Annotation of imach/src/imach.c, revision 1.101

1.101   ! brouard     1: /* $Id: imach.c,v 1.100 2004/07/12 18:29:06 brouard Exp $
1.83      lievre      2:   $State: Exp $
                      3:   $Log: imach.c,v $
1.101   ! brouard     4:   Revision 1.100  2004/07/12 18:29:06  brouard
        !             5:   Add version for Mac OS X. Just define UNIX in Makefile
        !             6: 
1.100     brouard     7:   Revision 1.99  2004/06/05 08:57:40  brouard
                      8:   *** empty log message ***
                      9: 
1.99      brouard    10:   Revision 1.98  2004/05/16 15:05:56  brouard
                     11:   New version 0.97 . First attempt to estimate force of mortality
                     12:   directly from the data i.e. without the need of knowing the health
                     13:   state at each age, but using a Gompertz model: log u =a + b*age .
                     14:   This is the basic analysis of mortality and should be done before any
                     15:   other analysis, in order to test if the mortality estimated from the
                     16:   cross-longitudinal survey is different from the mortality estimated
                     17:   from other sources like vital statistic data.
                     18: 
                     19:   The same imach parameter file can be used but the option for mle should be -3.
                     20: 
                     21:   Agnès, who wrote this part of the code, tried to keep most of the
                     22:   former routines in order to include the new code within the former code.
                     23: 
                     24:   The output is very simple: only an estimate of the intercept and of
                     25:   the slope with 95% confident intervals.
                     26: 
                     27:   Current limitations:
                     28:   A) Even if you enter covariates, i.e. with the
                     29:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
                     30:   B) There is no computation of Life Expectancy nor Life Table.
                     31: 
1.98      brouard    32:   Revision 1.97  2004/02/20 13:25:42  lievre
                     33:   Version 0.96d. Population forecasting command line is (temporarily)
                     34:   suppressed.
                     35: 
1.97      lievre     36:   Revision 1.96  2003/07/15 15:38:55  brouard
                     37:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
                     38:   rewritten within the same printf. Workaround: many printfs.
                     39: 
1.96      brouard    40:   Revision 1.95  2003/07/08 07:54:34  brouard
                     41:   * imach.c (Repository):
                     42:   (Repository): Using imachwizard code to output a more meaningful covariance
                     43:   matrix (cov(a12,c31) instead of numbers.
                     44: 
1.95      brouard    45:   Revision 1.94  2003/06/27 13:00:02  brouard
                     46:   Just cleaning
                     47: 
1.94      brouard    48:   Revision 1.93  2003/06/25 16:33:55  brouard
                     49:   (Module): On windows (cygwin) function asctime_r doesn't
                     50:   exist so I changed back to asctime which exists.
                     51:   (Module): Version 0.96b
                     52: 
1.93      brouard    53:   Revision 1.92  2003/06/25 16:30:45  brouard
                     54:   (Module): On windows (cygwin) function asctime_r doesn't
                     55:   exist so I changed back to asctime which exists.
                     56: 
1.92      brouard    57:   Revision 1.91  2003/06/25 15:30:29  brouard
                     58:   * imach.c (Repository): Duplicated warning errors corrected.
                     59:   (Repository): Elapsed time after each iteration is now output. It
                     60:   helps to forecast when convergence will be reached. Elapsed time
                     61:   is stamped in powell.  We created a new html file for the graphs
                     62:   concerning matrix of covariance. It has extension -cov.htm.
                     63: 
1.91      brouard    64:   Revision 1.90  2003/06/24 12:34:15  brouard
                     65:   (Module): Some bugs corrected for windows. Also, when
                     66:   mle=-1 a template is output in file "or"mypar.txt with the design
                     67:   of the covariance matrix to be input.
                     68: 
1.90      brouard    69:   Revision 1.89  2003/06/24 12:30:52  brouard
                     70:   (Module): Some bugs corrected for windows. Also, when
                     71:   mle=-1 a template is output in file "or"mypar.txt with the design
                     72:   of the covariance matrix to be input.
                     73: 
1.89      brouard    74:   Revision 1.88  2003/06/23 17:54:56  brouard
                     75:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
                     76: 
1.88      brouard    77:   Revision 1.87  2003/06/18 12:26:01  brouard
                     78:   Version 0.96
                     79: 
1.87      brouard    80:   Revision 1.86  2003/06/17 20:04:08  brouard
                     81:   (Module): Change position of html and gnuplot routines and added
                     82:   routine fileappend.
                     83: 
1.86      brouard    84:   Revision 1.85  2003/06/17 13:12:43  brouard
                     85:   * imach.c (Repository): Check when date of death was earlier that
                     86:   current date of interview. It may happen when the death was just
                     87:   prior to the death. In this case, dh was negative and likelihood
                     88:   was wrong (infinity). We still send an "Error" but patch by
                     89:   assuming that the date of death was just one stepm after the
                     90:   interview.
                     91:   (Repository): Because some people have very long ID (first column)
                     92:   we changed int to long in num[] and we added a new lvector for
                     93:   memory allocation. But we also truncated to 8 characters (left
                     94:   truncation)
                     95:   (Repository): No more line truncation errors.
                     96: 
1.85      brouard    97:   Revision 1.84  2003/06/13 21:44:43  brouard
                     98:   * imach.c (Repository): Replace "freqsummary" at a correct
                     99:   place. It differs from routine "prevalence" which may be called
                    100:   many times. Probs is memory consuming and must be used with
                    101:   parcimony.
1.86      brouard   102:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
1.85      brouard   103: 
1.84      brouard   104:   Revision 1.83  2003/06/10 13:39:11  lievre
                    105:   *** empty log message ***
                    106: 
1.83      lievre    107:   Revision 1.82  2003/06/05 15:57:20  brouard
                    108:   Add log in  imach.c and  fullversion number is now printed.
                    109: 
1.82      brouard   110: */
                    111: /*
1.53      brouard   112:    Interpolated Markov Chain
                    113: 
                    114:   Short summary of the programme:
                    115:   
                    116:   This program computes Healthy Life Expectancies from
                    117:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
                    118:   first survey ("cross") where individuals from different ages are
                    119:   interviewed on their health status or degree of disability (in the
                    120:   case of a health survey which is our main interest) -2- at least a
                    121:   second wave of interviews ("longitudinal") which measure each change
                    122:   (if any) in individual health status.  Health expectancies are
                    123:   computed from the time spent in each health state according to a
                    124:   model. More health states you consider, more time is necessary to reach the
                    125:   Maximum Likelihood of the parameters involved in the model.  The
                    126:   simplest model is the multinomial logistic model where pij is the
                    127:   probability to be observed in state j at the second wave
                    128:   conditional to be observed in state i at the first wave. Therefore
                    129:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
                    130:   'age' is age and 'sex' is a covariate. If you want to have a more
                    131:   complex model than "constant and age", you should modify the program
                    132:   where the markup *Covariates have to be included here again* invites
                    133:   you to do it.  More covariates you add, slower the
                    134:   convergence.
                    135: 
                    136:   The advantage of this computer programme, compared to a simple
                    137:   multinomial logistic model, is clear when the delay between waves is not
                    138:   identical for each individual. Also, if a individual missed an
                    139:   intermediate interview, the information is lost, but taken into
                    140:   account using an interpolation or extrapolation.  
                    141: 
                    142:   hPijx is the probability to be observed in state i at age x+h
                    143:   conditional to the observed state i at age x. The delay 'h' can be
                    144:   split into an exact number (nh*stepm) of unobserved intermediate
1.66      brouard   145:   states. This elementary transition (by month, quarter,
                    146:   semester or year) is modelled as a multinomial logistic.  The hPx
1.53      brouard   147:   matrix is simply the matrix product of nh*stepm elementary matrices
                    148:   and the contribution of each individual to the likelihood is simply
                    149:   hPijx.
                    150: 
                    151:   Also this programme outputs the covariance matrix of the parameters but also
1.54      brouard   152:   of the life expectancies. It also computes the stable prevalence. 
1.53      brouard   153:   
                    154:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
                    155:            Institut national d'études démographiques, Paris.
                    156:   This software have been partly granted by Euro-REVES, a concerted action
                    157:   from the European Union.
                    158:   It is copyrighted identically to a GNU software product, ie programme and
                    159:   software can be distributed freely for non commercial use. Latest version
                    160:   can be accessed at http://euroreves.ined.fr/imach .
1.74      brouard   161: 
                    162:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
                    163:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
                    164:   
1.53      brouard   165:   **********************************************************************/
1.74      brouard   166: /*
                    167:   main
                    168:   read parameterfile
                    169:   read datafile
                    170:   concatwav
1.84      brouard   171:   freqsummary
1.74      brouard   172:   if (mle >= 1)
                    173:     mlikeli
                    174:   print results files
                    175:   if mle==1 
                    176:      computes hessian
                    177:   read end of parameter file: agemin, agemax, bage, fage, estepm
                    178:       begin-prev-date,...
                    179:   open gnuplot file
                    180:   open html file
                    181:   stable prevalence
                    182:    for age prevalim()
                    183:   h Pij x
                    184:   variance of p varprob
                    185:   forecasting if prevfcast==1 prevforecast call prevalence()
                    186:   health expectancies
                    187:   Variance-covariance of DFLE
                    188:   prevalence()
                    189:    movingaverage()
                    190:   varevsij() 
                    191:   if popbased==1 varevsij(,popbased)
                    192:   total life expectancies
                    193:   Variance of stable prevalence
                    194:  end
                    195: */
                    196: 
                    197: 
                    198: 
1.53      brouard   199:  
                    200: #include <math.h>
                    201: #include <stdio.h>
                    202: #include <stdlib.h>
                    203: #include <unistd.h>
                    204: 
1.99      brouard   205: /* #include <sys/time.h> */
1.86      brouard   206: #include <time.h>
                    207: #include "timeval.h"
                    208: 
1.95      brouard   209: /* #include <libintl.h> */
                    210: /* #define _(String) gettext (String) */
                    211: 
1.53      brouard   212: #define MAXLINE 256
                    213: #define GNUPLOTPROGRAM "gnuplot"
                    214: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
1.85      brouard   215: #define FILENAMELENGTH 132
1.53      brouard   216: /*#define DEBUG*/
1.85      brouard   217: /*#define windows*/
1.53      brouard   218: #define        GLOCK_ERROR_NOPATH              -1      /* empty path */
                    219: #define        GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
                    220: 
                    221: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
                    222: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
                    223: 
                    224: #define NINTERVMAX 8
                    225: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
                    226: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
                    227: #define NCOVMAX 8 /* Maximum number of covariates */
                    228: #define MAXN 20000
                    229: #define YEARM 12. /* Number of months per year */
                    230: #define AGESUP 130
                    231: #define AGEBASE 40
1.98      brouard   232: #define AGEGOMP 10. /* Minimal age for Gompertz adjustment */
1.100     brouard   233: #ifdef UNIX
1.85      brouard   234: #define DIRSEPARATOR '/'
                    235: #define ODIRSEPARATOR '\\'
                    236: #else
1.53      brouard   237: #define DIRSEPARATOR '\\'
                    238: #define ODIRSEPARATOR '/'
                    239: #endif
                    240: 
1.101   ! brouard   241: /* $Id: imach.c,v 1.100 2004/07/12 18:29:06 brouard Exp $ */
1.81      brouard   242: /* $State: Exp $ */
1.80      brouard   243: 
1.99      brouard   244: char version[]="Imach version 0.97b, May 2004, INED-EUROREVES ";
1.101   ! brouard   245: char fullversion[]="$Revision: 1.100 $ $Date: 2004/07/12 18:29:06 $"; 
1.91      brouard   246: int erreur, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
1.53      brouard   247: int nvar;
                    248: int cptcovn=0, cptcovage=0, cptcoveff=0,cptcov;
                    249: int npar=NPARMAX;
                    250: int nlstate=2; /* Number of live states */
                    251: int ndeath=1; /* Number of dead states */
                    252: int ncovmodel, ncovcol;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
                    253: int popbased=0;
                    254: 
                    255: int *wav; /* Number of waves for this individuual 0 is possible */
                    256: int maxwav; /* Maxim number of waves */
                    257: int jmin, jmax; /* min, max spacing between 2 waves */
1.87      brouard   258: int gipmx, gsw; /* Global variables on the number of contributions 
                    259:                   to the likelihood and the sum of weights (done by funcone)*/
1.53      brouard   260: int mle, weightopt;
                    261: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
                    262: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
1.59      brouard   263: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                    264:           * wave mi and wave mi+1 is not an exact multiple of stepm. */
1.53      brouard   265: double jmean; /* Mean space between 2 waves */
                    266: double **oldm, **newm, **savm; /* Working pointers to matrices */
                    267: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
                    268: FILE *fic,*ficpar, *ficparo,*ficres,  *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
1.76      brouard   269: FILE *ficlog, *ficrespow;
1.85      brouard   270: int globpr; /* Global variable for printing or not */
                    271: double fretone; /* Only one call to likelihood */
                    272: long ipmx; /* Number of contributions */
                    273: double sw; /* Sum of weights */
1.98      brouard   274: char filerespow[FILENAMELENGTH];
1.85      brouard   275: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
                    276: FILE *ficresilk;
1.53      brouard   277: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                    278: FILE *ficresprobmorprev;
1.91      brouard   279: FILE *fichtm, *fichtmcov; /* Html File */
1.53      brouard   280: FILE *ficreseij;
                    281: char filerese[FILENAMELENGTH];
                    282: FILE  *ficresvij;
                    283: char fileresv[FILENAMELENGTH];
                    284: FILE  *ficresvpl;
                    285: char fileresvpl[FILENAMELENGTH];
                    286: char title[MAXLINE];
                    287: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
                    288: char optionfilext[10], optionfilefiname[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
1.96      brouard   289: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
1.88      brouard   290: char command[FILENAMELENGTH];
                    291: int  outcmd=0;
1.53      brouard   292: 
                    293: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
1.94      brouard   294: 
1.53      brouard   295: char filelog[FILENAMELENGTH]; /* Log file */
                    296: char filerest[FILENAMELENGTH];
                    297: char fileregp[FILENAMELENGTH];
                    298: char popfile[FILENAMELENGTH];
                    299: 
1.91      brouard   300: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
                    301: 
                    302: struct timeval start_time, end_time, curr_time, last_time, forecast_time;
                    303: struct timezone tzp;
                    304: extern int gettimeofday();
                    305: struct tm tmg, tm, tmf, *gmtime(), *localtime();
                    306: long time_value;
                    307: extern long time();
                    308: char strcurr[80], strfor[80];
1.53      brouard   309: 
                    310: #define NR_END 1
                    311: #define FREE_ARG char*
                    312: #define FTOL 1.0e-10
                    313: 
                    314: #define NRANSI 
                    315: #define ITMAX 200 
                    316: 
                    317: #define TOL 2.0e-4 
                    318: 
                    319: #define CGOLD 0.3819660 
                    320: #define ZEPS 1.0e-10 
                    321: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                    322: 
                    323: #define GOLD 1.618034 
                    324: #define GLIMIT 100.0 
                    325: #define TINY 1.0e-20 
                    326: 
                    327: static double maxarg1,maxarg2;
                    328: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
                    329: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
                    330:   
                    331: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
                    332: #define rint(a) floor(a+0.5)
                    333: 
                    334: static double sqrarg;
                    335: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
                    336: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
1.98      brouard   337: int agegomp= AGEGOMP;
1.53      brouard   338: 
                    339: int imx; 
1.98      brouard   340: int stepm=1;
1.53      brouard   341: /* Stepm, step in month: minimum step interpolation*/
                    342: 
                    343: int estepm;
                    344: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
                    345: 
                    346: int m,nb;
1.85      brouard   347: long *num;
1.98      brouard   348: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
1.53      brouard   349: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
1.55      lievre    350: double **pmmij, ***probs;
1.98      brouard   351: double *ageexmed,*agecens;
1.53      brouard   352: double dateintmean=0;
                    353: 
                    354: double *weight;
                    355: int **s; /* Status */
                    356: double *agedc, **covar, idx;
                    357: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
                    358: 
                    359: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
                    360: double ftolhess; /* Tolerance for computing hessian */
                    361: 
                    362: /**************** split *************************/
                    363: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
                    364: {
1.99      brouard   365:   /* From a file name with full path (either Unix or Windows) we extract the directory (dirc)
                    366:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
                    367:   */ 
1.59      brouard   368:   char *ss;                            /* pointer */
                    369:   int  l1, l2;                         /* length counters */
1.53      brouard   370: 
1.59      brouard   371:   l1 = strlen(path );                  /* length of path */
                    372:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
                    373:   ss= strrchr( path, DIRSEPARATOR );           /* find last / */
                    374:   if ( ss == NULL ) {                  /* no directory, so use current */
                    375:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                    376:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
1.74      brouard   377:     /* get current working directory */
                    378:     /*    extern  char* getcwd ( char *buf , int len);*/
1.59      brouard   379:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
                    380:       return( GLOCK_ERROR_GETCWD );
                    381:     }
                    382:     strcpy( name, path );              /* we've got it */
                    383:   } else {                             /* strip direcotry from path */
                    384:     ss++;                              /* after this, the filename */
                    385:     l2 = strlen( ss );                 /* length of filename */
                    386:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
                    387:     strcpy( name, ss );                /* save file name */
                    388:     strncpy( dirc, path, l1 - l2 );    /* now the directory */
                    389:     dirc[l1-l2] = 0;                   /* add zero */
                    390:   }
                    391:   l1 = strlen( dirc );                 /* length of directory */
1.85      brouard   392:   /*#ifdef windows
1.59      brouard   393:   if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
1.53      brouard   394: #else
1.59      brouard   395:   if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
1.53      brouard   396: #endif
1.85      brouard   397:   */
1.59      brouard   398:   ss = strrchr( name, '.' );           /* find last / */
1.99      brouard   399:   if (ss >0){
                    400:     ss++;
                    401:     strcpy(ext,ss);                    /* save extension */
                    402:     l1= strlen( name);
                    403:     l2= strlen(ss)+1;
                    404:     strncpy( finame, name, l1-l2);
                    405:     finame[l1-l2]= 0;
                    406:   }
1.59      brouard   407:   return( 0 );                         /* we're done */
1.53      brouard   408: }
                    409: 
                    410: 
                    411: /******************************************/
                    412: 
1.89      brouard   413: void replace_back_to_slash(char *s, char*t)
1.53      brouard   414: {
                    415:   int i;
1.89      brouard   416:   int lg=0;
1.53      brouard   417:   i=0;
                    418:   lg=strlen(t);
                    419:   for(i=0; i<= lg; i++) {
                    420:     (s[i] = t[i]);
                    421:     if (t[i]== '\\') s[i]='/';
                    422:   }
                    423: }
                    424: 
                    425: int nbocc(char *s, char occ)
                    426: {
                    427:   int i,j=0;
                    428:   int lg=20;
                    429:   i=0;
                    430:   lg=strlen(s);
                    431:   for(i=0; i<= lg; i++) {
                    432:   if  (s[i] == occ ) j++;
                    433:   }
                    434:   return j;
                    435: }
                    436: 
                    437: void cutv(char *u,char *v, char*t, char occ)
                    438: {
                    439:   /* cuts string t into u and v where u is ended by char occ excluding it
                    440:      and v is after occ excluding it too : ex cutv(u,v,"abcdef2ghi2j",2)
                    441:      gives u="abcedf" and v="ghi2j" */
                    442:   int i,lg,j,p=0;
                    443:   i=0;
                    444:   for(j=0; j<=strlen(t)-1; j++) {
                    445:     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
                    446:   }
                    447: 
                    448:   lg=strlen(t);
                    449:   for(j=0; j<p; j++) {
                    450:     (u[j] = t[j]);
                    451:   }
                    452:      u[p]='\0';
                    453: 
                    454:    for(j=0; j<= lg; j++) {
                    455:     if (j>=(p+1))(v[j-p-1] = t[j]);
                    456:   }
                    457: }
                    458: 
                    459: /********************** nrerror ********************/
                    460: 
                    461: void nrerror(char error_text[])
                    462: {
                    463:   fprintf(stderr,"ERREUR ...\n");
                    464:   fprintf(stderr,"%s\n",error_text);
1.59      brouard   465:   exit(EXIT_FAILURE);
1.53      brouard   466: }
                    467: /*********************** vector *******************/
                    468: double *vector(int nl, int nh)
                    469: {
                    470:   double *v;
                    471:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
                    472:   if (!v) nrerror("allocation failure in vector");
                    473:   return v-nl+NR_END;
                    474: }
                    475: 
                    476: /************************ free vector ******************/
                    477: void free_vector(double*v, int nl, int nh)
                    478: {
                    479:   free((FREE_ARG)(v+nl-NR_END));
                    480: }
                    481: 
                    482: /************************ivector *******************************/
1.85      brouard   483: int *ivector(long nl,long nh)
1.76      brouard   484: {
1.85      brouard   485:   int *v;
                    486:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                    487:   if (!v) nrerror("allocation failure in ivector");
1.76      brouard   488:   return v-nl+NR_END;
                    489: }
                    490: 
                    491: /******************free ivector **************************/
1.85      brouard   492: void free_ivector(int *v, long nl, long nh)
1.76      brouard   493: {
                    494:   free((FREE_ARG)(v+nl-NR_END));
                    495: }
                    496: 
1.85      brouard   497: /************************lvector *******************************/
                    498: long *lvector(long nl,long nh)
1.53      brouard   499: {
1.85      brouard   500:   long *v;
                    501:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
1.53      brouard   502:   if (!v) nrerror("allocation failure in ivector");
                    503:   return v-nl+NR_END;
                    504: }
                    505: 
1.85      brouard   506: /******************free lvector **************************/
                    507: void free_lvector(long *v, long nl, long nh)
1.53      brouard   508: {
                    509:   free((FREE_ARG)(v+nl-NR_END));
                    510: }
                    511: 
                    512: /******************* imatrix *******************************/
                    513: int **imatrix(long nrl, long nrh, long ncl, long nch) 
                    514:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
                    515: { 
                    516:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                    517:   int **m; 
                    518:   
                    519:   /* allocate pointers to rows */ 
                    520:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                    521:   if (!m) nrerror("allocation failure 1 in matrix()"); 
                    522:   m += NR_END; 
                    523:   m -= nrl; 
                    524:   
                    525:   
                    526:   /* allocate rows and set pointers to them */ 
                    527:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
                    528:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                    529:   m[nrl] += NR_END; 
                    530:   m[nrl] -= ncl; 
                    531:   
                    532:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                    533:   
                    534:   /* return pointer to array of pointers to rows */ 
                    535:   return m; 
                    536: } 
                    537: 
                    538: /****************** free_imatrix *************************/
                    539: void free_imatrix(m,nrl,nrh,ncl,nch)
                    540:       int **m;
                    541:       long nch,ncl,nrh,nrl; 
                    542:      /* free an int matrix allocated by imatrix() */ 
                    543: { 
                    544:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                    545:   free((FREE_ARG) (m+nrl-NR_END)); 
                    546: } 
                    547: 
                    548: /******************* matrix *******************************/
                    549: double **matrix(long nrl, long nrh, long ncl, long nch)
                    550: {
                    551:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                    552:   double **m;
                    553: 
                    554:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                    555:   if (!m) nrerror("allocation failure 1 in matrix()");
                    556:   m += NR_END;
                    557:   m -= nrl;
                    558: 
                    559:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                    560:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                    561:   m[nrl] += NR_END;
                    562:   m[nrl] -= ncl;
                    563: 
                    564:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                    565:   return m;
1.85      brouard   566:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) 
1.74      brouard   567:    */
1.53      brouard   568: }
                    569: 
                    570: /*************************free matrix ************************/
                    571: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                    572: {
                    573:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                    574:   free((FREE_ARG)(m+nrl-NR_END));
                    575: }
                    576: 
                    577: /******************* ma3x *******************************/
                    578: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                    579: {
                    580:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                    581:   double ***m;
                    582: 
                    583:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                    584:   if (!m) nrerror("allocation failure 1 in matrix()");
                    585:   m += NR_END;
                    586:   m -= nrl;
                    587: 
                    588:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                    589:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                    590:   m[nrl] += NR_END;
                    591:   m[nrl] -= ncl;
                    592: 
                    593:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                    594: 
                    595:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                    596:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                    597:   m[nrl][ncl] += NR_END;
                    598:   m[nrl][ncl] -= nll;
                    599:   for (j=ncl+1; j<=nch; j++) 
                    600:     m[nrl][j]=m[nrl][j-1]+nlay;
                    601:   
                    602:   for (i=nrl+1; i<=nrh; i++) {
                    603:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                    604:     for (j=ncl+1; j<=nch; j++) 
                    605:       m[i][j]=m[i][j-1]+nlay;
                    606:   }
1.74      brouard   607:   return m; 
                    608:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                    609:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                    610:   */
1.53      brouard   611: }
                    612: 
                    613: /*************************free ma3x ************************/
                    614: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                    615: {
                    616:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                    617:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                    618:   free((FREE_ARG)(m+nrl-NR_END));
                    619: }
                    620: 
1.94      brouard   621: /*************** function subdirf ***********/
                    622: char *subdirf(char fileres[])
                    623: {
                    624:   /* Caution optionfilefiname is hidden */
                    625:   strcpy(tmpout,optionfilefiname);
                    626:   strcat(tmpout,"/"); /* Add to the right */
                    627:   strcat(tmpout,fileres);
                    628:   return tmpout;
                    629: }
                    630: 
                    631: /*************** function subdirf2 ***********/
                    632: char *subdirf2(char fileres[], char *preop)
                    633: {
                    634:   
                    635:   /* Caution optionfilefiname is hidden */
                    636:   strcpy(tmpout,optionfilefiname);
                    637:   strcat(tmpout,"/");
                    638:   strcat(tmpout,preop);
                    639:   strcat(tmpout,fileres);
                    640:   return tmpout;
                    641: }
                    642: 
                    643: /*************** function subdirf3 ***********/
                    644: char *subdirf3(char fileres[], char *preop, char *preop2)
                    645: {
                    646:   
                    647:   /* Caution optionfilefiname is hidden */
                    648:   strcpy(tmpout,optionfilefiname);
                    649:   strcat(tmpout,"/");
                    650:   strcat(tmpout,preop);
                    651:   strcat(tmpout,preop2);
                    652:   strcat(tmpout,fileres);
                    653:   return tmpout;
                    654: }
                    655: 
1.53      brouard   656: /***************** f1dim *************************/
                    657: extern int ncom; 
                    658: extern double *pcom,*xicom;
                    659: extern double (*nrfunc)(double []); 
                    660:  
                    661: double f1dim(double x) 
                    662: { 
                    663:   int j; 
                    664:   double f;
                    665:   double *xt; 
                    666:  
                    667:   xt=vector(1,ncom); 
                    668:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                    669:   f=(*nrfunc)(xt); 
                    670:   free_vector(xt,1,ncom); 
                    671:   return f; 
                    672: } 
                    673: 
                    674: /*****************brent *************************/
                    675: double brent(double ax, double bx, double cx, double (*f)(double), double tol,         double *xmin) 
                    676: { 
                    677:   int iter; 
                    678:   double a,b,d,etemp;
                    679:   double fu,fv,fw,fx;
                    680:   double ftemp;
                    681:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
                    682:   double e=0.0; 
                    683:  
                    684:   a=(ax < cx ? ax : cx); 
                    685:   b=(ax > cx ? ax : cx); 
                    686:   x=w=v=bx; 
                    687:   fw=fv=fx=(*f)(x); 
                    688:   for (iter=1;iter<=ITMAX;iter++) { 
                    689:     xm=0.5*(a+b); 
                    690:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                    691:     /*         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                    692:     printf(".");fflush(stdout);
                    693:     fprintf(ficlog,".");fflush(ficlog);
                    694: #ifdef DEBUG
                    695:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                    696:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                    697:     /*         if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                    698: #endif
                    699:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                    700:       *xmin=x; 
                    701:       return fx; 
                    702:     } 
                    703:     ftemp=fu;
                    704:     if (fabs(e) > tol1) { 
                    705:       r=(x-w)*(fx-fv); 
                    706:       q=(x-v)*(fx-fw); 
                    707:       p=(x-v)*q-(x-w)*r; 
                    708:       q=2.0*(q-r); 
                    709:       if (q > 0.0) p = -p; 
                    710:       q=fabs(q); 
                    711:       etemp=e; 
                    712:       e=d; 
                    713:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                    714:        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                    715:       else { 
                    716:        d=p/q; 
                    717:        u=x+d; 
                    718:        if (u-a < tol2 || b-u < tol2) 
                    719:          d=SIGN(tol1,xm-x); 
                    720:       } 
                    721:     } else { 
                    722:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                    723:     } 
                    724:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                    725:     fu=(*f)(u); 
                    726:     if (fu <= fx) { 
                    727:       if (u >= x) a=x; else b=x; 
                    728:       SHFT(v,w,x,u) 
                    729:        SHFT(fv,fw,fx,fu) 
                    730:        } else { 
                    731:          if (u < x) a=u; else b=u; 
                    732:          if (fu <= fw || w == x) { 
                    733:            v=w; 
                    734:            w=u; 
                    735:            fv=fw; 
                    736:            fw=fu; 
                    737:          } else if (fu <= fv || v == x || v == w) { 
                    738:            v=u; 
                    739:            fv=fu; 
                    740:          } 
                    741:        } 
                    742:   } 
                    743:   nrerror("Too many iterations in brent"); 
                    744:   *xmin=x; 
                    745:   return fx; 
                    746: } 
                    747: 
                    748: /****************** mnbrak ***********************/
                    749: 
                    750: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                    751:            double (*func)(double)) 
                    752: { 
                    753:   double ulim,u,r,q, dum;
                    754:   double fu; 
                    755:  
                    756:   *fa=(*func)(*ax); 
                    757:   *fb=(*func)(*bx); 
                    758:   if (*fb > *fa) { 
                    759:     SHFT(dum,*ax,*bx,dum) 
                    760:       SHFT(dum,*fb,*fa,dum) 
                    761:       } 
                    762:   *cx=(*bx)+GOLD*(*bx-*ax); 
                    763:   *fc=(*func)(*cx); 
                    764:   while (*fb > *fc) { 
                    765:     r=(*bx-*ax)*(*fb-*fc); 
                    766:     q=(*bx-*cx)*(*fb-*fa); 
                    767:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
                    768:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); 
                    769:     ulim=(*bx)+GLIMIT*(*cx-*bx); 
                    770:     if ((*bx-u)*(u-*cx) > 0.0) { 
                    771:       fu=(*func)(u); 
                    772:     } else if ((*cx-u)*(u-ulim) > 0.0) { 
                    773:       fu=(*func)(u); 
                    774:       if (fu < *fc) { 
                    775:        SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                    776:          SHFT(*fb,*fc,fu,(*func)(u)) 
                    777:          } 
                    778:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { 
                    779:       u=ulim; 
                    780:       fu=(*func)(u); 
                    781:     } else { 
                    782:       u=(*cx)+GOLD*(*cx-*bx); 
                    783:       fu=(*func)(u); 
                    784:     } 
                    785:     SHFT(*ax,*bx,*cx,u) 
                    786:       SHFT(*fa,*fb,*fc,fu) 
                    787:       } 
                    788: } 
                    789: 
                    790: /*************** linmin ************************/
                    791: 
                    792: int ncom; 
                    793: double *pcom,*xicom;
                    794: double (*nrfunc)(double []); 
                    795:  
                    796: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
                    797: { 
                    798:   double brent(double ax, double bx, double cx, 
                    799:               double (*f)(double), double tol, double *xmin); 
                    800:   double f1dim(double x); 
                    801:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                    802:              double *fc, double (*func)(double)); 
                    803:   int j; 
                    804:   double xx,xmin,bx,ax; 
                    805:   double fx,fb,fa;
                    806:  
                    807:   ncom=n; 
                    808:   pcom=vector(1,n); 
                    809:   xicom=vector(1,n); 
                    810:   nrfunc=func; 
                    811:   for (j=1;j<=n;j++) { 
                    812:     pcom[j]=p[j]; 
                    813:     xicom[j]=xi[j]; 
                    814:   } 
                    815:   ax=0.0; 
                    816:   xx=1.0; 
                    817:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); 
                    818:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); 
                    819: #ifdef DEBUG
                    820:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                    821:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                    822: #endif
                    823:   for (j=1;j<=n;j++) { 
                    824:     xi[j] *= xmin; 
                    825:     p[j] += xi[j]; 
                    826:   } 
                    827:   free_vector(xicom,1,n); 
                    828:   free_vector(pcom,1,n); 
                    829: } 
                    830: 
1.91      brouard   831: char *asc_diff_time(long time_sec, char ascdiff[])
                    832: {
                    833:   long sec_left, days, hours, minutes;
                    834:   days = (time_sec) / (60*60*24);
                    835:   sec_left = (time_sec) % (60*60*24);
                    836:   hours = (sec_left) / (60*60) ;
                    837:   sec_left = (sec_left) %(60*60);
                    838:   minutes = (sec_left) /60;
                    839:   sec_left = (sec_left) % (60);
                    840:   sprintf(ascdiff,"%d day(s) %d hour(s) %d minute(s) %d second(s)",days, hours, minutes, sec_left);  
                    841:   return ascdiff;
                    842: }
                    843: 
1.53      brouard   844: /*************** powell ************************/
                    845: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                    846:            double (*func)(double [])) 
                    847: { 
                    848:   void linmin(double p[], double xi[], int n, double *fret, 
                    849:              double (*func)(double [])); 
                    850:   int i,ibig,j; 
                    851:   double del,t,*pt,*ptt,*xit;
                    852:   double fp,fptt;
                    853:   double *xits;
1.91      brouard   854:   int niterf, itmp;
                    855: 
1.53      brouard   856:   pt=vector(1,n); 
                    857:   ptt=vector(1,n); 
                    858:   xit=vector(1,n); 
                    859:   xits=vector(1,n); 
                    860:   *fret=(*func)(p); 
                    861:   for (j=1;j<=n;j++) pt[j]=p[j]; 
                    862:   for (*iter=1;;++(*iter)) { 
                    863:     fp=(*fret); 
                    864:     ibig=0; 
                    865:     del=0.0; 
1.91      brouard   866:     last_time=curr_time;
                    867:     (void) gettimeofday(&curr_time,&tzp);
                    868:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);fflush(stdout);
1.98      brouard   869:     /*    fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, curr_time.tv_sec-last_time.tv_sec, curr_time.tv_sec-start_time.tv_sec);
1.91      brouard   870:     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tv_sec-start_time.tv_sec);
1.98      brouard   871:     */
                    872:    for (i=1;i<=n;i++) {
1.53      brouard   873:       printf(" %d %.12f",i, p[i]);
1.76      brouard   874:       fprintf(ficlog," %d %.12lf",i, p[i]);
                    875:       fprintf(ficrespow," %.12lf", p[i]);
                    876:     }
1.53      brouard   877:     printf("\n");
                    878:     fprintf(ficlog,"\n");
1.91      brouard   879:     fprintf(ficrespow,"\n");fflush(ficrespow);
                    880:     if(*iter <=3){
                    881:       tm = *localtime(&curr_time.tv_sec);
1.101   ! brouard   882:       strcpy(strcurr,asctime(&tm));
1.92      brouard   883: /*       asctime_r(&tm,strcurr); */
1.101   ! brouard   884:       forecast_time=curr_time; 
1.91      brouard   885:       itmp = strlen(strcurr);
1.101   ! brouard   886:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
1.91      brouard   887:        strcurr[itmp-1]='\0';
                    888:       printf("\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                    889:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,curr_time.tv_sec-last_time.tv_sec);
                    890:       for(niterf=10;niterf<=30;niterf+=10){
                    891:        forecast_time.tv_sec=curr_time.tv_sec+(niterf-*iter)*(curr_time.tv_sec-last_time.tv_sec);
                    892:        tmf = *localtime(&forecast_time.tv_sec);
1.92      brouard   893: /*     asctime_r(&tmf,strfor); */
                    894:        strcpy(strfor,asctime(&tmf));
1.91      brouard   895:        itmp = strlen(strfor);
                    896:        if(strfor[itmp-1]=='\n')
                    897:        strfor[itmp-1]='\0';
1.101   ! brouard   898:        printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
        !           899:        fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(forecast_time.tv_sec-curr_time.tv_sec,tmpout),strfor,strcurr);
1.91      brouard   900:       }
                    901:     }
1.53      brouard   902:     for (i=1;i<=n;i++) { 
                    903:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                    904:       fptt=(*fret); 
                    905: #ifdef DEBUG
                    906:       printf("fret=%lf \n",*fret);
                    907:       fprintf(ficlog,"fret=%lf \n",*fret);
                    908: #endif
                    909:       printf("%d",i);fflush(stdout);
                    910:       fprintf(ficlog,"%d",i);fflush(ficlog);
                    911:       linmin(p,xit,n,fret,func); 
                    912:       if (fabs(fptt-(*fret)) > del) { 
                    913:        del=fabs(fptt-(*fret)); 
                    914:        ibig=i; 
                    915:       } 
                    916: #ifdef DEBUG
                    917:       printf("%d %.12e",i,(*fret));
                    918:       fprintf(ficlog,"%d %.12e",i,(*fret));
                    919:       for (j=1;j<=n;j++) {
                    920:        xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                    921:        printf(" x(%d)=%.12e",j,xit[j]);
                    922:        fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
                    923:       }
                    924:       for(j=1;j<=n;j++) {
                    925:        printf(" p=%.12e",p[j]);
                    926:        fprintf(ficlog," p=%.12e",p[j]);
                    927:       }
                    928:       printf("\n");
                    929:       fprintf(ficlog,"\n");
                    930: #endif
                    931:     } 
                    932:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
                    933: #ifdef DEBUG
                    934:       int k[2],l;
                    935:       k[0]=1;
                    936:       k[1]=-1;
                    937:       printf("Max: %.12e",(*func)(p));
                    938:       fprintf(ficlog,"Max: %.12e",(*func)(p));
                    939:       for (j=1;j<=n;j++) {
                    940:        printf(" %.12e",p[j]);
                    941:        fprintf(ficlog," %.12e",p[j]);
                    942:       }
                    943:       printf("\n");
                    944:       fprintf(ficlog,"\n");
                    945:       for(l=0;l<=1;l++) {
                    946:        for (j=1;j<=n;j++) {
                    947:          ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                    948:          printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                    949:          fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                    950:        }
                    951:        printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                    952:        fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                    953:       }
                    954: #endif
                    955: 
                    956: 
                    957:       free_vector(xit,1,n); 
                    958:       free_vector(xits,1,n); 
                    959:       free_vector(ptt,1,n); 
                    960:       free_vector(pt,1,n); 
                    961:       return; 
                    962:     } 
                    963:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
                    964:     for (j=1;j<=n;j++) { 
                    965:       ptt[j]=2.0*p[j]-pt[j]; 
                    966:       xit[j]=p[j]-pt[j]; 
                    967:       pt[j]=p[j]; 
                    968:     } 
                    969:     fptt=(*func)(ptt); 
                    970:     if (fptt < fp) { 
                    971:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); 
                    972:       if (t < 0.0) { 
                    973:        linmin(p,xit,n,fret,func); 
                    974:        for (j=1;j<=n;j++) { 
                    975:          xi[j][ibig]=xi[j][n]; 
                    976:          xi[j][n]=xit[j]; 
                    977:        }
                    978: #ifdef DEBUG
                    979:        printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                    980:        fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                    981:        for(j=1;j<=n;j++){
                    982:          printf(" %.12e",xit[j]);
                    983:          fprintf(ficlog," %.12e",xit[j]);
                    984:        }
                    985:        printf("\n");
                    986:        fprintf(ficlog,"\n");
                    987: #endif
1.54      brouard   988:       }
1.53      brouard   989:     } 
                    990:   } 
                    991: } 
                    992: 
1.54      brouard   993: /**** Prevalence limit (stable prevalence)  ****************/
1.53      brouard   994: 
                    995: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
                    996: {
                    997:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
                    998:      matrix by transitions matrix until convergence is reached */
                    999: 
                   1000:   int i, ii,j,k;
                   1001:   double min, max, maxmin, maxmax,sumnew=0.;
                   1002:   double **matprod2();
                   1003:   double **out, cov[NCOVMAX], **pmij();
                   1004:   double **newm;
                   1005:   double agefin, delaymax=50 ; /* Max number of years to converge */
                   1006: 
                   1007:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   1008:     for (j=1;j<=nlstate+ndeath;j++){
                   1009:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1010:     }
                   1011: 
                   1012:    cov[1]=1.;
                   1013:  
                   1014:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1015:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                   1016:     newm=savm;
                   1017:     /* Covariates have to be included here again */
                   1018:      cov[2]=agefin;
                   1019:   
                   1020:       for (k=1; k<=cptcovn;k++) {
                   1021:        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                   1022:        /*      printf("ij=%d k=%d Tvar[k]=%d nbcode=%d cov=%lf codtab[ij][Tvar[k]]=%d \n",ij,k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], codtab[ij][Tvar[k]]);*/
                   1023:       }
                   1024:       for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   1025:       for (k=1; k<=cptcovprod;k++)
                   1026:        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   1027: 
                   1028:       /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   1029:       /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   1030:       /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                   1031:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
                   1032: 
                   1033:     savm=oldm;
                   1034:     oldm=newm;
                   1035:     maxmax=0.;
                   1036:     for(j=1;j<=nlstate;j++){
                   1037:       min=1.;
                   1038:       max=0.;
                   1039:       for(i=1; i<=nlstate; i++) {
                   1040:        sumnew=0;
                   1041:        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                   1042:        prlim[i][j]= newm[i][j]/(1-sumnew);
                   1043:        max=FMAX(max,prlim[i][j]);
                   1044:        min=FMIN(min,prlim[i][j]);
                   1045:       }
                   1046:       maxmin=max-min;
                   1047:       maxmax=FMAX(maxmax,maxmin);
                   1048:     }
                   1049:     if(maxmax < ftolpl){
                   1050:       return prlim;
                   1051:     }
                   1052:   }
                   1053: }
                   1054: 
                   1055: /*************** transition probabilities ***************/ 
                   1056: 
                   1057: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                   1058: {
                   1059:   double s1, s2;
                   1060:   /*double t34;*/
                   1061:   int i,j,j1, nc, ii, jj;
                   1062: 
                   1063:     for(i=1; i<= nlstate; i++){
1.99      brouard  1064:       for(j=1; j<i;j++){
                   1065:        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                   1066:          /*s2 += param[i][j][nc]*cov[nc];*/
                   1067:          s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                   1068: /*      printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2); */
                   1069:        }
                   1070:        ps[i][j]=s2;
                   1071: /*     printf("s1=%.17e, s2=%.17e\n",s1,s2); */
                   1072:       }
                   1073:       for(j=i+1; j<=nlstate+ndeath;j++){
                   1074:        for (nc=1, s2=0.;nc <=ncovmodel; nc++){
                   1075:          s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
                   1076: /*       printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2); */
                   1077:        }
                   1078:        ps[i][j]=s2;
1.53      brouard  1079:       }
                   1080:     }
                   1081:     /*ps[3][2]=1;*/
1.99      brouard  1082:     
                   1083:     for(i=1; i<= nlstate; i++){
                   1084:       s1=0;
                   1085:       for(j=1; j<i; j++)
                   1086:        s1+=exp(ps[i][j]);
                   1087:       for(j=i+1; j<=nlstate+ndeath; j++)
                   1088:        s1+=exp(ps[i][j]);
                   1089:       ps[i][i]=1./(s1+1.);
                   1090:       for(j=1; j<i; j++)
                   1091:        ps[i][j]= exp(ps[i][j])*ps[i][i];
                   1092:       for(j=i+1; j<=nlstate+ndeath; j++)
                   1093:        ps[i][j]= exp(ps[i][j])*ps[i][i];
                   1094:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   1095:     } /* end i */
                   1096:     
                   1097:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   1098:       for(jj=1; jj<= nlstate+ndeath; jj++){
                   1099:        ps[ii][jj]=0;
                   1100:        ps[ii][ii]=1;
                   1101:       }
1.53      brouard  1102:     }
1.99      brouard  1103:     
1.53      brouard  1104: 
1.99      brouard  1105: /*        for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   1106: /*      for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   1107: /*        printf("ddd %lf ",ps[ii][jj]); */
                   1108: /*      } */
                   1109: /*      printf("\n "); */
                   1110: /*        } */
                   1111: /*        printf("\n ");printf("%lf ",cov[2]); */
                   1112:        /*
                   1113:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   1114:       goto end;*/
1.53      brouard  1115:     return ps;
                   1116: }
                   1117: 
                   1118: /**************** Product of 2 matrices ******************/
                   1119: 
                   1120: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
                   1121: {
                   1122:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   1123:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                   1124:   /* in, b, out are matrice of pointers which should have been initialized 
                   1125:      before: only the contents of out is modified. The function returns
                   1126:      a pointer to pointers identical to out */
                   1127:   long i, j, k;
                   1128:   for(i=nrl; i<= nrh; i++)
                   1129:     for(k=ncolol; k<=ncoloh; k++)
                   1130:       for(j=ncl,out[i][k]=0.; j<=nch; j++)
                   1131:        out[i][k] +=in[i][j]*b[j][k];
                   1132: 
                   1133:   return out;
                   1134: }
                   1135: 
                   1136: 
                   1137: /************* Higher Matrix Product ***************/
                   1138: 
                   1139: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                   1140: {
1.66      brouard  1141:   /* Computes the transition matrix starting at age 'age' over 
                   1142:      'nhstepm*hstepm*stepm' months (i.e. until
                   1143:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                   1144:      nhstepm*hstepm matrices. 
1.53      brouard  1145:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
1.66      brouard  1146:      (typically every 2 years instead of every month which is too big 
                   1147:      for the memory).
1.53      brouard  1148:      Model is determined by parameters x and covariates have to be 
                   1149:      included manually here. 
                   1150: 
                   1151:      */
                   1152: 
                   1153:   int i, j, d, h, k;
                   1154:   double **out, cov[NCOVMAX];
                   1155:   double **newm;
                   1156: 
                   1157:   /* Hstepm could be zero and should return the unit matrix */
                   1158:   for (i=1;i<=nlstate+ndeath;i++)
                   1159:     for (j=1;j<=nlstate+ndeath;j++){
                   1160:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   1161:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   1162:     }
                   1163:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1164:   for(h=1; h <=nhstepm; h++){
                   1165:     for(d=1; d <=hstepm; d++){
                   1166:       newm=savm;
                   1167:       /* Covariates have to be included here again */
                   1168:       cov[1]=1.;
                   1169:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
                   1170:       for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
                   1171:       for (k=1; k<=cptcovage;k++)
                   1172:        cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   1173:       for (k=1; k<=cptcovprod;k++)
                   1174:        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   1175: 
                   1176: 
                   1177:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   1178:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                   1179:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                   1180:                   pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1181:       savm=oldm;
                   1182:       oldm=newm;
                   1183:     }
                   1184:     for(i=1; i<=nlstate+ndeath; i++)
                   1185:       for(j=1;j<=nlstate+ndeath;j++) {
                   1186:        po[i][j][h]=newm[i][j];
                   1187:        /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
                   1188:         */
                   1189:       }
                   1190:   } /* end h */
                   1191:   return po;
                   1192: }
                   1193: 
                   1194: 
                   1195: /*************** log-likelihood *************/
                   1196: double func( double *x)
                   1197: {
                   1198:   int i, ii, j, k, mi, d, kk;
                   1199:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
                   1200:   double **out;
                   1201:   double sw; /* Sum of weights */
                   1202:   double lli; /* Individual log likelihood */
1.59      brouard  1203:   int s1, s2;
1.68      lievre   1204:   double bbh, survp;
1.53      brouard  1205:   long ipmx;
                   1206:   /*extern weight */
                   1207:   /* We are differentiating ll according to initial status */
                   1208:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   1209:   /*for(i=1;i<imx;i++) 
                   1210:     printf(" %d\n",s[4][i]);
                   1211:   */
                   1212:   cov[1]=1.;
                   1213: 
                   1214:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.61      brouard  1215: 
                   1216:   if(mle==1){
                   1217:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1218:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1219:       for(mi=1; mi<= wav[i]-1; mi++){
                   1220:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1221:          for (j=1;j<=nlstate+ndeath;j++){
                   1222:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1223:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1224:          }
                   1225:        for(d=0; d<dh[mi][i]; d++){
                   1226:          newm=savm;
                   1227:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1228:          for (kk=1; kk<=cptcovage;kk++) {
                   1229:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1230:          }
                   1231:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1232:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1233:          savm=oldm;
                   1234:          oldm=newm;
                   1235:        } /* end mult */
1.53      brouard  1236:       
1.61      brouard  1237:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
1.101   ! brouard  1238:        /* But now since version 0.9 we anticipate for bias at large stepm.
1.61      brouard  1239:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   1240:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   1241:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   1242:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
1.101   ! brouard  1243:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
1.61      brouard  1244:         * probability in order to take into account the bias as a fraction of the way
1.101   ! brouard  1245:         * from savm to out if bh is negative or even beyond if bh is positive. bh varies
1.61      brouard  1246:         * -stepm/2 to stepm/2 .
                   1247:         * For stepm=1 the results are the same as for previous versions of Imach.
                   1248:         * For stepm > 1 the results are less biased than in previous versions. 
                   1249:         */
                   1250:        s1=s[mw[mi][i]][i];
                   1251:        s2=s[mw[mi+1][i]][i];
1.64      lievre   1252:        bbh=(double)bh[mi][i]/(double)stepm; 
1.101   ! brouard  1253:        /* bias bh is positive if real duration
1.64      lievre   1254:         * is higher than the multiple of stepm and negative otherwise.
                   1255:         */
                   1256:        /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
1.71      brouard  1257:        if( s2 > nlstate){ 
                   1258:          /* i.e. if s2 is a death state and if the date of death is known then the contribution
                   1259:             to the likelihood is the probability to die between last step unit time and current 
1.101   ! brouard  1260:             step unit time, which is also equal to probability to die before dh 
        !          1261:             minus probability to die before dh-stepm . 
1.71      brouard  1262:             In version up to 0.92 likelihood was computed
                   1263:        as if date of death was unknown. Death was treated as any other
                   1264:        health state: the date of the interview describes the actual state
                   1265:        and not the date of a change in health state. The former idea was
                   1266:        to consider that at each interview the state was recorded
                   1267:        (healthy, disable or death) and IMaCh was corrected; but when we
                   1268:        introduced the exact date of death then we should have modified
                   1269:        the contribution of an exact death to the likelihood. This new
                   1270:        contribution is smaller and very dependent of the step unit
                   1271:        stepm. It is no more the probability to die between last interview
                   1272:        and month of death but the probability to survive from last
                   1273:        interview up to one month before death multiplied by the
                   1274:        probability to die within a month. Thanks to Chris
                   1275:        Jackson for correcting this bug.  Former versions increased
                   1276:        mortality artificially. The bad side is that we add another loop
                   1277:        which slows down the processing. The difference can be up to 10%
                   1278:        lower mortality.
                   1279:          */
                   1280:          lli=log(out[s1][s2] - savm[s1][s2]);
                   1281:        }else{
                   1282:          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   1283:          /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   1284:        } 
1.64      lievre   1285:        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   1286:        /*if(lli ==000.0)*/
                   1287:        /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
1.71      brouard  1288:        ipmx +=1;
1.64      lievre   1289:        sw += weight[i];
                   1290:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1291:       } /* end of wave */
                   1292:     } /* end of individual */
                   1293:   }  else if(mle==2){
                   1294:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1295:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1296:       for(mi=1; mi<= wav[i]-1; mi++){
                   1297:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1298:          for (j=1;j<=nlstate+ndeath;j++){
                   1299:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1300:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1301:          }
                   1302:        for(d=0; d<=dh[mi][i]; d++){
                   1303:          newm=savm;
                   1304:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1305:          for (kk=1; kk<=cptcovage;kk++) {
                   1306:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1307:          }
                   1308:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1309:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1310:          savm=oldm;
                   1311:          oldm=newm;
                   1312:        } /* end mult */
                   1313:       
                   1314:        s1=s[mw[mi][i]][i];
                   1315:        s2=s[mw[mi+1][i]][i];
                   1316:        bbh=(double)bh[mi][i]/(double)stepm; 
1.63      lievre   1317:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
1.64      lievre   1318:        ipmx +=1;
                   1319:        sw += weight[i];
                   1320:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1321:       } /* end of wave */
                   1322:     } /* end of individual */
                   1323:   }  else if(mle==3){  /* exponential inter-extrapolation */
                   1324:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1325:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1326:       for(mi=1; mi<= wav[i]-1; mi++){
                   1327:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1328:          for (j=1;j<=nlstate+ndeath;j++){
                   1329:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1330:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1331:          }
                   1332:        for(d=0; d<dh[mi][i]; d++){
                   1333:          newm=savm;
                   1334:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1335:          for (kk=1; kk<=cptcovage;kk++) {
                   1336:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1337:          }
                   1338:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1339:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1340:          savm=oldm;
                   1341:          oldm=newm;
                   1342:        } /* end mult */
                   1343:       
                   1344:        s1=s[mw[mi][i]][i];
                   1345:        s2=s[mw[mi+1][i]][i];
                   1346:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1347:        lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
1.61      brouard  1348:        ipmx +=1;
                   1349:        sw += weight[i];
                   1350:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1351:       } /* end of wave */
                   1352:     } /* end of individual */
1.84      brouard  1353:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
1.61      brouard  1354:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1355:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1356:       for(mi=1; mi<= wav[i]-1; mi++){
                   1357:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1358:          for (j=1;j<=nlstate+ndeath;j++){
                   1359:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1360:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1361:          }
                   1362:        for(d=0; d<dh[mi][i]; d++){
                   1363:          newm=savm;
                   1364:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1365:          for (kk=1; kk<=cptcovage;kk++) {
                   1366:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1367:          }
                   1368:        
                   1369:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1370:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1371:          savm=oldm;
                   1372:          oldm=newm;
                   1373:        } /* end mult */
                   1374:       
1.84      brouard  1375:        s1=s[mw[mi][i]][i];
                   1376:        s2=s[mw[mi+1][i]][i];
                   1377:        if( s2 > nlstate){ 
                   1378:          lli=log(out[s1][s2] - savm[s1][s2]);
                   1379:        }else{
                   1380:          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   1381:        }
                   1382:        ipmx +=1;
                   1383:        sw += weight[i];
                   1384:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.85      brouard  1385: /*     printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
1.84      brouard  1386:       } /* end of wave */
                   1387:     } /* end of individual */
                   1388:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   1389:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1390:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1391:       for(mi=1; mi<= wav[i]-1; mi++){
                   1392:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1393:          for (j=1;j<=nlstate+ndeath;j++){
                   1394:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1395:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1396:          }
                   1397:        for(d=0; d<dh[mi][i]; d++){
                   1398:          newm=savm;
                   1399:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1400:          for (kk=1; kk<=cptcovage;kk++) {
                   1401:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1402:          }
                   1403:        
                   1404:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1405:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1406:          savm=oldm;
                   1407:          oldm=newm;
                   1408:        } /* end mult */
                   1409:       
                   1410:        s1=s[mw[mi][i]][i];
                   1411:        s2=s[mw[mi+1][i]][i];
1.61      brouard  1412:        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   1413:        ipmx +=1;
                   1414:        sw += weight[i];
                   1415:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.84      brouard  1416:        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
1.61      brouard  1417:       } /* end of wave */
                   1418:     } /* end of individual */
                   1419:   } /* End of if */
1.53      brouard  1420:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   1421:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   1422:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
1.85      brouard  1423:   return -l;
                   1424: }
                   1425: 
                   1426: /*************** log-likelihood *************/
                   1427: double funcone( double *x)
                   1428: {
1.87      brouard  1429:   /* Same as likeli but slower because of a lot of printf and if */
1.85      brouard  1430:   int i, ii, j, k, mi, d, kk;
                   1431:   double l, ll[NLSTATEMAX], cov[NCOVMAX];
                   1432:   double **out;
                   1433:   double lli; /* Individual log likelihood */
1.87      brouard  1434:   double llt;
1.85      brouard  1435:   int s1, s2;
                   1436:   double bbh, survp;
                   1437:   /*extern weight */
                   1438:   /* We are differentiating ll according to initial status */
                   1439:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   1440:   /*for(i=1;i<imx;i++) 
                   1441:     printf(" %d\n",s[4][i]);
                   1442:   */
                   1443:   cov[1]=1.;
                   1444: 
                   1445:   for(k=1; k<=nlstate; k++) ll[k]=0.;
                   1446: 
                   1447:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1448:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1449:     for(mi=1; mi<= wav[i]-1; mi++){
                   1450:       for (ii=1;ii<=nlstate+ndeath;ii++)
                   1451:        for (j=1;j<=nlstate+ndeath;j++){
                   1452:          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1453:          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1454:        }
                   1455:       for(d=0; d<dh[mi][i]; d++){
                   1456:        newm=savm;
                   1457:        cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1458:        for (kk=1; kk<=cptcovage;kk++) {
                   1459:          cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1460:        }
                   1461:        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1462:                     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1463:        savm=oldm;
                   1464:        oldm=newm;
                   1465:       } /* end mult */
                   1466:       
                   1467:       s1=s[mw[mi][i]][i];
                   1468:       s2=s[mw[mi+1][i]][i];
                   1469:       bbh=(double)bh[mi][i]/(double)stepm; 
                   1470:       /* bias is positive if real duration
                   1471:        * is higher than the multiple of stepm and negative otherwise.
                   1472:        */
                   1473:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
                   1474:        lli=log(out[s1][s2] - savm[s1][s2]);
                   1475:       } else if (mle==1){
                   1476:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   1477:       } else if(mle==2){
                   1478:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   1479:       } else if(mle==3){  /* exponential inter-extrapolation */
                   1480:        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   1481:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
                   1482:        lli=log(out[s1][s2]); /* Original formula */
                   1483:       } else{  /* ml>=5 no inter-extrapolation no jackson =0.8a */
                   1484:        lli=log(out[s1][s2]); /* Original formula */
                   1485:       } /* End of if */
                   1486:       ipmx +=1;
                   1487:       sw += weight[i];
                   1488:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1489: /*       printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                   1490:       if(globpr){
1.88      brouard  1491:        fprintf(ficresilk,"%9d %6d %1d %1d %1d %1d %3d %10.6f %6.4f\
1.86      brouard  1492:  %10.6f %10.6f %10.6f ", \
                   1493:                num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   1494:                2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
1.87      brouard  1495:        for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                   1496:          llt +=ll[k]*gipmx/gsw;
                   1497:          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                   1498:        }
                   1499:        fprintf(ficresilk," %10.6f\n", -llt);
1.85      brouard  1500:       }
                   1501:     } /* end of wave */
                   1502:   } /* end of individual */
                   1503:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   1504:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   1505:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
1.87      brouard  1506:   if(globpr==0){ /* First time we count the contributions and weights */
                   1507:     gipmx=ipmx;
                   1508:     gsw=sw;
                   1509:   }
1.53      brouard  1510:   return -l;
                   1511: }
                   1512: 
                   1513: 
1.94      brouard  1514: /*************** function likelione ***********/
1.87      brouard  1515: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
1.85      brouard  1516: {
1.87      brouard  1517:   /* This routine should help understanding what is done with 
                   1518:      the selection of individuals/waves and
1.85      brouard  1519:      to check the exact contribution to the likelihood.
                   1520:      Plotting could be done.
                   1521:    */
                   1522:   int k;
1.87      brouard  1523: 
1.88      brouard  1524:   if(*globpri !=0){ /* Just counts and sums, no printings */
1.85      brouard  1525:     strcpy(fileresilk,"ilk"); 
                   1526:     strcat(fileresilk,fileres);
                   1527:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   1528:       printf("Problem with resultfile: %s\n", fileresilk);
                   1529:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   1530:     }
1.87      brouard  1531:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
1.88      brouard  1532:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
1.85      brouard  1533:     /*         i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   1534:     for(k=1; k<=nlstate; k++) 
1.87      brouard  1535:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                   1536:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
1.85      brouard  1537:   }
                   1538: 
                   1539:   *fretone=(*funcone)(p);
1.87      brouard  1540:   if(*globpri !=0){
1.85      brouard  1541:     fclose(ficresilk);
1.88      brouard  1542:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
1.87      brouard  1543:     fflush(fichtm); 
                   1544:   } 
1.85      brouard  1545:   return;
                   1546: }
                   1547: 
1.88      brouard  1548: 
1.53      brouard  1549: /*********** Maximum Likelihood Estimation ***************/
                   1550: 
                   1551: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   1552: {
                   1553:   int i,j, iter;
1.74      brouard  1554:   double **xi;
1.53      brouard  1555:   double fret;
1.85      brouard  1556:   double fretone; /* Only one call to likelihood */
1.98      brouard  1557:   /*  char filerespow[FILENAMELENGTH];*/
1.53      brouard  1558:   xi=matrix(1,npar,1,npar);
                   1559:   for (i=1;i<=npar;i++)
                   1560:     for (j=1;j<=npar;j++)
                   1561:       xi[i][j]=(i==j ? 1.0 : 0.0);
                   1562:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.76      brouard  1563:   strcpy(filerespow,"pow"); 
                   1564:   strcat(filerespow,fileres);
                   1565:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   1566:     printf("Problem with resultfile: %s\n", filerespow);
                   1567:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   1568:   }
                   1569:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   1570:   for (i=1;i<=nlstate;i++)
                   1571:     for(j=1;j<=nlstate+ndeath;j++)
                   1572:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   1573:   fprintf(ficrespow,"\n");
1.85      brouard  1574: 
1.53      brouard  1575:   powell(p,xi,npar,ftol,&iter,&fret,func);
                   1576: 
1.76      brouard  1577:   fclose(ficrespow);
                   1578:   printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
1.65      lievre   1579:   fprintf(ficlog,"\n#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
1.53      brouard  1580:   fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
                   1581: 
                   1582: }
                   1583: 
                   1584: /**** Computes Hessian and covariance matrix ***/
                   1585: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                   1586: {
                   1587:   double  **a,**y,*x,pd;
                   1588:   double **hess;
                   1589:   int i, j,jk;
                   1590:   int *indx;
                   1591: 
1.98      brouard  1592:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
                   1593:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
1.53      brouard  1594:   void lubksb(double **a, int npar, int *indx, double b[]) ;
                   1595:   void ludcmp(double **a, int npar, int *indx, double *d) ;
1.98      brouard  1596:   double gompertz(double p[]);
1.53      brouard  1597:   hess=matrix(1,npar,1,npar);
                   1598: 
                   1599:   printf("\nCalculation of the hessian matrix. Wait...\n");
                   1600:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                   1601:   for (i=1;i<=npar;i++){
                   1602:     printf("%d",i);fflush(stdout);
                   1603:     fprintf(ficlog,"%d",i);fflush(ficlog);
1.98      brouard  1604:    
                   1605:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                   1606:     
                   1607:     /*  printf(" %f ",p[i]);
                   1608:        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
1.53      brouard  1609:   }
                   1610:   
                   1611:   for (i=1;i<=npar;i++) {
                   1612:     for (j=1;j<=npar;j++)  {
                   1613:       if (j>i) { 
                   1614:        printf(".%d%d",i,j);fflush(stdout);
                   1615:        fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
1.98      brouard  1616:        hess[i][j]=hessij(p,delti,i,j,func,npar);
                   1617:        
1.53      brouard  1618:        hess[j][i]=hess[i][j];    
                   1619:        /*printf(" %lf ",hess[i][j]);*/
                   1620:       }
                   1621:     }
                   1622:   }
                   1623:   printf("\n");
                   1624:   fprintf(ficlog,"\n");
                   1625: 
                   1626:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   1627:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   1628:   
                   1629:   a=matrix(1,npar,1,npar);
                   1630:   y=matrix(1,npar,1,npar);
                   1631:   x=vector(1,npar);
                   1632:   indx=ivector(1,npar);
                   1633:   for (i=1;i<=npar;i++)
                   1634:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   1635:   ludcmp(a,npar,indx,&pd);
                   1636: 
                   1637:   for (j=1;j<=npar;j++) {
                   1638:     for (i=1;i<=npar;i++) x[i]=0;
                   1639:     x[j]=1;
                   1640:     lubksb(a,npar,indx,x);
                   1641:     for (i=1;i<=npar;i++){ 
                   1642:       matcov[i][j]=x[i];
                   1643:     }
                   1644:   }
                   1645: 
                   1646:   printf("\n#Hessian matrix#\n");
                   1647:   fprintf(ficlog,"\n#Hessian matrix#\n");
                   1648:   for (i=1;i<=npar;i++) { 
                   1649:     for (j=1;j<=npar;j++) { 
                   1650:       printf("%.3e ",hess[i][j]);
                   1651:       fprintf(ficlog,"%.3e ",hess[i][j]);
                   1652:     }
                   1653:     printf("\n");
                   1654:     fprintf(ficlog,"\n");
                   1655:   }
                   1656: 
                   1657:   /* Recompute Inverse */
                   1658:   for (i=1;i<=npar;i++)
                   1659:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
                   1660:   ludcmp(a,npar,indx,&pd);
                   1661: 
                   1662:   /*  printf("\n#Hessian matrix recomputed#\n");
                   1663: 
                   1664:   for (j=1;j<=npar;j++) {
                   1665:     for (i=1;i<=npar;i++) x[i]=0;
                   1666:     x[j]=1;
                   1667:     lubksb(a,npar,indx,x);
                   1668:     for (i=1;i<=npar;i++){ 
                   1669:       y[i][j]=x[i];
                   1670:       printf("%.3e ",y[i][j]);
                   1671:       fprintf(ficlog,"%.3e ",y[i][j]);
                   1672:     }
                   1673:     printf("\n");
                   1674:     fprintf(ficlog,"\n");
                   1675:   }
                   1676:   */
                   1677: 
                   1678:   free_matrix(a,1,npar,1,npar);
                   1679:   free_matrix(y,1,npar,1,npar);
                   1680:   free_vector(x,1,npar);
                   1681:   free_ivector(indx,1,npar);
                   1682:   free_matrix(hess,1,npar,1,npar);
                   1683: 
                   1684: 
                   1685: }
                   1686: 
                   1687: /*************** hessian matrix ****************/
1.98      brouard  1688: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
1.53      brouard  1689: {
                   1690:   int i;
                   1691:   int l=1, lmax=20;
                   1692:   double k1,k2;
                   1693:   double p2[NPARMAX+1];
                   1694:   double res;
1.98      brouard  1695:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
1.53      brouard  1696:   double fx;
                   1697:   int k=0,kmax=10;
                   1698:   double l1;
                   1699: 
                   1700:   fx=func(x);
                   1701:   for (i=1;i<=npar;i++) p2[i]=x[i];
                   1702:   for(l=0 ; l <=lmax; l++){
                   1703:     l1=pow(10,l);
                   1704:     delts=delt;
                   1705:     for(k=1 ; k <kmax; k=k+1){
                   1706:       delt = delta*(l1*k);
                   1707:       p2[theta]=x[theta] +delt;
                   1708:       k1=func(p2)-fx;
                   1709:       p2[theta]=x[theta]-delt;
                   1710:       k2=func(p2)-fx;
                   1711:       /*res= (k1-2.0*fx+k2)/delt/delt; */
                   1712:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                   1713:       
                   1714: #ifdef DEBUG
                   1715:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   1716:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   1717: #endif
                   1718:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   1719:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   1720:        k=kmax;
                   1721:       }
                   1722:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
                   1723:        k=kmax; l=lmax*10.;
                   1724:       }
                   1725:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   1726:        delts=delt;
                   1727:       }
                   1728:     }
                   1729:   }
                   1730:   delti[theta]=delts;
                   1731:   return res; 
                   1732:   
                   1733: }
                   1734: 
1.98      brouard  1735: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
1.53      brouard  1736: {
                   1737:   int i;
                   1738:   int l=1, l1, lmax=20;
                   1739:   double k1,k2,k3,k4,res,fx;
                   1740:   double p2[NPARMAX+1];
                   1741:   int k;
                   1742: 
                   1743:   fx=func(x);
                   1744:   for (k=1; k<=2; k++) {
                   1745:     for (i=1;i<=npar;i++) p2[i]=x[i];
                   1746:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   1747:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   1748:     k1=func(p2)-fx;
                   1749:   
                   1750:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   1751:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   1752:     k2=func(p2)-fx;
                   1753:   
                   1754:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   1755:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   1756:     k3=func(p2)-fx;
                   1757:   
                   1758:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   1759:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   1760:     k4=func(p2)-fx;
                   1761:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                   1762: #ifdef DEBUG
                   1763:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   1764:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   1765: #endif
                   1766:   }
                   1767:   return res;
                   1768: }
                   1769: 
                   1770: /************** Inverse of matrix **************/
                   1771: void ludcmp(double **a, int n, int *indx, double *d) 
                   1772: { 
                   1773:   int i,imax,j,k; 
                   1774:   double big,dum,sum,temp; 
                   1775:   double *vv; 
                   1776:  
                   1777:   vv=vector(1,n); 
                   1778:   *d=1.0; 
                   1779:   for (i=1;i<=n;i++) { 
                   1780:     big=0.0; 
                   1781:     for (j=1;j<=n;j++) 
                   1782:       if ((temp=fabs(a[i][j])) > big) big=temp; 
                   1783:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
                   1784:     vv[i]=1.0/big; 
                   1785:   } 
                   1786:   for (j=1;j<=n;j++) { 
                   1787:     for (i=1;i<j;i++) { 
                   1788:       sum=a[i][j]; 
                   1789:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   1790:       a[i][j]=sum; 
                   1791:     } 
                   1792:     big=0.0; 
                   1793:     for (i=j;i<=n;i++) { 
                   1794:       sum=a[i][j]; 
                   1795:       for (k=1;k<j;k++) 
                   1796:        sum -= a[i][k]*a[k][j]; 
                   1797:       a[i][j]=sum; 
                   1798:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   1799:        big=dum; 
                   1800:        imax=i; 
                   1801:       } 
                   1802:     } 
                   1803:     if (j != imax) { 
                   1804:       for (k=1;k<=n;k++) { 
                   1805:        dum=a[imax][k]; 
                   1806:        a[imax][k]=a[j][k]; 
                   1807:        a[j][k]=dum; 
                   1808:       } 
                   1809:       *d = -(*d); 
                   1810:       vv[imax]=vv[j]; 
                   1811:     } 
                   1812:     indx[j]=imax; 
                   1813:     if (a[j][j] == 0.0) a[j][j]=TINY; 
                   1814:     if (j != n) { 
                   1815:       dum=1.0/(a[j][j]); 
                   1816:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                   1817:     } 
                   1818:   } 
                   1819:   free_vector(vv,1,n);  /* Doesn't work */
                   1820: ;
                   1821: } 
                   1822: 
                   1823: void lubksb(double **a, int n, int *indx, double b[]) 
                   1824: { 
                   1825:   int i,ii=0,ip,j; 
                   1826:   double sum; 
                   1827:  
                   1828:   for (i=1;i<=n;i++) { 
                   1829:     ip=indx[i]; 
                   1830:     sum=b[ip]; 
                   1831:     b[ip]=b[i]; 
                   1832:     if (ii) 
                   1833:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   1834:     else if (sum) ii=i; 
                   1835:     b[i]=sum; 
                   1836:   } 
                   1837:   for (i=n;i>=1;i--) { 
                   1838:     sum=b[i]; 
                   1839:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                   1840:     b[i]=sum/a[i][i]; 
                   1841:   } 
                   1842: } 
                   1843: 
                   1844: /************ Frequencies ********************/
1.84      brouard  1845: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint)
1.53      brouard  1846: {  /* Some frequencies */
                   1847:   
                   1848:   int i, m, jk, k1,i1, j1, bool, z1,z2,j;
                   1849:   int first;
                   1850:   double ***freq; /* Frequencies */
1.73      lievre   1851:   double *pp, **prop;
                   1852:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
1.53      brouard  1853:   FILE *ficresp;
                   1854:   char fileresp[FILENAMELENGTH];
                   1855:   
                   1856:   pp=vector(1,nlstate);
1.74      brouard  1857:   prop=matrix(1,nlstate,iagemin,iagemax+3);
1.53      brouard  1858:   strcpy(fileresp,"p");
                   1859:   strcat(fileresp,fileres);
                   1860:   if((ficresp=fopen(fileresp,"w"))==NULL) {
                   1861:     printf("Problem with prevalence resultfile: %s\n", fileresp);
                   1862:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   1863:     exit(0);
                   1864:   }
1.74      brouard  1865:   freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);
1.53      brouard  1866:   j1=0;
                   1867:   
                   1868:   j=cptcoveff;
                   1869:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   1870: 
                   1871:   first=1;
                   1872: 
                   1873:   for(k1=1; k1<=j;k1++){
                   1874:     for(i1=1; i1<=ncodemax[k1];i1++){
                   1875:       j1++;
                   1876:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                   1877:        scanf("%d", i);*/
                   1878:       for (i=-1; i<=nlstate+ndeath; i++)  
                   1879:        for (jk=-1; jk<=nlstate+ndeath; jk++)  
1.74      brouard  1880:          for(m=iagemin; m <= iagemax+3; m++)
1.53      brouard  1881:            freq[i][jk][m]=0;
1.73      lievre   1882: 
                   1883:     for (i=1; i<=nlstate; i++)  
1.74      brouard  1884:       for(m=iagemin; m <= iagemax+3; m++)
1.73      lievre   1885:        prop[i][m]=0;
1.53      brouard  1886:       
                   1887:       dateintsum=0;
                   1888:       k2cpt=0;
                   1889:       for (i=1; i<=imx; i++) {
                   1890:        bool=1;
                   1891:        if  (cptcovn>0) {
                   1892:          for (z1=1; z1<=cptcoveff; z1++) 
                   1893:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   1894:              bool=0;
                   1895:        }
1.58      lievre   1896:        if (bool==1){
1.53      brouard  1897:          for(m=firstpass; m<=lastpass; m++){
                   1898:            k2=anint[m][i]+(mint[m][i]/12.);
1.84      brouard  1899:            /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
1.74      brouard  1900:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   1901:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
1.73      lievre   1902:              if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
1.53      brouard  1903:              if (m<lastpass) {
                   1904:                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
1.74      brouard  1905:                freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
1.53      brouard  1906:              }
                   1907:              
1.74      brouard  1908:              if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
1.53      brouard  1909:                dateintsum=dateintsum+k2;
                   1910:                k2cpt++;
                   1911:              }
1.84      brouard  1912:              /*}*/
1.53      brouard  1913:          }
                   1914:        }
                   1915:       }
                   1916:        
1.84      brouard  1917:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
1.53      brouard  1918: 
                   1919:       if  (cptcovn>0) {
                   1920:        fprintf(ficresp, "\n#********** Variable "); 
                   1921:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   1922:        fprintf(ficresp, "**********\n#");
                   1923:       }
                   1924:       for(i=1; i<=nlstate;i++) 
                   1925:        fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   1926:       fprintf(ficresp, "\n");
                   1927:       
1.74      brouard  1928:       for(i=iagemin; i <= iagemax+3; i++){
                   1929:        if(i==iagemax+3){
1.53      brouard  1930:          fprintf(ficlog,"Total");
                   1931:        }else{
                   1932:          if(first==1){
                   1933:            first=0;
                   1934:            printf("See log file for details...\n");
                   1935:          }
                   1936:          fprintf(ficlog,"Age %d", i);
                   1937:        }
                   1938:        for(jk=1; jk <=nlstate ; jk++){
                   1939:          for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                   1940:            pp[jk] += freq[jk][m][i]; 
                   1941:        }
                   1942:        for(jk=1; jk <=nlstate ; jk++){
                   1943:          for(m=-1, pos=0; m <=0 ; m++)
                   1944:            pos += freq[jk][m][i];
                   1945:          if(pp[jk]>=1.e-10){
                   1946:            if(first==1){
                   1947:            printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   1948:            }
                   1949:            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   1950:          }else{
                   1951:            if(first==1)
                   1952:              printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   1953:            fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   1954:          }
                   1955:        }
                   1956: 
                   1957:        for(jk=1; jk <=nlstate ; jk++){
                   1958:          for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   1959:            pp[jk] += freq[jk][m][i];
1.73      lievre   1960:        }       
                   1961:        for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   1962:          pos += pp[jk];
                   1963:          posprop += prop[jk][i];
1.53      brouard  1964:        }
                   1965:        for(jk=1; jk <=nlstate ; jk++){
                   1966:          if(pos>=1.e-5){
                   1967:            if(first==1)
                   1968:              printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   1969:            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   1970:          }else{
                   1971:            if(first==1)
                   1972:              printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   1973:            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   1974:          }
1.74      brouard  1975:          if( i <= iagemax){
1.53      brouard  1976:            if(pos>=1.e-5){
1.73      lievre   1977:              fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
1.84      brouard  1978:              /*probs[i][jk][j1]= pp[jk]/pos;*/
1.53      brouard  1979:              /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   1980:            }
                   1981:            else
1.73      lievre   1982:              fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
1.53      brouard  1983:          }
                   1984:        }
                   1985:        
1.69      brouard  1986:        for(jk=-1; jk <=nlstate+ndeath; jk++)
                   1987:          for(m=-1; m <=nlstate+ndeath; m++)
1.53      brouard  1988:            if(freq[jk][m][i] !=0 ) {
                   1989:            if(first==1)
                   1990:              printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   1991:              fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                   1992:            }
1.74      brouard  1993:        if(i <= iagemax)
1.53      brouard  1994:          fprintf(ficresp,"\n");
                   1995:        if(first==1)
                   1996:          printf("Others in log...\n");
                   1997:        fprintf(ficlog,"\n");
                   1998:       }
                   1999:     }
                   2000:   }
                   2001:   dateintmean=dateintsum/k2cpt; 
                   2002:  
                   2003:   fclose(ficresp);
1.74      brouard  2004:   free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);
1.53      brouard  2005:   free_vector(pp,1,nlstate);
1.74      brouard  2006:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
1.53      brouard  2007:   /* End of Freq */
                   2008: }
                   2009: 
                   2010: /************ Prevalence ********************/
1.84      brouard  2011: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
1.69      brouard  2012: {  
                   2013:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   2014:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   2015:      We still use firstpass and lastpass as another selection.
                   2016:   */
1.53      brouard  2017:  
                   2018:   int i, m, jk, k1, i1, j1, bool, z1,z2,j;
                   2019:   double ***freq; /* Frequencies */
1.73      lievre   2020:   double *pp, **prop;
                   2021:   double pos,posprop; 
1.69      brouard  2022:   double  y2; /* in fractional years */
1.74      brouard  2023:   int iagemin, iagemax;
1.53      brouard  2024: 
1.74      brouard  2025:   iagemin= (int) agemin;
                   2026:   iagemax= (int) agemax;
                   2027:   /*pp=vector(1,nlstate);*/
                   2028:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
                   2029:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
1.53      brouard  2030:   j1=0;
                   2031:   
                   2032:   j=cptcoveff;
                   2033:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   2034:   
                   2035:   for(k1=1; k1<=j;k1++){
                   2036:     for(i1=1; i1<=ncodemax[k1];i1++){
                   2037:       j1++;
                   2038:       
1.73      lievre   2039:       for (i=1; i<=nlstate; i++)  
1.74      brouard  2040:        for(m=iagemin; m <= iagemax+3; m++)
                   2041:          prop[i][m]=0.0;
1.53      brouard  2042:      
1.69      brouard  2043:       for (i=1; i<=imx; i++) { /* Each individual */
1.53      brouard  2044:        bool=1;
                   2045:        if  (cptcovn>0) {
                   2046:          for (z1=1; z1<=cptcoveff; z1++) 
                   2047:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   2048:              bool=0;
                   2049:        } 
                   2050:        if (bool==1) { 
1.69      brouard  2051:          for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                   2052:            y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   2053:            if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
1.74      brouard  2054:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   2055:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   2056:              if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                   2057:              if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   2058:                /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   2059:                prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   2060:                prop[s[m][i]][iagemax+3] += weight[i]; 
                   2061:              } 
1.53      brouard  2062:            }
1.69      brouard  2063:          } /* end selection of waves */
1.53      brouard  2064:        }
                   2065:       }
1.74      brouard  2066:       for(i=iagemin; i <= iagemax+3; i++){  
1.53      brouard  2067:        
1.74      brouard  2068:        for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   2069:          posprop += prop[jk][i]; 
                   2070:        } 
                   2071: 
                   2072:        for(jk=1; jk <=nlstate ; jk++){     
                   2073:          if( i <=  iagemax){ 
                   2074:            if(posprop>=1.e-5){ 
                   2075:              probs[i][jk][j1]= prop[jk][i]/posprop;
                   2076:            } 
                   2077:          } 
                   2078:        }/* end jk */ 
                   2079:       }/* end i */ 
1.53      brouard  2080:     } /* end i1 */
                   2081:   } /* end k1 */
                   2082:   
1.74      brouard  2083:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   2084:   /*free_vector(pp,1,nlstate);*/
                   2085:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   2086: }  /* End of prevalence */
1.53      brouard  2087: 
                   2088: /************* Waves Concatenation ***************/
                   2089: 
1.59      brouard  2090: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
1.53      brouard  2091: {
                   2092:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   2093:      Death is a valid wave (if date is known).
                   2094:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
1.59      brouard  2095:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
1.53      brouard  2096:      and mw[mi+1][i]. dh depends on stepm.
                   2097:      */
                   2098: 
                   2099:   int i, mi, m;
                   2100:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   2101:      double sum=0., jmean=0.;*/
                   2102:   int first;
                   2103:   int j, k=0,jk, ju, jl;
                   2104:   double sum=0.;
                   2105:   first=0;
                   2106:   jmin=1e+5;
                   2107:   jmax=-1;
                   2108:   jmean=0.;
                   2109:   for(i=1; i<=imx; i++){
                   2110:     mi=0;
                   2111:     m=firstpass;
                   2112:     while(s[m][i] <= nlstate){
1.69      brouard  2113:       if(s[m][i]>=1)
1.53      brouard  2114:        mw[++mi][i]=m;
                   2115:       if(m >=lastpass)
                   2116:        break;
                   2117:       else
                   2118:        m++;
                   2119:     }/* end while */
                   2120:     if (s[m][i] > nlstate){
                   2121:       mi++;    /* Death is another wave */
                   2122:       /* if(mi==0)  never been interviewed correctly before death */
                   2123:         /* Only death is a correct wave */
                   2124:       mw[mi][i]=m;
                   2125:     }
                   2126: 
                   2127:     wav[i]=mi;
                   2128:     if(mi==0){
1.91      brouard  2129:       nbwarn++;
1.53      brouard  2130:       if(first==0){
1.85      brouard  2131:        printf("Warning! None valid information for:%ld line=%d (skipped) and may be others, see log file\n",num[i],i);
1.53      brouard  2132:        first=1;
                   2133:       }
                   2134:       if(first==1){
1.85      brouard  2135:        fprintf(ficlog,"Warning! None valid information for:%ld line=%d (skipped)\n",num[i],i);
1.53      brouard  2136:       }
                   2137:     } /* end mi==0 */
1.77      brouard  2138:   } /* End individuals */
1.53      brouard  2139: 
                   2140:   for(i=1; i<=imx; i++){
                   2141:     for(mi=1; mi<wav[i];mi++){
                   2142:       if (stepm <=0)
                   2143:        dh[mi][i]=1;
                   2144:       else{
1.77      brouard  2145:        if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
1.53      brouard  2146:          if (agedc[i] < 2*AGESUP) {
1.85      brouard  2147:            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   2148:            if(j==0) j=1;  /* Survives at least one month after exam */
                   2149:            else if(j<0){
1.91      brouard  2150:              nberr++;
1.85      brouard  2151:              printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
1.91      brouard  2152:              j=1; /* Temporary Dangerous patch */
1.86      brouard  2153:              printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
1.91      brouard  2154:              fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
1.85      brouard  2155:              fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview.\n  You MUST fix the contradiction between dates.\n",stepm);
                   2156:            }
                   2157:            k=k+1;
                   2158:            if (j >= jmax) jmax=j;
                   2159:            if (j <= jmin) jmin=j;
                   2160:            sum=sum+j;
                   2161:            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   2162:            /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
1.53      brouard  2163:          }
                   2164:        }
                   2165:        else{
                   2166:          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1.68      lievre   2167:          /*      printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
1.53      brouard  2168:          k=k+1;
                   2169:          if (j >= jmax) jmax=j;
                   2170:          else if (j <= jmin)jmin=j;
                   2171:          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
1.73      lievre   2172:          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
1.85      brouard  2173:          if(j<0){
1.91      brouard  2174:            nberr++;
1.85      brouard  2175:            printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2176:            fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2177:          }
1.53      brouard  2178:          sum=sum+j;
                   2179:        }
                   2180:        jk= j/stepm;
                   2181:        jl= j -jk*stepm;
                   2182:        ju= j -(jk+1)*stepm;
1.85      brouard  2183:        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
1.64      lievre   2184:          if(jl==0){
                   2185:            dh[mi][i]=jk;
                   2186:            bh[mi][i]=0;
                   2187:          }else{ /* We want a negative bias in order to only have interpolation ie
                   2188:                  * at the price of an extra matrix product in likelihood */
                   2189:            dh[mi][i]=jk+1;
                   2190:            bh[mi][i]=ju;
                   2191:          }
                   2192:        }else{
                   2193:          if(jl <= -ju){
                   2194:            dh[mi][i]=jk;
                   2195:            bh[mi][i]=jl;       /* bias is positive if real duration
                   2196:                                 * is higher than the multiple of stepm and negative otherwise.
                   2197:                                 */
                   2198:          }
                   2199:          else{
                   2200:            dh[mi][i]=jk+1;
                   2201:            bh[mi][i]=ju;
                   2202:          }
                   2203:          if(dh[mi][i]==0){
                   2204:            dh[mi][i]=1; /* At least one step */
                   2205:            bh[mi][i]=ju; /* At least one step */
1.71      brouard  2206:            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
1.64      lievre   2207:          }
1.85      brouard  2208:        } /* end if mle */
                   2209:       }
1.64      lievre   2210:     } /* end wave */
1.53      brouard  2211:   }
                   2212:   jmean=sum/k;
                   2213:   printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                   2214:   fprintf(ficlog,"Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
                   2215:  }
                   2216: 
                   2217: /*********** Tricode ****************************/
                   2218: void tricode(int *Tvar, int **nbcode, int imx)
                   2219: {
1.58      lievre   2220:   
                   2221:   int Ndum[20],ij=1, k, j, i, maxncov=19;
1.53      brouard  2222:   int cptcode=0;
                   2223:   cptcoveff=0; 
                   2224:  
1.58      lievre   2225:   for (k=0; k<maxncov; k++) Ndum[k]=0;
1.53      brouard  2226:   for (k=1; k<=7; k++) ncodemax[k]=0;
                   2227: 
                   2228:   for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
1.58      lievre   2229:     for (i=1; i<=imx; i++) { /*reads the data file to get the maximum 
                   2230:                               modality*/ 
                   2231:       ij=(int)(covar[Tvar[j]][i]); /* ij is the modality of this individual*/
                   2232:       Ndum[ij]++; /*store the modality */
1.53      brouard  2233:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
1.58      lievre   2234:       if (ij > cptcode) cptcode=ij; /* getting the maximum of covariable 
                   2235:                                       Tvar[j]. If V=sex and male is 0 and 
                   2236:                                       female is 1, then  cptcode=1.*/
1.53      brouard  2237:     }
                   2238: 
                   2239:     for (i=0; i<=cptcode; i++) {
1.58      lievre   2240:       if(Ndum[i]!=0) ncodemax[j]++; /* Nomber of modalities of the j th covariates. In fact ncodemax[j]=2 (dichotom. variables) but it can be more */
1.53      brouard  2241:     }
1.58      lievre   2242: 
1.53      brouard  2243:     ij=1; 
                   2244:     for (i=1; i<=ncodemax[j]; i++) {
1.58      lievre   2245:       for (k=0; k<= maxncov; k++) {
1.53      brouard  2246:        if (Ndum[k] != 0) {
                   2247:          nbcode[Tvar[j]][ij]=k; 
1.58      lievre   2248:          /* store the modality in an array. k is a modality. If we have model=V1+V1*sex then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
1.53      brouard  2249:          
                   2250:          ij++;
                   2251:        }
                   2252:        if (ij > ncodemax[j]) break; 
                   2253:       }  
                   2254:     } 
                   2255:   }  
                   2256: 
1.58      lievre   2257:  for (k=0; k< maxncov; k++) Ndum[k]=0;
1.53      brouard  2258: 
1.58      lievre   2259:  for (i=1; i<=ncovmodel-2; i++) { 
                   2260:    /* Listing of all covariables in staement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/
1.53      brouard  2261:    ij=Tvar[i];
1.58      lievre   2262:    Ndum[ij]++;
1.53      brouard  2263:  }
                   2264: 
                   2265:  ij=1;
1.58      lievre   2266:  for (i=1; i<= maxncov; i++) {
1.53      brouard  2267:    if((Ndum[i]!=0) && (i<=ncovcol)){
1.58      lievre   2268:      Tvaraff[ij]=i; /*For printing */
1.53      brouard  2269:      ij++;
                   2270:    }
                   2271:  }
                   2272:  
1.58      lievre   2273:  cptcoveff=ij-1; /*Number of simple covariates*/
1.53      brouard  2274: }
                   2275: 
                   2276: /*********** Health Expectancies ****************/
                   2277: 
                   2278: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij, int estepm,double delti[],double **matcov )
                   2279: 
                   2280: {
                   2281:   /* Health expectancies */
                   2282:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj;
                   2283:   double age, agelim, hf;
                   2284:   double ***p3mat,***varhe;
                   2285:   double **dnewm,**doldm;
                   2286:   double *xp;
                   2287:   double **gp, **gm;
                   2288:   double ***gradg, ***trgradg;
                   2289:   int theta;
                   2290: 
1.74      brouard  2291:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
1.53      brouard  2292:   xp=vector(1,npar);
1.74      brouard  2293:   dnewm=matrix(1,nlstate*nlstate,1,npar);
                   2294:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
1.53      brouard  2295:   
                   2296:   fprintf(ficreseij,"# Health expectancies\n");
                   2297:   fprintf(ficreseij,"# Age");
                   2298:   for(i=1; i<=nlstate;i++)
                   2299:     for(j=1; j<=nlstate;j++)
                   2300:       fprintf(ficreseij," %1d-%1d (SE)",i,j);
                   2301:   fprintf(ficreseij,"\n");
                   2302: 
                   2303:   if(estepm < stepm){
                   2304:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   2305:   }
                   2306:   else  hstepm=estepm;   
                   2307:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   2308:    * This is mainly to measure the difference between two models: for example
                   2309:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   2310:    * we are calculating an estimate of the Life Expectancy assuming a linear 
1.66      brouard  2311:    * progression in between and thus overestimating or underestimating according
1.53      brouard  2312:    * to the curvature of the survival function. If, for the same date, we 
                   2313:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   2314:    * to compare the new estimate of Life expectancy with the same linear 
                   2315:    * hypothesis. A more precise result, taking into account a more precise
                   2316:    * curvature will be obtained if estepm is as small as stepm. */
                   2317: 
                   2318:   /* For example we decided to compute the life expectancy with the smallest unit */
                   2319:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   2320:      nhstepm is the number of hstepm from age to agelim 
                   2321:      nstepm is the number of stepm from age to agelin. 
                   2322:      Look at hpijx to understand the reason of that which relies in memory size
                   2323:      and note for a fixed period like estepm months */
                   2324:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   2325:      survival function given by stepm (the optimization length). Unfortunately it
                   2326:      means that if the survival funtion is printed only each two years of age and if
                   2327:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   2328:      results. So we changed our mind and took the option of the best precision.
                   2329:   */
                   2330:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   2331: 
                   2332:   agelim=AGESUP;
                   2333:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   2334:     /* nhstepm age range expressed in number of stepm */
                   2335:     nstepm=(int) rint((agelim-age)*YEARM/stepm); 
                   2336:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   2337:     /* if (stepm >= YEARM) hstepm=1;*/
                   2338:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   2339:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.74      brouard  2340:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   2341:     gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   2342:     gm=matrix(0,nhstepm,1,nlstate*nlstate);
1.53      brouard  2343: 
                   2344:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   2345:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   2346:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);  
                   2347:  
                   2348: 
                   2349:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   2350: 
1.95      brouard  2351:     /* Computing  Variances of health expectancies */
1.53      brouard  2352: 
                   2353:      for(theta=1; theta <=npar; theta++){
                   2354:       for(i=1; i<=npar; i++){ 
                   2355:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   2356:       }
                   2357:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2358:   
                   2359:       cptj=0;
                   2360:       for(j=1; j<= nlstate; j++){
                   2361:        for(i=1; i<=nlstate; i++){
                   2362:          cptj=cptj+1;
                   2363:          for(h=0, gp[h][cptj]=0.; h<=nhstepm-1; h++){
                   2364:            gp[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                   2365:          }
                   2366:        }
                   2367:       }
                   2368:      
                   2369:      
                   2370:       for(i=1; i<=npar; i++) 
                   2371:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   2372:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2373:       
                   2374:       cptj=0;
                   2375:       for(j=1; j<= nlstate; j++){
                   2376:        for(i=1;i<=nlstate;i++){
                   2377:          cptj=cptj+1;
                   2378:          for(h=0, gm[h][cptj]=0.; h<=nhstepm-1; h++){
1.77      brouard  2379: 
1.53      brouard  2380:            gm[h][cptj] = (p3mat[i][j][h]+p3mat[i][j][h+1])/2.;
                   2381:          }
                   2382:        }
                   2383:       }
1.74      brouard  2384:       for(j=1; j<= nlstate*nlstate; j++)
1.53      brouard  2385:        for(h=0; h<=nhstepm-1; h++){
                   2386:          gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   2387:        }
                   2388:      } 
                   2389:    
                   2390: /* End theta */
                   2391: 
1.74      brouard  2392:      trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
1.53      brouard  2393: 
                   2394:      for(h=0; h<=nhstepm-1; h++)
1.74      brouard  2395:       for(j=1; j<=nlstate*nlstate;j++)
1.53      brouard  2396:        for(theta=1; theta <=npar; theta++)
                   2397:          trgradg[h][j][theta]=gradg[h][theta][j];
                   2398:      
                   2399: 
1.74      brouard  2400:      for(i=1;i<=nlstate*nlstate;i++)
                   2401:       for(j=1;j<=nlstate*nlstate;j++)
1.53      brouard  2402:        varhe[i][j][(int)age] =0.;
                   2403: 
                   2404:      printf("%d|",(int)age);fflush(stdout);
                   2405:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   2406:      for(h=0;h<=nhstepm-1;h++){
                   2407:       for(k=0;k<=nhstepm-1;k++){
1.74      brouard  2408:        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   2409:        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   2410:        for(i=1;i<=nlstate*nlstate;i++)
                   2411:          for(j=1;j<=nlstate*nlstate;j++)
1.53      brouard  2412:            varhe[i][j][(int)age] += doldm[i][j]*hf*hf;
                   2413:       }
                   2414:     }
                   2415:     /* Computing expectancies */
                   2416:     for(i=1; i<=nlstate;i++)
                   2417:       for(j=1; j<=nlstate;j++)
                   2418:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   2419:          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   2420:          
                   2421: /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   2422: 
                   2423:        }
                   2424: 
                   2425:     fprintf(ficreseij,"%3.0f",age );
                   2426:     cptj=0;
                   2427:     for(i=1; i<=nlstate;i++)
                   2428:       for(j=1; j<=nlstate;j++){
                   2429:        cptj++;
                   2430:        fprintf(ficreseij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[cptj][cptj][(int)age]) );
                   2431:       }
                   2432:     fprintf(ficreseij,"\n");
                   2433:    
1.74      brouard  2434:     free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   2435:     free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   2436:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   2437:     free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
1.53      brouard  2438:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   2439:   }
                   2440:   printf("\n");
                   2441:   fprintf(ficlog,"\n");
                   2442: 
                   2443:   free_vector(xp,1,npar);
1.74      brouard  2444:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   2445:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   2446:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
1.53      brouard  2447: }
                   2448: 
                   2449: /************ Variance ******************/
                   2450: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav)
                   2451: {
                   2452:   /* Variance of health expectancies */
                   2453:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   2454:   /* double **newm;*/
                   2455:   double **dnewm,**doldm;
                   2456:   double **dnewmp,**doldmp;
                   2457:   int i, j, nhstepm, hstepm, h, nstepm ;
                   2458:   int k, cptcode;
                   2459:   double *xp;
                   2460:   double **gp, **gm;  /* for var eij */
                   2461:   double ***gradg, ***trgradg; /*for var eij */
                   2462:   double **gradgp, **trgradgp; /* for var p point j */
                   2463:   double *gpp, *gmp; /* for var p point j */
                   2464:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   2465:   double ***p3mat;
                   2466:   double age,agelim, hf;
                   2467:   double ***mobaverage;
                   2468:   int theta;
                   2469:   char digit[4];
1.55      lievre   2470:   char digitp[25];
1.53      brouard  2471: 
                   2472:   char fileresprobmorprev[FILENAMELENGTH];
                   2473: 
1.55      lievre   2474:   if(popbased==1){
1.58      lievre   2475:     if(mobilav!=0)
1.55      lievre   2476:       strcpy(digitp,"-populbased-mobilav-");
                   2477:     else strcpy(digitp,"-populbased-nomobil-");
                   2478:   }
                   2479:   else 
1.53      brouard  2480:     strcpy(digitp,"-stablbased-");
1.56      lievre   2481: 
1.54      brouard  2482:   if (mobilav!=0) {
1.53      brouard  2483:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.54      brouard  2484:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   2485:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   2486:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   2487:     }
1.53      brouard  2488:   }
                   2489: 
                   2490:   strcpy(fileresprobmorprev,"prmorprev"); 
                   2491:   sprintf(digit,"%-d",ij);
                   2492:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   2493:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   2494:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   2495:   strcat(fileresprobmorprev,fileres);
                   2496:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   2497:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   2498:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   2499:   }
                   2500:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   2501:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
1.66      brouard  2502:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
1.53      brouard  2503:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   2504:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   2505:     fprintf(ficresprobmorprev," p.%-d SE",j);
                   2506:     for(i=1; i<=nlstate;i++)
                   2507:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   2508:   }  
                   2509:   fprintf(ficresprobmorprev,"\n");
1.88      brouard  2510:   fprintf(ficgp,"\n# Routine varevsij");
1.87      brouard  2511:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   2512:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                   2513: /*   } */
1.53      brouard  2514:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   2515: 
                   2516:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are the stable prevalence in health states i\n");
                   2517:   fprintf(ficresvij,"# Age");
                   2518:   for(i=1; i<=nlstate;i++)
                   2519:     for(j=1; j<=nlstate;j++)
                   2520:       fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
                   2521:   fprintf(ficresvij,"\n");
                   2522: 
                   2523:   xp=vector(1,npar);
                   2524:   dnewm=matrix(1,nlstate,1,npar);
                   2525:   doldm=matrix(1,nlstate,1,nlstate);
                   2526:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   2527:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   2528: 
                   2529:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   2530:   gpp=vector(nlstate+1,nlstate+ndeath);
                   2531:   gmp=vector(nlstate+1,nlstate+ndeath);
                   2532:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   2533:   
                   2534:   if(estepm < stepm){
                   2535:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   2536:   }
                   2537:   else  hstepm=estepm;   
                   2538:   /* For example we decided to compute the life expectancy with the smallest unit */
                   2539:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   2540:      nhstepm is the number of hstepm from age to agelim 
                   2541:      nstepm is the number of stepm from age to agelin. 
                   2542:      Look at hpijx to understand the reason of that which relies in memory size
                   2543:      and note for a fixed period like k years */
                   2544:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   2545:      survival function given by stepm (the optimization length). Unfortunately it
1.66      brouard  2546:      means that if the survival funtion is printed every two years of age and if
1.53      brouard  2547:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   2548:      results. So we changed our mind and took the option of the best precision.
                   2549:   */
                   2550:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   2551:   agelim = AGESUP;
                   2552:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   2553:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   2554:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   2555:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   2556:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   2557:     gp=matrix(0,nhstepm,1,nlstate);
                   2558:     gm=matrix(0,nhstepm,1,nlstate);
                   2559: 
                   2560: 
                   2561:     for(theta=1; theta <=npar; theta++){
1.66      brouard  2562:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
1.53      brouard  2563:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   2564:       }
                   2565:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2566:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2567: 
                   2568:       if (popbased==1) {
1.54      brouard  2569:        if(mobilav ==0){
1.53      brouard  2570:          for(i=1; i<=nlstate;i++)
                   2571:            prlim[i][i]=probs[(int)age][i][ij];
1.54      brouard  2572:        }else{ /* mobilav */ 
1.53      brouard  2573:          for(i=1; i<=nlstate;i++)
                   2574:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   2575:        }
                   2576:       }
                   2577:   
                   2578:       for(j=1; j<= nlstate; j++){
                   2579:        for(h=0; h<=nhstepm; h++){
                   2580:          for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   2581:            gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   2582:        }
                   2583:       }
1.66      brouard  2584:       /* This for computing probability of death (h=1 means
                   2585:          computed over hstepm matrices product = hstepm*stepm months) 
                   2586:          as a weighted average of prlim.
                   2587:       */
1.69      brouard  2588:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
1.68      lievre   2589:        for(i=1,gpp[j]=0.; i<= nlstate; i++)
1.53      brouard  2590:          gpp[j] += prlim[i][i]*p3mat[i][j][1];
                   2591:       }    
1.66      brouard  2592:       /* end probability of death */
1.53      brouard  2593: 
1.66      brouard  2594:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
1.53      brouard  2595:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   2596:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   2597:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2598:  
                   2599:       if (popbased==1) {
1.54      brouard  2600:        if(mobilav ==0){
1.53      brouard  2601:          for(i=1; i<=nlstate;i++)
                   2602:            prlim[i][i]=probs[(int)age][i][ij];
1.54      brouard  2603:        }else{ /* mobilav */ 
1.53      brouard  2604:          for(i=1; i<=nlstate;i++)
                   2605:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   2606:        }
                   2607:       }
                   2608: 
                   2609:       for(j=1; j<= nlstate; j++){
                   2610:        for(h=0; h<=nhstepm; h++){
                   2611:          for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   2612:            gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   2613:        }
                   2614:       }
1.66      brouard  2615:       /* This for computing probability of death (h=1 means
                   2616:          computed over hstepm matrices product = hstepm*stepm months) 
                   2617:          as a weighted average of prlim.
                   2618:       */
1.69      brouard  2619:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
1.68      lievre   2620:        for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   2621:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
1.53      brouard  2622:       }    
1.66      brouard  2623:       /* end probability of death */
1.53      brouard  2624: 
                   2625:       for(j=1; j<= nlstate; j++) /* vareij */
                   2626:        for(h=0; h<=nhstepm; h++){
                   2627:          gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   2628:        }
1.68      lievre   2629: 
1.53      brouard  2630:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   2631:        gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   2632:       }
                   2633: 
                   2634:     } /* End theta */
                   2635: 
                   2636:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   2637: 
                   2638:     for(h=0; h<=nhstepm; h++) /* veij */
                   2639:       for(j=1; j<=nlstate;j++)
                   2640:        for(theta=1; theta <=npar; theta++)
                   2641:          trgradg[h][j][theta]=gradg[h][theta][j];
                   2642: 
                   2643:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
1.69      brouard  2644:       for(theta=1; theta <=npar; theta++)
1.53      brouard  2645:        trgradgp[j][theta]=gradgp[theta][j];
1.69      brouard  2646:   
1.53      brouard  2647: 
                   2648:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   2649:     for(i=1;i<=nlstate;i++)
                   2650:       for(j=1;j<=nlstate;j++)
                   2651:        vareij[i][j][(int)age] =0.;
                   2652: 
                   2653:     for(h=0;h<=nhstepm;h++){
                   2654:       for(k=0;k<=nhstepm;k++){
                   2655:        matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   2656:        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   2657:        for(i=1;i<=nlstate;i++)
                   2658:          for(j=1;j<=nlstate;j++)
                   2659:            vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   2660:       }
                   2661:     }
1.70      brouard  2662:   
1.53      brouard  2663:     /* pptj */
                   2664:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   2665:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
1.70      brouard  2666:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   2667:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
1.53      brouard  2668:        varppt[j][i]=doldmp[j][i];
                   2669:     /* end ppptj */
1.66      brouard  2670:     /*  x centered again */
1.53      brouard  2671:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                   2672:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                   2673:  
                   2674:     if (popbased==1) {
1.54      brouard  2675:       if(mobilav ==0){
1.53      brouard  2676:        for(i=1; i<=nlstate;i++)
                   2677:          prlim[i][i]=probs[(int)age][i][ij];
1.54      brouard  2678:       }else{ /* mobilav */ 
1.53      brouard  2679:        for(i=1; i<=nlstate;i++)
                   2680:          prlim[i][i]=mobaverage[(int)age][i][ij];
                   2681:       }
                   2682:     }
1.70      brouard  2683:              
1.66      brouard  2684:     /* This for computing probability of death (h=1 means
                   2685:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   2686:        as a weighted average of prlim.
                   2687:     */
1.68      lievre   2688:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   2689:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
1.53      brouard  2690:        gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   2691:     }    
1.66      brouard  2692:     /* end probability of death */
1.53      brouard  2693: 
                   2694:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   2695:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   2696:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   2697:       for(i=1; i<=nlstate;i++){
                   2698:        fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   2699:       }
                   2700:     } 
                   2701:     fprintf(ficresprobmorprev,"\n");
                   2702: 
                   2703:     fprintf(ficresvij,"%.0f ",age );
                   2704:     for(i=1; i<=nlstate;i++)
                   2705:       for(j=1; j<=nlstate;j++){
                   2706:        fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   2707:       }
                   2708:     fprintf(ficresvij,"\n");
                   2709:     free_matrix(gp,0,nhstepm,1,nlstate);
                   2710:     free_matrix(gm,0,nhstepm,1,nlstate);
                   2711:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   2712:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   2713:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   2714:   } /* End age */
                   2715:   free_vector(gpp,nlstate+1,nlstate+ndeath);
                   2716:   free_vector(gmp,nlstate+1,nlstate+ndeath);
                   2717:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   2718:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   2719:   fprintf(ficgp,"\nset noparametric;set nolabel; set ter png small;set size 0.65, 0.65");
                   2720:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   2721:   fprintf(ficgp,"\n set log y; set nolog x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
1.67      brouard  2722: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   2723: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   2724: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
1.88      brouard  2725:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l 1 ",subdirf(fileresprobmorprev));
                   2726:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l 2 ",subdirf(fileresprobmorprev));
                   2727:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l 2 ",subdirf(fileresprobmorprev));
                   2728:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   2729:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
1.53      brouard  2730:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                   2731: */
1.88      brouard  2732: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
1.89      brouard  2733:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
1.53      brouard  2734: 
                   2735:   free_vector(xp,1,npar);
                   2736:   free_matrix(doldm,1,nlstate,1,nlstate);
                   2737:   free_matrix(dnewm,1,nlstate,1,npar);
                   2738:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   2739:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   2740:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
1.55      lievre   2741:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.53      brouard  2742:   fclose(ficresprobmorprev);
1.88      brouard  2743:   fflush(ficgp);
                   2744:   fflush(fichtm); 
1.84      brouard  2745: }  /* end varevsij */
1.53      brouard  2746: 
                   2747: /************ Variance of prevlim ******************/
                   2748: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
                   2749: {
                   2750:   /* Variance of prevalence limit */
1.59      brouard  2751:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
1.53      brouard  2752:   double **newm;
                   2753:   double **dnewm,**doldm;
                   2754:   int i, j, nhstepm, hstepm;
                   2755:   int k, cptcode;
                   2756:   double *xp;
                   2757:   double *gp, *gm;
                   2758:   double **gradg, **trgradg;
                   2759:   double age,agelim;
                   2760:   int theta;
                   2761:    
1.54      brouard  2762:   fprintf(ficresvpl,"# Standard deviation of stable prevalences \n");
1.53      brouard  2763:   fprintf(ficresvpl,"# Age");
                   2764:   for(i=1; i<=nlstate;i++)
                   2765:       fprintf(ficresvpl," %1d-%1d",i,i);
                   2766:   fprintf(ficresvpl,"\n");
                   2767: 
                   2768:   xp=vector(1,npar);
                   2769:   dnewm=matrix(1,nlstate,1,npar);
                   2770:   doldm=matrix(1,nlstate,1,nlstate);
                   2771:   
                   2772:   hstepm=1*YEARM; /* Every year of age */
                   2773:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   2774:   agelim = AGESUP;
                   2775:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   2776:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   2777:     if (stepm >= YEARM) hstepm=1;
                   2778:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   2779:     gradg=matrix(1,npar,1,nlstate);
                   2780:     gp=vector(1,nlstate);
                   2781:     gm=vector(1,nlstate);
                   2782: 
                   2783:     for(theta=1; theta <=npar; theta++){
                   2784:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   2785:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   2786:       }
                   2787:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2788:       for(i=1;i<=nlstate;i++)
                   2789:        gp[i] = prlim[i][i];
                   2790:     
                   2791:       for(i=1; i<=npar; i++) /* Computes gradient */
                   2792:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   2793:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   2794:       for(i=1;i<=nlstate;i++)
                   2795:        gm[i] = prlim[i][i];
                   2796: 
                   2797:       for(i=1;i<=nlstate;i++)
                   2798:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   2799:     } /* End theta */
                   2800: 
                   2801:     trgradg =matrix(1,nlstate,1,npar);
                   2802: 
                   2803:     for(j=1; j<=nlstate;j++)
                   2804:       for(theta=1; theta <=npar; theta++)
                   2805:        trgradg[j][theta]=gradg[theta][j];
                   2806: 
                   2807:     for(i=1;i<=nlstate;i++)
                   2808:       varpl[i][(int)age] =0.;
                   2809:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   2810:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                   2811:     for(i=1;i<=nlstate;i++)
                   2812:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   2813: 
                   2814:     fprintf(ficresvpl,"%.0f ",age );
                   2815:     for(i=1; i<=nlstate;i++)
                   2816:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   2817:     fprintf(ficresvpl,"\n");
                   2818:     free_vector(gp,1,nlstate);
                   2819:     free_vector(gm,1,nlstate);
                   2820:     free_matrix(gradg,1,npar,1,nlstate);
                   2821:     free_matrix(trgradg,1,nlstate,1,npar);
                   2822:   } /* End age */
                   2823: 
                   2824:   free_vector(xp,1,npar);
                   2825:   free_matrix(doldm,1,nlstate,1,npar);
                   2826:   free_matrix(dnewm,1,nlstate,1,nlstate);
                   2827: 
                   2828: }
                   2829: 
                   2830: /************ Variance of one-step probabilities  ******************/
                   2831: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax)
                   2832: {
                   2833:   int i, j=0,  i1, k1, l1, t, tj;
                   2834:   int k2, l2, j1,  z1;
                   2835:   int k=0,l, cptcode;
                   2836:   int first=1, first1;
                   2837:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   2838:   double **dnewm,**doldm;
                   2839:   double *xp;
                   2840:   double *gp, *gm;
                   2841:   double **gradg, **trgradg;
                   2842:   double **mu;
                   2843:   double age,agelim, cov[NCOVMAX];
                   2844:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   2845:   int theta;
                   2846:   char fileresprob[FILENAMELENGTH];
                   2847:   char fileresprobcov[FILENAMELENGTH];
                   2848:   char fileresprobcor[FILENAMELENGTH];
                   2849: 
                   2850:   double ***varpij;
                   2851: 
                   2852:   strcpy(fileresprob,"prob"); 
                   2853:   strcat(fileresprob,fileres);
                   2854:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   2855:     printf("Problem with resultfile: %s\n", fileresprob);
                   2856:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   2857:   }
                   2858:   strcpy(fileresprobcov,"probcov"); 
                   2859:   strcat(fileresprobcov,fileres);
                   2860:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   2861:     printf("Problem with resultfile: %s\n", fileresprobcov);
                   2862:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   2863:   }
                   2864:   strcpy(fileresprobcor,"probcor"); 
                   2865:   strcat(fileresprobcor,fileres);
                   2866:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   2867:     printf("Problem with resultfile: %s\n", fileresprobcor);
                   2868:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   2869:   }
                   2870:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   2871:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   2872:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   2873:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   2874:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   2875:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   2876:   
                   2877:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   2878:   fprintf(ficresprob,"# Age");
                   2879:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   2880:   fprintf(ficresprobcov,"# Age");
                   2881:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   2882:   fprintf(ficresprobcov,"# Age");
                   2883: 
                   2884: 
                   2885:   for(i=1; i<=nlstate;i++)
                   2886:     for(j=1; j<=(nlstate+ndeath);j++){
                   2887:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   2888:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   2889:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   2890:     }  
1.69      brouard  2891:  /* fprintf(ficresprob,"\n");
1.53      brouard  2892:   fprintf(ficresprobcov,"\n");
                   2893:   fprintf(ficresprobcor,"\n");
1.69      brouard  2894:  */
                   2895:  xp=vector(1,npar);
1.53      brouard  2896:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   2897:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   2898:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   2899:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   2900:   first=1;
1.88      brouard  2901:   fprintf(ficgp,"\n# Routine varprob");
                   2902:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   2903:   fprintf(fichtm,"\n");
                   2904: 
1.95      brouard  2905:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                   2906:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
1.91      brouard  2907:   file %s<br>\n",optionfilehtmcov);
                   2908:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                   2909: and drawn. It helps understanding how is the covariance between two incidences.\
                   2910:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                   2911:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   2912: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   2913: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   2914: standard deviations wide on each axis. <br>\
                   2915:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   2916:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   2917: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
1.53      brouard  2918: 
                   2919:   cov[1]=1;
                   2920:   tj=cptcoveff;
                   2921:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   2922:   j1=0;
                   2923:   for(t=1; t<=tj;t++){
                   2924:     for(i1=1; i1<=ncodemax[t];i1++){ 
                   2925:       j1++;
                   2926:       if  (cptcovn>0) {
                   2927:        fprintf(ficresprob, "\n#********** Variable "); 
                   2928:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.69      brouard  2929:        fprintf(ficresprob, "**********\n#\n");
1.53      brouard  2930:        fprintf(ficresprobcov, "\n#********** Variable "); 
                   2931:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.69      brouard  2932:        fprintf(ficresprobcov, "**********\n#\n");
1.53      brouard  2933:        
                   2934:        fprintf(ficgp, "\n#********** Variable "); 
1.69      brouard  2935:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   2936:        fprintf(ficgp, "**********\n#\n");
1.53      brouard  2937:        
                   2938:        
1.96      brouard  2939:        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
1.53      brouard  2940:        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.96      brouard  2941:        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
1.53      brouard  2942:        
                   2943:        fprintf(ficresprobcor, "\n#********** Variable ");    
                   2944:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1.69      brouard  2945:        fprintf(ficresprobcor, "**********\n#");    
1.53      brouard  2946:       }
                   2947:       
                   2948:       for (age=bage; age<=fage; age ++){ 
                   2949:        cov[2]=age;
                   2950:        for (k=1; k<=cptcovn;k++) {
                   2951:          cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];
                   2952:        }
                   2953:        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   2954:        for (k=1; k<=cptcovprod;k++)
                   2955:          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   2956:        
                   2957:        gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   2958:        trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   2959:        gp=vector(1,(nlstate)*(nlstate+ndeath));
                   2960:        gm=vector(1,(nlstate)*(nlstate+ndeath));
                   2961:     
                   2962:        for(theta=1; theta <=npar; theta++){
                   2963:          for(i=1; i<=npar; i++)
1.74      brouard  2964:            xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
1.53      brouard  2965:          
                   2966:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   2967:          
                   2968:          k=0;
                   2969:          for(i=1; i<= (nlstate); i++){
                   2970:            for(j=1; j<=(nlstate+ndeath);j++){
                   2971:              k=k+1;
                   2972:              gp[k]=pmmij[i][j];
                   2973:            }
                   2974:          }
                   2975:          
                   2976:          for(i=1; i<=npar; i++)
1.74      brouard  2977:            xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
1.53      brouard  2978:     
                   2979:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   2980:          k=0;
                   2981:          for(i=1; i<=(nlstate); i++){
                   2982:            for(j=1; j<=(nlstate+ndeath);j++){
                   2983:              k=k+1;
                   2984:              gm[k]=pmmij[i][j];
                   2985:            }
                   2986:          }
                   2987:      
                   2988:          for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
1.74      brouard  2989:            gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
1.53      brouard  2990:        }
                   2991: 
                   2992:        for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   2993:          for(theta=1; theta <=npar; theta++)
                   2994:            trgradg[j][theta]=gradg[theta][j];
                   2995:        
                   2996:        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   2997:        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
1.59      brouard  2998:        free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   2999:        free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   3000:        free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   3001:        free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   3002: 
1.53      brouard  3003:        pmij(pmmij,cov,ncovmodel,x,nlstate);
                   3004:        
                   3005:        k=0;
                   3006:        for(i=1; i<=(nlstate); i++){
                   3007:          for(j=1; j<=(nlstate+ndeath);j++){
                   3008:            k=k+1;
                   3009:            mu[k][(int) age]=pmmij[i][j];
                   3010:          }
                   3011:        }
                   3012:        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   3013:          for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   3014:            varpij[i][j][(int)age] = doldm[i][j];
                   3015: 
                   3016:        /*printf("\n%d ",(int)age);
1.59      brouard  3017:          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3018:          printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3019:          fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3020:          }*/
1.53      brouard  3021: 
                   3022:        fprintf(ficresprob,"\n%d ",(int)age);
                   3023:        fprintf(ficresprobcov,"\n%d ",(int)age);
                   3024:        fprintf(ficresprobcor,"\n%d ",(int)age);
                   3025: 
                   3026:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   3027:          fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   3028:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3029:          fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   3030:          fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   3031:        }
                   3032:        i=0;
                   3033:        for (k=1; k<=(nlstate);k++){
                   3034:          for (l=1; l<=(nlstate+ndeath);l++){ 
                   3035:            i=i++;
                   3036:            fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   3037:            fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   3038:            for (j=1; j<=i;j++){
                   3039:              fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   3040:              fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   3041:            }
                   3042:          }
                   3043:        }/* end of loop for state */
                   3044:       } /* end of loop for age */
                   3045: 
                   3046:       /* Confidence intervalle of pij  */
                   3047:       /*
1.59      brouard  3048:        fprintf(ficgp,"\nset noparametric;unset label");
                   3049:        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   3050:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   3051:        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   3052:        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   3053:        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   3054:        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
1.53      brouard  3055:       */
                   3056: 
                   3057:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   3058:       first1=1;
                   3059:       for (k2=1; k2<=(nlstate);k2++){
                   3060:        for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   3061:          if(l2==k2) continue;
                   3062:          j=(k2-1)*(nlstate+ndeath)+l2;
                   3063:          for (k1=1; k1<=(nlstate);k1++){
                   3064:            for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   3065:              if(l1==k1) continue;
                   3066:              i=(k1-1)*(nlstate+ndeath)+l1;
                   3067:              if(i<=j) continue;
                   3068:              for (age=bage; age<=fage; age ++){ 
                   3069:                if ((int)age %5==0){
                   3070:                  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   3071:                  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3072:                  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3073:                  mu1=mu[i][(int) age]/stepm*YEARM ;
                   3074:                  mu2=mu[j][(int) age]/stepm*YEARM;
                   3075:                  c12=cv12/sqrt(v1*v2);
                   3076:                  /* Computing eigen value of matrix of covariance */
                   3077:                  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   3078:                  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   3079:                  /* Eigen vectors */
                   3080:                  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   3081:                  /*v21=sqrt(1.-v11*v11); *//* error */
                   3082:                  v21=(lc1-v1)/cv12*v11;
                   3083:                  v12=-v21;
                   3084:                  v22=v11;
                   3085:                  tnalp=v21/v11;
                   3086:                  if(first1==1){
                   3087:                    first1=0;
                   3088:                    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   3089:                  }
                   3090:                  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   3091:                  /*printf(fignu*/
                   3092:                  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   3093:                  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   3094:                  if(first==1){
                   3095:                    first=0;
                   3096:                    fprintf(ficgp,"\nset parametric;unset label");
                   3097:                    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                   3098:                    fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
1.91      brouard  3099:                    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
1.88      brouard  3100:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                   3101: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                   3102:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                   3103:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
1.91      brouard  3104:                    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   3105:                    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
1.88      brouard  3106:                    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
1.53      brouard  3107:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   3108:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   3109:                    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   3110:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   3111:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   3112:                  }else{
                   3113:                    first=0;
1.91      brouard  3114:                    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
1.53      brouard  3115:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   3116:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   3117:                    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   3118:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   3119:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   3120:                  }/* if first */
                   3121:                } /* age mod 5 */
                   3122:              } /* end loop age */
1.88      brouard  3123:              fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
1.53      brouard  3124:              first=1;
                   3125:            } /*l12 */
                   3126:          } /* k12 */
                   3127:        } /*l1 */
                   3128:       }/* k1 */
                   3129:     } /* loop covariates */
                   3130:   }
1.59      brouard  3131:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   3132:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
1.53      brouard  3133:   free_vector(xp,1,npar);
                   3134:   fclose(ficresprob);
                   3135:   fclose(ficresprobcov);
                   3136:   fclose(ficresprobcor);
1.91      brouard  3137:   fflush(ficgp);
                   3138:   fflush(fichtmcov);
1.53      brouard  3139: }
                   3140: 
                   3141: 
                   3142: /******************* Printing html file ***********/
                   3143: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                   3144:                  int lastpass, int stepm, int weightopt, char model[],\
                   3145:                  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   3146:                  int popforecast, int estepm ,\
                   3147:                  double jprev1, double mprev1,double anprev1, \
                   3148:                  double jprev2, double mprev2,double anprev2){
                   3149:   int jj1, k1, i1, cpt;
                   3150: 
1.85      brouard  3151:    fprintf(fichtm,"<ul><li><h4>Result files (first order: no variance)</h4>\n \
1.96      brouard  3152:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                   3153:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
                   3154:    fprintf(fichtm,"\
                   3155:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   3156:           stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
                   3157:    fprintf(fichtm,"\
                   3158:  - Stable prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                   3159:           subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
                   3160:    fprintf(fichtm,"\
1.85      brouard  3161:  - Life expectancies by age and initial health status (estepm=%2d months): \
1.96      brouard  3162:    <a href=\"%s\">%s</a> <br>\n</li>",
1.88      brouard  3163:           estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
1.53      brouard  3164: 
                   3165: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                   3166: 
                   3167:  m=cptcoveff;
                   3168:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   3169: 
                   3170:  jj1=0;
                   3171:  for(k1=1; k1<=m;k1++){
                   3172:    for(i1=1; i1<=ncodemax[k1];i1++){
                   3173:      jj1++;
                   3174:      if (cptcovn > 0) {
                   3175:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   3176:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   3177:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   3178:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   3179:      }
                   3180:      /* Pij */
1.88      brouard  3181:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: %s%d1.png<br> \
                   3182: <img src=\"%s%d1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
1.53      brouard  3183:      /* Quasi-incidences */
1.85      brouard  3184:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
1.88      brouard  3185:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: %s%d2.png<br> \
                   3186: <img src=\"%s%d2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
1.53      brouard  3187:        /* Stable prevalence in each health state */
                   3188:        for(cpt=1; cpt<nlstate;cpt++){
1.85      brouard  3189:         fprintf(fichtm,"<br>- Stable prevalence in each health state : p%s%d%d.png<br> \
1.88      brouard  3190: <img src=\"%s%d%d.png\">",subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
1.53      brouard  3191:        }
                   3192:      for(cpt=1; cpt<=nlstate;cpt++) {
1.88      brouard  3193:         fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): %s%d%d.png <br> \
1.89      brouard  3194: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
1.53      brouard  3195:      }
                   3196:    } /* end i1 */
                   3197:  }/* End k1 */
                   3198:  fprintf(fichtm,"</ul>");
                   3199: 
                   3200: 
1.96      brouard  3201:  fprintf(fichtm,"\
                   3202: \n<br><li><h4> Result files (second order: variances)</h4>\n\
                   3203:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                   3204: 
                   3205:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   3206:         subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
                   3207:  fprintf(fichtm,"\
                   3208:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   3209:         subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                   3210: 
                   3211:  fprintf(fichtm,"\
                   3212:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   3213:         subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                   3214:  fprintf(fichtm,"\
                   3215:  - Variances and covariances of life expectancies by age and initial health status (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
                   3216:         estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                   3217:  fprintf(fichtm,"\
                   3218:  - Health expectancies with their variances (no covariance): <a href=\"%s\">%s</a> <br>\n",
                   3219:         subdirf2(fileres,"t"),subdirf2(fileres,"t"));
                   3220:  fprintf(fichtm,"\
1.88      brouard  3221:  - Standard deviation of stable prevalences: <a href=\"%s\">%s</a> <br>\n",\
                   3222:         subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
1.53      brouard  3223: 
1.76      brouard  3224: /*  if(popforecast==1) fprintf(fichtm,"\n */
                   3225: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                   3226: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                   3227: /*     <br>",fileres,fileres,fileres,fileres); */
                   3228: /*  else  */
                   3229: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
1.96      brouard  3230:  fflush(fichtm);
                   3231:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
1.53      brouard  3232: 
                   3233:  m=cptcoveff;
                   3234:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   3235: 
                   3236:  jj1=0;
                   3237:  for(k1=1; k1<=m;k1++){
                   3238:    for(i1=1; i1<=ncodemax[k1];i1++){
                   3239:      jj1++;
                   3240:      if (cptcovn > 0) {
                   3241:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   3242:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   3243:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   3244:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   3245:      }
                   3246:      for(cpt=1; cpt<=nlstate;cpt++) {
1.95      brouard  3247:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
                   3248: prevalence (with 95%% confidence interval) in state (%d): %s%d%d.png <br>\
1.90      brouard  3249: <img src=\"%s%d%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
1.53      brouard  3250:      }
1.96      brouard  3251:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
                   3252: health expectancies in states (1) and (2): %s%d.png<br>\
                   3253: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
1.53      brouard  3254:    } /* end i1 */
                   3255:  }/* End k1 */
                   3256:  fprintf(fichtm,"</ul>");
1.87      brouard  3257:  fflush(fichtm);
1.53      brouard  3258: }
                   3259: 
                   3260: /******************* Gnuplot file **************/
1.89      brouard  3261: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
1.53      brouard  3262: 
1.88      brouard  3263:   char dirfileres[132],optfileres[132];
1.53      brouard  3264:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
                   3265:   int ng;
1.88      brouard  3266: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                   3267: /*     printf("Problem with file %s",optionfilegnuplot); */
                   3268: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   3269: /*   } */
1.53      brouard  3270: 
1.54      brouard  3271:   /*#ifdef windows */
1.89      brouard  3272:   fprintf(ficgp,"cd \"%s\" \n",pathc);
1.54      brouard  3273:     /*#endif */
1.88      brouard  3274:   m=pow(2,cptcoveff);
                   3275: 
                   3276:   strcpy(dirfileres,optionfilefiname);
                   3277:   strcpy(optfileres,"vpl");
1.53      brouard  3278:  /* 1eme*/
                   3279:   for (cpt=1; cpt<= nlstate ; cpt ++) {
                   3280:    for (k1=1; k1<= m ; k1 ++) {
1.88      brouard  3281:      fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
                   3282:      fprintf(ficgp,"\n#set out \"v%s%d%d.png\" \n",optionfilefiname,cpt,k1);
                   3283:      fprintf(ficgp,"set xlabel \"Age\" \n\
                   3284: set ylabel \"Probability\" \n\
                   3285: set ter png small\n\
                   3286: set size 0.65,0.65\n\
                   3287: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
1.53      brouard  3288: 
                   3289:      for (i=1; i<= nlstate ; i ++) {
                   3290:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   3291:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3292:      }
1.88      brouard  3293:      fprintf(ficgp,"\" t\"Stable prevalence\" w l 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
1.53      brouard  3294:      for (i=1; i<= nlstate ; i ++) {
                   3295:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   3296:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3297:      } 
1.88      brouard  3298:      fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
1.53      brouard  3299:      for (i=1; i<= nlstate ; i ++) {
                   3300:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   3301:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3302:      }  
1.88      brouard  3303:      fprintf(ficgp,"\" t\"\" w l 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
1.53      brouard  3304:    }
                   3305:   }
                   3306:   /*2 eme*/
                   3307:   
                   3308:   for (k1=1; k1<= m ; k1 ++) { 
1.88      brouard  3309:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
1.53      brouard  3310:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small\nset size 0.65,0.65\nplot [%.f:%.f] ",ageminpar,fage);
                   3311:     
                   3312:     for (i=1; i<= nlstate+1 ; i ++) {
                   3313:       k=2*i;
1.88      brouard  3314:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
1.53      brouard  3315:       for (j=1; j<= nlstate+1 ; j ++) {
                   3316:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   3317:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3318:       }   
                   3319:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                   3320:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
1.88      brouard  3321:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
1.53      brouard  3322:       for (j=1; j<= nlstate+1 ; j ++) {
                   3323:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   3324:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3325:       }   
                   3326:       fprintf(ficgp,"\" t\"\" w l 0,");
1.88      brouard  3327:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
1.53      brouard  3328:       for (j=1; j<= nlstate+1 ; j ++) {
                   3329:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   3330:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   3331:       }   
                   3332:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
                   3333:       else fprintf(ficgp,"\" t\"\" w l 0,");
                   3334:     }
                   3335:   }
                   3336:   
                   3337:   /*3eme*/
                   3338:   
                   3339:   for (k1=1; k1<= m ; k1 ++) { 
                   3340:     for (cpt=1; cpt<= nlstate ; cpt ++) {
                   3341:       k=2+nlstate*(2*cpt-2);
1.88      brouard  3342:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
                   3343:       fprintf(ficgp,"set ter png small\n\
                   3344: set size 0.65,0.65\n\
                   3345: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
1.53      brouard  3346:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   3347:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   3348:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   3349:        fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   3350:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   3351:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   3352:        
                   3353:       */
                   3354:       for (i=1; i< nlstate ; i ++) {
1.88      brouard  3355:        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);
1.53      brouard  3356:        
                   3357:       } 
                   3358:     }
                   3359:   }
                   3360:   
1.76      brouard  3361:   /* CV preval stable (period) */
1.53      brouard  3362:   for (k1=1; k1<= m ; k1 ++) { 
1.76      brouard  3363:     for (cpt=1; cpt<=nlstate ; cpt ++) {
1.53      brouard  3364:       k=3;
1.88      brouard  3365:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
                   3366:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
                   3367: set ter png small\nset size 0.65,0.65\n\
1.89      brouard  3368: unset log y\n\
1.88      brouard  3369: plot [%.f:%.f] \"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",ageminpar,agemaxpar,subdirf2(fileres,"pij"),k1,k+cpt+1,k+1);
1.53      brouard  3370:       
1.83      lievre   3371:       for (i=1; i< nlstate ; i ++)
1.53      brouard  3372:        fprintf(ficgp,"+$%d",k+i+1);
                   3373:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
                   3374:       
                   3375:       l=3+(nlstate+ndeath)*cpt;
1.88      brouard  3376:       fprintf(ficgp,",\"%s\" u ($1==%d ? ($3):1/0):($%d/($%d",subdirf2(fileres,"pij"),k1,l+cpt+1,l+1);
1.53      brouard  3377:       for (i=1; i< nlstate ; i ++) {
                   3378:        l=3+(nlstate+ndeath)*cpt;
                   3379:        fprintf(ficgp,"+$%d",l+i+1);
                   3380:       }
                   3381:       fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);   
                   3382:     } 
                   3383:   }  
                   3384:   
                   3385:   /* proba elementaires */
                   3386:   for(i=1,jk=1; i <=nlstate; i++){
                   3387:     for(k=1; k <=(nlstate+ndeath); k++){
                   3388:       if (k != i) {
                   3389:        for(j=1; j <=ncovmodel; j++){
                   3390:          fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                   3391:          jk++; 
                   3392:          fprintf(ficgp,"\n");
                   3393:        }
                   3394:       }
                   3395:     }
                   3396:    }
                   3397: 
                   3398:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
                   3399:      for(jk=1; jk <=m; jk++) {
1.88      brouard  3400:        fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
1.53      brouard  3401:        if (ng==2)
                   3402:         fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                   3403:        else
                   3404:         fprintf(ficgp,"\nset title \"Probability\"\n");
                   3405:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                   3406:        i=1;
                   3407:        for(k2=1; k2<=nlstate; k2++) {
                   3408:         k3=i;
                   3409:         for(k=1; k<=(nlstate+ndeath); k++) {
                   3410:           if (k != k2){
                   3411:             if(ng==2)
                   3412:               fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   3413:             else
                   3414:               fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                   3415:             ij=1;
                   3416:             for(j=3; j <=ncovmodel; j++) {
                   3417:               if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                   3418:                 fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                   3419:                 ij++;
                   3420:               }
                   3421:               else
                   3422:                 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   3423:             }
                   3424:             fprintf(ficgp,")/(1");
                   3425:             
                   3426:             for(k1=1; k1 <=nlstate; k1++){   
                   3427:               fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   3428:               ij=1;
                   3429:               for(j=3; j <=ncovmodel; j++){
                   3430:                 if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
                   3431:                   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
                   3432:                   ij++;
                   3433:                 }
                   3434:                 else
                   3435:                   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   3436:               }
                   3437:               fprintf(ficgp,")");
                   3438:             }
                   3439:             fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                   3440:             if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                   3441:             i=i+ncovmodel;
                   3442:           }
                   3443:         } /* end k */
                   3444:        } /* end k2 */
                   3445:      } /* end jk */
                   3446:    } /* end ng */
1.88      brouard  3447:    fflush(ficgp); 
1.53      brouard  3448: }  /* end gnuplot */
                   3449: 
                   3450: 
                   3451: /*************** Moving average **************/
1.54      brouard  3452: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
1.53      brouard  3453: 
                   3454:   int i, cpt, cptcod;
1.58      lievre   3455:   int modcovmax =1;
1.54      brouard  3456:   int mobilavrange, mob;
1.53      brouard  3457:   double age;
1.58      lievre   3458: 
                   3459:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                   3460:                           a covariate has 2 modalities */
                   3461:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                   3462: 
1.54      brouard  3463:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                   3464:     if(mobilav==1) mobilavrange=5; /* default */
                   3465:     else mobilavrange=mobilav;
                   3466:     for (age=bage; age<=fage; age++)
                   3467:       for (i=1; i<=nlstate;i++)
1.58      lievre   3468:        for (cptcod=1;cptcod<=modcovmax;cptcod++)
1.54      brouard  3469:          mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   3470:     /* We keep the original values on the extreme ages bage, fage and for 
                   3471:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                   3472:        we use a 5 terms etc. until the borders are no more concerned. 
                   3473:     */ 
                   3474:     for (mob=3;mob <=mobilavrange;mob=mob+2){
                   3475:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
                   3476:        for (i=1; i<=nlstate;i++){
1.58      lievre   3477:          for (cptcod=1;cptcod<=modcovmax;cptcod++){
1.54      brouard  3478:            mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   3479:              for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   3480:                mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   3481:                mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   3482:              }
                   3483:            mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                   3484:          }
1.53      brouard  3485:        }
1.54      brouard  3486:       }/* end age */
                   3487:     }/* end mob */
                   3488:   }else return -1;
                   3489:   return 0;
                   3490: }/* End movingaverage */
1.53      brouard  3491: 
                   3492: 
                   3493: /************** Forecasting ******************/
1.70      brouard  3494: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
1.69      brouard  3495:   /* proj1, year, month, day of starting projection 
                   3496:      agemin, agemax range of age
                   3497:      dateprev1 dateprev2 range of dates during which prevalence is computed
1.70      brouard  3498:      anproj2 year of en of projection (same day and month as proj1).
1.69      brouard  3499:   */
1.73      lievre   3500:   int yearp, stepsize, hstepm, nhstepm, j, k, c, cptcod, i, h, i1;
1.53      brouard  3501:   int *popage;
1.70      brouard  3502:   double agec; /* generic age */
                   3503:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
1.53      brouard  3504:   double *popeffectif,*popcount;
                   3505:   double ***p3mat;
1.55      lievre   3506:   double ***mobaverage;
1.53      brouard  3507:   char fileresf[FILENAMELENGTH];
                   3508: 
1.69      brouard  3509:   agelim=AGESUP;
1.84      brouard  3510:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
1.53      brouard  3511:  
                   3512:   strcpy(fileresf,"f"); 
                   3513:   strcat(fileresf,fileres);
                   3514:   if((ficresf=fopen(fileresf,"w"))==NULL) {
                   3515:     printf("Problem with forecast resultfile: %s\n", fileresf);
                   3516:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                   3517:   }
                   3518:   printf("Computing forecasting: result on file '%s' \n", fileresf);
                   3519:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
                   3520: 
                   3521:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   3522: 
1.54      brouard  3523:   if (mobilav!=0) {
1.53      brouard  3524:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.54      brouard  3525:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   3526:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   3527:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   3528:     }
1.53      brouard  3529:   }
                   3530: 
                   3531:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   3532:   if (stepm<=12) stepsize=1;
1.74      brouard  3533:   if(estepm < stepm){
                   3534:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   3535:   }
                   3536:   else  hstepm=estepm;   
                   3537: 
1.53      brouard  3538:   hstepm=hstepm/stepm; 
1.69      brouard  3539:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                   3540:                                fractional in yp1 */
1.53      brouard  3541:   anprojmean=yp;
                   3542:   yp2=modf((yp1*12),&yp);
                   3543:   mprojmean=yp;
                   3544:   yp1=modf((yp2*30.5),&yp);
                   3545:   jprojmean=yp;
                   3546:   if(jprojmean==0) jprojmean=1;
                   3547:   if(mprojmean==0) jprojmean=1;
1.73      lievre   3548: 
                   3549:   i1=cptcoveff;
                   3550:   if (cptcovn < 1){i1=1;}
1.53      brouard  3551:   
1.70      brouard  3552:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
1.53      brouard  3553:   
1.70      brouard  3554:   fprintf(ficresf,"#****** Routine prevforecast **\n");
1.73      lievre   3555: 
1.75      brouard  3556: /*           if (h==(int)(YEARM*yearp)){ */
1.73      lievre   3557:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
1.53      brouard  3558:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   3559:       k=k+1;
                   3560:       fprintf(ficresf,"\n#******");
                   3561:       for(j=1;j<=cptcoveff;j++) {
1.70      brouard  3562:        fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.53      brouard  3563:       }
                   3564:       fprintf(ficresf,"******\n");
1.70      brouard  3565:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
                   3566:       for(j=1; j<=nlstate+ndeath;j++){ 
                   3567:        for(i=1; i<=nlstate;i++)              
                   3568:           fprintf(ficresf," p%d%d",i,j);
                   3569:        fprintf(ficresf," p.%d",j);
                   3570:       }
1.74      brouard  3571:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
1.53      brouard  3572:        fprintf(ficresf,"\n");
1.70      brouard  3573:        fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
1.53      brouard  3574: 
1.71      brouard  3575:        for (agec=fage; agec>=(ageminpar-1); agec--){ 
1.70      brouard  3576:          nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
1.53      brouard  3577:          nhstepm = nhstepm/hstepm; 
                   3578:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3579:          oldm=oldms;savm=savms;
1.70      brouard  3580:          hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
1.53      brouard  3581:        
                   3582:          for (h=0; h<=nhstepm; h++){
1.75      brouard  3583:            if (h*hstepm/YEARM*stepm ==yearp) {
1.69      brouard  3584:               fprintf(ficresf,"\n");
                   3585:               for(j=1;j<=cptcoveff;j++) 
                   3586:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.70      brouard  3587:              fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
1.53      brouard  3588:            } 
                   3589:            for(j=1; j<=nlstate+ndeath;j++) {
1.70      brouard  3590:              ppij=0.;
1.71      brouard  3591:              for(i=1; i<=nlstate;i++) {
1.53      brouard  3592:                if (mobilav==1) 
1.71      brouard  3593:                  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
1.53      brouard  3594:                else {
1.71      brouard  3595:                  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
1.53      brouard  3596:                }
1.75      brouard  3597:                if (h*hstepm/YEARM*stepm== yearp) {
1.70      brouard  3598:                  fprintf(ficresf," %.3f", p3mat[i][j][h]);
1.75      brouard  3599:                }
                   3600:              } /* end i */
                   3601:              if (h*hstepm/YEARM*stepm==yearp) {
1.70      brouard  3602:                fprintf(ficresf," %.3f", ppij);
1.53      brouard  3603:              }
1.75      brouard  3604:            }/* end j */
                   3605:          } /* end h */
1.53      brouard  3606:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.75      brouard  3607:        } /* end agec */
                   3608:       } /* end yearp */
                   3609:     } /* end cptcod */
                   3610:   } /* end  cptcov */
1.53      brouard  3611:        
1.54      brouard  3612:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.53      brouard  3613: 
                   3614:   fclose(ficresf);
                   3615: }
1.70      brouard  3616: 
                   3617: /************** Forecasting *****not tested NB*************/
1.53      brouard  3618: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
                   3619:   
                   3620:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
                   3621:   int *popage;
1.69      brouard  3622:   double calagedatem, agelim, kk1, kk2;
1.53      brouard  3623:   double *popeffectif,*popcount;
                   3624:   double ***p3mat,***tabpop,***tabpopprev;
1.55      lievre   3625:   double ***mobaverage;
1.53      brouard  3626:   char filerespop[FILENAMELENGTH];
                   3627: 
                   3628:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3629:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3630:   agelim=AGESUP;
1.69      brouard  3631:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
1.53      brouard  3632:   
1.84      brouard  3633:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
1.53      brouard  3634:   
                   3635:   
                   3636:   strcpy(filerespop,"pop"); 
                   3637:   strcat(filerespop,fileres);
                   3638:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
                   3639:     printf("Problem with forecast resultfile: %s\n", filerespop);
                   3640:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
                   3641:   }
                   3642:   printf("Computing forecasting: result on file '%s' \n", filerespop);
                   3643:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
                   3644: 
                   3645:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   3646: 
1.54      brouard  3647:   if (mobilav!=0) {
1.53      brouard  3648:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.54      brouard  3649:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   3650:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   3651:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   3652:     }
1.53      brouard  3653:   }
                   3654: 
                   3655:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   3656:   if (stepm<=12) stepsize=1;
                   3657:   
                   3658:   agelim=AGESUP;
                   3659:   
                   3660:   hstepm=1;
                   3661:   hstepm=hstepm/stepm; 
                   3662:   
                   3663:   if (popforecast==1) {
                   3664:     if((ficpop=fopen(popfile,"r"))==NULL) {
                   3665:       printf("Problem with population file : %s\n",popfile);exit(0);
                   3666:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                   3667:     } 
                   3668:     popage=ivector(0,AGESUP);
                   3669:     popeffectif=vector(0,AGESUP);
                   3670:     popcount=vector(0,AGESUP);
                   3671:     
                   3672:     i=1;   
                   3673:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
                   3674:    
                   3675:     imx=i;
                   3676:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
                   3677:   }
                   3678: 
1.69      brouard  3679:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
1.53      brouard  3680:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   3681:       k=k+1;
                   3682:       fprintf(ficrespop,"\n#******");
                   3683:       for(j=1;j<=cptcoveff;j++) {
                   3684:        fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   3685:       }
                   3686:       fprintf(ficrespop,"******\n");
                   3687:       fprintf(ficrespop,"# Age");
                   3688:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
                   3689:       if (popforecast==1)  fprintf(ficrespop," [Population]");
                   3690:       
                   3691:       for (cpt=0; cpt<=0;cpt++) { 
                   3692:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   3693:        
1.69      brouard  3694:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
1.53      brouard  3695:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   3696:          nhstepm = nhstepm/hstepm; 
                   3697:          
                   3698:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3699:          oldm=oldms;savm=savms;
                   3700:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   3701:        
                   3702:          for (h=0; h<=nhstepm; h++){
1.69      brouard  3703:            if (h==(int) (calagedatem+YEARM*cpt)) {
1.53      brouard  3704:              fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   3705:            } 
                   3706:            for(j=1; j<=nlstate+ndeath;j++) {
                   3707:              kk1=0.;kk2=0;
                   3708:              for(i=1; i<=nlstate;i++) {              
                   3709:                if (mobilav==1) 
                   3710:                  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   3711:                else {
                   3712:                  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   3713:                }
                   3714:              }
1.69      brouard  3715:              if (h==(int)(calagedatem+12*cpt)){
1.53      brouard  3716:                tabpop[(int)(agedeb)][j][cptcod]=kk1;
                   3717:                  /*fprintf(ficrespop," %.3f", kk1);
                   3718:                    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                   3719:              }
                   3720:            }
                   3721:            for(i=1; i<=nlstate;i++){
                   3722:              kk1=0.;
                   3723:                for(j=1; j<=nlstate;j++){
                   3724:                  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   3725:                }
1.69      brouard  3726:                  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
1.53      brouard  3727:            }
                   3728: 
1.69      brouard  3729:            if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
1.53      brouard  3730:              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
                   3731:          }
                   3732:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3733:        }
                   3734:       }
                   3735:  
                   3736:   /******/
                   3737: 
                   3738:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
                   3739:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
1.69      brouard  3740:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
1.53      brouard  3741:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   3742:          nhstepm = nhstepm/hstepm; 
                   3743:          
                   3744:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3745:          oldm=oldms;savm=savms;
                   3746:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   3747:          for (h=0; h<=nhstepm; h++){
1.69      brouard  3748:            if (h==(int) (calagedatem+YEARM*cpt)) {
1.53      brouard  3749:              fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   3750:            } 
                   3751:            for(j=1; j<=nlstate+ndeath;j++) {
                   3752:              kk1=0.;kk2=0;
                   3753:              for(i=1; i<=nlstate;i++) {              
                   3754:                kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                   3755:              }
1.69      brouard  3756:              if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
1.53      brouard  3757:            }
                   3758:          }
                   3759:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3760:        }
                   3761:       }
                   3762:    } 
                   3763:   }
                   3764:  
1.54      brouard  3765:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.53      brouard  3766: 
                   3767:   if (popforecast==1) {
                   3768:     free_ivector(popage,0,AGESUP);
                   3769:     free_vector(popeffectif,0,AGESUP);
                   3770:     free_vector(popcount,0,AGESUP);
                   3771:   }
                   3772:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3773:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3774:   fclose(ficrespop);
1.84      brouard  3775: } /* End of popforecast */
1.53      brouard  3776: 
1.87      brouard  3777: int fileappend(FILE *fichier, char *optionfich)
1.86      brouard  3778: {
1.87      brouard  3779:   if((fichier=fopen(optionfich,"a"))==NULL) {
                   3780:     printf("Problem with file: %s\n", optionfich);
                   3781:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
                   3782:     return (0);
1.86      brouard  3783:   }
1.87      brouard  3784:   fflush(fichier);
                   3785:   return (1);
1.86      brouard  3786: }
1.94      brouard  3787: 
                   3788: 
                   3789: /**************** function prwizard **********************/
1.88      brouard  3790: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
                   3791: {
                   3792: 
1.94      brouard  3793:   /* Wizard to print covariance matrix template */
                   3794: 
1.88      brouard  3795:   char ca[32], cb[32], cc[32];
                   3796:   int i,j, k, l, li, lj, lk, ll, jj, npar, itimes;
                   3797:   int numlinepar;
                   3798: 
                   3799:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   3800:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   3801:   for(i=1; i <=nlstate; i++){
                   3802:     jj=0;
                   3803:     for(j=1; j <=nlstate+ndeath; j++){
                   3804:       if(j==i) continue;
                   3805:       jj++;
                   3806:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   3807:       printf("%1d%1d",i,j);
                   3808:       fprintf(ficparo,"%1d%1d",i,j);
                   3809:       for(k=1; k<=ncovmodel;k++){
                   3810:        /*        printf(" %lf",param[i][j][k]); */
                   3811:        /*        fprintf(ficparo," %lf",param[i][j][k]); */
                   3812:        printf(" 0.");
                   3813:        fprintf(ficparo," 0.");
                   3814:       }
                   3815:       printf("\n");
                   3816:       fprintf(ficparo,"\n");
                   3817:     }
                   3818:   }
                   3819:   printf("# Scales (for hessian or gradient estimation)\n");
                   3820:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   3821:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
                   3822:   for(i=1; i <=nlstate; i++){
                   3823:     jj=0;
                   3824:     for(j=1; j <=nlstate+ndeath; j++){
                   3825:       if(j==i) continue;
                   3826:       jj++;
                   3827:       fprintf(ficparo,"%1d%1d",i,j);
                   3828:       printf("%1d%1d",i,j);
                   3829:       fflush(stdout);
                   3830:       for(k=1; k<=ncovmodel;k++){
                   3831:        /*      printf(" %le",delti3[i][j][k]); */
                   3832:        /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   3833:        printf(" 0.");
                   3834:        fprintf(ficparo," 0.");
                   3835:       }
                   3836:       numlinepar++;
                   3837:       printf("\n");
                   3838:       fprintf(ficparo,"\n");
                   3839:     }
                   3840:   }
                   3841:   printf("# Covariance matrix\n");
                   3842: /* # 121 Var(a12)\n\ */
                   3843: /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   3844: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   3845: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   3846: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   3847: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   3848: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   3849: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   3850:   fflush(stdout);
                   3851:   fprintf(ficparo,"# Covariance matrix\n");
                   3852:   /* # 121 Var(a12)\n\ */
                   3853:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   3854:   /* #   ...\n\ */
                   3855:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   3856:   
                   3857:   for(itimes=1;itimes<=2;itimes++){
                   3858:     jj=0;
                   3859:     for(i=1; i <=nlstate; i++){
                   3860:       for(j=1; j <=nlstate+ndeath; j++){
                   3861:        if(j==i) continue;
                   3862:        for(k=1; k<=ncovmodel;k++){
                   3863:          jj++;
                   3864:          ca[0]= k+'a'-1;ca[1]='\0';
                   3865:          if(itimes==1){
                   3866:            printf("#%1d%1d%d",i,j,k);
                   3867:            fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   3868:          }else{
                   3869:            printf("%1d%1d%d",i,j,k);
                   3870:            fprintf(ficparo,"%1d%1d%d",i,j,k);
                   3871:            /*  printf(" %.5le",matcov[i][j]); */
                   3872:          }
                   3873:          ll=0;
                   3874:          for(li=1;li <=nlstate; li++){
                   3875:            for(lj=1;lj <=nlstate+ndeath; lj++){
                   3876:              if(lj==li) continue;
                   3877:              for(lk=1;lk<=ncovmodel;lk++){
                   3878:                ll++;
                   3879:                if(ll<=jj){
                   3880:                  cb[0]= lk +'a'-1;cb[1]='\0';
                   3881:                  if(ll<jj){
                   3882:                    if(itimes==1){
                   3883:                      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   3884:                      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   3885:                    }else{
                   3886:                      printf(" 0.");
                   3887:                      fprintf(ficparo," 0.");
                   3888:                    }
                   3889:                  }else{
                   3890:                    if(itimes==1){
                   3891:                      printf(" Var(%s%1d%1d)",ca,i,j);
                   3892:                      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                   3893:                    }else{
                   3894:                      printf(" 0.");
                   3895:                      fprintf(ficparo," 0.");
                   3896:                    }
                   3897:                  }
                   3898:                }
                   3899:              } /* end lk */
                   3900:            } /* end lj */
                   3901:          } /* end li */
                   3902:          printf("\n");
                   3903:          fprintf(ficparo,"\n");
                   3904:          numlinepar++;
                   3905:        } /* end k*/
                   3906:       } /*end j */
                   3907:     } /* end i */
1.95      brouard  3908:   } /* end itimes */
1.88      brouard  3909: 
                   3910: } /* end of prwizard */
1.98      brouard  3911: /******************* Gompertz Likelihood ******************************/
                   3912: double gompertz(double x[])
                   3913: { 
                   3914:   double A,B,L=0.0,sump=0.,num=0.;
                   3915:   int i,n=0; /* n is the size of the sample */
                   3916:   for (i=0;i<=imx-1 ; i++) {
                   3917:     sump=sump+weight[i];
                   3918:     sump=sump+1;
                   3919:     num=num+1;
                   3920:   }
                   3921:  
                   3922:  
                   3923:   /* for (i=1; i<=imx; i++) 
                   3924:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   3925: 
                   3926:   for (i=0;i<=imx-1 ; i++)
                   3927:     {
                   3928:       if (cens[i]==1 & wav[i]>1)
                   3929:        A=-x[1]/(x[2])*
                   3930:          (exp(x[2]/YEARM*(agecens[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)));
                   3931:       
                   3932:       if (cens[i]==0 & wav[i]>1)
                   3933:        A=-x[1]/(x[2])*
                   3934:              (exp(x[2]/YEARM*(agedc[i]*12-agegomp*12))-exp(x[2]/YEARM*(ageexmed[i]*12-agegomp*12)))
                   3935:          +log(x[1]/YEARM)+x[2]/YEARM*(agedc[i]*12-agegomp*12)+log(YEARM);      
                   3936:       
                   3937:       if (wav[i]>1 & agecens[i]>15) {
                   3938:        L=L+A*weight[i];
                   3939:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   3940:       }
                   3941:     }
                   3942: 
                   3943:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   3944:  
                   3945:   return -2*L*num/sump;
                   3946: }
                   3947: 
                   3948: /******************* Printing html file ***********/
                   3949: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                   3950:                  int lastpass, int stepm, int weightopt, char model[],\
                   3951:                  int imx,  double p[],double **matcov){
                   3952:   int i;
                   3953: 
                   3954:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
                   3955:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
                   3956:   for (i=1;i<=2;i++) 
                   3957:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   3958:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
                   3959:   fprintf(fichtm,"</ul>");
                   3960:   fflush(fichtm);
                   3961: }
                   3962: 
                   3963: /******************* Gnuplot file **************/
                   3964: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                   3965: 
                   3966:   char dirfileres[132],optfileres[132];
                   3967:   int m,cpt,k1,i,k,j,jk,k2,k3,ij,l;
                   3968:   int ng;
                   3969: 
                   3970: 
                   3971:   /*#ifdef windows */
                   3972:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   3973:     /*#endif */
                   3974: 
                   3975: 
                   3976:   strcpy(dirfileres,optionfilefiname);
                   3977:   strcpy(optfileres,"vpl");
                   3978:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
                   3979:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
                   3980:   fprintf(ficgp, "set ter png small\n set log y\n"); 
                   3981:   fprintf(ficgp, "set size 0.65,0.65\n");
                   3982:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
                   3983: 
                   3984: } 
                   3985: 
                   3986: 
1.88      brouard  3987: 
1.91      brouard  3988: 
1.53      brouard  3989: /***********************************************/
                   3990: /**************** Main Program *****************/
                   3991: /***********************************************/
                   3992: 
                   3993: int main(int argc, char *argv[])
                   3994: {
1.61      brouard  3995:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
1.74      brouard  3996:   int i,j, k, n=MAXN,iter,m,size=100,cptcode, cptcod;
1.95      brouard  3997:   int jj, ll, li, lj, lk, imk;
1.85      brouard  3998:   int numlinepar=0; /* Current linenumber of parameter file */
1.95      brouard  3999:   int itimes;
1.98      brouard  4000:   int NDIM=2;
1.95      brouard  4001: 
                   4002:   char ca[32], cb[32], cc[32];
1.87      brouard  4003:   /*  FILE *fichtm; *//* Html File */
                   4004:   /* FILE *ficgp;*/ /*Gnuplot File */
1.53      brouard  4005:   double agedeb, agefin,hf;
                   4006:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
                   4007: 
                   4008:   double fret;
                   4009:   double **xi,tmp,delta;
                   4010: 
                   4011:   double dum; /* Dummy variable */
                   4012:   double ***p3mat;
                   4013:   double ***mobaverage;
                   4014:   int *indx;
                   4015:   char line[MAXLINE], linepar[MAXLINE];
1.88      brouard  4016:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
1.99      brouard  4017:   char pathr[MAXLINE], pathimach[MAXLINE]; 
1.53      brouard  4018:   int firstobs=1, lastobs=10;
                   4019:   int sdeb, sfin; /* Status at beginning and end */
                   4020:   int c,  h , cpt,l;
                   4021:   int ju,jl, mi;
                   4022:   int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
1.59      brouard  4023:   int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,*tab; 
1.69      brouard  4024:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
1.53      brouard  4025:   int mobilav=0,popforecast=0;
                   4026:   int hstepm, nhstepm;
1.74      brouard  4027:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
                   4028:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
1.53      brouard  4029: 
                   4030:   double bage, fage, age, agelim, agebase;
                   4031:   double ftolpl=FTOL;
                   4032:   double **prlim;
                   4033:   double *severity;
                   4034:   double ***param; /* Matrix of parameters */
                   4035:   double  *p;
                   4036:   double **matcov; /* Matrix of covariance */
                   4037:   double ***delti3; /* Scale */
                   4038:   double *delti; /* Scale */
                   4039:   double ***eij, ***vareij;
                   4040:   double **varpl; /* Variances of prevalence limits by age */
                   4041:   double *epj, vepp;
                   4042:   double kk1, kk2;
1.74      brouard  4043:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
1.98      brouard  4044:   double **ximort;
1.53      brouard  4045:   char *alph[]={"a","a","b","c","d","e"}, str[4];
1.98      brouard  4046:   int *dcwave;
1.53      brouard  4047: 
                   4048:   char z[1]="c", occ;
1.86      brouard  4049: 
1.53      brouard  4050:   char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
1.88      brouard  4051:   char strstart[80], *strt, strtend[80];
1.85      brouard  4052:   char *stratrunc;
                   4053:   int lstra;
                   4054: 
                   4055:   long total_usecs;
1.53      brouard  4056:  
1.95      brouard  4057: /*   setlocale (LC_ALL, ""); */
                   4058: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                   4059: /*   textdomain (PACKAGE); */
                   4060: /*   setlocale (LC_CTYPE, ""); */
                   4061: /*   setlocale (LC_MESSAGES, ""); */
                   4062: 
1.85      brouard  4063:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
                   4064:   (void) gettimeofday(&start_time,&tzp);
1.91      brouard  4065:   curr_time=start_time;
1.85      brouard  4066:   tm = *localtime(&start_time.tv_sec);
                   4067:   tmg = *gmtime(&start_time.tv_sec);
1.88      brouard  4068:   strcpy(strstart,asctime(&tm));
1.86      brouard  4069: 
1.88      brouard  4070: /*  printf("Localtime (at start)=%s",strstart); */
1.85      brouard  4071: /*  tp.tv_sec = tp.tv_sec +86400; */
                   4072: /*  tm = *localtime(&start_time.tv_sec); */
                   4073: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                   4074: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                   4075: /*   tmg.tm_hour=tmg.tm_hour + 1; */
                   4076: /*   tp.tv_sec = mktime(&tmg); */
                   4077: /*   strt=asctime(&tmg); */
1.88      brouard  4078: /*   printf("Time(after) =%s",strstart);  */
1.85      brouard  4079: /*  (void) time (&time_value);
                   4080: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
                   4081: *  tm = *localtime(&time_value);
1.88      brouard  4082: *  strstart=asctime(&tm);
                   4083: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
1.85      brouard  4084: */
                   4085: 
1.91      brouard  4086:   nberr=0; /* Number of errors and warnings */
                   4087:   nbwarn=0;
1.53      brouard  4088:   getcwd(pathcd, size);
                   4089: 
1.81      brouard  4090:   printf("\n%s\n%s",version,fullversion);
1.53      brouard  4091:   if(argc <=1){
                   4092:     printf("\nEnter the parameter file name: ");
                   4093:     scanf("%s",pathtot);
                   4094:   }
                   4095:   else{
                   4096:     strcpy(pathtot,argv[1]);
                   4097:   }
1.88      brouard  4098:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
1.53      brouard  4099:   /*cygwin_split_path(pathtot,path,optionfile);
                   4100:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
                   4101:   /* cutv(path,optionfile,pathtot,'\\');*/
                   4102: 
1.99      brouard  4103:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   4104:  /*   strcpy(pathimach,argv[0]); */
1.53      brouard  4105:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
1.99      brouard  4106:   printf("pathimach=%s, pathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.53      brouard  4107:   chdir(path);
1.88      brouard  4108:   strcpy(command,"mkdir ");
                   4109:   strcat(command,optionfilefiname);
                   4110:   if((outcmd=system(command)) != 0){
                   4111:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
                   4112:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   4113:     /* fclose(ficlog); */
                   4114: /*     exit(1); */
                   4115:   }
                   4116: /*   if((imk=mkdir(optionfilefiname))<0){ */
                   4117: /*     perror("mkdir"); */
                   4118: /*   } */
1.53      brouard  4119: 
1.59      brouard  4120:   /*-------- arguments in the command line --------*/
1.53      brouard  4121: 
                   4122:   /* Log file */
                   4123:   strcat(filelog, optionfilefiname);
                   4124:   strcat(filelog,".log");    /* */
                   4125:   if((ficlog=fopen(filelog,"w"))==NULL)    {
                   4126:     printf("Problem with logfile %s\n",filelog);
                   4127:     goto end;
                   4128:   }
                   4129:   fprintf(ficlog,"Log filename:%s\n",filelog);
1.85      brouard  4130:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
1.99      brouard  4131:   fprintf(ficlog,"\nEnter the parameter file name: \n");
                   4132:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
1.88      brouard  4133:  path=%s \n\
                   4134:  optionfile=%s\n\
                   4135:  optionfilext=%s\n\
1.99      brouard  4136:  optionfilefiname=%s\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.86      brouard  4137: 
1.94      brouard  4138:   printf("Local time (at start):%s",strstart);
                   4139:   fprintf(ficlog,"Local time (at start): %s",strstart);
1.53      brouard  4140:   fflush(ficlog);
1.91      brouard  4141: /*   (void) gettimeofday(&curr_time,&tzp); */
                   4142: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tv_sec-start_time.tv_sec,tmpout)); */
1.53      brouard  4143: 
                   4144:   /* */
                   4145:   strcpy(fileres,"r");
                   4146:   strcat(fileres, optionfilefiname);
                   4147:   strcat(fileres,".txt");    /* Other files have txt extension */
                   4148: 
                   4149:   /*---------arguments file --------*/
                   4150: 
                   4151:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
                   4152:     printf("Problem with optionfile %s\n",optionfile);
                   4153:     fprintf(ficlog,"Problem with optionfile %s\n",optionfile);
1.85      brouard  4154:     fflush(ficlog);
1.53      brouard  4155:     goto end;
                   4156:   }
                   4157: 
1.88      brouard  4158: 
                   4159: 
1.53      brouard  4160:   strcpy(filereso,"o");
                   4161:   strcat(filereso,fileres);
1.88      brouard  4162:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
1.53      brouard  4163:     printf("Problem with Output resultfile: %s\n", filereso);
                   4164:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
1.85      brouard  4165:     fflush(ficlog);
1.53      brouard  4166:     goto end;
                   4167:   }
                   4168: 
                   4169:   /* Reads comments: lines beginning with '#' */
1.85      brouard  4170:   numlinepar=0;
1.53      brouard  4171:   while((c=getc(ficpar))=='#' && c!= EOF){
                   4172:     ungetc(c,ficpar);
                   4173:     fgets(line, MAXLINE, ficpar);
1.85      brouard  4174:     numlinepar++;
1.53      brouard  4175:     puts(line);
                   4176:     fputs(line,ficparo);
1.85      brouard  4177:     fputs(line,ficlog);
1.53      brouard  4178:   }
                   4179:   ungetc(c,ficpar);
                   4180: 
                   4181:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
1.85      brouard  4182:   numlinepar++;
1.53      brouard  4183:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
                   4184:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
1.85      brouard  4185:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
                   4186:   fflush(ficlog);
1.59      brouard  4187:   while((c=getc(ficpar))=='#' && c!= EOF){
1.53      brouard  4188:     ungetc(c,ficpar);
                   4189:     fgets(line, MAXLINE, ficpar);
1.85      brouard  4190:     numlinepar++;
1.53      brouard  4191:     puts(line);
                   4192:     fputs(line,ficparo);
1.85      brouard  4193:     fputs(line,ficlog);
1.53      brouard  4194:   }
                   4195:   ungetc(c,ficpar);
1.85      brouard  4196: 
1.53      brouard  4197:    
                   4198:   covar=matrix(0,NCOVMAX,1,n); 
1.58      lievre   4199:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement*/
1.53      brouard  4200:   if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
                   4201: 
1.58      lievre   4202:   ncovmodel=2+cptcovn; /*Number of variables = cptcovn + intercept + age */
1.53      brouard  4203:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
1.98      brouard  4204:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/
                   4205: 
                   4206:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   4207:   delti=delti3[1][1];
                   4208:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
1.88      brouard  4209:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
                   4210:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   4211:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   4212:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
1.98      brouard  4213:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
1.88      brouard  4214:     fclose (ficparo);
                   4215:     fclose (ficlog);
                   4216:     exit(0);
                   4217:   }
1.98      brouard  4218:   else if(mle==-3) {
                   4219:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   4220:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   4221:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   4222:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   4223:     matcov=matrix(1,npar,1,npar);
1.53      brouard  4224:   }
1.98      brouard  4225:   else{
                   4226:     /* Read guess parameters */
                   4227:     /* Reads comments: lines beginning with '#' */
                   4228:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4229:       ungetc(c,ficpar);
                   4230:       fgets(line, MAXLINE, ficpar);
1.85      brouard  4231:       numlinepar++;
1.98      brouard  4232:       puts(line);
                   4233:       fputs(line,ficparo);
                   4234:       fputs(line,ficlog);
1.53      brouard  4235:     }
1.98      brouard  4236:     ungetc(c,ficpar);
                   4237:     
                   4238:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   4239:     for(i=1; i <=nlstate; i++){
                   4240:       j=0;
                   4241:       for(jj=1; jj <=nlstate+ndeath; jj++){
                   4242:        if(jj==i) continue;
                   4243:        j++;
                   4244:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   4245:        if ((i1 != i) && (j1 != j)){
                   4246:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   4247:          exit(1);
                   4248:        }
                   4249:        fprintf(ficparo,"%1d%1d",i1,j1);
                   4250:        if(mle==1)
                   4251:          printf("%1d%1d",i,j);
                   4252:        fprintf(ficlog,"%1d%1d",i,j);
                   4253:        for(k=1; k<=ncovmodel;k++){
                   4254:          fscanf(ficpar," %lf",&param[i][j][k]);
                   4255:          if(mle==1){
                   4256:            printf(" %lf",param[i][j][k]);
                   4257:            fprintf(ficlog," %lf",param[i][j][k]);
                   4258:          }
                   4259:          else
                   4260:            fprintf(ficlog," %lf",param[i][j][k]);
                   4261:          fprintf(ficparo," %lf",param[i][j][k]);
                   4262:        }
                   4263:        fscanf(ficpar,"\n");
                   4264:        numlinepar++;
                   4265:        if(mle==1)
                   4266:          printf("\n");
                   4267:        fprintf(ficlog,"\n");
                   4268:        fprintf(ficparo,"\n");
                   4269:       }
                   4270:     }  
                   4271:     fflush(ficlog);
1.85      brouard  4272: 
1.53      brouard  4273: 
1.98      brouard  4274:     p=param[1][1];
                   4275:     
                   4276:     /* Reads comments: lines beginning with '#' */
                   4277:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4278:       ungetc(c,ficpar);
                   4279:       fgets(line, MAXLINE, ficpar);
                   4280:       numlinepar++;
                   4281:       puts(line);
                   4282:       fputs(line,ficparo);
                   4283:       fputs(line,ficlog);
                   4284:     }
1.53      brouard  4285:     ungetc(c,ficpar);
                   4286: 
1.98      brouard  4287:     for(i=1; i <=nlstate; i++){
                   4288:       for(j=1; j <=nlstate+ndeath-1; j++){
                   4289:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   4290:        if ((i1-i)*(j1-j)!=0){
                   4291:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   4292:          exit(1);
                   4293:        }
                   4294:        printf("%1d%1d",i,j);
                   4295:        fprintf(ficparo,"%1d%1d",i1,j1);
                   4296:        fprintf(ficlog,"%1d%1d",i1,j1);
                   4297:        for(k=1; k<=ncovmodel;k++){
                   4298:          fscanf(ficpar,"%le",&delti3[i][j][k]);
                   4299:          printf(" %le",delti3[i][j][k]);
                   4300:          fprintf(ficparo," %le",delti3[i][j][k]);
                   4301:          fprintf(ficlog," %le",delti3[i][j][k]);
                   4302:        }
                   4303:        fscanf(ficpar,"\n");
                   4304:        numlinepar++;
                   4305:        printf("\n");
                   4306:        fprintf(ficparo,"\n");
                   4307:        fprintf(ficlog,"\n");
1.85      brouard  4308:       }
1.53      brouard  4309:     }
1.98      brouard  4310:     fflush(ficlog);
1.85      brouard  4311: 
1.98      brouard  4312:     delti=delti3[1][1];
1.74      brouard  4313: 
                   4314: 
1.98      brouard  4315:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
1.53      brouard  4316:   
1.98      brouard  4317:     /* Reads comments: lines beginning with '#' */
                   4318:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4319:       ungetc(c,ficpar);
                   4320:       fgets(line, MAXLINE, ficpar);
                   4321:       numlinepar++;
                   4322:       puts(line);
                   4323:       fputs(line,ficparo);
                   4324:       fputs(line,ficlog);
                   4325:     }
1.53      brouard  4326:     ungetc(c,ficpar);
                   4327:   
1.98      brouard  4328:     matcov=matrix(1,npar,1,npar);
                   4329:     for(i=1; i <=npar; i++){
                   4330:       fscanf(ficpar,"%s",&str);
                   4331:       if(mle==1)
                   4332:        printf("%s",str);
                   4333:       fprintf(ficlog,"%s",str);
                   4334:       fprintf(ficparo,"%s",str);
                   4335:       for(j=1; j <=i; j++){
                   4336:        fscanf(ficpar," %le",&matcov[i][j]);
                   4337:        if(mle==1){
                   4338:          printf(" %.5le",matcov[i][j]);
                   4339:        }
                   4340:        fprintf(ficlog," %.5le",matcov[i][j]);
                   4341:        fprintf(ficparo," %.5le",matcov[i][j]);
1.53      brouard  4342:       }
1.98      brouard  4343:       fscanf(ficpar,"\n");
                   4344:       numlinepar++;
                   4345:       if(mle==1)
                   4346:        printf("\n");
                   4347:       fprintf(ficlog,"\n");
                   4348:       fprintf(ficparo,"\n");
1.53      brouard  4349:     }
1.98      brouard  4350:     for(i=1; i <=npar; i++)
                   4351:       for(j=i+1;j<=npar;j++)
                   4352:        matcov[i][j]=matcov[j][i];
                   4353:     
1.53      brouard  4354:     if(mle==1)
                   4355:       printf("\n");
                   4356:     fprintf(ficlog,"\n");
1.98      brouard  4357:     
                   4358:     fflush(ficlog);
                   4359:     
                   4360:     /*-------- Rewriting parameter file ----------*/
                   4361:     strcpy(rfileres,"r");    /* "Rparameterfile */
                   4362:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
                   4363:     strcat(rfileres,".");    /* */
                   4364:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
                   4365:     if((ficres =fopen(rfileres,"w"))==NULL) {
                   4366:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
                   4367:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
                   4368:     }
                   4369:     fprintf(ficres,"#%s\n",version);
                   4370:   }    /* End of mle != -3 */
1.53      brouard  4371: 
1.59      brouard  4372:   /*-------- data file ----------*/
                   4373:   if((fic=fopen(datafile,"r"))==NULL)    {
                   4374:     printf("Problem with datafile: %s\n", datafile);goto end;
                   4375:     fprintf(ficlog,"Problem with datafile: %s\n", datafile);goto end;
                   4376:   }
                   4377: 
                   4378:   n= lastobs;
                   4379:   severity = vector(1,maxwav);
                   4380:   outcome=imatrix(1,maxwav+1,1,n);
1.85      brouard  4381:   num=lvector(1,n);
1.59      brouard  4382:   moisnais=vector(1,n);
                   4383:   annais=vector(1,n);
                   4384:   moisdc=vector(1,n);
                   4385:   andc=vector(1,n);
                   4386:   agedc=vector(1,n);
                   4387:   cod=ivector(1,n);
                   4388:   weight=vector(1,n);
                   4389:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
                   4390:   mint=matrix(1,maxwav,1,n);
                   4391:   anint=matrix(1,maxwav,1,n);
                   4392:   s=imatrix(1,maxwav+1,1,n);
                   4393:   tab=ivector(1,NCOVMAX);
                   4394:   ncodemax=ivector(1,8);
                   4395: 
                   4396:   i=1;
                   4397:   while (fgets(line, MAXLINE, fic) != NULL)    {
                   4398:     if ((i >= firstobs) && (i <=lastobs)) {
1.53      brouard  4399:        
1.59      brouard  4400:       for (j=maxwav;j>=1;j--){
                   4401:        cutv(stra, strb,line,' '); s[j][i]=atoi(strb); 
                   4402:        strcpy(line,stra);
                   4403:        cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                   4404:        cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                   4405:       }
1.53      brouard  4406:        
1.59      brouard  4407:       cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
                   4408:       cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
1.53      brouard  4409: 
1.59      brouard  4410:       cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
                   4411:       cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
1.53      brouard  4412: 
1.59      brouard  4413:       cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
                   4414:       for (j=ncovcol;j>=1;j--){
                   4415:        cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
                   4416:       } 
1.85      brouard  4417:       lstra=strlen(stra);
                   4418:       if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                   4419:        stratrunc = &(stra[lstra-9]);
                   4420:        num[i]=atol(stratrunc);
                   4421:       }
                   4422:       else
                   4423:        num[i]=atol(stra);
1.53      brouard  4424:        
1.59      brouard  4425:       /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
1.85      brouard  4426:        printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
1.53      brouard  4427: 
1.59      brouard  4428:       i=i+1;
                   4429:     }
                   4430:   }
                   4431:   /* printf("ii=%d", ij);
                   4432:      scanf("%d",i);*/
1.53      brouard  4433:   imx=i-1; /* Number of individuals */
                   4434: 
                   4435:   /* for (i=1; i<=imx; i++){
                   4436:     if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
                   4437:     if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
                   4438:     if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
                   4439:     }*/
                   4440:    /*  for (i=1; i<=imx; i++){
                   4441:      if (s[4][i]==9)  s[4][i]=-1; 
1.85      brouard  4442:      printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i]));}*/
1.53      brouard  4443:   
1.71      brouard  4444:  for (i=1; i<=imx; i++)
1.53      brouard  4445:  
1.71      brouard  4446:    /*if ((s[3][i]==3) ||  (s[4][i]==3)) weight[i]=0.08;
                   4447:      else weight[i]=1;*/
                   4448: 
1.53      brouard  4449:   /* Calculation of the number of parameter from char model*/
                   4450:   Tvar=ivector(1,15); /* stores the number n of the covariates in Vm+Vn at 1 and m at 2 */
                   4451:   Tprod=ivector(1,15); 
                   4452:   Tvaraff=ivector(1,15); 
                   4453:   Tvard=imatrix(1,15,1,2);
                   4454:   Tage=ivector(1,15);      
                   4455:    
1.58      lievre   4456:   if (strlen(model) >1){ /* If there is at least 1 covariate */
1.53      brouard  4457:     j=0, j1=0, k1=1, k2=1;
1.58      lievre   4458:     j=nbocc(model,'+'); /* j=Number of '+' */
                   4459:     j1=nbocc(model,'*'); /* j1=Number of '*' */
                   4460:     cptcovn=j+1; 
                   4461:     cptcovprod=j1; /*Number of products */
1.53      brouard  4462:     
                   4463:     strcpy(modelsav,model); 
                   4464:     if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
                   4465:       printf("Error. Non available option model=%s ",model);
                   4466:       fprintf(ficlog,"Error. Non available option model=%s ",model);
                   4467:       goto end;
                   4468:     }
                   4469:     
1.59      brouard  4470:     /* This loop fills the array Tvar from the string 'model'.*/
1.58      lievre   4471: 
1.53      brouard  4472:     for(i=(j+1); i>=1;i--){
                   4473:       cutv(stra,strb,modelsav,'+'); /* keeps in strb after the last + */ 
1.59      brouard  4474:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
1.53      brouard  4475:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
                   4476:       /*scanf("%d",i);*/
                   4477:       if (strchr(strb,'*')) {  /* Model includes a product */
                   4478:        cutv(strd,strc,strb,'*'); /* strd*strc  Vm*Vn (if not *age)*/
                   4479:        if (strcmp(strc,"age")==0) { /* Vn*age */
                   4480:          cptcovprod--;
                   4481:          cutv(strb,stre,strd,'V');
                   4482:          Tvar[i]=atoi(stre); /* computes n in Vn and stores in Tvar*/
                   4483:          cptcovage++;
                   4484:            Tage[cptcovage]=i;
                   4485:            /*printf("stre=%s ", stre);*/
                   4486:        }
                   4487:        else if (strcmp(strd,"age")==0) { /* or age*Vn */
                   4488:          cptcovprod--;
                   4489:          cutv(strb,stre,strc,'V');
                   4490:          Tvar[i]=atoi(stre);
                   4491:          cptcovage++;
                   4492:          Tage[cptcovage]=i;
                   4493:        }
                   4494:        else {  /* Age is not in the model */
                   4495:          cutv(strb,stre,strc,'V'); /* strc= Vn, stre is n*/
                   4496:          Tvar[i]=ncovcol+k1;
                   4497:          cutv(strb,strc,strd,'V'); /* strd was Vm, strc is m */
                   4498:          Tprod[k1]=i;
                   4499:          Tvard[k1][1]=atoi(strc); /* m*/
                   4500:          Tvard[k1][2]=atoi(stre); /* n */
                   4501:          Tvar[cptcovn+k2]=Tvard[k1][1];
                   4502:          Tvar[cptcovn+k2+1]=Tvard[k1][2]; 
                   4503:          for (k=1; k<=lastobs;k++) 
                   4504:            covar[ncovcol+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
                   4505:          k1++;
                   4506:          k2=k2+2;
                   4507:        }
                   4508:       }
                   4509:       else { /* no more sum */
                   4510:        /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                   4511:        /*  scanf("%d",i);*/
                   4512:       cutv(strd,strc,strb,'V');
                   4513:       Tvar[i]=atoi(strc);
                   4514:       }
                   4515:       strcpy(modelsav,stra);  
                   4516:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                   4517:        scanf("%d",i);*/
                   4518:     } /* end of loop + */
                   4519:   } /* end model */
                   4520:   
1.58      lievre   4521:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                   4522:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
                   4523: 
1.53      brouard  4524:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
                   4525:   printf("cptcovprod=%d ", cptcovprod);
                   4526:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
1.58      lievre   4527: 
                   4528:   scanf("%d ",i);
                   4529:   fclose(fic);*/
1.53      brouard  4530: 
                   4531:     /*  if(mle==1){*/
1.59      brouard  4532:   if (weightopt != 1) { /* Maximisation without weights*/
                   4533:     for(i=1;i<=n;i++) weight[i]=1.0;
                   4534:   }
1.53      brouard  4535:     /*-calculation of age at interview from date of interview and age at death -*/
1.59      brouard  4536:   agev=matrix(1,maxwav,1,imx);
1.53      brouard  4537: 
1.59      brouard  4538:   for (i=1; i<=imx; i++) {
                   4539:     for(m=2; (m<= maxwav); m++) {
1.76      brouard  4540:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
1.59      brouard  4541:        anint[m][i]=9999;
                   4542:        s[m][i]=-1;
                   4543:       }
1.76      brouard  4544:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
1.91      brouard  4545:        nberr++;
1.85      brouard  4546:        printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                   4547:        fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
1.76      brouard  4548:        s[m][i]=-1;
                   4549:       }
                   4550:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
1.91      brouard  4551:        nberr++;
1.85      brouard  4552:        printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
                   4553:        fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
1.84      brouard  4554:        s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
1.76      brouard  4555:       }
1.53      brouard  4556:     }
1.59      brouard  4557:   }
1.53      brouard  4558: 
1.59      brouard  4559:   for (i=1; i<=imx; i++)  {
                   4560:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
1.71      brouard  4561:     for(m=firstpass; (m<= lastpass); m++){
1.69      brouard  4562:       if(s[m][i] >0){
1.59      brouard  4563:        if (s[m][i] >= nlstate+1) {
                   4564:          if(agedc[i]>0)
1.76      brouard  4565:            if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
1.69      brouard  4566:              agev[m][i]=agedc[i];
1.59      brouard  4567:          /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                   4568:            else {
1.76      brouard  4569:              if ((int)andc[i]!=9999){
1.91      brouard  4570:                nbwarn++;
1.85      brouard  4571:                printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   4572:                fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
1.59      brouard  4573:                agev[m][i]=-1;
1.53      brouard  4574:              }
                   4575:            }
1.70      brouard  4576:        }
1.69      brouard  4577:        else if(s[m][i] !=9){ /* Standard case, age in fractional
                   4578:                                 years but with the precision of a
                   4579:                                 month */
1.59      brouard  4580:          agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
1.76      brouard  4581:          if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
1.59      brouard  4582:            agev[m][i]=1;
                   4583:          else if(agev[m][i] <agemin){ 
                   4584:            agemin=agev[m][i];
                   4585:            /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
1.53      brouard  4586:          }
1.59      brouard  4587:          else if(agev[m][i] >agemax){
                   4588:            agemax=agev[m][i];
                   4589:            /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
1.53      brouard  4590:          }
1.59      brouard  4591:          /*agev[m][i]=anint[m][i]-annais[i];*/
                   4592:          /*     agev[m][i] = age[i]+2*m;*/
1.53      brouard  4593:        }
1.59      brouard  4594:        else { /* =9 */
1.53      brouard  4595:          agev[m][i]=1;
1.59      brouard  4596:          s[m][i]=-1;
                   4597:        }
1.53      brouard  4598:       }
1.59      brouard  4599:       else /*= 0 Unknown */
                   4600:        agev[m][i]=1;
                   4601:     }
1.53      brouard  4602:     
1.59      brouard  4603:   }
                   4604:   for (i=1; i<=imx; i++)  {
1.71      brouard  4605:     for(m=firstpass; (m<=lastpass); m++){
1.59      brouard  4606:       if (s[m][i] > (nlstate+ndeath)) {
1.91      brouard  4607:        nberr++;
1.59      brouard  4608:        printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   4609:        fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   4610:        goto end;
1.53      brouard  4611:       }
                   4612:     }
1.59      brouard  4613:   }
1.53      brouard  4614: 
1.71      brouard  4615:   /*for (i=1; i<=imx; i++){
                   4616:   for (m=firstpass; (m<lastpass); m++){
1.85      brouard  4617:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
1.71      brouard  4618: }
                   4619: 
                   4620: }*/
                   4621: 
1.97      lievre   4622: 
1.59      brouard  4623:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
                   4624:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax); 
                   4625: 
1.98      brouard  4626:   agegomp=(int)agemin;
1.59      brouard  4627:   free_vector(severity,1,maxwav);
                   4628:   free_imatrix(outcome,1,maxwav+1,1,n);
                   4629:   free_vector(moisnais,1,n);
                   4630:   free_vector(annais,1,n);
                   4631:   /* free_matrix(mint,1,maxwav,1,n);
                   4632:      free_matrix(anint,1,maxwav,1,n);*/
                   4633:   free_vector(moisdc,1,n);
                   4634:   free_vector(andc,1,n);
1.53      brouard  4635: 
                   4636:    
1.59      brouard  4637:   wav=ivector(1,imx);
                   4638:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
                   4639:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
                   4640:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
1.69      brouard  4641:    
1.59      brouard  4642:   /* Concatenates waves */
                   4643:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
1.53      brouard  4644: 
1.59      brouard  4645:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
1.53      brouard  4646: 
1.59      brouard  4647:   Tcode=ivector(1,100);
                   4648:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
                   4649:   ncodemax[1]=1;
                   4650:   if (cptcovn > 0) tricode(Tvar,nbcode,imx);
1.53      brouard  4651:       
1.59      brouard  4652:   codtab=imatrix(1,100,1,10); /* Cross tabulation to get the order of 
                   4653:                                 the estimations*/
                   4654:   h=0;
                   4655:   m=pow(2,cptcoveff);
1.53      brouard  4656:  
1.59      brouard  4657:   for(k=1;k<=cptcoveff; k++){
                   4658:     for(i=1; i <=(m/pow(2,k));i++){
                   4659:       for(j=1; j <= ncodemax[k]; j++){
                   4660:        for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
                   4661:          h++;
                   4662:          if (h>m) h=1;codtab[h][k]=j;codtab[h][Tvar[k]]=j;
                   4663:          /*  printf("h=%d k=%d j=%d codtab[h][k]=%d tvar[k]=%d \n",h, k,j,codtab[h][k],Tvar[k]);*/
                   4664:        } 
                   4665:       }
                   4666:     }
                   4667:   } 
                   4668:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
                   4669:      codtab[1][2]=1;codtab[2][2]=2; */
                   4670:   /* for(i=1; i <=m ;i++){ 
                   4671:      for(k=1; k <=cptcovn; k++){
                   4672:      printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
                   4673:      }
                   4674:      printf("\n");
1.53      brouard  4675:      }
1.59      brouard  4676:      scanf("%d",i);*/
1.53      brouard  4677:     
1.86      brouard  4678:   /*------------ gnuplot -------------*/
                   4679:   strcpy(optionfilegnuplot,optionfilefiname);
1.98      brouard  4680:   if(mle==-3)
                   4681:     strcat(optionfilegnuplot,"-mort");
1.86      brouard  4682:   strcat(optionfilegnuplot,".gp");
1.98      brouard  4683: 
1.86      brouard  4684:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
                   4685:     printf("Problem with file %s",optionfilegnuplot);
                   4686:   }
                   4687:   else{
                   4688:     fprintf(ficgp,"\n# %s\n", version); 
                   4689:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
                   4690:     fprintf(ficgp,"set missing 'NaNq'\n");
                   4691:   }
1.88      brouard  4692:   /*  fclose(ficgp);*/
1.86      brouard  4693:   /*--------- index.htm --------*/
                   4694: 
1.91      brouard  4695:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
1.98      brouard  4696:   if(mle==-3)
                   4697:     strcat(optionfilehtm,"-mort");
1.86      brouard  4698:   strcat(optionfilehtm,".htm");
                   4699:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
                   4700:     printf("Problem with %s \n",optionfilehtm), exit(0);
                   4701:   }
                   4702: 
1.91      brouard  4703:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   4704:   strcat(optionfilehtmcov,"-cov.htm");
                   4705:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                   4706:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
                   4707:   }
                   4708:   else{
                   4709:   fprintf(fichtmcov,"<body>\n<title>IMaCh Cov %s</title>\n <font size=\"2\">%s <br> %s</font> \
                   4710: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   4711: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
                   4712:          fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   4713:   }
                   4714: 
1.87      brouard  4715:   fprintf(fichtm,"<body>\n<title>IMaCh %s</title>\n <font size=\"2\">%s <br> %s</font> \
1.86      brouard  4716: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   4717: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
                   4718: \n\
                   4719: <hr  size=\"2\" color=\"#EC5E5E\">\
                   4720:  <ul><li><h4>Parameter files</h4>\n\
                   4721:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                   4722:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
1.87      brouard  4723:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
1.86      brouard  4724:  - Date and time at start: %s</ul>\n",\
1.91      brouard  4725:          fileres,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                   4726:          fileres,fileres,\
1.88      brouard  4727:          filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
1.87      brouard  4728:   fflush(fichtm);
1.86      brouard  4729: 
1.88      brouard  4730:   strcpy(pathr,path);
                   4731:   strcat(pathr,optionfilefiname);
                   4732:   chdir(optionfilefiname); /* Move to directory named optionfile */
                   4733:   
1.59      brouard  4734:   /* Calculates basic frequencies. Computes observed prevalence at single age
                   4735:      and prints on file fileres'p'. */
1.84      brouard  4736:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);
1.53      brouard  4737: 
1.88      brouard  4738:   fprintf(fichtm,"\n");
                   4739:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
1.86      brouard  4740: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   4741: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
1.88      brouard  4742:          imx,agemin,agemax,jmin,jmax,jmean);
                   4743:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
1.60      brouard  4744:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   4745:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   4746:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   4747:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
1.53      brouard  4748:     
                   4749:    
1.59      brouard  4750:   /* For Powell, parameters are in a vector p[] starting at p[1]
                   4751:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                   4752:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
1.53      brouard  4753: 
1.86      brouard  4754:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
1.98      brouard  4755:   if (mle==-3){
                   4756:     ximort=matrix(1,NDIM,1,NDIM);
                   4757:     cens=ivector(1,n);
                   4758:     ageexmed=vector(1,n);
                   4759:     agecens=vector(1,n);
                   4760:     dcwave=ivector(1,n);
                   4761:  
                   4762:     for (i=1; i<=imx; i++){
                   4763:       dcwave[i]=-1;
                   4764:       for (j=1; j<=lastpass; j++)
                   4765:        if (s[j][i]>nlstate) {
                   4766:          dcwave[i]=j;
                   4767:          /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                   4768:          break;
                   4769:        }
                   4770:     }
                   4771: 
                   4772:     for (i=1; i<=imx; i++) {
                   4773:       if (wav[i]>0){
                   4774:        ageexmed[i]=agev[mw[1][i]][i];
                   4775:        j=wav[i];agecens[i]=1.; 
                   4776:        if (ageexmed[i]>1 & wav[i]>0) agecens[i]=agev[mw[j][i]][i];
                   4777:        cens[i]=1;
                   4778:        
                   4779:        if (ageexmed[i]<1) cens[i]=-1;
                   4780:        if (agedc[i]< AGESUP & agedc[i]>1 & dcwave[i]>firstpass & dcwave[i]<=lastpass) cens[i]=0 ;
                   4781:       }
                   4782:       else cens[i]=-1;
                   4783:     }
                   4784:     
                   4785:     for (i=1;i<=NDIM;i++) {
                   4786:       for (j=1;j<=NDIM;j++)
                   4787:        ximort[i][j]=(i == j ? 1.0 : 0.0);
                   4788:     }
                   4789: 
                   4790:     p[1]=0.1; p[2]=0.1;
                   4791:     /*printf("%lf %lf", p[1], p[2]);*/
                   4792:     
                   4793:     
                   4794:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
                   4795:   strcpy(filerespow,"pow-mort"); 
                   4796:   strcat(filerespow,fileres);
                   4797:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   4798:     printf("Problem with resultfile: %s\n", filerespow);
                   4799:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
1.59      brouard  4800:   }
1.98      brouard  4801:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   4802:   /*  for (i=1;i<=nlstate;i++)
                   4803:     for(j=1;j<=nlstate+ndeath;j++)
                   4804:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   4805:   */
                   4806:   fprintf(ficrespow,"\n");
                   4807: 
                   4808:     powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
                   4809:     fclose(ficrespow);
1.53      brouard  4810:     
1.98      brouard  4811:     hesscov(matcov, p, NDIM,delti, 1e-4, gompertz); 
1.53      brouard  4812: 
1.98      brouard  4813:     for(i=1; i <=NDIM; i++)
                   4814:       for(j=i+1;j<=NDIM;j++)
                   4815:        matcov[i][j]=matcov[j][i];
                   4816:     
                   4817:     printf("\nCovariance matrix\n ");
                   4818:     for(i=1; i <=NDIM; i++) {
                   4819:       for(j=1;j<=NDIM;j++){ 
                   4820:        printf("%f ",matcov[i][j]);
1.95      brouard  4821:       }
1.98      brouard  4822:       printf("\n ");
                   4823:     }
                   4824:     
                   4825:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
                   4826:     for (i=1;i<=NDIM;i++) 
                   4827:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   4828:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
                   4829:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   4830:     
                   4831:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                   4832:                     stepm, weightopt,\
                   4833:                     model,imx,p,matcov);
                   4834:   } /* Endof if mle==-3 */
                   4835: 
                   4836:   else{ /* For mle >=1 */
                   4837:   
                   4838:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   4839:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   4840:     for (k=1; k<=npar;k++)
                   4841:       printf(" %d %8.5f",k,p[k]);
                   4842:     printf("\n");
                   4843:     globpr=1; /* to print the contributions */
                   4844:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   4845:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   4846:     for (k=1; k<=npar;k++)
                   4847:       printf(" %d %8.5f",k,p[k]);
                   4848:     printf("\n");
                   4849:     if(mle>=1){ /* Could be 1 or 2 */
                   4850:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
1.59      brouard  4851:     }
1.98      brouard  4852:     
                   4853:     /*--------- results files --------------*/
                   4854:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
                   4855:     
                   4856:     
                   4857:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4858:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4859:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4860:     for(i=1,jk=1; i <=nlstate; i++){
                   4861:       for(k=1; k <=(nlstate+ndeath); k++){
                   4862:        if (k != i) {
                   4863:          printf("%d%d ",i,k);
                   4864:          fprintf(ficlog,"%d%d ",i,k);
                   4865:          fprintf(ficres,"%1d%1d ",i,k);
                   4866:          for(j=1; j <=ncovmodel; j++){
                   4867:            printf("%f ",p[jk]);
                   4868:            fprintf(ficlog,"%f ",p[jk]);
                   4869:            fprintf(ficres,"%f ",p[jk]);
                   4870:            jk++; 
                   4871:          }
                   4872:          printf("\n");
                   4873:          fprintf(ficlog,"\n");
                   4874:          fprintf(ficres,"\n");
1.59      brouard  4875:        }
                   4876:       }
                   4877:     }
1.98      brouard  4878:     if(mle!=0){
                   4879:       /* Computing hessian and covariance matrix */
                   4880:       ftolhess=ftol; /* Usually correct */
                   4881:       hesscov(matcov, p, npar, delti, ftolhess, func);
                   4882:     }
                   4883:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   4884:     printf("# Scales (for hessian or gradient estimation)\n");
                   4885:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                   4886:     for(i=1,jk=1; i <=nlstate; i++){
1.95      brouard  4887:       for(j=1; j <=nlstate+ndeath; j++){
1.98      brouard  4888:        if (j!=i) {
                   4889:          fprintf(ficres,"%1d%1d",i,j);
                   4890:          printf("%1d%1d",i,j);
                   4891:          fprintf(ficlog,"%1d%1d",i,j);
                   4892:          for(k=1; k<=ncovmodel;k++){
                   4893:            printf(" %.5e",delti[jk]);
                   4894:            fprintf(ficlog," %.5e",delti[jk]);
                   4895:            fprintf(ficres," %.5e",delti[jk]);
                   4896:            jk++;
1.95      brouard  4897:          }
1.98      brouard  4898:          printf("\n");
                   4899:          fprintf(ficlog,"\n");
                   4900:          fprintf(ficres,"\n");
                   4901:        }
                   4902:       }
                   4903:     }
                   4904:     
                   4905:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   4906:     if(mle>=1)
                   4907:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   4908:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   4909:     /* # 121 Var(a12)\n\ */
                   4910:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   4911:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   4912:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   4913:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   4914:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   4915:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   4916:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   4917:     
                   4918:     
                   4919:     /* Just to have a covariance matrix which will be more understandable
                   4920:        even is we still don't want to manage dictionary of variables
                   4921:     */
                   4922:     for(itimes=1;itimes<=2;itimes++){
                   4923:       jj=0;
                   4924:       for(i=1; i <=nlstate; i++){
                   4925:        for(j=1; j <=nlstate+ndeath; j++){
                   4926:          if(j==i) continue;
                   4927:          for(k=1; k<=ncovmodel;k++){
                   4928:            jj++;
                   4929:            ca[0]= k+'a'-1;ca[1]='\0';
                   4930:            if(itimes==1){
                   4931:              if(mle>=1)
                   4932:                printf("#%1d%1d%d",i,j,k);
                   4933:              fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   4934:              fprintf(ficres,"#%1d%1d%d",i,j,k);
                   4935:            }else{
                   4936:              if(mle>=1)
                   4937:                printf("%1d%1d%d",i,j,k);
                   4938:              fprintf(ficlog,"%1d%1d%d",i,j,k);
                   4939:              fprintf(ficres,"%1d%1d%d",i,j,k);
                   4940:            }
                   4941:            ll=0;
                   4942:            for(li=1;li <=nlstate; li++){
                   4943:              for(lj=1;lj <=nlstate+ndeath; lj++){
                   4944:                if(lj==li) continue;
                   4945:                for(lk=1;lk<=ncovmodel;lk++){
                   4946:                  ll++;
                   4947:                  if(ll<=jj){
                   4948:                    cb[0]= lk +'a'-1;cb[1]='\0';
                   4949:                    if(ll<jj){
                   4950:                      if(itimes==1){
                   4951:                        if(mle>=1)
                   4952:                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4953:                        fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4954:                        fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4955:                      }else{
                   4956:                        if(mle>=1)
                   4957:                          printf(" %.5e",matcov[jj][ll]); 
                   4958:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   4959:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   4960:                      }
1.95      brouard  4961:                    }else{
1.98      brouard  4962:                      if(itimes==1){
                   4963:                        if(mle>=1)
                   4964:                          printf(" Var(%s%1d%1d)",ca,i,j);
                   4965:                        fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                   4966:                        fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                   4967:                      }else{
                   4968:                        if(mle>=1)
                   4969:                          printf(" %.5e",matcov[jj][ll]); 
                   4970:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   4971:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   4972:                      }
1.95      brouard  4973:                    }
                   4974:                  }
1.98      brouard  4975:                } /* end lk */
                   4976:              } /* end lj */
                   4977:            } /* end li */
                   4978:            if(mle>=1)
                   4979:              printf("\n");
                   4980:            fprintf(ficlog,"\n");
                   4981:            fprintf(ficres,"\n");
                   4982:            numlinepar++;
                   4983:          } /* end k*/
                   4984:        } /*end j */
                   4985:       } /* end i */
                   4986:     } /* end itimes */
                   4987:     
                   4988:     fflush(ficlog);
                   4989:     fflush(ficres);
                   4990:     
                   4991:     while((c=getc(ficpar))=='#' && c!= EOF){
                   4992:       ungetc(c,ficpar);
                   4993:       fgets(line, MAXLINE, ficpar);
                   4994:       puts(line);
                   4995:       fputs(line,ficparo);
                   4996:     }
1.59      brouard  4997:     ungetc(c,ficpar);
1.98      brouard  4998:     
                   4999:     estepm=0;
                   5000:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
                   5001:     if (estepm==0 || estepm < stepm) estepm=stepm;
                   5002:     if (fage <= 2) {
                   5003:       bage = ageminpar;
                   5004:       fage = agemaxpar;
                   5005:     }
                   5006:     
                   5007:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
                   5008:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   5009:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   5010:     
                   5011:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5012:       ungetc(c,ficpar);
                   5013:       fgets(line, MAXLINE, ficpar);
                   5014:       puts(line);
                   5015:       fputs(line,ficparo);
                   5016:     }
1.59      brouard  5017:     ungetc(c,ficpar);
1.98      brouard  5018:     
                   5019:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
                   5020:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5021:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5022:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5023:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   5024:     
                   5025:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5026:       ungetc(c,ficpar);
                   5027:       fgets(line, MAXLINE, ficpar);
                   5028:       puts(line);
                   5029:       fputs(line,ficparo);
                   5030:     }
1.59      brouard  5031:     ungetc(c,ficpar);
1.98      brouard  5032:     
                   5033:     
                   5034:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                   5035:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
                   5036:     
                   5037:     fscanf(ficpar,"pop_based=%d\n",&popbased);
                   5038:     fprintf(ficparo,"pop_based=%d\n",popbased);   
                   5039:     fprintf(ficres,"pop_based=%d\n",popbased);   
                   5040:     
                   5041:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5042:       ungetc(c,ficpar);
                   5043:       fgets(line, MAXLINE, ficpar);
                   5044:       puts(line);
                   5045:       fputs(line,ficparo);
                   5046:     }
1.53      brouard  5047:     ungetc(c,ficpar);
1.98      brouard  5048:     
                   5049:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
                   5050:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5051:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5052:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5053:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   5054:     /* day and month of proj2 are not used but only year anproj2.*/
                   5055:     
                   5056:     
                   5057:     
                   5058:     /*  freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint);*/
                   5059:     /*,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   5060:     
                   5061:     replace_back_to_slash(pathc,path); /* Even gnuplot wants a / */
                   5062:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   5063:     
                   5064:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                   5065:                 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                   5066:                 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
                   5067:       
                   5068:    /*------------ free_vector  -------------*/
                   5069:    /*  chdir(path); */
1.53      brouard  5070:  
1.98      brouard  5071:     free_ivector(wav,1,imx);
                   5072:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
                   5073:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
                   5074:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
                   5075:     free_lvector(num,1,n);
                   5076:     free_vector(agedc,1,n);
                   5077:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
                   5078:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
                   5079:     fclose(ficparo);
                   5080:     fclose(ficres);
                   5081: 
                   5082: 
                   5083:     /*--------------- Prevalence limit  (stable prevalence) --------------*/
                   5084:   
                   5085:     strcpy(filerespl,"pl");
                   5086:     strcat(filerespl,fileres);
                   5087:     if((ficrespl=fopen(filerespl,"w"))==NULL) {
                   5088:       printf("Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
                   5089:       fprintf(ficlog,"Problem with stable prevalence resultfile: %s\n", filerespl);goto end;
                   5090:     }
                   5091:     printf("Computing stable prevalence: result on file '%s' \n", filerespl);
                   5092:     fprintf(ficlog,"Computing stable prevalence: result on file '%s' \n", filerespl);
                   5093:     fprintf(ficrespl,"#Stable prevalence \n");
                   5094:     fprintf(ficrespl,"#Age ");
                   5095:     for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
                   5096:     fprintf(ficrespl,"\n");
                   5097:   
                   5098:     prlim=matrix(1,nlstate,1,nlstate);
                   5099: 
                   5100:     agebase=ageminpar;
                   5101:     agelim=agemaxpar;
                   5102:     ftolpl=1.e-10;
                   5103:     i1=cptcoveff;
                   5104:     if (cptcovn < 1){i1=1;}
                   5105: 
                   5106:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5107:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5108:        k=k+1;
                   5109:        /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
                   5110:        fprintf(ficrespl,"\n#******");
                   5111:        printf("\n#******");
                   5112:        fprintf(ficlog,"\n#******");
                   5113:        for(j=1;j<=cptcoveff;j++) {
                   5114:          fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5115:          printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5116:          fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5117:        }
                   5118:        fprintf(ficrespl,"******\n");
                   5119:        printf("******\n");
                   5120:        fprintf(ficlog,"******\n");
1.53      brouard  5121:        
1.98      brouard  5122:        for (age=agebase; age<=agelim; age++){
                   5123:          prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
                   5124:          fprintf(ficrespl,"%.0f ",age );
                   5125:          for(j=1;j<=cptcoveff;j++)
                   5126:            fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5127:          for(i=1; i<=nlstate;i++)
                   5128:            fprintf(ficrespl," %.5f", prlim[i][i]);
                   5129:          fprintf(ficrespl,"\n");
                   5130:        }
1.53      brouard  5131:       }
                   5132:     }
1.98      brouard  5133:     fclose(ficrespl);
1.53      brouard  5134: 
1.98      brouard  5135:     /*------------- h Pij x at various ages ------------*/
1.53      brouard  5136:   
1.98      brouard  5137:     strcpy(filerespij,"pij");  strcat(filerespij,fileres);
                   5138:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
                   5139:       printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
                   5140:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij);goto end;
                   5141:     }
                   5142:     printf("Computing pij: result on file '%s' \n", filerespij);
                   5143:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
1.53      brouard  5144:   
1.98      brouard  5145:     stepsize=(int) (stepm+YEARM-1)/YEARM;
                   5146:     /*if (stepm<=24) stepsize=2;*/
1.53      brouard  5147: 
1.98      brouard  5148:     agelim=AGESUP;
                   5149:     hstepm=stepsize*YEARM; /* Every year of age */
                   5150:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
1.53      brouard  5151: 
1.98      brouard  5152:     /* hstepm=1;   aff par mois*/
1.53      brouard  5153: 
1.98      brouard  5154:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
                   5155:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5156:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5157:        k=k+1;
                   5158:        fprintf(ficrespij,"\n#****** ");
                   5159:        for(j=1;j<=cptcoveff;j++) 
                   5160:          fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5161:        fprintf(ficrespij,"******\n");
1.53      brouard  5162:        
1.98      brouard  5163:        for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
                   5164:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   5165:          nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
1.59      brouard  5166: 
1.98      brouard  5167:          /*      nhstepm=nhstepm*YEARM; aff par mois*/
1.59      brouard  5168: 
1.98      brouard  5169:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5170:          oldm=oldms;savm=savms;
                   5171:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   5172:          fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
1.53      brouard  5173:          for(i=1; i<=nlstate;i++)
                   5174:            for(j=1; j<=nlstate+ndeath;j++)
1.98      brouard  5175:              fprintf(ficrespij," %1d-%1d",i,j);
                   5176:          fprintf(ficrespij,"\n");
                   5177:          for (h=0; h<=nhstepm; h++){
                   5178:            fprintf(ficrespij,"%d %3.f %3.f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
                   5179:            for(i=1; i<=nlstate;i++)
                   5180:              for(j=1; j<=nlstate+ndeath;j++)
                   5181:                fprintf(ficrespij," %.5f", p3mat[i][j][h]);
                   5182:            fprintf(ficrespij,"\n");
                   5183:          }
                   5184:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1.53      brouard  5185:          fprintf(ficrespij,"\n");
                   5186:        }
1.59      brouard  5187:       }
1.53      brouard  5188:     }
                   5189: 
1.98      brouard  5190:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax);
1.53      brouard  5191: 
1.98      brouard  5192:     fclose(ficrespij);
1.53      brouard  5193: 
1.98      brouard  5194:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5195:     for(i=1;i<=AGESUP;i++)
                   5196:       for(j=1;j<=NCOVMAX;j++)
                   5197:        for(k=1;k<=NCOVMAX;k++)
                   5198:          probs[i][j][k]=0.;
                   5199: 
                   5200:     /*---------- Forecasting ------------------*/
                   5201:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
                   5202:     if(prevfcast==1){
                   5203:       /*    if(stepm ==1){*/
1.70      brouard  5204:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
1.74      brouard  5205:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
1.98      brouard  5206:       /*      }  */
                   5207:       /*      else{ */
                   5208:       /*        erreur=108; */
                   5209:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   5210:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   5211:       /*      } */
                   5212:     }
1.53      brouard  5213:   
                   5214: 
1.98      brouard  5215:     /*---------- Health expectancies and variances ------------*/
1.53      brouard  5216: 
1.98      brouard  5217:     strcpy(filerest,"t");
                   5218:     strcat(filerest,fileres);
                   5219:     if((ficrest=fopen(filerest,"w"))==NULL) {
                   5220:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                   5221:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
                   5222:     }
                   5223:     printf("Computing Total LEs with variances: file '%s' \n", filerest); 
                   5224:     fprintf(ficlog,"Computing Total LEs with variances: file '%s' \n", filerest); 
1.53      brouard  5225: 
                   5226: 
1.98      brouard  5227:     strcpy(filerese,"e");
                   5228:     strcat(filerese,fileres);
                   5229:     if((ficreseij=fopen(filerese,"w"))==NULL) {
                   5230:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   5231:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   5232:     }
                   5233:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
                   5234:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
1.68      lievre   5235: 
1.98      brouard  5236:     strcpy(fileresv,"v");
                   5237:     strcat(fileresv,fileres);
                   5238:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
                   5239:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
                   5240:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
                   5241:     }
                   5242:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
                   5243:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
1.58      lievre   5244: 
1.98      brouard  5245:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
                   5246:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   5247:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
                   5248:        ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
                   5249:     */
1.58      lievre   5250: 
1.98      brouard  5251:     if (mobilav!=0) {
                   5252:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5253:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   5254:        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   5255:        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   5256:       }
1.54      brouard  5257:     }
1.53      brouard  5258: 
1.98      brouard  5259:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5260:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5261:        k=k+1; 
                   5262:        fprintf(ficrest,"\n#****** ");
                   5263:        for(j=1;j<=cptcoveff;j++) 
                   5264:          fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5265:        fprintf(ficrest,"******\n");
                   5266: 
                   5267:        fprintf(ficreseij,"\n#****** ");
                   5268:        for(j=1;j<=cptcoveff;j++) 
                   5269:          fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5270:        fprintf(ficreseij,"******\n");
                   5271: 
                   5272:        fprintf(ficresvij,"\n#****** ");
                   5273:        for(j=1;j<=cptcoveff;j++) 
                   5274:          fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5275:        fprintf(ficresvij,"******\n");
                   5276: 
                   5277:        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   5278:        oldm=oldms;savm=savms;
                   5279:        evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov);  
1.53      brouard  5280:  
1.98      brouard  5281:        vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   5282:        oldm=oldms;savm=savms;
                   5283:        varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,0, mobilav);
                   5284:        if(popbased==1){
                   5285:          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,popbased,mobilav);
                   5286:        }
1.53      brouard  5287: 
                   5288:  
1.98      brouard  5289:        fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
                   5290:        for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                   5291:        fprintf(ficrest,"\n");
                   5292: 
                   5293:        epj=vector(1,nlstate+1);
                   5294:        for(age=bage; age <=fage ;age++){
                   5295:          prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
                   5296:          if (popbased==1) {
                   5297:            if(mobilav ==0){
                   5298:              for(i=1; i<=nlstate;i++)
                   5299:                prlim[i][i]=probs[(int)age][i][k];
                   5300:            }else{ /* mobilav */ 
                   5301:              for(i=1; i<=nlstate;i++)
                   5302:                prlim[i][i]=mobaverage[(int)age][i][k];
                   5303:            }
1.53      brouard  5304:          }
                   5305:        
1.98      brouard  5306:          fprintf(ficrest," %4.0f",age);
                   5307:          for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                   5308:            for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   5309:              epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   5310:              /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   5311:            }
                   5312:            epj[nlstate+1] +=epj[j];
1.53      brouard  5313:          }
                   5314: 
1.98      brouard  5315:          for(i=1, vepp=0.;i <=nlstate;i++)
                   5316:            for(j=1;j <=nlstate;j++)
                   5317:              vepp += vareij[i][j][(int)age];
                   5318:          fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                   5319:          for(j=1;j <=nlstate;j++){
                   5320:            fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                   5321:          }
                   5322:          fprintf(ficrest,"\n");
1.53      brouard  5323:        }
1.98      brouard  5324:        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   5325:        free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   5326:        free_vector(epj,1,nlstate+1);
                   5327:       }
                   5328:     }
                   5329:     free_vector(weight,1,n);
                   5330:     free_imatrix(Tvard,1,15,1,2);
                   5331:     free_imatrix(s,1,maxwav+1,1,n);
                   5332:     free_matrix(anint,1,maxwav,1,n); 
                   5333:     free_matrix(mint,1,maxwav,1,n);
                   5334:     free_ivector(cod,1,n);
                   5335:     free_ivector(tab,1,NCOVMAX);
                   5336:     fclose(ficreseij);
                   5337:     fclose(ficresvij);
                   5338:     fclose(ficrest);
                   5339:     fclose(ficpar);
                   5340:   
                   5341:     /*------- Variance of stable prevalence------*/   
                   5342: 
                   5343:     strcpy(fileresvpl,"vpl");
                   5344:     strcat(fileresvpl,fileres);
                   5345:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
                   5346:       printf("Problem with variance of stable prevalence  resultfile: %s\n", fileresvpl);
                   5347:       exit(0);
                   5348:     }
                   5349:     printf("Computing Variance-covariance of stable prevalence: file '%s' \n", fileresvpl);
                   5350: 
                   5351:     for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   5352:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   5353:        k=k+1;
                   5354:        fprintf(ficresvpl,"\n#****** ");
                   5355:        for(j=1;j<=cptcoveff;j++) 
                   5356:          fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   5357:        fprintf(ficresvpl,"******\n");
                   5358:       
                   5359:        varpl=matrix(1,nlstate,(int) bage, (int) fage);
                   5360:        oldm=oldms;savm=savms;
                   5361:        varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
                   5362:        free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
1.53      brouard  5363:       }
1.98      brouard  5364:     }
1.53      brouard  5365: 
1.98      brouard  5366:     fclose(ficresvpl);
1.53      brouard  5367: 
1.98      brouard  5368:     /*---------- End : free ----------------*/
                   5369:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5370:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   5371: 
                   5372:   }  /* mle==-3 arrives here for freeing */
                   5373:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
                   5374:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   5375:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   5376:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   5377:   
                   5378:     free_matrix(covar,0,NCOVMAX,1,n);
                   5379:     free_matrix(matcov,1,npar,1,npar);
                   5380:     /*free_vector(delti,1,npar);*/
                   5381:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   5382:     free_matrix(agev,1,maxwav,1,imx);
                   5383:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
                   5384: 
                   5385:     free_ivector(ncodemax,1,8);
                   5386:     free_ivector(Tvar,1,15);
                   5387:     free_ivector(Tprod,1,15);
                   5388:     free_ivector(Tvaraff,1,15);
                   5389:     free_ivector(Tage,1,15);
                   5390:     free_ivector(Tcode,1,100);
1.74      brouard  5391: 
1.53      brouard  5392: 
1.88      brouard  5393:   fflush(fichtm);
                   5394:   fflush(ficgp);
1.53      brouard  5395:   
                   5396: 
1.91      brouard  5397:   if((nberr >0) || (nbwarn>0)){
1.95      brouard  5398:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
1.91      brouard  5399:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
1.53      brouard  5400:   }else{
1.91      brouard  5401:     printf("End of Imach\n");
                   5402:     fprintf(ficlog,"End of Imach\n");
1.53      brouard  5403:   }
                   5404:   printf("See log file on %s\n",filelog);
                   5405:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
1.85      brouard  5406:   (void) gettimeofday(&end_time,&tzp);
                   5407:   tm = *localtime(&end_time.tv_sec);
                   5408:   tmg = *gmtime(&end_time.tv_sec);
1.88      brouard  5409:   strcpy(strtend,asctime(&tm));
1.94      brouard  5410:   printf("Local time at start %s\nLocaltime at end   %s",strstart, strtend); 
                   5411:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
1.91      brouard  5412:   printf("Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
1.85      brouard  5413: 
1.91      brouard  5414:   printf("Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
                   5415:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(end_time.tv_sec -start_time.tv_sec,tmpout));
                   5416:   fprintf(ficlog,"Total time was %d Sec.\n", end_time.tv_sec -start_time.tv_sec);
1.85      brouard  5417:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
1.87      brouard  5418: /*   if(fileappend(fichtm,optionfilehtm)){ */
1.88      brouard  5419:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>",strstart, strtend);
1.87      brouard  5420:   fclose(fichtm);
1.91      brouard  5421:   fclose(fichtmcov);
1.88      brouard  5422:   fclose(ficgp);
1.91      brouard  5423:   fclose(ficlog);
1.53      brouard  5424:   /*------ End -----------*/
                   5425: 
1.88      brouard  5426:   chdir(path);
1.99      brouard  5427:   strcpy(plotcmd,"\"");
                   5428:   strcat(plotcmd,pathimach);
                   5429:   strcat(plotcmd,GNUPLOTPROGRAM);
                   5430:   strcat(plotcmd,"\"");
1.59      brouard  5431:   strcat(plotcmd," ");
                   5432:   strcat(plotcmd,optionfilegnuplot);
1.75      brouard  5433:   printf("Starting graphs with: %s",plotcmd);fflush(stdout);
1.91      brouard  5434:   if((outcmd=system(plotcmd)) != 0){
                   5435:     printf(" Problem with gnuplot\n");
                   5436:   }
1.75      brouard  5437:   printf(" Wait...");
1.53      brouard  5438:   while (z[0] != 'q') {
                   5439:     /* chdir(path); */
1.91      brouard  5440:     printf("\nType e to edit output files, g to graph again and q for exiting: ");
1.53      brouard  5441:     scanf("%s",z);
1.91      brouard  5442: /*     if (z[0] == 'c') system("./imach"); */
1.99      brouard  5443:     if (z[0] == 'e') {
                   5444:       printf("Starting browser with: %s",optionfilehtm);fflush(stdout);
                   5445:       system(optionfilehtm);
                   5446:     }
1.53      brouard  5447:     else if (z[0] == 'g') system(plotcmd);
                   5448:     else if (z[0] == 'q') exit(0);
                   5449:   }
1.91      brouard  5450:   end:
                   5451:   while (z[0] != 'q') {
                   5452:     printf("\nType  q for exiting: ");
                   5453:     scanf("%s",z);
                   5454:   }
1.53      brouard  5455: }
1.88      brouard  5456: 
1.53      brouard  5457: 
                   5458: 

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>