Annotation of imach/src/imach.c, revision 1.166

1.166   ! brouard     1: /* $Id: imach.c,v 1.165 2014/12/16 11:20:36 brouard Exp $
1.126     brouard     2:   $State: Exp $
1.163     brouard     3:   $Log: imach.c,v $
1.166   ! brouard     4:   Revision 1.165  2014/12/16 11:20:36  brouard
        !             5:   Summary: After compiling on Visual C
        !             6: 
        !             7:   * imach.c (Module): Merging 1.61 to 1.162
        !             8: 
1.165     brouard     9:   Revision 1.164  2014/12/16 10:52:11  brouard
                     10:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
                     11: 
                     12:   * imach.c (Module): Merging 1.61 to 1.162
                     13: 
1.164     brouard    14:   Revision 1.163  2014/12/16 10:30:11  brouard
                     15:   * imach.c (Module): Merging 1.61 to 1.162
                     16: 
1.163     brouard    17:   Revision 1.162  2014/09/25 11:43:39  brouard
                     18:   Summary: temporary backup 0.99!
                     19: 
1.162     brouard    20:   Revision 1.1  2014/09/16 11:06:58  brouard
                     21:   Summary: With some code (wrong) for nlopt
                     22: 
                     23:   Author:
                     24: 
                     25:   Revision 1.161  2014/09/15 20:41:41  brouard
                     26:   Summary: Problem with macro SQR on Intel compiler
                     27: 
1.161     brouard    28:   Revision 1.160  2014/09/02 09:24:05  brouard
                     29:   *** empty log message ***
                     30: 
1.160     brouard    31:   Revision 1.159  2014/09/01 10:34:10  brouard
                     32:   Summary: WIN32
                     33:   Author: Brouard
                     34: 
1.159     brouard    35:   Revision 1.158  2014/08/27 17:11:51  brouard
                     36:   *** empty log message ***
                     37: 
1.158     brouard    38:   Revision 1.157  2014/08/27 16:26:55  brouard
                     39:   Summary: Preparing windows Visual studio version
                     40:   Author: Brouard
                     41: 
                     42:   In order to compile on Visual studio, time.h is now correct and time_t
                     43:   and tm struct should be used. difftime should be used but sometimes I
                     44:   just make the differences in raw time format (time(&now).
                     45:   Trying to suppress #ifdef LINUX
                     46:   Add xdg-open for __linux in order to open default browser.
                     47: 
1.157     brouard    48:   Revision 1.156  2014/08/25 20:10:10  brouard
                     49:   *** empty log message ***
                     50: 
1.156     brouard    51:   Revision 1.155  2014/08/25 18:32:34  brouard
                     52:   Summary: New compile, minor changes
                     53:   Author: Brouard
                     54: 
1.155     brouard    55:   Revision 1.154  2014/06/20 17:32:08  brouard
                     56:   Summary: Outputs now all graphs of convergence to period prevalence
                     57: 
1.154     brouard    58:   Revision 1.153  2014/06/20 16:45:46  brouard
                     59:   Summary: If 3 live state, convergence to period prevalence on same graph
                     60:   Author: Brouard
                     61: 
1.153     brouard    62:   Revision 1.152  2014/06/18 17:54:09  brouard
                     63:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
                     64: 
1.152     brouard    65:   Revision 1.151  2014/06/18 16:43:30  brouard
                     66:   *** empty log message ***
                     67: 
1.151     brouard    68:   Revision 1.150  2014/06/18 16:42:35  brouard
                     69:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
                     70:   Author: brouard
                     71: 
1.150     brouard    72:   Revision 1.149  2014/06/18 15:51:14  brouard
                     73:   Summary: Some fixes in parameter files errors
                     74:   Author: Nicolas Brouard
                     75: 
1.149     brouard    76:   Revision 1.148  2014/06/17 17:38:48  brouard
                     77:   Summary: Nothing new
                     78:   Author: Brouard
                     79: 
                     80:   Just a new packaging for OS/X version 0.98nS
                     81: 
1.148     brouard    82:   Revision 1.147  2014/06/16 10:33:11  brouard
                     83:   *** empty log message ***
                     84: 
1.147     brouard    85:   Revision 1.146  2014/06/16 10:20:28  brouard
                     86:   Summary: Merge
                     87:   Author: Brouard
                     88: 
                     89:   Merge, before building revised version.
                     90: 
1.146     brouard    91:   Revision 1.145  2014/06/10 21:23:15  brouard
                     92:   Summary: Debugging with valgrind
                     93:   Author: Nicolas Brouard
                     94: 
                     95:   Lot of changes in order to output the results with some covariates
                     96:   After the Edimburgh REVES conference 2014, it seems mandatory to
                     97:   improve the code.
                     98:   No more memory valgrind error but a lot has to be done in order to
                     99:   continue the work of splitting the code into subroutines.
                    100:   Also, decodemodel has been improved. Tricode is still not
                    101:   optimal. nbcode should be improved. Documentation has been added in
                    102:   the source code.
                    103: 
1.144     brouard   104:   Revision 1.143  2014/01/26 09:45:38  brouard
                    105:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
                    106: 
                    107:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    108:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
                    109: 
1.143     brouard   110:   Revision 1.142  2014/01/26 03:57:36  brouard
                    111:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
                    112: 
                    113:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    114: 
1.142     brouard   115:   Revision 1.141  2014/01/26 02:42:01  brouard
                    116:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    117: 
1.141     brouard   118:   Revision 1.140  2011/09/02 10:37:54  brouard
                    119:   Summary: times.h is ok with mingw32 now.
                    120: 
1.140     brouard   121:   Revision 1.139  2010/06/14 07:50:17  brouard
                    122:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
                    123:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
                    124: 
1.139     brouard   125:   Revision 1.138  2010/04/30 18:19:40  brouard
                    126:   *** empty log message ***
                    127: 
1.138     brouard   128:   Revision 1.137  2010/04/29 18:11:38  brouard
                    129:   (Module): Checking covariates for more complex models
                    130:   than V1+V2. A lot of change to be done. Unstable.
                    131: 
1.137     brouard   132:   Revision 1.136  2010/04/26 20:30:53  brouard
                    133:   (Module): merging some libgsl code. Fixing computation
                    134:   of likelione (using inter/intrapolation if mle = 0) in order to
                    135:   get same likelihood as if mle=1.
                    136:   Some cleaning of code and comments added.
                    137: 
1.136     brouard   138:   Revision 1.135  2009/10/29 15:33:14  brouard
                    139:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    140: 
1.135     brouard   141:   Revision 1.134  2009/10/29 13:18:53  brouard
                    142:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    143: 
1.134     brouard   144:   Revision 1.133  2009/07/06 10:21:25  brouard
                    145:   just nforces
                    146: 
1.133     brouard   147:   Revision 1.132  2009/07/06 08:22:05  brouard
                    148:   Many tings
                    149: 
1.132     brouard   150:   Revision 1.131  2009/06/20 16:22:47  brouard
                    151:   Some dimensions resccaled
                    152: 
1.131     brouard   153:   Revision 1.130  2009/05/26 06:44:34  brouard
                    154:   (Module): Max Covariate is now set to 20 instead of 8. A
                    155:   lot of cleaning with variables initialized to 0. Trying to make
                    156:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
                    157: 
1.130     brouard   158:   Revision 1.129  2007/08/31 13:49:27  lievre
                    159:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
                    160: 
1.129     lievre    161:   Revision 1.128  2006/06/30 13:02:05  brouard
                    162:   (Module): Clarifications on computing e.j
                    163: 
1.128     brouard   164:   Revision 1.127  2006/04/28 18:11:50  brouard
                    165:   (Module): Yes the sum of survivors was wrong since
                    166:   imach-114 because nhstepm was no more computed in the age
                    167:   loop. Now we define nhstepma in the age loop.
                    168:   (Module): In order to speed up (in case of numerous covariates) we
                    169:   compute health expectancies (without variances) in a first step
                    170:   and then all the health expectancies with variances or standard
                    171:   deviation (needs data from the Hessian matrices) which slows the
                    172:   computation.
                    173:   In the future we should be able to stop the program is only health
                    174:   expectancies and graph are needed without standard deviations.
                    175: 
1.127     brouard   176:   Revision 1.126  2006/04/28 17:23:28  brouard
                    177:   (Module): Yes the sum of survivors was wrong since
                    178:   imach-114 because nhstepm was no more computed in the age
                    179:   loop. Now we define nhstepma in the age loop.
                    180:   Version 0.98h
                    181: 
1.126     brouard   182:   Revision 1.125  2006/04/04 15:20:31  lievre
                    183:   Errors in calculation of health expectancies. Age was not initialized.
                    184:   Forecasting file added.
                    185: 
                    186:   Revision 1.124  2006/03/22 17:13:53  lievre
                    187:   Parameters are printed with %lf instead of %f (more numbers after the comma).
                    188:   The log-likelihood is printed in the log file
                    189: 
                    190:   Revision 1.123  2006/03/20 10:52:43  brouard
                    191:   * imach.c (Module): <title> changed, corresponds to .htm file
                    192:   name. <head> headers where missing.
                    193: 
                    194:   * imach.c (Module): Weights can have a decimal point as for
                    195:   English (a comma might work with a correct LC_NUMERIC environment,
                    196:   otherwise the weight is truncated).
                    197:   Modification of warning when the covariates values are not 0 or
                    198:   1.
                    199:   Version 0.98g
                    200: 
                    201:   Revision 1.122  2006/03/20 09:45:41  brouard
                    202:   (Module): Weights can have a decimal point as for
                    203:   English (a comma might work with a correct LC_NUMERIC environment,
                    204:   otherwise the weight is truncated).
                    205:   Modification of warning when the covariates values are not 0 or
                    206:   1.
                    207:   Version 0.98g
                    208: 
                    209:   Revision 1.121  2006/03/16 17:45:01  lievre
                    210:   * imach.c (Module): Comments concerning covariates added
                    211: 
                    212:   * imach.c (Module): refinements in the computation of lli if
                    213:   status=-2 in order to have more reliable computation if stepm is
                    214:   not 1 month. Version 0.98f
                    215: 
                    216:   Revision 1.120  2006/03/16 15:10:38  lievre
                    217:   (Module): refinements in the computation of lli if
                    218:   status=-2 in order to have more reliable computation if stepm is
                    219:   not 1 month. Version 0.98f
                    220: 
                    221:   Revision 1.119  2006/03/15 17:42:26  brouard
                    222:   (Module): Bug if status = -2, the loglikelihood was
                    223:   computed as likelihood omitting the logarithm. Version O.98e
                    224: 
                    225:   Revision 1.118  2006/03/14 18:20:07  brouard
                    226:   (Module): varevsij Comments added explaining the second
                    227:   table of variances if popbased=1 .
                    228:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    229:   (Module): Function pstamp added
                    230:   (Module): Version 0.98d
                    231: 
                    232:   Revision 1.117  2006/03/14 17:16:22  brouard
                    233:   (Module): varevsij Comments added explaining the second
                    234:   table of variances if popbased=1 .
                    235:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    236:   (Module): Function pstamp added
                    237:   (Module): Version 0.98d
                    238: 
                    239:   Revision 1.116  2006/03/06 10:29:27  brouard
                    240:   (Module): Variance-covariance wrong links and
                    241:   varian-covariance of ej. is needed (Saito).
                    242: 
                    243:   Revision 1.115  2006/02/27 12:17:45  brouard
                    244:   (Module): One freematrix added in mlikeli! 0.98c
                    245: 
                    246:   Revision 1.114  2006/02/26 12:57:58  brouard
                    247:   (Module): Some improvements in processing parameter
                    248:   filename with strsep.
                    249: 
                    250:   Revision 1.113  2006/02/24 14:20:24  brouard
                    251:   (Module): Memory leaks checks with valgrind and:
                    252:   datafile was not closed, some imatrix were not freed and on matrix
                    253:   allocation too.
                    254: 
                    255:   Revision 1.112  2006/01/30 09:55:26  brouard
                    256:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
                    257: 
                    258:   Revision 1.111  2006/01/25 20:38:18  brouard
                    259:   (Module): Lots of cleaning and bugs added (Gompertz)
                    260:   (Module): Comments can be added in data file. Missing date values
                    261:   can be a simple dot '.'.
                    262: 
                    263:   Revision 1.110  2006/01/25 00:51:50  brouard
                    264:   (Module): Lots of cleaning and bugs added (Gompertz)
                    265: 
                    266:   Revision 1.109  2006/01/24 19:37:15  brouard
                    267:   (Module): Comments (lines starting with a #) are allowed in data.
                    268: 
                    269:   Revision 1.108  2006/01/19 18:05:42  lievre
                    270:   Gnuplot problem appeared...
                    271:   To be fixed
                    272: 
                    273:   Revision 1.107  2006/01/19 16:20:37  brouard
                    274:   Test existence of gnuplot in imach path
                    275: 
                    276:   Revision 1.106  2006/01/19 13:24:36  brouard
                    277:   Some cleaning and links added in html output
                    278: 
                    279:   Revision 1.105  2006/01/05 20:23:19  lievre
                    280:   *** empty log message ***
                    281: 
                    282:   Revision 1.104  2005/09/30 16:11:43  lievre
                    283:   (Module): sump fixed, loop imx fixed, and simplifications.
                    284:   (Module): If the status is missing at the last wave but we know
                    285:   that the person is alive, then we can code his/her status as -2
                    286:   (instead of missing=-1 in earlier versions) and his/her
                    287:   contributions to the likelihood is 1 - Prob of dying from last
                    288:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
                    289:   the healthy state at last known wave). Version is 0.98
                    290: 
                    291:   Revision 1.103  2005/09/30 15:54:49  lievre
                    292:   (Module): sump fixed, loop imx fixed, and simplifications.
                    293: 
                    294:   Revision 1.102  2004/09/15 17:31:30  brouard
                    295:   Add the possibility to read data file including tab characters.
                    296: 
                    297:   Revision 1.101  2004/09/15 10:38:38  brouard
                    298:   Fix on curr_time
                    299: 
                    300:   Revision 1.100  2004/07/12 18:29:06  brouard
                    301:   Add version for Mac OS X. Just define UNIX in Makefile
                    302: 
                    303:   Revision 1.99  2004/06/05 08:57:40  brouard
                    304:   *** empty log message ***
                    305: 
                    306:   Revision 1.98  2004/05/16 15:05:56  brouard
                    307:   New version 0.97 . First attempt to estimate force of mortality
                    308:   directly from the data i.e. without the need of knowing the health
                    309:   state at each age, but using a Gompertz model: log u =a + b*age .
                    310:   This is the basic analysis of mortality and should be done before any
                    311:   other analysis, in order to test if the mortality estimated from the
                    312:   cross-longitudinal survey is different from the mortality estimated
                    313:   from other sources like vital statistic data.
                    314: 
                    315:   The same imach parameter file can be used but the option for mle should be -3.
                    316: 
1.133     brouard   317:   Agnès, who wrote this part of the code, tried to keep most of the
1.126     brouard   318:   former routines in order to include the new code within the former code.
                    319: 
                    320:   The output is very simple: only an estimate of the intercept and of
                    321:   the slope with 95% confident intervals.
                    322: 
                    323:   Current limitations:
                    324:   A) Even if you enter covariates, i.e. with the
                    325:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
                    326:   B) There is no computation of Life Expectancy nor Life Table.
                    327: 
                    328:   Revision 1.97  2004/02/20 13:25:42  lievre
                    329:   Version 0.96d. Population forecasting command line is (temporarily)
                    330:   suppressed.
                    331: 
                    332:   Revision 1.96  2003/07/15 15:38:55  brouard
                    333:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
                    334:   rewritten within the same printf. Workaround: many printfs.
                    335: 
                    336:   Revision 1.95  2003/07/08 07:54:34  brouard
                    337:   * imach.c (Repository):
                    338:   (Repository): Using imachwizard code to output a more meaningful covariance
                    339:   matrix (cov(a12,c31) instead of numbers.
                    340: 
                    341:   Revision 1.94  2003/06/27 13:00:02  brouard
                    342:   Just cleaning
                    343: 
                    344:   Revision 1.93  2003/06/25 16:33:55  brouard
                    345:   (Module): On windows (cygwin) function asctime_r doesn't
                    346:   exist so I changed back to asctime which exists.
                    347:   (Module): Version 0.96b
                    348: 
                    349:   Revision 1.92  2003/06/25 16:30:45  brouard
                    350:   (Module): On windows (cygwin) function asctime_r doesn't
                    351:   exist so I changed back to asctime which exists.
                    352: 
                    353:   Revision 1.91  2003/06/25 15:30:29  brouard
                    354:   * imach.c (Repository): Duplicated warning errors corrected.
                    355:   (Repository): Elapsed time after each iteration is now output. It
                    356:   helps to forecast when convergence will be reached. Elapsed time
                    357:   is stamped in powell.  We created a new html file for the graphs
                    358:   concerning matrix of covariance. It has extension -cov.htm.
                    359: 
                    360:   Revision 1.90  2003/06/24 12:34:15  brouard
                    361:   (Module): Some bugs corrected for windows. Also, when
                    362:   mle=-1 a template is output in file "or"mypar.txt with the design
                    363:   of the covariance matrix to be input.
                    364: 
                    365:   Revision 1.89  2003/06/24 12:30:52  brouard
                    366:   (Module): Some bugs corrected for windows. Also, when
                    367:   mle=-1 a template is output in file "or"mypar.txt with the design
                    368:   of the covariance matrix to be input.
                    369: 
                    370:   Revision 1.88  2003/06/23 17:54:56  brouard
                    371:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
                    372: 
                    373:   Revision 1.87  2003/06/18 12:26:01  brouard
                    374:   Version 0.96
                    375: 
                    376:   Revision 1.86  2003/06/17 20:04:08  brouard
                    377:   (Module): Change position of html and gnuplot routines and added
                    378:   routine fileappend.
                    379: 
                    380:   Revision 1.85  2003/06/17 13:12:43  brouard
                    381:   * imach.c (Repository): Check when date of death was earlier that
                    382:   current date of interview. It may happen when the death was just
                    383:   prior to the death. In this case, dh was negative and likelihood
                    384:   was wrong (infinity). We still send an "Error" but patch by
                    385:   assuming that the date of death was just one stepm after the
                    386:   interview.
                    387:   (Repository): Because some people have very long ID (first column)
                    388:   we changed int to long in num[] and we added a new lvector for
                    389:   memory allocation. But we also truncated to 8 characters (left
                    390:   truncation)
                    391:   (Repository): No more line truncation errors.
                    392: 
                    393:   Revision 1.84  2003/06/13 21:44:43  brouard
                    394:   * imach.c (Repository): Replace "freqsummary" at a correct
                    395:   place. It differs from routine "prevalence" which may be called
                    396:   many times. Probs is memory consuming and must be used with
                    397:   parcimony.
                    398:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
                    399: 
                    400:   Revision 1.83  2003/06/10 13:39:11  lievre
                    401:   *** empty log message ***
                    402: 
                    403:   Revision 1.82  2003/06/05 15:57:20  brouard
                    404:   Add log in  imach.c and  fullversion number is now printed.
                    405: 
                    406: */
                    407: /*
                    408:    Interpolated Markov Chain
                    409: 
                    410:   Short summary of the programme:
                    411:   
                    412:   This program computes Healthy Life Expectancies from
                    413:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
                    414:   first survey ("cross") where individuals from different ages are
                    415:   interviewed on their health status or degree of disability (in the
                    416:   case of a health survey which is our main interest) -2- at least a
                    417:   second wave of interviews ("longitudinal") which measure each change
                    418:   (if any) in individual health status.  Health expectancies are
                    419:   computed from the time spent in each health state according to a
                    420:   model. More health states you consider, more time is necessary to reach the
                    421:   Maximum Likelihood of the parameters involved in the model.  The
                    422:   simplest model is the multinomial logistic model where pij is the
                    423:   probability to be observed in state j at the second wave
                    424:   conditional to be observed in state i at the first wave. Therefore
                    425:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
                    426:   'age' is age and 'sex' is a covariate. If you want to have a more
                    427:   complex model than "constant and age", you should modify the program
                    428:   where the markup *Covariates have to be included here again* invites
                    429:   you to do it.  More covariates you add, slower the
                    430:   convergence.
                    431: 
                    432:   The advantage of this computer programme, compared to a simple
                    433:   multinomial logistic model, is clear when the delay between waves is not
                    434:   identical for each individual. Also, if a individual missed an
                    435:   intermediate interview, the information is lost, but taken into
                    436:   account using an interpolation or extrapolation.  
                    437: 
                    438:   hPijx is the probability to be observed in state i at age x+h
                    439:   conditional to the observed state i at age x. The delay 'h' can be
                    440:   split into an exact number (nh*stepm) of unobserved intermediate
                    441:   states. This elementary transition (by month, quarter,
                    442:   semester or year) is modelled as a multinomial logistic.  The hPx
                    443:   matrix is simply the matrix product of nh*stepm elementary matrices
                    444:   and the contribution of each individual to the likelihood is simply
                    445:   hPijx.
                    446: 
                    447:   Also this programme outputs the covariance matrix of the parameters but also
                    448:   of the life expectancies. It also computes the period (stable) prevalence. 
                    449:   
1.133     brouard   450:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
                    451:            Institut national d'études démographiques, Paris.
1.126     brouard   452:   This software have been partly granted by Euro-REVES, a concerted action
                    453:   from the European Union.
                    454:   It is copyrighted identically to a GNU software product, ie programme and
                    455:   software can be distributed freely for non commercial use. Latest version
                    456:   can be accessed at http://euroreves.ined.fr/imach .
                    457: 
                    458:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
                    459:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
                    460:   
                    461:   **********************************************************************/
                    462: /*
                    463:   main
                    464:   read parameterfile
                    465:   read datafile
                    466:   concatwav
                    467:   freqsummary
                    468:   if (mle >= 1)
                    469:     mlikeli
                    470:   print results files
                    471:   if mle==1 
                    472:      computes hessian
                    473:   read end of parameter file: agemin, agemax, bage, fage, estepm
                    474:       begin-prev-date,...
                    475:   open gnuplot file
                    476:   open html file
1.145     brouard   477:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
                    478:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                    479:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
                    480:     freexexit2 possible for memory heap.
                    481: 
                    482:   h Pij x                         | pij_nom  ficrestpij
                    483:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
                    484:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
                    485:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
                    486: 
                    487:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
                    488:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
                    489:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
                    490:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
                    491:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
                    492: 
1.126     brouard   493:   forecasting if prevfcast==1 prevforecast call prevalence()
                    494:   health expectancies
                    495:   Variance-covariance of DFLE
                    496:   prevalence()
                    497:    movingaverage()
                    498:   varevsij() 
                    499:   if popbased==1 varevsij(,popbased)
                    500:   total life expectancies
                    501:   Variance of period (stable) prevalence
                    502:  end
                    503: */
                    504: 
1.165     brouard   505: #define POWELL /* Instead of NLOPT */
1.126     brouard   506: 
                    507: #include <math.h>
                    508: #include <stdio.h>
                    509: #include <stdlib.h>
                    510: #include <string.h>
1.159     brouard   511: 
                    512: #ifdef _WIN32
                    513: #include <io.h>
                    514: #else
1.126     brouard   515: #include <unistd.h>
1.159     brouard   516: #endif
1.126     brouard   517: 
                    518: #include <limits.h>
                    519: #include <sys/types.h>
                    520: #include <sys/stat.h>
                    521: #include <errno.h>
1.159     brouard   522: /* extern int errno; */
1.126     brouard   523: 
1.157     brouard   524: /* #ifdef LINUX */
                    525: /* #include <time.h> */
                    526: /* #include "timeval.h" */
                    527: /* #else */
                    528: /* #include <sys/time.h> */
                    529: /* #endif */
                    530: 
1.126     brouard   531: #include <time.h>
                    532: 
1.136     brouard   533: #ifdef GSL
                    534: #include <gsl/gsl_errno.h>
                    535: #include <gsl/gsl_multimin.h>
                    536: #endif
                    537: 
1.162     brouard   538: #ifdef NLOPT
                    539: #include <nlopt.h>
                    540: typedef struct {
                    541:   double (* function)(double [] );
                    542: } myfunc_data ;
                    543: #endif
                    544: 
1.126     brouard   545: /* #include <libintl.h> */
                    546: /* #define _(String) gettext (String) */
                    547: 
1.141     brouard   548: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
1.126     brouard   549: 
                    550: #define GNUPLOTPROGRAM "gnuplot"
                    551: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
                    552: #define FILENAMELENGTH 132
                    553: 
                    554: #define        GLOCK_ERROR_NOPATH              -1      /* empty path */
                    555: #define        GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
                    556: 
1.144     brouard   557: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
                    558: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
1.126     brouard   559: 
                    560: #define NINTERVMAX 8
1.144     brouard   561: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
                    562: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
                    563: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
1.145     brouard   564: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
1.126     brouard   565: #define MAXN 20000
1.144     brouard   566: #define YEARM 12. /**< Number of months per year */
1.126     brouard   567: #define AGESUP 130
                    568: #define AGEBASE 40
1.164     brouard   569: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
1.157     brouard   570: #ifdef _WIN32
                    571: #define DIRSEPARATOR '\\'
                    572: #define CHARSEPARATOR "\\"
                    573: #define ODIRSEPARATOR '/'
                    574: #else
1.126     brouard   575: #define DIRSEPARATOR '/'
                    576: #define CHARSEPARATOR "/"
                    577: #define ODIRSEPARATOR '\\'
                    578: #endif
                    579: 
1.166   ! brouard   580: /* $Id: imach.c,v 1.165 2014/12/16 11:20:36 brouard Exp $ */
1.126     brouard   581: /* $State: Exp $ */
                    582: 
1.162     brouard   583: char version[]="Imach version 0.99, September 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121)";
1.166   ! brouard   584: char fullversion[]="$Revision: 1.165 $ $Date: 2014/12/16 11:20:36 $"; 
1.126     brouard   585: char strstart[80];
                    586: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
1.130     brouard   587: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
1.133     brouard   588: int nvar=0, nforce=0; /* Number of variables, number of forces */
1.145     brouard   589: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
                    590: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
                    591: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
                    592: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
                    593: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
                    594: int cptcovprodnoage=0; /**< Number of covariate products without age */   
                    595: int cptcoveff=0; /* Total number of covariates to vary for printing results */
                    596: int cptcov=0; /* Working variable */
1.126     brouard   597: int npar=NPARMAX;
                    598: int nlstate=2; /* Number of live states */
                    599: int ndeath=1; /* Number of dead states */
1.130     brouard   600: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
1.126     brouard   601: int popbased=0;
                    602: 
                    603: int *wav; /* Number of waves for this individuual 0 is possible */
1.130     brouard   604: int maxwav=0; /* Maxim number of waves */
                    605: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
                    606: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
                    607: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
1.126     brouard   608:                   to the likelihood and the sum of weights (done by funcone)*/
1.130     brouard   609: int mle=1, weightopt=0;
1.126     brouard   610: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
                    611: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
                    612: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                    613:           * wave mi and wave mi+1 is not an exact multiple of stepm. */
1.162     brouard   614: int countcallfunc=0;  /* Count the number of calls to func */
1.130     brouard   615: double jmean=1; /* Mean space between 2 waves */
1.145     brouard   616: double **matprod2(); /* test */
1.126     brouard   617: double **oldm, **newm, **savm; /* Working pointers to matrices */
                    618: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
1.136     brouard   619: /*FILE *fic ; */ /* Used in readdata only */
                    620: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
1.126     brouard   621: FILE *ficlog, *ficrespow;
1.130     brouard   622: int globpr=0; /* Global variable for printing or not */
1.126     brouard   623: double fretone; /* Only one call to likelihood */
1.130     brouard   624: long ipmx=0; /* Number of contributions */
1.126     brouard   625: double sw; /* Sum of weights */
                    626: char filerespow[FILENAMELENGTH];
                    627: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
                    628: FILE *ficresilk;
                    629: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                    630: FILE *ficresprobmorprev;
                    631: FILE *fichtm, *fichtmcov; /* Html File */
                    632: FILE *ficreseij;
                    633: char filerese[FILENAMELENGTH];
                    634: FILE *ficresstdeij;
                    635: char fileresstde[FILENAMELENGTH];
                    636: FILE *ficrescveij;
                    637: char filerescve[FILENAMELENGTH];
                    638: FILE  *ficresvij;
                    639: char fileresv[FILENAMELENGTH];
                    640: FILE  *ficresvpl;
                    641: char fileresvpl[FILENAMELENGTH];
                    642: char title[MAXLINE];
                    643: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
                    644: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
                    645: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
                    646: char command[FILENAMELENGTH];
                    647: int  outcmd=0;
                    648: 
                    649: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
                    650: 
                    651: char filelog[FILENAMELENGTH]; /* Log file */
                    652: char filerest[FILENAMELENGTH];
                    653: char fileregp[FILENAMELENGTH];
                    654: char popfile[FILENAMELENGTH];
                    655: 
                    656: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
                    657: 
1.157     brouard   658: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
                    659: /* struct timezone tzp; */
                    660: /* extern int gettimeofday(); */
                    661: struct tm tml, *gmtime(), *localtime();
                    662: 
                    663: extern time_t time();
                    664: 
                    665: struct tm start_time, end_time, curr_time, last_time, forecast_time;
                    666: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
                    667: struct tm tm;
                    668: 
1.126     brouard   669: char strcurr[80], strfor[80];
                    670: 
                    671: char *endptr;
                    672: long lval;
                    673: double dval;
                    674: 
                    675: #define NR_END 1
                    676: #define FREE_ARG char*
                    677: #define FTOL 1.0e-10
                    678: 
                    679: #define NRANSI 
                    680: #define ITMAX 200 
                    681: 
                    682: #define TOL 2.0e-4 
                    683: 
                    684: #define CGOLD 0.3819660 
                    685: #define ZEPS 1.0e-10 
                    686: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                    687: 
                    688: #define GOLD 1.618034 
                    689: #define GLIMIT 100.0 
                    690: #define TINY 1.0e-20 
                    691: 
                    692: static double maxarg1,maxarg2;
                    693: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
                    694: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
                    695:   
                    696: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
                    697: #define rint(a) floor(a+0.5)
1.166   ! brouard   698: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
        !           699: /* #define mytinydouble 1.0e-16 */
        !           700: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
        !           701: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
        !           702: /* static double dsqrarg; */
        !           703: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
1.126     brouard   704: static double sqrarg;
                    705: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
                    706: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
                    707: int agegomp= AGEGOMP;
                    708: 
                    709: int imx; 
                    710: int stepm=1;
                    711: /* Stepm, step in month: minimum step interpolation*/
                    712: 
                    713: int estepm;
                    714: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
                    715: 
                    716: int m,nb;
                    717: long *num;
                    718: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
                    719: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
                    720: double **pmmij, ***probs;
                    721: double *ageexmed,*agecens;
                    722: double dateintmean=0;
                    723: 
                    724: double *weight;
                    725: int **s; /* Status */
1.141     brouard   726: double *agedc;
1.145     brouard   727: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
1.141     brouard   728:                  * covar=matrix(0,NCOVMAX,1,n); 
                    729:                  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
                    730: double  idx; 
                    731: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
1.145     brouard   732: int *Ndum; /** Freq of modality (tricode */
1.141     brouard   733: int **codtab; /**< codtab=imatrix(1,100,1,10); */
                    734: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
1.126     brouard   735: double *lsurv, *lpop, *tpop;
                    736: 
1.143     brouard   737: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
                    738: double ftolhess; /**< Tolerance for computing hessian */
1.126     brouard   739: 
                    740: /**************** split *************************/
                    741: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
                    742: {
                    743:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
                    744:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
                    745:   */ 
                    746:   char *ss;                            /* pointer */
                    747:   int  l1, l2;                         /* length counters */
                    748: 
                    749:   l1 = strlen(path );                  /* length of path */
                    750:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
                    751:   ss= strrchr( path, DIRSEPARATOR );           /* find last / */
                    752:   if ( ss == NULL ) {                  /* no directory, so determine current directory */
                    753:     strcpy( name, path );              /* we got the fullname name because no directory */
                    754:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                    755:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
                    756:     /* get current working directory */
                    757:     /*    extern  char* getcwd ( char *buf , int len);*/
                    758:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
                    759:       return( GLOCK_ERROR_GETCWD );
                    760:     }
                    761:     /* got dirc from getcwd*/
                    762:     printf(" DIRC = %s \n",dirc);
                    763:   } else {                             /* strip direcotry from path */
                    764:     ss++;                              /* after this, the filename */
                    765:     l2 = strlen( ss );                 /* length of filename */
                    766:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
                    767:     strcpy( name, ss );                /* save file name */
                    768:     strncpy( dirc, path, l1 - l2 );    /* now the directory */
                    769:     dirc[l1-l2] = 0;                   /* add zero */
                    770:     printf(" DIRC2 = %s \n",dirc);
                    771:   }
                    772:   /* We add a separator at the end of dirc if not exists */
                    773:   l1 = strlen( dirc );                 /* length of directory */
                    774:   if( dirc[l1-1] != DIRSEPARATOR ){
                    775:     dirc[l1] =  DIRSEPARATOR;
                    776:     dirc[l1+1] = 0; 
                    777:     printf(" DIRC3 = %s \n",dirc);
                    778:   }
                    779:   ss = strrchr( name, '.' );           /* find last / */
                    780:   if (ss >0){
                    781:     ss++;
                    782:     strcpy(ext,ss);                    /* save extension */
                    783:     l1= strlen( name);
                    784:     l2= strlen(ss)+1;
                    785:     strncpy( finame, name, l1-l2);
                    786:     finame[l1-l2]= 0;
                    787:   }
                    788: 
                    789:   return( 0 );                         /* we're done */
                    790: }
                    791: 
                    792: 
                    793: /******************************************/
                    794: 
                    795: void replace_back_to_slash(char *s, char*t)
                    796: {
                    797:   int i;
                    798:   int lg=0;
                    799:   i=0;
                    800:   lg=strlen(t);
                    801:   for(i=0; i<= lg; i++) {
                    802:     (s[i] = t[i]);
                    803:     if (t[i]== '\\') s[i]='/';
                    804:   }
                    805: }
                    806: 
1.132     brouard   807: char *trimbb(char *out, char *in)
1.137     brouard   808: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
1.132     brouard   809:   char *s;
                    810:   s=out;
                    811:   while (*in != '\0'){
1.137     brouard   812:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
1.132     brouard   813:       in++;
                    814:     }
                    815:     *out++ = *in++;
                    816:   }
                    817:   *out='\0';
                    818:   return s;
                    819: }
                    820: 
1.145     brouard   821: char *cutl(char *blocc, char *alocc, char *in, char occ)
                    822: {
                    823:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
                    824:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
                    825:      gives blocc="abcdef2ghi" and alocc="j".
                    826:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
                    827:   */
1.160     brouard   828:   char *s, *t;
1.145     brouard   829:   t=in;s=in;
                    830:   while ((*in != occ) && (*in != '\0')){
                    831:     *alocc++ = *in++;
                    832:   }
                    833:   if( *in == occ){
                    834:     *(alocc)='\0';
                    835:     s=++in;
                    836:   }
                    837:  
                    838:   if (s == t) {/* occ not found */
                    839:     *(alocc-(in-s))='\0';
                    840:     in=s;
                    841:   }
                    842:   while ( *in != '\0'){
                    843:     *blocc++ = *in++;
                    844:   }
                    845: 
                    846:   *blocc='\0';
                    847:   return t;
                    848: }
1.137     brouard   849: char *cutv(char *blocc, char *alocc, char *in, char occ)
                    850: {
                    851:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
                    852:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
                    853:      gives blocc="abcdef2ghi" and alocc="j".
                    854:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
                    855:   */
                    856:   char *s, *t;
                    857:   t=in;s=in;
                    858:   while (*in != '\0'){
                    859:     while( *in == occ){
                    860:       *blocc++ = *in++;
                    861:       s=in;
                    862:     }
                    863:     *blocc++ = *in++;
                    864:   }
                    865:   if (s == t) /* occ not found */
                    866:     *(blocc-(in-s))='\0';
                    867:   else
                    868:     *(blocc-(in-s)-1)='\0';
                    869:   in=s;
                    870:   while ( *in != '\0'){
                    871:     *alocc++ = *in++;
                    872:   }
                    873: 
                    874:   *alocc='\0';
                    875:   return s;
                    876: }
                    877: 
1.126     brouard   878: int nbocc(char *s, char occ)
                    879: {
                    880:   int i,j=0;
                    881:   int lg=20;
                    882:   i=0;
                    883:   lg=strlen(s);
                    884:   for(i=0; i<= lg; i++) {
                    885:   if  (s[i] == occ ) j++;
                    886:   }
                    887:   return j;
                    888: }
                    889: 
1.137     brouard   890: /* void cutv(char *u,char *v, char*t, char occ) */
                    891: /* { */
                    892: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
                    893: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
                    894: /*      gives u="abcdef2ghi" and v="j" *\/ */
                    895: /*   int i,lg,j,p=0; */
                    896: /*   i=0; */
                    897: /*   lg=strlen(t); */
                    898: /*   for(j=0; j<=lg-1; j++) { */
                    899: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
                    900: /*   } */
1.126     brouard   901: 
1.137     brouard   902: /*   for(j=0; j<p; j++) { */
                    903: /*     (u[j] = t[j]); */
                    904: /*   } */
                    905: /*      u[p]='\0'; */
1.126     brouard   906: 
1.137     brouard   907: /*    for(j=0; j<= lg; j++) { */
                    908: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
                    909: /*   } */
                    910: /* } */
1.126     brouard   911: 
1.160     brouard   912: #ifdef _WIN32
                    913: char * strsep(char **pp, const char *delim)
                    914: {
                    915:   char *p, *q;
                    916:          
                    917:   if ((p = *pp) == NULL)
                    918:     return 0;
                    919:   if ((q = strpbrk (p, delim)) != NULL)
                    920:   {
                    921:     *pp = q + 1;
                    922:     *q = '\0';
                    923:   }
                    924:   else
                    925:     *pp = 0;
                    926:   return p;
                    927: }
                    928: #endif
                    929: 
1.126     brouard   930: /********************** nrerror ********************/
                    931: 
                    932: void nrerror(char error_text[])
                    933: {
                    934:   fprintf(stderr,"ERREUR ...\n");
                    935:   fprintf(stderr,"%s\n",error_text);
                    936:   exit(EXIT_FAILURE);
                    937: }
                    938: /*********************** vector *******************/
                    939: double *vector(int nl, int nh)
                    940: {
                    941:   double *v;
                    942:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
                    943:   if (!v) nrerror("allocation failure in vector");
                    944:   return v-nl+NR_END;
                    945: }
                    946: 
                    947: /************************ free vector ******************/
                    948: void free_vector(double*v, int nl, int nh)
                    949: {
                    950:   free((FREE_ARG)(v+nl-NR_END));
                    951: }
                    952: 
                    953: /************************ivector *******************************/
                    954: int *ivector(long nl,long nh)
                    955: {
                    956:   int *v;
                    957:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                    958:   if (!v) nrerror("allocation failure in ivector");
                    959:   return v-nl+NR_END;
                    960: }
                    961: 
                    962: /******************free ivector **************************/
                    963: void free_ivector(int *v, long nl, long nh)
                    964: {
                    965:   free((FREE_ARG)(v+nl-NR_END));
                    966: }
                    967: 
                    968: /************************lvector *******************************/
                    969: long *lvector(long nl,long nh)
                    970: {
                    971:   long *v;
                    972:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
                    973:   if (!v) nrerror("allocation failure in ivector");
                    974:   return v-nl+NR_END;
                    975: }
                    976: 
                    977: /******************free lvector **************************/
                    978: void free_lvector(long *v, long nl, long nh)
                    979: {
                    980:   free((FREE_ARG)(v+nl-NR_END));
                    981: }
                    982: 
                    983: /******************* imatrix *******************************/
                    984: int **imatrix(long nrl, long nrh, long ncl, long nch) 
                    985:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
                    986: { 
                    987:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                    988:   int **m; 
                    989:   
                    990:   /* allocate pointers to rows */ 
                    991:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                    992:   if (!m) nrerror("allocation failure 1 in matrix()"); 
                    993:   m += NR_END; 
                    994:   m -= nrl; 
                    995:   
                    996:   
                    997:   /* allocate rows and set pointers to them */ 
                    998:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
                    999:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                   1000:   m[nrl] += NR_END; 
                   1001:   m[nrl] -= ncl; 
                   1002:   
                   1003:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                   1004:   
                   1005:   /* return pointer to array of pointers to rows */ 
                   1006:   return m; 
                   1007: } 
                   1008: 
                   1009: /****************** free_imatrix *************************/
                   1010: void free_imatrix(m,nrl,nrh,ncl,nch)
                   1011:       int **m;
                   1012:       long nch,ncl,nrh,nrl; 
                   1013:      /* free an int matrix allocated by imatrix() */ 
                   1014: { 
                   1015:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                   1016:   free((FREE_ARG) (m+nrl-NR_END)); 
                   1017: } 
                   1018: 
                   1019: /******************* matrix *******************************/
                   1020: double **matrix(long nrl, long nrh, long ncl, long nch)
                   1021: {
                   1022:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                   1023:   double **m;
                   1024: 
                   1025:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   1026:   if (!m) nrerror("allocation failure 1 in matrix()");
                   1027:   m += NR_END;
                   1028:   m -= nrl;
                   1029: 
                   1030:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   1031:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   1032:   m[nrl] += NR_END;
                   1033:   m[nrl] -= ncl;
                   1034: 
                   1035:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   1036:   return m;
1.145     brouard  1037:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
                   1038: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
                   1039: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
1.126     brouard  1040:    */
                   1041: }
                   1042: 
                   1043: /*************************free matrix ************************/
                   1044: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                   1045: {
                   1046:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   1047:   free((FREE_ARG)(m+nrl-NR_END));
                   1048: }
                   1049: 
                   1050: /******************* ma3x *******************************/
                   1051: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                   1052: {
                   1053:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                   1054:   double ***m;
                   1055: 
                   1056:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   1057:   if (!m) nrerror("allocation failure 1 in matrix()");
                   1058:   m += NR_END;
                   1059:   m -= nrl;
                   1060: 
                   1061:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   1062:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   1063:   m[nrl] += NR_END;
                   1064:   m[nrl] -= ncl;
                   1065: 
                   1066:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   1067: 
                   1068:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                   1069:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                   1070:   m[nrl][ncl] += NR_END;
                   1071:   m[nrl][ncl] -= nll;
                   1072:   for (j=ncl+1; j<=nch; j++) 
                   1073:     m[nrl][j]=m[nrl][j-1]+nlay;
                   1074:   
                   1075:   for (i=nrl+1; i<=nrh; i++) {
                   1076:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                   1077:     for (j=ncl+1; j<=nch; j++) 
                   1078:       m[i][j]=m[i][j-1]+nlay;
                   1079:   }
                   1080:   return m; 
                   1081:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                   1082:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                   1083:   */
                   1084: }
                   1085: 
                   1086: /*************************free ma3x ************************/
                   1087: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                   1088: {
                   1089:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                   1090:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   1091:   free((FREE_ARG)(m+nrl-NR_END));
                   1092: }
                   1093: 
                   1094: /*************** function subdirf ***********/
                   1095: char *subdirf(char fileres[])
                   1096: {
                   1097:   /* Caution optionfilefiname is hidden */
                   1098:   strcpy(tmpout,optionfilefiname);
                   1099:   strcat(tmpout,"/"); /* Add to the right */
                   1100:   strcat(tmpout,fileres);
                   1101:   return tmpout;
                   1102: }
                   1103: 
                   1104: /*************** function subdirf2 ***********/
                   1105: char *subdirf2(char fileres[], char *preop)
                   1106: {
                   1107:   
                   1108:   /* Caution optionfilefiname is hidden */
                   1109:   strcpy(tmpout,optionfilefiname);
                   1110:   strcat(tmpout,"/");
                   1111:   strcat(tmpout,preop);
                   1112:   strcat(tmpout,fileres);
                   1113:   return tmpout;
                   1114: }
                   1115: 
                   1116: /*************** function subdirf3 ***********/
                   1117: char *subdirf3(char fileres[], char *preop, char *preop2)
                   1118: {
                   1119:   
                   1120:   /* Caution optionfilefiname is hidden */
                   1121:   strcpy(tmpout,optionfilefiname);
                   1122:   strcat(tmpout,"/");
                   1123:   strcat(tmpout,preop);
                   1124:   strcat(tmpout,preop2);
                   1125:   strcat(tmpout,fileres);
                   1126:   return tmpout;
                   1127: }
                   1128: 
1.162     brouard  1129: char *asc_diff_time(long time_sec, char ascdiff[])
                   1130: {
                   1131:   long sec_left, days, hours, minutes;
                   1132:   days = (time_sec) / (60*60*24);
                   1133:   sec_left = (time_sec) % (60*60*24);
                   1134:   hours = (sec_left) / (60*60) ;
                   1135:   sec_left = (sec_left) %(60*60);
                   1136:   minutes = (sec_left) /60;
                   1137:   sec_left = (sec_left) % (60);
                   1138:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
                   1139:   return ascdiff;
                   1140: }
                   1141: 
1.126     brouard  1142: /***************** f1dim *************************/
                   1143: extern int ncom; 
                   1144: extern double *pcom,*xicom;
                   1145: extern double (*nrfunc)(double []); 
                   1146:  
                   1147: double f1dim(double x) 
                   1148: { 
                   1149:   int j; 
                   1150:   double f;
                   1151:   double *xt; 
                   1152:  
                   1153:   xt=vector(1,ncom); 
                   1154:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                   1155:   f=(*nrfunc)(xt); 
                   1156:   free_vector(xt,1,ncom); 
                   1157:   return f; 
                   1158: } 
                   1159: 
                   1160: /*****************brent *************************/
                   1161: double brent(double ax, double bx, double cx, double (*f)(double), double tol,         double *xmin) 
                   1162: { 
                   1163:   int iter; 
                   1164:   double a,b,d,etemp;
1.159     brouard  1165:   double fu=0,fv,fw,fx;
1.164     brouard  1166:   double ftemp=0.;
1.126     brouard  1167:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
                   1168:   double e=0.0; 
                   1169:  
                   1170:   a=(ax < cx ? ax : cx); 
                   1171:   b=(ax > cx ? ax : cx); 
                   1172:   x=w=v=bx; 
                   1173:   fw=fv=fx=(*f)(x); 
                   1174:   for (iter=1;iter<=ITMAX;iter++) { 
                   1175:     xm=0.5*(a+b); 
                   1176:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                   1177:     /*         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                   1178:     printf(".");fflush(stdout);
                   1179:     fprintf(ficlog,".");fflush(ficlog);
1.162     brouard  1180: #ifdef DEBUGBRENT
1.126     brouard  1181:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   1182:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   1183:     /*         if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                   1184: #endif
                   1185:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                   1186:       *xmin=x; 
                   1187:       return fx; 
                   1188:     } 
                   1189:     ftemp=fu;
                   1190:     if (fabs(e) > tol1) { 
                   1191:       r=(x-w)*(fx-fv); 
                   1192:       q=(x-v)*(fx-fw); 
                   1193:       p=(x-v)*q-(x-w)*r; 
                   1194:       q=2.0*(q-r); 
                   1195:       if (q > 0.0) p = -p; 
                   1196:       q=fabs(q); 
                   1197:       etemp=e; 
                   1198:       e=d; 
                   1199:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                   1200:        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                   1201:       else { 
                   1202:        d=p/q; 
                   1203:        u=x+d; 
                   1204:        if (u-a < tol2 || b-u < tol2) 
                   1205:          d=SIGN(tol1,xm-x); 
                   1206:       } 
                   1207:     } else { 
                   1208:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                   1209:     } 
                   1210:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                   1211:     fu=(*f)(u); 
                   1212:     if (fu <= fx) { 
                   1213:       if (u >= x) a=x; else b=x; 
                   1214:       SHFT(v,w,x,u) 
                   1215:        SHFT(fv,fw,fx,fu) 
                   1216:        } else { 
                   1217:          if (u < x) a=u; else b=u; 
                   1218:          if (fu <= fw || w == x) { 
                   1219:            v=w; 
                   1220:            w=u; 
                   1221:            fv=fw; 
                   1222:            fw=fu; 
                   1223:          } else if (fu <= fv || v == x || v == w) { 
                   1224:            v=u; 
                   1225:            fv=fu; 
                   1226:          } 
                   1227:        } 
                   1228:   } 
                   1229:   nrerror("Too many iterations in brent"); 
                   1230:   *xmin=x; 
                   1231:   return fx; 
                   1232: } 
                   1233: 
                   1234: /****************** mnbrak ***********************/
                   1235: 
                   1236: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                   1237:            double (*func)(double)) 
                   1238: { 
                   1239:   double ulim,u,r,q, dum;
                   1240:   double fu; 
                   1241:  
                   1242:   *fa=(*func)(*ax); 
                   1243:   *fb=(*func)(*bx); 
                   1244:   if (*fb > *fa) { 
                   1245:     SHFT(dum,*ax,*bx,dum) 
                   1246:       SHFT(dum,*fb,*fa,dum) 
                   1247:       } 
                   1248:   *cx=(*bx)+GOLD*(*bx-*ax); 
                   1249:   *fc=(*func)(*cx); 
1.162     brouard  1250:   while (*fb > *fc) { /* Declining fa, fb, fc */
1.126     brouard  1251:     r=(*bx-*ax)*(*fb-*fc); 
                   1252:     q=(*bx-*cx)*(*fb-*fa); 
                   1253:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
1.162     brouard  1254:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
                   1255:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
                   1256:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
1.126     brouard  1257:       fu=(*func)(u); 
1.163     brouard  1258: #ifdef DEBUG
                   1259:       /* f(x)=A(x-u)**2+f(u) */
                   1260:       double A, fparabu; 
                   1261:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   1262:       fparabu= *fa - A*(*ax-u)*(*ax-u);
                   1263:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                   1264:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                   1265: #endif 
1.162     brouard  1266:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
1.126     brouard  1267:       fu=(*func)(u); 
                   1268:       if (fu < *fc) { 
                   1269:        SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                   1270:          SHFT(*fb,*fc,fu,(*func)(u)) 
                   1271:          } 
1.162     brouard  1272:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
1.126     brouard  1273:       u=ulim; 
                   1274:       fu=(*func)(u); 
                   1275:     } else { 
                   1276:       u=(*cx)+GOLD*(*cx-*bx); 
                   1277:       fu=(*func)(u); 
                   1278:     } 
                   1279:     SHFT(*ax,*bx,*cx,u) 
                   1280:       SHFT(*fa,*fb,*fc,fu) 
                   1281:       } 
                   1282: } 
                   1283: 
                   1284: /*************** linmin ************************/
1.162     brouard  1285: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
                   1286: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
                   1287: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
                   1288: the value of func at the returned location p . This is actually all accomplished by calling the
                   1289: routines mnbrak and brent .*/
1.126     brouard  1290: int ncom; 
                   1291: double *pcom,*xicom;
                   1292: double (*nrfunc)(double []); 
                   1293:  
                   1294: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
                   1295: { 
                   1296:   double brent(double ax, double bx, double cx, 
                   1297:               double (*f)(double), double tol, double *xmin); 
                   1298:   double f1dim(double x); 
                   1299:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                   1300:              double *fc, double (*func)(double)); 
                   1301:   int j; 
                   1302:   double xx,xmin,bx,ax; 
                   1303:   double fx,fb,fa;
                   1304:  
                   1305:   ncom=n; 
                   1306:   pcom=vector(1,n); 
                   1307:   xicom=vector(1,n); 
                   1308:   nrfunc=func; 
                   1309:   for (j=1;j<=n;j++) { 
                   1310:     pcom[j]=p[j]; 
                   1311:     xicom[j]=xi[j]; 
                   1312:   } 
                   1313:   ax=0.0; 
                   1314:   xx=1.0; 
1.162     brouard  1315:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
                   1316:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
1.126     brouard  1317: #ifdef DEBUG
                   1318:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                   1319:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                   1320: #endif
                   1321:   for (j=1;j<=n;j++) { 
                   1322:     xi[j] *= xmin; 
                   1323:     p[j] += xi[j]; 
                   1324:   } 
                   1325:   free_vector(xicom,1,n); 
                   1326:   free_vector(pcom,1,n); 
                   1327: } 
                   1328: 
                   1329: 
                   1330: /*************** powell ************************/
1.162     brouard  1331: /*
                   1332: Minimization of a function func of n variables. Input consists of an initial starting point
                   1333: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
                   1334: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
                   1335: such that failure to decrease by more than this amount on one iteration signals doneness. On
                   1336: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
                   1337: function value at p , and iter is the number of iterations taken. The routine linmin is used.
                   1338:  */
1.126     brouard  1339: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                   1340:            double (*func)(double [])) 
                   1341: { 
                   1342:   void linmin(double p[], double xi[], int n, double *fret, 
                   1343:              double (*func)(double [])); 
                   1344:   int i,ibig,j; 
                   1345:   double del,t,*pt,*ptt,*xit;
                   1346:   double fp,fptt;
                   1347:   double *xits;
                   1348:   int niterf, itmp;
                   1349: 
                   1350:   pt=vector(1,n); 
                   1351:   ptt=vector(1,n); 
                   1352:   xit=vector(1,n); 
                   1353:   xits=vector(1,n); 
                   1354:   *fret=(*func)(p); 
                   1355:   for (j=1;j<=n;j++) pt[j]=p[j]; 
1.157     brouard  1356:     rcurr_time = time(NULL);  
1.126     brouard  1357:   for (*iter=1;;++(*iter)) { 
                   1358:     fp=(*fret); 
                   1359:     ibig=0; 
                   1360:     del=0.0; 
1.157     brouard  1361:     rlast_time=rcurr_time;
                   1362:     /* (void) gettimeofday(&curr_time,&tzp); */
                   1363:     rcurr_time = time(NULL);  
                   1364:     curr_time = *localtime(&rcurr_time);
                   1365:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
                   1366:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
                   1367: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
1.126     brouard  1368:    for (i=1;i<=n;i++) {
                   1369:       printf(" %d %.12f",i, p[i]);
                   1370:       fprintf(ficlog," %d %.12lf",i, p[i]);
                   1371:       fprintf(ficrespow," %.12lf", p[i]);
                   1372:     }
                   1373:     printf("\n");
                   1374:     fprintf(ficlog,"\n");
                   1375:     fprintf(ficrespow,"\n");fflush(ficrespow);
                   1376:     if(*iter <=3){
1.157     brouard  1377:       tml = *localtime(&rcurr_time);
                   1378:       strcpy(strcurr,asctime(&tml));
                   1379:       rforecast_time=rcurr_time; 
1.126     brouard  1380:       itmp = strlen(strcurr);
                   1381:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
                   1382:        strcurr[itmp-1]='\0';
1.162     brouard  1383:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.157     brouard  1384:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.126     brouard  1385:       for(niterf=10;niterf<=30;niterf+=10){
1.157     brouard  1386:        rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
                   1387:        forecast_time = *localtime(&rforecast_time);
                   1388:        strcpy(strfor,asctime(&forecast_time));
1.126     brouard  1389:        itmp = strlen(strfor);
                   1390:        if(strfor[itmp-1]=='\n')
                   1391:        strfor[itmp-1]='\0';
1.157     brouard  1392:        printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                   1393:        fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
1.126     brouard  1394:       }
                   1395:     }
                   1396:     for (i=1;i<=n;i++) { 
                   1397:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                   1398:       fptt=(*fret); 
                   1399: #ifdef DEBUG
1.164     brouard  1400:          printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
                   1401:          fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
1.126     brouard  1402: #endif
                   1403:       printf("%d",i);fflush(stdout);
                   1404:       fprintf(ficlog,"%d",i);fflush(ficlog);
                   1405:       linmin(p,xit,n,fret,func); 
                   1406:       if (fabs(fptt-(*fret)) > del) { 
                   1407:        del=fabs(fptt-(*fret)); 
                   1408:        ibig=i; 
                   1409:       } 
                   1410: #ifdef DEBUG
                   1411:       printf("%d %.12e",i,(*fret));
                   1412:       fprintf(ficlog,"%d %.12e",i,(*fret));
                   1413:       for (j=1;j<=n;j++) {
                   1414:        xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                   1415:        printf(" x(%d)=%.12e",j,xit[j]);
                   1416:        fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
                   1417:       }
                   1418:       for(j=1;j<=n;j++) {
1.162     brouard  1419:        printf(" p(%d)=%.12e",j,p[j]);
                   1420:        fprintf(ficlog," p(%d)=%.12e",j,p[j]);
1.126     brouard  1421:       }
                   1422:       printf("\n");
                   1423:       fprintf(ficlog,"\n");
                   1424: #endif
1.162     brouard  1425:     } /* end i */
1.126     brouard  1426:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
                   1427: #ifdef DEBUG
                   1428:       int k[2],l;
                   1429:       k[0]=1;
                   1430:       k[1]=-1;
                   1431:       printf("Max: %.12e",(*func)(p));
                   1432:       fprintf(ficlog,"Max: %.12e",(*func)(p));
                   1433:       for (j=1;j<=n;j++) {
                   1434:        printf(" %.12e",p[j]);
                   1435:        fprintf(ficlog," %.12e",p[j]);
                   1436:       }
                   1437:       printf("\n");
                   1438:       fprintf(ficlog,"\n");
                   1439:       for(l=0;l<=1;l++) {
                   1440:        for (j=1;j<=n;j++) {
                   1441:          ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                   1442:          printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   1443:          fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   1444:        }
                   1445:        printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   1446:        fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   1447:       }
                   1448: #endif
                   1449: 
                   1450: 
                   1451:       free_vector(xit,1,n); 
                   1452:       free_vector(xits,1,n); 
                   1453:       free_vector(ptt,1,n); 
                   1454:       free_vector(pt,1,n); 
                   1455:       return; 
                   1456:     } 
                   1457:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
1.161     brouard  1458:     for (j=1;j<=n;j++) { /* Computes an extrapolated point */
1.126     brouard  1459:       ptt[j]=2.0*p[j]-pt[j]; 
                   1460:       xit[j]=p[j]-pt[j]; 
                   1461:       pt[j]=p[j]; 
                   1462:     } 
                   1463:     fptt=(*func)(ptt); 
1.161     brouard  1464:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
1.162     brouard  1465:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
1.161     brouard  1466:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
1.162     brouard  1467:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
                   1468:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
                   1469:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
1.161     brouard  1470:       /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
                   1471:       /* Thus we compare delta(2h) with observed f1-f3 */
1.162     brouard  1472:       /* or best gain on one ancient line 'del' with total  */
                   1473:       /* gain f1-f2 = f1 - f2 - 'del' with del  */
1.161     brouard  1474:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
1.162     brouard  1475: 
1.161     brouard  1476:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
                   1477:       t= t- del*SQR(fp-fptt);
                   1478:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
                   1479:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
                   1480: #ifdef DEBUG
                   1481:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   1482:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   1483:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   1484:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   1485:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   1486:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   1487: #endif
                   1488:       if (t < 0.0) { /* Then we use it for last direction */
                   1489:        linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
1.126     brouard  1490:        for (j=1;j<=n;j++) { 
1.161     brouard  1491:          xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
                   1492:          xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
1.126     brouard  1493:        }
1.161     brouard  1494:        printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   1495:        fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
                   1496: 
1.126     brouard  1497: #ifdef DEBUG
1.164     brouard  1498:        printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   1499:        fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
1.126     brouard  1500:        for(j=1;j<=n;j++){
                   1501:          printf(" %.12e",xit[j]);
                   1502:          fprintf(ficlog," %.12e",xit[j]);
                   1503:        }
                   1504:        printf("\n");
                   1505:        fprintf(ficlog,"\n");
                   1506: #endif
1.162     brouard  1507:       } /* end of t negative */
                   1508:     } /* end if (fptt < fp)  */
1.126     brouard  1509:   } 
                   1510: } 
                   1511: 
                   1512: /**** Prevalence limit (stable or period prevalence)  ****************/
                   1513: 
                   1514: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
                   1515: {
                   1516:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
                   1517:      matrix by transitions matrix until convergence is reached */
                   1518: 
                   1519:   int i, ii,j,k;
                   1520:   double min, max, maxmin, maxmax,sumnew=0.;
1.145     brouard  1521:   /* double **matprod2(); */ /* test */
1.131     brouard  1522:   double **out, cov[NCOVMAX+1], **pmij();
1.126     brouard  1523:   double **newm;
                   1524:   double agefin, delaymax=50 ; /* Max number of years to converge */
                   1525: 
                   1526:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   1527:     for (j=1;j<=nlstate+ndeath;j++){
                   1528:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1529:     }
                   1530: 
                   1531:    cov[1]=1.;
                   1532:  
                   1533:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1534:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                   1535:     newm=savm;
                   1536:     /* Covariates have to be included here again */
1.138     brouard  1537:     cov[2]=agefin;
                   1538:     
                   1539:     for (k=1; k<=cptcovn;k++) {
                   1540:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
1.145     brouard  1541:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
1.138     brouard  1542:     }
1.145     brouard  1543:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
                   1544:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
                   1545:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
1.138     brouard  1546:     
                   1547:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   1548:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   1549:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
1.145     brouard  1550:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   1551:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.142     brouard  1552:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
1.138     brouard  1553:     
1.126     brouard  1554:     savm=oldm;
                   1555:     oldm=newm;
                   1556:     maxmax=0.;
                   1557:     for(j=1;j<=nlstate;j++){
                   1558:       min=1.;
                   1559:       max=0.;
                   1560:       for(i=1; i<=nlstate; i++) {
                   1561:        sumnew=0;
                   1562:        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                   1563:        prlim[i][j]= newm[i][j]/(1-sumnew);
1.145     brouard  1564:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
1.126     brouard  1565:        max=FMAX(max,prlim[i][j]);
                   1566:        min=FMIN(min,prlim[i][j]);
                   1567:       }
                   1568:       maxmin=max-min;
                   1569:       maxmax=FMAX(maxmax,maxmin);
                   1570:     }
                   1571:     if(maxmax < ftolpl){
                   1572:       return prlim;
                   1573:     }
                   1574:   }
                   1575: }
                   1576: 
                   1577: /*************** transition probabilities ***************/ 
                   1578: 
                   1579: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                   1580: {
1.138     brouard  1581:   /* According to parameters values stored in x and the covariate's values stored in cov,
                   1582:      computes the probability to be observed in state j being in state i by appying the
                   1583:      model to the ncovmodel covariates (including constant and age).
                   1584:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   1585:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   1586:      ncth covariate in the global vector x is given by the formula:
                   1587:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   1588:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   1589:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   1590:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
                   1591:      Outputs ps[i][j] the probability to be observed in j being in j according to
                   1592:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
                   1593:   */
                   1594:   double s1, lnpijopii;
1.126     brouard  1595:   /*double t34;*/
1.164     brouard  1596:   int i,j, nc, ii, jj;
1.126     brouard  1597: 
                   1598:     for(i=1; i<= nlstate; i++){
                   1599:       for(j=1; j<i;j++){
1.138     brouard  1600:        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   1601:          /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   1602:          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   1603: /*      printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
1.126     brouard  1604:        }
1.138     brouard  1605:        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   1606: /*     printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
1.126     brouard  1607:       }
                   1608:       for(j=i+1; j<=nlstate+ndeath;j++){
1.138     brouard  1609:        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   1610:          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   1611:          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   1612: /*       printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
1.126     brouard  1613:        }
1.138     brouard  1614:        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
1.126     brouard  1615:       }
                   1616:     }
                   1617:     
                   1618:     for(i=1; i<= nlstate; i++){
                   1619:       s1=0;
1.131     brouard  1620:       for(j=1; j<i; j++){
1.138     brouard  1621:        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
1.131     brouard  1622:        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   1623:       }
                   1624:       for(j=i+1; j<=nlstate+ndeath; j++){
1.138     brouard  1625:        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
1.131     brouard  1626:        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   1627:       }
1.138     brouard  1628:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
1.126     brouard  1629:       ps[i][i]=1./(s1+1.);
1.138     brouard  1630:       /* Computing other pijs */
1.126     brouard  1631:       for(j=1; j<i; j++)
                   1632:        ps[i][j]= exp(ps[i][j])*ps[i][i];
                   1633:       for(j=i+1; j<=nlstate+ndeath; j++)
                   1634:        ps[i][j]= exp(ps[i][j])*ps[i][i];
                   1635:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   1636:     } /* end i */
                   1637:     
                   1638:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   1639:       for(jj=1; jj<= nlstate+ndeath; jj++){
                   1640:        ps[ii][jj]=0;
                   1641:        ps[ii][ii]=1;
                   1642:       }
                   1643:     }
                   1644:     
1.145     brouard  1645:     
                   1646:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   1647:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   1648:     /*         printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   1649:     /*   } */
                   1650:     /*   printf("\n "); */
                   1651:     /* } */
                   1652:     /* printf("\n ");printf("%lf ",cov[2]);*/
                   1653:     /*
1.126     brouard  1654:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   1655:       goto end;*/
                   1656:     return ps;
                   1657: }
                   1658: 
                   1659: /**************** Product of 2 matrices ******************/
                   1660: 
1.145     brouard  1661: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
1.126     brouard  1662: {
                   1663:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   1664:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                   1665:   /* in, b, out are matrice of pointers which should have been initialized 
                   1666:      before: only the contents of out is modified. The function returns
                   1667:      a pointer to pointers identical to out */
1.145     brouard  1668:   int i, j, k;
1.126     brouard  1669:   for(i=nrl; i<= nrh; i++)
1.145     brouard  1670:     for(k=ncolol; k<=ncoloh; k++){
                   1671:       out[i][k]=0.;
                   1672:       for(j=ncl; j<=nch; j++)
                   1673:        out[i][k] +=in[i][j]*b[j][k];
                   1674:     }
1.126     brouard  1675:   return out;
                   1676: }
                   1677: 
                   1678: 
                   1679: /************* Higher Matrix Product ***************/
                   1680: 
                   1681: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                   1682: {
                   1683:   /* Computes the transition matrix starting at age 'age' over 
                   1684:      'nhstepm*hstepm*stepm' months (i.e. until
                   1685:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                   1686:      nhstepm*hstepm matrices. 
                   1687:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
                   1688:      (typically every 2 years instead of every month which is too big 
                   1689:      for the memory).
                   1690:      Model is determined by parameters x and covariates have to be 
                   1691:      included manually here. 
                   1692: 
                   1693:      */
                   1694: 
                   1695:   int i, j, d, h, k;
1.131     brouard  1696:   double **out, cov[NCOVMAX+1];
1.126     brouard  1697:   double **newm;
                   1698: 
                   1699:   /* Hstepm could be zero and should return the unit matrix */
                   1700:   for (i=1;i<=nlstate+ndeath;i++)
                   1701:     for (j=1;j<=nlstate+ndeath;j++){
                   1702:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   1703:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   1704:     }
                   1705:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1706:   for(h=1; h <=nhstepm; h++){
                   1707:     for(d=1; d <=hstepm; d++){
                   1708:       newm=savm;
                   1709:       /* Covariates have to be included here again */
                   1710:       cov[1]=1.;
                   1711:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
1.131     brouard  1712:       for (k=1; k<=cptcovn;k++) 
                   1713:        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
1.126     brouard  1714:       for (k=1; k<=cptcovage;k++)
                   1715:        cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
1.145     brouard  1716:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
1.126     brouard  1717:        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   1718: 
                   1719: 
                   1720:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   1721:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                   1722:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                   1723:                   pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1724:       savm=oldm;
                   1725:       oldm=newm;
                   1726:     }
                   1727:     for(i=1; i<=nlstate+ndeath; i++)
                   1728:       for(j=1;j<=nlstate+ndeath;j++) {
                   1729:        po[i][j][h]=newm[i][j];
1.128     brouard  1730:        /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
1.126     brouard  1731:       }
1.128     brouard  1732:     /*printf("h=%d ",h);*/
1.126     brouard  1733:   } /* end h */
1.128     brouard  1734: /*     printf("\n H=%d \n",h); */
1.126     brouard  1735:   return po;
                   1736: }
                   1737: 
1.162     brouard  1738: #ifdef NLOPT
                   1739:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
                   1740:   double fret;
                   1741:   double *xt;
                   1742:   int j;
                   1743:   myfunc_data *d2 = (myfunc_data *) pd;
                   1744: /* xt = (p1-1); */
                   1745:   xt=vector(1,n); 
                   1746:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
                   1747: 
                   1748:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
                   1749:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
                   1750:   printf("Function = %.12lf ",fret);
                   1751:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
                   1752:   printf("\n");
                   1753:  free_vector(xt,1,n);
                   1754:   return fret;
                   1755: }
                   1756: #endif
1.126     brouard  1757: 
                   1758: /*************** log-likelihood *************/
                   1759: double func( double *x)
                   1760: {
                   1761:   int i, ii, j, k, mi, d, kk;
1.131     brouard  1762:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
1.126     brouard  1763:   double **out;
                   1764:   double sw; /* Sum of weights */
                   1765:   double lli; /* Individual log likelihood */
                   1766:   int s1, s2;
                   1767:   double bbh, survp;
                   1768:   long ipmx;
                   1769:   /*extern weight */
                   1770:   /* We are differentiating ll according to initial status */
                   1771:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   1772:   /*for(i=1;i<imx;i++) 
                   1773:     printf(" %d\n",s[4][i]);
                   1774:   */
1.162     brouard  1775: 
                   1776:   ++countcallfunc;
                   1777: 
1.126     brouard  1778:   cov[1]=1.;
                   1779: 
                   1780:   for(k=1; k<=nlstate; k++) ll[k]=0.;
                   1781: 
                   1782:   if(mle==1){
                   1783:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.138     brouard  1784:       /* Computes the values of the ncovmodel covariates of the model
                   1785:         depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
                   1786:         Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   1787:         to be observed in j being in i according to the model.
                   1788:        */
1.145     brouard  1789:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
                   1790:        cov[2+k]=covar[Tvar[k]][i];
                   1791:       }
1.137     brouard  1792:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
1.138     brouard  1793:         is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
1.137     brouard  1794:         has been calculated etc */
1.126     brouard  1795:       for(mi=1; mi<= wav[i]-1; mi++){
                   1796:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1797:          for (j=1;j<=nlstate+ndeath;j++){
                   1798:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1799:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1800:          }
                   1801:        for(d=0; d<dh[mi][i]; d++){
                   1802:          newm=savm;
                   1803:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1804:          for (kk=1; kk<=cptcovage;kk++) {
1.137     brouard  1805:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
1.126     brouard  1806:          }
                   1807:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1808:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1809:          savm=oldm;
                   1810:          oldm=newm;
                   1811:        } /* end mult */
                   1812:       
                   1813:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   1814:        /* But now since version 0.9 we anticipate for bias at large stepm.
                   1815:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   1816:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   1817:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   1818:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   1819:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   1820:         * probability in order to take into account the bias as a fraction of the way
                   1821:         * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   1822:         * -stepm/2 to stepm/2 .
                   1823:         * For stepm=1 the results are the same as for previous versions of Imach.
                   1824:         * For stepm > 1 the results are less biased than in previous versions. 
                   1825:         */
                   1826:        s1=s[mw[mi][i]][i];
                   1827:        s2=s[mw[mi+1][i]][i];
                   1828:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1829:        /* bias bh is positive if real duration
                   1830:         * is higher than the multiple of stepm and negative otherwise.
                   1831:         */
                   1832:        /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                   1833:        if( s2 > nlstate){ 
                   1834:          /* i.e. if s2 is a death state and if the date of death is known 
                   1835:             then the contribution to the likelihood is the probability to 
                   1836:             die between last step unit time and current  step unit time, 
                   1837:             which is also equal to probability to die before dh 
                   1838:             minus probability to die before dh-stepm . 
                   1839:             In version up to 0.92 likelihood was computed
                   1840:        as if date of death was unknown. Death was treated as any other
                   1841:        health state: the date of the interview describes the actual state
                   1842:        and not the date of a change in health state. The former idea was
                   1843:        to consider that at each interview the state was recorded
                   1844:        (healthy, disable or death) and IMaCh was corrected; but when we
                   1845:        introduced the exact date of death then we should have modified
                   1846:        the contribution of an exact death to the likelihood. This new
                   1847:        contribution is smaller and very dependent of the step unit
                   1848:        stepm. It is no more the probability to die between last interview
                   1849:        and month of death but the probability to survive from last
                   1850:        interview up to one month before death multiplied by the
                   1851:        probability to die within a month. Thanks to Chris
                   1852:        Jackson for correcting this bug.  Former versions increased
                   1853:        mortality artificially. The bad side is that we add another loop
                   1854:        which slows down the processing. The difference can be up to 10%
                   1855:        lower mortality.
                   1856:          */
                   1857:          lli=log(out[s1][s2] - savm[s1][s2]);
                   1858: 
                   1859: 
                   1860:        } else if  (s2==-2) {
                   1861:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   1862:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   1863:          /*survp += out[s1][j]; */
                   1864:          lli= log(survp);
                   1865:        }
                   1866:        
                   1867:        else if  (s2==-4) { 
                   1868:          for (j=3,survp=0. ; j<=nlstate; j++)  
                   1869:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   1870:          lli= log(survp); 
                   1871:        } 
                   1872: 
                   1873:        else if  (s2==-5) { 
                   1874:          for (j=1,survp=0. ; j<=2; j++)  
                   1875:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   1876:          lli= log(survp); 
                   1877:        } 
                   1878:        
                   1879:        else{
                   1880:          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   1881:          /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   1882:        } 
                   1883:        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   1884:        /*if(lli ==000.0)*/
                   1885:        /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                   1886:        ipmx +=1;
                   1887:        sw += weight[i];
                   1888:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1889:       } /* end of wave */
                   1890:     } /* end of individual */
                   1891:   }  else if(mle==2){
                   1892:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1893:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1894:       for(mi=1; mi<= wav[i]-1; mi++){
                   1895:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1896:          for (j=1;j<=nlstate+ndeath;j++){
                   1897:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1898:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1899:          }
                   1900:        for(d=0; d<=dh[mi][i]; d++){
                   1901:          newm=savm;
                   1902:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1903:          for (kk=1; kk<=cptcovage;kk++) {
                   1904:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1905:          }
                   1906:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1907:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1908:          savm=oldm;
                   1909:          oldm=newm;
                   1910:        } /* end mult */
                   1911:       
                   1912:        s1=s[mw[mi][i]][i];
                   1913:        s2=s[mw[mi+1][i]][i];
                   1914:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1915:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   1916:        ipmx +=1;
                   1917:        sw += weight[i];
                   1918:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1919:       } /* end of wave */
                   1920:     } /* end of individual */
                   1921:   }  else if(mle==3){  /* exponential inter-extrapolation */
                   1922:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1923:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1924:       for(mi=1; mi<= wav[i]-1; mi++){
                   1925:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1926:          for (j=1;j<=nlstate+ndeath;j++){
                   1927:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1928:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1929:          }
                   1930:        for(d=0; d<dh[mi][i]; d++){
                   1931:          newm=savm;
                   1932:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1933:          for (kk=1; kk<=cptcovage;kk++) {
                   1934:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1935:          }
                   1936:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1937:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1938:          savm=oldm;
                   1939:          oldm=newm;
                   1940:        } /* end mult */
                   1941:       
                   1942:        s1=s[mw[mi][i]][i];
                   1943:        s2=s[mw[mi+1][i]][i];
                   1944:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1945:        lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   1946:        ipmx +=1;
                   1947:        sw += weight[i];
                   1948:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1949:       } /* end of wave */
                   1950:     } /* end of individual */
                   1951:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
                   1952:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1953:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1954:       for(mi=1; mi<= wav[i]-1; mi++){
                   1955:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1956:          for (j=1;j<=nlstate+ndeath;j++){
                   1957:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1958:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1959:          }
                   1960:        for(d=0; d<dh[mi][i]; d++){
                   1961:          newm=savm;
                   1962:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1963:          for (kk=1; kk<=cptcovage;kk++) {
                   1964:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1965:          }
                   1966:        
                   1967:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1968:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1969:          savm=oldm;
                   1970:          oldm=newm;
                   1971:        } /* end mult */
                   1972:       
                   1973:        s1=s[mw[mi][i]][i];
                   1974:        s2=s[mw[mi+1][i]][i];
                   1975:        if( s2 > nlstate){ 
                   1976:          lli=log(out[s1][s2] - savm[s1][s2]);
                   1977:        }else{
                   1978:          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   1979:        }
                   1980:        ipmx +=1;
                   1981:        sw += weight[i];
                   1982:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1983: /*     printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                   1984:       } /* end of wave */
                   1985:     } /* end of individual */
                   1986:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   1987:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1988:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1989:       for(mi=1; mi<= wav[i]-1; mi++){
                   1990:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1991:          for (j=1;j<=nlstate+ndeath;j++){
                   1992:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1993:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1994:          }
                   1995:        for(d=0; d<dh[mi][i]; d++){
                   1996:          newm=savm;
                   1997:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1998:          for (kk=1; kk<=cptcovage;kk++) {
                   1999:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   2000:          }
                   2001:        
                   2002:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   2003:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   2004:          savm=oldm;
                   2005:          oldm=newm;
                   2006:        } /* end mult */
                   2007:       
                   2008:        s1=s[mw[mi][i]][i];
                   2009:        s2=s[mw[mi+1][i]][i];
                   2010:        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   2011:        ipmx +=1;
                   2012:        sw += weight[i];
                   2013:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   2014:        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                   2015:       } /* end of wave */
                   2016:     } /* end of individual */
                   2017:   } /* End of if */
                   2018:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   2019:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   2020:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   2021:   return -l;
                   2022: }
                   2023: 
                   2024: /*************** log-likelihood *************/
                   2025: double funcone( double *x)
                   2026: {
                   2027:   /* Same as likeli but slower because of a lot of printf and if */
                   2028:   int i, ii, j, k, mi, d, kk;
1.131     brouard  2029:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
1.126     brouard  2030:   double **out;
                   2031:   double lli; /* Individual log likelihood */
                   2032:   double llt;
                   2033:   int s1, s2;
                   2034:   double bbh, survp;
                   2035:   /*extern weight */
                   2036:   /* We are differentiating ll according to initial status */
                   2037:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   2038:   /*for(i=1;i<imx;i++) 
                   2039:     printf(" %d\n",s[4][i]);
                   2040:   */
                   2041:   cov[1]=1.;
                   2042: 
                   2043:   for(k=1; k<=nlstate; k++) ll[k]=0.;
                   2044: 
                   2045:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   2046:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   2047:     for(mi=1; mi<= wav[i]-1; mi++){
                   2048:       for (ii=1;ii<=nlstate+ndeath;ii++)
                   2049:        for (j=1;j<=nlstate+ndeath;j++){
                   2050:          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   2051:          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   2052:        }
                   2053:       for(d=0; d<dh[mi][i]; d++){
                   2054:        newm=savm;
                   2055:        cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   2056:        for (kk=1; kk<=cptcovage;kk++) {
                   2057:          cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   2058:        }
1.145     brouard  2059:        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
1.126     brouard  2060:        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   2061:                     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
1.145     brouard  2062:        /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                   2063:        /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
1.126     brouard  2064:        savm=oldm;
                   2065:        oldm=newm;
                   2066:       } /* end mult */
                   2067:       
                   2068:       s1=s[mw[mi][i]][i];
                   2069:       s2=s[mw[mi+1][i]][i];
                   2070:       bbh=(double)bh[mi][i]/(double)stepm; 
                   2071:       /* bias is positive if real duration
                   2072:        * is higher than the multiple of stepm and negative otherwise.
                   2073:        */
                   2074:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
                   2075:        lli=log(out[s1][s2] - savm[s1][s2]);
                   2076:       } else if  (s2==-2) {
                   2077:        for (j=1,survp=0. ; j<=nlstate; j++) 
                   2078:          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   2079:        lli= log(survp);
                   2080:       }else if (mle==1){
                   2081:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   2082:       } else if(mle==2){
                   2083:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   2084:       } else if(mle==3){  /* exponential inter-extrapolation */
                   2085:        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   2086:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
                   2087:        lli=log(out[s1][s2]); /* Original formula */
1.136     brouard  2088:       } else{  /* mle=0 back to 1 */
                   2089:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   2090:        /*lli=log(out[s1][s2]); */ /* Original formula */
1.126     brouard  2091:       } /* End of if */
                   2092:       ipmx +=1;
                   2093:       sw += weight[i];
                   2094:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.132     brouard  2095:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
1.126     brouard  2096:       if(globpr){
1.141     brouard  2097:        fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
1.126     brouard  2098:  %11.6f %11.6f %11.6f ", \
                   2099:                num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2100:                2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                   2101:        for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                   2102:          llt +=ll[k]*gipmx/gsw;
                   2103:          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                   2104:        }
                   2105:        fprintf(ficresilk," %10.6f\n", -llt);
                   2106:       }
                   2107:     } /* end of wave */
                   2108:   } /* end of individual */
                   2109:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   2110:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   2111:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   2112:   if(globpr==0){ /* First time we count the contributions and weights */
                   2113:     gipmx=ipmx;
                   2114:     gsw=sw;
                   2115:   }
                   2116:   return -l;
                   2117: }
                   2118: 
                   2119: 
                   2120: /*************** function likelione ***********/
                   2121: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
                   2122: {
                   2123:   /* This routine should help understanding what is done with 
                   2124:      the selection of individuals/waves and
                   2125:      to check the exact contribution to the likelihood.
                   2126:      Plotting could be done.
                   2127:    */
                   2128:   int k;
                   2129: 
                   2130:   if(*globpri !=0){ /* Just counts and sums, no printings */
                   2131:     strcpy(fileresilk,"ilk"); 
                   2132:     strcat(fileresilk,fileres);
                   2133:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   2134:       printf("Problem with resultfile: %s\n", fileresilk);
                   2135:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   2136:     }
                   2137:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                   2138:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
                   2139:     /*         i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   2140:     for(k=1; k<=nlstate; k++) 
                   2141:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                   2142:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
                   2143:   }
                   2144: 
                   2145:   *fretone=(*funcone)(p);
                   2146:   if(*globpri !=0){
                   2147:     fclose(ficresilk);
                   2148:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
                   2149:     fflush(fichtm); 
                   2150:   } 
                   2151:   return;
                   2152: }
                   2153: 
                   2154: 
                   2155: /*********** Maximum Likelihood Estimation ***************/
                   2156: 
                   2157: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   2158: {
1.165     brouard  2159:   int i,j, iter=0;
1.126     brouard  2160:   double **xi;
                   2161:   double fret;
                   2162:   double fretone; /* Only one call to likelihood */
                   2163:   /*  char filerespow[FILENAMELENGTH];*/
1.162     brouard  2164: 
                   2165: #ifdef NLOPT
                   2166:   int creturn;
                   2167:   nlopt_opt opt;
                   2168:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
                   2169:   double *lb;
                   2170:   double minf; /* the minimum objective value, upon return */
                   2171:   double * p1; /* Shifted parameters from 0 instead of 1 */
                   2172:   myfunc_data dinst, *d = &dinst;
                   2173: #endif
                   2174: 
                   2175: 
1.126     brouard  2176:   xi=matrix(1,npar,1,npar);
                   2177:   for (i=1;i<=npar;i++)
                   2178:     for (j=1;j<=npar;j++)
                   2179:       xi[i][j]=(i==j ? 1.0 : 0.0);
                   2180:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
                   2181:   strcpy(filerespow,"pow"); 
                   2182:   strcat(filerespow,fileres);
                   2183:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   2184:     printf("Problem with resultfile: %s\n", filerespow);
                   2185:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   2186:   }
                   2187:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   2188:   for (i=1;i<=nlstate;i++)
                   2189:     for(j=1;j<=nlstate+ndeath;j++)
                   2190:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   2191:   fprintf(ficrespow,"\n");
1.162     brouard  2192: #ifdef POWELL
1.126     brouard  2193:   powell(p,xi,npar,ftol,&iter,&fret,func);
1.162     brouard  2194: #endif
1.126     brouard  2195: 
1.162     brouard  2196: #ifdef NLOPT
                   2197: #ifdef NEWUOA
                   2198:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
                   2199: #else
                   2200:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
                   2201: #endif
                   2202:   lb=vector(0,npar-1);
                   2203:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                   2204:   nlopt_set_lower_bounds(opt, lb);
                   2205:   nlopt_set_initial_step1(opt, 0.1);
                   2206:   
                   2207:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                   2208:   d->function = func;
                   2209:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                   2210:   nlopt_set_min_objective(opt, myfunc, d);
                   2211:   nlopt_set_xtol_rel(opt, ftol);
                   2212:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                   2213:     printf("nlopt failed! %d\n",creturn); 
                   2214:   }
                   2215:   else {
                   2216:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   2217:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                   2218:     iter=1; /* not equal */
                   2219:   }
                   2220:   nlopt_destroy(opt);
                   2221: #endif
1.126     brouard  2222:   free_matrix(xi,1,npar,1,npar);
                   2223:   fclose(ficrespow);
1.162     brouard  2224:   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   2225:   fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   2226:   fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.126     brouard  2227: 
                   2228: }
                   2229: 
                   2230: /**** Computes Hessian and covariance matrix ***/
                   2231: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                   2232: {
                   2233:   double  **a,**y,*x,pd;
                   2234:   double **hess;
1.164     brouard  2235:   int i, j;
1.126     brouard  2236:   int *indx;
                   2237: 
                   2238:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
                   2239:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
                   2240:   void lubksb(double **a, int npar, int *indx, double b[]) ;
                   2241:   void ludcmp(double **a, int npar, int *indx, double *d) ;
                   2242:   double gompertz(double p[]);
                   2243:   hess=matrix(1,npar,1,npar);
                   2244: 
                   2245:   printf("\nCalculation of the hessian matrix. Wait...\n");
                   2246:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                   2247:   for (i=1;i<=npar;i++){
                   2248:     printf("%d",i);fflush(stdout);
                   2249:     fprintf(ficlog,"%d",i);fflush(ficlog);
                   2250:    
                   2251:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                   2252:     
                   2253:     /*  printf(" %f ",p[i]);
                   2254:        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
                   2255:   }
                   2256:   
                   2257:   for (i=1;i<=npar;i++) {
                   2258:     for (j=1;j<=npar;j++)  {
                   2259:       if (j>i) { 
                   2260:        printf(".%d%d",i,j);fflush(stdout);
                   2261:        fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
                   2262:        hess[i][j]=hessij(p,delti,i,j,func,npar);
                   2263:        
                   2264:        hess[j][i]=hess[i][j];    
                   2265:        /*printf(" %lf ",hess[i][j]);*/
                   2266:       }
                   2267:     }
                   2268:   }
                   2269:   printf("\n");
                   2270:   fprintf(ficlog,"\n");
                   2271: 
                   2272:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   2273:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   2274:   
                   2275:   a=matrix(1,npar,1,npar);
                   2276:   y=matrix(1,npar,1,npar);
                   2277:   x=vector(1,npar);
                   2278:   indx=ivector(1,npar);
                   2279:   for (i=1;i<=npar;i++)
                   2280:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   2281:   ludcmp(a,npar,indx,&pd);
                   2282: 
                   2283:   for (j=1;j<=npar;j++) {
                   2284:     for (i=1;i<=npar;i++) x[i]=0;
                   2285:     x[j]=1;
                   2286:     lubksb(a,npar,indx,x);
                   2287:     for (i=1;i<=npar;i++){ 
                   2288:       matcov[i][j]=x[i];
                   2289:     }
                   2290:   }
                   2291: 
                   2292:   printf("\n#Hessian matrix#\n");
                   2293:   fprintf(ficlog,"\n#Hessian matrix#\n");
                   2294:   for (i=1;i<=npar;i++) { 
                   2295:     for (j=1;j<=npar;j++) { 
                   2296:       printf("%.3e ",hess[i][j]);
                   2297:       fprintf(ficlog,"%.3e ",hess[i][j]);
                   2298:     }
                   2299:     printf("\n");
                   2300:     fprintf(ficlog,"\n");
                   2301:   }
                   2302: 
                   2303:   /* Recompute Inverse */
                   2304:   for (i=1;i<=npar;i++)
                   2305:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
                   2306:   ludcmp(a,npar,indx,&pd);
                   2307: 
                   2308:   /*  printf("\n#Hessian matrix recomputed#\n");
                   2309: 
                   2310:   for (j=1;j<=npar;j++) {
                   2311:     for (i=1;i<=npar;i++) x[i]=0;
                   2312:     x[j]=1;
                   2313:     lubksb(a,npar,indx,x);
                   2314:     for (i=1;i<=npar;i++){ 
                   2315:       y[i][j]=x[i];
                   2316:       printf("%.3e ",y[i][j]);
                   2317:       fprintf(ficlog,"%.3e ",y[i][j]);
                   2318:     }
                   2319:     printf("\n");
                   2320:     fprintf(ficlog,"\n");
                   2321:   }
                   2322:   */
                   2323: 
                   2324:   free_matrix(a,1,npar,1,npar);
                   2325:   free_matrix(y,1,npar,1,npar);
                   2326:   free_vector(x,1,npar);
                   2327:   free_ivector(indx,1,npar);
                   2328:   free_matrix(hess,1,npar,1,npar);
                   2329: 
                   2330: 
                   2331: }
                   2332: 
                   2333: /*************** hessian matrix ****************/
                   2334: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
                   2335: {
                   2336:   int i;
                   2337:   int l=1, lmax=20;
                   2338:   double k1,k2;
1.132     brouard  2339:   double p2[MAXPARM+1]; /* identical to x */
1.126     brouard  2340:   double res;
                   2341:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                   2342:   double fx;
                   2343:   int k=0,kmax=10;
                   2344:   double l1;
                   2345: 
                   2346:   fx=func(x);
                   2347:   for (i=1;i<=npar;i++) p2[i]=x[i];
1.145     brouard  2348:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
1.126     brouard  2349:     l1=pow(10,l);
                   2350:     delts=delt;
                   2351:     for(k=1 ; k <kmax; k=k+1){
                   2352:       delt = delta*(l1*k);
                   2353:       p2[theta]=x[theta] +delt;
1.145     brouard  2354:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
1.126     brouard  2355:       p2[theta]=x[theta]-delt;
                   2356:       k2=func(p2)-fx;
                   2357:       /*res= (k1-2.0*fx+k2)/delt/delt; */
                   2358:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                   2359:       
1.132     brouard  2360: #ifdef DEBUGHESS
1.126     brouard  2361:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   2362:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   2363: #endif
                   2364:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   2365:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   2366:        k=kmax;
                   2367:       }
                   2368:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
1.164     brouard  2369:        k=kmax; l=lmax*10;
1.126     brouard  2370:       }
                   2371:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   2372:        delts=delt;
                   2373:       }
                   2374:     }
                   2375:   }
                   2376:   delti[theta]=delts;
                   2377:   return res; 
                   2378:   
                   2379: }
                   2380: 
                   2381: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
                   2382: {
                   2383:   int i;
1.164     brouard  2384:   int l=1, lmax=20;
1.126     brouard  2385:   double k1,k2,k3,k4,res,fx;
1.132     brouard  2386:   double p2[MAXPARM+1];
1.126     brouard  2387:   int k;
                   2388: 
                   2389:   fx=func(x);
                   2390:   for (k=1; k<=2; k++) {
                   2391:     for (i=1;i<=npar;i++) p2[i]=x[i];
                   2392:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   2393:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   2394:     k1=func(p2)-fx;
                   2395:   
                   2396:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   2397:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   2398:     k2=func(p2)-fx;
                   2399:   
                   2400:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   2401:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   2402:     k3=func(p2)-fx;
                   2403:   
                   2404:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   2405:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   2406:     k4=func(p2)-fx;
                   2407:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                   2408: #ifdef DEBUG
                   2409:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   2410:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   2411: #endif
                   2412:   }
                   2413:   return res;
                   2414: }
                   2415: 
                   2416: /************** Inverse of matrix **************/
                   2417: void ludcmp(double **a, int n, int *indx, double *d) 
                   2418: { 
                   2419:   int i,imax,j,k; 
                   2420:   double big,dum,sum,temp; 
                   2421:   double *vv; 
                   2422:  
                   2423:   vv=vector(1,n); 
                   2424:   *d=1.0; 
                   2425:   for (i=1;i<=n;i++) { 
                   2426:     big=0.0; 
                   2427:     for (j=1;j<=n;j++) 
                   2428:       if ((temp=fabs(a[i][j])) > big) big=temp; 
                   2429:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
                   2430:     vv[i]=1.0/big; 
                   2431:   } 
                   2432:   for (j=1;j<=n;j++) { 
                   2433:     for (i=1;i<j;i++) { 
                   2434:       sum=a[i][j]; 
                   2435:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   2436:       a[i][j]=sum; 
                   2437:     } 
                   2438:     big=0.0; 
                   2439:     for (i=j;i<=n;i++) { 
                   2440:       sum=a[i][j]; 
                   2441:       for (k=1;k<j;k++) 
                   2442:        sum -= a[i][k]*a[k][j]; 
                   2443:       a[i][j]=sum; 
                   2444:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   2445:        big=dum; 
                   2446:        imax=i; 
                   2447:       } 
                   2448:     } 
                   2449:     if (j != imax) { 
                   2450:       for (k=1;k<=n;k++) { 
                   2451:        dum=a[imax][k]; 
                   2452:        a[imax][k]=a[j][k]; 
                   2453:        a[j][k]=dum; 
                   2454:       } 
                   2455:       *d = -(*d); 
                   2456:       vv[imax]=vv[j]; 
                   2457:     } 
                   2458:     indx[j]=imax; 
                   2459:     if (a[j][j] == 0.0) a[j][j]=TINY; 
                   2460:     if (j != n) { 
                   2461:       dum=1.0/(a[j][j]); 
                   2462:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                   2463:     } 
                   2464:   } 
                   2465:   free_vector(vv,1,n);  /* Doesn't work */
                   2466: ;
                   2467: } 
                   2468: 
                   2469: void lubksb(double **a, int n, int *indx, double b[]) 
                   2470: { 
                   2471:   int i,ii=0,ip,j; 
                   2472:   double sum; 
                   2473:  
                   2474:   for (i=1;i<=n;i++) { 
                   2475:     ip=indx[i]; 
                   2476:     sum=b[ip]; 
                   2477:     b[ip]=b[i]; 
                   2478:     if (ii) 
                   2479:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   2480:     else if (sum) ii=i; 
                   2481:     b[i]=sum; 
                   2482:   } 
                   2483:   for (i=n;i>=1;i--) { 
                   2484:     sum=b[i]; 
                   2485:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                   2486:     b[i]=sum/a[i][i]; 
                   2487:   } 
                   2488: } 
                   2489: 
                   2490: void pstamp(FILE *fichier)
                   2491: {
                   2492:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
                   2493: }
                   2494: 
                   2495: /************ Frequencies ********************/
                   2496: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
                   2497: {  /* Some frequencies */
                   2498:   
1.164     brouard  2499:   int i, m, jk, j1, bool, z1,j;
1.126     brouard  2500:   int first;
                   2501:   double ***freq; /* Frequencies */
                   2502:   double *pp, **prop;
                   2503:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
                   2504:   char fileresp[FILENAMELENGTH];
                   2505:   
                   2506:   pp=vector(1,nlstate);
                   2507:   prop=matrix(1,nlstate,iagemin,iagemax+3);
                   2508:   strcpy(fileresp,"p");
                   2509:   strcat(fileresp,fileres);
                   2510:   if((ficresp=fopen(fileresp,"w"))==NULL) {
                   2511:     printf("Problem with prevalence resultfile: %s\n", fileresp);
                   2512:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   2513:     exit(0);
                   2514:   }
                   2515:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
                   2516:   j1=0;
                   2517:   
                   2518:   j=cptcoveff;
                   2519:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   2520: 
                   2521:   first=1;
                   2522: 
1.145     brouard  2523:   /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
                   2524:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
                   2525:   /*    j1++;
                   2526: */
                   2527:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
1.126     brouard  2528:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                   2529:        scanf("%d", i);*/
                   2530:       for (i=-5; i<=nlstate+ndeath; i++)  
                   2531:        for (jk=-5; jk<=nlstate+ndeath; jk++)  
                   2532:          for(m=iagemin; m <= iagemax+3; m++)
                   2533:            freq[i][jk][m]=0;
1.143     brouard  2534:       
                   2535:       for (i=1; i<=nlstate; i++)  
                   2536:        for(m=iagemin; m <= iagemax+3; m++)
                   2537:          prop[i][m]=0;
1.126     brouard  2538:       
                   2539:       dateintsum=0;
                   2540:       k2cpt=0;
                   2541:       for (i=1; i<=imx; i++) {
                   2542:        bool=1;
1.144     brouard  2543:        if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                   2544:          for (z1=1; z1<=cptcoveff; z1++)       
                   2545:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
1.145     brouard  2546:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
1.144     brouard  2547:               bool=0;
1.145     brouard  2548:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                   2549:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                   2550:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
1.144     brouard  2551:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                   2552:             } 
1.126     brouard  2553:        }
1.144     brouard  2554:  
1.126     brouard  2555:        if (bool==1){
                   2556:          for(m=firstpass; m<=lastpass; m++){
                   2557:            k2=anint[m][i]+(mint[m][i]/12.);
                   2558:            /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   2559:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   2560:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   2561:              if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   2562:              if (m<lastpass) {
                   2563:                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   2564:                freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                   2565:              }
                   2566:              
                   2567:              if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   2568:                dateintsum=dateintsum+k2;
                   2569:                k2cpt++;
                   2570:              }
                   2571:              /*}*/
                   2572:          }
                   2573:        }
1.145     brouard  2574:       } /* end i */
1.126     brouard  2575:        
                   2576:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   2577:       pstamp(ficresp);
                   2578:       if  (cptcovn>0) {
                   2579:        fprintf(ficresp, "\n#********** Variable "); 
                   2580:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   2581:        fprintf(ficresp, "**********\n#");
1.143     brouard  2582:        fprintf(ficlog, "\n#********** Variable "); 
                   2583:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   2584:        fprintf(ficlog, "**********\n#");
1.126     brouard  2585:       }
                   2586:       for(i=1; i<=nlstate;i++) 
                   2587:        fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   2588:       fprintf(ficresp, "\n");
                   2589:       
                   2590:       for(i=iagemin; i <= iagemax+3; i++){
                   2591:        if(i==iagemax+3){
                   2592:          fprintf(ficlog,"Total");
                   2593:        }else{
                   2594:          if(first==1){
                   2595:            first=0;
                   2596:            printf("See log file for details...\n");
                   2597:          }
                   2598:          fprintf(ficlog,"Age %d", i);
                   2599:        }
                   2600:        for(jk=1; jk <=nlstate ; jk++){
                   2601:          for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                   2602:            pp[jk] += freq[jk][m][i]; 
                   2603:        }
                   2604:        for(jk=1; jk <=nlstate ; jk++){
                   2605:          for(m=-1, pos=0; m <=0 ; m++)
                   2606:            pos += freq[jk][m][i];
                   2607:          if(pp[jk]>=1.e-10){
                   2608:            if(first==1){
1.132     brouard  2609:              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
1.126     brouard  2610:            }
                   2611:            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   2612:          }else{
                   2613:            if(first==1)
                   2614:              printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   2615:            fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   2616:          }
                   2617:        }
                   2618: 
                   2619:        for(jk=1; jk <=nlstate ; jk++){
                   2620:          for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   2621:            pp[jk] += freq[jk][m][i];
                   2622:        }       
                   2623:        for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   2624:          pos += pp[jk];
                   2625:          posprop += prop[jk][i];
                   2626:        }
                   2627:        for(jk=1; jk <=nlstate ; jk++){
                   2628:          if(pos>=1.e-5){
                   2629:            if(first==1)
                   2630:              printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   2631:            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   2632:          }else{
                   2633:            if(first==1)
                   2634:              printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   2635:            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   2636:          }
                   2637:          if( i <= iagemax){
                   2638:            if(pos>=1.e-5){
                   2639:              fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   2640:              /*probs[i][jk][j1]= pp[jk]/pos;*/
                   2641:              /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   2642:            }
                   2643:            else
                   2644:              fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                   2645:          }
                   2646:        }
                   2647:        
                   2648:        for(jk=-1; jk <=nlstate+ndeath; jk++)
                   2649:          for(m=-1; m <=nlstate+ndeath; m++)
                   2650:            if(freq[jk][m][i] !=0 ) {
                   2651:            if(first==1)
                   2652:              printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   2653:              fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                   2654:            }
                   2655:        if(i <= iagemax)
                   2656:          fprintf(ficresp,"\n");
                   2657:        if(first==1)
                   2658:          printf("Others in log...\n");
                   2659:        fprintf(ficlog,"\n");
                   2660:       }
1.145     brouard  2661:       /*}*/
1.126     brouard  2662:   }
                   2663:   dateintmean=dateintsum/k2cpt; 
                   2664:  
                   2665:   fclose(ficresp);
                   2666:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                   2667:   free_vector(pp,1,nlstate);
                   2668:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                   2669:   /* End of Freq */
                   2670: }
                   2671: 
                   2672: /************ Prevalence ********************/
                   2673: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   2674: {  
                   2675:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   2676:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   2677:      We still use firstpass and lastpass as another selection.
                   2678:   */
                   2679:  
1.164     brouard  2680:   int i, m, jk, j1, bool, z1,j;
                   2681: 
                   2682:   double **prop;
                   2683:   double posprop; 
1.126     brouard  2684:   double  y2; /* in fractional years */
                   2685:   int iagemin, iagemax;
1.145     brouard  2686:   int first; /** to stop verbosity which is redirected to log file */
1.126     brouard  2687: 
                   2688:   iagemin= (int) agemin;
                   2689:   iagemax= (int) agemax;
                   2690:   /*pp=vector(1,nlstate);*/
                   2691:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
                   2692:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   2693:   j1=0;
                   2694:   
1.145     brouard  2695:   /*j=cptcoveff;*/
1.126     brouard  2696:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   2697:   
1.145     brouard  2698:   first=1;
                   2699:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
                   2700:     /*for(i1=1; i1<=ncodemax[k1];i1++){
                   2701:       j1++;*/
1.126     brouard  2702:       
                   2703:       for (i=1; i<=nlstate; i++)  
                   2704:        for(m=iagemin; m <= iagemax+3; m++)
                   2705:          prop[i][m]=0.0;
                   2706:      
                   2707:       for (i=1; i<=imx; i++) { /* Each individual */
                   2708:        bool=1;
                   2709:        if  (cptcovn>0) {
                   2710:          for (z1=1; z1<=cptcoveff; z1++) 
                   2711:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   2712:              bool=0;
                   2713:        } 
                   2714:        if (bool==1) { 
                   2715:          for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                   2716:            y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   2717:            if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                   2718:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   2719:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   2720:              if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                   2721:              if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   2722:                /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   2723:                prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   2724:                prop[s[m][i]][iagemax+3] += weight[i]; 
                   2725:              } 
                   2726:            }
                   2727:          } /* end selection of waves */
                   2728:        }
                   2729:       }
                   2730:       for(i=iagemin; i <= iagemax+3; i++){  
                   2731:        for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   2732:          posprop += prop[jk][i]; 
                   2733:        } 
1.145     brouard  2734:        
1.126     brouard  2735:        for(jk=1; jk <=nlstate ; jk++){     
                   2736:          if( i <=  iagemax){ 
                   2737:            if(posprop>=1.e-5){ 
                   2738:              probs[i][jk][j1]= prop[jk][i]/posprop;
1.145     brouard  2739:            } else{
                   2740:              if(first==1){
                   2741:                first=0;
                   2742:                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                   2743:              }
                   2744:            }
1.126     brouard  2745:          } 
                   2746:        }/* end jk */ 
                   2747:       }/* end i */ 
1.145     brouard  2748:     /*} *//* end i1 */
                   2749:   } /* end j1 */
1.126     brouard  2750:   
                   2751:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   2752:   /*free_vector(pp,1,nlstate);*/
                   2753:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   2754: }  /* End of prevalence */
                   2755: 
                   2756: /************* Waves Concatenation ***************/
                   2757: 
                   2758: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   2759: {
                   2760:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   2761:      Death is a valid wave (if date is known).
                   2762:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   2763:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   2764:      and mw[mi+1][i]. dh depends on stepm.
                   2765:      */
                   2766: 
                   2767:   int i, mi, m;
                   2768:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   2769:      double sum=0., jmean=0.;*/
                   2770:   int first;
                   2771:   int j, k=0,jk, ju, jl;
                   2772:   double sum=0.;
                   2773:   first=0;
1.164     brouard  2774:   jmin=100000;
1.126     brouard  2775:   jmax=-1;
                   2776:   jmean=0.;
                   2777:   for(i=1; i<=imx; i++){
                   2778:     mi=0;
                   2779:     m=firstpass;
                   2780:     while(s[m][i] <= nlstate){
                   2781:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                   2782:        mw[++mi][i]=m;
                   2783:       if(m >=lastpass)
                   2784:        break;
                   2785:       else
                   2786:        m++;
                   2787:     }/* end while */
                   2788:     if (s[m][i] > nlstate){
                   2789:       mi++;    /* Death is another wave */
                   2790:       /* if(mi==0)  never been interviewed correctly before death */
                   2791:         /* Only death is a correct wave */
                   2792:       mw[mi][i]=m;
                   2793:     }
                   2794: 
                   2795:     wav[i]=mi;
                   2796:     if(mi==0){
                   2797:       nbwarn++;
                   2798:       if(first==0){
                   2799:        printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                   2800:        first=1;
                   2801:       }
                   2802:       if(first==1){
                   2803:        fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                   2804:       }
                   2805:     } /* end mi==0 */
                   2806:   } /* End individuals */
                   2807: 
                   2808:   for(i=1; i<=imx; i++){
                   2809:     for(mi=1; mi<wav[i];mi++){
                   2810:       if (stepm <=0)
                   2811:        dh[mi][i]=1;
                   2812:       else{
                   2813:        if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                   2814:          if (agedc[i] < 2*AGESUP) {
                   2815:            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   2816:            if(j==0) j=1;  /* Survives at least one month after exam */
                   2817:            else if(j<0){
                   2818:              nberr++;
                   2819:              printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2820:              j=1; /* Temporary Dangerous patch */
                   2821:              printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   2822:              fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2823:              fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   2824:            }
                   2825:            k=k+1;
                   2826:            if (j >= jmax){
                   2827:              jmax=j;
                   2828:              ijmax=i;
                   2829:            }
                   2830:            if (j <= jmin){
                   2831:              jmin=j;
                   2832:              ijmin=i;
                   2833:            }
                   2834:            sum=sum+j;
                   2835:            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   2836:            /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   2837:          }
                   2838:        }
                   2839:        else{
                   2840:          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                   2841: /*       if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                   2842: 
                   2843:          k=k+1;
                   2844:          if (j >= jmax) {
                   2845:            jmax=j;
                   2846:            ijmax=i;
                   2847:          }
                   2848:          else if (j <= jmin){
                   2849:            jmin=j;
                   2850:            ijmin=i;
                   2851:          }
                   2852:          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   2853:          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   2854:          if(j<0){
                   2855:            nberr++;
                   2856:            printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2857:            fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2858:          }
                   2859:          sum=sum+j;
                   2860:        }
                   2861:        jk= j/stepm;
                   2862:        jl= j -jk*stepm;
                   2863:        ju= j -(jk+1)*stepm;
                   2864:        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   2865:          if(jl==0){
                   2866:            dh[mi][i]=jk;
                   2867:            bh[mi][i]=0;
                   2868:          }else{ /* We want a negative bias in order to only have interpolation ie
1.136     brouard  2869:                  * to avoid the price of an extra matrix product in likelihood */
1.126     brouard  2870:            dh[mi][i]=jk+1;
                   2871:            bh[mi][i]=ju;
                   2872:          }
                   2873:        }else{
                   2874:          if(jl <= -ju){
                   2875:            dh[mi][i]=jk;
                   2876:            bh[mi][i]=jl;       /* bias is positive if real duration
                   2877:                                 * is higher than the multiple of stepm and negative otherwise.
                   2878:                                 */
                   2879:          }
                   2880:          else{
                   2881:            dh[mi][i]=jk+1;
                   2882:            bh[mi][i]=ju;
                   2883:          }
                   2884:          if(dh[mi][i]==0){
                   2885:            dh[mi][i]=1; /* At least one step */
                   2886:            bh[mi][i]=ju; /* At least one step */
                   2887:            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   2888:          }
                   2889:        } /* end if mle */
                   2890:       }
                   2891:     } /* end wave */
                   2892:   }
                   2893:   jmean=sum/k;
                   2894:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
1.141     brouard  2895:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
1.126     brouard  2896:  }
                   2897: 
                   2898: /*********** Tricode ****************************/
1.145     brouard  2899: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
1.126     brouard  2900: {
1.144     brouard  2901:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                   2902:   /*     Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                   2903:   /* Boring subroutine which should only output nbcode[Tvar[j]][k]
1.145     brouard  2904:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
                   2905:   /* nbcode[Tvar[j]][1]= 
1.144     brouard  2906:   */
1.130     brouard  2907: 
1.145     brouard  2908:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
1.136     brouard  2909:   int modmaxcovj=0; /* Modality max of covariates j */
1.145     brouard  2910:   int cptcode=0; /* Modality max of covariates j */
                   2911:   int modmincovj=0; /* Modality min of covariates j */
                   2912: 
                   2913: 
1.126     brouard  2914:   cptcoveff=0; 
                   2915:  
1.145     brouard  2916:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
1.144     brouard  2917:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
1.126     brouard  2918: 
1.145     brouard  2919:   /* Loop on covariates without age and products */
                   2920:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
                   2921:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
1.136     brouard  2922:                               modality of this covariate Vj*/ 
1.145     brouard  2923:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                   2924:                                    * If product of Vn*Vm, still boolean *:
                   2925:                                    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                   2926:                                    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                   2927:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
1.136     brouard  2928:                                      modality of the nth covariate of individual i. */
1.145     brouard  2929:       if (ij > modmaxcovj)
                   2930:         modmaxcovj=ij; 
                   2931:       else if (ij < modmincovj) 
                   2932:        modmincovj=ij; 
                   2933:       if ((ij < -1) && (ij > NCOVMAX)){
                   2934:        printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                   2935:        exit(1);
                   2936:       }else
1.136     brouard  2937:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
1.145     brouard  2938:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
1.126     brouard  2939:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
1.136     brouard  2940:       /* getting the maximum value of the modality of the covariate
                   2941:         (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                   2942:         female is 1, then modmaxcovj=1.*/
1.126     brouard  2943:     }
1.145     brouard  2944:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                   2945:     cptcode=modmaxcovj;
1.137     brouard  2946:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
1.145     brouard  2947:    /*for (i=0; i<=cptcode; i++) {*/
                   2948:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
                   2949:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
                   2950:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
                   2951:        ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
                   2952:       }
                   2953:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
                   2954:         historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
1.131     brouard  2955:     } /* Ndum[-1] number of undefined modalities */
1.126     brouard  2956: 
1.136     brouard  2957:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
1.145     brouard  2958:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
                   2959:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
                   2960:        modmincovj=3; modmaxcovj = 7;
                   2961:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
                   2962:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
                   2963:        variables V1_1 and V1_2.
                   2964:        nbcode[Tvar[j]][ij]=k;
                   2965:        nbcode[Tvar[j]][1]=0;
                   2966:        nbcode[Tvar[j]][2]=1;
                   2967:        nbcode[Tvar[j]][3]=2;
                   2968:     */
                   2969:     ij=1; /* ij is similar to i but can jumps over null modalities */
                   2970:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
                   2971:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
                   2972:        /*recode from 0 */
1.131     brouard  2973:        if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
                   2974:          nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                   2975:                                     k is a modality. If we have model=V1+V1*sex 
                   2976:                                     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
1.126     brouard  2977:          ij++;
                   2978:        }
                   2979:        if (ij > ncodemax[j]) break; 
1.137     brouard  2980:       }  /* end of loop on */
                   2981:     } /* end of loop on modality */ 
                   2982:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
                   2983:   
1.145     brouard  2984:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
1.137     brouard  2985:   
1.145     brouard  2986:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
                   2987:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
                   2988:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
                   2989:    Ndum[ij]++; 
                   2990:  } 
1.126     brouard  2991: 
                   2992:  ij=1;
1.145     brouard  2993:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
                   2994:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
1.126     brouard  2995:    if((Ndum[i]!=0) && (i<=ncovcol)){
1.145     brouard  2996:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
                   2997:      Tvaraff[ij]=i; /*For printing (unclear) */
1.126     brouard  2998:      ij++;
1.145     brouard  2999:    }else
                   3000:        Tvaraff[ij]=0;
1.126     brouard  3001:  }
1.131     brouard  3002:  ij--;
1.144     brouard  3003:  cptcoveff=ij; /*Number of total covariates*/
1.145     brouard  3004: 
1.126     brouard  3005: }
                   3006: 
1.145     brouard  3007: 
1.126     brouard  3008: /*********** Health Expectancies ****************/
                   3009: 
1.127     brouard  3010: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
1.126     brouard  3011: 
                   3012: {
                   3013:   /* Health expectancies, no variances */
1.164     brouard  3014:   int i, j, nhstepm, hstepm, h, nstepm;
1.126     brouard  3015:   int nhstepma, nstepma; /* Decreasing with age */
                   3016:   double age, agelim, hf;
                   3017:   double ***p3mat;
                   3018:   double eip;
                   3019: 
                   3020:   pstamp(ficreseij);
                   3021:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   3022:   fprintf(ficreseij,"# Age");
                   3023:   for(i=1; i<=nlstate;i++){
                   3024:     for(j=1; j<=nlstate;j++){
                   3025:       fprintf(ficreseij," e%1d%1d ",i,j);
                   3026:     }
                   3027:     fprintf(ficreseij," e%1d. ",i);
                   3028:   }
                   3029:   fprintf(ficreseij,"\n");
                   3030: 
                   3031:   
                   3032:   if(estepm < stepm){
                   3033:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   3034:   }
                   3035:   else  hstepm=estepm;   
                   3036:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   3037:    * This is mainly to measure the difference between two models: for example
                   3038:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   3039:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   3040:    * progression in between and thus overestimating or underestimating according
                   3041:    * to the curvature of the survival function. If, for the same date, we 
                   3042:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   3043:    * to compare the new estimate of Life expectancy with the same linear 
                   3044:    * hypothesis. A more precise result, taking into account a more precise
                   3045:    * curvature will be obtained if estepm is as small as stepm. */
                   3046: 
                   3047:   /* For example we decided to compute the life expectancy with the smallest unit */
                   3048:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   3049:      nhstepm is the number of hstepm from age to agelim 
                   3050:      nstepm is the number of stepm from age to agelin. 
                   3051:      Look at hpijx to understand the reason of that which relies in memory size
                   3052:      and note for a fixed period like estepm months */
                   3053:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   3054:      survival function given by stepm (the optimization length). Unfortunately it
                   3055:      means that if the survival funtion is printed only each two years of age and if
                   3056:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   3057:      results. So we changed our mind and took the option of the best precision.
                   3058:   */
                   3059:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   3060: 
                   3061:   agelim=AGESUP;
                   3062:   /* If stepm=6 months */
                   3063:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   3064:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   3065:     
                   3066: /* nhstepm age range expressed in number of stepm */
                   3067:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   3068:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   3069:   /* if (stepm >= YEARM) hstepm=1;*/
                   3070:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   3071:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3072: 
                   3073:   for (age=bage; age<=fage; age ++){ 
                   3074:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   3075:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   3076:     /* if (stepm >= YEARM) hstepm=1;*/
                   3077:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   3078: 
                   3079:     /* If stepm=6 months */
                   3080:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   3081:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   3082:     
                   3083:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                   3084:     
                   3085:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   3086:     
                   3087:     printf("%d|",(int)age);fflush(stdout);
                   3088:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   3089:     
                   3090:     /* Computing expectancies */
                   3091:     for(i=1; i<=nlstate;i++)
                   3092:       for(j=1; j<=nlstate;j++)
                   3093:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   3094:          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   3095:          
                   3096:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   3097: 
                   3098:        }
                   3099: 
                   3100:     fprintf(ficreseij,"%3.0f",age );
                   3101:     for(i=1; i<=nlstate;i++){
                   3102:       eip=0;
                   3103:       for(j=1; j<=nlstate;j++){
                   3104:        eip +=eij[i][j][(int)age];
                   3105:        fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                   3106:       }
                   3107:       fprintf(ficreseij,"%9.4f", eip );
                   3108:     }
                   3109:     fprintf(ficreseij,"\n");
                   3110:     
                   3111:   }
                   3112:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3113:   printf("\n");
                   3114:   fprintf(ficlog,"\n");
                   3115:   
                   3116: }
                   3117: 
1.127     brouard  3118: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
1.126     brouard  3119: 
                   3120: {
                   3121:   /* Covariances of health expectancies eij and of total life expectancies according
                   3122:    to initial status i, ei. .
                   3123:   */
                   3124:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                   3125:   int nhstepma, nstepma; /* Decreasing with age */
                   3126:   double age, agelim, hf;
                   3127:   double ***p3matp, ***p3matm, ***varhe;
                   3128:   double **dnewm,**doldm;
                   3129:   double *xp, *xm;
                   3130:   double **gp, **gm;
                   3131:   double ***gradg, ***trgradg;
                   3132:   int theta;
                   3133: 
                   3134:   double eip, vip;
                   3135: 
                   3136:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                   3137:   xp=vector(1,npar);
                   3138:   xm=vector(1,npar);
                   3139:   dnewm=matrix(1,nlstate*nlstate,1,npar);
                   3140:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   3141:   
                   3142:   pstamp(ficresstdeij);
                   3143:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                   3144:   fprintf(ficresstdeij,"# Age");
                   3145:   for(i=1; i<=nlstate;i++){
                   3146:     for(j=1; j<=nlstate;j++)
                   3147:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   3148:     fprintf(ficresstdeij," e%1d. ",i);
                   3149:   }
                   3150:   fprintf(ficresstdeij,"\n");
                   3151: 
                   3152:   pstamp(ficrescveij);
                   3153:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                   3154:   fprintf(ficrescveij,"# Age");
                   3155:   for(i=1; i<=nlstate;i++)
                   3156:     for(j=1; j<=nlstate;j++){
                   3157:       cptj= (j-1)*nlstate+i;
                   3158:       for(i2=1; i2<=nlstate;i2++)
                   3159:        for(j2=1; j2<=nlstate;j2++){
                   3160:          cptj2= (j2-1)*nlstate+i2;
                   3161:          if(cptj2 <= cptj)
                   3162:            fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                   3163:        }
                   3164:     }
                   3165:   fprintf(ficrescveij,"\n");
                   3166:   
                   3167:   if(estepm < stepm){
                   3168:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   3169:   }
                   3170:   else  hstepm=estepm;   
                   3171:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   3172:    * This is mainly to measure the difference between two models: for example
                   3173:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   3174:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   3175:    * progression in between and thus overestimating or underestimating according
                   3176:    * to the curvature of the survival function. If, for the same date, we 
                   3177:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   3178:    * to compare the new estimate of Life expectancy with the same linear 
                   3179:    * hypothesis. A more precise result, taking into account a more precise
                   3180:    * curvature will be obtained if estepm is as small as stepm. */
                   3181: 
                   3182:   /* For example we decided to compute the life expectancy with the smallest unit */
                   3183:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   3184:      nhstepm is the number of hstepm from age to agelim 
                   3185:      nstepm is the number of stepm from age to agelin. 
                   3186:      Look at hpijx to understand the reason of that which relies in memory size
                   3187:      and note for a fixed period like estepm months */
                   3188:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   3189:      survival function given by stepm (the optimization length). Unfortunately it
                   3190:      means that if the survival funtion is printed only each two years of age and if
                   3191:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   3192:      results. So we changed our mind and took the option of the best precision.
                   3193:   */
                   3194:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   3195: 
                   3196:   /* If stepm=6 months */
                   3197:   /* nhstepm age range expressed in number of stepm */
                   3198:   agelim=AGESUP;
                   3199:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
                   3200:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   3201:   /* if (stepm >= YEARM) hstepm=1;*/
                   3202:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   3203:   
                   3204:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3205:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3206:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   3207:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                   3208:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   3209:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
                   3210: 
                   3211:   for (age=bage; age<=fage; age ++){ 
                   3212:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   3213:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   3214:     /* if (stepm >= YEARM) hstepm=1;*/
                   3215:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   3216: 
                   3217:     /* If stepm=6 months */
                   3218:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   3219:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   3220:     
                   3221:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   3222: 
                   3223:     /* Computing  Variances of health expectancies */
                   3224:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                   3225:        decrease memory allocation */
                   3226:     for(theta=1; theta <=npar; theta++){
                   3227:       for(i=1; i<=npar; i++){ 
                   3228:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   3229:        xm[i] = x[i] - (i==theta ?delti[theta]:0);
                   3230:       }
                   3231:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
                   3232:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                   3233:   
                   3234:       for(j=1; j<= nlstate; j++){
                   3235:        for(i=1; i<=nlstate; i++){
                   3236:          for(h=0; h<=nhstepm-1; h++){
                   3237:            gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                   3238:            gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                   3239:          }
                   3240:        }
                   3241:       }
                   3242:      
                   3243:       for(ij=1; ij<= nlstate*nlstate; ij++)
                   3244:        for(h=0; h<=nhstepm-1; h++){
                   3245:          gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                   3246:        }
                   3247:     }/* End theta */
                   3248:     
                   3249:     
                   3250:     for(h=0; h<=nhstepm-1; h++)
                   3251:       for(j=1; j<=nlstate*nlstate;j++)
                   3252:        for(theta=1; theta <=npar; theta++)
                   3253:          trgradg[h][j][theta]=gradg[h][theta][j];
                   3254:     
                   3255: 
                   3256:      for(ij=1;ij<=nlstate*nlstate;ij++)
                   3257:       for(ji=1;ji<=nlstate*nlstate;ji++)
                   3258:        varhe[ij][ji][(int)age] =0.;
                   3259: 
                   3260:      printf("%d|",(int)age);fflush(stdout);
                   3261:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   3262:      for(h=0;h<=nhstepm-1;h++){
                   3263:       for(k=0;k<=nhstepm-1;k++){
                   3264:        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   3265:        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   3266:        for(ij=1;ij<=nlstate*nlstate;ij++)
                   3267:          for(ji=1;ji<=nlstate*nlstate;ji++)
                   3268:            varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
                   3269:       }
                   3270:     }
                   3271: 
                   3272:     /* Computing expectancies */
                   3273:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                   3274:     for(i=1; i<=nlstate;i++)
                   3275:       for(j=1; j<=nlstate;j++)
                   3276:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   3277:          eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                   3278:          
                   3279:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   3280: 
                   3281:        }
                   3282: 
                   3283:     fprintf(ficresstdeij,"%3.0f",age );
                   3284:     for(i=1; i<=nlstate;i++){
                   3285:       eip=0.;
                   3286:       vip=0.;
                   3287:       for(j=1; j<=nlstate;j++){
                   3288:        eip += eij[i][j][(int)age];
                   3289:        for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                   3290:          vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                   3291:        fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                   3292:       }
                   3293:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   3294:     }
                   3295:     fprintf(ficresstdeij,"\n");
                   3296: 
                   3297:     fprintf(ficrescveij,"%3.0f",age );
                   3298:     for(i=1; i<=nlstate;i++)
                   3299:       for(j=1; j<=nlstate;j++){
                   3300:        cptj= (j-1)*nlstate+i;
                   3301:        for(i2=1; i2<=nlstate;i2++)
                   3302:          for(j2=1; j2<=nlstate;j2++){
                   3303:            cptj2= (j2-1)*nlstate+i2;
                   3304:            if(cptj2 <= cptj)
                   3305:              fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                   3306:          }
                   3307:       }
                   3308:     fprintf(ficrescveij,"\n");
                   3309:    
                   3310:   }
                   3311:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   3312:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   3313:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   3314:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                   3315:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3316:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3317:   printf("\n");
                   3318:   fprintf(ficlog,"\n");
                   3319: 
                   3320:   free_vector(xm,1,npar);
                   3321:   free_vector(xp,1,npar);
                   3322:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   3323:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   3324:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   3325: }
                   3326: 
                   3327: /************ Variance ******************/
                   3328: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                   3329: {
                   3330:   /* Variance of health expectancies */
                   3331:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   3332:   /* double **newm;*/
                   3333:   double **dnewm,**doldm;
                   3334:   double **dnewmp,**doldmp;
                   3335:   int i, j, nhstepm, hstepm, h, nstepm ;
1.164     brouard  3336:   int k;
1.126     brouard  3337:   double *xp;
                   3338:   double **gp, **gm;  /* for var eij */
                   3339:   double ***gradg, ***trgradg; /*for var eij */
                   3340:   double **gradgp, **trgradgp; /* for var p point j */
                   3341:   double *gpp, *gmp; /* for var p point j */
                   3342:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   3343:   double ***p3mat;
                   3344:   double age,agelim, hf;
                   3345:   double ***mobaverage;
                   3346:   int theta;
                   3347:   char digit[4];
                   3348:   char digitp[25];
                   3349: 
                   3350:   char fileresprobmorprev[FILENAMELENGTH];
                   3351: 
                   3352:   if(popbased==1){
                   3353:     if(mobilav!=0)
                   3354:       strcpy(digitp,"-populbased-mobilav-");
                   3355:     else strcpy(digitp,"-populbased-nomobil-");
                   3356:   }
                   3357:   else 
                   3358:     strcpy(digitp,"-stablbased-");
                   3359: 
                   3360:   if (mobilav!=0) {
                   3361:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3362:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   3363:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   3364:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   3365:     }
                   3366:   }
                   3367: 
                   3368:   strcpy(fileresprobmorprev,"prmorprev"); 
                   3369:   sprintf(digit,"%-d",ij);
                   3370:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   3371:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   3372:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   3373:   strcat(fileresprobmorprev,fileres);
                   3374:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   3375:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   3376:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   3377:   }
                   3378:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   3379:  
                   3380:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   3381:   pstamp(ficresprobmorprev);
                   3382:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                   3383:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   3384:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   3385:     fprintf(ficresprobmorprev," p.%-d SE",j);
                   3386:     for(i=1; i<=nlstate;i++)
                   3387:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   3388:   }  
                   3389:   fprintf(ficresprobmorprev,"\n");
                   3390:   fprintf(ficgp,"\n# Routine varevsij");
                   3391:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
                   3392:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   3393:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                   3394: /*   } */
                   3395:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   3396:   pstamp(ficresvij);
                   3397:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
                   3398:   if(popbased==1)
1.128     brouard  3399:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
1.126     brouard  3400:   else
                   3401:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
                   3402:   fprintf(ficresvij,"# Age");
                   3403:   for(i=1; i<=nlstate;i++)
                   3404:     for(j=1; j<=nlstate;j++)
                   3405:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
                   3406:   fprintf(ficresvij,"\n");
                   3407: 
                   3408:   xp=vector(1,npar);
                   3409:   dnewm=matrix(1,nlstate,1,npar);
                   3410:   doldm=matrix(1,nlstate,1,nlstate);
                   3411:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   3412:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   3413: 
                   3414:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   3415:   gpp=vector(nlstate+1,nlstate+ndeath);
                   3416:   gmp=vector(nlstate+1,nlstate+ndeath);
                   3417:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   3418:   
                   3419:   if(estepm < stepm){
                   3420:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   3421:   }
                   3422:   else  hstepm=estepm;   
                   3423:   /* For example we decided to compute the life expectancy with the smallest unit */
                   3424:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   3425:      nhstepm is the number of hstepm from age to agelim 
                   3426:      nstepm is the number of stepm from age to agelin. 
1.128     brouard  3427:      Look at function hpijx to understand why (it is linked to memory size questions) */
1.126     brouard  3428:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   3429:      survival function given by stepm (the optimization length). Unfortunately it
                   3430:      means that if the survival funtion is printed every two years of age and if
                   3431:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   3432:      results. So we changed our mind and took the option of the best precision.
                   3433:   */
                   3434:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   3435:   agelim = AGESUP;
                   3436:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   3437:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   3438:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   3439:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3440:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   3441:     gp=matrix(0,nhstepm,1,nlstate);
                   3442:     gm=matrix(0,nhstepm,1,nlstate);
                   3443: 
                   3444: 
                   3445:     for(theta=1; theta <=npar; theta++){
                   3446:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                   3447:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   3448:       }
                   3449:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   3450:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   3451: 
                   3452:       if (popbased==1) {
                   3453:        if(mobilav ==0){
                   3454:          for(i=1; i<=nlstate;i++)
                   3455:            prlim[i][i]=probs[(int)age][i][ij];
                   3456:        }else{ /* mobilav */ 
                   3457:          for(i=1; i<=nlstate;i++)
                   3458:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   3459:        }
                   3460:       }
                   3461:   
                   3462:       for(j=1; j<= nlstate; j++){
                   3463:        for(h=0; h<=nhstepm; h++){
                   3464:          for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   3465:            gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   3466:        }
                   3467:       }
                   3468:       /* This for computing probability of death (h=1 means
                   3469:          computed over hstepm matrices product = hstepm*stepm months) 
                   3470:          as a weighted average of prlim.
                   3471:       */
                   3472:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   3473:        for(i=1,gpp[j]=0.; i<= nlstate; i++)
                   3474:          gpp[j] += prlim[i][i]*p3mat[i][j][1];
                   3475:       }    
                   3476:       /* end probability of death */
                   3477: 
                   3478:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   3479:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   3480:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   3481:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   3482:  
                   3483:       if (popbased==1) {
                   3484:        if(mobilav ==0){
                   3485:          for(i=1; i<=nlstate;i++)
                   3486:            prlim[i][i]=probs[(int)age][i][ij];
                   3487:        }else{ /* mobilav */ 
                   3488:          for(i=1; i<=nlstate;i++)
                   3489:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   3490:        }
                   3491:       }
                   3492: 
1.128     brouard  3493:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
1.126     brouard  3494:        for(h=0; h<=nhstepm; h++){
                   3495:          for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   3496:            gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   3497:        }
                   3498:       }
                   3499:       /* This for computing probability of death (h=1 means
                   3500:          computed over hstepm matrices product = hstepm*stepm months) 
                   3501:          as a weighted average of prlim.
                   3502:       */
                   3503:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   3504:        for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   3505:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   3506:       }    
                   3507:       /* end probability of death */
                   3508: 
                   3509:       for(j=1; j<= nlstate; j++) /* vareij */
                   3510:        for(h=0; h<=nhstepm; h++){
                   3511:          gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   3512:        }
                   3513: 
                   3514:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   3515:        gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   3516:       }
                   3517: 
                   3518:     } /* End theta */
                   3519: 
                   3520:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   3521: 
                   3522:     for(h=0; h<=nhstepm; h++) /* veij */
                   3523:       for(j=1; j<=nlstate;j++)
                   3524:        for(theta=1; theta <=npar; theta++)
                   3525:          trgradg[h][j][theta]=gradg[h][theta][j];
                   3526: 
                   3527:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   3528:       for(theta=1; theta <=npar; theta++)
                   3529:        trgradgp[j][theta]=gradgp[theta][j];
                   3530:   
                   3531: 
                   3532:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   3533:     for(i=1;i<=nlstate;i++)
                   3534:       for(j=1;j<=nlstate;j++)
                   3535:        vareij[i][j][(int)age] =0.;
                   3536: 
                   3537:     for(h=0;h<=nhstepm;h++){
                   3538:       for(k=0;k<=nhstepm;k++){
                   3539:        matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   3540:        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   3541:        for(i=1;i<=nlstate;i++)
                   3542:          for(j=1;j<=nlstate;j++)
                   3543:            vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   3544:       }
                   3545:     }
                   3546:   
                   3547:     /* pptj */
                   3548:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   3549:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                   3550:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   3551:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
                   3552:        varppt[j][i]=doldmp[j][i];
                   3553:     /* end ppptj */
                   3554:     /*  x centered again */
                   3555:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                   3556:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                   3557:  
                   3558:     if (popbased==1) {
                   3559:       if(mobilav ==0){
                   3560:        for(i=1; i<=nlstate;i++)
                   3561:          prlim[i][i]=probs[(int)age][i][ij];
                   3562:       }else{ /* mobilav */ 
                   3563:        for(i=1; i<=nlstate;i++)
                   3564:          prlim[i][i]=mobaverage[(int)age][i][ij];
                   3565:       }
                   3566:     }
                   3567:              
                   3568:     /* This for computing probability of death (h=1 means
                   3569:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   3570:        as a weighted average of prlim.
                   3571:     */
                   3572:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   3573:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                   3574:        gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   3575:     }    
                   3576:     /* end probability of death */
                   3577: 
                   3578:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   3579:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   3580:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   3581:       for(i=1; i<=nlstate;i++){
                   3582:        fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   3583:       }
                   3584:     } 
                   3585:     fprintf(ficresprobmorprev,"\n");
                   3586: 
                   3587:     fprintf(ficresvij,"%.0f ",age );
                   3588:     for(i=1; i<=nlstate;i++)
                   3589:       for(j=1; j<=nlstate;j++){
                   3590:        fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   3591:       }
                   3592:     fprintf(ficresvij,"\n");
                   3593:     free_matrix(gp,0,nhstepm,1,nlstate);
                   3594:     free_matrix(gm,0,nhstepm,1,nlstate);
                   3595:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   3596:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   3597:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3598:   } /* End age */
                   3599:   free_vector(gpp,nlstate+1,nlstate+ndeath);
                   3600:   free_vector(gmp,nlstate+1,nlstate+ndeath);
                   3601:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   3602:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
1.145     brouard  3603:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
1.126     brouard  3604:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
1.131     brouard  3605:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
1.126     brouard  3606: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   3607: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   3608: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
1.145     brouard  3609:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
                   3610:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
                   3611:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
1.126     brouard  3612:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   3613:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                   3614:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                   3615: */
                   3616: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                   3617:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                   3618: 
                   3619:   free_vector(xp,1,npar);
                   3620:   free_matrix(doldm,1,nlstate,1,nlstate);
                   3621:   free_matrix(dnewm,1,nlstate,1,npar);
                   3622:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   3623:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   3624:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   3625:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3626:   fclose(ficresprobmorprev);
                   3627:   fflush(ficgp);
                   3628:   fflush(fichtm); 
                   3629: }  /* end varevsij */
                   3630: 
                   3631: /************ Variance of prevlim ******************/
                   3632: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                   3633: {
                   3634:   /* Variance of prevalence limit */
                   3635:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
1.164     brouard  3636: 
1.126     brouard  3637:   double **dnewm,**doldm;
                   3638:   int i, j, nhstepm, hstepm;
                   3639:   double *xp;
                   3640:   double *gp, *gm;
                   3641:   double **gradg, **trgradg;
                   3642:   double age,agelim;
                   3643:   int theta;
                   3644:   
                   3645:   pstamp(ficresvpl);
                   3646:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
                   3647:   fprintf(ficresvpl,"# Age");
                   3648:   for(i=1; i<=nlstate;i++)
                   3649:       fprintf(ficresvpl," %1d-%1d",i,i);
                   3650:   fprintf(ficresvpl,"\n");
                   3651: 
                   3652:   xp=vector(1,npar);
                   3653:   dnewm=matrix(1,nlstate,1,npar);
                   3654:   doldm=matrix(1,nlstate,1,nlstate);
                   3655:   
                   3656:   hstepm=1*YEARM; /* Every year of age */
                   3657:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   3658:   agelim = AGESUP;
                   3659:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   3660:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   3661:     if (stepm >= YEARM) hstepm=1;
                   3662:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   3663:     gradg=matrix(1,npar,1,nlstate);
                   3664:     gp=vector(1,nlstate);
                   3665:     gm=vector(1,nlstate);
                   3666: 
                   3667:     for(theta=1; theta <=npar; theta++){
                   3668:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   3669:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   3670:       }
                   3671:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   3672:       for(i=1;i<=nlstate;i++)
                   3673:        gp[i] = prlim[i][i];
                   3674:     
                   3675:       for(i=1; i<=npar; i++) /* Computes gradient */
                   3676:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   3677:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   3678:       for(i=1;i<=nlstate;i++)
                   3679:        gm[i] = prlim[i][i];
                   3680: 
                   3681:       for(i=1;i<=nlstate;i++)
                   3682:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   3683:     } /* End theta */
                   3684: 
                   3685:     trgradg =matrix(1,nlstate,1,npar);
                   3686: 
                   3687:     for(j=1; j<=nlstate;j++)
                   3688:       for(theta=1; theta <=npar; theta++)
                   3689:        trgradg[j][theta]=gradg[theta][j];
                   3690: 
                   3691:     for(i=1;i<=nlstate;i++)
                   3692:       varpl[i][(int)age] =0.;
                   3693:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   3694:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                   3695:     for(i=1;i<=nlstate;i++)
                   3696:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   3697: 
                   3698:     fprintf(ficresvpl,"%.0f ",age );
                   3699:     for(i=1; i<=nlstate;i++)
                   3700:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   3701:     fprintf(ficresvpl,"\n");
                   3702:     free_vector(gp,1,nlstate);
                   3703:     free_vector(gm,1,nlstate);
                   3704:     free_matrix(gradg,1,npar,1,nlstate);
                   3705:     free_matrix(trgradg,1,nlstate,1,npar);
                   3706:   } /* End age */
                   3707: 
                   3708:   free_vector(xp,1,npar);
                   3709:   free_matrix(doldm,1,nlstate,1,npar);
                   3710:   free_matrix(dnewm,1,nlstate,1,nlstate);
                   3711: 
                   3712: }
                   3713: 
                   3714: /************ Variance of one-step probabilities  ******************/
                   3715: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
                   3716: {
1.164     brouard  3717:   int i, j=0,  k1, l1, tj;
1.126     brouard  3718:   int k2, l2, j1,  z1;
1.164     brouard  3719:   int k=0, l;
1.145     brouard  3720:   int first=1, first1, first2;
1.126     brouard  3721:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   3722:   double **dnewm,**doldm;
                   3723:   double *xp;
                   3724:   double *gp, *gm;
                   3725:   double **gradg, **trgradg;
                   3726:   double **mu;
1.164     brouard  3727:   double age, cov[NCOVMAX+1];
1.126     brouard  3728:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   3729:   int theta;
                   3730:   char fileresprob[FILENAMELENGTH];
                   3731:   char fileresprobcov[FILENAMELENGTH];
                   3732:   char fileresprobcor[FILENAMELENGTH];
                   3733:   double ***varpij;
                   3734: 
                   3735:   strcpy(fileresprob,"prob"); 
                   3736:   strcat(fileresprob,fileres);
                   3737:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   3738:     printf("Problem with resultfile: %s\n", fileresprob);
                   3739:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   3740:   }
                   3741:   strcpy(fileresprobcov,"probcov"); 
                   3742:   strcat(fileresprobcov,fileres);
                   3743:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   3744:     printf("Problem with resultfile: %s\n", fileresprobcov);
                   3745:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   3746:   }
                   3747:   strcpy(fileresprobcor,"probcor"); 
                   3748:   strcat(fileresprobcor,fileres);
                   3749:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   3750:     printf("Problem with resultfile: %s\n", fileresprobcor);
                   3751:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   3752:   }
                   3753:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   3754:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   3755:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   3756:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   3757:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   3758:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   3759:   pstamp(ficresprob);
                   3760:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   3761:   fprintf(ficresprob,"# Age");
                   3762:   pstamp(ficresprobcov);
                   3763:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   3764:   fprintf(ficresprobcov,"# Age");
                   3765:   pstamp(ficresprobcor);
                   3766:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   3767:   fprintf(ficresprobcor,"# Age");
                   3768: 
                   3769: 
                   3770:   for(i=1; i<=nlstate;i++)
                   3771:     for(j=1; j<=(nlstate+ndeath);j++){
                   3772:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   3773:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   3774:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   3775:     }  
                   3776:  /* fprintf(ficresprob,"\n");
                   3777:   fprintf(ficresprobcov,"\n");
                   3778:   fprintf(ficresprobcor,"\n");
                   3779:  */
1.131     brouard  3780:   xp=vector(1,npar);
1.126     brouard  3781:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   3782:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   3783:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   3784:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   3785:   first=1;
                   3786:   fprintf(ficgp,"\n# Routine varprob");
                   3787:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   3788:   fprintf(fichtm,"\n");
                   3789: 
                   3790:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                   3791:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
                   3792:   file %s<br>\n",optionfilehtmcov);
                   3793:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                   3794: and drawn. It helps understanding how is the covariance between two incidences.\
                   3795:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                   3796:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   3797: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   3798: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   3799: standard deviations wide on each axis. <br>\
                   3800:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   3801:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   3802: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                   3803: 
                   3804:   cov[1]=1;
1.145     brouard  3805:   /* tj=cptcoveff; */
                   3806:   tj = (int) pow(2,cptcoveff);
1.126     brouard  3807:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   3808:   j1=0;
1.145     brouard  3809:   for(j1=1; j1<=tj;j1++){
                   3810:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
                   3811:     /*j1++;*/
1.126     brouard  3812:       if  (cptcovn>0) {
                   3813:        fprintf(ficresprob, "\n#********** Variable "); 
                   3814:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3815:        fprintf(ficresprob, "**********\n#\n");
                   3816:        fprintf(ficresprobcov, "\n#********** Variable "); 
                   3817:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3818:        fprintf(ficresprobcov, "**********\n#\n");
                   3819:        
                   3820:        fprintf(ficgp, "\n#********** Variable "); 
                   3821:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3822:        fprintf(ficgp, "**********\n#\n");
                   3823:        
                   3824:        
                   3825:        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                   3826:        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3827:        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                   3828:        
                   3829:        fprintf(ficresprobcor, "\n#********** Variable ");    
                   3830:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3831:        fprintf(ficresprobcor, "**********\n#");    
                   3832:       }
                   3833:       
1.145     brouard  3834:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   3835:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   3836:       gp=vector(1,(nlstate)*(nlstate+ndeath));
                   3837:       gm=vector(1,(nlstate)*(nlstate+ndeath));
1.126     brouard  3838:       for (age=bage; age<=fage; age ++){ 
                   3839:        cov[2]=age;
                   3840:        for (k=1; k<=cptcovn;k++) {
1.145     brouard  3841:          cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                   3842:                                                         * 1  1 1 1 1
                   3843:                                                         * 2  2 1 1 1
                   3844:                                                         * 3  1 2 1 1
                   3845:                                                         */
                   3846:          /* nbcode[1][1]=0 nbcode[1][2]=1;*/
1.126     brouard  3847:        }
                   3848:        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   3849:        for (k=1; k<=cptcovprod;k++)
                   3850:          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   3851:        
                   3852:     
                   3853:        for(theta=1; theta <=npar; theta++){
                   3854:          for(i=1; i<=npar; i++)
                   3855:            xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                   3856:          
                   3857:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   3858:          
                   3859:          k=0;
                   3860:          for(i=1; i<= (nlstate); i++){
                   3861:            for(j=1; j<=(nlstate+ndeath);j++){
                   3862:              k=k+1;
                   3863:              gp[k]=pmmij[i][j];
                   3864:            }
                   3865:          }
                   3866:          
                   3867:          for(i=1; i<=npar; i++)
                   3868:            xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                   3869:     
                   3870:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   3871:          k=0;
                   3872:          for(i=1; i<=(nlstate); i++){
                   3873:            for(j=1; j<=(nlstate+ndeath);j++){
                   3874:              k=k+1;
                   3875:              gm[k]=pmmij[i][j];
                   3876:            }
                   3877:          }
                   3878:      
                   3879:          for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                   3880:            gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                   3881:        }
                   3882: 
                   3883:        for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   3884:          for(theta=1; theta <=npar; theta++)
                   3885:            trgradg[j][theta]=gradg[theta][j];
                   3886:        
                   3887:        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   3888:        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                   3889: 
                   3890:        pmij(pmmij,cov,ncovmodel,x,nlstate);
                   3891:        
                   3892:        k=0;
                   3893:        for(i=1; i<=(nlstate); i++){
                   3894:          for(j=1; j<=(nlstate+ndeath);j++){
                   3895:            k=k+1;
                   3896:            mu[k][(int) age]=pmmij[i][j];
                   3897:          }
                   3898:        }
                   3899:        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   3900:          for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   3901:            varpij[i][j][(int)age] = doldm[i][j];
                   3902: 
                   3903:        /*printf("\n%d ",(int)age);
                   3904:          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3905:          printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3906:          fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3907:          }*/
                   3908: 
                   3909:        fprintf(ficresprob,"\n%d ",(int)age);
                   3910:        fprintf(ficresprobcov,"\n%d ",(int)age);
                   3911:        fprintf(ficresprobcor,"\n%d ",(int)age);
                   3912: 
                   3913:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   3914:          fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   3915:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3916:          fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   3917:          fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   3918:        }
                   3919:        i=0;
                   3920:        for (k=1; k<=(nlstate);k++){
                   3921:          for (l=1; l<=(nlstate+ndeath);l++){ 
1.145     brouard  3922:            i++;
1.126     brouard  3923:            fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   3924:            fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   3925:            for (j=1; j<=i;j++){
1.145     brouard  3926:              /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
1.126     brouard  3927:              fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   3928:              fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   3929:            }
                   3930:          }
                   3931:        }/* end of loop for state */
                   3932:       } /* end of loop for age */
1.145     brouard  3933:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   3934:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   3935:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   3936:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   3937:       
1.126     brouard  3938:       /* Confidence intervalle of pij  */
                   3939:       /*
1.131     brouard  3940:        fprintf(ficgp,"\nunset parametric;unset label");
1.126     brouard  3941:        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   3942:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   3943:        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   3944:        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   3945:        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   3946:        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   3947:       */
                   3948: 
                   3949:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
1.145     brouard  3950:       first1=1;first2=2;
1.126     brouard  3951:       for (k2=1; k2<=(nlstate);k2++){
                   3952:        for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   3953:          if(l2==k2) continue;
                   3954:          j=(k2-1)*(nlstate+ndeath)+l2;
                   3955:          for (k1=1; k1<=(nlstate);k1++){
                   3956:            for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   3957:              if(l1==k1) continue;
                   3958:              i=(k1-1)*(nlstate+ndeath)+l1;
                   3959:              if(i<=j) continue;
                   3960:              for (age=bage; age<=fage; age ++){ 
                   3961:                if ((int)age %5==0){
                   3962:                  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   3963:                  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3964:                  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3965:                  mu1=mu[i][(int) age]/stepm*YEARM ;
                   3966:                  mu2=mu[j][(int) age]/stepm*YEARM;
                   3967:                  c12=cv12/sqrt(v1*v2);
                   3968:                  /* Computing eigen value of matrix of covariance */
                   3969:                  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   3970:                  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
1.135     brouard  3971:                  if ((lc2 <0) || (lc1 <0) ){
1.145     brouard  3972:                    if(first2==1){
                   3973:                      first1=0;
                   3974:                    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                   3975:                    }
                   3976:                    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                   3977:                    /* lc1=fabs(lc1); */ /* If we want to have them positive */
                   3978:                    /* lc2=fabs(lc2); */
1.135     brouard  3979:                  }
                   3980: 
1.126     brouard  3981:                  /* Eigen vectors */
                   3982:                  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   3983:                  /*v21=sqrt(1.-v11*v11); *//* error */
                   3984:                  v21=(lc1-v1)/cv12*v11;
                   3985:                  v12=-v21;
                   3986:                  v22=v11;
                   3987:                  tnalp=v21/v11;
                   3988:                  if(first1==1){
                   3989:                    first1=0;
                   3990:                    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   3991:                  }
                   3992:                  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   3993:                  /*printf(fignu*/
                   3994:                  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   3995:                  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   3996:                  if(first==1){
                   3997:                    first=0;
                   3998:                    fprintf(ficgp,"\nset parametric;unset label");
                   3999:                    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
1.145     brouard  4000:                    fprintf(ficgp,"\nset ter png small size 320, 240");
1.126     brouard  4001:                    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                   4002:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                   4003: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                   4004:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                   4005:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   4006:                    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   4007:                    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                   4008:                    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   4009:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   4010:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   4011:                    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   4012:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   4013:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   4014:                  }else{
                   4015:                    first=0;
                   4016:                    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                   4017:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   4018:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   4019:                    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   4020:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   4021:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   4022:                  }/* if first */
                   4023:                } /* age mod 5 */
                   4024:              } /* end loop age */
                   4025:              fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   4026:              first=1;
                   4027:            } /*l12 */
                   4028:          } /* k12 */
                   4029:        } /*l1 */
                   4030:       }/* k1 */
1.145     brouard  4031:       /* } /* loop covariates */
1.126     brouard  4032:   }
                   4033:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   4034:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                   4035:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   4036:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
                   4037:   free_vector(xp,1,npar);
                   4038:   fclose(ficresprob);
                   4039:   fclose(ficresprobcov);
                   4040:   fclose(ficresprobcor);
                   4041:   fflush(ficgp);
                   4042:   fflush(fichtmcov);
                   4043: }
                   4044: 
                   4045: 
                   4046: /******************* Printing html file ***********/
                   4047: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                   4048:                  int lastpass, int stepm, int weightopt, char model[],\
                   4049:                  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   4050:                  int popforecast, int estepm ,\
                   4051:                  double jprev1, double mprev1,double anprev1, \
                   4052:                  double jprev2, double mprev2,double anprev2){
                   4053:   int jj1, k1, i1, cpt;
                   4054: 
                   4055:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                   4056:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                   4057: </ul>");
                   4058:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
                   4059:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                   4060:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
                   4061:    fprintf(fichtm,"\
                   4062:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   4063:           stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
                   4064:    fprintf(fichtm,"\
                   4065:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                   4066:           subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
                   4067:    fprintf(fichtm,"\
1.128     brouard  4068:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
1.126     brouard  4069:    <a href=\"%s\">%s</a> <br>\n",
                   4070:           estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
                   4071:    fprintf(fichtm,"\
                   4072:  - Population projections by age and states: \
                   4073:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
                   4074: 
                   4075: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                   4076: 
1.145     brouard  4077:  m=pow(2,cptcoveff);
1.126     brouard  4078:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   4079: 
                   4080:  jj1=0;
                   4081:  for(k1=1; k1<=m;k1++){
                   4082:    for(i1=1; i1<=ncodemax[k1];i1++){
                   4083:      jj1++;
                   4084:      if (cptcovn > 0) {
                   4085:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   4086:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   4087:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   4088:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   4089:      }
                   4090:      /* Pij */
1.145     brouard  4091:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
                   4092: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
1.126     brouard  4093:      /* Quasi-incidences */
                   4094:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
1.145     brouard  4095:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
                   4096: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
1.126     brouard  4097:        /* Period (stable) prevalence in each health state */
1.154     brouard  4098:        for(cpt=1; cpt<=nlstate;cpt++){
1.166   ! brouard  4099:         fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
        !          4100: <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
1.126     brouard  4101:        }
                   4102:      for(cpt=1; cpt<=nlstate;cpt++) {
1.154     brouard  4103:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
                   4104: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
1.126     brouard  4105:      }
                   4106:    } /* end i1 */
                   4107:  }/* End k1 */
                   4108:  fprintf(fichtm,"</ul>");
                   4109: 
                   4110: 
                   4111:  fprintf(fichtm,"\
                   4112: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
                   4113:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                   4114: 
                   4115:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   4116:         subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
                   4117:  fprintf(fichtm,"\
                   4118:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   4119:         subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                   4120: 
                   4121:  fprintf(fichtm,"\
                   4122:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   4123:         subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                   4124:  fprintf(fichtm,"\
                   4125:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                   4126:    <a href=\"%s\">%s</a> <br>\n</li>",
                   4127:           estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
                   4128:  fprintf(fichtm,"\
                   4129:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                   4130:    <a href=\"%s\">%s</a> <br>\n</li>",
                   4131:           estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
                   4132:  fprintf(fichtm,"\
1.128     brouard  4133:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
1.126     brouard  4134:         estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                   4135:  fprintf(fichtm,"\
1.128     brouard  4136:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
                   4137:         estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
1.126     brouard  4138:  fprintf(fichtm,"\
                   4139:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
                   4140:         subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
                   4141: 
                   4142: /*  if(popforecast==1) fprintf(fichtm,"\n */
                   4143: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                   4144: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                   4145: /*     <br>",fileres,fileres,fileres,fileres); */
                   4146: /*  else  */
                   4147: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
                   4148:  fflush(fichtm);
                   4149:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
                   4150: 
1.145     brouard  4151:  m=pow(2,cptcoveff);
1.126     brouard  4152:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   4153: 
                   4154:  jj1=0;
                   4155:  for(k1=1; k1<=m;k1++){
                   4156:    for(i1=1; i1<=ncodemax[k1];i1++){
                   4157:      jj1++;
                   4158:      if (cptcovn > 0) {
                   4159:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   4160:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   4161:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   4162:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   4163:      }
                   4164:      for(cpt=1; cpt<=nlstate;cpt++) {
                   4165:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
1.145     brouard  4166: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
                   4167: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
1.126     brouard  4168:      }
                   4169:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
1.128     brouard  4170: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
                   4171: true period expectancies (those weighted with period prevalences are also\
                   4172:  drawn in addition to the population based expectancies computed using\
                   4173:  observed and cahotic prevalences: %s%d.png<br>\
1.126     brouard  4174: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
                   4175:    } /* end i1 */
                   4176:  }/* End k1 */
                   4177:  fprintf(fichtm,"</ul>");
                   4178:  fflush(fichtm);
                   4179: }
                   4180: 
                   4181: /******************* Gnuplot file **************/
                   4182: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                   4183: 
                   4184:   char dirfileres[132],optfileres[132];
1.164     brouard  4185:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
1.130     brouard  4186:   int ng=0;
1.126     brouard  4187: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                   4188: /*     printf("Problem with file %s",optionfilegnuplot); */
                   4189: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   4190: /*   } */
                   4191: 
                   4192:   /*#ifdef windows */
                   4193:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   4194:     /*#endif */
                   4195:   m=pow(2,cptcoveff);
                   4196: 
                   4197:   strcpy(dirfileres,optionfilefiname);
                   4198:   strcpy(optfileres,"vpl");
                   4199:  /* 1eme*/
1.153     brouard  4200:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
1.126     brouard  4201:   for (cpt=1; cpt<= nlstate ; cpt ++) {
1.145     brouard  4202:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
                   4203:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
                   4204:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
1.126     brouard  4205:      fprintf(ficgp,"set xlabel \"Age\" \n\
                   4206: set ylabel \"Probability\" \n\
1.145     brouard  4207: set ter png small size 320, 240\n\
1.126     brouard  4208: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
                   4209: 
                   4210:      for (i=1; i<= nlstate ; i ++) {
                   4211:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
1.131     brouard  4212:        else        fprintf(ficgp," \%%*lf (\%%*lf)");
1.126     brouard  4213:      }
1.145     brouard  4214:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
1.126     brouard  4215:      for (i=1; i<= nlstate ; i ++) {
                   4216:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   4217:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4218:      } 
1.145     brouard  4219:      fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
1.126     brouard  4220:      for (i=1; i<= nlstate ; i ++) {
                   4221:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   4222:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4223:      }  
1.145     brouard  4224:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
1.126     brouard  4225:    }
                   4226:   }
                   4227:   /*2 eme*/
1.153     brouard  4228:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
1.126     brouard  4229:   for (k1=1; k1<= m ; k1 ++) { 
                   4230:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
1.145     brouard  4231:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
1.126     brouard  4232:     
                   4233:     for (i=1; i<= nlstate+1 ; i ++) {
                   4234:       k=2*i;
                   4235:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   4236:       for (j=1; j<= nlstate+1 ; j ++) {
                   4237:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   4238:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4239:       }   
                   4240:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                   4241:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
                   4242:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   4243:       for (j=1; j<= nlstate+1 ; j ++) {
                   4244:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   4245:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4246:       }   
1.145     brouard  4247:       fprintf(ficgp,"\" t\"\" w l lt 0,");
1.126     brouard  4248:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   4249:       for (j=1; j<= nlstate+1 ; j ++) {
                   4250:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   4251:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4252:       }   
1.145     brouard  4253:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
                   4254:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
1.126     brouard  4255:     }
                   4256:   }
                   4257:   
                   4258:   /*3eme*/
                   4259:   
                   4260:   for (k1=1; k1<= m ; k1 ++) { 
                   4261:     for (cpt=1; cpt<= nlstate ; cpt ++) {
                   4262:       /*       k=2+nlstate*(2*cpt-2); */
                   4263:       k=2+(nlstate+1)*(cpt-1);
                   4264:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
1.145     brouard  4265:       fprintf(ficgp,"set ter png small size 320, 240\n\
1.126     brouard  4266: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
                   4267:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   4268:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   4269:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   4270:        fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   4271:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   4272:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   4273:        
                   4274:       */
                   4275:       for (i=1; i< nlstate ; i ++) {
                   4276:        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
                   4277:        /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                   4278:        
                   4279:       } 
                   4280:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
                   4281:     }
                   4282:   }
                   4283:   
                   4284:   /* CV preval stable (period) */
1.153     brouard  4285:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
                   4286:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
1.126     brouard  4287:       k=3;
1.153     brouard  4288:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
1.145     brouard  4289:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
1.126     brouard  4290:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.145     brouard  4291: set ter png small size 320, 240\n\
1.126     brouard  4292: unset log y\n\
1.153     brouard  4293: plot [%.f:%.f]  ", ageminpar, agemaxpar);
                   4294:       for (i=1; i<= nlstate ; i ++){
                   4295:        if(i==1)
                   4296:          fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
                   4297:        else
                   4298:          fprintf(ficgp,", '' ");
1.154     brouard  4299:        l=(nlstate+ndeath)*(i-1)+1;
                   4300:        fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
1.153     brouard  4301:        for (j=1; j<= (nlstate-1) ; j ++)
                   4302:          fprintf(ficgp,"+$%d",k+l+j);
                   4303:        fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
                   4304:       } /* nlstate */
                   4305:       fprintf(ficgp,"\n");
                   4306:     } /* end cpt state*/ 
                   4307:   } /* end covariate */  
1.126     brouard  4308:   
                   4309:   /* proba elementaires */
                   4310:   for(i=1,jk=1; i <=nlstate; i++){
                   4311:     for(k=1; k <=(nlstate+ndeath); k++){
                   4312:       if (k != i) {
                   4313:        for(j=1; j <=ncovmodel; j++){
                   4314:          fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                   4315:          jk++; 
                   4316:          fprintf(ficgp,"\n");
                   4317:        }
                   4318:       }
                   4319:     }
                   4320:    }
1.145     brouard  4321:   /*goto avoid;*/
1.126     brouard  4322:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
                   4323:      for(jk=1; jk <=m; jk++) {
1.145     brouard  4324:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
1.126     brouard  4325:        if (ng==2)
                   4326:         fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                   4327:        else
                   4328:         fprintf(ficgp,"\nset title \"Probability\"\n");
1.145     brouard  4329:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
1.126     brouard  4330:        i=1;
                   4331:        for(k2=1; k2<=nlstate; k2++) {
                   4332:         k3=i;
                   4333:         for(k=1; k<=(nlstate+ndeath); k++) {
                   4334:           if (k != k2){
                   4335:             if(ng==2)
                   4336:               fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   4337:             else
                   4338:               fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
1.141     brouard  4339:             ij=1;/* To be checked else nbcode[0][0] wrong */
1.126     brouard  4340:             for(j=3; j <=ncovmodel; j++) {
1.145     brouard  4341:               /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                   4342:               /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                   4343:               /*        ij++; */
                   4344:               /* } */
                   4345:               /* else */
1.126     brouard  4346:                 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   4347:             }
                   4348:             fprintf(ficgp,")/(1");
                   4349:             
                   4350:             for(k1=1; k1 <=nlstate; k1++){   
                   4351:               fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   4352:               ij=1;
                   4353:               for(j=3; j <=ncovmodel; j++){
1.145     brouard  4354:                 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                   4355:                 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                   4356:                 /*   ij++; */
                   4357:                 /* } */
                   4358:                 /* else */
1.126     brouard  4359:                   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   4360:               }
                   4361:               fprintf(ficgp,")");
                   4362:             }
                   4363:             fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                   4364:             if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                   4365:             i=i+ncovmodel;
                   4366:           }
                   4367:         } /* end k */
                   4368:        } /* end k2 */
                   4369:      } /* end jk */
                   4370:    } /* end ng */
1.164     brouard  4371:  /* avoid: */
1.126     brouard  4372:    fflush(ficgp); 
                   4373: }  /* end gnuplot */
                   4374: 
                   4375: 
                   4376: /*************** Moving average **************/
                   4377: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
                   4378: 
                   4379:   int i, cpt, cptcod;
                   4380:   int modcovmax =1;
                   4381:   int mobilavrange, mob;
                   4382:   double age;
                   4383: 
                   4384:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                   4385:                           a covariate has 2 modalities */
                   4386:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                   4387: 
                   4388:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                   4389:     if(mobilav==1) mobilavrange=5; /* default */
                   4390:     else mobilavrange=mobilav;
                   4391:     for (age=bage; age<=fage; age++)
                   4392:       for (i=1; i<=nlstate;i++)
                   4393:        for (cptcod=1;cptcod<=modcovmax;cptcod++)
                   4394:          mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   4395:     /* We keep the original values on the extreme ages bage, fage and for 
                   4396:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                   4397:        we use a 5 terms etc. until the borders are no more concerned. 
                   4398:     */ 
                   4399:     for (mob=3;mob <=mobilavrange;mob=mob+2){
                   4400:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
                   4401:        for (i=1; i<=nlstate;i++){
                   4402:          for (cptcod=1;cptcod<=modcovmax;cptcod++){
                   4403:            mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   4404:              for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   4405:                mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   4406:                mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   4407:              }
                   4408:            mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                   4409:          }
                   4410:        }
                   4411:       }/* end age */
                   4412:     }/* end mob */
                   4413:   }else return -1;
                   4414:   return 0;
                   4415: }/* End movingaverage */
                   4416: 
                   4417: 
                   4418: /************** Forecasting ******************/
                   4419: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
                   4420:   /* proj1, year, month, day of starting projection 
                   4421:      agemin, agemax range of age
                   4422:      dateprev1 dateprev2 range of dates during which prevalence is computed
                   4423:      anproj2 year of en of projection (same day and month as proj1).
                   4424:   */
1.164     brouard  4425:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
1.126     brouard  4426:   double agec; /* generic age */
                   4427:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
                   4428:   double *popeffectif,*popcount;
                   4429:   double ***p3mat;
                   4430:   double ***mobaverage;
                   4431:   char fileresf[FILENAMELENGTH];
                   4432: 
                   4433:   agelim=AGESUP;
                   4434:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   4435:  
                   4436:   strcpy(fileresf,"f"); 
                   4437:   strcat(fileresf,fileres);
                   4438:   if((ficresf=fopen(fileresf,"w"))==NULL) {
                   4439:     printf("Problem with forecast resultfile: %s\n", fileresf);
                   4440:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                   4441:   }
                   4442:   printf("Computing forecasting: result on file '%s' \n", fileresf);
                   4443:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
                   4444: 
                   4445:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   4446: 
                   4447:   if (mobilav!=0) {
                   4448:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4449:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   4450:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   4451:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   4452:     }
                   4453:   }
                   4454: 
                   4455:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   4456:   if (stepm<=12) stepsize=1;
                   4457:   if(estepm < stepm){
                   4458:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   4459:   }
                   4460:   else  hstepm=estepm;   
                   4461: 
                   4462:   hstepm=hstepm/stepm; 
                   4463:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                   4464:                                fractional in yp1 */
                   4465:   anprojmean=yp;
                   4466:   yp2=modf((yp1*12),&yp);
                   4467:   mprojmean=yp;
                   4468:   yp1=modf((yp2*30.5),&yp);
                   4469:   jprojmean=yp;
                   4470:   if(jprojmean==0) jprojmean=1;
                   4471:   if(mprojmean==0) jprojmean=1;
                   4472: 
                   4473:   i1=cptcoveff;
                   4474:   if (cptcovn < 1){i1=1;}
                   4475:   
                   4476:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
                   4477:   
                   4478:   fprintf(ficresf,"#****** Routine prevforecast **\n");
                   4479: 
                   4480: /*           if (h==(int)(YEARM*yearp)){ */
                   4481:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
                   4482:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   4483:       k=k+1;
                   4484:       fprintf(ficresf,"\n#******");
                   4485:       for(j=1;j<=cptcoveff;j++) {
                   4486:        fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   4487:       }
                   4488:       fprintf(ficresf,"******\n");
                   4489:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
                   4490:       for(j=1; j<=nlstate+ndeath;j++){ 
                   4491:        for(i=1; i<=nlstate;i++)              
                   4492:           fprintf(ficresf," p%d%d",i,j);
                   4493:        fprintf(ficresf," p.%d",j);
                   4494:       }
                   4495:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
                   4496:        fprintf(ficresf,"\n");
                   4497:        fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
                   4498: 
                   4499:        for (agec=fage; agec>=(ageminpar-1); agec--){ 
                   4500:          nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                   4501:          nhstepm = nhstepm/hstepm; 
                   4502:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4503:          oldm=oldms;savm=savms;
                   4504:          hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   4505:        
                   4506:          for (h=0; h<=nhstepm; h++){
                   4507:            if (h*hstepm/YEARM*stepm ==yearp) {
                   4508:               fprintf(ficresf,"\n");
                   4509:               for(j=1;j<=cptcoveff;j++) 
                   4510:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   4511:              fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                   4512:            } 
                   4513:            for(j=1; j<=nlstate+ndeath;j++) {
                   4514:              ppij=0.;
                   4515:              for(i=1; i<=nlstate;i++) {
                   4516:                if (mobilav==1) 
                   4517:                  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   4518:                else {
                   4519:                  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   4520:                }
                   4521:                if (h*hstepm/YEARM*stepm== yearp) {
                   4522:                  fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   4523:                }
                   4524:              } /* end i */
                   4525:              if (h*hstepm/YEARM*stepm==yearp) {
                   4526:                fprintf(ficresf," %.3f", ppij);
                   4527:              }
                   4528:            }/* end j */
                   4529:          } /* end h */
                   4530:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4531:        } /* end agec */
                   4532:       } /* end yearp */
                   4533:     } /* end cptcod */
                   4534:   } /* end  cptcov */
                   4535:        
                   4536:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4537: 
                   4538:   fclose(ficresf);
                   4539: }
                   4540: 
                   4541: /************** Forecasting *****not tested NB*************/
                   4542: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
                   4543:   
                   4544:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
                   4545:   int *popage;
                   4546:   double calagedatem, agelim, kk1, kk2;
                   4547:   double *popeffectif,*popcount;
                   4548:   double ***p3mat,***tabpop,***tabpopprev;
                   4549:   double ***mobaverage;
                   4550:   char filerespop[FILENAMELENGTH];
                   4551: 
                   4552:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4553:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4554:   agelim=AGESUP;
                   4555:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
                   4556:   
                   4557:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   4558:   
                   4559:   
                   4560:   strcpy(filerespop,"pop"); 
                   4561:   strcat(filerespop,fileres);
                   4562:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
                   4563:     printf("Problem with forecast resultfile: %s\n", filerespop);
                   4564:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
                   4565:   }
                   4566:   printf("Computing forecasting: result on file '%s' \n", filerespop);
                   4567:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
                   4568: 
                   4569:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   4570: 
                   4571:   if (mobilav!=0) {
                   4572:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4573:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   4574:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   4575:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   4576:     }
                   4577:   }
                   4578: 
                   4579:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   4580:   if (stepm<=12) stepsize=1;
                   4581:   
                   4582:   agelim=AGESUP;
                   4583:   
                   4584:   hstepm=1;
                   4585:   hstepm=hstepm/stepm; 
                   4586:   
                   4587:   if (popforecast==1) {
                   4588:     if((ficpop=fopen(popfile,"r"))==NULL) {
                   4589:       printf("Problem with population file : %s\n",popfile);exit(0);
                   4590:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                   4591:     } 
                   4592:     popage=ivector(0,AGESUP);
                   4593:     popeffectif=vector(0,AGESUP);
                   4594:     popcount=vector(0,AGESUP);
                   4595:     
                   4596:     i=1;   
                   4597:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
                   4598:    
                   4599:     imx=i;
                   4600:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
                   4601:   }
                   4602: 
                   4603:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
                   4604:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   4605:       k=k+1;
                   4606:       fprintf(ficrespop,"\n#******");
                   4607:       for(j=1;j<=cptcoveff;j++) {
                   4608:        fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   4609:       }
                   4610:       fprintf(ficrespop,"******\n");
                   4611:       fprintf(ficrespop,"# Age");
                   4612:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
                   4613:       if (popforecast==1)  fprintf(ficrespop," [Population]");
                   4614:       
                   4615:       for (cpt=0; cpt<=0;cpt++) { 
                   4616:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   4617:        
                   4618:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
                   4619:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   4620:          nhstepm = nhstepm/hstepm; 
                   4621:          
                   4622:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4623:          oldm=oldms;savm=savms;
                   4624:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   4625:        
                   4626:          for (h=0; h<=nhstepm; h++){
                   4627:            if (h==(int) (calagedatem+YEARM*cpt)) {
                   4628:              fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   4629:            } 
                   4630:            for(j=1; j<=nlstate+ndeath;j++) {
                   4631:              kk1=0.;kk2=0;
                   4632:              for(i=1; i<=nlstate;i++) {              
                   4633:                if (mobilav==1) 
                   4634:                  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   4635:                else {
                   4636:                  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   4637:                }
                   4638:              }
                   4639:              if (h==(int)(calagedatem+12*cpt)){
                   4640:                tabpop[(int)(agedeb)][j][cptcod]=kk1;
                   4641:                  /*fprintf(ficrespop," %.3f", kk1);
                   4642:                    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                   4643:              }
                   4644:            }
                   4645:            for(i=1; i<=nlstate;i++){
                   4646:              kk1=0.;
                   4647:                for(j=1; j<=nlstate;j++){
                   4648:                  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   4649:                }
                   4650:                  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
                   4651:            }
                   4652: 
                   4653:            if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                   4654:              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
                   4655:          }
                   4656:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4657:        }
                   4658:       }
                   4659:  
                   4660:   /******/
                   4661: 
                   4662:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
                   4663:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   4664:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
                   4665:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   4666:          nhstepm = nhstepm/hstepm; 
                   4667:          
                   4668:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4669:          oldm=oldms;savm=savms;
                   4670:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   4671:          for (h=0; h<=nhstepm; h++){
                   4672:            if (h==(int) (calagedatem+YEARM*cpt)) {
                   4673:              fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   4674:            } 
                   4675:            for(j=1; j<=nlstate+ndeath;j++) {
                   4676:              kk1=0.;kk2=0;
                   4677:              for(i=1; i<=nlstate;i++) {              
                   4678:                kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                   4679:              }
                   4680:              if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
                   4681:            }
                   4682:          }
                   4683:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4684:        }
                   4685:       }
                   4686:    } 
                   4687:   }
                   4688:  
                   4689:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4690: 
                   4691:   if (popforecast==1) {
                   4692:     free_ivector(popage,0,AGESUP);
                   4693:     free_vector(popeffectif,0,AGESUP);
                   4694:     free_vector(popcount,0,AGESUP);
                   4695:   }
                   4696:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4697:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4698:   fclose(ficrespop);
                   4699: } /* End of popforecast */
                   4700: 
                   4701: int fileappend(FILE *fichier, char *optionfich)
                   4702: {
                   4703:   if((fichier=fopen(optionfich,"a"))==NULL) {
                   4704:     printf("Problem with file: %s\n", optionfich);
                   4705:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
                   4706:     return (0);
                   4707:   }
                   4708:   fflush(fichier);
                   4709:   return (1);
                   4710: }
                   4711: 
                   4712: 
                   4713: /**************** function prwizard **********************/
                   4714: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
                   4715: {
                   4716: 
                   4717:   /* Wizard to print covariance matrix template */
                   4718: 
1.164     brouard  4719:   char ca[32], cb[32];
                   4720:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
1.126     brouard  4721:   int numlinepar;
                   4722: 
                   4723:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4724:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4725:   for(i=1; i <=nlstate; i++){
                   4726:     jj=0;
                   4727:     for(j=1; j <=nlstate+ndeath; j++){
                   4728:       if(j==i) continue;
                   4729:       jj++;
                   4730:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   4731:       printf("%1d%1d",i,j);
                   4732:       fprintf(ficparo,"%1d%1d",i,j);
                   4733:       for(k=1; k<=ncovmodel;k++){
                   4734:        /*        printf(" %lf",param[i][j][k]); */
                   4735:        /*        fprintf(ficparo," %lf",param[i][j][k]); */
                   4736:        printf(" 0.");
                   4737:        fprintf(ficparo," 0.");
                   4738:       }
                   4739:       printf("\n");
                   4740:       fprintf(ficparo,"\n");
                   4741:     }
                   4742:   }
                   4743:   printf("# Scales (for hessian or gradient estimation)\n");
                   4744:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   4745:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
                   4746:   for(i=1; i <=nlstate; i++){
                   4747:     jj=0;
                   4748:     for(j=1; j <=nlstate+ndeath; j++){
                   4749:       if(j==i) continue;
                   4750:       jj++;
                   4751:       fprintf(ficparo,"%1d%1d",i,j);
                   4752:       printf("%1d%1d",i,j);
                   4753:       fflush(stdout);
                   4754:       for(k=1; k<=ncovmodel;k++){
                   4755:        /*      printf(" %le",delti3[i][j][k]); */
                   4756:        /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   4757:        printf(" 0.");
                   4758:        fprintf(ficparo," 0.");
                   4759:       }
                   4760:       numlinepar++;
                   4761:       printf("\n");
                   4762:       fprintf(ficparo,"\n");
                   4763:     }
                   4764:   }
                   4765:   printf("# Covariance matrix\n");
                   4766: /* # 121 Var(a12)\n\ */
                   4767: /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   4768: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   4769: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   4770: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   4771: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   4772: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   4773: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   4774:   fflush(stdout);
                   4775:   fprintf(ficparo,"# Covariance matrix\n");
                   4776:   /* # 121 Var(a12)\n\ */
                   4777:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   4778:   /* #   ...\n\ */
                   4779:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   4780:   
                   4781:   for(itimes=1;itimes<=2;itimes++){
                   4782:     jj=0;
                   4783:     for(i=1; i <=nlstate; i++){
                   4784:       for(j=1; j <=nlstate+ndeath; j++){
                   4785:        if(j==i) continue;
                   4786:        for(k=1; k<=ncovmodel;k++){
                   4787:          jj++;
                   4788:          ca[0]= k+'a'-1;ca[1]='\0';
                   4789:          if(itimes==1){
                   4790:            printf("#%1d%1d%d",i,j,k);
                   4791:            fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   4792:          }else{
                   4793:            printf("%1d%1d%d",i,j,k);
                   4794:            fprintf(ficparo,"%1d%1d%d",i,j,k);
                   4795:            /*  printf(" %.5le",matcov[i][j]); */
                   4796:          }
                   4797:          ll=0;
                   4798:          for(li=1;li <=nlstate; li++){
                   4799:            for(lj=1;lj <=nlstate+ndeath; lj++){
                   4800:              if(lj==li) continue;
                   4801:              for(lk=1;lk<=ncovmodel;lk++){
                   4802:                ll++;
                   4803:                if(ll<=jj){
                   4804:                  cb[0]= lk +'a'-1;cb[1]='\0';
                   4805:                  if(ll<jj){
                   4806:                    if(itimes==1){
                   4807:                      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4808:                      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4809:                    }else{
                   4810:                      printf(" 0.");
                   4811:                      fprintf(ficparo," 0.");
                   4812:                    }
                   4813:                  }else{
                   4814:                    if(itimes==1){
                   4815:                      printf(" Var(%s%1d%1d)",ca,i,j);
                   4816:                      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                   4817:                    }else{
                   4818:                      printf(" 0.");
                   4819:                      fprintf(ficparo," 0.");
                   4820:                    }
                   4821:                  }
                   4822:                }
                   4823:              } /* end lk */
                   4824:            } /* end lj */
                   4825:          } /* end li */
                   4826:          printf("\n");
                   4827:          fprintf(ficparo,"\n");
                   4828:          numlinepar++;
                   4829:        } /* end k*/
                   4830:       } /*end j */
                   4831:     } /* end i */
                   4832:   } /* end itimes */
                   4833: 
                   4834: } /* end of prwizard */
                   4835: /******************* Gompertz Likelihood ******************************/
                   4836: double gompertz(double x[])
                   4837: { 
                   4838:   double A,B,L=0.0,sump=0.,num=0.;
                   4839:   int i,n=0; /* n is the size of the sample */
                   4840: 
                   4841:   for (i=0;i<=imx-1 ; i++) {
                   4842:     sump=sump+weight[i];
                   4843:     /*    sump=sump+1;*/
                   4844:     num=num+1;
                   4845:   }
                   4846:  
                   4847:  
                   4848:   /* for (i=0; i<=imx; i++) 
                   4849:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   4850: 
                   4851:   for (i=1;i<=imx ; i++)
                   4852:     {
                   4853:       if (cens[i] == 1 && wav[i]>1)
                   4854:        A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
                   4855:       
                   4856:       if (cens[i] == 0 && wav[i]>1)
                   4857:        A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                   4858:             +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
                   4859:       
                   4860:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   4861:       if (wav[i] > 1 ) { /* ??? */
                   4862:        L=L+A*weight[i];
                   4863:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   4864:       }
                   4865:     }
                   4866: 
                   4867:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   4868:  
                   4869:   return -2*L*num/sump;
                   4870: }
                   4871: 
1.136     brouard  4872: #ifdef GSL
                   4873: /******************* Gompertz_f Likelihood ******************************/
                   4874: double gompertz_f(const gsl_vector *v, void *params)
                   4875: { 
                   4876:   double A,B,LL=0.0,sump=0.,num=0.;
                   4877:   double *x= (double *) v->data;
                   4878:   int i,n=0; /* n is the size of the sample */
                   4879: 
                   4880:   for (i=0;i<=imx-1 ; i++) {
                   4881:     sump=sump+weight[i];
                   4882:     /*    sump=sump+1;*/
                   4883:     num=num+1;
                   4884:   }
                   4885:  
                   4886:  
                   4887:   /* for (i=0; i<=imx; i++) 
                   4888:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   4889:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
                   4890:   for (i=1;i<=imx ; i++)
                   4891:     {
                   4892:       if (cens[i] == 1 && wav[i]>1)
                   4893:        A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
                   4894:       
                   4895:       if (cens[i] == 0 && wav[i]>1)
                   4896:        A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                   4897:             +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
                   4898:       
                   4899:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   4900:       if (wav[i] > 1 ) { /* ??? */
                   4901:        LL=LL+A*weight[i];
                   4902:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   4903:       }
                   4904:     }
                   4905: 
                   4906:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   4907:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
                   4908:  
                   4909:   return -2*LL*num/sump;
                   4910: }
                   4911: #endif
                   4912: 
1.126     brouard  4913: /******************* Printing html file ***********/
                   4914: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                   4915:                  int lastpass, int stepm, int weightopt, char model[],\
                   4916:                  int imx,  double p[],double **matcov,double agemortsup){
                   4917:   int i,k;
                   4918: 
                   4919:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
                   4920:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
                   4921:   for (i=1;i<=2;i++) 
                   4922:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   4923:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
                   4924:   fprintf(fichtm,"</ul>");
                   4925: 
                   4926: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
                   4927: 
                   4928:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
                   4929: 
                   4930:  for (k=agegomp;k<(agemortsup-2);k++) 
                   4931:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   4932: 
                   4933:  
                   4934:   fflush(fichtm);
                   4935: }
                   4936: 
                   4937: /******************* Gnuplot file **************/
                   4938: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                   4939: 
                   4940:   char dirfileres[132],optfileres[132];
1.164     brouard  4941: 
1.126     brouard  4942:   int ng;
                   4943: 
                   4944: 
                   4945:   /*#ifdef windows */
                   4946:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   4947:     /*#endif */
                   4948: 
                   4949: 
                   4950:   strcpy(dirfileres,optionfilefiname);
                   4951:   strcpy(optfileres,"vpl");
                   4952:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
                   4953:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
1.145     brouard  4954:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
                   4955:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
1.126     brouard  4956:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
                   4957: 
                   4958: } 
                   4959: 
1.136     brouard  4960: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
                   4961: {
1.126     brouard  4962: 
1.136     brouard  4963:   /*-------- data file ----------*/
                   4964:   FILE *fic;
                   4965:   char dummy[]="                         ";
1.164     brouard  4966:   int i=0, j=0, n=0;
1.136     brouard  4967:   int linei, month, year,iout;
                   4968:   char line[MAXLINE], linetmp[MAXLINE];
1.164     brouard  4969:   char stra[MAXLINE], strb[MAXLINE];
1.136     brouard  4970:   char *stratrunc;
                   4971:   int lstra;
1.126     brouard  4972: 
                   4973: 
1.136     brouard  4974:   if((fic=fopen(datafile,"r"))==NULL)    {
                   4975:     printf("Problem while opening datafile: %s\n", datafile);return 1;
                   4976:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
                   4977:   }
1.126     brouard  4978: 
1.136     brouard  4979:   i=1;
                   4980:   linei=0;
                   4981:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
                   4982:     linei=linei+1;
                   4983:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
                   4984:       if(line[j] == '\t')
                   4985:        line[j] = ' ';
                   4986:     }
                   4987:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
                   4988:       ;
                   4989:     };
                   4990:     line[j+1]=0;  /* Trims blanks at end of line */
                   4991:     if(line[0]=='#'){
                   4992:       fprintf(ficlog,"Comment line\n%s\n",line);
                   4993:       printf("Comment line\n%s\n",line);
                   4994:       continue;
                   4995:     }
                   4996:     trimbb(linetmp,line); /* Trims multiple blanks in line */
1.164     brouard  4997:     strcpy(line, linetmp);
1.136     brouard  4998:   
1.126     brouard  4999: 
1.136     brouard  5000:     for (j=maxwav;j>=1;j--){
1.137     brouard  5001:       cutv(stra, strb, line, ' '); 
1.136     brouard  5002:       if(strb[0]=='.') { /* Missing status */
                   5003:        lval=-1;
                   5004:       }else{
                   5005:        errno=0;
                   5006:        lval=strtol(strb,&endptr,10); 
                   5007:       /*       if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                   5008:        if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  5009:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
                   5010:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
1.136     brouard  5011:          return 1;
                   5012:        }
                   5013:       }
                   5014:       s[j][i]=lval;
                   5015:       
                   5016:       strcpy(line,stra);
                   5017:       cutv(stra, strb,line,' ');
                   5018:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
                   5019:       }
1.145     brouard  5020:       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
1.136     brouard  5021:        month=99;
                   5022:        year=9999;
                   5023:       }else{
1.141     brouard  5024:        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
                   5025:        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
1.136     brouard  5026:        return 1;
                   5027:       }
                   5028:       anint[j][i]= (double) year; 
                   5029:       mint[j][i]= (double)month; 
                   5030:       strcpy(line,stra);
                   5031:     } /* ENd Waves */
                   5032:     
                   5033:     cutv(stra, strb,line,' '); 
                   5034:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
                   5035:     }
                   5036:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
                   5037:       month=99;
                   5038:       year=9999;
                   5039:     }else{
1.141     brouard  5040:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
                   5041:        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.136     brouard  5042:        return 1;
                   5043:     }
                   5044:     andc[i]=(double) year; 
                   5045:     moisdc[i]=(double) month; 
                   5046:     strcpy(line,stra);
                   5047:     
                   5048:     cutv(stra, strb,line,' '); 
                   5049:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
                   5050:     }
1.145     brouard  5051:     else  if(iout=sscanf(strb,"%s.", dummy) != 0){
1.136     brouard  5052:       month=99;
                   5053:       year=9999;
                   5054:     }else{
1.141     brouard  5055:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
                   5056:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.136     brouard  5057:        return 1;
                   5058:     }
                   5059:     if (year==9999) {
1.141     brouard  5060:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
                   5061:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.136     brouard  5062:        return 1;
1.126     brouard  5063: 
1.136     brouard  5064:     }
                   5065:     annais[i]=(double)(year);
                   5066:     moisnais[i]=(double)(month); 
                   5067:     strcpy(line,stra);
                   5068:     
                   5069:     cutv(stra, strb,line,' '); 
                   5070:     errno=0;
                   5071:     dval=strtod(strb,&endptr); 
                   5072:     if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  5073:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
                   5074:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
1.136     brouard  5075:       fflush(ficlog);
                   5076:       return 1;
                   5077:     }
                   5078:     weight[i]=dval; 
                   5079:     strcpy(line,stra);
                   5080:     
                   5081:     for (j=ncovcol;j>=1;j--){
                   5082:       cutv(stra, strb,line,' '); 
                   5083:       if(strb[0]=='.') { /* Missing status */
                   5084:        lval=-1;
                   5085:       }else{
                   5086:        errno=0;
                   5087:        lval=strtol(strb,&endptr,10); 
                   5088:        if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  5089:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
                   5090:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
1.136     brouard  5091:          return 1;
                   5092:        }
                   5093:       }
                   5094:       if(lval <-1 || lval >1){
1.141     brouard  5095:        printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  5096:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   5097:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
                   5098:  For example, for multinomial values like 1, 2 and 3,\n \
                   5099:  build V1=0 V2=0 for the reference value (1),\n \
                   5100:         V1=1 V2=0 for (2) \n \
                   5101:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
                   5102:  output of IMaCh is often meaningless.\n \
                   5103:  Exiting.\n",lval,linei, i,line,j);
1.141     brouard  5104:        fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  5105:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   5106:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
                   5107:  For example, for multinomial values like 1, 2 and 3,\n \
                   5108:  build V1=0 V2=0 for the reference value (1),\n \
                   5109:         V1=1 V2=0 for (2) \n \
                   5110:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
                   5111:  output of IMaCh is often meaningless.\n \
                   5112:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
                   5113:        return 1;
                   5114:       }
                   5115:       covar[j][i]=(double)(lval);
                   5116:       strcpy(line,stra);
                   5117:     }  
                   5118:     lstra=strlen(stra);
                   5119:      
                   5120:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                   5121:       stratrunc = &(stra[lstra-9]);
                   5122:       num[i]=atol(stratrunc);
                   5123:     }
                   5124:     else
                   5125:       num[i]=atol(stra);
                   5126:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
                   5127:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
                   5128:     
                   5129:     i=i+1;
                   5130:   } /* End loop reading  data */
1.126     brouard  5131: 
1.136     brouard  5132:   *imax=i-1; /* Number of individuals */
                   5133:   fclose(fic);
                   5134:  
                   5135:   return (0);
1.164     brouard  5136:   /* endread: */
1.136     brouard  5137:     printf("Exiting readdata: ");
                   5138:     fclose(fic);
                   5139:     return (1);
1.126     brouard  5140: 
                   5141: 
                   5142: 
1.136     brouard  5143: }
1.145     brouard  5144: void removespace(char *str) {
                   5145:   char *p1 = str, *p2 = str;
                   5146:   do
                   5147:     while (*p2 == ' ')
                   5148:       p2++;
                   5149:   while (*p1++ = *p2++);
                   5150: }
                   5151: 
                   5152: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
                   5153:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
                   5154:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
                   5155:    * - cptcovn or number of covariates k of the models excluding age*products =6
                   5156:    * - cptcovage number of covariates with age*products =2
                   5157:    * - cptcovs number of simple covariates
                   5158:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
                   5159:    *     which is a new column after the 9 (ncovcol) variables. 
                   5160:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
                   5161:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
                   5162:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
                   5163:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
                   5164:  */
1.136     brouard  5165: {
1.145     brouard  5166:   int i, j, k, ks;
1.164     brouard  5167:   int  j1, k1, k2;
1.136     brouard  5168:   char modelsav[80];
1.145     brouard  5169:   char stra[80], strb[80], strc[80], strd[80],stre[80];
1.136     brouard  5170: 
1.145     brouard  5171:   /*removespace(model);*/
1.136     brouard  5172:   if (strlen(model) >1){ /* If there is at least 1 covariate */
1.145     brouard  5173:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
                   5174:     j=nbocc(model,'+'); /**< j=Number of '+' */
                   5175:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
                   5176:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
                   5177:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                   5178:                   /* including age products which are counted in cptcovage.
                   5179:                  /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
                   5180:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
                   5181:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
1.136     brouard  5182:     strcpy(modelsav,model); 
1.137     brouard  5183:     if (strstr(model,"AGE") !=0){
                   5184:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
                   5185:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
1.136     brouard  5186:       return 1;
                   5187:     }
1.141     brouard  5188:     if (strstr(model,"v") !=0){
                   5189:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
                   5190:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
                   5191:       return 1;
                   5192:     }
1.136     brouard  5193:     
1.145     brouard  5194:     /*   Design
                   5195:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
                   5196:      *  <          ncovcol=8                >
                   5197:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
                   5198:      *   k=  1    2      3       4     5       6      7        8
                   5199:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
                   5200:      *  covar[k,i], value of kth covariate if not including age for individual i:
                   5201:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
                   5202:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
                   5203:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
                   5204:      *  Tage[++cptcovage]=k
                   5205:      *       if products, new covar are created after ncovcol with k1
                   5206:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
                   5207:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
                   5208:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
                   5209:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
                   5210:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
                   5211:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
                   5212:      *  <          ncovcol=8                >
                   5213:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
                   5214:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
                   5215:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
                   5216:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
                   5217:      * p Tprod[1]@2={                         6, 5}
                   5218:      *p Tvard[1][1]@4= {7, 8, 5, 6}
                   5219:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
                   5220:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   5221:      *How to reorganize?
                   5222:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
                   5223:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
                   5224:      *       {2,   1,     4,      8,    5,      6,     3,       7}
                   5225:      * Struct []
                   5226:      */
                   5227: 
1.136     brouard  5228:     /* This loop fills the array Tvar from the string 'model'.*/
                   5229:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
1.137     brouard  5230:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
                   5231:     /*         k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
                   5232:     /*         k=3 V4 Tvar[k=3]= 4 (from V4) */
                   5233:     /*         k=2 V1 Tvar[k=2]= 1 (from V1) */
                   5234:     /*         k=1 Tvar[1]=2 (from V2) */
                   5235:     /*         k=5 Tvar[5] */
                   5236:     /* for (k=1; k<=cptcovn;k++) { */
                   5237:     /*         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
                   5238:     /*         } */
                   5239:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
1.145     brouard  5240:     /*
                   5241:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
                   5242:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
                   5243:         Tvar[k]=0;
                   5244:     cptcovage=0;
                   5245:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
                   5246:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                   5247:                                     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
1.137     brouard  5248:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
1.136     brouard  5249:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
                   5250:       /*scanf("%d",i);*/
1.145     brouard  5251:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
                   5252:        cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
                   5253:        if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
                   5254:          /* covar is not filled and then is empty */
1.136     brouard  5255:          cptcovprod--;
1.145     brouard  5256:          cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
                   5257:          Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
1.136     brouard  5258:          cptcovage++; /* Sums the number of covariates which include age as a product */
1.137     brouard  5259:          Tage[cptcovage]=k;  /* Tage[1] = 4 */
1.136     brouard  5260:          /*printf("stre=%s ", stre);*/
1.137     brouard  5261:        } else if (strcmp(strd,"age")==0) { /* or age*Vn */
1.136     brouard  5262:          cptcovprod--;
1.145     brouard  5263:          cutl(stre,strb,strc,'V');
1.136     brouard  5264:          Tvar[k]=atoi(stre);
                   5265:          cptcovage++;
                   5266:          Tage[cptcovage]=k;
1.137     brouard  5267:        } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
                   5268:          /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
1.145     brouard  5269:          cptcovn++;
                   5270:          cptcovprodnoage++;k1++;
                   5271:          cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
                   5272:          Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
1.137     brouard  5273:                                  because this model-covariate is a construction we invent a new column
                   5274:                                  ncovcol + k1
                   5275:                                  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                   5276:                                  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
1.145     brouard  5277:          cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
1.137     brouard  5278:          Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
1.145     brouard  5279:          Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
                   5280:          Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
                   5281:          k2=k2+2;
                   5282:          Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
                   5283:          Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
1.137     brouard  5284:          for (i=1; i<=lastobs;i++){
                   5285:            /* Computes the new covariate which is a product of
1.145     brouard  5286:               covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
1.136     brouard  5287:            covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
1.137     brouard  5288:          }
                   5289:        } /* End age is not in the model */
                   5290:       } /* End if model includes a product */
1.136     brouard  5291:       else { /* no more sum */
                   5292:        /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                   5293:        /*  scanf("%d",i);*/
1.145     brouard  5294:        cutl(strd,strc,strb,'V');
                   5295:        ks++; /**< Number of simple covariates */
                   5296:        cptcovn++;
                   5297:        Tvar[k]=atoi(strd);
1.136     brouard  5298:       }
1.137     brouard  5299:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
1.136     brouard  5300:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                   5301:        scanf("%d",i);*/
                   5302:     } /* end of loop + */
                   5303:   } /* end model */
                   5304:   
                   5305:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                   5306:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
                   5307: 
                   5308:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
                   5309:   printf("cptcovprod=%d ", cptcovprod);
                   5310:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
                   5311: 
                   5312:   scanf("%d ",i);*/
                   5313: 
                   5314: 
1.137     brouard  5315:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
1.164     brouard  5316:   /*endread:*/
1.136     brouard  5317:     printf("Exiting decodemodel: ");
                   5318:     return (1);
                   5319: }
                   5320: 
                   5321: calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
                   5322: {
                   5323:   int i, m;
                   5324: 
                   5325:   for (i=1; i<=imx; i++) {
                   5326:     for(m=2; (m<= maxwav); m++) {
                   5327:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
                   5328:        anint[m][i]=9999;
                   5329:        s[m][i]=-1;
                   5330:       }
                   5331:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
                   5332:        *nberr++;
                   5333:        printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                   5334:        fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                   5335:        s[m][i]=-1;
                   5336:       }
                   5337:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
                   5338:        *nberr++;
                   5339:        printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
                   5340:        fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
                   5341:        s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
                   5342:       }
                   5343:     }
                   5344:   }
                   5345: 
                   5346:   for (i=1; i<=imx; i++)  {
                   5347:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
                   5348:     for(m=firstpass; (m<= lastpass); m++){
                   5349:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
                   5350:        if (s[m][i] >= nlstate+1) {
                   5351:          if(agedc[i]>0)
                   5352:            if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                   5353:              agev[m][i]=agedc[i];
                   5354:          /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                   5355:            else {
                   5356:              if ((int)andc[i]!=9999){
                   5357:                nbwarn++;
                   5358:                printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   5359:                fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   5360:                agev[m][i]=-1;
                   5361:              }
                   5362:            }
                   5363:        }
                   5364:        else if(s[m][i] !=9){ /* Standard case, age in fractional
                   5365:                                 years but with the precision of a month */
                   5366:          agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                   5367:          if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
                   5368:            agev[m][i]=1;
                   5369:          else if(agev[m][i] < *agemin){ 
                   5370:            *agemin=agev[m][i];
                   5371:            printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
                   5372:          }
                   5373:          else if(agev[m][i] >*agemax){
                   5374:            *agemax=agev[m][i];
1.156     brouard  5375:            /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
1.136     brouard  5376:          }
                   5377:          /*agev[m][i]=anint[m][i]-annais[i];*/
                   5378:          /*     agev[m][i] = age[i]+2*m;*/
                   5379:        }
                   5380:        else { /* =9 */
                   5381:          agev[m][i]=1;
                   5382:          s[m][i]=-1;
                   5383:        }
                   5384:       }
                   5385:       else /*= 0 Unknown */
                   5386:        agev[m][i]=1;
                   5387:     }
                   5388:     
                   5389:   }
                   5390:   for (i=1; i<=imx; i++)  {
                   5391:     for(m=firstpass; (m<=lastpass); m++){
                   5392:       if (s[m][i] > (nlstate+ndeath)) {
                   5393:        *nberr++;
                   5394:        printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   5395:        fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   5396:        return 1;
                   5397:       }
                   5398:     }
                   5399:   }
                   5400: 
                   5401:   /*for (i=1; i<=imx; i++){
                   5402:   for (m=firstpass; (m<lastpass); m++){
                   5403:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
                   5404: }
                   5405: 
                   5406: }*/
                   5407: 
                   5408: 
1.139     brouard  5409:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
                   5410:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
1.136     brouard  5411: 
                   5412:   return (0);
1.164     brouard  5413:  /* endread:*/
1.136     brouard  5414:     printf("Exiting calandcheckages: ");
                   5415:     return (1);
                   5416: }
                   5417: 
                   5418: 
                   5419: /***********************************************/
                   5420: /**************** Main Program *****************/
                   5421: /***********************************************/
                   5422: 
                   5423: int main(int argc, char *argv[])
                   5424: {
                   5425: #ifdef GSL
                   5426:   const gsl_multimin_fminimizer_type *T;
                   5427:   size_t iteri = 0, it;
                   5428:   int rval = GSL_CONTINUE;
                   5429:   int status = GSL_SUCCESS;
                   5430:   double ssval;
                   5431: #endif
                   5432:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
1.164     brouard  5433:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
                   5434: 
                   5435:   int jj, ll, li, lj, lk;
1.136     brouard  5436:   int numlinepar=0; /* Current linenumber of parameter file */
                   5437:   int itimes;
                   5438:   int NDIM=2;
                   5439:   int vpopbased=0;
                   5440: 
1.164     brouard  5441:   char ca[32], cb[32];
1.136     brouard  5442:   /*  FILE *fichtm; *//* Html File */
                   5443:   /* FILE *ficgp;*/ /*Gnuplot File */
                   5444:   struct stat info;
1.164     brouard  5445:   double agedeb;
1.136     brouard  5446:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
                   5447: 
1.165     brouard  5448:   double fret;
1.136     brouard  5449:   double dum; /* Dummy variable */
                   5450:   double ***p3mat;
                   5451:   double ***mobaverage;
1.164     brouard  5452: 
                   5453:   char line[MAXLINE];
1.136     brouard  5454:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
                   5455:   char pathr[MAXLINE], pathimach[MAXLINE]; 
1.164     brouard  5456:   char *tok, *val; /* pathtot */
1.136     brouard  5457:   int firstobs=1, lastobs=10;
1.164     brouard  5458:   int c,  h , cpt;
                   5459:   int jl;
                   5460:   int i1, j1, jk, stepsize;
                   5461:   int *tab; 
1.136     brouard  5462:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
                   5463:   int mobilav=0,popforecast=0;
                   5464:   int hstepm, nhstepm;
                   5465:   int agemortsup;
                   5466:   float  sumlpop=0.;
                   5467:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
                   5468:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
                   5469: 
1.164     brouard  5470:   double bage=0, fage=110, age, agelim, agebase;
1.136     brouard  5471:   double ftolpl=FTOL;
                   5472:   double **prlim;
                   5473:   double ***param; /* Matrix of parameters */
                   5474:   double  *p;
                   5475:   double **matcov; /* Matrix of covariance */
                   5476:   double ***delti3; /* Scale */
                   5477:   double *delti; /* Scale */
                   5478:   double ***eij, ***vareij;
                   5479:   double **varpl; /* Variances of prevalence limits by age */
                   5480:   double *epj, vepp;
1.164     brouard  5481: 
1.136     brouard  5482:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
                   5483:   double **ximort;
1.145     brouard  5484:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
1.136     brouard  5485:   int *dcwave;
                   5486: 
1.164     brouard  5487:   char z[1]="c";
1.136     brouard  5488: 
                   5489:   /*char  *strt;*/
                   5490:   char strtend[80];
1.126     brouard  5491: 
1.164     brouard  5492: 
1.126     brouard  5493: /*   setlocale (LC_ALL, ""); */
                   5494: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                   5495: /*   textdomain (PACKAGE); */
                   5496: /*   setlocale (LC_CTYPE, ""); */
                   5497: /*   setlocale (LC_MESSAGES, ""); */
                   5498: 
                   5499:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
1.157     brouard  5500:   rstart_time = time(NULL);  
                   5501:   /*  (void) gettimeofday(&start_time,&tzp);*/
                   5502:   start_time = *localtime(&rstart_time);
1.126     brouard  5503:   curr_time=start_time;
1.157     brouard  5504:   /*tml = *localtime(&start_time.tm_sec);*/
                   5505:   /* strcpy(strstart,asctime(&tml)); */
                   5506:   strcpy(strstart,asctime(&start_time));
1.126     brouard  5507: 
                   5508: /*  printf("Localtime (at start)=%s",strstart); */
1.157     brouard  5509: /*  tp.tm_sec = tp.tm_sec +86400; */
                   5510: /*  tm = *localtime(&start_time.tm_sec); */
1.126     brouard  5511: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                   5512: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                   5513: /*   tmg.tm_hour=tmg.tm_hour + 1; */
1.157     brouard  5514: /*   tp.tm_sec = mktime(&tmg); */
1.126     brouard  5515: /*   strt=asctime(&tmg); */
                   5516: /*   printf("Time(after) =%s",strstart);  */
                   5517: /*  (void) time (&time_value);
                   5518: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
                   5519: *  tm = *localtime(&time_value);
                   5520: *  strstart=asctime(&tm);
                   5521: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
                   5522: */
                   5523: 
                   5524:   nberr=0; /* Number of errors and warnings */
                   5525:   nbwarn=0;
                   5526:   getcwd(pathcd, size);
                   5527: 
                   5528:   printf("\n%s\n%s",version,fullversion);
                   5529:   if(argc <=1){
                   5530:     printf("\nEnter the parameter file name: ");
                   5531:     fgets(pathr,FILENAMELENGTH,stdin);
                   5532:     i=strlen(pathr);
                   5533:     if(pathr[i-1]=='\n')
                   5534:       pathr[i-1]='\0';
1.156     brouard  5535:     i=strlen(pathr);
                   5536:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
                   5537:       pathr[i-1]='\0';
1.126     brouard  5538:    for (tok = pathr; tok != NULL; ){
                   5539:       printf("Pathr |%s|\n",pathr);
                   5540:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
                   5541:       printf("val= |%s| pathr=%s\n",val,pathr);
                   5542:       strcpy (pathtot, val);
                   5543:       if(pathr[0] == '\0') break; /* Dirty */
                   5544:     }
                   5545:   }
                   5546:   else{
                   5547:     strcpy(pathtot,argv[1]);
                   5548:   }
                   5549:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
                   5550:   /*cygwin_split_path(pathtot,path,optionfile);
                   5551:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
                   5552:   /* cutv(path,optionfile,pathtot,'\\');*/
                   5553: 
                   5554:   /* Split argv[0], imach program to get pathimach */
                   5555:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
                   5556:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   5557:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   5558:  /*   strcpy(pathimach,argv[0]); */
                   5559:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
                   5560:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
                   5561:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
                   5562:   chdir(path); /* Can be a relative path */
                   5563:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
                   5564:     printf("Current directory %s!\n",pathcd);
                   5565:   strcpy(command,"mkdir ");
                   5566:   strcat(command,optionfilefiname);
                   5567:   if((outcmd=system(command)) != 0){
                   5568:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
                   5569:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   5570:     /* fclose(ficlog); */
                   5571: /*     exit(1); */
                   5572:   }
                   5573: /*   if((imk=mkdir(optionfilefiname))<0){ */
                   5574: /*     perror("mkdir"); */
                   5575: /*   } */
                   5576: 
                   5577:   /*-------- arguments in the command line --------*/
                   5578: 
                   5579:   /* Log file */
                   5580:   strcat(filelog, optionfilefiname);
                   5581:   strcat(filelog,".log");    /* */
                   5582:   if((ficlog=fopen(filelog,"w"))==NULL)    {
                   5583:     printf("Problem with logfile %s\n",filelog);
                   5584:     goto end;
                   5585:   }
                   5586:   fprintf(ficlog,"Log filename:%s\n",filelog);
                   5587:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
                   5588:   fprintf(ficlog,"\nEnter the parameter file name: \n");
                   5589:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
                   5590:  path=%s \n\
                   5591:  optionfile=%s\n\
                   5592:  optionfilext=%s\n\
1.156     brouard  5593:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.126     brouard  5594: 
                   5595:   printf("Local time (at start):%s",strstart);
                   5596:   fprintf(ficlog,"Local time (at start): %s",strstart);
                   5597:   fflush(ficlog);
                   5598: /*   (void) gettimeofday(&curr_time,&tzp); */
1.157     brouard  5599: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
1.126     brouard  5600: 
                   5601:   /* */
                   5602:   strcpy(fileres,"r");
                   5603:   strcat(fileres, optionfilefiname);
                   5604:   strcat(fileres,".txt");    /* Other files have txt extension */
                   5605: 
                   5606:   /*---------arguments file --------*/
                   5607: 
                   5608:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
1.155     brouard  5609:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
                   5610:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
1.126     brouard  5611:     fflush(ficlog);
1.149     brouard  5612:     /* goto end; */
                   5613:     exit(70); 
1.126     brouard  5614:   }
                   5615: 
                   5616: 
                   5617: 
                   5618:   strcpy(filereso,"o");
                   5619:   strcat(filereso,fileres);
                   5620:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
                   5621:     printf("Problem with Output resultfile: %s\n", filereso);
                   5622:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
                   5623:     fflush(ficlog);
                   5624:     goto end;
                   5625:   }
                   5626: 
                   5627:   /* Reads comments: lines beginning with '#' */
                   5628:   numlinepar=0;
                   5629:   while((c=getc(ficpar))=='#' && c!= EOF){
                   5630:     ungetc(c,ficpar);
                   5631:     fgets(line, MAXLINE, ficpar);
                   5632:     numlinepar++;
1.141     brouard  5633:     fputs(line,stdout);
1.126     brouard  5634:     fputs(line,ficparo);
                   5635:     fputs(line,ficlog);
                   5636:   }
                   5637:   ungetc(c,ficpar);
                   5638: 
                   5639:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
                   5640:   numlinepar++;
                   5641:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
                   5642:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
                   5643:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
                   5644:   fflush(ficlog);
                   5645:   while((c=getc(ficpar))=='#' && c!= EOF){
                   5646:     ungetc(c,ficpar);
                   5647:     fgets(line, MAXLINE, ficpar);
                   5648:     numlinepar++;
1.141     brouard  5649:     fputs(line, stdout);
                   5650:     //puts(line);
1.126     brouard  5651:     fputs(line,ficparo);
                   5652:     fputs(line,ficlog);
                   5653:   }
                   5654:   ungetc(c,ficpar);
                   5655: 
                   5656:    
1.145     brouard  5657:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
1.136     brouard  5658:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
                   5659:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
                   5660:      v1+v2*age+v2*v3 makes cptcovn = 3
                   5661:   */
                   5662:   if (strlen(model)>1) 
1.145     brouard  5663:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
                   5664:   else
                   5665:     ncovmodel=2;
1.126     brouard  5666:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
1.133     brouard  5667:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
                   5668:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
1.131     brouard  5669:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
                   5670:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   5671:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   5672:     fflush(stdout);
                   5673:     fclose (ficlog);
                   5674:     goto end;
                   5675:   }
1.126     brouard  5676:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   5677:   delti=delti3[1][1];
                   5678:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
                   5679:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
                   5680:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   5681:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   5682:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   5683:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   5684:     fclose (ficparo);
                   5685:     fclose (ficlog);
                   5686:     goto end;
                   5687:     exit(0);
                   5688:   }
                   5689:   else if(mle==-3) {
                   5690:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   5691:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   5692:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   5693:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   5694:     matcov=matrix(1,npar,1,npar);
                   5695:   }
                   5696:   else{
1.145     brouard  5697:     /* Read guessed parameters */
1.126     brouard  5698:     /* Reads comments: lines beginning with '#' */
                   5699:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5700:       ungetc(c,ficpar);
                   5701:       fgets(line, MAXLINE, ficpar);
                   5702:       numlinepar++;
1.141     brouard  5703:       fputs(line,stdout);
1.126     brouard  5704:       fputs(line,ficparo);
                   5705:       fputs(line,ficlog);
                   5706:     }
                   5707:     ungetc(c,ficpar);
                   5708:     
                   5709:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   5710:     for(i=1; i <=nlstate; i++){
                   5711:       j=0;
                   5712:       for(jj=1; jj <=nlstate+ndeath; jj++){
                   5713:        if(jj==i) continue;
                   5714:        j++;
                   5715:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   5716:        if ((i1 != i) && (j1 != j)){
                   5717:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
                   5718: It might be a problem of design; if ncovcol and the model are correct\n \
                   5719: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
                   5720:          exit(1);
                   5721:        }
                   5722:        fprintf(ficparo,"%1d%1d",i1,j1);
                   5723:        if(mle==1)
                   5724:          printf("%1d%1d",i,j);
                   5725:        fprintf(ficlog,"%1d%1d",i,j);
                   5726:        for(k=1; k<=ncovmodel;k++){
                   5727:          fscanf(ficpar," %lf",&param[i][j][k]);
                   5728:          if(mle==1){
                   5729:            printf(" %lf",param[i][j][k]);
                   5730:            fprintf(ficlog," %lf",param[i][j][k]);
                   5731:          }
                   5732:          else
                   5733:            fprintf(ficlog," %lf",param[i][j][k]);
                   5734:          fprintf(ficparo," %lf",param[i][j][k]);
                   5735:        }
                   5736:        fscanf(ficpar,"\n");
                   5737:        numlinepar++;
                   5738:        if(mle==1)
                   5739:          printf("\n");
                   5740:        fprintf(ficlog,"\n");
                   5741:        fprintf(ficparo,"\n");
                   5742:       }
                   5743:     }  
                   5744:     fflush(ficlog);
                   5745: 
1.145     brouard  5746:     /* Reads scales values */
1.126     brouard  5747:     p=param[1][1];
                   5748:     
                   5749:     /* Reads comments: lines beginning with '#' */
                   5750:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5751:       ungetc(c,ficpar);
                   5752:       fgets(line, MAXLINE, ficpar);
                   5753:       numlinepar++;
1.141     brouard  5754:       fputs(line,stdout);
1.126     brouard  5755:       fputs(line,ficparo);
                   5756:       fputs(line,ficlog);
                   5757:     }
                   5758:     ungetc(c,ficpar);
                   5759: 
                   5760:     for(i=1; i <=nlstate; i++){
                   5761:       for(j=1; j <=nlstate+ndeath-1; j++){
                   5762:        fscanf(ficpar,"%1d%1d",&i1,&j1);
1.164     brouard  5763:        if ( (i1-i) * (j1-j) != 0){
1.126     brouard  5764:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   5765:          exit(1);
                   5766:        }
                   5767:        printf("%1d%1d",i,j);
                   5768:        fprintf(ficparo,"%1d%1d",i1,j1);
                   5769:        fprintf(ficlog,"%1d%1d",i1,j1);
                   5770:        for(k=1; k<=ncovmodel;k++){
                   5771:          fscanf(ficpar,"%le",&delti3[i][j][k]);
                   5772:          printf(" %le",delti3[i][j][k]);
                   5773:          fprintf(ficparo," %le",delti3[i][j][k]);
                   5774:          fprintf(ficlog," %le",delti3[i][j][k]);
                   5775:        }
                   5776:        fscanf(ficpar,"\n");
                   5777:        numlinepar++;
                   5778:        printf("\n");
                   5779:        fprintf(ficparo,"\n");
                   5780:        fprintf(ficlog,"\n");
                   5781:       }
                   5782:     }
                   5783:     fflush(ficlog);
                   5784: 
1.145     brouard  5785:     /* Reads covariance matrix */
1.126     brouard  5786:     delti=delti3[1][1];
                   5787: 
                   5788: 
                   5789:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                   5790:   
                   5791:     /* Reads comments: lines beginning with '#' */
                   5792:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5793:       ungetc(c,ficpar);
                   5794:       fgets(line, MAXLINE, ficpar);
                   5795:       numlinepar++;
1.141     brouard  5796:       fputs(line,stdout);
1.126     brouard  5797:       fputs(line,ficparo);
                   5798:       fputs(line,ficlog);
                   5799:     }
                   5800:     ungetc(c,ficpar);
                   5801:   
                   5802:     matcov=matrix(1,npar,1,npar);
1.131     brouard  5803:     for(i=1; i <=npar; i++)
                   5804:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
                   5805:       
1.126     brouard  5806:     for(i=1; i <=npar; i++){
1.145     brouard  5807:       fscanf(ficpar,"%s",str);
1.126     brouard  5808:       if(mle==1)
                   5809:        printf("%s",str);
                   5810:       fprintf(ficlog,"%s",str);
                   5811:       fprintf(ficparo,"%s",str);
                   5812:       for(j=1; j <=i; j++){
                   5813:        fscanf(ficpar," %le",&matcov[i][j]);
                   5814:        if(mle==1){
                   5815:          printf(" %.5le",matcov[i][j]);
                   5816:        }
                   5817:        fprintf(ficlog," %.5le",matcov[i][j]);
                   5818:        fprintf(ficparo," %.5le",matcov[i][j]);
                   5819:       }
                   5820:       fscanf(ficpar,"\n");
                   5821:       numlinepar++;
                   5822:       if(mle==1)
                   5823:        printf("\n");
                   5824:       fprintf(ficlog,"\n");
                   5825:       fprintf(ficparo,"\n");
                   5826:     }
                   5827:     for(i=1; i <=npar; i++)
                   5828:       for(j=i+1;j<=npar;j++)
                   5829:        matcov[i][j]=matcov[j][i];
                   5830:     
                   5831:     if(mle==1)
                   5832:       printf("\n");
                   5833:     fprintf(ficlog,"\n");
                   5834:     
                   5835:     fflush(ficlog);
                   5836:     
                   5837:     /*-------- Rewriting parameter file ----------*/
                   5838:     strcpy(rfileres,"r");    /* "Rparameterfile */
                   5839:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
                   5840:     strcat(rfileres,".");    /* */
                   5841:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
                   5842:     if((ficres =fopen(rfileres,"w"))==NULL) {
                   5843:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
                   5844:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
                   5845:     }
                   5846:     fprintf(ficres,"#%s\n",version);
                   5847:   }    /* End of mle != -3 */
                   5848: 
                   5849: 
                   5850:   n= lastobs;
                   5851:   num=lvector(1,n);
                   5852:   moisnais=vector(1,n);
                   5853:   annais=vector(1,n);
                   5854:   moisdc=vector(1,n);
                   5855:   andc=vector(1,n);
                   5856:   agedc=vector(1,n);
                   5857:   cod=ivector(1,n);
                   5858:   weight=vector(1,n);
                   5859:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
                   5860:   mint=matrix(1,maxwav,1,n);
                   5861:   anint=matrix(1,maxwav,1,n);
1.131     brouard  5862:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
1.126     brouard  5863:   tab=ivector(1,NCOVMAX);
1.144     brouard  5864:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.126     brouard  5865: 
1.136     brouard  5866:   /* Reads data from file datafile */
                   5867:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
                   5868:     goto end;
                   5869: 
                   5870:   /* Calculation of the number of parameters from char model */
1.137     brouard  5871:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
                   5872:        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
                   5873:        k=3 V4 Tvar[k=3]= 4 (from V4)
                   5874:        k=2 V1 Tvar[k=2]= 1 (from V1)
                   5875:        k=1 Tvar[1]=2 (from V2)
                   5876:     */
                   5877:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
                   5878:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
                   5879:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
                   5880:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
                   5881:   */
                   5882:   /* For model-covariate k tells which data-covariate to use but
                   5883:     because this model-covariate is a construction we invent a new column
                   5884:     ncovcol + k1
                   5885:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
                   5886:     Tvar[3=V1*V4]=4+1 etc */
1.145     brouard  5887:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
1.137     brouard  5888:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
                   5889:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
                   5890:   */
1.145     brouard  5891:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
                   5892:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
1.141     brouard  5893:                            * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                   5894:                            * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
1.145     brouard  5895:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
1.137     brouard  5896:                         4 covariates (3 plus signs)
                   5897:                         Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                   5898:                      */  
1.136     brouard  5899: 
                   5900:   if(decodemodel(model, lastobs) == 1)
                   5901:     goto end;
                   5902: 
1.137     brouard  5903:   if((double)(lastobs-imx)/(double)imx > 1.10){
                   5904:     nbwarn++;
                   5905:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   5906:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   5907:   }
1.136     brouard  5908:     /*  if(mle==1){*/
1.137     brouard  5909:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
                   5910:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
1.136     brouard  5911:   }
                   5912: 
                   5913:     /*-calculation of age at interview from date of interview and age at death -*/
                   5914:   agev=matrix(1,maxwav,1,imx);
                   5915: 
                   5916:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
                   5917:     goto end;
                   5918: 
1.126     brouard  5919: 
1.136     brouard  5920:   agegomp=(int)agemin;
                   5921:   free_vector(moisnais,1,n);
                   5922:   free_vector(annais,1,n);
1.126     brouard  5923:   /* free_matrix(mint,1,maxwav,1,n);
                   5924:      free_matrix(anint,1,maxwav,1,n);*/
                   5925:   free_vector(moisdc,1,n);
                   5926:   free_vector(andc,1,n);
1.145     brouard  5927:   /* */
                   5928:   
1.126     brouard  5929:   wav=ivector(1,imx);
                   5930:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
                   5931:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
                   5932:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
                   5933:    
                   5934:   /* Concatenates waves */
                   5935:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
1.145     brouard  5936:   /* */
                   5937:  
1.126     brouard  5938:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
                   5939: 
                   5940:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
                   5941:   ncodemax[1]=1;
1.145     brouard  5942:   Ndum =ivector(-1,NCOVMAX);  
                   5943:   if (ncovmodel > 2)
                   5944:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
                   5945: 
                   5946:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
                   5947:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
                   5948:   h=0;
                   5949: 
                   5950: 
                   5951:   /*if (cptcovn > 0) */
1.126     brouard  5952:       
1.145     brouard  5953:  
1.126     brouard  5954:   m=pow(2,cptcoveff);
                   5955:  
1.131     brouard  5956:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
1.143     brouard  5957:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
                   5958:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
                   5959:        for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
1.126     brouard  5960:          h++;
1.141     brouard  5961:          if (h>m) 
1.136     brouard  5962:            h=1;
1.144     brouard  5963:          /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
1.143     brouard  5964:           *     h     1     2     3     4
                   5965:           *______________________________  
                   5966:           *     1 i=1 1 i=1 1 i=1 1 i=1 1
                   5967:           *     2     2     1     1     1
                   5968:           *     3 i=2 1     2     1     1
                   5969:           *     4     2     2     1     1
                   5970:           *     5 i=3 1 i=2 1     2     1
                   5971:           *     6     2     1     2     1
                   5972:           *     7 i=4 1     2     2     1
                   5973:           *     8     2     2     2     1
                   5974:           *     9 i=5 1 i=3 1 i=2 1     1
                   5975:           *    10     2     1     1     1
                   5976:           *    11 i=6 1     2     1     1
                   5977:           *    12     2     2     1     1
                   5978:           *    13 i=7 1 i=4 1     2     1    
                   5979:           *    14     2     1     2     1
                   5980:           *    15 i=8 1     2     2     1
                   5981:           *    16     2     2     2     1
                   5982:           */
1.141     brouard  5983:          codtab[h][k]=j;
1.145     brouard  5984:          /*codtab[h][Tvar[k]]=j;*/
1.130     brouard  5985:          printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
1.126     brouard  5986:        } 
                   5987:       }
                   5988:     }
                   5989:   } 
                   5990:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
                   5991:      codtab[1][2]=1;codtab[2][2]=2; */
                   5992:   /* for(i=1; i <=m ;i++){ 
                   5993:      for(k=1; k <=cptcovn; k++){
1.131     brouard  5994:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
1.126     brouard  5995:      }
                   5996:      printf("\n");
                   5997:      }
                   5998:      scanf("%d",i);*/
1.145     brouard  5999: 
                   6000:  free_ivector(Ndum,-1,NCOVMAX);
                   6001: 
                   6002: 
1.126     brouard  6003:     
                   6004:   /*------------ gnuplot -------------*/
                   6005:   strcpy(optionfilegnuplot,optionfilefiname);
                   6006:   if(mle==-3)
                   6007:     strcat(optionfilegnuplot,"-mort");
                   6008:   strcat(optionfilegnuplot,".gp");
                   6009: 
                   6010:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
                   6011:     printf("Problem with file %s",optionfilegnuplot);
                   6012:   }
                   6013:   else{
                   6014:     fprintf(ficgp,"\n# %s\n", version); 
                   6015:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
1.141     brouard  6016:     //fprintf(ficgp,"set missing 'NaNq'\n");
                   6017:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
1.126     brouard  6018:   }
                   6019:   /*  fclose(ficgp);*/
                   6020:   /*--------- index.htm --------*/
                   6021: 
                   6022:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
                   6023:   if(mle==-3)
                   6024:     strcat(optionfilehtm,"-mort");
                   6025:   strcat(optionfilehtm,".htm");
                   6026:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
1.131     brouard  6027:     printf("Problem with %s \n",optionfilehtm);
                   6028:     exit(0);
1.126     brouard  6029:   }
                   6030: 
                   6031:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   6032:   strcat(optionfilehtmcov,"-cov.htm");
                   6033:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                   6034:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
                   6035:   }
                   6036:   else{
                   6037:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                   6038: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   6039: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
                   6040:          optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   6041:   }
                   6042: 
                   6043:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                   6044: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   6045: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
                   6046: \n\
                   6047: <hr  size=\"2\" color=\"#EC5E5E\">\
                   6048:  <ul><li><h4>Parameter files</h4>\n\
                   6049:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                   6050:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                   6051:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                   6052:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                   6053:  - Date and time at start: %s</ul>\n",\
                   6054:          optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                   6055:          optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                   6056:          fileres,fileres,\
                   6057:          filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                   6058:   fflush(fichtm);
                   6059: 
                   6060:   strcpy(pathr,path);
                   6061:   strcat(pathr,optionfilefiname);
                   6062:   chdir(optionfilefiname); /* Move to directory named optionfile */
                   6063:   
                   6064:   /* Calculates basic frequencies. Computes observed prevalence at single age
                   6065:      and prints on file fileres'p'. */
                   6066:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
                   6067: 
                   6068:   fprintf(fichtm,"\n");
                   6069:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
                   6070: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   6071: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
                   6072:          imx,agemin,agemax,jmin,jmax,jmean);
                   6073:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   6074:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   6075:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   6076:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   6077:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
                   6078:     
                   6079:    
                   6080:   /* For Powell, parameters are in a vector p[] starting at p[1]
                   6081:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                   6082:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
                   6083: 
                   6084:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
                   6085: 
                   6086:   if (mle==-3){
1.136     brouard  6087:     ximort=matrix(1,NDIM,1,NDIM); 
                   6088: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
1.126     brouard  6089:     cens=ivector(1,n);
                   6090:     ageexmed=vector(1,n);
                   6091:     agecens=vector(1,n);
                   6092:     dcwave=ivector(1,n);
                   6093:  
                   6094:     for (i=1; i<=imx; i++){
                   6095:       dcwave[i]=-1;
                   6096:       for (m=firstpass; m<=lastpass; m++)
                   6097:        if (s[m][i]>nlstate) {
                   6098:          dcwave[i]=m;
                   6099:          /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                   6100:          break;
                   6101:        }
                   6102:     }
                   6103: 
                   6104:     for (i=1; i<=imx; i++) {
                   6105:       if (wav[i]>0){
                   6106:        ageexmed[i]=agev[mw[1][i]][i];
                   6107:        j=wav[i];
                   6108:        agecens[i]=1.; 
                   6109: 
                   6110:        if (ageexmed[i]> 1 && wav[i] > 0){
                   6111:          agecens[i]=agev[mw[j][i]][i];
                   6112:          cens[i]= 1;
                   6113:        }else if (ageexmed[i]< 1) 
                   6114:          cens[i]= -1;
                   6115:        if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                   6116:          cens[i]=0 ;
                   6117:       }
                   6118:       else cens[i]=-1;
                   6119:     }
                   6120:     
                   6121:     for (i=1;i<=NDIM;i++) {
                   6122:       for (j=1;j<=NDIM;j++)
                   6123:        ximort[i][j]=(i == j ? 1.0 : 0.0);
                   6124:     }
                   6125:     
1.145     brouard  6126:     /*p[1]=0.0268; p[NDIM]=0.083;*/
1.126     brouard  6127:     /*printf("%lf %lf", p[1], p[2]);*/
                   6128:     
                   6129:     
1.136     brouard  6130: #ifdef GSL
                   6131:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
1.162     brouard  6132: #else
1.126     brouard  6133:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.136     brouard  6134: #endif
1.126     brouard  6135:     strcpy(filerespow,"pow-mort"); 
                   6136:     strcat(filerespow,fileres);
                   6137:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   6138:       printf("Problem with resultfile: %s\n", filerespow);
                   6139:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   6140:     }
1.136     brouard  6141: #ifdef GSL
                   6142:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
1.162     brouard  6143: #else
1.126     brouard  6144:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
1.136     brouard  6145: #endif
1.126     brouard  6146:     /*  for (i=1;i<=nlstate;i++)
                   6147:        for(j=1;j<=nlstate+ndeath;j++)
                   6148:        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   6149:     */
                   6150:     fprintf(ficrespow,"\n");
1.136     brouard  6151: #ifdef GSL
                   6152:     /* gsl starts here */ 
                   6153:     T = gsl_multimin_fminimizer_nmsimplex;
                   6154:     gsl_multimin_fminimizer *sfm = NULL;
                   6155:     gsl_vector *ss, *x;
                   6156:     gsl_multimin_function minex_func;
                   6157: 
                   6158:     /* Initial vertex size vector */
                   6159:     ss = gsl_vector_alloc (NDIM);
                   6160:     
                   6161:     if (ss == NULL){
                   6162:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
                   6163:     }
                   6164:     /* Set all step sizes to 1 */
                   6165:     gsl_vector_set_all (ss, 0.001);
                   6166: 
                   6167:     /* Starting point */
1.126     brouard  6168:     
1.136     brouard  6169:     x = gsl_vector_alloc (NDIM);
                   6170:     
                   6171:     if (x == NULL){
                   6172:       gsl_vector_free(ss);
                   6173:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
                   6174:     }
                   6175:   
                   6176:     /* Initialize method and iterate */
                   6177:     /*     p[1]=0.0268; p[NDIM]=0.083; */
                   6178: /*     gsl_vector_set(x, 0, 0.0268); */
                   6179: /*     gsl_vector_set(x, 1, 0.083); */
                   6180:     gsl_vector_set(x, 0, p[1]);
                   6181:     gsl_vector_set(x, 1, p[2]);
                   6182: 
                   6183:     minex_func.f = &gompertz_f;
                   6184:     minex_func.n = NDIM;
                   6185:     minex_func.params = (void *)&p; /* ??? */
                   6186:     
                   6187:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
                   6188:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
                   6189:     
                   6190:     printf("Iterations beginning .....\n\n");
                   6191:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
                   6192: 
                   6193:     iteri=0;
                   6194:     while (rval == GSL_CONTINUE){
                   6195:       iteri++;
                   6196:       status = gsl_multimin_fminimizer_iterate(sfm);
                   6197:       
                   6198:       if (status) printf("error: %s\n", gsl_strerror (status));
                   6199:       fflush(0);
                   6200:       
                   6201:       if (status) 
                   6202:         break;
                   6203:       
                   6204:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
                   6205:       ssval = gsl_multimin_fminimizer_size (sfm);
                   6206:       
                   6207:       if (rval == GSL_SUCCESS)
                   6208:         printf ("converged to a local maximum at\n");
                   6209:       
                   6210:       printf("%5d ", iteri);
                   6211:       for (it = 0; it < NDIM; it++){
                   6212:        printf ("%10.5f ", gsl_vector_get (sfm->x, it));
                   6213:       }
                   6214:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
                   6215:     }
                   6216:     
                   6217:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
                   6218:     
                   6219:     gsl_vector_free(x); /* initial values */
                   6220:     gsl_vector_free(ss); /* inital step size */
                   6221:     for (it=0; it<NDIM; it++){
                   6222:       p[it+1]=gsl_vector_get(sfm->x,it);
                   6223:       fprintf(ficrespow," %.12lf", p[it]);
                   6224:     }
                   6225:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
                   6226: #endif
                   6227: #ifdef POWELL
                   6228:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
                   6229: #endif  
1.126     brouard  6230:     fclose(ficrespow);
                   6231:     
                   6232:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
                   6233: 
                   6234:     for(i=1; i <=NDIM; i++)
                   6235:       for(j=i+1;j<=NDIM;j++)
                   6236:        matcov[i][j]=matcov[j][i];
                   6237:     
                   6238:     printf("\nCovariance matrix\n ");
                   6239:     for(i=1; i <=NDIM; i++) {
                   6240:       for(j=1;j<=NDIM;j++){ 
                   6241:        printf("%f ",matcov[i][j]);
                   6242:       }
                   6243:       printf("\n ");
                   6244:     }
                   6245:     
                   6246:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
                   6247:     for (i=1;i<=NDIM;i++) 
                   6248:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   6249: 
                   6250:     lsurv=vector(1,AGESUP);
                   6251:     lpop=vector(1,AGESUP);
                   6252:     tpop=vector(1,AGESUP);
                   6253:     lsurv[agegomp]=100000;
                   6254:     
                   6255:     for (k=agegomp;k<=AGESUP;k++) {
                   6256:       agemortsup=k;
                   6257:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
                   6258:     }
                   6259:     
                   6260:     for (k=agegomp;k<agemortsup;k++)
                   6261:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
                   6262:     
                   6263:     for (k=agegomp;k<agemortsup;k++){
                   6264:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
                   6265:       sumlpop=sumlpop+lpop[k];
                   6266:     }
                   6267:     
                   6268:     tpop[agegomp]=sumlpop;
                   6269:     for (k=agegomp;k<(agemortsup-3);k++){
                   6270:       /*  tpop[k+1]=2;*/
                   6271:       tpop[k+1]=tpop[k]-lpop[k];
                   6272:     }
                   6273:     
                   6274:     
                   6275:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
                   6276:     for (k=agegomp;k<(agemortsup-2);k++) 
                   6277:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   6278:     
                   6279:     
                   6280:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   6281:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   6282:     
                   6283:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                   6284:                     stepm, weightopt,\
                   6285:                     model,imx,p,matcov,agemortsup);
                   6286:     
                   6287:     free_vector(lsurv,1,AGESUP);
                   6288:     free_vector(lpop,1,AGESUP);
                   6289:     free_vector(tpop,1,AGESUP);
1.136     brouard  6290: #ifdef GSL
                   6291:     free_ivector(cens,1,n);
                   6292:     free_vector(agecens,1,n);
                   6293:     free_ivector(dcwave,1,n);
                   6294:     free_matrix(ximort,1,NDIM,1,NDIM);
                   6295: #endif
1.126     brouard  6296:   } /* Endof if mle==-3 */
                   6297:   
                   6298:   else{ /* For mle >=1 */
1.132     brouard  6299:     globpr=0;/* debug */
                   6300:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
1.126     brouard  6301:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   6302:     for (k=1; k<=npar;k++)
                   6303:       printf(" %d %8.5f",k,p[k]);
                   6304:     printf("\n");
                   6305:     globpr=1; /* to print the contributions */
                   6306:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   6307:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   6308:     for (k=1; k<=npar;k++)
                   6309:       printf(" %d %8.5f",k,p[k]);
                   6310:     printf("\n");
                   6311:     if(mle>=1){ /* Could be 1 or 2 */
                   6312:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
                   6313:     }
                   6314:     
                   6315:     /*--------- results files --------------*/
                   6316:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
                   6317:     
                   6318:     
                   6319:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   6320:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   6321:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   6322:     for(i=1,jk=1; i <=nlstate; i++){
                   6323:       for(k=1; k <=(nlstate+ndeath); k++){
                   6324:        if (k != i) {
                   6325:          printf("%d%d ",i,k);
                   6326:          fprintf(ficlog,"%d%d ",i,k);
                   6327:          fprintf(ficres,"%1d%1d ",i,k);
                   6328:          for(j=1; j <=ncovmodel; j++){
                   6329:            printf("%lf ",p[jk]);
                   6330:            fprintf(ficlog,"%lf ",p[jk]);
                   6331:            fprintf(ficres,"%lf ",p[jk]);
                   6332:            jk++; 
                   6333:          }
                   6334:          printf("\n");
                   6335:          fprintf(ficlog,"\n");
                   6336:          fprintf(ficres,"\n");
                   6337:        }
                   6338:       }
                   6339:     }
                   6340:     if(mle!=0){
                   6341:       /* Computing hessian and covariance matrix */
                   6342:       ftolhess=ftol; /* Usually correct */
                   6343:       hesscov(matcov, p, npar, delti, ftolhess, func);
                   6344:     }
                   6345:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   6346:     printf("# Scales (for hessian or gradient estimation)\n");
                   6347:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                   6348:     for(i=1,jk=1; i <=nlstate; i++){
                   6349:       for(j=1; j <=nlstate+ndeath; j++){
                   6350:        if (j!=i) {
                   6351:          fprintf(ficres,"%1d%1d",i,j);
                   6352:          printf("%1d%1d",i,j);
                   6353:          fprintf(ficlog,"%1d%1d",i,j);
                   6354:          for(k=1; k<=ncovmodel;k++){
                   6355:            printf(" %.5e",delti[jk]);
                   6356:            fprintf(ficlog," %.5e",delti[jk]);
                   6357:            fprintf(ficres," %.5e",delti[jk]);
                   6358:            jk++;
                   6359:          }
                   6360:          printf("\n");
                   6361:          fprintf(ficlog,"\n");
                   6362:          fprintf(ficres,"\n");
                   6363:        }
                   6364:       }
                   6365:     }
                   6366:     
                   6367:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   6368:     if(mle>=1)
                   6369:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   6370:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   6371:     /* # 121 Var(a12)\n\ */
                   6372:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   6373:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   6374:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   6375:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   6376:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   6377:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   6378:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   6379:     
                   6380:     
                   6381:     /* Just to have a covariance matrix which will be more understandable
                   6382:        even is we still don't want to manage dictionary of variables
                   6383:     */
                   6384:     for(itimes=1;itimes<=2;itimes++){
                   6385:       jj=0;
                   6386:       for(i=1; i <=nlstate; i++){
                   6387:        for(j=1; j <=nlstate+ndeath; j++){
                   6388:          if(j==i) continue;
                   6389:          for(k=1; k<=ncovmodel;k++){
                   6390:            jj++;
                   6391:            ca[0]= k+'a'-1;ca[1]='\0';
                   6392:            if(itimes==1){
                   6393:              if(mle>=1)
                   6394:                printf("#%1d%1d%d",i,j,k);
                   6395:              fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   6396:              fprintf(ficres,"#%1d%1d%d",i,j,k);
                   6397:            }else{
                   6398:              if(mle>=1)
                   6399:                printf("%1d%1d%d",i,j,k);
                   6400:              fprintf(ficlog,"%1d%1d%d",i,j,k);
                   6401:              fprintf(ficres,"%1d%1d%d",i,j,k);
                   6402:            }
                   6403:            ll=0;
                   6404:            for(li=1;li <=nlstate; li++){
                   6405:              for(lj=1;lj <=nlstate+ndeath; lj++){
                   6406:                if(lj==li) continue;
                   6407:                for(lk=1;lk<=ncovmodel;lk++){
                   6408:                  ll++;
                   6409:                  if(ll<=jj){
                   6410:                    cb[0]= lk +'a'-1;cb[1]='\0';
                   6411:                    if(ll<jj){
                   6412:                      if(itimes==1){
                   6413:                        if(mle>=1)
                   6414:                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   6415:                        fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   6416:                        fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   6417:                      }else{
                   6418:                        if(mle>=1)
                   6419:                          printf(" %.5e",matcov[jj][ll]); 
                   6420:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   6421:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   6422:                      }
                   6423:                    }else{
                   6424:                      if(itimes==1){
                   6425:                        if(mle>=1)
                   6426:                          printf(" Var(%s%1d%1d)",ca,i,j);
                   6427:                        fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                   6428:                        fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                   6429:                      }else{
                   6430:                        if(mle>=1)
                   6431:                          printf(" %.5e",matcov[jj][ll]); 
                   6432:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   6433:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   6434:                      }
                   6435:                    }
                   6436:                  }
                   6437:                } /* end lk */
                   6438:              } /* end lj */
                   6439:            } /* end li */
                   6440:            if(mle>=1)
                   6441:              printf("\n");
                   6442:            fprintf(ficlog,"\n");
                   6443:            fprintf(ficres,"\n");
                   6444:            numlinepar++;
                   6445:          } /* end k*/
                   6446:        } /*end j */
                   6447:       } /* end i */
                   6448:     } /* end itimes */
                   6449:     
                   6450:     fflush(ficlog);
                   6451:     fflush(ficres);
                   6452:     
                   6453:     while((c=getc(ficpar))=='#' && c!= EOF){
                   6454:       ungetc(c,ficpar);
                   6455:       fgets(line, MAXLINE, ficpar);
1.141     brouard  6456:       fputs(line,stdout);
1.126     brouard  6457:       fputs(line,ficparo);
                   6458:     }
                   6459:     ungetc(c,ficpar);
                   6460:     
                   6461:     estepm=0;
                   6462:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
                   6463:     if (estepm==0 || estepm < stepm) estepm=stepm;
                   6464:     if (fage <= 2) {
                   6465:       bage = ageminpar;
                   6466:       fage = agemaxpar;
                   6467:     }
                   6468:     
                   6469:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
                   6470:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   6471:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   6472:     
                   6473:     while((c=getc(ficpar))=='#' && c!= EOF){
                   6474:       ungetc(c,ficpar);
                   6475:       fgets(line, MAXLINE, ficpar);
1.141     brouard  6476:       fputs(line,stdout);
1.126     brouard  6477:       fputs(line,ficparo);
                   6478:     }
                   6479:     ungetc(c,ficpar);
                   6480:     
                   6481:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
                   6482:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   6483:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   6484:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   6485:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   6486:     
                   6487:     while((c=getc(ficpar))=='#' && c!= EOF){
                   6488:       ungetc(c,ficpar);
                   6489:       fgets(line, MAXLINE, ficpar);
1.141     brouard  6490:       fputs(line,stdout);
1.126     brouard  6491:       fputs(line,ficparo);
                   6492:     }
                   6493:     ungetc(c,ficpar);
                   6494:     
                   6495:     
                   6496:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                   6497:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
                   6498:     
                   6499:     fscanf(ficpar,"pop_based=%d\n",&popbased);
                   6500:     fprintf(ficparo,"pop_based=%d\n",popbased);   
                   6501:     fprintf(ficres,"pop_based=%d\n",popbased);   
                   6502:     
                   6503:     while((c=getc(ficpar))=='#' && c!= EOF){
                   6504:       ungetc(c,ficpar);
                   6505:       fgets(line, MAXLINE, ficpar);
1.141     brouard  6506:       fputs(line,stdout);
1.126     brouard  6507:       fputs(line,ficparo);
                   6508:     }
                   6509:     ungetc(c,ficpar);
                   6510:     
                   6511:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
                   6512:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   6513:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   6514:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   6515:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   6516:     /* day and month of proj2 are not used but only year anproj2.*/
                   6517:     
                   6518:     
                   6519:     
1.145     brouard  6520:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
                   6521:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
1.126     brouard  6522:     
                   6523:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   6524:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   6525:     
                   6526:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                   6527:                 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                   6528:                 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
                   6529:       
                   6530:    /*------------ free_vector  -------------*/
                   6531:    /*  chdir(path); */
                   6532:  
                   6533:     free_ivector(wav,1,imx);
                   6534:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
                   6535:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
                   6536:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
                   6537:     free_lvector(num,1,n);
                   6538:     free_vector(agedc,1,n);
                   6539:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
                   6540:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
                   6541:     fclose(ficparo);
                   6542:     fclose(ficres);
                   6543: 
                   6544: 
                   6545:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
1.145     brouard  6546: #include "prevlim.h"  /* Use ficrespl, ficlog */
1.126     brouard  6547:     fclose(ficrespl);
                   6548: 
1.145     brouard  6549: #ifdef FREEEXIT2
                   6550: #include "freeexit2.h"
                   6551: #endif
                   6552: 
1.126     brouard  6553:     /*------------- h Pij x at various ages ------------*/
1.145     brouard  6554: #include "hpijx.h"
                   6555:     fclose(ficrespij);
1.126     brouard  6556: 
1.145     brouard  6557:   /*-------------- Variance of one-step probabilities---*/
                   6558:     k=1;
1.126     brouard  6559:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
                   6560: 
                   6561: 
                   6562:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   6563:     for(i=1;i<=AGESUP;i++)
                   6564:       for(j=1;j<=NCOVMAX;j++)
                   6565:        for(k=1;k<=NCOVMAX;k++)
                   6566:          probs[i][j][k]=0.;
                   6567: 
                   6568:     /*---------- Forecasting ------------------*/
                   6569:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
                   6570:     if(prevfcast==1){
                   6571:       /*    if(stepm ==1){*/
                   6572:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
                   6573:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
                   6574:       /*      }  */
                   6575:       /*      else{ */
                   6576:       /*        erreur=108; */
                   6577:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   6578:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   6579:       /*      } */
                   6580:     }
                   6581:   
                   6582: 
1.127     brouard  6583:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
                   6584: 
                   6585:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   6586:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
                   6587:        ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
                   6588:     */
1.126     brouard  6589: 
1.127     brouard  6590:     if (mobilav!=0) {
                   6591:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   6592:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   6593:        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   6594:        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   6595:       }
1.126     brouard  6596:     }
                   6597: 
                   6598: 
1.127     brouard  6599:     /*---------- Health expectancies, no variances ------------*/
                   6600: 
1.126     brouard  6601:     strcpy(filerese,"e");
                   6602:     strcat(filerese,fileres);
                   6603:     if((ficreseij=fopen(filerese,"w"))==NULL) {
                   6604:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   6605:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   6606:     }
                   6607:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
                   6608:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
1.145     brouard  6609:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   6610:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   6611:           
                   6612:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
1.127     brouard  6613:        fprintf(ficreseij,"\n#****** ");
                   6614:        for(j=1;j<=cptcoveff;j++) {
                   6615:          fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6616:        }
                   6617:        fprintf(ficreseij,"******\n");
                   6618: 
                   6619:        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   6620:        oldm=oldms;savm=savms;
                   6621:        evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
                   6622:       
                   6623:        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
1.145     brouard  6624:       /*}*/
1.127     brouard  6625:     }
                   6626:     fclose(ficreseij);
                   6627: 
                   6628: 
                   6629:     /*---------- Health expectancies and variances ------------*/
                   6630: 
                   6631: 
                   6632:     strcpy(filerest,"t");
                   6633:     strcat(filerest,fileres);
                   6634:     if((ficrest=fopen(filerest,"w"))==NULL) {
                   6635:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                   6636:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
                   6637:     }
                   6638:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
                   6639:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
                   6640: 
1.126     brouard  6641: 
                   6642:     strcpy(fileresstde,"stde");
                   6643:     strcat(fileresstde,fileres);
                   6644:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
                   6645:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
                   6646:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
                   6647:     }
                   6648:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
                   6649:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
                   6650: 
                   6651:     strcpy(filerescve,"cve");
                   6652:     strcat(filerescve,fileres);
                   6653:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
                   6654:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
                   6655:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
                   6656:     }
                   6657:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
                   6658:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
                   6659: 
                   6660:     strcpy(fileresv,"v");
                   6661:     strcat(fileresv,fileres);
                   6662:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
                   6663:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
                   6664:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
                   6665:     }
                   6666:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
                   6667:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
                   6668: 
1.145     brouard  6669:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   6670:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   6671:           
                   6672:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
                   6673:        fprintf(ficrest,"\n#****** ");
1.126     brouard  6674:        for(j=1;j<=cptcoveff;j++) 
                   6675:          fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6676:        fprintf(ficrest,"******\n");
                   6677: 
                   6678:        fprintf(ficresstdeij,"\n#****** ");
                   6679:        fprintf(ficrescveij,"\n#****** ");
                   6680:        for(j=1;j<=cptcoveff;j++) {
                   6681:          fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6682:          fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6683:        }
                   6684:        fprintf(ficresstdeij,"******\n");
                   6685:        fprintf(ficrescveij,"******\n");
                   6686: 
                   6687:        fprintf(ficresvij,"\n#****** ");
                   6688:        for(j=1;j<=cptcoveff;j++) 
                   6689:          fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6690:        fprintf(ficresvij,"******\n");
                   6691: 
                   6692:        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   6693:        oldm=oldms;savm=savms;
1.127     brouard  6694:        cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
1.145     brouard  6695:        /*
                   6696:         */
                   6697:        /* goto endfree; */
1.126     brouard  6698:  
                   6699:        vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   6700:        pstamp(ficrest);
1.145     brouard  6701: 
                   6702: 
1.128     brouard  6703:        for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
1.145     brouard  6704:          oldm=oldms;savm=savms; /* Segmentation fault */
1.161     brouard  6705:          cptcod= 0; /* To be deleted */
                   6706:          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
1.145     brouard  6707:          fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
1.128     brouard  6708:          if(vpopbased==1)
                   6709:            fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
                   6710:          else
                   6711:            fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
                   6712:          fprintf(ficrest,"# Age e.. (std) ");
                   6713:          for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                   6714:          fprintf(ficrest,"\n");
1.126     brouard  6715: 
1.128     brouard  6716:          epj=vector(1,nlstate+1);
                   6717:          for(age=bage; age <=fage ;age++){
                   6718:            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
                   6719:            if (vpopbased==1) {
                   6720:              if(mobilav ==0){
                   6721:                for(i=1; i<=nlstate;i++)
                   6722:                  prlim[i][i]=probs[(int)age][i][k];
                   6723:              }else{ /* mobilav */ 
                   6724:                for(i=1; i<=nlstate;i++)
                   6725:                  prlim[i][i]=mobaverage[(int)age][i][k];
                   6726:              }
1.126     brouard  6727:            }
                   6728:        
1.128     brouard  6729:            fprintf(ficrest," %4.0f",age);
                   6730:            for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                   6731:              for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   6732:                epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   6733:                /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   6734:              }
                   6735:              epj[nlstate+1] +=epj[j];
1.126     brouard  6736:            }
                   6737: 
1.128     brouard  6738:            for(i=1, vepp=0.;i <=nlstate;i++)
                   6739:              for(j=1;j <=nlstate;j++)
                   6740:                vepp += vareij[i][j][(int)age];
                   6741:            fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                   6742:            for(j=1;j <=nlstate;j++){
                   6743:              fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                   6744:            }
                   6745:            fprintf(ficrest,"\n");
1.126     brouard  6746:          }
                   6747:        }
                   6748:        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   6749:        free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   6750:        free_vector(epj,1,nlstate+1);
1.145     brouard  6751:       /*}*/
1.126     brouard  6752:     }
                   6753:     free_vector(weight,1,n);
1.145     brouard  6754:     free_imatrix(Tvard,1,NCOVMAX,1,2);
1.126     brouard  6755:     free_imatrix(s,1,maxwav+1,1,n);
                   6756:     free_matrix(anint,1,maxwav,1,n); 
                   6757:     free_matrix(mint,1,maxwav,1,n);
                   6758:     free_ivector(cod,1,n);
                   6759:     free_ivector(tab,1,NCOVMAX);
                   6760:     fclose(ficresstdeij);
                   6761:     fclose(ficrescveij);
                   6762:     fclose(ficresvij);
                   6763:     fclose(ficrest);
                   6764:     fclose(ficpar);
                   6765:   
                   6766:     /*------- Variance of period (stable) prevalence------*/   
                   6767: 
                   6768:     strcpy(fileresvpl,"vpl");
                   6769:     strcat(fileresvpl,fileres);
                   6770:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
                   6771:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
                   6772:       exit(0);
                   6773:     }
                   6774:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
                   6775: 
1.145     brouard  6776:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   6777:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   6778:           
                   6779:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
                   6780:        fprintf(ficresvpl,"\n#****** ");
1.126     brouard  6781:        for(j=1;j<=cptcoveff;j++) 
                   6782:          fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6783:        fprintf(ficresvpl,"******\n");
                   6784:       
                   6785:        varpl=matrix(1,nlstate,(int) bage, (int) fage);
                   6786:        oldm=oldms;savm=savms;
                   6787:        varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
                   6788:        free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
1.145     brouard  6789:       /*}*/
1.126     brouard  6790:     }
                   6791: 
                   6792:     fclose(ficresvpl);
                   6793: 
                   6794:     /*---------- End : free ----------------*/
                   6795:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   6796:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   6797:   }  /* mle==-3 arrives here for freeing */
1.164     brouard  6798:  /* endfree:*/
1.141     brouard  6799:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
1.126     brouard  6800:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
                   6801:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   6802:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   6803:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   6804:     free_matrix(covar,0,NCOVMAX,1,n);
                   6805:     free_matrix(matcov,1,npar,1,npar);
                   6806:     /*free_vector(delti,1,npar);*/
                   6807:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   6808:     free_matrix(agev,1,maxwav,1,imx);
                   6809:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
                   6810: 
1.145     brouard  6811:     free_ivector(ncodemax,1,NCOVMAX);
                   6812:     free_ivector(Tvar,1,NCOVMAX);
                   6813:     free_ivector(Tprod,1,NCOVMAX);
                   6814:     free_ivector(Tvaraff,1,NCOVMAX);
                   6815:     free_ivector(Tage,1,NCOVMAX);
1.126     brouard  6816: 
                   6817:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
                   6818:     free_imatrix(codtab,1,100,1,10);
                   6819:   fflush(fichtm);
                   6820:   fflush(ficgp);
                   6821:   
                   6822: 
                   6823:   if((nberr >0) || (nbwarn>0)){
                   6824:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
                   6825:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
                   6826:   }else{
                   6827:     printf("End of Imach\n");
                   6828:     fprintf(ficlog,"End of Imach\n");
                   6829:   }
                   6830:   printf("See log file on %s\n",filelog);
                   6831:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
1.157     brouard  6832:   /*(void) gettimeofday(&end_time,&tzp);*/
                   6833:   rend_time = time(NULL);  
                   6834:   end_time = *localtime(&rend_time);
                   6835:   /* tml = *localtime(&end_time.tm_sec); */
                   6836:   strcpy(strtend,asctime(&end_time));
1.126     brouard  6837:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
                   6838:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
1.157     brouard  6839:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
1.126     brouard  6840: 
1.157     brouard  6841:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
                   6842:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
                   6843:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
1.126     brouard  6844:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
                   6845: /*   if(fileappend(fichtm,optionfilehtm)){ */
                   6846:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   6847:   fclose(fichtm);
                   6848:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   6849:   fclose(fichtmcov);
                   6850:   fclose(ficgp);
                   6851:   fclose(ficlog);
                   6852:   /*------ End -----------*/
                   6853: 
                   6854: 
                   6855:    printf("Before Current directory %s!\n",pathcd);
                   6856:    if(chdir(pathcd) != 0)
                   6857:     printf("Can't move to directory %s!\n",path);
                   6858:   if(getcwd(pathcd,MAXLINE) > 0)
                   6859:     printf("Current directory %s!\n",pathcd);
                   6860:   /*strcat(plotcmd,CHARSEPARATOR);*/
                   6861:   sprintf(plotcmd,"gnuplot");
1.157     brouard  6862: #ifdef _WIN32
1.126     brouard  6863:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
                   6864: #endif
                   6865:   if(!stat(plotcmd,&info)){
1.158     brouard  6866:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  6867:     if(!stat(getenv("GNUPLOTBIN"),&info)){
1.158     brouard  6868:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
1.126     brouard  6869:     }else
                   6870:       strcpy(pplotcmd,plotcmd);
1.157     brouard  6871: #ifdef __unix
1.126     brouard  6872:     strcpy(plotcmd,GNUPLOTPROGRAM);
                   6873:     if(!stat(plotcmd,&info)){
1.158     brouard  6874:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  6875:     }else
                   6876:       strcpy(pplotcmd,plotcmd);
                   6877: #endif
                   6878:   }else
                   6879:     strcpy(pplotcmd,plotcmd);
                   6880:   
                   6881:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
1.158     brouard  6882:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  6883: 
                   6884:   if((outcmd=system(plotcmd)) != 0){
1.158     brouard  6885:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
1.154     brouard  6886:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
1.152     brouard  6887:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
1.150     brouard  6888:     if((outcmd=system(plotcmd)) != 0)
1.153     brouard  6889:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
1.126     brouard  6890:   }
1.158     brouard  6891:   printf(" Successful, please wait...");
1.126     brouard  6892:   while (z[0] != 'q') {
                   6893:     /* chdir(path); */
1.154     brouard  6894:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
1.126     brouard  6895:     scanf("%s",z);
                   6896: /*     if (z[0] == 'c') system("./imach"); */
                   6897:     if (z[0] == 'e') {
1.158     brouard  6898: #ifdef __APPLE__
1.152     brouard  6899:       sprintf(pplotcmd, "open %s", optionfilehtm);
1.157     brouard  6900: #elif __linux
                   6901:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
1.153     brouard  6902: #else
1.152     brouard  6903:       sprintf(pplotcmd, "%s", optionfilehtm);
1.153     brouard  6904: #endif
                   6905:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
                   6906:       system(pplotcmd);
1.126     brouard  6907:     }
                   6908:     else if (z[0] == 'g') system(plotcmd);
                   6909:     else if (z[0] == 'q') exit(0);
                   6910:   }
                   6911:   end:
                   6912:   while (z[0] != 'q') {
                   6913:     printf("\nType  q for exiting: ");
                   6914:     scanf("%s",z);
                   6915:   }
                   6916: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>