 for age product *\/ */
+ /* cptcovsel++; */
+ if (nbocc(stra,'=') >0)
+ strcpy(resultsav,stra); /* and analyzes it */
+ }
+ /* Checking for missing or useless values in comparison of current model needs */
+ for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+ if(Typevar[k1]==0){ /* Single covariate in model */
+ match=0;
+ for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */
+ if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5 */
+ modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2 modelresult[3]=3 modelresult[6]=4 modelresult[9]=5 */
+ match=1;
+ break;
+ }
+ }
+ if(match == 0){
+ printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
+ }
+ }
}
-
- n= lastobs;
- severity = vector(1,maxwav);
- outcome=imatrix(1,maxwav+1,1,n);
- num=ivector(1,n);
- moisnais=vector(1,n);
- annais=vector(1,n);
- moisdc=vector(1,n);
- andc=vector(1,n);
- agedc=vector(1,n);
- cod=ivector(1,n);
- weight=vector(1,n);
- for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
- mint=matrix(1,maxwav,1,n);
- anint=matrix(1,maxwav,1,n);
- s=imatrix(1,maxwav+1,1,n);
- tab=ivector(1,NCOVMAX);
- ncodemax=ivector(1,8);
-
- i=1;
- while (fgets(line, MAXLINE, fic) != NULL) {
- if ((i >= firstobs) && (i <=lastobs)) {
-
- for (j=maxwav;j>=1;j--){
- cutv(stra, strb,line,' '); s[j][i]=atoi(strb);
- strcpy(line,stra);
- cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
- cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
+ /* Checking for missing or useless values in comparison of current model needs */
+ for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */
+ match=0;
+ for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+ if(Typevar[k1]==0){ /* Single */
+ if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4 */
+ resultmodel[k1]=k2; /* resultmodel[2]=1 resultmodel[1]=2 resultmodel[3]=3 resultmodel[6]=4 resultmodel[9]=5 */
+ ++match;
+ }
}
-
- cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
- cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
-
- cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
- cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
-
- cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
- for (j=ncovcol;j>=1;j--){
- cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
- }
- num[i]=atol(stra);
-
- /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
- printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
-
- i=i+1;
+ }
+ if(match == 0){
+ printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
+ }else if(match > 1){
+ printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model);
+ }
+ }
+
+ /* We need to deduce which combination number is chosen and save quantitative values */
+ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+ /* result line V4=1 V5=25.1 V3=0 V2=8 V1=1 */
+ /* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/
+ /* result line V4=1 V5=24.1 V3=1 V2=8 V1=0 */
+ /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
+ /* 1 0 0 0 */
+ /* 2 1 0 0 */
+ /* 3 0 1 0 */
+ /* 4 1 1 0 */ /* V4=1, V3=1, V1=0 */
+ /* 5 0 0 1 */
+ /* 6 1 0 1 */ /* V4=1, V3=0, V1=1 */
+ /* 7 0 1 1 */
+ /* 8 1 1 1 */
+ /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
+ /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
+ /* V5*age V5 known which value for nres? */
+ /* Tqinvresult[2]=8 Tqinvresult[1]=25.1 */
+ for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */
+ if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */
+ k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */
+ k2=(int)Tvarsel[k3]; /* Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
+ k+=Tvalsel[k3]*pow(2,k4); /* Tvalsel[1]=1 */
+ Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1) Tresult[nres][2]=0(V3=0) */
+ Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
+ Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
+ printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4);
+ k4++;;
+ } else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */
+ k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */
+ k2q=(int)Tvarsel[k3q]; /* Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
+ Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
+ Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
+ Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
+ printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
+ k4q++;;
}
}
- /* printf("ii=%d", ij);
- scanf("%d",i);*/
- imx=i-1; /* Number of individuals */
-
- /* for (i=1; i<=imx; i++){
- if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
- if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
- if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
- }*/
- /* for (i=1; i<=imx; i++){
- if (s[4][i]==9) s[4][i]=-1;
- printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
-
- /* Calculation of the number of parameter from char model*/
- Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
- Tprod=ivector(1,15);
- Tvaraff=ivector(1,15);
- Tvard=imatrix(1,15,1,2);
- Tage=ivector(1,15);
-
+ TKresult[nres]=++k; /* Combination for the nresult and the model */
+ return (0);
+}
+
+int decodemodel( char model[], int lastobs)
+ /**< This routine decodes the model and returns:
+ * Model V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
+ * - nagesqr = 1 if age*age in the model, otherwise 0.
+ * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
+ * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
+ * - cptcovage number of covariates with age*products =2
+ * - cptcovs number of simple covariates
+ * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
+ * which is a new column after the 9 (ncovcol) variables.
+ * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
+ * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
+ * Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
+ * - Tvard[k] p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
+ */
+{
+ int i, j, k, ks, v;
+ int j1, k1, k2, k3, k4;
+ char modelsav[80];
+ char stra[80], strb[80], strc[80], strd[80],stre[80];
+ char *strpt;
+
+ /*removespace(model);*/
if (strlen(model) >1){ /* If there is at least 1 covariate */
- j=0, j1=0, k1=1, k2=1;
- j=nbocc(model,'+'); /* j=Number of '+' */
- j1=nbocc(model,'*'); /* j1=Number of '*' */
- cptcovn=j+1;
- cptcovprod=j1; /*Number of products */
-
- strcpy(modelsav,model);
- if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
- printf("Error. Non available option model=%s ",model);
- fprintf(ficlog,"Error. Non available option model=%s ",model);
- goto end;
+ j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
+ if (strstr(model,"AGE") !=0){
+ printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
+ fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
+ return 1;
+ }
+ if (strstr(model,"v") !=0){
+ printf("Error. 'v' must be in upper case 'V' model=%s ",model);
+ fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
+ return 1;
}
-
- /* This loop fills the array Tvar from the string 'model'.*/
-
- for(i=(j+1); i>=1;i--){
- cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */
- if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
- /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
- /*scanf("%d",i);*/
- if (strchr(strb,'*')) { /* Model includes a product */
- cutv(strd,strc,strb,'*'); /* strd*strc Vm*Vn (if not *age)*/
- if (strcmp(strc,"age")==0) { /* Vn*age */
- cptcovprod--;
- cutv(strb,stre,strd,'V');
- Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
- cptcovage++;
- Tage[cptcovage]=i;
+ strcpy(modelsav,model);
+ if ((strpt=strstr(model,"age*age")) !=0){
+ printf(" strpt=%s, model=%s\n",strpt, model);
+ if(strpt != model){
+ printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
+ 'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
+ corresponding column of parameters.\n",model);
+ fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
+ 'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
+ corresponding column of parameters.\n",model); fflush(ficlog);
+ return 1;
+ }
+ nagesqr=1;
+ if (strstr(model,"+age*age") !=0)
+ substrchaine(modelsav, model, "+age*age");
+ else if (strstr(model,"age*age+") !=0)
+ substrchaine(modelsav, model, "age*age+");
+ else
+ substrchaine(modelsav, model, "age*age");
+ }else
+ nagesqr=0;
+ if (strlen(modelsav) >1){
+ j=nbocc(modelsav,'+'); /**< j=Number of '+' */
+ j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
+ cptcovs=j+1-j1; /**< Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2 */
+ cptcovt= j+1; /* Number of total covariates in the model, not including
+ * cst, age and age*age
+ * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
+ /* including age products which are counted in cptcovage.
+ * but the covariates which are products must be treated
+ * separately: ncovn=4- 2=2 (V1+V3). */
+ cptcovprod=j1; /**< Number of products V1*V2 +v3*age = 2 */
+ cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1 */
+
+
+ /* Design
+ * V1 V2 V3 V4 V5 V6 V7 V8 V9 Weight
+ * < ncovcol=8 >
+ * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
+ * k= 1 2 3 4 5 6 7 8
+ * cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
+ * covar[k,i], value of kth covariate if not including age for individual i:
+ * covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
+ * Tvar[k] # of the kth covariate: Tvar[1]=2 Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
+ * if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and
+ * Tage[++cptcovage]=k
+ * if products, new covar are created after ncovcol with k1
+ * Tvar[k]=ncovcol+k1; # of the kth covariate product: Tvar[5]=ncovcol+1=10 Tvar[6]=ncovcol+1=11
+ * Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
+ * Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
+ * Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
+ * Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
+ * V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
+ * < ncovcol=8 >
+ * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 d1 d1 d2 d2
+ * k= 1 2 3 4 5 6 7 8 9 10 11 12
+ * Tvar[k]= 2 1 3 3 10 11 8 8 5 6 7 8
+ * p Tvar[1]@12={2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6}
+ * p Tprod[1]@2={ 6, 5}
+ *p Tvard[1][1]@4= {7, 8, 5, 6}
+ * covar[k][i]= V2 V1 ? V3 V5*V6? V7*V8? ? V8
+ * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
+ *How to reorganize?
+ * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
+ * Tvars {2, 1, 3, 3, 11, 10, 8, 8, 7, 8, 5, 6}
+ * {2, 1, 4, 8, 5, 6, 3, 7}
+ * Struct []
+ */
+
+ /* This loop fills the array Tvar from the string 'model'.*/
+ /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
+ /* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 */
+ /* k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
+ /* k=3 V4 Tvar[k=3]= 4 (from V4) */
+ /* k=2 V1 Tvar[k=2]= 1 (from V1) */
+ /* k=1 Tvar[1]=2 (from V2) */
+ /* k=5 Tvar[5] */
+ /* for (k=1; k<=cptcovn;k++) { */
+ /* cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
+ /* } */
+ /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
+ /*
+ * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
+ for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
+ Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
+ }
+ cptcovage=0;
+ for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
+ cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+'
+ modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */
+ if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
+ /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
+ /*scanf("%d",i);*/
+ if (strchr(strb,'*')) { /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
+ cutl(strc,strd,strb,'*'); /**< strd*strc Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
+ if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
+ /* covar is not filled and then is empty */
+ cptcovprod--;
+ cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
+ Tvar[k]=atoi(stre); /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
+ Typevar[k]=1; /* 1 for age product */
+ cptcovage++; /* Sums the number of covariates which include age as a product */
+ Tage[cptcovage]=k; /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
/*printf("stre=%s ", stre);*/
- }
- else if (strcmp(strd,"age")==0) { /* or age*Vn */
- cptcovprod--;
- cutv(strb,stre,strc,'V');
- Tvar[i]=atoi(stre);
- cptcovage++;
- Tage[cptcovage]=i;
- }
- else { /* Age is not in the model */
- cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
- Tvar[i]=ncovcol+k1;
- cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
- Tprod[k1]=i;
- Tvard[k1][1]=atoi(strc); /* m*/
- Tvard[k1][2]=atoi(stre); /* n */
- Tvar[cptcovn+k2]=Tvard[k1][1];
- Tvar[cptcovn+k2+1]=Tvard[k1][2];
- for (k=1; k<=lastobs;k++)
- covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
- k1++;
- k2=k2+2;
- }
- }
- else { /* no more sum */
- /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
- /* scanf("%d",i);*/
- cutv(strd,strc,strb,'V');
- Tvar[i]=atoi(strc);
- }
- strcpy(modelsav,stra);
- /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
- scanf("%d",i);*/
- } /* end of loop + */
- } /* end model */
+ } else if (strcmp(strd,"age")==0) { /* or age*Vn */
+ cptcovprod--;
+ cutl(stre,strb,strc,'V');
+ Tvar[k]=atoi(stre);
+ Typevar[k]=1; /* 1 for age product */
+ cptcovage++;
+ Tage[cptcovage]=k;
+ } else { /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2 strb=V3*V2*/
+ /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
+ cptcovn++;
+ cptcovprodnoage++;k1++;
+ cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
+ Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
+ because this model-covariate is a construction we invent a new column
+ which is after existing variables ncovcol+nqv+ntv+nqtv + k1
+ If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
+ Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
+ Typevar[k]=2; /* 2 for double fixed dummy covariates */
+ cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
+ Tprod[k1]=k; /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 */
+ Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */
+ Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
+ Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
+ k2=k2+2; /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
+ /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
+ /* Tvar[cptcovt+k2+1]=Tvard[k1][2]; /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
+ /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
+ /* 1 2 3 4 5 | Tvar[5+1)=1, Tvar[7]=2 */
+ for (i=1; i<=lastobs;i++){
+ /* Computes the new covariate which is a product of
+ covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
+ covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
+ }
+ } /* End age is not in the model */
+ } /* End if model includes a product */
+ else { /* no more sum */
+ /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
+ /* scanf("%d",i);*/
+ cutl(strd,strc,strb,'V');
+ ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
+ cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
+ Tvar[k]=atoi(strd);
+ Typevar[k]=0; /* 0 for simple covariates */
+ }
+ strcpy(modelsav,stra); /* modelsav=V2+V1+V4 stra=V2+V1+V4 */
+ /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
+ scanf("%d",i);*/
+ } /* end of loop + on total covariates */
+ } /* end if strlen(modelsave == 0) age*age might exist */
+ } /* end if strlen(model == 0) */
/*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
-
+
/* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
- printf("cptcovprod=%d ", cptcovprod);
- fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
-
- scanf("%d ",i);
- fclose(fic);*/
-
- /* if(mle==1){*/
- if (weightopt != 1) { /* Maximisation without weights*/
- for(i=1;i<=n;i++) weight[i]=1.0;
+ printf("cptcovprod=%d ", cptcovprod);
+ fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
+ scanf("%d ",i);*/
+
+
+/* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
+ of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
+/* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1 = 5 possible variables data: 2 fixed 3, varying
+ model= V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
+ k = 1 2 3 4 5 6 7 8 9
+ Tvar[k]= 5 4 3 1+1+2+1+1=6 5 2 7 1 5
+ Typevar[k]= 0 0 0 2 1 0 2 1 1
+ Fixed[k] 1 1 1 1 3 0 0 or 2 2 3
+ Dummy[k] 1 0 0 0 3 1 1 2 3
+ Tmodelind[combination of covar]=k;
+*/
+/* Dispatching between quantitative and time varying covariates */
+ /* If Tvar[k] >ncovcol it is a product */
+ /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p Vp=Vn*Vm for product */
+ /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
+ printf("Model=%s\n\
+Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\
+Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
+Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
+ fprintf(ficlog,"Model=%s\n\
+Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product \n\
+Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
+Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
+ for(k=1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}
+ for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
+ if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
+ Fixed[k]= 0;
+ Dummy[k]= 0;
+ ncoveff++;
+ ncovf++;
+ nsd++;
+ modell[k].maintype= FTYPE;
+ TvarsD[nsd]=Tvar[k];
+ TvarsDind[nsd]=k;
+ TvarF[ncovf]=Tvar[k];
+ TvarFind[ncovf]=k;
+ TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+ TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+ }else if( Tvar[k] <=ncovcol && Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */
+ Fixed[k]= 0;
+ Dummy[k]= 0;
+ ncoveff++;
+ ncovf++;
+ modell[k].maintype= FTYPE;
+ TvarF[ncovf]=Tvar[k];
+ TvarFind[ncovf]=k;
+ TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+ TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
+ }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
+ Fixed[k]= 0;
+ Dummy[k]= 1;
+ nqfveff++;
+ modell[k].maintype= FTYPE;
+ modell[k].subtype= FQ;
+ nsq++;
+ TvarsQ[nsq]=Tvar[k];
+ TvarsQind[nsq]=k;
+ ncovf++;
+ TvarF[ncovf]=Tvar[k];
+ TvarFind[ncovf]=k;
+ TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
+ TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
+ }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */
+ Fixed[k]= 1;
+ Dummy[k]= 0;
+ ntveff++; /* Only simple time varying dummy variable */
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VD;
+ nsd++;
+ TvarsD[nsd]=Tvar[k];
+ TvarsDind[nsd]=k;
+ ncovv++; /* Only simple time varying variables */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k; /* TvarVind[2]=2 TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
+ TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4 TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
+ TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
+ printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
+ printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
+ }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ nqtveff++;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VQ;
+ ncovv++; /* Only simple time varying variables */
+ nsq++;
+ TvarsQ[nsq]=Tvar[k];
+ TvarsQind[nsq]=k;
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
+ TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
+ TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
+ TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
+ /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
+ printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
+ printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
+ }else if (Typevar[k] == 1) { /* product with age */
+ ncova++;
+ TvarA[ncova]=Tvar[k];
+ TvarAind[ncova]=k;
+ if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
+ Fixed[k]= 2;
+ Dummy[k]= 2;
+ modell[k].maintype= ATYPE;
+ modell[k].subtype= APFD;
+ /* ncoveff++; */
+ }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
+ Fixed[k]= 2;
+ Dummy[k]= 3;
+ modell[k].maintype= ATYPE;
+ modell[k].subtype= APFQ; /* Product age * fixed quantitative */
+ /* nqfveff++; /\* Only simple fixed quantitative variable *\/ */
+ }else if( Tvar[k] <=ncovcol+nqv+ntv ){
+ Fixed[k]= 3;
+ Dummy[k]= 2;
+ modell[k].maintype= ATYPE;
+ modell[k].subtype= APVD; /* Product age * varying dummy */
+ /* ntveff++; /\* Only simple time varying dummy variable *\/ */
+ }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
+ Fixed[k]= 3;
+ Dummy[k]= 3;
+ modell[k].maintype= ATYPE;
+ modell[k].subtype= APVQ; /* Product age * varying quantitative */
+ /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
+ }
+ }else if (Typevar[k] == 2) { /* product without age */
+ k1=Tposprod[k];
+ if(Tvard[k1][1] <=ncovcol){
+ if(Tvard[k1][2] <=ncovcol){
+ Fixed[k]= 1;
+ Dummy[k]= 0;
+ modell[k].maintype= FTYPE;
+ modell[k].subtype= FPDD; /* Product fixed dummy * fixed dummy */
+ ncovf++; /* Fixed variables without age */
+ TvarF[ncovf]=Tvar[k];
+ TvarFind[ncovf]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv){
+ Fixed[k]= 0; /* or 2 ?*/
+ Dummy[k]= 1;
+ modell[k].maintype= FTYPE;
+ modell[k].subtype= FPDQ; /* Product fixed dummy * fixed quantitative */
+ ncovf++; /* Varying variables without age */
+ TvarF[ncovf]=Tvar[k];
+ TvarFind[ncovf]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
+ Fixed[k]= 1;
+ Dummy[k]= 0;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPDD; /* Product fixed dummy * varying dummy */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPDQ; /* Product fixed dummy * varying quantitative */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }
+ }else if(Tvard[k1][1] <=ncovcol+nqv){
+ if(Tvard[k1][2] <=ncovcol){
+ Fixed[k]= 0; /* or 2 ?*/
+ Dummy[k]= 1;
+ modell[k].maintype= FTYPE;
+ modell[k].subtype= FPDQ; /* Product fixed quantitative * fixed dummy */
+ ncovf++; /* Fixed variables without age */
+ TvarF[ncovf]=Tvar[k];
+ TvarFind[ncovf]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPDQ; /* Product fixed quantitative * varying dummy */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPQQ; /* Product fixed quantitative * varying quantitative */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }
+ }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
+ if(Tvard[k1][2] <=ncovcol){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPDD; /* Product time varying dummy * fixed dummy */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPDQ; /* Product time varying dummy * fixed quantitative */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
+ Fixed[k]= 1;
+ Dummy[k]= 0;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPDD; /* Product time varying dummy * time varying dummy */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPDQ; /* Product time varying dummy * time varying quantitative */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }
+ }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
+ if(Tvard[k1][2] <=ncovcol){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPDQ; /* Product time varying quantitative * fixed dummy */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPQQ; /* Product time varying quantitative * fixed quantitative */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPDQ; /* Product time varying quantitative * time varying dummy */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
+ Fixed[k]= 1;
+ Dummy[k]= 1;
+ modell[k].maintype= VTYPE;
+ modell[k].subtype= VPQQ; /* Product time varying quantitative * time varying quantitative */
+ ncovv++; /* Varying variables without age */
+ TvarV[ncovv]=Tvar[k];
+ TvarVind[ncovv]=k;
+ }
+ }else{
+ printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
+ fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
+ } /*end k1*/
+ }else{
+ printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
+ fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
+ }
+ printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
+ printf(" modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype);
+ fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
+ }
+ /* Searching for doublons in the model */
+ for(k1=1; k1<= cptcovt;k1++){
+ for(k2=1; k2 nlstate){
+ *nberr = *nberr + 1;
+ if(firstone == 0){
+ firstone=1;
+ printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
+ }
+ fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
s[m][i]=-1;
}
- if(moisdc[i]==99 && andc[i]==9999 & s[m][i]>nlstate) s[m][i]=-1;
+ if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
+ (*nberr)++;
+ printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]);
+ fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]);
+ s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
+ }
}
}
for (i=1; i<=imx; i++) {
agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
- for(m=1; (m<= maxwav); m++){
- if(s[m][i] >0){
+ for(m=firstpass; (m<= lastpass); m++){
+ if(s[m][i] >0 || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
if (s[m][i] >= nlstate+1) {
- if(agedc[i]>0)
- if(moisdc[i]!=99 && andc[i]!=9999)
+ if(agedc[i]>0){
+ if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
agev[m][i]=agedc[i];
- /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
- else {
- if (andc[i]!=9999){
- printf("Warning negative age at death: %d line:%d\n",num[i],i);
- fprintf(ficlog,"Warning negative age at death: %d line:%d\n",num[i],i);
+ /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
+ }else {
+ if ((int)andc[i]!=9999){
+ nbwarn++;
+ printf("Warning negative age at death: %ld line:%d\n",num[i],i);
+ fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
agev[m][i]=-1;
}
}
- }
- else if(s[m][i] !=9){ /* Should no more exist */
+ } /* agedc > 0 */
+ } /* end if */
+ else if(s[m][i] !=9){ /* Standard case, age in fractional
+ years but with the precision of a month */
agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
- if(mint[m][i]==99 || anint[m][i]==9999)
+ if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
agev[m][i]=1;
- else if(agev[m][i] agemax){
- agemax=agev[m][i];
- /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
+ else if(agev[m][i] < *agemin){
+ *agemin=agev[m][i];
+ printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
+ }
+ else if(agev[m][i] >*agemax){
+ *agemax=agev[m][i];
+ /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
}
/*agev[m][i]=anint[m][i]-annais[i];*/
/* agev[m][i] = age[i]+2*m;*/
- }
+ } /* en if 9*/
else { /* =9 */
+ /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
agev[m][i]=1;
s[m][i]=-1;
}
}
- else /*= 0 Unknown */
+ else if(s[m][i]==0) /*= 0 Unknown */
agev[m][i]=1;
- }
-
+ else{
+ printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]);
+ fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]);
+ agev[m][i]=0;
+ }
+ } /* End for lastpass */
}
+
for (i=1; i<=imx; i++) {
- for(m=1; (m<= maxwav); m++){
+ for(m=firstpass; (m<=lastpass); m++){
if (s[m][i] > (nlstate+ndeath)) {
+ (*nberr)++;
printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);
fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);
- goto end;
+ return 1;
}
}
}
- printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
- fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
+ /*for (i=1; i<=imx; i++){
+ for (m=firstpass; (m 0) tricode(Tvar,nbcode,imx);
-
- codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of
- the estimations*/
- h=0;
- m=pow(2,cptcoveff);
-
- for(k=1;k<=cptcoveff; k++){
- for(i=1; i <=(m/pow(2,k));i++){
- for(j=1; j <= ncodemax[k]; j++){
- for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
- h++;
- if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
- /* printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
- }
- }
- }
- }
- /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]);
- codtab[1][2]=1;codtab[2][2]=2; */
- /* for(i=1; i <=m ;i++){
- for(k=1; k <=cptcovn; k++){
- printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
- }
- printf("\n");
- }
- scanf("%d",i);*/
-
- /* Calculates basic frequencies. Computes observed prevalence at single age
- and prints on file fileres'p'. */
+ return (0);
+ /* endread:*/
+ printf("Exiting calandcheckages: ");
+ return (1);
+}
- pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
- oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
- newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
- savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
- oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
-
-
- /* For Powell, parameters are in a vector p[] starting at p[1]
- so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
- p=param[1][1]; /* *(*(*(param +1)+1)+0) */
+#if defined(_MSC_VER)
+/*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
+/*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
+//#include "stdafx.h"
+//#include
+//#include
+//#include
+//#include
+typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
- if(mle>=1){ /* Could be 1 or 2 */
- mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
- }
-
- /*--------- results files --------------*/
- fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
-
+LPFN_ISWOW64PROCESS fnIsWow64Process;
- jk=1;
- fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
- printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
- fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
- for(i=1,jk=1; i <=nlstate; i++){
- for(k=1; k <=(nlstate+ndeath); k++){
- if (k != i)
- {
- printf("%d%d ",i,k);
- fprintf(ficlog,"%d%d ",i,k);
- fprintf(ficres,"%1d%1d ",i,k);
- for(j=1; j <=ncovmodel; j++){
- printf("%f ",p[jk]);
- fprintf(ficlog,"%f ",p[jk]);
- fprintf(ficres,"%f ",p[jk]);
- jk++;
- }
- printf("\n");
- fprintf(ficlog,"\n");
- fprintf(ficres,"\n");
- }
- }
- }
- if(mle==1){
- /* Computing hessian and covariance matrix */
- ftolhess=ftol; /* Usually correct */
- hesscov(matcov, p, npar, delti, ftolhess, func);
- }
- fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
- printf("# Scales (for hessian or gradient estimation)\n");
- fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
- for(i=1,jk=1; i <=nlstate; i++){
- for(j=1; j <=nlstate+ndeath; j++){
- if (j!=i) {
- fprintf(ficres,"%1d%1d",i,j);
- printf("%1d%1d",i,j);
- fprintf(ficlog,"%1d%1d",i,j);
- for(k=1; k<=ncovmodel;k++){
- printf(" %.5e",delti[jk]);
- fprintf(ficlog," %.5e",delti[jk]);
- fprintf(ficres," %.5e",delti[jk]);
- jk++;
- }
- printf("\n");
- fprintf(ficlog,"\n");
- fprintf(ficres,"\n");
- }
- }
- }
-
- fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n");
- if(mle==1)
- printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n");
- fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n");
- for(i=1,k=1;i<=npar;i++){
- /* if (k>nlstate) k=1;
- i1=(i-1)/(ncovmodel*nlstate)+1;
- fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
- printf("%s%d%d",alph[k],i1,tab[i]);
- */
- fprintf(ficres,"%3d",i);
- if(mle==1)
- printf("%3d",i);
- fprintf(ficlog,"%3d",i);
- for(j=1; j<=i;j++){
- fprintf(ficres," %.5e",matcov[i][j]);
- if(mle==1)
- printf(" %.5e",matcov[i][j]);
- fprintf(ficlog," %.5e",matcov[i][j]);
- }
- fprintf(ficres,"\n");
- if(mle==1)
- printf("\n");
- fprintf(ficlog,"\n");
- k++;
- }
-
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
+BOOL IsWow64()
+{
+ BOOL bIsWow64 = FALSE;
- estepm=0;
- fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
- if (estepm==0 || estepm < stepm) estepm=stepm;
- if (fage <= 2) {
- bage = ageminpar;
- fage = agemaxpar;
- }
-
- fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
- fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
- fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
-
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
-
- fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
- fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
- fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
-
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
-
+ //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
+ // (HANDLE, PBOOL);
- dateprev1=anprev1+mprev1/12.+jprev1/365.;
- dateprev2=anprev2+mprev2/12.+jprev2/365.;
+ //LPFN_ISWOW64PROCESS fnIsWow64Process;
- fscanf(ficpar,"pop_based=%d\n",&popbased);
- fprintf(ficparo,"pop_based=%d\n",popbased);
- fprintf(ficres,"pop_based=%d\n",popbased);
-
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
+ HMODULE module = GetModuleHandle(_T("kernel32"));
+ const char funcName[] = "IsWow64Process";
+ fnIsWow64Process = (LPFN_ISWOW64PROCESS)
+ GetProcAddress(module, funcName);
- fscanf(ficpar,"starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);
- fprintf(ficparo,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
- fprintf(ficres,"starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
+ if (NULL != fnIsWow64Process)
+ {
+ if (!fnIsWow64Process(GetCurrentProcess(),
+ &bIsWow64))
+ //throw std::exception("Unknown error");
+ printf("Unknown error\n");
+ }
+ return bIsWow64 != FALSE;
+}
+#endif
+void syscompilerinfo(int logged)
+ {
+ /* #include "syscompilerinfo.h"*/
+ /* command line Intel compiler 32bit windows, XP compatible:*/
+ /* /GS /W3 /Gy
+ /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
+ "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
+ "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
+ /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
+ */
+ /* 64 bits */
+ /*
+ /GS /W3 /Gy
+ /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
+ /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
+ /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
+ "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
+ /* Optimization are useless and O3 is slower than O2 */
+ /*
+ /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32"
+ /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo
+ /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel
+ /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch"
+ */
+ /* Link is */ /* /OUT:"visual studio
+ 2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
+ /PDB:"visual studio
+ 2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
+ "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
+ "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
+ "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
+ /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
+ /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
+ uiAccess='false'"
+ /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
+ /NOLOGO /TLBID:1
+ */
+#if defined __INTEL_COMPILER
+#if defined(__GNUC__)
+ struct utsname sysInfo; /* For Intel on Linux and OS/X */
+#endif
+#elif defined(__GNUC__)
+#ifndef __APPLE__
+#include /* Only on gnu */
+#endif
+ struct utsname sysInfo;
+ int cross = CROSS;
+ if (cross){
+ printf("Cross-");
+ if(logged) fprintf(ficlog, "Cross-");
+ }
+#endif
- while((c=getc(ficpar))=='#' && c!= EOF){
- ungetc(c,ficpar);
- fgets(line, MAXLINE, ficpar);
- puts(line);
- fputs(line,ficparo);
- }
- ungetc(c,ficpar);
+#include
- fscanf(ficpar,"popforecast=%d popfile=%s popfiledate=%lf/%lf/%lf last-popfiledate=%lf/%lf/%lf\n",&popforecast,popfile,&jpyram,&mpyram,&anpyram,&jpyram1,&mpyram1,&anpyram1);
- fprintf(ficparo,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
- fprintf(ficres,"popforecast=%d popfile=%s popfiledate=%.lf/%.lf/%.lf last-popfiledate=%.lf/%.lf/%.lf\n",popforecast,popfile,jpyram,mpyram,anpyram,jpyram1,mpyram1,anpyram1);
+ printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
+#if defined(__clang__)
+ printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM"); /* Clang/LLVM. ---------------------------------------------- */
+#endif
+#if defined(__ICC) || defined(__INTEL_COMPILER)
+ printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
+#endif
+#if defined(__GNUC__) || defined(__GNUG__)
+ printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
+#endif
+#if defined(__HP_cc) || defined(__HP_aCC)
+ printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
+#endif
+#if defined(__IBMC__) || defined(__IBMCPP__)
+ printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
+#endif
+#if defined(_MSC_VER)
+ printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
+#endif
+#if defined(__PGI)
+ printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
+#endif
+#if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
+ printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
+#endif
+ printf(" for "); if (logged) fprintf(ficlog, " for ");
+
+// http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
+#ifdef _WIN32 // note the underscore: without it, it's not msdn official!
+ // Windows (x64 and x86)
+ printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
+#elif __unix__ // all unices, not all compilers
+ // Unix
+ printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
+#elif __linux__
+ // linux
+ printf("linux ");if(logged) fprintf(ficlog,"linux ");
+#elif __APPLE__
+ // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
+ printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
+#endif
- freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);
+/* __MINGW32__ */
+/* __CYGWIN__ */
+/* __MINGW64__ */
+// http://msdn.microsoft.com/en-us/library/b0084kay.aspx
+/* _MSC_VER //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /? */
+/* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
+/* _WIN64 // Defined for applications for Win64. */
+/* _M_X64 // Defined for compilations that target x64 processors. */
+/* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
+
+#if UINTPTR_MAX == 0xffffffff
+ printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
+#elif UINTPTR_MAX == 0xffffffffffffffff
+ printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
+#else
+ printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
+#endif
- /*------------ gnuplot -------------*/
- strcpy(optionfilegnuplot,optionfilefiname);
- strcat(optionfilegnuplot,".gp");
- if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
- printf("Problem with file %s",optionfilegnuplot);
- }
- else{
- fprintf(ficgp,"\n# %s\n", version);
- fprintf(ficgp,"# %s\n", optionfilegnuplot);
- fprintf(ficgp,"set missing 'NaNq'\n");
- }
- fclose(ficgp);
- printinggnuplot(fileres, ageminpar,agemaxpar,fage, pathc,p);
- /*--------- index.htm --------*/
+#if defined(__GNUC__)
+# if defined(__GNUC_PATCHLEVEL__)
+# define __GNUC_VERSION__ (__GNUC__ * 10000 \
+ + __GNUC_MINOR__ * 100 \
+ + __GNUC_PATCHLEVEL__)
+# else
+# define __GNUC_VERSION__ (__GNUC__ * 10000 \
+ + __GNUC_MINOR__ * 100)
+# endif
+ printf(" using GNU C version %d.\n", __GNUC_VERSION__);
+ if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
+
+ if (uname(&sysInfo) != -1) {
+ printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
+ if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
+ }
+ else
+ perror("uname() error");
+ //#ifndef __INTEL_COMPILER
+#if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
+ printf("GNU libc version: %s\n", gnu_get_libc_version());
+ if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
+#endif
+#endif
- strcpy(optionfilehtm,optionfile);
- strcat(optionfilehtm,".htm");
- if((fichtm=fopen(optionfilehtm,"w"))==NULL) {
- printf("Problem with %s \n",optionfilehtm), exit(0);
- }
+ // void main()
+ // {
+#if defined(_MSC_VER)
+ if (IsWow64()){
+ printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
+ if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
+ }
+ else{
+ printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
+ if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
+ }
+ // printf("\nPress Enter to continue...");
+ // getchar();
+ // }
- fprintf(fichtm," %s
\n
-Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s
\n
-\n
-Total number of observations=%d
\n
-Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf
\n
-
- Parameter files
\n
- - Copy of the parameter file: o%s
\n
- - Log file of the run: %s
\n
- - Gnuplot file name: %s
\n",version,title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,filelog,filelog,optionfilegnuplot,optionfilegnuplot);
- fclose(fichtm);
+#endif
+
- printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
-
- /*------------ free_vector -------------*/
- chdir(path);
-
- free_ivector(wav,1,imx);
- free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
- free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
- free_imatrix(mw,1,lastpass-firstpass+1,1,imx);
- free_ivector(num,1,n);
- free_vector(agedc,1,n);
- /*free_matrix(covar,0,NCOVMAX,1,n);*/
- /*free_matrix(covar,1,NCOVMAX,1,n);*/
- fclose(ficparo);
- fclose(ficres);
+}
+int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
+ /*--------------- Prevalence limit (period or stable prevalence) --------------*/
+ int i, j, k, i1, k4=0, nres=0 ;
+ /* double ftolpl = 1.e-10; */
+ double age, agebase, agelim;
+ double tot;
- /*--------------- Prevalence limit (stable prevalence) --------------*/
-
- strcpy(filerespl,"pl");
- strcat(filerespl,fileres);
+ strcpy(filerespl,"PL_");
+ strcat(filerespl,fileresu);
if((ficrespl=fopen(filerespl,"w"))==NULL) {
- printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
- fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
+ printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
+ fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
}
- printf("Computing stable prevalence: result on file '%s' \n", filerespl);
- fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
- fprintf(ficrespl,"#Stable prevalence \n");
+ printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
+ fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
+ pstamp(ficrespl);
+ fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
fprintf(ficrespl,"#Age ");
for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
fprintf(ficrespl,"\n");
- prlim=matrix(1,nlstate,1,nlstate);
+ /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
agebase=ageminpar;
agelim=agemaxpar;
- ftolpl=1.e-10;
- i1=cptcoveff;
+
+ /* i1=pow(2,ncoveff); */
+ i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
if (cptcovn < 1){i1=1;}
- for(cptcov=1,k=0;cptcov<=i1;cptcov++){
- for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
- k=k+1;
- /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
- fprintf(ficrespl,"\n#******");
- printf("\n#******");
- fprintf(ficlog,"\n#******");
- for(j=1;j<=cptcoveff;j++) {
- fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
+ for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ if(TKresult[nres]!= k)
+ continue;
+
+ /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
+ /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
+ //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
+ /* k=k+1; */
+ /* to clean */
+ //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
+ fprintf(ficrespl,"#******");
+ printf("#******");
+ fprintf(ficlog,"#******");
+ for(j=1;j<=cptcoveff ;j++) {/* all covariates */
+ fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/
+ printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ }
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
}
fprintf(ficrespl,"******\n");
printf("******\n");
fprintf(ficlog,"******\n");
-
+ if(invalidvarcomb[k]){
+ printf("\nCombination (%d) ignored because no case \n",k);
+ fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k);
+ fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k);
+ continue;
+ }
+
+ fprintf(ficrespl,"#Age ");
+ for(j=1;j<=cptcoveff;j++) {
+ fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ }
+ for(i=1; i<=nlstate;i++) fprintf(ficrespl," %d-%d ",i,i);
+ fprintf(ficrespl,"Total Years_to_converge\n");
+
for (age=agebase; age<=agelim; age++){
- prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
- fprintf(ficrespl,"%.0f",age );
- for(i=1; i<=nlstate;i++)
+ /* for (age=agebase; age<=agebase; age++){ */
+ prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres);
+ fprintf(ficrespl,"%.0f ",age );
+ for(j=1;j<=cptcoveff;j++)
+ fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ tot=0.;
+ for(i=1; i<=nlstate;i++){
+ tot += prlim[i][i];
fprintf(ficrespl," %.5f", prlim[i][i]);
- fprintf(ficrespl,"\n");
- }
- }
- }
- fclose(ficrespl);
+ }
+ fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
+ } /* Age */
+ /* was end of cptcod */
+ } /* cptcov */
+ } /* nres */
+ return 0;
+}
- /*------------- h Pij x at various ages ------------*/
+int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
+ /*--------------- Back Prevalence limit (period or stable prevalence) --------------*/
+
+ /* Computes the back prevalence limit for any combination of covariate values
+ * at any age between ageminpar and agemaxpar
+ */
+ int i, j, k, i1, nres=0 ;
+ /* double ftolpl = 1.e-10; */
+ double age, agebase, agelim;
+ double tot;
+ /* double ***mobaverage; */
+ /* double **dnewm, **doldm, **dsavm; /\* for use *\/ */
+
+ strcpy(fileresplb,"PLB_");
+ strcat(fileresplb,fileresu);
+ if((ficresplb=fopen(fileresplb,"w"))==NULL) {
+ printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
+ fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
+ }
+ printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
+ fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
+ pstamp(ficresplb);
+ fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);
+ fprintf(ficresplb,"#Age ");
+ for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
+ fprintf(ficresplb,"\n");
- strcpy(filerespij,"pij"); strcat(filerespij,fileres);
- if((ficrespij=fopen(filerespij,"w"))==NULL) {
- printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
- fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
- }
- printf("Computing pij: result on file '%s' \n", filerespij);
- fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
- stepsize=(int) (stepm+YEARM-1)/YEARM;
- /*if (stepm<=24) stepsize=2;*/
+ /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
+
+ agebase=ageminpar;
+ agelim=agemaxpar;
+
+
+ i1=pow(2,cptcoveff);
+ if (cptcovn < 1){i1=1;}
+
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
+ if(TKresult[nres]!= k)
+ continue;
+ //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
+ fprintf(ficresplb,"#******");
+ printf("#******");
+ fprintf(ficlog,"#******");
+ for(j=1;j<=cptcoveff ;j++) {/* all covariates */
+ fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ }
+ for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
+ printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ }
+ fprintf(ficresplb,"******\n");
+ printf("******\n");
+ fprintf(ficlog,"******\n");
+ if(invalidvarcomb[k]){
+ printf("\nCombination (%d) ignored because no cases \n",k);
+ fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k);
+ fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k);
+ continue;
+ }
+
+ fprintf(ficresplb,"#Age ");
+ for(j=1;j<=cptcoveff;j++) {
+ fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ }
+ for(i=1; i<=nlstate;i++) fprintf(ficresplb," %d-%d ",i,i);
+ fprintf(ficresplb,"Total Years_to_converge\n");
+
+
+ for (age=agebase; age<=agelim; age++){
+ /* for (age=agebase; age<=agebase; age++){ */
+ if(mobilavproj > 0){
+ /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
+ /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
+ bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres);
+ }else if (mobilavproj == 0){
+ printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
+ fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
+ exit(1);
+ }else{
+ /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
+ bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres);
+ }
+ fprintf(ficresplb,"%.0f ",age );
+ for(j=1;j<=cptcoveff;j++)
+ fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ tot=0.;
+ for(i=1; i<=nlstate;i++){
+ tot += bprlim[i][i];
+ fprintf(ficresplb," %.5f", bprlim[i][i]);
+ }
+ fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
+ } /* Age */
+ /* was end of cptcod */
+ } /* end of any combination */
+ } /* end of nres */
+ /* hBijx(p, bage, fage); */
+ /* fclose(ficrespijb); */
+
+ return 0;
+}
+
+int hPijx(double *p, int bage, int fage){
+ /*------------- h Pij x at various ages ------------*/
- agelim=AGESUP;
- hstepm=stepsize*YEARM; /* Every year of age */
- hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
+ int stepsize;
+ int agelim;
+ int hstepm;
+ int nhstepm;
+ int h, i, i1, j, k, k4, nres=0;
- /* hstepm=1; aff par mois*/
+ double agedeb;
+ double ***p3mat;
- for(cptcov=1,k=0;cptcov<=i1;cptcov++){
- for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
- k=k+1;
+ strcpy(filerespij,"PIJ_"); strcat(filerespij,fileresu);
+ if((ficrespij=fopen(filerespij,"w"))==NULL) {
+ printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
+ fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
+ }
+ printf("Computing pij: result on file '%s' \n", filerespij);
+ fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
+
+ stepsize=(int) (stepm+YEARM-1)/YEARM;
+ /*if (stepm<=24) stepsize=2;*/
+
+ agelim=AGESUP;
+ hstepm=stepsize*YEARM; /* Every year of age */
+ hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
+
+ /* hstepm=1; aff par mois*/
+ pstamp(ficrespij);
+ fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
+ i1= pow(2,cptcoveff);
+ /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
+ /* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
+ /* k=k+1; */
+ for(nres=1; nres <= nresult; nres++) /* For each resultline */
+ for(k=1; k<=i1;k++){
+ if(TKresult[nres]!= k)
+ continue;
fprintf(ficrespij,"\n#****** ");
for(j=1;j<=cptcoveff;j++)
- fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
+ fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
+ printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
+ }
fprintf(ficrespij,"******\n");
-
+
for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
-
+
/* nhstepm=nhstepm*YEARM; aff par mois*/
-
+
p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
oldm=oldms;savm=savms;
- hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
- fprintf(ficrespij,"# Age");
+ hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);
+ fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
for(i=1; i<=nlstate;i++)
for(j=1; j<=nlstate+ndeath;j++)
fprintf(ficrespij," %1d-%1d",i,j);
fprintf(ficrespij,"\n");
for (h=0; h<=nhstepm; h++){
- fprintf(ficrespij,"%d %f %f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
+ /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
+ fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
for(i=1; i<=nlstate;i++)
for(j=1; j<=nlstate+ndeath;j++)
fprintf(ficrespij," %.5f", p3mat[i][j][h]);
@@ -4132,241 +9416,2148 @@ Interval (in months) between two waves:
free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
fprintf(ficrespij,"\n");
}
+ /*}*/
}
- }
-
- varprob(optionfilefiname, matcov, p, delti, nlstate, (int) bage, (int) fage,k,Tvar,nbcode, ncodemax);
-
- fclose(ficrespij);
-
+ return 0;
+}
+
+ int hBijx(double *p, int bage, int fage, double ***prevacurrent){
+ /*------------- h Bij x at various ages ------------*/
- /*---------- Forecasting ------------------*/
- if((stepm == 1) && (strcmp(model,".")==0)){
- prevforecast(fileres, anproj1,mproj1,jproj1, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anproj2,p, i1);
- if (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);
- }
- else{
- erreur=108;
- printf("Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
- fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model);
+ int stepsize;
+ /* int agelim; */
+ int ageminl;
+ int hstepm;
+ int nhstepm;
+ int h, i, i1, j, k, nres;
+
+ double agedeb;
+ double ***p3mat;
+
+ strcpy(filerespijb,"PIJB_"); strcat(filerespijb,fileresu);
+ if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
+ printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
+ fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
}
+ printf("Computing pij back: result on file '%s' \n", filerespijb);
+ fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
+ stepsize=(int) (stepm+YEARM-1)/YEARM;
+ /*if (stepm<=24) stepsize=2;*/
+
+ /* agelim=AGESUP; */
+ ageminl=30;
+ hstepm=stepsize*YEARM; /* Every year of age */
+ hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
+
+ /* hstepm=1; aff par mois*/
+ pstamp(ficrespijb);
+ fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x ");
+ i1= pow(2,cptcoveff);
+ /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
+ /* /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
+ /* k=k+1; */
+ for(nres=1; nres <= nresult; nres++){ /* For each resultline */
+ for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
+ if(TKresult[nres]!= k)
+ continue;
+ fprintf(ficrespijb,"\n#****** ");
+ for(j=1;j<=cptcoveff;j++)
+ fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
+ fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ }
+ fprintf(ficrespijb,"******\n");
+ if(invalidvarcomb[k]){
+ fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k);
+ continue;
+ }
+
+ /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
+ for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
+ /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
+ nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
+ nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */
+
+ /* nhstepm=nhstepm*YEARM; aff par mois*/
+
+ p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ /* oldm=oldms;savm=savms; */
+ /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k); */
+ hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k);
+ /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
+ fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j=");
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=nlstate+ndeath;j++)
+ fprintf(ficrespijb," %1d-%1d",i,j);
+ fprintf(ficrespijb,"\n");
+ for (h=0; h<=nhstepm; h++){
+ /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
+ fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
+ /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
+ for(i=1; i<=nlstate;i++)
+ for(j=1; j<=nlstate+ndeath;j++)
+ fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
+ fprintf(ficrespijb,"\n");
+ }
+ free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
+ fprintf(ficrespijb,"\n");
+ } /* end age deb */
+ } /* end combination */
+ } /* end nres */
+ return 0;
+ } /* hBijx */
- /*---------- Health expectancies and variances ------------*/
-
- strcpy(filerest,"t");
- strcat(filerest,fileres);
- if((ficrest=fopen(filerest,"w"))==NULL) {
- printf("Problem with total LE resultfile: %s\n", filerest);goto end;
- fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
- }
- printf("Computing Total LEs with variances: file '%s' \n", filerest);
- fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest);
+/***********************************************/
+/**************** Main Program *****************/
+/***********************************************/
- strcpy(filerese,"e");
- strcat(filerese,fileres);
- if((ficreseij=fopen(filerese,"w"))==NULL) {
- printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
- fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
- }
- printf("Computing Health Expectancies: result on file '%s' \n", filerese);
- fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
+int main(int argc, char *argv[])
+{
+#ifdef GSL
+ const gsl_multimin_fminimizer_type *T;
+ size_t iteri = 0, it;
+ int rval = GSL_CONTINUE;
+ int status = GSL_SUCCESS;
+ double ssval;
+#endif
+ int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
+ int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
+ int ncvyear=0; /* Number of years needed for the period prevalence to converge */
+ int jj, ll, li, lj, lk;
+ int numlinepar=0; /* Current linenumber of parameter file */
+ int num_filled;
+ int itimes;
+ int NDIM=2;
+ int vpopbased=0;
+ int nres=0;
+
+ char ca[32], cb[32];
+ /* FILE *fichtm; *//* Html File */
+ /* FILE *ficgp;*/ /*Gnuplot File */
+ struct stat info;
+ double agedeb=0.;
- strcpy(fileresv,"v");
- strcat(fileresv,fileres);
- if((ficresvij=fopen(fileresv,"w"))==NULL) {
- printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
- fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
- }
- printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
- fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
+ double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
+ double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
- calagedate=-1;
+ double fret;
+ double dum=0.; /* Dummy variable */
+ double ***p3mat;
+ /* double ***mobaverage; */
- prevalence(ageminpar, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
+ char line[MAXLINE];
+ char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
- if (mobilav!=0) {
- mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
- fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
- printf(" Error in movingaverage mobilav=%d\n",mobilav);
- }
- }
+ char modeltemp[MAXLINE];
+ char resultline[MAXLINE];
+
+ char pathr[MAXLINE], pathimach[MAXLINE];
+ char *tok, *val; /* pathtot */
+ int firstobs=1, lastobs=10;
+ int c, h , cpt, c2;
+ int jl=0;
+ int i1, j1, jk, stepsize=0;
+ int count=0;
+
+ int *tab;
+ int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
+ int backcast=0;
+ int mobilav=0,popforecast=0;
+ int hstepm=0, nhstepm=0;
+ int agemortsup;
+ float sumlpop=0.;
+ double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
+ double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
- for(cptcov=1,k=0;cptcov<=i1;cptcov++){
- for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
- k=k+1;
- fprintf(ficrest,"\n#****** ");
- for(j=1;j<=cptcoveff;j++)
- fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- fprintf(ficrest,"******\n");
+ double bage=0, fage=110., age, agelim=0., agebase=0.;
+ double ftolpl=FTOL;
+ double **prlim;
+ double **bprlim;
+ double ***param; /* Matrix of parameters */
+ double *p;
+ double **matcov; /* Matrix of covariance */
+ double **hess; /* Hessian matrix */
+ double ***delti3; /* Scale */
+ double *delti; /* Scale */
+ double ***eij, ***vareij;
+ double **varpl; /* Variances of prevalence limits by age */
+ double *epj, vepp;
- fprintf(ficreseij,"\n#****** ");
- for(j=1;j<=cptcoveff;j++)
- fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- fprintf(ficreseij,"******\n");
+ double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
+ double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000;
- fprintf(ficresvij,"\n#****** ");
- for(j=1;j<=cptcoveff;j++)
- fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
- fprintf(ficresvij,"******\n");
+ double **ximort;
+ char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
+ int *dcwave;
+
+ char z[1]="c";
+
+ /*char *strt;*/
+ char strtend[80];
+
+
+/* setlocale (LC_ALL, ""); */
+/* bindtextdomain (PACKAGE, LOCALEDIR); */
+/* textdomain (PACKAGE); */
+/* setlocale (LC_CTYPE, ""); */
+/* setlocale (LC_MESSAGES, ""); */
+
+ /* gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
+ rstart_time = time(NULL);
+ /* (void) gettimeofday(&start_time,&tzp);*/
+ start_time = *localtime(&rstart_time);
+ curr_time=start_time;
+ /*tml = *localtime(&start_time.tm_sec);*/
+ /* strcpy(strstart,asctime(&tml)); */
+ strcpy(strstart,asctime(&start_time));
+
+/* printf("Localtime (at start)=%s",strstart); */
+/* tp.tm_sec = tp.tm_sec +86400; */
+/* tm = *localtime(&start_time.tm_sec); */
+/* tmg.tm_year=tmg.tm_year +dsign*dyear; */
+/* tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
+/* tmg.tm_hour=tmg.tm_hour + 1; */
+/* tp.tm_sec = mktime(&tmg); */
+/* strt=asctime(&tmg); */
+/* printf("Time(after) =%s",strstart); */
+/* (void) time (&time_value);
+* printf("time=%d,t-=%d\n",time_value,time_value-86400);
+* tm = *localtime(&time_value);
+* strstart=asctime(&tm);
+* printf("tim_value=%d,asctime=%s\n",time_value,strstart);
+*/
- eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
- oldm=oldms;savm=savms;
- evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);
-
- vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
- oldm=oldms;savm=savms;
- varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
- if(popbased==1){
- varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
+ nberr=0; /* Number of errors and warnings */
+ nbwarn=0;
+#ifdef WIN32
+ _getcwd(pathcd, size);
+#else
+ getcwd(pathcd, size);
+#endif
+ syscompilerinfo(0);
+ printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
+ if(argc <=1){
+ printf("\nEnter the parameter file name: ");
+ if(!fgets(pathr,FILENAMELENGTH,stdin)){
+ printf("ERROR Empty parameter file name\n");
+ goto end;
+ }
+ i=strlen(pathr);
+ if(pathr[i-1]=='\n')
+ pathr[i-1]='\0';
+ i=strlen(pathr);
+ if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
+ pathr[i-1]='\0';
+ }
+ i=strlen(pathr);
+ if( i==0 ){
+ printf("ERROR Empty parameter file name\n");
+ goto end;
+ }
+ for (tok = pathr; tok != NULL; ){
+ printf("Pathr |%s|\n",pathr);
+ while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
+ printf("val= |%s| pathr=%s\n",val,pathr);
+ strcpy (pathtot, val);
+ if(pathr[0] == '\0') break; /* Dirty */
+ }
+ }
+ else{
+ strcpy(pathtot,argv[1]);
+ }
+ /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
+ /*cygwin_split_path(pathtot,path,optionfile);
+ printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
+ /* cutv(path,optionfile,pathtot,'\\');*/
+
+ /* Split argv[0], imach program to get pathimach */
+ printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
+ split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
+ printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
+ /* strcpy(pathimach,argv[0]); */
+ /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
+ split(pathtot,path,optionfile,optionfilext,optionfilefiname);
+ printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
+#ifdef WIN32
+ _chdir(path); /* Can be a relative path */
+ if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
+#else
+ chdir(path); /* Can be a relative path */
+ if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
+#endif
+ printf("Current directory %s!\n",pathcd);
+ strcpy(command,"mkdir ");
+ strcat(command,optionfilefiname);
+ if((outcmd=system(command)) != 0){
+ printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
+ /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
+ /* fclose(ficlog); */
+/* exit(1); */
+ }
+/* if((imk=mkdir(optionfilefiname))<0){ */
+/* perror("mkdir"); */
+/* } */
+
+ /*-------- arguments in the command line --------*/
+
+ /* Main Log file */
+ strcat(filelog, optionfilefiname);
+ strcat(filelog,".log"); /* */
+ if((ficlog=fopen(filelog,"w"))==NULL) {
+ printf("Problem with logfile %s\n",filelog);
+ goto end;
+ }
+ fprintf(ficlog,"Log filename:%s\n",filelog);
+ fprintf(ficlog,"Version %s %s",version,fullversion);
+ fprintf(ficlog,"\nEnter the parameter file name: \n");
+ fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
+ path=%s \n\
+ optionfile=%s\n\
+ optionfilext=%s\n\
+ optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
+
+ syscompilerinfo(1);
+
+ printf("Local time (at start):%s",strstart);
+ fprintf(ficlog,"Local time (at start): %s",strstart);
+ fflush(ficlog);
+/* (void) gettimeofday(&curr_time,&tzp); */
+/* printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
+
+ /* */
+ strcpy(fileres,"r");
+ strcat(fileres, optionfilefiname);
+ strcat(fileresu, optionfilefiname); /* Without r in front */
+ strcat(fileres,".txt"); /* Other files have txt extension */
+ strcat(fileresu,".txt"); /* Other files have txt extension */
+
+ /* Main ---------arguments file --------*/
+
+ if((ficpar=fopen(optionfile,"r"))==NULL) {
+ printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
+ fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
+ fflush(ficlog);
+ /* goto end; */
+ exit(70);
+ }
+
+
+
+ strcpy(filereso,"o");
+ strcat(filereso,fileresu);
+ if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
+ printf("Problem with Output resultfile: %s\n", filereso);
+ fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
+ fflush(ficlog);
+ goto end;
+ }
+
+ /* Reads comments: lines beginning with '#' */
+ numlinepar=0;
+
+ /* First parameter line */
+ while(fgets(line, MAXLINE, ficpar)) {
+ /* If line starts with a # it is a comment */
+ if (line[0] == '#') {
+ numlinepar++;
+ fputs(line,stdout);
+ fputs(line,ficparo);
+ fputs(line,ficlog);
+ continue;
+ }else
+ break;
+ }
+ if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
+ title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
+ if (num_filled != 5) {
+ printf("Should be 5 parameters\n");
+ }
+ numlinepar++;
+ printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
+ }
+ /* Second parameter line */
+ while(fgets(line, MAXLINE, ficpar)) {
+ /* If line starts with a # it is a comment */
+ if (line[0] == '#') {
+ numlinepar++;
+ fputs(line,stdout);
+ fputs(line,ficparo);
+ fputs(line,ficlog);
+ continue;
+ }else
+ break;
+ }
+ if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
+ &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
+ if (num_filled != 11) {
+ printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1 nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
+ printf("but line=%s\n",line);
+ }
+ printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
+ }
+ /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
+ /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
+ /* Third parameter line */
+ while(fgets(line, MAXLINE, ficpar)) {
+ /* If line starts with a # it is a comment */
+ if (line[0] == '#') {
+ numlinepar++;
+ fputs(line,stdout);
+ fputs(line,ficparo);
+ fputs(line,ficlog);
+ continue;
+ }else
+ break;
+ }
+ if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
+ if (num_filled == 0)
+ model[0]='\0';
+ else if (num_filled != 1){
+ printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
+ fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
+ model[0]='\0';
+ goto end;
+ }
+ else{
+ if (model[0]=='+'){
+ for(i=1; i<=strlen(model);i++)
+ modeltemp[i-1]=model[i];
+ strcpy(model,modeltemp);
}
+ }
+ /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
+ printf("model=1+age+%s\n",model);fflush(stdout);
+ }
+ /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
+ /* numlinepar=numlinepar+3; /\* In general *\/ */
+ /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
+ fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
+ fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
+ fflush(ficlog);
+ /* if(model[0]=='#'|| model[0]== '\0'){ */
+ if(model[0]=='#'){
+ printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
+ 'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
+ 'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n"); \
+ if(mle != -1){
+ printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
+ exit(1);
+ }
+ }
+ while((c=getc(ficpar))=='#' && c!= EOF){
+ ungetc(c,ficpar);
+ fgets(line, MAXLINE, ficpar);
+ numlinepar++;
+ if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
+ z[0]=line[1];
+ }
+ /* printf("****line [1] = %c \n",line[1]); */
+ fputs(line, stdout);
+ //puts(line);
+ fputs(line,ficparo);
+ fputs(line,ficlog);
+ }
+ ungetc(c,ficpar);
-
- fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
- for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
- fprintf(ficrest,"\n");
-
- epj=vector(1,nlstate+1);
- for(age=bage; age <=fage ;age++){
- prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
- if (popbased==1) {
- if(mobilav ==0){
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=probs[(int)age][i][k];
- }else{ /* mobilav */
- for(i=1; i<=nlstate;i++)
- prlim[i][i]=mobaverage[(int)age][i][k];
+
+ covar=matrix(0,NCOVMAX,1,n); /**< used in readdata */
+ coqvar=matrix(1,nqv,1,n); /**< Fixed quantitative covariate */
+ cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n); /**< Time varying covariate (dummy and quantitative)*/
+ cotqvar=ma3x(1,maxwav,1,nqtv,1,n); /**< Time varying quantitative covariate */
+ cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
+ /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
+ v1+v2*age+v2*v3 makes cptcovn = 3
+ */
+ if (strlen(model)>1)
+ ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
+ else
+ ncovmodel=2; /* Constant and age */
+ nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
+ npar= nforce*ncovmodel; /* Number of parameters like aij*/
+ if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
+ printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
+ fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
+ fflush(stdout);
+ fclose (ficlog);
+ goto end;
+ }
+ delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
+ delti=delti3[1][1];
+ /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
+ if(mle==-1){ /* Print a wizard for help writing covariance matrix */
+/* We could also provide initial parameters values giving by simple logistic regression
+ * only one way, that is without matrix product. We will have nlstate maximizations */
+ /* for(i=1;i16 */
+ ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
+
+ /* Reads data from file datafile */
+ if (readdata(datafile, firstobs, lastobs, &imx)==1)
+ goto end;
+
+ /* Calculation of the number of parameters from char model */
+ /* modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4
+ k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
+ k=3 V4 Tvar[k=3]= 4 (from V4)
+ k=2 V1 Tvar[k=2]= 1 (from V1)
+ k=1 Tvar[1]=2 (from V2)
+ */
+
+ Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
+ TvarsDind=ivector(1,NCOVMAX); /* */
+ TvarsD=ivector(1,NCOVMAX); /* */
+ TvarsQind=ivector(1,NCOVMAX); /* */
+ TvarsQ=ivector(1,NCOVMAX); /* */
+ TvarF=ivector(1,NCOVMAX); /* */
+ TvarFind=ivector(1,NCOVMAX); /* */
+ TvarV=ivector(1,NCOVMAX); /* */
+ TvarVind=ivector(1,NCOVMAX); /* */
+ TvarA=ivector(1,NCOVMAX); /* */
+ TvarAind=ivector(1,NCOVMAX); /* */
+ TvarFD=ivector(1,NCOVMAX); /* */
+ TvarFDind=ivector(1,NCOVMAX); /* */
+ TvarFQ=ivector(1,NCOVMAX); /* */
+ TvarFQind=ivector(1,NCOVMAX); /* */
+ TvarVD=ivector(1,NCOVMAX); /* */
+ TvarVDind=ivector(1,NCOVMAX); /* */
+ TvarVQ=ivector(1,NCOVMAX); /* */
+ TvarVQind=ivector(1,NCOVMAX); /* */
+
+ Tvalsel=vector(1,NCOVMAX); /* */
+ Tvarsel=ivector(1,NCOVMAX); /* */
+ Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
+ Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
+ Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
+ /* V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs).
+ For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4,
+ Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
+ */
+ /* For model-covariate k tells which data-covariate to use but
+ because this model-covariate is a construction we invent a new column
+ ncovcol + k1
+ If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
+ Tvar[3=V1*V4]=4+1 etc */
+ Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
+ Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
+ /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
+ if V2+V1+V1*V4+age*V3+V3*V2 TProd[k1=2]=5 (V3*V2)
+ Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2
+ */
+ Tvaraff=ivector(1,NCOVMAX); /* Unclear */
+ Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1] and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
+ * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd.
+ * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
+ Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
+ 4 covariates (3 plus signs)
+ Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
+ */
+ Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
+ * individual dummy, fixed or varying:
+ * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
+ * 3, 1, 0, 0, 0, 0, 0, 0},
+ * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 ,
+ * V1 df, V2 qf, V3 & V4 dv, V5 qv
+ * Tmodelind[1]@9={9,0,3,2,}*/
+ TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
+ TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
+ * individual quantitative, fixed or varying:
+ * Tmodelqind[1]=1,Tvaraff[1]@9={4,
+ * 3, 1, 0, 0, 0, 0, 0, 0},
+ * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
+/* Main decodemodel */
+
+
+ if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3 = {4, 3, 5}*/
+ goto end;
+
+ if((double)(lastobs-imx)/(double)imx > 1.10){
+ nbwarn++;
+ printf("Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx);
+ fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n effective number of cases imx=%d, please adjust, \n otherwise you are allocating more memory than necessary.\n",lastobs, imx);
+ }
+ /* if(mle==1){*/
+ if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
+ for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
+ }
+
+ /*-calculation of age at interview from date of interview and age at death -*/
+ agev=matrix(1,maxwav,1,imx);
+
+ if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
+ goto end;
+
+
+ agegomp=(int)agemin;
+ free_vector(moisnais,1,n);
+ free_vector(annais,1,n);
+ /* free_matrix(mint,1,maxwav,1,n);
+ free_matrix(anint,1,maxwav,1,n);*/
+ /* free_vector(moisdc,1,n); */
+ /* free_vector(andc,1,n); */
+ /* */
+
+ wav=ivector(1,imx);
+ /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
+ /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
+ /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
+ dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
+ bh=imatrix(1,lastpass-firstpass+2,1,imx);
+ mw=imatrix(1,lastpass-firstpass+2,1,imx);
+
+ /* Concatenates waves */
+ /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
+ Death is a valid wave (if date is known).
+ mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
+ dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
+ and mw[mi+1][i]. dh depends on stepm.
+ */
+
+ concatwav(wav, dh, bh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm);
+ /* */
+
+ free_vector(moisdc,1,n);
+ free_vector(andc,1,n);
+
+ /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
+ nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
+ ncodemax[1]=1;
+ Ndum =ivector(-1,NCOVMAX);
+ cptcoveff=0;
+ if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
+ tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
+ }
+
+ ncovcombmax=pow(2,cptcoveff);
+ invalidvarcomb=ivector(1, ncovcombmax);
+ for(i=1;i 0) */
+ m=pow(2,cptcoveff);
+
+ /**< codtab(h,k) k = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
+ * For k=4 covariates, h goes from 1 to m=2**k
+ * codtabm(h,k)= (1 & (h-1) >> (k-1)) + 1;
+ * #define codtabm(h,k) (1 & (h-1) >> (k-1))+1
+ * h\k 1 2 3 4
+ *______________________________
+ * 1 i=1 1 i=1 1 i=1 1 i=1 1
+ * 2 2 1 1 1
+ * 3 i=2 1 2 1 1
+ * 4 2 2 1 1
+ * 5 i=3 1 i=2 1 2 1
+ * 6 2 1 2 1
+ * 7 i=4 1 2 2 1
+ * 8 2 2 2 1
+ * 9 i=5 1 i=3 1 i=2 1 2
+ * 10 2 1 1 2
+ * 11 i=6 1 2 1 2
+ * 12 2 2 1 2
+ * 13 i=7 1 i=4 1 2 2
+ * 14 2 1 2 2
+ * 15 i=8 1 2 2 2
+ * 16 2 2 2 2
+ */
+ /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
+ /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
+ * and the value of each covariate?
+ * V1=1, V2=1, V3=2, V4=1 ?
+ * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
+ * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
+ * In order to get the real value in the data, we use nbcode
+ * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
+ * We are keeping this crazy system in order to be able (in the future?)
+ * to have more than 2 values (0 or 1) for a covariate.
+ * #define codtabm(h,k) (1 & (h-1) >> (k-1))+1
+ * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
+ * bbbbbbbb
+ * 76543210
+ * h-1 00000101 (6-1=5)
+ *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
+ * &
+ * 1 00000001 (1)
+ * 00000000 = 1 & ((h-1) >> (k-1))
+ * +1= 00000001 =1
+ *
+ * h=14, k=3 => h'=h-1=13, k'=k-1=2
+ * h' 1101 =2^3+2^2+0x2^1+2^0
+ * >>k' 11
+ * & 00000001
+ * = 00000001
+ * +1 = 00000010=2 = codtabm(14,3)
+ * Reverse h=6 and m=16?
+ * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
+ * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
+ * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1
+ * decodtabm(h,j,cptcoveff)= (h <= (1<> (j-1)) & 1) +1 : -1)
+ * V3=decodtabm(14,3,2**4)=2
+ * h'=13 1101 =2^3+2^2+0x2^1+2^0
+ *(h-1) >> (j-1) 0011 =13 >> 2
+ * &1 000000001
+ * = 000000001
+ * +1= 000000010 =2
+ * 2211
+ * V1=1+1, V2=0+1, V3=1+1, V4=1+1
+ * V3=2
+ * codtabm and decodtabm are identical
+ */
+
+
+ free_ivector(Ndum,-1,NCOVMAX);
+
+
+
+ /* Initialisation of ----------- gnuplot -------------*/
+ strcpy(optionfilegnuplot,optionfilefiname);
+ if(mle==-3)
+ strcat(optionfilegnuplot,"-MORT_");
+ strcat(optionfilegnuplot,".gp");
+
+ if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
+ printf("Problem with file %s",optionfilegnuplot);
+ }
+ else{
+ fprintf(ficgp,"\n# IMaCh-%s\n", version);
+ fprintf(ficgp,"# %s\n", optionfilegnuplot);
+ //fprintf(ficgp,"set missing 'NaNq'\n");
+ fprintf(ficgp,"set datafile missing 'NaNq'\n");
+ }
+ /* fclose(ficgp);*/
+
+
+ /* Initialisation of --------- index.htm --------*/
+
+ strcpy(optionfilehtm,optionfilefiname); /* Main html file */
+ if(mle==-3)
+ strcat(optionfilehtm,"-MORT_");
+ strcat(optionfilehtm,".htm");
+ if((fichtm=fopen(optionfilehtm,"w"))==NULL) {
+ printf("Problem with %s \n",optionfilehtm);
+ exit(0);
+ }
+
+ strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
+ strcat(optionfilehtmcov,"-cov.htm");
+ if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL) {
+ printf("Problem with %s \n",optionfilehtmcov), exit(0);
+ }
+ else{
+ fprintf(fichtmcov,"\nIMaCh Cov %s\n %s
%s \
+
\n\
+Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n",\
+ optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
+ }
+
+ fprintf(fichtm,"\n\n\nIMaCh %s\n IMaCh for Interpolated Markov Chain
\nSponsored by Copyright (C) 2002-2015 INED-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本å¦è¡“振興会 (Grant-in-Aid for Scientific Research 25293121) - Intel Software 2015-2018
\
+
\n\
+IMaCh-%s
%s \
+
\n\
+Title=%s
Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s
\n\
+\n\
+
\
+ Parameter files
\n\
+ - Parameter file: %s.%s
\n\
+ - Copy of the parameter file: o%s
\n\
+ - Log file of the run: %s
\n\
+ - Gnuplot file name: %s
\n\
+ - Date and time at start: %s
\n",\
+ optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
+ optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
+ fileres,fileres,\
+ filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
+ fflush(fichtm);
+
+ strcpy(pathr,path);
+ strcat(pathr,optionfilefiname);
+#ifdef WIN32
+ _chdir(optionfilefiname); /* Move to directory named optionfile */
+#else
+ chdir(optionfilefiname); /* Move to directory named optionfile */
+#endif
+
+
+ /* Calculates basic frequencies. Computes observed prevalence at single age
+ and for any valid combination of covariates
+ and prints on file fileres'p'. */
+ freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
+ firstpass, lastpass, stepm, weightopt, model);
+
+ fprintf(fichtm,"\n");
+ fprintf(fichtm,"
Total number of observations=%d
\n\
+Youngest age at first (selected) pass %.2f, oldest age %.2f
\n\
+Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf
\n",\
+ imx,agemin,agemax,jmin,jmax,jmean);
+ pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
+ oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
+ newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
+ savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
+ oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
+
+ /* For Powell, parameters are in a vector p[] starting at p[1]
+ so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
+ p=param[1][1]; /* *(*(*(param +1)+1)+0) */
+
+ globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
+ /* For mortality only */
+ if (mle==-3){
+ ximort=matrix(1,NDIM,1,NDIM);
+ for(i=1;i<=NDIM;i++)
+ for(j=1;j<=NDIM;j++)
+ ximort[i][j]=0.;
+ /* ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
+ cens=ivector(1,n);
+ ageexmed=vector(1,n);
+ agecens=vector(1,n);
+ dcwave=ivector(1,n);
+
+ for (i=1; i<=imx; i++){
+ dcwave[i]=-1;
+ for (m=firstpass; m<=lastpass; m++)
+ if (s[m][i]>nlstate) {
+ dcwave[i]=m;
+ /* printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
+ break;
+ }
+ }
+
+ for (i=1; i<=imx; i++) {
+ if (wav[i]>0){
+ ageexmed[i]=agev[mw[1][i]][i];
+ j=wav[i];
+ agecens[i]=1.;
- fprintf(ficrest," %4.0f",age);
- for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
- for(i=1, epj[j]=0.;i <=nlstate;i++) {
- epj[j] += prlim[i][i]*eij[i][j][(int)age];
- /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
- }
- epj[nlstate+1] +=epj[j];
+ if (ageexmed[i]> 1 && wav[i] > 0){
+ agecens[i]=agev[mw[j][i]][i];
+ cens[i]= 1;
+ }else if (ageexmed[i]< 1)
+ cens[i]= -1;
+ if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
+ cens[i]=0 ;
+ }
+ else cens[i]=-1;
+ }
+
+ for (i=1;i<=NDIM;i++) {
+ for (j=1;j<=NDIM;j++)
+ ximort[i][j]=(i == j ? 1.0 : 0.0);
+ }
+
+ /*p[1]=0.0268; p[NDIM]=0.083;*/
+ /*printf("%lf %lf", p[1], p[2]);*/
+
+
+#ifdef GSL
+ printf("GSL optimization\n"); fprintf(ficlog,"Powell\n");
+#else
+ printf("Powell\n"); fprintf(ficlog,"Powell\n");
+#endif
+ strcpy(filerespow,"POW-MORT_");
+ strcat(filerespow,fileresu);
+ if((ficrespow=fopen(filerespow,"w"))==NULL) {
+ printf("Problem with resultfile: %s\n", filerespow);
+ fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
+ }
+#ifdef GSL
+ fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
+#else
+ fprintf(ficrespow,"# Powell\n# iter -2*LL");
+#endif
+ /* for (i=1;i<=nlstate;i++)
+ for(j=1;j<=nlstate+ndeath;j++)
+ if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
+ */
+ fprintf(ficrespow,"\n");
+#ifdef GSL
+ /* gsl starts here */
+ T = gsl_multimin_fminimizer_nmsimplex;
+ gsl_multimin_fminimizer *sfm = NULL;
+ gsl_vector *ss, *x;
+ gsl_multimin_function minex_func;
+
+ /* Initial vertex size vector */
+ ss = gsl_vector_alloc (NDIM);
+
+ if (ss == NULL){
+ GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
+ }
+ /* Set all step sizes to 1 */
+ gsl_vector_set_all (ss, 0.001);
+
+ /* Starting point */
+
+ x = gsl_vector_alloc (NDIM);
+
+ if (x == NULL){
+ gsl_vector_free(ss);
+ GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
+ }
+
+ /* Initialize method and iterate */
+ /* p[1]=0.0268; p[NDIM]=0.083; */
+ /* gsl_vector_set(x, 0, 0.0268); */
+ /* gsl_vector_set(x, 1, 0.083); */
+ gsl_vector_set(x, 0, p[1]);
+ gsl_vector_set(x, 1, p[2]);
+
+ minex_func.f = &gompertz_f;
+ minex_func.n = NDIM;
+ minex_func.params = (void *)&p; /* ??? */
+
+ sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
+ gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
+
+ printf("Iterations beginning .....\n\n");
+ printf("Iter. # Intercept Slope -Log Likelihood Simplex size\n");
+
+ iteri=0;
+ while (rval == GSL_CONTINUE){
+ iteri++;
+ status = gsl_multimin_fminimizer_iterate(sfm);
+
+ if (status) printf("error: %s\n", gsl_strerror (status));
+ fflush(0);
+
+ if (status)
+ break;
+
+ rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
+ ssval = gsl_multimin_fminimizer_size (sfm);
+
+ if (rval == GSL_SUCCESS)
+ printf ("converged to a local maximum at\n");
+
+ printf("%5d ", iteri);
+ for (it = 0; it < NDIM; it++){
+ printf ("%10.5f ", gsl_vector_get (sfm->x, it));
+ }
+ printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
+ }
+
+ printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
+
+ gsl_vector_free(x); /* initial values */
+ gsl_vector_free(ss); /* inital step size */
+ for (it=0; itx,it);
+ fprintf(ficrespow," %.12lf", p[it]);
+ }
+ gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1) */
+#endif
+#ifdef POWELL
+ powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
+#endif
+ fclose(ficrespow);
+
+ hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz);
+
+ for(i=1; i <=NDIM; i++)
+ for(j=i+1;j<=NDIM;j++)
+ matcov[i][j]=matcov[j][i];
+
+ printf("\nCovariance matrix\n ");
+ fprintf(ficlog,"\nCovariance matrix\n ");
+ for(i=1; i <=NDIM; i++) {
+ for(j=1;j<=NDIM;j++){
+ printf("%f ",matcov[i][j]);
+ fprintf(ficlog,"%f ",matcov[i][j]);
+ }
+ printf("\n "); fprintf(ficlog,"\n ");
+ }
+
+ printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
+ for (i=1;i<=NDIM;i++) {
+ printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
+ fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
+ }
+ lsurv=vector(1,AGESUP);
+ lpop=vector(1,AGESUP);
+ tpop=vector(1,AGESUP);
+ lsurv[agegomp]=100000;
+
+ for (k=agegomp;k<=AGESUP;k++) {
+ agemortsup=k;
+ if (p[1]*exp(p[2]*(k-agegomp))>1) break;
+ }
+
+ for (k=agegomp;k=1){ /* Could be 1 or 2, Real Maximization */
+ /* mlikeli uses func not funcone */
+ /* for(i=1;i= 1) /* To big for the screen */
+ printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n");
+ fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n# ...\n# 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n");
+ /* # 121 Var(a12)\n\ */
+ /* # 122 Cov(b12,a12) Var(b12)\n\ */
+ /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
+ /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
+ /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
+ /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
+ /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
+ /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
+
+
+ /* Just to have a covariance matrix which will be more understandable
+ even is we still don't want to manage dictionary of variables
+ */
+ for(itimes=1;itimes<=2;itimes++){
+ jj=0;
+ for(i=1; i <=nlstate; i++){
+ for(j=1; j <=nlstate+ndeath; j++){
+ if(j==i) continue;
+ for(k=1; k<=ncovmodel;k++){
+ jj++;
+ ca[0]= k+'a'-1;ca[1]='\0';
+ if(itimes==1){
+ if(mle>=1)
+ printf("#%1d%1d%d",i,j,k);
+ fprintf(ficlog,"#%1d%1d%d",i,j,k);
+ fprintf(ficres,"#%1d%1d%d",i,j,k);
+ }else{
+ if(mle>=1)
+ printf("%1d%1d%d",i,j,k);
+ fprintf(ficlog,"%1d%1d%d",i,j,k);
+ fprintf(ficres,"%1d%1d%d",i,j,k);
+ }
+ ll=0;
+ for(li=1;li <=nlstate; li++){
+ for(lj=1;lj <=nlstate+ndeath; lj++){
+ if(lj==li) continue;
+ for(lk=1;lk<=ncovmodel;lk++){
+ ll++;
+ if(ll<=jj){
+ cb[0]= lk +'a'-1;cb[1]='\0';
+ if(ll=1)
+ printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
+ fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
+ fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
+ }else{
+ if(mle>=1)
+ printf(" %.5e",matcov[jj][ll]);
+ fprintf(ficlog," %.5e",matcov[jj][ll]);
+ fprintf(ficres," %.5e",matcov[jj][ll]);
+ }
+ }else{
+ if(itimes==1){
+ if(mle>=1)
+ printf(" Var(%s%1d%1d)",ca,i,j);
+ fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
+ fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
+ }else{
+ if(mle>=1)
+ printf(" %.7e",matcov[jj][ll]);
+ fprintf(ficlog," %.7e",matcov[jj][ll]);
+ fprintf(ficres," %.7e",matcov[jj][ll]);
+ }
+ }
+ }
+ } /* end lk */
+ } /* end lj */
+ } /* end li */
+ if(mle>=1)
+ printf("\n");
+ fprintf(ficlog,"\n");
+ fprintf(ficres,"\n");
+ numlinepar++;
+ } /* end k*/
+ } /*end j */
+ } /* end i */
+ } /* end itimes */
+
+ fflush(ficlog);
+ fflush(ficres);
+ while(fgets(line, MAXLINE, ficpar)) {
+ /* If line starts with a # it is a comment */
+ if (line[0] == '#') {
+ numlinepar++;
+ fputs(line,stdout);
+ fputs(line,ficparo);
+ fputs(line,ficlog);
+ continue;
+ }else
+ break;
+ }
+
+ /* while((c=getc(ficpar))=='#' && c!= EOF){ */
+ /* ungetc(c,ficpar); */
+ /* fgets(line, MAXLINE, ficpar); */
+ /* fputs(line,stdout); */
+ /* fputs(line,ficparo); */
+ /* } */
+ /* ungetc(c,ficpar); */
+
+ estepm=0;
+ if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
+
+ if (num_filled != 6) {
+ printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
+ fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
+ goto end;
+ }
+ printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
+ }
+ /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
+ /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
+
+ /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
+ if (estepm==0 || estepm < stepm) estepm=stepm;
+ if (fage <= 2) {
+ bage = ageminpar;
+ fage = agemaxpar;
+ }
+
+ fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
+ fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
+ fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
+
+ /* Other stuffs, more or less useful */
+ while((c=getc(ficpar))=='#' && c!= EOF){
+ ungetc(c,ficpar);
+ fgets(line, MAXLINE, ficpar);
+ fputs(line,stdout);
+ fputs(line,ficparo);
+ }
+ ungetc(c,ficpar);
+
+ fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
+ fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
+ fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
+ printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
+ fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
+
+ while((c=getc(ficpar))=='#' && c!= EOF){
+ ungetc(c,ficpar);
+ fgets(line, MAXLINE, ficpar);
+ fputs(line,stdout);
+ fputs(line,ficparo);
+ }
+ ungetc(c,ficpar);
+
+
+ dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
+ dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
+
+ fscanf(ficpar,"pop_based=%d\n",&popbased);
+ fprintf(ficlog,"pop_based=%d\n",popbased);
+ fprintf(ficparo,"pop_based=%d\n",popbased);
+ fprintf(ficres,"pop_based=%d\n",popbased);
+
+ while((c=getc(ficpar))=='#' && c!= EOF){
+ ungetc(c,ficpar);
+ fgets(line, MAXLINE, ficpar);
+ fputs(line,stdout);
+ fputs(line,ficres);
+ fputs(line,ficparo);
+ }
+ ungetc(c,ficpar);
+
+ fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
+ fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
+ printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
+ fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
+ fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
+ /* day and month of proj2 are not used but only year anproj2.*/
+
+ while((c=getc(ficpar))=='#' && c!= EOF){
+ ungetc(c,ficpar);
+ fgets(line, MAXLINE, ficpar);
+ fputs(line,stdout);
+ fputs(line,ficparo);
+ fputs(line,ficres);
+ }
+ ungetc(c,ficpar);
+
+ fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
+ fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
+ fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
+ fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
+ /* day and month of proj2 are not used but only year anproj2.*/
+
+ /* Results */
+ nresult=0;
+ while(fgets(line, MAXLINE, ficpar)) {
+ /* If line starts with a # it is a comment */
+ if (line[0] == '#') {
+ numlinepar++;
+ fputs(line,stdout);
+ fputs(line,ficparo);
+ fputs(line,ficlog);
+ fputs(line,ficres);
+ continue;
+ }else
+ break;
+ }
+ if (!feof(ficpar))
+ while((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){
+ if (num_filled == 0){
+ resultline[0]='\0';
+ break;
+ } else if (num_filled != 1){
+ printf("ERROR %d: result line should be at minimum 'result=' %s\n",num_filled, line);
+ }
+ nresult++; /* Sum of resultlines */
+ printf("Result %d: result=%s\n",nresult, resultline);
+ if(nresult > MAXRESULTLINES){
+ printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
+ fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
+ goto end;
+ }
+ decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
+ fprintf(ficparo,"result: %s\n",resultline);
+ fprintf(ficres,"result: %s\n",resultline);
+ fprintf(ficlog,"result: %s\n",resultline);
+ while(fgets(line, MAXLINE, ficpar)) {
+ /* If line starts with a # it is a comment */
+ if (line[0] == '#') {
+ numlinepar++;
+ fputs(line,stdout);
+ fputs(line,ficparo);
+ fputs(line,ficres);
+ fputs(line,ficlog);
+ continue;
+ }else
+ break;
+ }
+ if (feof(ficpar))
+ break;
+ else{ /* Processess output results for this combination of covariate values */
+ }
+ } /* end while */
+
- for(i=1, vepp=0.;i <=nlstate;i++)
- for(j=1;j <=nlstate;j++)
- vepp += vareij[i][j][(int)age];
- fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
- for(j=1;j <=nlstate;j++){
- fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
+
+ /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
+ /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
+
+ replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
+ if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
+ printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
+This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\
+Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
+ fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
+This is probably because your parameter file doesn't \n contain the exact number of lines (or columns) corresponding to your model line.\n\
+Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
+ }else{
+ printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p);
+ }
+ printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
+ model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \
+ jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
+
+ /*------------ free_vector -------------*/
+ /* chdir(path); */
+
+ /* free_ivector(wav,1,imx); */ /* Moved after last prevalence call */
+ /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
+ /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
+ /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx); */
+ free_lvector(num,1,n);
+ free_vector(agedc,1,n);
+ /*free_matrix(covar,0,NCOVMAX,1,n);*/
+ /*free_matrix(covar,1,NCOVMAX,1,n);*/
+ fclose(ficparo);
+ fclose(ficres);
+
+
+ /* Other results (useful)*/
+
+
+ /*--------------- Prevalence limit (period or stable prevalence) --------------*/
+ /*#include "prevlim.h"*/ /* Use ficrespl, ficlog */
+ prlim=matrix(1,nlstate,1,nlstate);
+ prevalence_limit(p, prlim, ageminpar, agemaxpar, ftolpl, &ncvyear);
+ fclose(ficrespl);
+
+ /*------------- h Pij x at various ages ------------*/
+ /*#include "hpijx.h"*/
+ hPijx(p, bage, fage);
+ fclose(ficrespij);
+
+ /* ncovcombmax= pow(2,cptcoveff); */
+ /*-------------- Variance of one-step probabilities---*/
+ k=1;
+ varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
+
+ /* Prevalence for each covariates in probs[age][status][cov] */
+ probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
+ for(i=1;i<=AGESUP;i++)
+ for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
+ for(k=1;k<=ncovcombmax;k++)
+ probs[i][j][k]=0.;
+ prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
+ if (mobilav!=0 ||mobilavproj !=0 ) {
+ mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
+ for(i=1;i<=AGESUP;i++)
+ for(j=1;j<=nlstate;j++)
+ for(k=1;k<=ncovcombmax;k++)
+ mobaverages[i][j][k]=0.;
+ mobaverage=mobaverages;
+ if (mobilav!=0) {
+ printf("Movingaveraging observed prevalence\n");
+ if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
+ fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
+ printf(" Error in movingaverage mobilav=%d\n",mobilav);
+ }
+ }
+ /* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */
+ /* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
+ else if (mobilavproj !=0) {
+ printf("Movingaveraging projected observed prevalence\n");
+ if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
+ fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
+ printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
}
- fprintf(ficrest,"\n");
}
+ }/* end if moving average */
+
+ /*---------- Forecasting ------------------*/
+ /*if((stepm == 1) && (strcmp(model,".")==0)){*/
+ if(prevfcast==1){
+ /* if(stepm ==1){*/
+ prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
+ }
+ if(backcast==1){
+ ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
+ ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
+ ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
+
+ /*--------------- Back Prevalence limit (period or stable prevalence) --------------*/
+
+ bprlim=matrix(1,nlstate,1,nlstate);
+ back_prevalence_limit(p, bprlim, ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
+ fclose(ficresplb);
+
+ hBijx(p, bage, fage, mobaverage);
+ fclose(ficrespijb);
+ free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
+
+ /* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj,
+ bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
+ free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
+ free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
+ free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
+ }
+
+
+ /* ------ Other prevalence ratios------------ */
+
+ free_ivector(wav,1,imx);
+ free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
+ free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
+ free_imatrix(mw,1,lastpass-firstpass+2,1,imx);
+
+
+ /*---------- Health expectancies, no variances ------------*/
+
+ strcpy(filerese,"E_");
+ strcat(filerese,fileresu);
+ if((ficreseij=fopen(filerese,"w"))==NULL) {
+ printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
+ fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
+ }
+ printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
+ fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
+
+ pstamp(ficreseij);
+
+ i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
+ if (cptcovn < 1){i1=1;}
+
+ for(nres=1; nres <= nresult; nres++) /* For each resultline */
+ for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
+ if(TKresult[nres]!= k)
+ continue;
+ fprintf(ficreseij,"\n#****** ");
+ printf("\n#****** ");
+ for(j=1;j<=cptcoveff;j++) {
+ fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ }
+ for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
+ printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ }
+ fprintf(ficreseij,"******\n");
+ printf("******\n");
+
+ eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
+ oldm=oldms;savm=savms;
+ evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);
+
+ free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
+ }
+ fclose(ficreseij);
+ printf("done evsij\n");fflush(stdout);
+ fprintf(ficlog,"done evsij\n");fflush(ficlog);
+
+ /*---------- State-specific expectancies and variances ------------*/
+
+
+ strcpy(filerest,"T_");
+ strcat(filerest,fileresu);
+ if((ficrest=fopen(filerest,"w"))==NULL) {
+ printf("Problem with total LE resultfile: %s\n", filerest);goto end;
+ fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
+ }
+ printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
+ fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
+
+
+ strcpy(fileresstde,"STDE_");
+ strcat(fileresstde,fileresu);
+ if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
+ printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
+ fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
+ }
+ printf(" Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
+ fprintf(ficlog," Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
+
+ strcpy(filerescve,"CVE_");
+ strcat(filerescve,fileresu);
+ if((ficrescveij=fopen(filerescve,"w"))==NULL) {
+ printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
+ fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
+ }
+ printf(" Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
+ fprintf(ficlog," Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
+
+ strcpy(fileresv,"V_");
+ strcat(fileresv,fileresu);
+ if((ficresvij=fopen(fileresv,"w"))==NULL) {
+ printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
+ fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
+ }
+ printf(" Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
+ fprintf(ficlog," Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
+
+ /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
+ for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
+
+ i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
+ if (cptcovn < 1){i1=1;}
+
+ for(nres=1; nres <= nresult; nres++) /* For each resultline */
+ for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
+ if(TKresult[nres]!= k)
+ continue;
+ printf("\n#****** Result for:");
+ fprintf(ficrest,"\n#****** Result for:");
+ fprintf(ficlog,"\n#****** Result for:");
+ for(j=1;j<=cptcoveff;j++){
+ printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ }
+ for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
+ printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ }
+ fprintf(ficrest,"******\n");
+ fprintf(ficlog,"******\n");
+ printf("******\n");
+
+ fprintf(ficresstdeij,"\n#****** ");
+ fprintf(ficrescveij,"\n#****** ");
+ for(j=1;j<=cptcoveff;j++) {
+ fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ }
+ for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
+ fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ }
+ fprintf(ficresstdeij,"******\n");
+ fprintf(ficrescveij,"******\n");
+
+ fprintf(ficresvij,"\n#****** ");
+ /* pstamp(ficresvij); */
+ for(j=1;j<=cptcoveff;j++)
+ fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
+ fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ }
+ fprintf(ficresvij,"******\n");
+
+ eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
+ oldm=oldms;savm=savms;
+ printf(" cvevsij ");
+ fprintf(ficlog, " cvevsij ");
+ cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
+ printf(" end cvevsij \n ");
+ fprintf(ficlog, " end cvevsij \n ");
+
+ /*
+ */
+ /* goto endfree; */
+
+ vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
+ pstamp(ficrest);
+
+
+ for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
+ oldm=oldms;savm=savms; /* ZZ Segmentation fault */
+ cptcod= 0; /* To be deleted */
+ printf("varevsij vpopbased=%d \n",vpopbased);
+ fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
+ varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
+ fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n# (weighted average of eij where weights are ");
+ if(vpopbased==1)
+ fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
+ else
+ fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
+ fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
+ for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
+ fprintf(ficrest,"\n");
+ /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
+ epj=vector(1,nlstate+1);
+ printf("Computing age specific period (stable) prevalences in each health state \n");
+ fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
+ for(age=bage; age <=fage ;age++){
+ prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
+ if (vpopbased==1) {
+ if(mobilav ==0){
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=probs[(int)age][i][k];
+ }else{ /* mobilav */
+ for(i=1; i<=nlstate;i++)
+ prlim[i][i]=mobaverage[(int)age][i][k];
+ }
+ }
+
+ fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
+ /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
+ /* printf(" age %4.0f ",age); */
+ for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
+ for(i=1, epj[j]=0.;i <=nlstate;i++) {
+ epj[j] += prlim[i][i]*eij[i][j][(int)age];
+ /*ZZZ printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
+ /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
+ }
+ epj[nlstate+1] +=epj[j];
+ }
+ /* printf(" age %4.0f \n",age); */
+
+ for(i=1, vepp=0.;i <=nlstate;i++)
+ for(j=1;j <=nlstate;j++)
+ vepp += vareij[i][j][(int)age];
+ fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
+ for(j=1;j <=nlstate;j++){
+ fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
+ }
+ fprintf(ficrest,"\n");
+ }
+ } /* End vpopbased */
free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
free_vector(epj,1,nlstate+1);
+ printf("done selection\n");fflush(stdout);
+ fprintf(ficlog,"done selection\n");fflush(ficlog);
+
+ /*}*/
+ } /* End k selection */
+
+ printf("done State-specific expectancies\n");fflush(stdout);
+ fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
+
+ /*------- Variance of period (stable) prevalence------*/
+
+ strcpy(fileresvpl,"VPL_");
+ strcat(fileresvpl,fileresu);
+ if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
+ printf("Problem with variance of period (stable) prevalence resultfile: %s\n", fileresvpl);
+ exit(0);
}
- }
- free_vector(weight,1,n);
- free_imatrix(Tvard,1,15,1,2);
- free_imatrix(s,1,maxwav+1,1,n);
- free_matrix(anint,1,maxwav,1,n);
- free_matrix(mint,1,maxwav,1,n);
- free_ivector(cod,1,n);
- free_ivector(tab,1,NCOVMAX);
- fclose(ficreseij);
- fclose(ficresvij);
- fclose(ficrest);
- fclose(ficpar);
-
- /*------- Variance of stable prevalence------*/
-
- strcpy(fileresvpl,"vpl");
- strcat(fileresvpl,fileres);
- if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
- printf("Problem with variance of stable prevalence resultfile: %s\n", fileresvpl);
- exit(0);
- }
- printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
+ printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
+ fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
+
+ /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
+ for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
+
+ i1=pow(2,cptcoveff);
+ if (cptcovn < 1){i1=1;}
- for(cptcov=1,k=0;cptcov<=i1;cptcov++){
- for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
- k=k+1;
+ for(nres=1; nres <= nresult; nres++) /* For each resultline */
+ for(k=1; k<=i1;k++){
+ if(TKresult[nres]!= k)
+ continue;
fprintf(ficresvpl,"\n#****** ");
- for(j=1;j<=cptcoveff;j++)
- fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
+ printf("\n#****** ");
+ fprintf(ficlog,"\n#****** ");
+ for(j=1;j<=cptcoveff;j++) {
+ fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
+ }
+ for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
+ printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
+ }
fprintf(ficresvpl,"******\n");
+ printf("******\n");
+ fprintf(ficlog,"******\n");
varpl=matrix(1,nlstate,(int) bage, (int) fage);
oldm=oldms;savm=savms;
- varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
+ varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart, nres);
free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
+ /*}*/
}
- }
-
- fclose(ficresvpl);
-
- /*---------- End : free ----------------*/
- free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
+
+ fclose(ficresvpl);
+ printf("done variance-covariance of period prevalence\n");fflush(stdout);
+ fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
+
+ free_vector(weight,1,n);
+ free_imatrix(Tvard,1,NCOVMAX,1,2);
+ free_imatrix(s,1,maxwav+1,1,n);
+ free_matrix(anint,1,maxwav,1,n);
+ free_matrix(mint,1,maxwav,1,n);
+ free_ivector(cod,1,n);
+ free_ivector(tab,1,NCOVMAX);
+ fclose(ficresstdeij);
+ fclose(ficrescveij);
+ fclose(ficresvij);
+ fclose(ficrest);
+ fclose(ficpar);
+
+
+ /*---------- End : free ----------------*/
+ if (mobilav!=0 ||mobilavproj !=0)
+ free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
+ free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
+ free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
+ free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
+ } /* mle==-3 arrives here for freeing */
+ /* endfree:*/
free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
-
+ free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);
+ free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n);
+ free_matrix(coqvar,1,maxwav,1,n);
free_matrix(covar,0,NCOVMAX,1,n);
free_matrix(matcov,1,npar,1,npar);
- free_vector(delti,1,npar);
+ free_matrix(hess,1,npar,1,npar);
+ /*free_vector(delti,1,npar);*/
+ free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
free_matrix(agev,1,maxwav,1,imx);
free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
- if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
- free_ivector(ncodemax,1,8);
- free_ivector(Tvar,1,15);
- free_ivector(Tprod,1,15);
- free_ivector(Tvaraff,1,15);
- free_ivector(Tage,1,15);
- free_ivector(Tcode,1,100);
-
- fprintf(fichtm,"\n");
- fclose(fichtm);
- fclose(ficgp);
-
- if(erreur >0){
- printf("End of Imach with error or warning %d\n",erreur);
- fprintf(ficlog,"End of Imach with error or warning %d\n",erreur);
+ free_ivector(ncodemax,1,NCOVMAX);
+ free_ivector(ncodemaxwundef,1,NCOVMAX);
+ free_ivector(Dummy,-1,NCOVMAX);
+ free_ivector(Fixed,-1,NCOVMAX);
+ free_ivector(DummyV,1,NCOVMAX);
+ free_ivector(FixedV,1,NCOVMAX);
+ free_ivector(Typevar,-1,NCOVMAX);
+ free_ivector(Tvar,1,NCOVMAX);
+ free_ivector(TvarsQ,1,NCOVMAX);
+ free_ivector(TvarsQind,1,NCOVMAX);
+ free_ivector(TvarsD,1,NCOVMAX);
+ free_ivector(TvarsDind,1,NCOVMAX);
+ free_ivector(TvarFD,1,NCOVMAX);
+ free_ivector(TvarFDind,1,NCOVMAX);
+ free_ivector(TvarF,1,NCOVMAX);
+ free_ivector(TvarFind,1,NCOVMAX);
+ free_ivector(TvarV,1,NCOVMAX);
+ free_ivector(TvarVind,1,NCOVMAX);
+ free_ivector(TvarA,1,NCOVMAX);
+ free_ivector(TvarAind,1,NCOVMAX);
+ free_ivector(TvarFQ,1,NCOVMAX);
+ free_ivector(TvarFQind,1,NCOVMAX);
+ free_ivector(TvarVD,1,NCOVMAX);
+ free_ivector(TvarVDind,1,NCOVMAX);
+ free_ivector(TvarVQ,1,NCOVMAX);
+ free_ivector(TvarVQind,1,NCOVMAX);
+ free_ivector(Tvarsel,1,NCOVMAX);
+ free_vector(Tvalsel,1,NCOVMAX);
+ free_ivector(Tposprod,1,NCOVMAX);
+ free_ivector(Tprod,1,NCOVMAX);
+ free_ivector(Tvaraff,1,NCOVMAX);
+ free_ivector(invalidvarcomb,1,ncovcombmax);
+ free_ivector(Tage,1,NCOVMAX);
+ free_ivector(Tmodelind,1,NCOVMAX);
+ free_ivector(TmodelInvind,1,NCOVMAX);
+ free_ivector(TmodelInvQind,1,NCOVMAX);
+
+ free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
+ /* free_imatrix(codtab,1,100,1,10); */
+ fflush(fichtm);
+ fflush(ficgp);
+
+
+ if((nberr >0) || (nbwarn>0)){
+ printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
+ fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
}else{
- printf("End of Imach\n");
- fprintf(ficlog,"End of Imach\n");
+ printf("End of Imach\n");
+ fprintf(ficlog,"End of Imach\n");
}
printf("See log file on %s\n",filelog);
- fclose(ficlog);
/* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */
-
- /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
- /*printf("Total time was %d uSec.\n", total_usecs);*/
+ /*(void) gettimeofday(&end_time,&tzp);*/
+ rend_time = time(NULL);
+ end_time = *localtime(&rend_time);
+ /* tml = *localtime(&end_time.tm_sec); */
+ strcpy(strtend,asctime(&end_time));
+ printf("Local time at start %s\nLocal time at end %s",strstart, strtend);
+ fprintf(ficlog,"Local time at start %s\nLocal time at end %s\n",strstart, strtend);
+ printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
+
+ printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
+ fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
+ fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
+ /* printf("Total time was %d uSec.\n", total_usecs);*/
+/* if(fileappend(fichtm,optionfilehtm)){ */
+ fprintf(fichtm,"
Local time at start %s
Local time at end %s
\n",strstart, strtend);
+ fclose(fichtm);
+ fprintf(fichtmcov,"
Local time at start %s
Local time at end %s
\n",strstart, strtend);
+ fclose(fichtmcov);
+ fclose(ficgp);
+ fclose(ficlog);
/*------ End -----------*/
-
- end:
-#ifdef windows
- /* chdir(pathcd);*/
+
+
+ printf("Before Current directory %s!\n",pathcd);
+#ifdef WIN32
+ if (_chdir(pathcd) != 0)
+ printf("Can't move to directory %s!\n",path);
+ if(_getcwd(pathcd,MAXLINE) > 0)
+#else
+ if(chdir(pathcd) != 0)
+ printf("Can't move to directory %s!\n", path);
+ if (getcwd(pathcd, MAXLINE) > 0)
#endif
- /*system("wgnuplot graph.plt");*/
- /*system("../gp37mgw/wgnuplot graph.plt");*/
- /*system("cd ../gp37mgw");*/
- /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
- strcpy(plotcmd,GNUPLOTPROGRAM);
- strcat(plotcmd," ");
- strcat(plotcmd,optionfilegnuplot);
- printf("Starting: %s\n",plotcmd);fflush(stdout);
- system(plotcmd);
-
- /*#ifdef windows*/
+ printf("Current directory %s!\n",pathcd);
+ /*strcat(plotcmd,CHARSEPARATOR);*/
+ sprintf(plotcmd,"gnuplot");
+#ifdef _WIN32
+ sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
+#endif
+ if(!stat(plotcmd,&info)){
+ printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
+ if(!stat(getenv("GNUPLOTBIN"),&info)){
+ printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
+ }else
+ strcpy(pplotcmd,plotcmd);
+#ifdef __unix
+ strcpy(plotcmd,GNUPLOTPROGRAM);
+ if(!stat(plotcmd,&info)){
+ printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
+ }else
+ strcpy(pplotcmd,plotcmd);
+#endif
+ }else
+ strcpy(pplotcmd,plotcmd);
+
+ sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
+ printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
+
+ if((outcmd=system(plotcmd)) != 0){
+ printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
+ printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
+ sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
+ if((outcmd=system(plotcmd)) != 0)
+ printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
+ }
+ printf(" Successful, please wait...");
while (z[0] != 'q') {
/* chdir(path); */
- printf("\nType e to edit output files, g to graph again, c to start again, and q for exiting: ");
+ printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
scanf("%s",z);
- if (z[0] == 'c') system("./imach");
- else if (z[0] == 'e') system(optionfilehtm);
+/* if (z[0] == 'c') system("./imach"); */
+ if (z[0] == 'e') {
+#ifdef __APPLE__
+ sprintf(pplotcmd, "open %s", optionfilehtm);
+#elif __linux
+ sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
+#else
+ sprintf(pplotcmd, "%s", optionfilehtm);
+#endif
+ printf("Starting browser with: %s",pplotcmd);fflush(stdout);
+ system(pplotcmd);
+ }
else if (z[0] == 'g') system(plotcmd);
else if (z[0] == 'q') exit(0);
}
- /*#endif */
+end:
+ while (z[0] != 'q') {
+ printf("\nType q for exiting: "); fflush(stdout);
+ scanf("%s",z);
+ }
}
-
-