Annotation of imach/src/imach.c, revision 1.168

1.168   ! brouard     1: /* $Id: imach.c,v 1.167 2014/12/22 13:50:56 brouard Exp $
1.126     brouard     2:   $State: Exp $
1.163     brouard     3:   $Log: imach.c,v $
1.168   ! brouard     4:   Revision 1.167  2014/12/22 13:50:56  brouard
        !             5:   Summary: Testing uname and compiler version and if compiled 32 or 64
        !             6: 
        !             7:   Testing on Linux 64
        !             8: 
1.167     brouard     9:   Revision 1.166  2014/12/22 11:40:47  brouard
                     10:   *** empty log message ***
                     11: 
1.166     brouard    12:   Revision 1.165  2014/12/16 11:20:36  brouard
                     13:   Summary: After compiling on Visual C
                     14: 
                     15:   * imach.c (Module): Merging 1.61 to 1.162
                     16: 
1.165     brouard    17:   Revision 1.164  2014/12/16 10:52:11  brouard
                     18:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
                     19: 
                     20:   * imach.c (Module): Merging 1.61 to 1.162
                     21: 
1.164     brouard    22:   Revision 1.163  2014/12/16 10:30:11  brouard
                     23:   * imach.c (Module): Merging 1.61 to 1.162
                     24: 
1.163     brouard    25:   Revision 1.162  2014/09/25 11:43:39  brouard
                     26:   Summary: temporary backup 0.99!
                     27: 
1.162     brouard    28:   Revision 1.1  2014/09/16 11:06:58  brouard
                     29:   Summary: With some code (wrong) for nlopt
                     30: 
                     31:   Author:
                     32: 
                     33:   Revision 1.161  2014/09/15 20:41:41  brouard
                     34:   Summary: Problem with macro SQR on Intel compiler
                     35: 
1.161     brouard    36:   Revision 1.160  2014/09/02 09:24:05  brouard
                     37:   *** empty log message ***
                     38: 
1.160     brouard    39:   Revision 1.159  2014/09/01 10:34:10  brouard
                     40:   Summary: WIN32
                     41:   Author: Brouard
                     42: 
1.159     brouard    43:   Revision 1.158  2014/08/27 17:11:51  brouard
                     44:   *** empty log message ***
                     45: 
1.158     brouard    46:   Revision 1.157  2014/08/27 16:26:55  brouard
                     47:   Summary: Preparing windows Visual studio version
                     48:   Author: Brouard
                     49: 
                     50:   In order to compile on Visual studio, time.h is now correct and time_t
                     51:   and tm struct should be used. difftime should be used but sometimes I
                     52:   just make the differences in raw time format (time(&now).
                     53:   Trying to suppress #ifdef LINUX
                     54:   Add xdg-open for __linux in order to open default browser.
                     55: 
1.157     brouard    56:   Revision 1.156  2014/08/25 20:10:10  brouard
                     57:   *** empty log message ***
                     58: 
1.156     brouard    59:   Revision 1.155  2014/08/25 18:32:34  brouard
                     60:   Summary: New compile, minor changes
                     61:   Author: Brouard
                     62: 
1.155     brouard    63:   Revision 1.154  2014/06/20 17:32:08  brouard
                     64:   Summary: Outputs now all graphs of convergence to period prevalence
                     65: 
1.154     brouard    66:   Revision 1.153  2014/06/20 16:45:46  brouard
                     67:   Summary: If 3 live state, convergence to period prevalence on same graph
                     68:   Author: Brouard
                     69: 
1.153     brouard    70:   Revision 1.152  2014/06/18 17:54:09  brouard
                     71:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
                     72: 
1.152     brouard    73:   Revision 1.151  2014/06/18 16:43:30  brouard
                     74:   *** empty log message ***
                     75: 
1.151     brouard    76:   Revision 1.150  2014/06/18 16:42:35  brouard
                     77:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
                     78:   Author: brouard
                     79: 
1.150     brouard    80:   Revision 1.149  2014/06/18 15:51:14  brouard
                     81:   Summary: Some fixes in parameter files errors
                     82:   Author: Nicolas Brouard
                     83: 
1.149     brouard    84:   Revision 1.148  2014/06/17 17:38:48  brouard
                     85:   Summary: Nothing new
                     86:   Author: Brouard
                     87: 
                     88:   Just a new packaging for OS/X version 0.98nS
                     89: 
1.148     brouard    90:   Revision 1.147  2014/06/16 10:33:11  brouard
                     91:   *** empty log message ***
                     92: 
1.147     brouard    93:   Revision 1.146  2014/06/16 10:20:28  brouard
                     94:   Summary: Merge
                     95:   Author: Brouard
                     96: 
                     97:   Merge, before building revised version.
                     98: 
1.146     brouard    99:   Revision 1.145  2014/06/10 21:23:15  brouard
                    100:   Summary: Debugging with valgrind
                    101:   Author: Nicolas Brouard
                    102: 
                    103:   Lot of changes in order to output the results with some covariates
                    104:   After the Edimburgh REVES conference 2014, it seems mandatory to
                    105:   improve the code.
                    106:   No more memory valgrind error but a lot has to be done in order to
                    107:   continue the work of splitting the code into subroutines.
                    108:   Also, decodemodel has been improved. Tricode is still not
                    109:   optimal. nbcode should be improved. Documentation has been added in
                    110:   the source code.
                    111: 
1.144     brouard   112:   Revision 1.143  2014/01/26 09:45:38  brouard
                    113:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
                    114: 
                    115:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    116:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
                    117: 
1.143     brouard   118:   Revision 1.142  2014/01/26 03:57:36  brouard
                    119:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
                    120: 
                    121:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    122: 
1.142     brouard   123:   Revision 1.141  2014/01/26 02:42:01  brouard
                    124:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    125: 
1.141     brouard   126:   Revision 1.140  2011/09/02 10:37:54  brouard
                    127:   Summary: times.h is ok with mingw32 now.
                    128: 
1.140     brouard   129:   Revision 1.139  2010/06/14 07:50:17  brouard
                    130:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
                    131:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
                    132: 
1.139     brouard   133:   Revision 1.138  2010/04/30 18:19:40  brouard
                    134:   *** empty log message ***
                    135: 
1.138     brouard   136:   Revision 1.137  2010/04/29 18:11:38  brouard
                    137:   (Module): Checking covariates for more complex models
                    138:   than V1+V2. A lot of change to be done. Unstable.
                    139: 
1.137     brouard   140:   Revision 1.136  2010/04/26 20:30:53  brouard
                    141:   (Module): merging some libgsl code. Fixing computation
                    142:   of likelione (using inter/intrapolation if mle = 0) in order to
                    143:   get same likelihood as if mle=1.
                    144:   Some cleaning of code and comments added.
                    145: 
1.136     brouard   146:   Revision 1.135  2009/10/29 15:33:14  brouard
                    147:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    148: 
1.135     brouard   149:   Revision 1.134  2009/10/29 13:18:53  brouard
                    150:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    151: 
1.134     brouard   152:   Revision 1.133  2009/07/06 10:21:25  brouard
                    153:   just nforces
                    154: 
1.133     brouard   155:   Revision 1.132  2009/07/06 08:22:05  brouard
                    156:   Many tings
                    157: 
1.132     brouard   158:   Revision 1.131  2009/06/20 16:22:47  brouard
                    159:   Some dimensions resccaled
                    160: 
1.131     brouard   161:   Revision 1.130  2009/05/26 06:44:34  brouard
                    162:   (Module): Max Covariate is now set to 20 instead of 8. A
                    163:   lot of cleaning with variables initialized to 0. Trying to make
                    164:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
                    165: 
1.130     brouard   166:   Revision 1.129  2007/08/31 13:49:27  lievre
                    167:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
                    168: 
1.129     lievre    169:   Revision 1.128  2006/06/30 13:02:05  brouard
                    170:   (Module): Clarifications on computing e.j
                    171: 
1.128     brouard   172:   Revision 1.127  2006/04/28 18:11:50  brouard
                    173:   (Module): Yes the sum of survivors was wrong since
                    174:   imach-114 because nhstepm was no more computed in the age
                    175:   loop. Now we define nhstepma in the age loop.
                    176:   (Module): In order to speed up (in case of numerous covariates) we
                    177:   compute health expectancies (without variances) in a first step
                    178:   and then all the health expectancies with variances or standard
                    179:   deviation (needs data from the Hessian matrices) which slows the
                    180:   computation.
                    181:   In the future we should be able to stop the program is only health
                    182:   expectancies and graph are needed without standard deviations.
                    183: 
1.127     brouard   184:   Revision 1.126  2006/04/28 17:23:28  brouard
                    185:   (Module): Yes the sum of survivors was wrong since
                    186:   imach-114 because nhstepm was no more computed in the age
                    187:   loop. Now we define nhstepma in the age loop.
                    188:   Version 0.98h
                    189: 
1.126     brouard   190:   Revision 1.125  2006/04/04 15:20:31  lievre
                    191:   Errors in calculation of health expectancies. Age was not initialized.
                    192:   Forecasting file added.
                    193: 
                    194:   Revision 1.124  2006/03/22 17:13:53  lievre
                    195:   Parameters are printed with %lf instead of %f (more numbers after the comma).
                    196:   The log-likelihood is printed in the log file
                    197: 
                    198:   Revision 1.123  2006/03/20 10:52:43  brouard
                    199:   * imach.c (Module): <title> changed, corresponds to .htm file
                    200:   name. <head> headers where missing.
                    201: 
                    202:   * imach.c (Module): Weights can have a decimal point as for
                    203:   English (a comma might work with a correct LC_NUMERIC environment,
                    204:   otherwise the weight is truncated).
                    205:   Modification of warning when the covariates values are not 0 or
                    206:   1.
                    207:   Version 0.98g
                    208: 
                    209:   Revision 1.122  2006/03/20 09:45:41  brouard
                    210:   (Module): Weights can have a decimal point as for
                    211:   English (a comma might work with a correct LC_NUMERIC environment,
                    212:   otherwise the weight is truncated).
                    213:   Modification of warning when the covariates values are not 0 or
                    214:   1.
                    215:   Version 0.98g
                    216: 
                    217:   Revision 1.121  2006/03/16 17:45:01  lievre
                    218:   * imach.c (Module): Comments concerning covariates added
                    219: 
                    220:   * imach.c (Module): refinements in the computation of lli if
                    221:   status=-2 in order to have more reliable computation if stepm is
                    222:   not 1 month. Version 0.98f
                    223: 
                    224:   Revision 1.120  2006/03/16 15:10:38  lievre
                    225:   (Module): refinements in the computation of lli if
                    226:   status=-2 in order to have more reliable computation if stepm is
                    227:   not 1 month. Version 0.98f
                    228: 
                    229:   Revision 1.119  2006/03/15 17:42:26  brouard
                    230:   (Module): Bug if status = -2, the loglikelihood was
                    231:   computed as likelihood omitting the logarithm. Version O.98e
                    232: 
                    233:   Revision 1.118  2006/03/14 18:20:07  brouard
                    234:   (Module): varevsij Comments added explaining the second
                    235:   table of variances if popbased=1 .
                    236:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    237:   (Module): Function pstamp added
                    238:   (Module): Version 0.98d
                    239: 
                    240:   Revision 1.117  2006/03/14 17:16:22  brouard
                    241:   (Module): varevsij Comments added explaining the second
                    242:   table of variances if popbased=1 .
                    243:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    244:   (Module): Function pstamp added
                    245:   (Module): Version 0.98d
                    246: 
                    247:   Revision 1.116  2006/03/06 10:29:27  brouard
                    248:   (Module): Variance-covariance wrong links and
                    249:   varian-covariance of ej. is needed (Saito).
                    250: 
                    251:   Revision 1.115  2006/02/27 12:17:45  brouard
                    252:   (Module): One freematrix added in mlikeli! 0.98c
                    253: 
                    254:   Revision 1.114  2006/02/26 12:57:58  brouard
                    255:   (Module): Some improvements in processing parameter
                    256:   filename with strsep.
                    257: 
                    258:   Revision 1.113  2006/02/24 14:20:24  brouard
                    259:   (Module): Memory leaks checks with valgrind and:
                    260:   datafile was not closed, some imatrix were not freed and on matrix
                    261:   allocation too.
                    262: 
                    263:   Revision 1.112  2006/01/30 09:55:26  brouard
                    264:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
                    265: 
                    266:   Revision 1.111  2006/01/25 20:38:18  brouard
                    267:   (Module): Lots of cleaning and bugs added (Gompertz)
                    268:   (Module): Comments can be added in data file. Missing date values
                    269:   can be a simple dot '.'.
                    270: 
                    271:   Revision 1.110  2006/01/25 00:51:50  brouard
                    272:   (Module): Lots of cleaning and bugs added (Gompertz)
                    273: 
                    274:   Revision 1.109  2006/01/24 19:37:15  brouard
                    275:   (Module): Comments (lines starting with a #) are allowed in data.
                    276: 
                    277:   Revision 1.108  2006/01/19 18:05:42  lievre
                    278:   Gnuplot problem appeared...
                    279:   To be fixed
                    280: 
                    281:   Revision 1.107  2006/01/19 16:20:37  brouard
                    282:   Test existence of gnuplot in imach path
                    283: 
                    284:   Revision 1.106  2006/01/19 13:24:36  brouard
                    285:   Some cleaning and links added in html output
                    286: 
                    287:   Revision 1.105  2006/01/05 20:23:19  lievre
                    288:   *** empty log message ***
                    289: 
                    290:   Revision 1.104  2005/09/30 16:11:43  lievre
                    291:   (Module): sump fixed, loop imx fixed, and simplifications.
                    292:   (Module): If the status is missing at the last wave but we know
                    293:   that the person is alive, then we can code his/her status as -2
                    294:   (instead of missing=-1 in earlier versions) and his/her
                    295:   contributions to the likelihood is 1 - Prob of dying from last
                    296:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
                    297:   the healthy state at last known wave). Version is 0.98
                    298: 
                    299:   Revision 1.103  2005/09/30 15:54:49  lievre
                    300:   (Module): sump fixed, loop imx fixed, and simplifications.
                    301: 
                    302:   Revision 1.102  2004/09/15 17:31:30  brouard
                    303:   Add the possibility to read data file including tab characters.
                    304: 
                    305:   Revision 1.101  2004/09/15 10:38:38  brouard
                    306:   Fix on curr_time
                    307: 
                    308:   Revision 1.100  2004/07/12 18:29:06  brouard
                    309:   Add version for Mac OS X. Just define UNIX in Makefile
                    310: 
                    311:   Revision 1.99  2004/06/05 08:57:40  brouard
                    312:   *** empty log message ***
                    313: 
                    314:   Revision 1.98  2004/05/16 15:05:56  brouard
                    315:   New version 0.97 . First attempt to estimate force of mortality
                    316:   directly from the data i.e. without the need of knowing the health
                    317:   state at each age, but using a Gompertz model: log u =a + b*age .
                    318:   This is the basic analysis of mortality and should be done before any
                    319:   other analysis, in order to test if the mortality estimated from the
                    320:   cross-longitudinal survey is different from the mortality estimated
                    321:   from other sources like vital statistic data.
                    322: 
                    323:   The same imach parameter file can be used but the option for mle should be -3.
                    324: 
1.133     brouard   325:   Agnès, who wrote this part of the code, tried to keep most of the
1.126     brouard   326:   former routines in order to include the new code within the former code.
                    327: 
                    328:   The output is very simple: only an estimate of the intercept and of
                    329:   the slope with 95% confident intervals.
                    330: 
                    331:   Current limitations:
                    332:   A) Even if you enter covariates, i.e. with the
                    333:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
                    334:   B) There is no computation of Life Expectancy nor Life Table.
                    335: 
                    336:   Revision 1.97  2004/02/20 13:25:42  lievre
                    337:   Version 0.96d. Population forecasting command line is (temporarily)
                    338:   suppressed.
                    339: 
                    340:   Revision 1.96  2003/07/15 15:38:55  brouard
                    341:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
                    342:   rewritten within the same printf. Workaround: many printfs.
                    343: 
                    344:   Revision 1.95  2003/07/08 07:54:34  brouard
                    345:   * imach.c (Repository):
                    346:   (Repository): Using imachwizard code to output a more meaningful covariance
                    347:   matrix (cov(a12,c31) instead of numbers.
                    348: 
                    349:   Revision 1.94  2003/06/27 13:00:02  brouard
                    350:   Just cleaning
                    351: 
                    352:   Revision 1.93  2003/06/25 16:33:55  brouard
                    353:   (Module): On windows (cygwin) function asctime_r doesn't
                    354:   exist so I changed back to asctime which exists.
                    355:   (Module): Version 0.96b
                    356: 
                    357:   Revision 1.92  2003/06/25 16:30:45  brouard
                    358:   (Module): On windows (cygwin) function asctime_r doesn't
                    359:   exist so I changed back to asctime which exists.
                    360: 
                    361:   Revision 1.91  2003/06/25 15:30:29  brouard
                    362:   * imach.c (Repository): Duplicated warning errors corrected.
                    363:   (Repository): Elapsed time after each iteration is now output. It
                    364:   helps to forecast when convergence will be reached. Elapsed time
                    365:   is stamped in powell.  We created a new html file for the graphs
                    366:   concerning matrix of covariance. It has extension -cov.htm.
                    367: 
                    368:   Revision 1.90  2003/06/24 12:34:15  brouard
                    369:   (Module): Some bugs corrected for windows. Also, when
                    370:   mle=-1 a template is output in file "or"mypar.txt with the design
                    371:   of the covariance matrix to be input.
                    372: 
                    373:   Revision 1.89  2003/06/24 12:30:52  brouard
                    374:   (Module): Some bugs corrected for windows. Also, when
                    375:   mle=-1 a template is output in file "or"mypar.txt with the design
                    376:   of the covariance matrix to be input.
                    377: 
                    378:   Revision 1.88  2003/06/23 17:54:56  brouard
                    379:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
                    380: 
                    381:   Revision 1.87  2003/06/18 12:26:01  brouard
                    382:   Version 0.96
                    383: 
                    384:   Revision 1.86  2003/06/17 20:04:08  brouard
                    385:   (Module): Change position of html and gnuplot routines and added
                    386:   routine fileappend.
                    387: 
                    388:   Revision 1.85  2003/06/17 13:12:43  brouard
                    389:   * imach.c (Repository): Check when date of death was earlier that
                    390:   current date of interview. It may happen when the death was just
                    391:   prior to the death. In this case, dh was negative and likelihood
                    392:   was wrong (infinity). We still send an "Error" but patch by
                    393:   assuming that the date of death was just one stepm after the
                    394:   interview.
                    395:   (Repository): Because some people have very long ID (first column)
                    396:   we changed int to long in num[] and we added a new lvector for
                    397:   memory allocation. But we also truncated to 8 characters (left
                    398:   truncation)
                    399:   (Repository): No more line truncation errors.
                    400: 
                    401:   Revision 1.84  2003/06/13 21:44:43  brouard
                    402:   * imach.c (Repository): Replace "freqsummary" at a correct
                    403:   place. It differs from routine "prevalence" which may be called
                    404:   many times. Probs is memory consuming and must be used with
                    405:   parcimony.
                    406:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
                    407: 
                    408:   Revision 1.83  2003/06/10 13:39:11  lievre
                    409:   *** empty log message ***
                    410: 
                    411:   Revision 1.82  2003/06/05 15:57:20  brouard
                    412:   Add log in  imach.c and  fullversion number is now printed.
                    413: 
                    414: */
                    415: /*
                    416:    Interpolated Markov Chain
                    417: 
                    418:   Short summary of the programme:
                    419:   
                    420:   This program computes Healthy Life Expectancies from
                    421:   cross-longitudinal data. Cross-longitudinal data consist in: -1- a
                    422:   first survey ("cross") where individuals from different ages are
                    423:   interviewed on their health status or degree of disability (in the
                    424:   case of a health survey which is our main interest) -2- at least a
                    425:   second wave of interviews ("longitudinal") which measure each change
                    426:   (if any) in individual health status.  Health expectancies are
                    427:   computed from the time spent in each health state according to a
                    428:   model. More health states you consider, more time is necessary to reach the
                    429:   Maximum Likelihood of the parameters involved in the model.  The
                    430:   simplest model is the multinomial logistic model where pij is the
                    431:   probability to be observed in state j at the second wave
                    432:   conditional to be observed in state i at the first wave. Therefore
                    433:   the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
                    434:   'age' is age and 'sex' is a covariate. If you want to have a more
                    435:   complex model than "constant and age", you should modify the program
                    436:   where the markup *Covariates have to be included here again* invites
                    437:   you to do it.  More covariates you add, slower the
                    438:   convergence.
                    439: 
                    440:   The advantage of this computer programme, compared to a simple
                    441:   multinomial logistic model, is clear when the delay between waves is not
                    442:   identical for each individual. Also, if a individual missed an
                    443:   intermediate interview, the information is lost, but taken into
                    444:   account using an interpolation or extrapolation.  
                    445: 
                    446:   hPijx is the probability to be observed in state i at age x+h
                    447:   conditional to the observed state i at age x. The delay 'h' can be
                    448:   split into an exact number (nh*stepm) of unobserved intermediate
                    449:   states. This elementary transition (by month, quarter,
                    450:   semester or year) is modelled as a multinomial logistic.  The hPx
                    451:   matrix is simply the matrix product of nh*stepm elementary matrices
                    452:   and the contribution of each individual to the likelihood is simply
                    453:   hPijx.
                    454: 
                    455:   Also this programme outputs the covariance matrix of the parameters but also
                    456:   of the life expectancies. It also computes the period (stable) prevalence. 
                    457:   
1.133     brouard   458:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
                    459:            Institut national d'études démographiques, Paris.
1.126     brouard   460:   This software have been partly granted by Euro-REVES, a concerted action
                    461:   from the European Union.
                    462:   It is copyrighted identically to a GNU software product, ie programme and
                    463:   software can be distributed freely for non commercial use. Latest version
                    464:   can be accessed at http://euroreves.ined.fr/imach .
                    465: 
                    466:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
                    467:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
                    468:   
                    469:   **********************************************************************/
                    470: /*
                    471:   main
                    472:   read parameterfile
                    473:   read datafile
                    474:   concatwav
                    475:   freqsummary
                    476:   if (mle >= 1)
                    477:     mlikeli
                    478:   print results files
                    479:   if mle==1 
                    480:      computes hessian
                    481:   read end of parameter file: agemin, agemax, bage, fage, estepm
                    482:       begin-prev-date,...
                    483:   open gnuplot file
                    484:   open html file
1.145     brouard   485:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
                    486:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                    487:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
                    488:     freexexit2 possible for memory heap.
                    489: 
                    490:   h Pij x                         | pij_nom  ficrestpij
                    491:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
                    492:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
                    493:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
                    494: 
                    495:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
                    496:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
                    497:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
                    498:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
                    499:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
                    500: 
1.126     brouard   501:   forecasting if prevfcast==1 prevforecast call prevalence()
                    502:   health expectancies
                    503:   Variance-covariance of DFLE
                    504:   prevalence()
                    505:    movingaverage()
                    506:   varevsij() 
                    507:   if popbased==1 varevsij(,popbased)
                    508:   total life expectancies
                    509:   Variance of period (stable) prevalence
                    510:  end
                    511: */
                    512: 
1.165     brouard   513: #define POWELL /* Instead of NLOPT */
1.126     brouard   514: 
                    515: #include <math.h>
                    516: #include <stdio.h>
                    517: #include <stdlib.h>
                    518: #include <string.h>
1.159     brouard   519: 
                    520: #ifdef _WIN32
                    521: #include <io.h>
                    522: #else
1.126     brouard   523: #include <unistd.h>
1.159     brouard   524: #endif
1.126     brouard   525: 
                    526: #include <limits.h>
                    527: #include <sys/types.h>
1.167     brouard   528: #include <sys/utsname.h>
1.126     brouard   529: #include <sys/stat.h>
                    530: #include <errno.h>
1.159     brouard   531: /* extern int errno; */
1.126     brouard   532: 
1.157     brouard   533: /* #ifdef LINUX */
                    534: /* #include <time.h> */
                    535: /* #include "timeval.h" */
                    536: /* #else */
                    537: /* #include <sys/time.h> */
                    538: /* #endif */
                    539: 
1.126     brouard   540: #include <time.h>
                    541: 
1.136     brouard   542: #ifdef GSL
                    543: #include <gsl/gsl_errno.h>
                    544: #include <gsl/gsl_multimin.h>
                    545: #endif
                    546: 
1.167     brouard   547: 
1.162     brouard   548: #ifdef NLOPT
                    549: #include <nlopt.h>
                    550: typedef struct {
                    551:   double (* function)(double [] );
                    552: } myfunc_data ;
                    553: #endif
                    554: 
1.126     brouard   555: /* #include <libintl.h> */
                    556: /* #define _(String) gettext (String) */
                    557: 
1.141     brouard   558: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
1.126     brouard   559: 
                    560: #define GNUPLOTPROGRAM "gnuplot"
                    561: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
                    562: #define FILENAMELENGTH 132
                    563: 
                    564: #define        GLOCK_ERROR_NOPATH              -1      /* empty path */
                    565: #define        GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
                    566: 
1.144     brouard   567: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
                    568: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
1.126     brouard   569: 
                    570: #define NINTERVMAX 8
1.144     brouard   571: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
                    572: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
                    573: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
1.145     brouard   574: #define codtabm(h,k)  1 & (h-1) >> (k-1) ;
1.126     brouard   575: #define MAXN 20000
1.144     brouard   576: #define YEARM 12. /**< Number of months per year */
1.126     brouard   577: #define AGESUP 130
                    578: #define AGEBASE 40
1.164     brouard   579: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
1.157     brouard   580: #ifdef _WIN32
                    581: #define DIRSEPARATOR '\\'
                    582: #define CHARSEPARATOR "\\"
                    583: #define ODIRSEPARATOR '/'
                    584: #else
1.126     brouard   585: #define DIRSEPARATOR '/'
                    586: #define CHARSEPARATOR "/"
                    587: #define ODIRSEPARATOR '\\'
                    588: #endif
                    589: 
1.168   ! brouard   590: /* $Id: imach.c,v 1.167 2014/12/22 13:50:56 brouard Exp $ */
1.126     brouard   591: /* $State: Exp $ */
                    592: 
1.168   ! brouard   593: char version[]="Imach version 0.98nY, December 2014,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015";
        !           594: char fullversion[]="$Revision: 1.167 $ $Date: 2014/12/22 13:50:56 $"; 
1.126     brouard   595: char strstart[80];
                    596: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
1.130     brouard   597: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
1.133     brouard   598: int nvar=0, nforce=0; /* Number of variables, number of forces */
1.145     brouard   599: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
                    600: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
                    601: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
                    602: int cptcovs=0; /**< cptcovs number of simple covariates V2+V1 =2 */
                    603: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
                    604: int cptcovprodnoage=0; /**< Number of covariate products without age */   
                    605: int cptcoveff=0; /* Total number of covariates to vary for printing results */
                    606: int cptcov=0; /* Working variable */
1.126     brouard   607: int npar=NPARMAX;
                    608: int nlstate=2; /* Number of live states */
                    609: int ndeath=1; /* Number of dead states */
1.130     brouard   610: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
1.126     brouard   611: int popbased=0;
                    612: 
                    613: int *wav; /* Number of waves for this individuual 0 is possible */
1.130     brouard   614: int maxwav=0; /* Maxim number of waves */
                    615: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
                    616: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
                    617: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
1.126     brouard   618:                   to the likelihood and the sum of weights (done by funcone)*/
1.130     brouard   619: int mle=1, weightopt=0;
1.126     brouard   620: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
                    621: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
                    622: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                    623:           * wave mi and wave mi+1 is not an exact multiple of stepm. */
1.162     brouard   624: int countcallfunc=0;  /* Count the number of calls to func */
1.130     brouard   625: double jmean=1; /* Mean space between 2 waves */
1.145     brouard   626: double **matprod2(); /* test */
1.126     brouard   627: double **oldm, **newm, **savm; /* Working pointers to matrices */
                    628: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
1.136     brouard   629: /*FILE *fic ; */ /* Used in readdata only */
                    630: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficrespl, *ficrespij, *ficrest,*ficresf,*ficrespop;
1.126     brouard   631: FILE *ficlog, *ficrespow;
1.130     brouard   632: int globpr=0; /* Global variable for printing or not */
1.126     brouard   633: double fretone; /* Only one call to likelihood */
1.130     brouard   634: long ipmx=0; /* Number of contributions */
1.126     brouard   635: double sw; /* Sum of weights */
                    636: char filerespow[FILENAMELENGTH];
                    637: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
                    638: FILE *ficresilk;
                    639: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                    640: FILE *ficresprobmorprev;
                    641: FILE *fichtm, *fichtmcov; /* Html File */
                    642: FILE *ficreseij;
                    643: char filerese[FILENAMELENGTH];
                    644: FILE *ficresstdeij;
                    645: char fileresstde[FILENAMELENGTH];
                    646: FILE *ficrescveij;
                    647: char filerescve[FILENAMELENGTH];
                    648: FILE  *ficresvij;
                    649: char fileresv[FILENAMELENGTH];
                    650: FILE  *ficresvpl;
                    651: char fileresvpl[FILENAMELENGTH];
                    652: char title[MAXLINE];
                    653: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH];
                    654: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
                    655: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
                    656: char command[FILENAMELENGTH];
                    657: int  outcmd=0;
                    658: 
                    659: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
                    660: 
                    661: char filelog[FILENAMELENGTH]; /* Log file */
                    662: char filerest[FILENAMELENGTH];
                    663: char fileregp[FILENAMELENGTH];
                    664: char popfile[FILENAMELENGTH];
                    665: 
                    666: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
                    667: 
1.157     brouard   668: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
                    669: /* struct timezone tzp; */
                    670: /* extern int gettimeofday(); */
                    671: struct tm tml, *gmtime(), *localtime();
                    672: 
                    673: extern time_t time();
                    674: 
                    675: struct tm start_time, end_time, curr_time, last_time, forecast_time;
                    676: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
                    677: struct tm tm;
                    678: 
1.126     brouard   679: char strcurr[80], strfor[80];
                    680: 
                    681: char *endptr;
                    682: long lval;
                    683: double dval;
                    684: 
                    685: #define NR_END 1
                    686: #define FREE_ARG char*
                    687: #define FTOL 1.0e-10
                    688: 
                    689: #define NRANSI 
                    690: #define ITMAX 200 
                    691: 
                    692: #define TOL 2.0e-4 
                    693: 
                    694: #define CGOLD 0.3819660 
                    695: #define ZEPS 1.0e-10 
                    696: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                    697: 
                    698: #define GOLD 1.618034 
                    699: #define GLIMIT 100.0 
                    700: #define TINY 1.0e-20 
                    701: 
                    702: static double maxarg1,maxarg2;
                    703: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
                    704: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
                    705:   
                    706: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
                    707: #define rint(a) floor(a+0.5)
1.166     brouard   708: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
                    709: /* #define mytinydouble 1.0e-16 */
                    710: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
                    711: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
                    712: /* static double dsqrarg; */
                    713: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
1.126     brouard   714: static double sqrarg;
                    715: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
                    716: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
                    717: int agegomp= AGEGOMP;
                    718: 
                    719: int imx; 
                    720: int stepm=1;
                    721: /* Stepm, step in month: minimum step interpolation*/
                    722: 
                    723: int estepm;
                    724: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
                    725: 
                    726: int m,nb;
                    727: long *num;
                    728: int firstpass=0, lastpass=4,*cod, *ncodemax, *Tage,*cens;
                    729: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
                    730: double **pmmij, ***probs;
                    731: double *ageexmed,*agecens;
                    732: double dateintmean=0;
                    733: 
                    734: double *weight;
                    735: int **s; /* Status */
1.141     brouard   736: double *agedc;
1.145     brouard   737: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
1.141     brouard   738:                  * covar=matrix(0,NCOVMAX,1,n); 
                    739:                  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; */
                    740: double  idx; 
                    741: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
1.145     brouard   742: int *Ndum; /** Freq of modality (tricode */
1.141     brouard   743: int **codtab; /**< codtab=imatrix(1,100,1,10); */
                    744: int **Tvard, *Tprod, cptcovprod, *Tvaraff;
1.126     brouard   745: double *lsurv, *lpop, *tpop;
                    746: 
1.143     brouard   747: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
                    748: double ftolhess; /**< Tolerance for computing hessian */
1.126     brouard   749: 
                    750: /**************** split *************************/
                    751: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
                    752: {
                    753:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
                    754:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
                    755:   */ 
                    756:   char *ss;                            /* pointer */
                    757:   int  l1, l2;                         /* length counters */
                    758: 
                    759:   l1 = strlen(path );                  /* length of path */
                    760:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
                    761:   ss= strrchr( path, DIRSEPARATOR );           /* find last / */
                    762:   if ( ss == NULL ) {                  /* no directory, so determine current directory */
                    763:     strcpy( name, path );              /* we got the fullname name because no directory */
                    764:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                    765:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
                    766:     /* get current working directory */
                    767:     /*    extern  char* getcwd ( char *buf , int len);*/
                    768:     if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
                    769:       return( GLOCK_ERROR_GETCWD );
                    770:     }
                    771:     /* got dirc from getcwd*/
                    772:     printf(" DIRC = %s \n",dirc);
                    773:   } else {                             /* strip direcotry from path */
                    774:     ss++;                              /* after this, the filename */
                    775:     l2 = strlen( ss );                 /* length of filename */
                    776:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
                    777:     strcpy( name, ss );                /* save file name */
                    778:     strncpy( dirc, path, l1 - l2 );    /* now the directory */
                    779:     dirc[l1-l2] = 0;                   /* add zero */
                    780:     printf(" DIRC2 = %s \n",dirc);
                    781:   }
                    782:   /* We add a separator at the end of dirc if not exists */
                    783:   l1 = strlen( dirc );                 /* length of directory */
                    784:   if( dirc[l1-1] != DIRSEPARATOR ){
                    785:     dirc[l1] =  DIRSEPARATOR;
                    786:     dirc[l1+1] = 0; 
                    787:     printf(" DIRC3 = %s \n",dirc);
                    788:   }
                    789:   ss = strrchr( name, '.' );           /* find last / */
                    790:   if (ss >0){
                    791:     ss++;
                    792:     strcpy(ext,ss);                    /* save extension */
                    793:     l1= strlen( name);
                    794:     l2= strlen(ss)+1;
                    795:     strncpy( finame, name, l1-l2);
                    796:     finame[l1-l2]= 0;
                    797:   }
                    798: 
                    799:   return( 0 );                         /* we're done */
                    800: }
                    801: 
                    802: 
                    803: /******************************************/
                    804: 
                    805: void replace_back_to_slash(char *s, char*t)
                    806: {
                    807:   int i;
                    808:   int lg=0;
                    809:   i=0;
                    810:   lg=strlen(t);
                    811:   for(i=0; i<= lg; i++) {
                    812:     (s[i] = t[i]);
                    813:     if (t[i]== '\\') s[i]='/';
                    814:   }
                    815: }
                    816: 
1.132     brouard   817: char *trimbb(char *out, char *in)
1.137     brouard   818: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
1.132     brouard   819:   char *s;
                    820:   s=out;
                    821:   while (*in != '\0'){
1.137     brouard   822:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
1.132     brouard   823:       in++;
                    824:     }
                    825:     *out++ = *in++;
                    826:   }
                    827:   *out='\0';
                    828:   return s;
                    829: }
                    830: 
1.145     brouard   831: char *cutl(char *blocc, char *alocc, char *in, char occ)
                    832: {
                    833:   /* cuts string in into blocc and alocc where blocc ends before first occurence of char 'occ' 
                    834:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
                    835:      gives blocc="abcdef2ghi" and alocc="j".
                    836:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
                    837:   */
1.160     brouard   838:   char *s, *t;
1.145     brouard   839:   t=in;s=in;
                    840:   while ((*in != occ) && (*in != '\0')){
                    841:     *alocc++ = *in++;
                    842:   }
                    843:   if( *in == occ){
                    844:     *(alocc)='\0';
                    845:     s=++in;
                    846:   }
                    847:  
                    848:   if (s == t) {/* occ not found */
                    849:     *(alocc-(in-s))='\0';
                    850:     in=s;
                    851:   }
                    852:   while ( *in != '\0'){
                    853:     *blocc++ = *in++;
                    854:   }
                    855: 
                    856:   *blocc='\0';
                    857:   return t;
                    858: }
1.137     brouard   859: char *cutv(char *blocc, char *alocc, char *in, char occ)
                    860: {
                    861:   /* cuts string in into blocc and alocc where blocc ends before last occurence of char 'occ' 
                    862:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
                    863:      gives blocc="abcdef2ghi" and alocc="j".
                    864:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
                    865:   */
                    866:   char *s, *t;
                    867:   t=in;s=in;
                    868:   while (*in != '\0'){
                    869:     while( *in == occ){
                    870:       *blocc++ = *in++;
                    871:       s=in;
                    872:     }
                    873:     *blocc++ = *in++;
                    874:   }
                    875:   if (s == t) /* occ not found */
                    876:     *(blocc-(in-s))='\0';
                    877:   else
                    878:     *(blocc-(in-s)-1)='\0';
                    879:   in=s;
                    880:   while ( *in != '\0'){
                    881:     *alocc++ = *in++;
                    882:   }
                    883: 
                    884:   *alocc='\0';
                    885:   return s;
                    886: }
                    887: 
1.126     brouard   888: int nbocc(char *s, char occ)
                    889: {
                    890:   int i,j=0;
                    891:   int lg=20;
                    892:   i=0;
                    893:   lg=strlen(s);
                    894:   for(i=0; i<= lg; i++) {
                    895:   if  (s[i] == occ ) j++;
                    896:   }
                    897:   return j;
                    898: }
                    899: 
1.137     brouard   900: /* void cutv(char *u,char *v, char*t, char occ) */
                    901: /* { */
                    902: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
                    903: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
                    904: /*      gives u="abcdef2ghi" and v="j" *\/ */
                    905: /*   int i,lg,j,p=0; */
                    906: /*   i=0; */
                    907: /*   lg=strlen(t); */
                    908: /*   for(j=0; j<=lg-1; j++) { */
                    909: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
                    910: /*   } */
1.126     brouard   911: 
1.137     brouard   912: /*   for(j=0; j<p; j++) { */
                    913: /*     (u[j] = t[j]); */
                    914: /*   } */
                    915: /*      u[p]='\0'; */
1.126     brouard   916: 
1.137     brouard   917: /*    for(j=0; j<= lg; j++) { */
                    918: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
                    919: /*   } */
                    920: /* } */
1.126     brouard   921: 
1.160     brouard   922: #ifdef _WIN32
                    923: char * strsep(char **pp, const char *delim)
                    924: {
                    925:   char *p, *q;
                    926:          
                    927:   if ((p = *pp) == NULL)
                    928:     return 0;
                    929:   if ((q = strpbrk (p, delim)) != NULL)
                    930:   {
                    931:     *pp = q + 1;
                    932:     *q = '\0';
                    933:   }
                    934:   else
                    935:     *pp = 0;
                    936:   return p;
                    937: }
                    938: #endif
                    939: 
1.126     brouard   940: /********************** nrerror ********************/
                    941: 
                    942: void nrerror(char error_text[])
                    943: {
                    944:   fprintf(stderr,"ERREUR ...\n");
                    945:   fprintf(stderr,"%s\n",error_text);
                    946:   exit(EXIT_FAILURE);
                    947: }
                    948: /*********************** vector *******************/
                    949: double *vector(int nl, int nh)
                    950: {
                    951:   double *v;
                    952:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
                    953:   if (!v) nrerror("allocation failure in vector");
                    954:   return v-nl+NR_END;
                    955: }
                    956: 
                    957: /************************ free vector ******************/
                    958: void free_vector(double*v, int nl, int nh)
                    959: {
                    960:   free((FREE_ARG)(v+nl-NR_END));
                    961: }
                    962: 
                    963: /************************ivector *******************************/
                    964: int *ivector(long nl,long nh)
                    965: {
                    966:   int *v;
                    967:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                    968:   if (!v) nrerror("allocation failure in ivector");
                    969:   return v-nl+NR_END;
                    970: }
                    971: 
                    972: /******************free ivector **************************/
                    973: void free_ivector(int *v, long nl, long nh)
                    974: {
                    975:   free((FREE_ARG)(v+nl-NR_END));
                    976: }
                    977: 
                    978: /************************lvector *******************************/
                    979: long *lvector(long nl,long nh)
                    980: {
                    981:   long *v;
                    982:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
                    983:   if (!v) nrerror("allocation failure in ivector");
                    984:   return v-nl+NR_END;
                    985: }
                    986: 
                    987: /******************free lvector **************************/
                    988: void free_lvector(long *v, long nl, long nh)
                    989: {
                    990:   free((FREE_ARG)(v+nl-NR_END));
                    991: }
                    992: 
                    993: /******************* imatrix *******************************/
                    994: int **imatrix(long nrl, long nrh, long ncl, long nch) 
                    995:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
                    996: { 
                    997:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                    998:   int **m; 
                    999:   
                   1000:   /* allocate pointers to rows */ 
                   1001:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                   1002:   if (!m) nrerror("allocation failure 1 in matrix()"); 
                   1003:   m += NR_END; 
                   1004:   m -= nrl; 
                   1005:   
                   1006:   
                   1007:   /* allocate rows and set pointers to them */ 
                   1008:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
                   1009:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                   1010:   m[nrl] += NR_END; 
                   1011:   m[nrl] -= ncl; 
                   1012:   
                   1013:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                   1014:   
                   1015:   /* return pointer to array of pointers to rows */ 
                   1016:   return m; 
                   1017: } 
                   1018: 
                   1019: /****************** free_imatrix *************************/
                   1020: void free_imatrix(m,nrl,nrh,ncl,nch)
                   1021:       int **m;
                   1022:       long nch,ncl,nrh,nrl; 
                   1023:      /* free an int matrix allocated by imatrix() */ 
                   1024: { 
                   1025:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                   1026:   free((FREE_ARG) (m+nrl-NR_END)); 
                   1027: } 
                   1028: 
                   1029: /******************* matrix *******************************/
                   1030: double **matrix(long nrl, long nrh, long ncl, long nch)
                   1031: {
                   1032:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                   1033:   double **m;
                   1034: 
                   1035:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   1036:   if (!m) nrerror("allocation failure 1 in matrix()");
                   1037:   m += NR_END;
                   1038:   m -= nrl;
                   1039: 
                   1040:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   1041:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   1042:   m[nrl] += NR_END;
                   1043:   m[nrl] -= ncl;
                   1044: 
                   1045:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   1046:   return m;
1.145     brouard  1047:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
                   1048: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
                   1049: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
1.126     brouard  1050:    */
                   1051: }
                   1052: 
                   1053: /*************************free matrix ************************/
                   1054: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                   1055: {
                   1056:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   1057:   free((FREE_ARG)(m+nrl-NR_END));
                   1058: }
                   1059: 
                   1060: /******************* ma3x *******************************/
                   1061: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                   1062: {
                   1063:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                   1064:   double ***m;
                   1065: 
                   1066:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   1067:   if (!m) nrerror("allocation failure 1 in matrix()");
                   1068:   m += NR_END;
                   1069:   m -= nrl;
                   1070: 
                   1071:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   1072:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   1073:   m[nrl] += NR_END;
                   1074:   m[nrl] -= ncl;
                   1075: 
                   1076:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   1077: 
                   1078:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                   1079:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                   1080:   m[nrl][ncl] += NR_END;
                   1081:   m[nrl][ncl] -= nll;
                   1082:   for (j=ncl+1; j<=nch; j++) 
                   1083:     m[nrl][j]=m[nrl][j-1]+nlay;
                   1084:   
                   1085:   for (i=nrl+1; i<=nrh; i++) {
                   1086:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                   1087:     for (j=ncl+1; j<=nch; j++) 
                   1088:       m[i][j]=m[i][j-1]+nlay;
                   1089:   }
                   1090:   return m; 
                   1091:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                   1092:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                   1093:   */
                   1094: }
                   1095: 
                   1096: /*************************free ma3x ************************/
                   1097: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                   1098: {
                   1099:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                   1100:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   1101:   free((FREE_ARG)(m+nrl-NR_END));
                   1102: }
                   1103: 
                   1104: /*************** function subdirf ***********/
                   1105: char *subdirf(char fileres[])
                   1106: {
                   1107:   /* Caution optionfilefiname is hidden */
                   1108:   strcpy(tmpout,optionfilefiname);
                   1109:   strcat(tmpout,"/"); /* Add to the right */
                   1110:   strcat(tmpout,fileres);
                   1111:   return tmpout;
                   1112: }
                   1113: 
                   1114: /*************** function subdirf2 ***********/
                   1115: char *subdirf2(char fileres[], char *preop)
                   1116: {
                   1117:   
                   1118:   /* Caution optionfilefiname is hidden */
                   1119:   strcpy(tmpout,optionfilefiname);
                   1120:   strcat(tmpout,"/");
                   1121:   strcat(tmpout,preop);
                   1122:   strcat(tmpout,fileres);
                   1123:   return tmpout;
                   1124: }
                   1125: 
                   1126: /*************** function subdirf3 ***********/
                   1127: char *subdirf3(char fileres[], char *preop, char *preop2)
                   1128: {
                   1129:   
                   1130:   /* Caution optionfilefiname is hidden */
                   1131:   strcpy(tmpout,optionfilefiname);
                   1132:   strcat(tmpout,"/");
                   1133:   strcat(tmpout,preop);
                   1134:   strcat(tmpout,preop2);
                   1135:   strcat(tmpout,fileres);
                   1136:   return tmpout;
                   1137: }
                   1138: 
1.162     brouard  1139: char *asc_diff_time(long time_sec, char ascdiff[])
                   1140: {
                   1141:   long sec_left, days, hours, minutes;
                   1142:   days = (time_sec) / (60*60*24);
                   1143:   sec_left = (time_sec) % (60*60*24);
                   1144:   hours = (sec_left) / (60*60) ;
                   1145:   sec_left = (sec_left) %(60*60);
                   1146:   minutes = (sec_left) /60;
                   1147:   sec_left = (sec_left) % (60);
                   1148:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
                   1149:   return ascdiff;
                   1150: }
                   1151: 
1.126     brouard  1152: /***************** f1dim *************************/
                   1153: extern int ncom; 
                   1154: extern double *pcom,*xicom;
                   1155: extern double (*nrfunc)(double []); 
                   1156:  
                   1157: double f1dim(double x) 
                   1158: { 
                   1159:   int j; 
                   1160:   double f;
                   1161:   double *xt; 
                   1162:  
                   1163:   xt=vector(1,ncom); 
                   1164:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                   1165:   f=(*nrfunc)(xt); 
                   1166:   free_vector(xt,1,ncom); 
                   1167:   return f; 
                   1168: } 
                   1169: 
                   1170: /*****************brent *************************/
                   1171: double brent(double ax, double bx, double cx, double (*f)(double), double tol,         double *xmin) 
                   1172: { 
                   1173:   int iter; 
                   1174:   double a,b,d,etemp;
1.159     brouard  1175:   double fu=0,fv,fw,fx;
1.164     brouard  1176:   double ftemp=0.;
1.126     brouard  1177:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
                   1178:   double e=0.0; 
                   1179:  
                   1180:   a=(ax < cx ? ax : cx); 
                   1181:   b=(ax > cx ? ax : cx); 
                   1182:   x=w=v=bx; 
                   1183:   fw=fv=fx=(*f)(x); 
                   1184:   for (iter=1;iter<=ITMAX;iter++) { 
                   1185:     xm=0.5*(a+b); 
                   1186:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                   1187:     /*         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                   1188:     printf(".");fflush(stdout);
                   1189:     fprintf(ficlog,".");fflush(ficlog);
1.162     brouard  1190: #ifdef DEBUGBRENT
1.126     brouard  1191:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   1192:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   1193:     /*         if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                   1194: #endif
                   1195:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                   1196:       *xmin=x; 
                   1197:       return fx; 
                   1198:     } 
                   1199:     ftemp=fu;
                   1200:     if (fabs(e) > tol1) { 
                   1201:       r=(x-w)*(fx-fv); 
                   1202:       q=(x-v)*(fx-fw); 
                   1203:       p=(x-v)*q-(x-w)*r; 
                   1204:       q=2.0*(q-r); 
                   1205:       if (q > 0.0) p = -p; 
                   1206:       q=fabs(q); 
                   1207:       etemp=e; 
                   1208:       e=d; 
                   1209:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
                   1210:        d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                   1211:       else { 
                   1212:        d=p/q; 
                   1213:        u=x+d; 
                   1214:        if (u-a < tol2 || b-u < tol2) 
                   1215:          d=SIGN(tol1,xm-x); 
                   1216:       } 
                   1217:     } else { 
                   1218:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                   1219:     } 
                   1220:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                   1221:     fu=(*f)(u); 
                   1222:     if (fu <= fx) { 
                   1223:       if (u >= x) a=x; else b=x; 
                   1224:       SHFT(v,w,x,u) 
                   1225:        SHFT(fv,fw,fx,fu) 
                   1226:        } else { 
                   1227:          if (u < x) a=u; else b=u; 
                   1228:          if (fu <= fw || w == x) { 
                   1229:            v=w; 
                   1230:            w=u; 
                   1231:            fv=fw; 
                   1232:            fw=fu; 
                   1233:          } else if (fu <= fv || v == x || v == w) { 
                   1234:            v=u; 
                   1235:            fv=fu; 
                   1236:          } 
                   1237:        } 
                   1238:   } 
                   1239:   nrerror("Too many iterations in brent"); 
                   1240:   *xmin=x; 
                   1241:   return fx; 
                   1242: } 
                   1243: 
                   1244: /****************** mnbrak ***********************/
                   1245: 
                   1246: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                   1247:            double (*func)(double)) 
                   1248: { 
                   1249:   double ulim,u,r,q, dum;
                   1250:   double fu; 
                   1251:  
                   1252:   *fa=(*func)(*ax); 
                   1253:   *fb=(*func)(*bx); 
                   1254:   if (*fb > *fa) { 
                   1255:     SHFT(dum,*ax,*bx,dum) 
                   1256:       SHFT(dum,*fb,*fa,dum) 
                   1257:       } 
                   1258:   *cx=(*bx)+GOLD*(*bx-*ax); 
                   1259:   *fc=(*func)(*cx); 
1.162     brouard  1260:   while (*fb > *fc) { /* Declining fa, fb, fc */
1.126     brouard  1261:     r=(*bx-*ax)*(*fb-*fc); 
                   1262:     q=(*bx-*cx)*(*fb-*fa); 
                   1263:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
1.162     brouard  1264:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscisse of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
                   1265:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscisse where function can be evaluated */
                   1266:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u between b and c */
1.126     brouard  1267:       fu=(*func)(u); 
1.163     brouard  1268: #ifdef DEBUG
                   1269:       /* f(x)=A(x-u)**2+f(u) */
                   1270:       double A, fparabu; 
                   1271:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   1272:       fparabu= *fa - A*(*ax-u)*(*ax-u);
                   1273:       printf("mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                   1274:       fprintf(ficlog, "mnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu);
                   1275: #endif 
1.162     brouard  1276:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
1.126     brouard  1277:       fu=(*func)(u); 
                   1278:       if (fu < *fc) { 
                   1279:        SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                   1280:          SHFT(*fb,*fc,fu,(*func)(u)) 
                   1281:          } 
1.162     brouard  1282:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
1.126     brouard  1283:       u=ulim; 
                   1284:       fu=(*func)(u); 
                   1285:     } else { 
                   1286:       u=(*cx)+GOLD*(*cx-*bx); 
                   1287:       fu=(*func)(u); 
                   1288:     } 
                   1289:     SHFT(*ax,*bx,*cx,u) 
                   1290:       SHFT(*fa,*fb,*fc,fu) 
                   1291:       } 
                   1292: } 
                   1293: 
                   1294: /*************** linmin ************************/
1.162     brouard  1295: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
                   1296: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
                   1297: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
                   1298: the value of func at the returned location p . This is actually all accomplished by calling the
                   1299: routines mnbrak and brent .*/
1.126     brouard  1300: int ncom; 
                   1301: double *pcom,*xicom;
                   1302: double (*nrfunc)(double []); 
                   1303:  
                   1304: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
                   1305: { 
                   1306:   double brent(double ax, double bx, double cx, 
                   1307:               double (*f)(double), double tol, double *xmin); 
                   1308:   double f1dim(double x); 
                   1309:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                   1310:              double *fc, double (*func)(double)); 
                   1311:   int j; 
                   1312:   double xx,xmin,bx,ax; 
                   1313:   double fx,fb,fa;
                   1314:  
                   1315:   ncom=n; 
                   1316:   pcom=vector(1,n); 
                   1317:   xicom=vector(1,n); 
                   1318:   nrfunc=func; 
                   1319:   for (j=1;j<=n;j++) { 
                   1320:     pcom[j]=p[j]; 
                   1321:     xicom[j]=xi[j]; 
                   1322:   } 
                   1323:   ax=0.0; 
                   1324:   xx=1.0; 
1.162     brouard  1325:   mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim); /* Find a bracket a,x,b in direction n=xi ie xicom */
                   1326:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Find a minimum P+lambda n in that direction (lambdamin), with TOL between abscisses */
1.126     brouard  1327: #ifdef DEBUG
                   1328:   printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                   1329:   fprintf(ficlog,"retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
                   1330: #endif
                   1331:   for (j=1;j<=n;j++) { 
                   1332:     xi[j] *= xmin; 
                   1333:     p[j] += xi[j]; 
                   1334:   } 
                   1335:   free_vector(xicom,1,n); 
                   1336:   free_vector(pcom,1,n); 
                   1337: } 
                   1338: 
                   1339: 
                   1340: /*************** powell ************************/
1.162     brouard  1341: /*
                   1342: Minimization of a function func of n variables. Input consists of an initial starting point
                   1343: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
                   1344: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
                   1345: such that failure to decrease by more than this amount on one iteration signals doneness. On
                   1346: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
                   1347: function value at p , and iter is the number of iterations taken. The routine linmin is used.
                   1348:  */
1.126     brouard  1349: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                   1350:            double (*func)(double [])) 
                   1351: { 
                   1352:   void linmin(double p[], double xi[], int n, double *fret, 
                   1353:              double (*func)(double [])); 
                   1354:   int i,ibig,j; 
                   1355:   double del,t,*pt,*ptt,*xit;
                   1356:   double fp,fptt;
                   1357:   double *xits;
                   1358:   int niterf, itmp;
                   1359: 
                   1360:   pt=vector(1,n); 
                   1361:   ptt=vector(1,n); 
                   1362:   xit=vector(1,n); 
                   1363:   xits=vector(1,n); 
                   1364:   *fret=(*func)(p); 
                   1365:   for (j=1;j<=n;j++) pt[j]=p[j]; 
1.157     brouard  1366:     rcurr_time = time(NULL);  
1.126     brouard  1367:   for (*iter=1;;++(*iter)) { 
                   1368:     fp=(*fret); 
                   1369:     ibig=0; 
                   1370:     del=0.0; 
1.157     brouard  1371:     rlast_time=rcurr_time;
                   1372:     /* (void) gettimeofday(&curr_time,&tzp); */
                   1373:     rcurr_time = time(NULL);  
                   1374:     curr_time = *localtime(&rcurr_time);
                   1375:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
                   1376:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
                   1377: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
1.126     brouard  1378:    for (i=1;i<=n;i++) {
                   1379:       printf(" %d %.12f",i, p[i]);
                   1380:       fprintf(ficlog," %d %.12lf",i, p[i]);
                   1381:       fprintf(ficrespow," %.12lf", p[i]);
                   1382:     }
                   1383:     printf("\n");
                   1384:     fprintf(ficlog,"\n");
                   1385:     fprintf(ficrespow,"\n");fflush(ficrespow);
                   1386:     if(*iter <=3){
1.157     brouard  1387:       tml = *localtime(&rcurr_time);
                   1388:       strcpy(strcurr,asctime(&tml));
                   1389:       rforecast_time=rcurr_time; 
1.126     brouard  1390:       itmp = strlen(strcurr);
                   1391:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
                   1392:        strcurr[itmp-1]='\0';
1.162     brouard  1393:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.157     brouard  1394:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.126     brouard  1395:       for(niterf=10;niterf<=30;niterf+=10){
1.157     brouard  1396:        rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
                   1397:        forecast_time = *localtime(&rforecast_time);
                   1398:        strcpy(strfor,asctime(&forecast_time));
1.126     brouard  1399:        itmp = strlen(strfor);
                   1400:        if(strfor[itmp-1]=='\n')
                   1401:        strfor[itmp-1]='\0';
1.157     brouard  1402:        printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                   1403:        fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
1.126     brouard  1404:       }
                   1405:     }
                   1406:     for (i=1;i<=n;i++) { 
                   1407:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; 
                   1408:       fptt=(*fret); 
                   1409: #ifdef DEBUG
1.164     brouard  1410:          printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
                   1411:          fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
1.126     brouard  1412: #endif
                   1413:       printf("%d",i);fflush(stdout);
                   1414:       fprintf(ficlog,"%d",i);fflush(ficlog);
                   1415:       linmin(p,xit,n,fret,func); 
                   1416:       if (fabs(fptt-(*fret)) > del) { 
                   1417:        del=fabs(fptt-(*fret)); 
                   1418:        ibig=i; 
                   1419:       } 
                   1420: #ifdef DEBUG
                   1421:       printf("%d %.12e",i,(*fret));
                   1422:       fprintf(ficlog,"%d %.12e",i,(*fret));
                   1423:       for (j=1;j<=n;j++) {
                   1424:        xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                   1425:        printf(" x(%d)=%.12e",j,xit[j]);
                   1426:        fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
                   1427:       }
                   1428:       for(j=1;j<=n;j++) {
1.162     brouard  1429:        printf(" p(%d)=%.12e",j,p[j]);
                   1430:        fprintf(ficlog," p(%d)=%.12e",j,p[j]);
1.126     brouard  1431:       }
                   1432:       printf("\n");
                   1433:       fprintf(ficlog,"\n");
                   1434: #endif
1.162     brouard  1435:     } /* end i */
1.126     brouard  1436:     if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
                   1437: #ifdef DEBUG
                   1438:       int k[2],l;
                   1439:       k[0]=1;
                   1440:       k[1]=-1;
                   1441:       printf("Max: %.12e",(*func)(p));
                   1442:       fprintf(ficlog,"Max: %.12e",(*func)(p));
                   1443:       for (j=1;j<=n;j++) {
                   1444:        printf(" %.12e",p[j]);
                   1445:        fprintf(ficlog," %.12e",p[j]);
                   1446:       }
                   1447:       printf("\n");
                   1448:       fprintf(ficlog,"\n");
                   1449:       for(l=0;l<=1;l++) {
                   1450:        for (j=1;j<=n;j++) {
                   1451:          ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                   1452:          printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   1453:          fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   1454:        }
                   1455:        printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   1456:        fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   1457:       }
                   1458: #endif
                   1459: 
                   1460: 
                   1461:       free_vector(xit,1,n); 
                   1462:       free_vector(xits,1,n); 
                   1463:       free_vector(ptt,1,n); 
                   1464:       free_vector(pt,1,n); 
                   1465:       return; 
                   1466:     } 
                   1467:     if (*iter == ITMAX) nrerror("powell exceeding maximum iterations."); 
1.161     brouard  1468:     for (j=1;j<=n;j++) { /* Computes an extrapolated point */
1.126     brouard  1469:       ptt[j]=2.0*p[j]-pt[j]; 
                   1470:       xit[j]=p[j]-pt[j]; 
                   1471:       pt[j]=p[j]; 
                   1472:     } 
                   1473:     fptt=(*func)(ptt); 
1.161     brouard  1474:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
1.162     brouard  1475:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
1.161     brouard  1476:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
1.162     brouard  1477:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
                   1478:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
                   1479:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
1.161     brouard  1480:       /* f1-f3 = delta(2h) = 2 h**2 f'' = 2(f1- 2f2 +f3) */
                   1481:       /* Thus we compare delta(2h) with observed f1-f3 */
1.162     brouard  1482:       /* or best gain on one ancient line 'del' with total  */
                   1483:       /* gain f1-f2 = f1 - f2 - 'del' with del  */
1.161     brouard  1484:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
1.162     brouard  1485: 
1.161     brouard  1486:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del);
                   1487:       t= t- del*SQR(fp-fptt);
                   1488:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
                   1489:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t);
                   1490: #ifdef DEBUG
                   1491:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   1492:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   1493:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   1494:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   1495:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   1496:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   1497: #endif
                   1498:       if (t < 0.0) { /* Then we use it for last direction */
                   1499:        linmin(p,xit,n,fret,func); /* computes mean on the extrapolated direction.*/
1.126     brouard  1500:        for (j=1;j<=n;j++) { 
1.161     brouard  1501:          xi[j][ibig]=xi[j][n]; /* Replace the direction with biggest decrease by n */
                   1502:          xi[j][n]=xit[j];      /* and nth direction by the extrapolated */
1.126     brouard  1503:        }
1.161     brouard  1504:        printf("Gaining to use average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   1505:        fprintf(ficlog,"Gaining to use average direction of P0 P%d instead of biggest increase direction :\n",n,ibig);
                   1506: 
1.126     brouard  1507: #ifdef DEBUG
1.164     brouard  1508:        printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   1509:        fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
1.126     brouard  1510:        for(j=1;j<=n;j++){
                   1511:          printf(" %.12e",xit[j]);
                   1512:          fprintf(ficlog," %.12e",xit[j]);
                   1513:        }
                   1514:        printf("\n");
                   1515:        fprintf(ficlog,"\n");
                   1516: #endif
1.162     brouard  1517:       } /* end of t negative */
                   1518:     } /* end if (fptt < fp)  */
1.126     brouard  1519:   } 
                   1520: } 
                   1521: 
                   1522: /**** Prevalence limit (stable or period prevalence)  ****************/
                   1523: 
                   1524: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
                   1525: {
                   1526:   /* Computes the prevalence limit in each live state at age x by left multiplying the unit
                   1527:      matrix by transitions matrix until convergence is reached */
                   1528: 
                   1529:   int i, ii,j,k;
                   1530:   double min, max, maxmin, maxmax,sumnew=0.;
1.145     brouard  1531:   /* double **matprod2(); */ /* test */
1.131     brouard  1532:   double **out, cov[NCOVMAX+1], **pmij();
1.126     brouard  1533:   double **newm;
                   1534:   double agefin, delaymax=50 ; /* Max number of years to converge */
                   1535: 
                   1536:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   1537:     for (j=1;j<=nlstate+ndeath;j++){
                   1538:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1539:     }
                   1540: 
                   1541:    cov[1]=1.;
                   1542:  
                   1543:  /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1544:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
                   1545:     newm=savm;
                   1546:     /* Covariates have to be included here again */
1.138     brouard  1547:     cov[2]=agefin;
                   1548:     
                   1549:     for (k=1; k<=cptcovn;k++) {
                   1550:       cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
1.145     brouard  1551:       /*printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtab[%d][Tvar[%d]]=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k], ij, k, codtab[ij][Tvar[k]]);*/
1.138     brouard  1552:     }
1.145     brouard  1553:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
                   1554:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
                   1555:     /*   cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]] * nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]]; */
1.138     brouard  1556:     
                   1557:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   1558:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   1559:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
1.145     brouard  1560:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   1561:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.142     brouard  1562:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
1.138     brouard  1563:     
1.126     brouard  1564:     savm=oldm;
                   1565:     oldm=newm;
                   1566:     maxmax=0.;
                   1567:     for(j=1;j<=nlstate;j++){
                   1568:       min=1.;
                   1569:       max=0.;
                   1570:       for(i=1; i<=nlstate; i++) {
                   1571:        sumnew=0;
                   1572:        for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                   1573:        prlim[i][j]= newm[i][j]/(1-sumnew);
1.145     brouard  1574:         /*printf(" prevalim i=%d, j=%d, prmlim[%d][%d]=%f, agefin=%d \n", i, j, i, j, prlim[i][j],(int)agefin);*/
1.126     brouard  1575:        max=FMAX(max,prlim[i][j]);
                   1576:        min=FMIN(min,prlim[i][j]);
                   1577:       }
                   1578:       maxmin=max-min;
                   1579:       maxmax=FMAX(maxmax,maxmin);
                   1580:     }
                   1581:     if(maxmax < ftolpl){
                   1582:       return prlim;
                   1583:     }
                   1584:   }
                   1585: }
                   1586: 
                   1587: /*************** transition probabilities ***************/ 
                   1588: 
                   1589: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                   1590: {
1.138     brouard  1591:   /* According to parameters values stored in x and the covariate's values stored in cov,
                   1592:      computes the probability to be observed in state j being in state i by appying the
                   1593:      model to the ncovmodel covariates (including constant and age).
                   1594:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   1595:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   1596:      ncth covariate in the global vector x is given by the formula:
                   1597:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   1598:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   1599:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   1600:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
                   1601:      Outputs ps[i][j] the probability to be observed in j being in j according to
                   1602:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
                   1603:   */
                   1604:   double s1, lnpijopii;
1.126     brouard  1605:   /*double t34;*/
1.164     brouard  1606:   int i,j, nc, ii, jj;
1.126     brouard  1607: 
                   1608:     for(i=1; i<= nlstate; i++){
                   1609:       for(j=1; j<i;j++){
1.138     brouard  1610:        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   1611:          /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   1612:          lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   1613: /*      printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
1.126     brouard  1614:        }
1.138     brouard  1615:        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   1616: /*     printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
1.126     brouard  1617:       }
                   1618:       for(j=i+1; j<=nlstate+ndeath;j++){
1.138     brouard  1619:        for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   1620:          /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   1621:          lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   1622: /*       printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
1.126     brouard  1623:        }
1.138     brouard  1624:        ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
1.126     brouard  1625:       }
                   1626:     }
                   1627:     
                   1628:     for(i=1; i<= nlstate; i++){
                   1629:       s1=0;
1.131     brouard  1630:       for(j=1; j<i; j++){
1.138     brouard  1631:        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
1.131     brouard  1632:        /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   1633:       }
                   1634:       for(j=i+1; j<=nlstate+ndeath; j++){
1.138     brouard  1635:        s1+=exp(ps[i][j]); /* In fact sums pij/pii */
1.131     brouard  1636:        /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   1637:       }
1.138     brouard  1638:       /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
1.126     brouard  1639:       ps[i][i]=1./(s1+1.);
1.138     brouard  1640:       /* Computing other pijs */
1.126     brouard  1641:       for(j=1; j<i; j++)
                   1642:        ps[i][j]= exp(ps[i][j])*ps[i][i];
                   1643:       for(j=i+1; j<=nlstate+ndeath; j++)
                   1644:        ps[i][j]= exp(ps[i][j])*ps[i][i];
                   1645:       /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   1646:     } /* end i */
                   1647:     
                   1648:     for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   1649:       for(jj=1; jj<= nlstate+ndeath; jj++){
                   1650:        ps[ii][jj]=0;
                   1651:        ps[ii][ii]=1;
                   1652:       }
                   1653:     }
                   1654:     
1.145     brouard  1655:     
                   1656:     /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   1657:     /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   1658:     /*         printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   1659:     /*   } */
                   1660:     /*   printf("\n "); */
                   1661:     /* } */
                   1662:     /* printf("\n ");printf("%lf ",cov[2]);*/
                   1663:     /*
1.126     brouard  1664:       for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   1665:       goto end;*/
                   1666:     return ps;
                   1667: }
                   1668: 
                   1669: /**************** Product of 2 matrices ******************/
                   1670: 
1.145     brouard  1671: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
1.126     brouard  1672: {
                   1673:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   1674:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                   1675:   /* in, b, out are matrice of pointers which should have been initialized 
                   1676:      before: only the contents of out is modified. The function returns
                   1677:      a pointer to pointers identical to out */
1.145     brouard  1678:   int i, j, k;
1.126     brouard  1679:   for(i=nrl; i<= nrh; i++)
1.145     brouard  1680:     for(k=ncolol; k<=ncoloh; k++){
                   1681:       out[i][k]=0.;
                   1682:       for(j=ncl; j<=nch; j++)
                   1683:        out[i][k] +=in[i][j]*b[j][k];
                   1684:     }
1.126     brouard  1685:   return out;
                   1686: }
                   1687: 
                   1688: 
                   1689: /************* Higher Matrix Product ***************/
                   1690: 
                   1691: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
                   1692: {
                   1693:   /* Computes the transition matrix starting at age 'age' over 
                   1694:      'nhstepm*hstepm*stepm' months (i.e. until
                   1695:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                   1696:      nhstepm*hstepm matrices. 
                   1697:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
                   1698:      (typically every 2 years instead of every month which is too big 
                   1699:      for the memory).
                   1700:      Model is determined by parameters x and covariates have to be 
                   1701:      included manually here. 
                   1702: 
                   1703:      */
                   1704: 
                   1705:   int i, j, d, h, k;
1.131     brouard  1706:   double **out, cov[NCOVMAX+1];
1.126     brouard  1707:   double **newm;
                   1708: 
                   1709:   /* Hstepm could be zero and should return the unit matrix */
                   1710:   for (i=1;i<=nlstate+ndeath;i++)
                   1711:     for (j=1;j<=nlstate+ndeath;j++){
                   1712:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   1713:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   1714:     }
                   1715:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   1716:   for(h=1; h <=nhstepm; h++){
                   1717:     for(d=1; d <=hstepm; d++){
                   1718:       newm=savm;
                   1719:       /* Covariates have to be included here again */
                   1720:       cov[1]=1.;
                   1721:       cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
1.131     brouard  1722:       for (k=1; k<=cptcovn;k++) 
                   1723:        cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
1.126     brouard  1724:       for (k=1; k<=cptcovage;k++)
                   1725:        cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
1.145     brouard  1726:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
1.126     brouard  1727:        cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   1728: 
                   1729: 
                   1730:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   1731:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
                   1732:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                   1733:                   pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1734:       savm=oldm;
                   1735:       oldm=newm;
                   1736:     }
                   1737:     for(i=1; i<=nlstate+ndeath; i++)
                   1738:       for(j=1;j<=nlstate+ndeath;j++) {
                   1739:        po[i][j][h]=newm[i][j];
1.128     brouard  1740:        /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
1.126     brouard  1741:       }
1.128     brouard  1742:     /*printf("h=%d ",h);*/
1.126     brouard  1743:   } /* end h */
1.128     brouard  1744: /*     printf("\n H=%d \n",h); */
1.126     brouard  1745:   return po;
                   1746: }
                   1747: 
1.162     brouard  1748: #ifdef NLOPT
                   1749:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
                   1750:   double fret;
                   1751:   double *xt;
                   1752:   int j;
                   1753:   myfunc_data *d2 = (myfunc_data *) pd;
                   1754: /* xt = (p1-1); */
                   1755:   xt=vector(1,n); 
                   1756:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
                   1757: 
                   1758:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
                   1759:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
                   1760:   printf("Function = %.12lf ",fret);
                   1761:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
                   1762:   printf("\n");
                   1763:  free_vector(xt,1,n);
                   1764:   return fret;
                   1765: }
                   1766: #endif
1.126     brouard  1767: 
                   1768: /*************** log-likelihood *************/
                   1769: double func( double *x)
                   1770: {
                   1771:   int i, ii, j, k, mi, d, kk;
1.131     brouard  1772:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
1.126     brouard  1773:   double **out;
                   1774:   double sw; /* Sum of weights */
                   1775:   double lli; /* Individual log likelihood */
                   1776:   int s1, s2;
                   1777:   double bbh, survp;
                   1778:   long ipmx;
                   1779:   /*extern weight */
                   1780:   /* We are differentiating ll according to initial status */
                   1781:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   1782:   /*for(i=1;i<imx;i++) 
                   1783:     printf(" %d\n",s[4][i]);
                   1784:   */
1.162     brouard  1785: 
                   1786:   ++countcallfunc;
                   1787: 
1.126     brouard  1788:   cov[1]=1.;
                   1789: 
                   1790:   for(k=1; k<=nlstate; k++) ll[k]=0.;
                   1791: 
                   1792:   if(mle==1){
                   1793:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.138     brouard  1794:       /* Computes the values of the ncovmodel covariates of the model
                   1795:         depending if the covariates are fixed or variying (age dependent) and stores them in cov[]
                   1796:         Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   1797:         to be observed in j being in i according to the model.
                   1798:        */
1.145     brouard  1799:       for (k=1; k<=cptcovn;k++){ /* Simple and product covariates without age* products */
                   1800:        cov[2+k]=covar[Tvar[k]][i];
                   1801:       }
1.137     brouard  1802:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
1.138     brouard  1803:         is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
1.137     brouard  1804:         has been calculated etc */
1.126     brouard  1805:       for(mi=1; mi<= wav[i]-1; mi++){
                   1806:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1807:          for (j=1;j<=nlstate+ndeath;j++){
                   1808:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1809:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1810:          }
                   1811:        for(d=0; d<dh[mi][i]; d++){
                   1812:          newm=savm;
                   1813:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1814:          for (kk=1; kk<=cptcovage;kk++) {
1.137     brouard  1815:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2]; /* Tage[kk] gives the data-covariate associated with age */
1.126     brouard  1816:          }
                   1817:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1818:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1819:          savm=oldm;
                   1820:          oldm=newm;
                   1821:        } /* end mult */
                   1822:       
                   1823:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   1824:        /* But now since version 0.9 we anticipate for bias at large stepm.
                   1825:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   1826:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   1827:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   1828:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   1829:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   1830:         * probability in order to take into account the bias as a fraction of the way
                   1831:         * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   1832:         * -stepm/2 to stepm/2 .
                   1833:         * For stepm=1 the results are the same as for previous versions of Imach.
                   1834:         * For stepm > 1 the results are less biased than in previous versions. 
                   1835:         */
                   1836:        s1=s[mw[mi][i]][i];
                   1837:        s2=s[mw[mi+1][i]][i];
                   1838:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1839:        /* bias bh is positive if real duration
                   1840:         * is higher than the multiple of stepm and negative otherwise.
                   1841:         */
                   1842:        /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                   1843:        if( s2 > nlstate){ 
                   1844:          /* i.e. if s2 is a death state and if the date of death is known 
                   1845:             then the contribution to the likelihood is the probability to 
                   1846:             die between last step unit time and current  step unit time, 
                   1847:             which is also equal to probability to die before dh 
                   1848:             minus probability to die before dh-stepm . 
                   1849:             In version up to 0.92 likelihood was computed
                   1850:        as if date of death was unknown. Death was treated as any other
                   1851:        health state: the date of the interview describes the actual state
                   1852:        and not the date of a change in health state. The former idea was
                   1853:        to consider that at each interview the state was recorded
                   1854:        (healthy, disable or death) and IMaCh was corrected; but when we
                   1855:        introduced the exact date of death then we should have modified
                   1856:        the contribution of an exact death to the likelihood. This new
                   1857:        contribution is smaller and very dependent of the step unit
                   1858:        stepm. It is no more the probability to die between last interview
                   1859:        and month of death but the probability to survive from last
                   1860:        interview up to one month before death multiplied by the
                   1861:        probability to die within a month. Thanks to Chris
                   1862:        Jackson for correcting this bug.  Former versions increased
                   1863:        mortality artificially. The bad side is that we add another loop
                   1864:        which slows down the processing. The difference can be up to 10%
                   1865:        lower mortality.
                   1866:          */
                   1867:          lli=log(out[s1][s2] - savm[s1][s2]);
                   1868: 
                   1869: 
                   1870:        } else if  (s2==-2) {
                   1871:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   1872:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   1873:          /*survp += out[s1][j]; */
                   1874:          lli= log(survp);
                   1875:        }
                   1876:        
                   1877:        else if  (s2==-4) { 
                   1878:          for (j=3,survp=0. ; j<=nlstate; j++)  
                   1879:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   1880:          lli= log(survp); 
                   1881:        } 
                   1882: 
                   1883:        else if  (s2==-5) { 
                   1884:          for (j=1,survp=0. ; j<=2; j++)  
                   1885:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   1886:          lli= log(survp); 
                   1887:        } 
                   1888:        
                   1889:        else{
                   1890:          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   1891:          /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   1892:        } 
                   1893:        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   1894:        /*if(lli ==000.0)*/
                   1895:        /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                   1896:        ipmx +=1;
                   1897:        sw += weight[i];
                   1898:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1899:       } /* end of wave */
                   1900:     } /* end of individual */
                   1901:   }  else if(mle==2){
                   1902:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1903:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1904:       for(mi=1; mi<= wav[i]-1; mi++){
                   1905:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1906:          for (j=1;j<=nlstate+ndeath;j++){
                   1907:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1908:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1909:          }
                   1910:        for(d=0; d<=dh[mi][i]; d++){
                   1911:          newm=savm;
                   1912:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1913:          for (kk=1; kk<=cptcovage;kk++) {
                   1914:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1915:          }
                   1916:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1917:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1918:          savm=oldm;
                   1919:          oldm=newm;
                   1920:        } /* end mult */
                   1921:       
                   1922:        s1=s[mw[mi][i]][i];
                   1923:        s2=s[mw[mi+1][i]][i];
                   1924:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1925:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   1926:        ipmx +=1;
                   1927:        sw += weight[i];
                   1928:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1929:       } /* end of wave */
                   1930:     } /* end of individual */
                   1931:   }  else if(mle==3){  /* exponential inter-extrapolation */
                   1932:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1933:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1934:       for(mi=1; mi<= wav[i]-1; mi++){
                   1935:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1936:          for (j=1;j<=nlstate+ndeath;j++){
                   1937:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1938:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1939:          }
                   1940:        for(d=0; d<dh[mi][i]; d++){
                   1941:          newm=savm;
                   1942:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1943:          for (kk=1; kk<=cptcovage;kk++) {
                   1944:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1945:          }
                   1946:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1947:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1948:          savm=oldm;
                   1949:          oldm=newm;
                   1950:        } /* end mult */
                   1951:       
                   1952:        s1=s[mw[mi][i]][i];
                   1953:        s2=s[mw[mi+1][i]][i];
                   1954:        bbh=(double)bh[mi][i]/(double)stepm; 
                   1955:        lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   1956:        ipmx +=1;
                   1957:        sw += weight[i];
                   1958:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1959:       } /* end of wave */
                   1960:     } /* end of individual */
                   1961:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
                   1962:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1963:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1964:       for(mi=1; mi<= wav[i]-1; mi++){
                   1965:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   1966:          for (j=1;j<=nlstate+ndeath;j++){
                   1967:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1968:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   1969:          }
                   1970:        for(d=0; d<dh[mi][i]; d++){
                   1971:          newm=savm;
                   1972:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   1973:          for (kk=1; kk<=cptcovage;kk++) {
                   1974:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   1975:          }
                   1976:        
                   1977:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   1978:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   1979:          savm=oldm;
                   1980:          oldm=newm;
                   1981:        } /* end mult */
                   1982:       
                   1983:        s1=s[mw[mi][i]][i];
                   1984:        s2=s[mw[mi+1][i]][i];
                   1985:        if( s2 > nlstate){ 
                   1986:          lli=log(out[s1][s2] - savm[s1][s2]);
                   1987:        }else{
                   1988:          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   1989:        }
                   1990:        ipmx +=1;
                   1991:        sw += weight[i];
                   1992:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   1993: /*     printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
                   1994:       } /* end of wave */
                   1995:     } /* end of individual */
                   1996:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   1997:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   1998:       for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   1999:       for(mi=1; mi<= wav[i]-1; mi++){
                   2000:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   2001:          for (j=1;j<=nlstate+ndeath;j++){
                   2002:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   2003:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   2004:          }
                   2005:        for(d=0; d<dh[mi][i]; d++){
                   2006:          newm=savm;
                   2007:          cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   2008:          for (kk=1; kk<=cptcovage;kk++) {
                   2009:            cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   2010:          }
                   2011:        
                   2012:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   2013:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   2014:          savm=oldm;
                   2015:          oldm=newm;
                   2016:        } /* end mult */
                   2017:       
                   2018:        s1=s[mw[mi][i]][i];
                   2019:        s2=s[mw[mi+1][i]][i];
                   2020:        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   2021:        ipmx +=1;
                   2022:        sw += weight[i];
                   2023:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   2024:        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                   2025:       } /* end of wave */
                   2026:     } /* end of individual */
                   2027:   } /* End of if */
                   2028:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   2029:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   2030:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   2031:   return -l;
                   2032: }
                   2033: 
                   2034: /*************** log-likelihood *************/
                   2035: double funcone( double *x)
                   2036: {
                   2037:   /* Same as likeli but slower because of a lot of printf and if */
                   2038:   int i, ii, j, k, mi, d, kk;
1.131     brouard  2039:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
1.126     brouard  2040:   double **out;
                   2041:   double lli; /* Individual log likelihood */
                   2042:   double llt;
                   2043:   int s1, s2;
                   2044:   double bbh, survp;
                   2045:   /*extern weight */
                   2046:   /* We are differentiating ll according to initial status */
                   2047:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   2048:   /*for(i=1;i<imx;i++) 
                   2049:     printf(" %d\n",s[4][i]);
                   2050:   */
                   2051:   cov[1]=1.;
                   2052: 
                   2053:   for(k=1; k<=nlstate; k++) ll[k]=0.;
                   2054: 
                   2055:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   2056:     for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
                   2057:     for(mi=1; mi<= wav[i]-1; mi++){
                   2058:       for (ii=1;ii<=nlstate+ndeath;ii++)
                   2059:        for (j=1;j<=nlstate+ndeath;j++){
                   2060:          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   2061:          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   2062:        }
                   2063:       for(d=0; d<dh[mi][i]; d++){
                   2064:        newm=savm;
                   2065:        cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   2066:        for (kk=1; kk<=cptcovage;kk++) {
                   2067:          cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   2068:        }
1.145     brouard  2069:        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
1.126     brouard  2070:        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   2071:                     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
1.145     brouard  2072:        /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                   2073:        /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
1.126     brouard  2074:        savm=oldm;
                   2075:        oldm=newm;
                   2076:       } /* end mult */
                   2077:       
                   2078:       s1=s[mw[mi][i]][i];
                   2079:       s2=s[mw[mi+1][i]][i];
                   2080:       bbh=(double)bh[mi][i]/(double)stepm; 
                   2081:       /* bias is positive if real duration
                   2082:        * is higher than the multiple of stepm and negative otherwise.
                   2083:        */
                   2084:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
                   2085:        lli=log(out[s1][s2] - savm[s1][s2]);
                   2086:       } else if  (s2==-2) {
                   2087:        for (j=1,survp=0. ; j<=nlstate; j++) 
                   2088:          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   2089:        lli= log(survp);
                   2090:       }else if (mle==1){
                   2091:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   2092:       } else if(mle==2){
                   2093:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   2094:       } else if(mle==3){  /* exponential inter-extrapolation */
                   2095:        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   2096:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
                   2097:        lli=log(out[s1][s2]); /* Original formula */
1.136     brouard  2098:       } else{  /* mle=0 back to 1 */
                   2099:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   2100:        /*lli=log(out[s1][s2]); */ /* Original formula */
1.126     brouard  2101:       } /* End of if */
                   2102:       ipmx +=1;
                   2103:       sw += weight[i];
                   2104:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.132     brouard  2105:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
1.126     brouard  2106:       if(globpr){
1.141     brouard  2107:        fprintf(ficresilk,"%9ld %6d %2d %2d %1d %1d %3d %11.6f %8.4f\
1.126     brouard  2108:  %11.6f %11.6f %11.6f ", \
                   2109:                num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],
                   2110:                2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                   2111:        for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                   2112:          llt +=ll[k]*gipmx/gsw;
                   2113:          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                   2114:        }
                   2115:        fprintf(ficresilk," %10.6f\n", -llt);
                   2116:       }
                   2117:     } /* end of wave */
                   2118:   } /* end of individual */
                   2119:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   2120:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   2121:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   2122:   if(globpr==0){ /* First time we count the contributions and weights */
                   2123:     gipmx=ipmx;
                   2124:     gsw=sw;
                   2125:   }
                   2126:   return -l;
                   2127: }
                   2128: 
                   2129: 
                   2130: /*************** function likelione ***********/
                   2131: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
                   2132: {
                   2133:   /* This routine should help understanding what is done with 
                   2134:      the selection of individuals/waves and
                   2135:      to check the exact contribution to the likelihood.
                   2136:      Plotting could be done.
                   2137:    */
                   2138:   int k;
                   2139: 
                   2140:   if(*globpri !=0){ /* Just counts and sums, no printings */
                   2141:     strcpy(fileresilk,"ilk"); 
                   2142:     strcat(fileresilk,fileres);
                   2143:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   2144:       printf("Problem with resultfile: %s\n", fileresilk);
                   2145:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   2146:     }
                   2147:     fprintf(ficresilk, "#individual(line's_record) s1 s2 wave# effective_wave# number_of_matrices_product pij weight -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                   2148:     fprintf(ficresilk, "#num_i i s1 s2 mi mw dh likeli weight 2wlli out sav ");
                   2149:     /*         i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   2150:     for(k=1; k<=nlstate; k++) 
                   2151:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                   2152:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
                   2153:   }
                   2154: 
                   2155:   *fretone=(*funcone)(p);
                   2156:   if(*globpri !=0){
                   2157:     fclose(ficresilk);
                   2158:     fprintf(fichtm,"\n<br>File of contributions to the likelihood: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
                   2159:     fflush(fichtm); 
                   2160:   } 
                   2161:   return;
                   2162: }
                   2163: 
                   2164: 
                   2165: /*********** Maximum Likelihood Estimation ***************/
                   2166: 
                   2167: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   2168: {
1.165     brouard  2169:   int i,j, iter=0;
1.126     brouard  2170:   double **xi;
                   2171:   double fret;
                   2172:   double fretone; /* Only one call to likelihood */
                   2173:   /*  char filerespow[FILENAMELENGTH];*/
1.162     brouard  2174: 
                   2175: #ifdef NLOPT
                   2176:   int creturn;
                   2177:   nlopt_opt opt;
                   2178:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
                   2179:   double *lb;
                   2180:   double minf; /* the minimum objective value, upon return */
                   2181:   double * p1; /* Shifted parameters from 0 instead of 1 */
                   2182:   myfunc_data dinst, *d = &dinst;
                   2183: #endif
                   2184: 
                   2185: 
1.126     brouard  2186:   xi=matrix(1,npar,1,npar);
                   2187:   for (i=1;i<=npar;i++)
                   2188:     for (j=1;j<=npar;j++)
                   2189:       xi[i][j]=(i==j ? 1.0 : 0.0);
                   2190:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
                   2191:   strcpy(filerespow,"pow"); 
                   2192:   strcat(filerespow,fileres);
                   2193:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   2194:     printf("Problem with resultfile: %s\n", filerespow);
                   2195:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   2196:   }
                   2197:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   2198:   for (i=1;i<=nlstate;i++)
                   2199:     for(j=1;j<=nlstate+ndeath;j++)
                   2200:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   2201:   fprintf(ficrespow,"\n");
1.162     brouard  2202: #ifdef POWELL
1.126     brouard  2203:   powell(p,xi,npar,ftol,&iter,&fret,func);
1.162     brouard  2204: #endif
1.126     brouard  2205: 
1.162     brouard  2206: #ifdef NLOPT
                   2207: #ifdef NEWUOA
                   2208:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
                   2209: #else
                   2210:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
                   2211: #endif
                   2212:   lb=vector(0,npar-1);
                   2213:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                   2214:   nlopt_set_lower_bounds(opt, lb);
                   2215:   nlopt_set_initial_step1(opt, 0.1);
                   2216:   
                   2217:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                   2218:   d->function = func;
                   2219:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                   2220:   nlopt_set_min_objective(opt, myfunc, d);
                   2221:   nlopt_set_xtol_rel(opt, ftol);
                   2222:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                   2223:     printf("nlopt failed! %d\n",creturn); 
                   2224:   }
                   2225:   else {
                   2226:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   2227:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                   2228:     iter=1; /* not equal */
                   2229:   }
                   2230:   nlopt_destroy(opt);
                   2231: #endif
1.126     brouard  2232:   free_matrix(xi,1,npar,1,npar);
                   2233:   fclose(ficrespow);
1.162     brouard  2234:   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   2235:   fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   2236:   fprintf(ficres,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.126     brouard  2237: 
                   2238: }
                   2239: 
                   2240: /**** Computes Hessian and covariance matrix ***/
                   2241: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
                   2242: {
                   2243:   double  **a,**y,*x,pd;
                   2244:   double **hess;
1.164     brouard  2245:   int i, j;
1.126     brouard  2246:   int *indx;
                   2247: 
                   2248:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
                   2249:   double hessij(double p[], double delti[], int i, int j,double (*func)(double []),int npar);
                   2250:   void lubksb(double **a, int npar, int *indx, double b[]) ;
                   2251:   void ludcmp(double **a, int npar, int *indx, double *d) ;
                   2252:   double gompertz(double p[]);
                   2253:   hess=matrix(1,npar,1,npar);
                   2254: 
                   2255:   printf("\nCalculation of the hessian matrix. Wait...\n");
                   2256:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                   2257:   for (i=1;i<=npar;i++){
                   2258:     printf("%d",i);fflush(stdout);
                   2259:     fprintf(ficlog,"%d",i);fflush(ficlog);
                   2260:    
                   2261:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                   2262:     
                   2263:     /*  printf(" %f ",p[i]);
                   2264:        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
                   2265:   }
                   2266:   
                   2267:   for (i=1;i<=npar;i++) {
                   2268:     for (j=1;j<=npar;j++)  {
                   2269:       if (j>i) { 
                   2270:        printf(".%d%d",i,j);fflush(stdout);
                   2271:        fprintf(ficlog,".%d%d",i,j);fflush(ficlog);
                   2272:        hess[i][j]=hessij(p,delti,i,j,func,npar);
                   2273:        
                   2274:        hess[j][i]=hess[i][j];    
                   2275:        /*printf(" %lf ",hess[i][j]);*/
                   2276:       }
                   2277:     }
                   2278:   }
                   2279:   printf("\n");
                   2280:   fprintf(ficlog,"\n");
                   2281: 
                   2282:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   2283:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   2284:   
                   2285:   a=matrix(1,npar,1,npar);
                   2286:   y=matrix(1,npar,1,npar);
                   2287:   x=vector(1,npar);
                   2288:   indx=ivector(1,npar);
                   2289:   for (i=1;i<=npar;i++)
                   2290:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   2291:   ludcmp(a,npar,indx,&pd);
                   2292: 
                   2293:   for (j=1;j<=npar;j++) {
                   2294:     for (i=1;i<=npar;i++) x[i]=0;
                   2295:     x[j]=1;
                   2296:     lubksb(a,npar,indx,x);
                   2297:     for (i=1;i<=npar;i++){ 
                   2298:       matcov[i][j]=x[i];
                   2299:     }
                   2300:   }
                   2301: 
                   2302:   printf("\n#Hessian matrix#\n");
                   2303:   fprintf(ficlog,"\n#Hessian matrix#\n");
                   2304:   for (i=1;i<=npar;i++) { 
                   2305:     for (j=1;j<=npar;j++) { 
                   2306:       printf("%.3e ",hess[i][j]);
                   2307:       fprintf(ficlog,"%.3e ",hess[i][j]);
                   2308:     }
                   2309:     printf("\n");
                   2310:     fprintf(ficlog,"\n");
                   2311:   }
                   2312: 
                   2313:   /* Recompute Inverse */
                   2314:   for (i=1;i<=npar;i++)
                   2315:     for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
                   2316:   ludcmp(a,npar,indx,&pd);
                   2317: 
                   2318:   /*  printf("\n#Hessian matrix recomputed#\n");
                   2319: 
                   2320:   for (j=1;j<=npar;j++) {
                   2321:     for (i=1;i<=npar;i++) x[i]=0;
                   2322:     x[j]=1;
                   2323:     lubksb(a,npar,indx,x);
                   2324:     for (i=1;i<=npar;i++){ 
                   2325:       y[i][j]=x[i];
                   2326:       printf("%.3e ",y[i][j]);
                   2327:       fprintf(ficlog,"%.3e ",y[i][j]);
                   2328:     }
                   2329:     printf("\n");
                   2330:     fprintf(ficlog,"\n");
                   2331:   }
                   2332:   */
                   2333: 
                   2334:   free_matrix(a,1,npar,1,npar);
                   2335:   free_matrix(y,1,npar,1,npar);
                   2336:   free_vector(x,1,npar);
                   2337:   free_ivector(indx,1,npar);
                   2338:   free_matrix(hess,1,npar,1,npar);
                   2339: 
                   2340: 
                   2341: }
                   2342: 
                   2343: /*************** hessian matrix ****************/
                   2344: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
                   2345: {
                   2346:   int i;
                   2347:   int l=1, lmax=20;
                   2348:   double k1,k2;
1.132     brouard  2349:   double p2[MAXPARM+1]; /* identical to x */
1.126     brouard  2350:   double res;
                   2351:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                   2352:   double fx;
                   2353:   int k=0,kmax=10;
                   2354:   double l1;
                   2355: 
                   2356:   fx=func(x);
                   2357:   for (i=1;i<=npar;i++) p2[i]=x[i];
1.145     brouard  2358:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
1.126     brouard  2359:     l1=pow(10,l);
                   2360:     delts=delt;
                   2361:     for(k=1 ; k <kmax; k=k+1){
                   2362:       delt = delta*(l1*k);
                   2363:       p2[theta]=x[theta] +delt;
1.145     brouard  2364:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
1.126     brouard  2365:       p2[theta]=x[theta]-delt;
                   2366:       k2=func(p2)-fx;
                   2367:       /*res= (k1-2.0*fx+k2)/delt/delt; */
                   2368:       res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
                   2369:       
1.132     brouard  2370: #ifdef DEBUGHESS
1.126     brouard  2371:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   2372:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   2373: #endif
                   2374:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   2375:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   2376:        k=kmax;
                   2377:       }
                   2378:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
1.164     brouard  2379:        k=kmax; l=lmax*10;
1.126     brouard  2380:       }
                   2381:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   2382:        delts=delt;
                   2383:       }
                   2384:     }
                   2385:   }
                   2386:   delti[theta]=delts;
                   2387:   return res; 
                   2388:   
                   2389: }
                   2390: 
                   2391: double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
                   2392: {
                   2393:   int i;
1.164     brouard  2394:   int l=1, lmax=20;
1.126     brouard  2395:   double k1,k2,k3,k4,res,fx;
1.132     brouard  2396:   double p2[MAXPARM+1];
1.126     brouard  2397:   int k;
                   2398: 
                   2399:   fx=func(x);
                   2400:   for (k=1; k<=2; k++) {
                   2401:     for (i=1;i<=npar;i++) p2[i]=x[i];
                   2402:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   2403:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   2404:     k1=func(p2)-fx;
                   2405:   
                   2406:     p2[thetai]=x[thetai]+delti[thetai]/k;
                   2407:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   2408:     k2=func(p2)-fx;
                   2409:   
                   2410:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   2411:     p2[thetaj]=x[thetaj]+delti[thetaj]/k;
                   2412:     k3=func(p2)-fx;
                   2413:   
                   2414:     p2[thetai]=x[thetai]-delti[thetai]/k;
                   2415:     p2[thetaj]=x[thetaj]-delti[thetaj]/k;
                   2416:     k4=func(p2)-fx;
                   2417:     res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
                   2418: #ifdef DEBUG
                   2419:     printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   2420:     fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   2421: #endif
                   2422:   }
                   2423:   return res;
                   2424: }
                   2425: 
                   2426: /************** Inverse of matrix **************/
                   2427: void ludcmp(double **a, int n, int *indx, double *d) 
                   2428: { 
                   2429:   int i,imax,j,k; 
                   2430:   double big,dum,sum,temp; 
                   2431:   double *vv; 
                   2432:  
                   2433:   vv=vector(1,n); 
                   2434:   *d=1.0; 
                   2435:   for (i=1;i<=n;i++) { 
                   2436:     big=0.0; 
                   2437:     for (j=1;j<=n;j++) 
                   2438:       if ((temp=fabs(a[i][j])) > big) big=temp; 
                   2439:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
                   2440:     vv[i]=1.0/big; 
                   2441:   } 
                   2442:   for (j=1;j<=n;j++) { 
                   2443:     for (i=1;i<j;i++) { 
                   2444:       sum=a[i][j]; 
                   2445:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   2446:       a[i][j]=sum; 
                   2447:     } 
                   2448:     big=0.0; 
                   2449:     for (i=j;i<=n;i++) { 
                   2450:       sum=a[i][j]; 
                   2451:       for (k=1;k<j;k++) 
                   2452:        sum -= a[i][k]*a[k][j]; 
                   2453:       a[i][j]=sum; 
                   2454:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   2455:        big=dum; 
                   2456:        imax=i; 
                   2457:       } 
                   2458:     } 
                   2459:     if (j != imax) { 
                   2460:       for (k=1;k<=n;k++) { 
                   2461:        dum=a[imax][k]; 
                   2462:        a[imax][k]=a[j][k]; 
                   2463:        a[j][k]=dum; 
                   2464:       } 
                   2465:       *d = -(*d); 
                   2466:       vv[imax]=vv[j]; 
                   2467:     } 
                   2468:     indx[j]=imax; 
                   2469:     if (a[j][j] == 0.0) a[j][j]=TINY; 
                   2470:     if (j != n) { 
                   2471:       dum=1.0/(a[j][j]); 
                   2472:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                   2473:     } 
                   2474:   } 
                   2475:   free_vector(vv,1,n);  /* Doesn't work */
                   2476: ;
                   2477: } 
                   2478: 
                   2479: void lubksb(double **a, int n, int *indx, double b[]) 
                   2480: { 
                   2481:   int i,ii=0,ip,j; 
                   2482:   double sum; 
                   2483:  
                   2484:   for (i=1;i<=n;i++) { 
                   2485:     ip=indx[i]; 
                   2486:     sum=b[ip]; 
                   2487:     b[ip]=b[i]; 
                   2488:     if (ii) 
                   2489:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   2490:     else if (sum) ii=i; 
                   2491:     b[i]=sum; 
                   2492:   } 
                   2493:   for (i=n;i>=1;i--) { 
                   2494:     sum=b[i]; 
                   2495:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                   2496:     b[i]=sum/a[i][i]; 
                   2497:   } 
                   2498: } 
                   2499: 
                   2500: void pstamp(FILE *fichier)
                   2501: {
                   2502:   fprintf(fichier,"# %s.%s\n#%s\n#%s\n# %s", optionfilefiname,optionfilext,version,fullversion,strstart);
                   2503: }
                   2504: 
                   2505: /************ Frequencies ********************/
                   2506: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, int *Tvaraff, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[])
                   2507: {  /* Some frequencies */
                   2508:   
1.164     brouard  2509:   int i, m, jk, j1, bool, z1,j;
1.126     brouard  2510:   int first;
                   2511:   double ***freq; /* Frequencies */
                   2512:   double *pp, **prop;
                   2513:   double pos,posprop, k2, dateintsum=0,k2cpt=0;
                   2514:   char fileresp[FILENAMELENGTH];
                   2515:   
                   2516:   pp=vector(1,nlstate);
                   2517:   prop=matrix(1,nlstate,iagemin,iagemax+3);
                   2518:   strcpy(fileresp,"p");
                   2519:   strcat(fileresp,fileres);
                   2520:   if((ficresp=fopen(fileresp,"w"))==NULL) {
                   2521:     printf("Problem with prevalence resultfile: %s\n", fileresp);
                   2522:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   2523:     exit(0);
                   2524:   }
                   2525:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin,iagemax+3);
                   2526:   j1=0;
                   2527:   
                   2528:   j=cptcoveff;
                   2529:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   2530: 
                   2531:   first=1;
                   2532: 
1.145     brouard  2533:   /* for(k1=1; k1<=j ; k1++){   /* Loop on covariates */
                   2534:   /*  for(i1=1; i1<=ncodemax[k1];i1++){ /* Now it is 2 */
                   2535:   /*    j1++;
                   2536: */
                   2537:   for (j1 = 1; j1 <= (int) pow(2,cptcoveff); j1++){
1.126     brouard  2538:       /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                   2539:        scanf("%d", i);*/
                   2540:       for (i=-5; i<=nlstate+ndeath; i++)  
                   2541:        for (jk=-5; jk<=nlstate+ndeath; jk++)  
                   2542:          for(m=iagemin; m <= iagemax+3; m++)
                   2543:            freq[i][jk][m]=0;
1.143     brouard  2544:       
                   2545:       for (i=1; i<=nlstate; i++)  
                   2546:        for(m=iagemin; m <= iagemax+3; m++)
                   2547:          prop[i][m]=0;
1.126     brouard  2548:       
                   2549:       dateintsum=0;
                   2550:       k2cpt=0;
                   2551:       for (i=1; i<=imx; i++) {
                   2552:        bool=1;
1.144     brouard  2553:        if  (cptcovn>0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                   2554:          for (z1=1; z1<=cptcoveff; z1++)       
                   2555:             if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]){
1.145     brouard  2556:                 /* Tests if the value of each of the covariates of i is equal to filter j1 */
1.144     brouard  2557:               bool=0;
1.145     brouard  2558:               /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtab[%d][%d]=%d, nbcode[Tvaraff][codtab[%d][%d]=%d, j1=%d\n", 
                   2559:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtab[j1][z1],
                   2560:                 j1,z1,nbcode[Tvaraff[z1]][codtab[j1][z1]],j1);*/
1.144     brouard  2561:               /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtab[7][3]=1 and nbcde[3][?]=1*/
                   2562:             } 
1.126     brouard  2563:        }
1.144     brouard  2564:  
1.126     brouard  2565:        if (bool==1){
                   2566:          for(m=firstpass; m<=lastpass; m++){
                   2567:            k2=anint[m][i]+(mint[m][i]/12.);
                   2568:            /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   2569:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   2570:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   2571:              if (s[m][i]>0 && s[m][i]<=nlstate) prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   2572:              if (m<lastpass) {
                   2573:                freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
                   2574:                freq[s[m][i]][s[m+1][i]][iagemax+3] += weight[i];
                   2575:              }
                   2576:              
                   2577:              if ((agev[m][i]>1) && (agev[m][i]< (iagemax+3))) {
                   2578:                dateintsum=dateintsum+k2;
                   2579:                k2cpt++;
                   2580:              }
                   2581:              /*}*/
                   2582:          }
                   2583:        }
1.145     brouard  2584:       } /* end i */
1.126     brouard  2585:        
                   2586:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   2587:       pstamp(ficresp);
                   2588:       if  (cptcovn>0) {
                   2589:        fprintf(ficresp, "\n#********** Variable "); 
                   2590:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   2591:        fprintf(ficresp, "**********\n#");
1.143     brouard  2592:        fprintf(ficlog, "\n#********** Variable "); 
                   2593:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficlog, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   2594:        fprintf(ficlog, "**********\n#");
1.126     brouard  2595:       }
                   2596:       for(i=1; i<=nlstate;i++) 
                   2597:        fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
                   2598:       fprintf(ficresp, "\n");
                   2599:       
                   2600:       for(i=iagemin; i <= iagemax+3; i++){
                   2601:        if(i==iagemax+3){
                   2602:          fprintf(ficlog,"Total");
                   2603:        }else{
                   2604:          if(first==1){
                   2605:            first=0;
                   2606:            printf("See log file for details...\n");
                   2607:          }
                   2608:          fprintf(ficlog,"Age %d", i);
                   2609:        }
                   2610:        for(jk=1; jk <=nlstate ; jk++){
                   2611:          for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                   2612:            pp[jk] += freq[jk][m][i]; 
                   2613:        }
                   2614:        for(jk=1; jk <=nlstate ; jk++){
                   2615:          for(m=-1, pos=0; m <=0 ; m++)
                   2616:            pos += freq[jk][m][i];
                   2617:          if(pp[jk]>=1.e-10){
                   2618:            if(first==1){
1.132     brouard  2619:              printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
1.126     brouard  2620:            }
                   2621:            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   2622:          }else{
                   2623:            if(first==1)
                   2624:              printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   2625:            fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   2626:          }
                   2627:        }
                   2628: 
                   2629:        for(jk=1; jk <=nlstate ; jk++){
                   2630:          for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
                   2631:            pp[jk] += freq[jk][m][i];
                   2632:        }       
                   2633:        for(jk=1,pos=0,posprop=0; jk <=nlstate ; jk++){
                   2634:          pos += pp[jk];
                   2635:          posprop += prop[jk][i];
                   2636:        }
                   2637:        for(jk=1; jk <=nlstate ; jk++){
                   2638:          if(pos>=1.e-5){
                   2639:            if(first==1)
                   2640:              printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   2641:            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   2642:          }else{
                   2643:            if(first==1)
                   2644:              printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   2645:            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   2646:          }
                   2647:          if( i <= iagemax){
                   2648:            if(pos>=1.e-5){
                   2649:              fprintf(ficresp," %d %.5f %.0f %.0f",i,prop[jk][i]/posprop, prop[jk][i],posprop);
                   2650:              /*probs[i][jk][j1]= pp[jk]/pos;*/
                   2651:              /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
                   2652:            }
                   2653:            else
                   2654:              fprintf(ficresp," %d NaNq %.0f %.0f",i,prop[jk][i],posprop);
                   2655:          }
                   2656:        }
                   2657:        
                   2658:        for(jk=-1; jk <=nlstate+ndeath; jk++)
                   2659:          for(m=-1; m <=nlstate+ndeath; m++)
                   2660:            if(freq[jk][m][i] !=0 ) {
                   2661:            if(first==1)
                   2662:              printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
                   2663:              fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][i]);
                   2664:            }
                   2665:        if(i <= iagemax)
                   2666:          fprintf(ficresp,"\n");
                   2667:        if(first==1)
                   2668:          printf("Others in log...\n");
                   2669:        fprintf(ficlog,"\n");
                   2670:       }
1.145     brouard  2671:       /*}*/
1.126     brouard  2672:   }
                   2673:   dateintmean=dateintsum/k2cpt; 
                   2674:  
                   2675:   fclose(ficresp);
                   2676:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin, iagemax+3);
                   2677:   free_vector(pp,1,nlstate);
                   2678:   free_matrix(prop,1,nlstate,iagemin, iagemax+3);
                   2679:   /* End of Freq */
                   2680: }
                   2681: 
                   2682: /************ Prevalence ********************/
                   2683: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   2684: {  
                   2685:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   2686:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   2687:      We still use firstpass and lastpass as another selection.
                   2688:   */
                   2689:  
1.164     brouard  2690:   int i, m, jk, j1, bool, z1,j;
                   2691: 
                   2692:   double **prop;
                   2693:   double posprop; 
1.126     brouard  2694:   double  y2; /* in fractional years */
                   2695:   int iagemin, iagemax;
1.145     brouard  2696:   int first; /** to stop verbosity which is redirected to log file */
1.126     brouard  2697: 
                   2698:   iagemin= (int) agemin;
                   2699:   iagemax= (int) agemax;
                   2700:   /*pp=vector(1,nlstate);*/
                   2701:   prop=matrix(1,nlstate,iagemin,iagemax+3); 
                   2702:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   2703:   j1=0;
                   2704:   
1.145     brouard  2705:   /*j=cptcoveff;*/
1.126     brouard  2706:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
                   2707:   
1.145     brouard  2708:   first=1;
                   2709:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){
                   2710:     /*for(i1=1; i1<=ncodemax[k1];i1++){
                   2711:       j1++;*/
1.126     brouard  2712:       
                   2713:       for (i=1; i<=nlstate; i++)  
                   2714:        for(m=iagemin; m <= iagemax+3; m++)
                   2715:          prop[i][m]=0.0;
                   2716:      
                   2717:       for (i=1; i<=imx; i++) { /* Each individual */
                   2718:        bool=1;
                   2719:        if  (cptcovn>0) {
                   2720:          for (z1=1; z1<=cptcoveff; z1++) 
                   2721:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]]) 
                   2722:              bool=0;
                   2723:        } 
                   2724:        if (bool==1) { 
                   2725:          for(m=firstpass; m<=lastpass; m++){/* Other selection (we can limit to certain interviews*/
                   2726:            y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   2727:            if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                   2728:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   2729:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   2730:              if((int)agev[m][i] <iagemin || (int)agev[m][i] >iagemax+3) printf("Error on individual =%d agev[m][i]=%f m=%d\n",i, agev[m][i],m); 
                   2731:              if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   2732:                /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   2733:                prop[s[m][i]][(int)agev[m][i]] += weight[i];
                   2734:                prop[s[m][i]][iagemax+3] += weight[i]; 
                   2735:              } 
                   2736:            }
                   2737:          } /* end selection of waves */
                   2738:        }
                   2739:       }
                   2740:       for(i=iagemin; i <= iagemax+3; i++){  
                   2741:        for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   2742:          posprop += prop[jk][i]; 
                   2743:        } 
1.145     brouard  2744:        
1.126     brouard  2745:        for(jk=1; jk <=nlstate ; jk++){     
                   2746:          if( i <=  iagemax){ 
                   2747:            if(posprop>=1.e-5){ 
                   2748:              probs[i][jk][j1]= prop[jk][i]/posprop;
1.145     brouard  2749:            } else{
                   2750:              if(first==1){
                   2751:                first=0;
                   2752:                printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others on log file...\n",jk,i,j1,probs[i][jk][j1]);
                   2753:              }
                   2754:            }
1.126     brouard  2755:          } 
                   2756:        }/* end jk */ 
                   2757:       }/* end i */ 
1.145     brouard  2758:     /*} *//* end i1 */
                   2759:   } /* end j1 */
1.126     brouard  2760:   
                   2761:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   2762:   /*free_vector(pp,1,nlstate);*/
                   2763:   free_matrix(prop,1,nlstate, iagemin,iagemax+3);
                   2764: }  /* End of prevalence */
                   2765: 
                   2766: /************* Waves Concatenation ***************/
                   2767: 
                   2768: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   2769: {
                   2770:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   2771:      Death is a valid wave (if date is known).
                   2772:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   2773:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   2774:      and mw[mi+1][i]. dh depends on stepm.
                   2775:      */
                   2776: 
                   2777:   int i, mi, m;
                   2778:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   2779:      double sum=0., jmean=0.;*/
                   2780:   int first;
                   2781:   int j, k=0,jk, ju, jl;
                   2782:   double sum=0.;
                   2783:   first=0;
1.164     brouard  2784:   jmin=100000;
1.126     brouard  2785:   jmax=-1;
                   2786:   jmean=0.;
                   2787:   for(i=1; i<=imx; i++){
                   2788:     mi=0;
                   2789:     m=firstpass;
                   2790:     while(s[m][i] <= nlstate){
                   2791:       if(s[m][i]>=1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5)
                   2792:        mw[++mi][i]=m;
                   2793:       if(m >=lastpass)
                   2794:        break;
                   2795:       else
                   2796:        m++;
                   2797:     }/* end while */
                   2798:     if (s[m][i] > nlstate){
                   2799:       mi++;    /* Death is another wave */
                   2800:       /* if(mi==0)  never been interviewed correctly before death */
                   2801:         /* Only death is a correct wave */
                   2802:       mw[mi][i]=m;
                   2803:     }
                   2804: 
                   2805:     wav[i]=mi;
                   2806:     if(mi==0){
                   2807:       nbwarn++;
                   2808:       if(first==0){
                   2809:        printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                   2810:        first=1;
                   2811:       }
                   2812:       if(first==1){
                   2813:        fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
                   2814:       }
                   2815:     } /* end mi==0 */
                   2816:   } /* End individuals */
                   2817: 
                   2818:   for(i=1; i<=imx; i++){
                   2819:     for(mi=1; mi<wav[i];mi++){
                   2820:       if (stepm <=0)
                   2821:        dh[mi][i]=1;
                   2822:       else{
                   2823:        if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                   2824:          if (agedc[i] < 2*AGESUP) {
                   2825:            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   2826:            if(j==0) j=1;  /* Survives at least one month after exam */
                   2827:            else if(j<0){
                   2828:              nberr++;
                   2829:              printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2830:              j=1; /* Temporary Dangerous patch */
                   2831:              printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   2832:              fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2833:              fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   2834:            }
                   2835:            k=k+1;
                   2836:            if (j >= jmax){
                   2837:              jmax=j;
                   2838:              ijmax=i;
                   2839:            }
                   2840:            if (j <= jmin){
                   2841:              jmin=j;
                   2842:              ijmin=i;
                   2843:            }
                   2844:            sum=sum+j;
                   2845:            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   2846:            /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   2847:          }
                   2848:        }
                   2849:        else{
                   2850:          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
                   2851: /*       if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
                   2852: 
                   2853:          k=k+1;
                   2854:          if (j >= jmax) {
                   2855:            jmax=j;
                   2856:            ijmax=i;
                   2857:          }
                   2858:          else if (j <= jmin){
                   2859:            jmin=j;
                   2860:            ijmin=i;
                   2861:          }
                   2862:          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   2863:          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   2864:          if(j<0){
                   2865:            nberr++;
                   2866:            printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2867:            fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   2868:          }
                   2869:          sum=sum+j;
                   2870:        }
                   2871:        jk= j/stepm;
                   2872:        jl= j -jk*stepm;
                   2873:        ju= j -(jk+1)*stepm;
                   2874:        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   2875:          if(jl==0){
                   2876:            dh[mi][i]=jk;
                   2877:            bh[mi][i]=0;
                   2878:          }else{ /* We want a negative bias in order to only have interpolation ie
1.136     brouard  2879:                  * to avoid the price of an extra matrix product in likelihood */
1.126     brouard  2880:            dh[mi][i]=jk+1;
                   2881:            bh[mi][i]=ju;
                   2882:          }
                   2883:        }else{
                   2884:          if(jl <= -ju){
                   2885:            dh[mi][i]=jk;
                   2886:            bh[mi][i]=jl;       /* bias is positive if real duration
                   2887:                                 * is higher than the multiple of stepm and negative otherwise.
                   2888:                                 */
                   2889:          }
                   2890:          else{
                   2891:            dh[mi][i]=jk+1;
                   2892:            bh[mi][i]=ju;
                   2893:          }
                   2894:          if(dh[mi][i]==0){
                   2895:            dh[mi][i]=1; /* At least one step */
                   2896:            bh[mi][i]=ju; /* At least one step */
                   2897:            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   2898:          }
                   2899:        } /* end if mle */
                   2900:       }
                   2901:     } /* end wave */
                   2902:   }
                   2903:   jmean=sum/k;
                   2904:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
1.141     brouard  2905:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
1.126     brouard  2906:  }
                   2907: 
                   2908: /*********** Tricode ****************************/
1.145     brouard  2909: void tricode(int *Tvar, int **nbcode, int imx, int *Ndum)
1.126     brouard  2910: {
1.144     brouard  2911:   /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                   2912:   /*     Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                   2913:   /* Boring subroutine which should only output nbcode[Tvar[j]][k]
1.145     brouard  2914:    * Tvar[5] in V2+V1+V3*age+V2*V4 is 2 (V2)
                   2915:   /* nbcode[Tvar[j]][1]= 
1.144     brouard  2916:   */
1.130     brouard  2917: 
1.145     brouard  2918:   int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
1.136     brouard  2919:   int modmaxcovj=0; /* Modality max of covariates j */
1.145     brouard  2920:   int cptcode=0; /* Modality max of covariates j */
                   2921:   int modmincovj=0; /* Modality min of covariates j */
                   2922: 
                   2923: 
1.126     brouard  2924:   cptcoveff=0; 
                   2925:  
1.145     brouard  2926:   for (k=-1; k < maxncov; k++) Ndum[k]=0;
1.144     brouard  2927:   for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
1.126     brouard  2928: 
1.145     brouard  2929:   /* Loop on covariates without age and products */
                   2930:   for (j=1; j<=(cptcovs); j++) { /* model V1 + V2*age+ V3 + V3*V4 : V1 + V3 = 2 only */
                   2931:     for (i=1; i<=imx; i++) { /* Lopp on individuals: reads the data file to get the maximum value of the 
1.136     brouard  2932:                               modality of this covariate Vj*/ 
1.145     brouard  2933:       ij=(int)(covar[Tvar[j]][i]); /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                   2934:                                    * If product of Vn*Vm, still boolean *:
                   2935:                                    * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                   2936:                                    * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                   2937:       /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
1.136     brouard  2938:                                      modality of the nth covariate of individual i. */
1.145     brouard  2939:       if (ij > modmaxcovj)
                   2940:         modmaxcovj=ij; 
                   2941:       else if (ij < modmincovj) 
                   2942:        modmincovj=ij; 
                   2943:       if ((ij < -1) && (ij > NCOVMAX)){
                   2944:        printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                   2945:        exit(1);
                   2946:       }else
1.136     brouard  2947:       Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
1.145     brouard  2948:       /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
1.126     brouard  2949:       /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
1.136     brouard  2950:       /* getting the maximum value of the modality of the covariate
                   2951:         (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                   2952:         female is 1, then modmaxcovj=1.*/
1.126     brouard  2953:     }
1.145     brouard  2954:     printf(" Minimal and maximal values of %d th covariate V%d: min=%d max=%d \n", j, Tvar[j], modmincovj, modmaxcovj);
                   2955:     cptcode=modmaxcovj;
1.137     brouard  2956:     /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
1.145     brouard  2957:    /*for (i=0; i<=cptcode; i++) {*/
                   2958:     for (i=modmincovj;  i<=modmaxcovj; i++) { /* i=-1 ? 0 and 1*//* For each value of the modality of model-cov j */
                   2959:       printf("Frequencies of covariates %d V%d %d\n", j, Tvar[j], Ndum[i]);
                   2960:       if( Ndum[i] != 0 ){ /* Counts if nobody answered, empty modality */
                   2961:        ncodemax[j]++;  /* ncodemax[j]= Number of non-null modalities of the j th covariate. */
                   2962:       }
                   2963:       /* In fact  ncodemax[j]=2 (dichotom. variables only) but it could be more for
                   2964:         historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
1.131     brouard  2965:     } /* Ndum[-1] number of undefined modalities */
1.126     brouard  2966: 
1.136     brouard  2967:     /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
1.145     brouard  2968:     /* For covariate j, modalities could be 1, 2, 3, 4. If Ndum[2]=0 ncodemax[j] is not 4 but 3 */
                   2969:     /* If Ndum[3}= 635; Ndum[4]=0; Ndum[5]=0; Ndum[6]=27; Ndum[7]=125;
                   2970:        modmincovj=3; modmaxcovj = 7;
                   2971:        There are only 3 modalities non empty (or 2 if 27 is too few) : ncodemax[j]=3;
                   2972:        which will be coded 0, 1, 2 which in binary on 3-1 digits are 0=00 1=01, 2=10; defining two dummy 
                   2973:        variables V1_1 and V1_2.
                   2974:        nbcode[Tvar[j]][ij]=k;
                   2975:        nbcode[Tvar[j]][1]=0;
                   2976:        nbcode[Tvar[j]][2]=1;
                   2977:        nbcode[Tvar[j]][3]=2;
                   2978:     */
                   2979:     ij=1; /* ij is similar to i but can jumps over null modalities */
                   2980:     for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 */
                   2981:       for (k=0; k<= cptcode; k++) { /* k=-1 ? k=0 to 1 *//* Could be 1 to 4 */
                   2982:        /*recode from 0 */
1.131     brouard  2983:        if (Ndum[k] != 0) { /* If at least one individual responded to this modality k */
                   2984:          nbcode[Tvar[j]][ij]=k;  /* stores the modality in an array nbcode. 
                   2985:                                     k is a modality. If we have model=V1+V1*sex 
                   2986:                                     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
1.126     brouard  2987:          ij++;
                   2988:        }
                   2989:        if (ij > ncodemax[j]) break; 
1.137     brouard  2990:       }  /* end of loop on */
                   2991:     } /* end of loop on modality */ 
                   2992:   } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
                   2993:   
1.145     brouard  2994:  for (k=-1; k< maxncov; k++) Ndum[k]=0; 
1.137     brouard  2995:   
1.145     brouard  2996:   for (i=1; i<=ncovmodel-2; i++) { /* -2, cste and age */ 
                   2997:    /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
                   2998:    ij=Tvar[i]; /* Tvar might be -1 if status was unknown */ 
                   2999:    Ndum[ij]++; 
                   3000:  } 
1.126     brouard  3001: 
                   3002:  ij=1;
1.145     brouard  3003:  for (i=0; i<=  maxncov-1; i++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
                   3004:    /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
1.126     brouard  3005:    if((Ndum[i]!=0) && (i<=ncovcol)){
1.145     brouard  3006:      /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
                   3007:      Tvaraff[ij]=i; /*For printing (unclear) */
1.126     brouard  3008:      ij++;
1.145     brouard  3009:    }else
                   3010:        Tvaraff[ij]=0;
1.126     brouard  3011:  }
1.131     brouard  3012:  ij--;
1.144     brouard  3013:  cptcoveff=ij; /*Number of total covariates*/
1.145     brouard  3014: 
1.126     brouard  3015: }
                   3016: 
1.145     brouard  3017: 
1.126     brouard  3018: /*********** Health Expectancies ****************/
                   3019: 
1.127     brouard  3020: void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[] )
1.126     brouard  3021: 
                   3022: {
                   3023:   /* Health expectancies, no variances */
1.164     brouard  3024:   int i, j, nhstepm, hstepm, h, nstepm;
1.126     brouard  3025:   int nhstepma, nstepma; /* Decreasing with age */
                   3026:   double age, agelim, hf;
                   3027:   double ***p3mat;
                   3028:   double eip;
                   3029: 
                   3030:   pstamp(ficreseij);
                   3031:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   3032:   fprintf(ficreseij,"# Age");
                   3033:   for(i=1; i<=nlstate;i++){
                   3034:     for(j=1; j<=nlstate;j++){
                   3035:       fprintf(ficreseij," e%1d%1d ",i,j);
                   3036:     }
                   3037:     fprintf(ficreseij," e%1d. ",i);
                   3038:   }
                   3039:   fprintf(ficreseij,"\n");
                   3040: 
                   3041:   
                   3042:   if(estepm < stepm){
                   3043:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   3044:   }
                   3045:   else  hstepm=estepm;   
                   3046:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   3047:    * This is mainly to measure the difference between two models: for example
                   3048:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   3049:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   3050:    * progression in between and thus overestimating or underestimating according
                   3051:    * to the curvature of the survival function. If, for the same date, we 
                   3052:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   3053:    * to compare the new estimate of Life expectancy with the same linear 
                   3054:    * hypothesis. A more precise result, taking into account a more precise
                   3055:    * curvature will be obtained if estepm is as small as stepm. */
                   3056: 
                   3057:   /* For example we decided to compute the life expectancy with the smallest unit */
                   3058:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   3059:      nhstepm is the number of hstepm from age to agelim 
                   3060:      nstepm is the number of stepm from age to agelin. 
                   3061:      Look at hpijx to understand the reason of that which relies in memory size
                   3062:      and note for a fixed period like estepm months */
                   3063:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   3064:      survival function given by stepm (the optimization length). Unfortunately it
                   3065:      means that if the survival funtion is printed only each two years of age and if
                   3066:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   3067:      results. So we changed our mind and took the option of the best precision.
                   3068:   */
                   3069:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   3070: 
                   3071:   agelim=AGESUP;
                   3072:   /* If stepm=6 months */
                   3073:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   3074:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   3075:     
                   3076: /* nhstepm age range expressed in number of stepm */
                   3077:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   3078:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   3079:   /* if (stepm >= YEARM) hstepm=1;*/
                   3080:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   3081:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3082: 
                   3083:   for (age=bage; age<=fage; age ++){ 
                   3084:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   3085:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   3086:     /* if (stepm >= YEARM) hstepm=1;*/
                   3087:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   3088: 
                   3089:     /* If stepm=6 months */
                   3090:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   3091:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   3092:     
                   3093:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                   3094:     
                   3095:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   3096:     
                   3097:     printf("%d|",(int)age);fflush(stdout);
                   3098:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   3099:     
                   3100:     /* Computing expectancies */
                   3101:     for(i=1; i<=nlstate;i++)
                   3102:       for(j=1; j<=nlstate;j++)
                   3103:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   3104:          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   3105:          
                   3106:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   3107: 
                   3108:        }
                   3109: 
                   3110:     fprintf(ficreseij,"%3.0f",age );
                   3111:     for(i=1; i<=nlstate;i++){
                   3112:       eip=0;
                   3113:       for(j=1; j<=nlstate;j++){
                   3114:        eip +=eij[i][j][(int)age];
                   3115:        fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                   3116:       }
                   3117:       fprintf(ficreseij,"%9.4f", eip );
                   3118:     }
                   3119:     fprintf(ficreseij,"\n");
                   3120:     
                   3121:   }
                   3122:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3123:   printf("\n");
                   3124:   fprintf(ficlog,"\n");
                   3125:   
                   3126: }
                   3127: 
1.127     brouard  3128: void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[] )
1.126     brouard  3129: 
                   3130: {
                   3131:   /* Covariances of health expectancies eij and of total life expectancies according
                   3132:    to initial status i, ei. .
                   3133:   */
                   3134:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                   3135:   int nhstepma, nstepma; /* Decreasing with age */
                   3136:   double age, agelim, hf;
                   3137:   double ***p3matp, ***p3matm, ***varhe;
                   3138:   double **dnewm,**doldm;
                   3139:   double *xp, *xm;
                   3140:   double **gp, **gm;
                   3141:   double ***gradg, ***trgradg;
                   3142:   int theta;
                   3143: 
                   3144:   double eip, vip;
                   3145: 
                   3146:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                   3147:   xp=vector(1,npar);
                   3148:   xm=vector(1,npar);
                   3149:   dnewm=matrix(1,nlstate*nlstate,1,npar);
                   3150:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   3151:   
                   3152:   pstamp(ficresstdeij);
                   3153:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                   3154:   fprintf(ficresstdeij,"# Age");
                   3155:   for(i=1; i<=nlstate;i++){
                   3156:     for(j=1; j<=nlstate;j++)
                   3157:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   3158:     fprintf(ficresstdeij," e%1d. ",i);
                   3159:   }
                   3160:   fprintf(ficresstdeij,"\n");
                   3161: 
                   3162:   pstamp(ficrescveij);
                   3163:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                   3164:   fprintf(ficrescveij,"# Age");
                   3165:   for(i=1; i<=nlstate;i++)
                   3166:     for(j=1; j<=nlstate;j++){
                   3167:       cptj= (j-1)*nlstate+i;
                   3168:       for(i2=1; i2<=nlstate;i2++)
                   3169:        for(j2=1; j2<=nlstate;j2++){
                   3170:          cptj2= (j2-1)*nlstate+i2;
                   3171:          if(cptj2 <= cptj)
                   3172:            fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                   3173:        }
                   3174:     }
                   3175:   fprintf(ficrescveij,"\n");
                   3176:   
                   3177:   if(estepm < stepm){
                   3178:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   3179:   }
                   3180:   else  hstepm=estepm;   
                   3181:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   3182:    * This is mainly to measure the difference between two models: for example
                   3183:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   3184:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   3185:    * progression in between and thus overestimating or underestimating according
                   3186:    * to the curvature of the survival function. If, for the same date, we 
                   3187:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   3188:    * to compare the new estimate of Life expectancy with the same linear 
                   3189:    * hypothesis. A more precise result, taking into account a more precise
                   3190:    * curvature will be obtained if estepm is as small as stepm. */
                   3191: 
                   3192:   /* For example we decided to compute the life expectancy with the smallest unit */
                   3193:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   3194:      nhstepm is the number of hstepm from age to agelim 
                   3195:      nstepm is the number of stepm from age to agelin. 
                   3196:      Look at hpijx to understand the reason of that which relies in memory size
                   3197:      and note for a fixed period like estepm months */
                   3198:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   3199:      survival function given by stepm (the optimization length). Unfortunately it
                   3200:      means that if the survival funtion is printed only each two years of age and if
                   3201:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   3202:      results. So we changed our mind and took the option of the best precision.
                   3203:   */
                   3204:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   3205: 
                   3206:   /* If stepm=6 months */
                   3207:   /* nhstepm age range expressed in number of stepm */
                   3208:   agelim=AGESUP;
                   3209:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
                   3210:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   3211:   /* if (stepm >= YEARM) hstepm=1;*/
                   3212:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   3213:   
                   3214:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3215:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3216:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   3217:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                   3218:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   3219:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
                   3220: 
                   3221:   for (age=bage; age<=fage; age ++){ 
                   3222:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   3223:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   3224:     /* if (stepm >= YEARM) hstepm=1;*/
                   3225:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   3226: 
                   3227:     /* If stepm=6 months */
                   3228:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   3229:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   3230:     
                   3231:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   3232: 
                   3233:     /* Computing  Variances of health expectancies */
                   3234:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                   3235:        decrease memory allocation */
                   3236:     for(theta=1; theta <=npar; theta++){
                   3237:       for(i=1; i<=npar; i++){ 
                   3238:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   3239:        xm[i] = x[i] - (i==theta ?delti[theta]:0);
                   3240:       }
                   3241:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij);  
                   3242:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij);  
                   3243:   
                   3244:       for(j=1; j<= nlstate; j++){
                   3245:        for(i=1; i<=nlstate; i++){
                   3246:          for(h=0; h<=nhstepm-1; h++){
                   3247:            gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                   3248:            gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                   3249:          }
                   3250:        }
                   3251:       }
                   3252:      
                   3253:       for(ij=1; ij<= nlstate*nlstate; ij++)
                   3254:        for(h=0; h<=nhstepm-1; h++){
                   3255:          gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                   3256:        }
                   3257:     }/* End theta */
                   3258:     
                   3259:     
                   3260:     for(h=0; h<=nhstepm-1; h++)
                   3261:       for(j=1; j<=nlstate*nlstate;j++)
                   3262:        for(theta=1; theta <=npar; theta++)
                   3263:          trgradg[h][j][theta]=gradg[h][theta][j];
                   3264:     
                   3265: 
                   3266:      for(ij=1;ij<=nlstate*nlstate;ij++)
                   3267:       for(ji=1;ji<=nlstate*nlstate;ji++)
                   3268:        varhe[ij][ji][(int)age] =0.;
                   3269: 
                   3270:      printf("%d|",(int)age);fflush(stdout);
                   3271:      fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   3272:      for(h=0;h<=nhstepm-1;h++){
                   3273:       for(k=0;k<=nhstepm-1;k++){
                   3274:        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   3275:        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   3276:        for(ij=1;ij<=nlstate*nlstate;ij++)
                   3277:          for(ji=1;ji<=nlstate*nlstate;ji++)
                   3278:            varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
                   3279:       }
                   3280:     }
                   3281: 
                   3282:     /* Computing expectancies */
                   3283:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij);  
                   3284:     for(i=1; i<=nlstate;i++)
                   3285:       for(j=1; j<=nlstate;j++)
                   3286:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   3287:          eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
                   3288:          
                   3289:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   3290: 
                   3291:        }
                   3292: 
                   3293:     fprintf(ficresstdeij,"%3.0f",age );
                   3294:     for(i=1; i<=nlstate;i++){
                   3295:       eip=0.;
                   3296:       vip=0.;
                   3297:       for(j=1; j<=nlstate;j++){
                   3298:        eip += eij[i][j][(int)age];
                   3299:        for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                   3300:          vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                   3301:        fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
                   3302:       }
                   3303:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   3304:     }
                   3305:     fprintf(ficresstdeij,"\n");
                   3306: 
                   3307:     fprintf(ficrescveij,"%3.0f",age );
                   3308:     for(i=1; i<=nlstate;i++)
                   3309:       for(j=1; j<=nlstate;j++){
                   3310:        cptj= (j-1)*nlstate+i;
                   3311:        for(i2=1; i2<=nlstate;i2++)
                   3312:          for(j2=1; j2<=nlstate;j2++){
                   3313:            cptj2= (j2-1)*nlstate+i2;
                   3314:            if(cptj2 <= cptj)
                   3315:              fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                   3316:          }
                   3317:       }
                   3318:     fprintf(ficrescveij,"\n");
                   3319:    
                   3320:   }
                   3321:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   3322:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   3323:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   3324:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                   3325:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3326:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3327:   printf("\n");
                   3328:   fprintf(ficlog,"\n");
                   3329: 
                   3330:   free_vector(xm,1,npar);
                   3331:   free_vector(xp,1,npar);
                   3332:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   3333:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   3334:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   3335: }
                   3336: 
                   3337: /************ Variance ******************/
                   3338: void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[])
                   3339: {
                   3340:   /* Variance of health expectancies */
                   3341:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   3342:   /* double **newm;*/
                   3343:   double **dnewm,**doldm;
                   3344:   double **dnewmp,**doldmp;
                   3345:   int i, j, nhstepm, hstepm, h, nstepm ;
1.164     brouard  3346:   int k;
1.126     brouard  3347:   double *xp;
                   3348:   double **gp, **gm;  /* for var eij */
                   3349:   double ***gradg, ***trgradg; /*for var eij */
                   3350:   double **gradgp, **trgradgp; /* for var p point j */
                   3351:   double *gpp, *gmp; /* for var p point j */
                   3352:   double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   3353:   double ***p3mat;
                   3354:   double age,agelim, hf;
                   3355:   double ***mobaverage;
                   3356:   int theta;
                   3357:   char digit[4];
                   3358:   char digitp[25];
                   3359: 
                   3360:   char fileresprobmorprev[FILENAMELENGTH];
                   3361: 
                   3362:   if(popbased==1){
                   3363:     if(mobilav!=0)
                   3364:       strcpy(digitp,"-populbased-mobilav-");
                   3365:     else strcpy(digitp,"-populbased-nomobil-");
                   3366:   }
                   3367:   else 
                   3368:     strcpy(digitp,"-stablbased-");
                   3369: 
                   3370:   if (mobilav!=0) {
                   3371:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3372:     if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   3373:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   3374:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   3375:     }
                   3376:   }
                   3377: 
                   3378:   strcpy(fileresprobmorprev,"prmorprev"); 
                   3379:   sprintf(digit,"%-d",ij);
                   3380:   /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   3381:   strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   3382:   strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   3383:   strcat(fileresprobmorprev,fileres);
                   3384:   if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   3385:     printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   3386:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   3387:   }
                   3388:   printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   3389:  
                   3390:   fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   3391:   pstamp(ficresprobmorprev);
                   3392:   fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
                   3393:   fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   3394:   for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   3395:     fprintf(ficresprobmorprev," p.%-d SE",j);
                   3396:     for(i=1; i<=nlstate;i++)
                   3397:       fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   3398:   }  
                   3399:   fprintf(ficresprobmorprev,"\n");
                   3400:   fprintf(ficgp,"\n# Routine varevsij");
                   3401:   /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
                   3402:   fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   3403:   fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                   3404: /*   } */
                   3405:   varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   3406:   pstamp(ficresvij);
                   3407:   fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
                   3408:   if(popbased==1)
1.128     brouard  3409:     fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
1.126     brouard  3410:   else
                   3411:     fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
                   3412:   fprintf(ficresvij,"# Age");
                   3413:   for(i=1; i<=nlstate;i++)
                   3414:     for(j=1; j<=nlstate;j++)
                   3415:       fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
                   3416:   fprintf(ficresvij,"\n");
                   3417: 
                   3418:   xp=vector(1,npar);
                   3419:   dnewm=matrix(1,nlstate,1,npar);
                   3420:   doldm=matrix(1,nlstate,1,nlstate);
                   3421:   dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   3422:   doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   3423: 
                   3424:   gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   3425:   gpp=vector(nlstate+1,nlstate+ndeath);
                   3426:   gmp=vector(nlstate+1,nlstate+ndeath);
                   3427:   trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   3428:   
                   3429:   if(estepm < stepm){
                   3430:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   3431:   }
                   3432:   else  hstepm=estepm;   
                   3433:   /* For example we decided to compute the life expectancy with the smallest unit */
                   3434:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   3435:      nhstepm is the number of hstepm from age to agelim 
                   3436:      nstepm is the number of stepm from age to agelin. 
1.128     brouard  3437:      Look at function hpijx to understand why (it is linked to memory size questions) */
1.126     brouard  3438:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   3439:      survival function given by stepm (the optimization length). Unfortunately it
                   3440:      means that if the survival funtion is printed every two years of age and if
                   3441:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   3442:      results. So we changed our mind and took the option of the best precision.
                   3443:   */
                   3444:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   3445:   agelim = AGESUP;
                   3446:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   3447:     nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   3448:     nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   3449:     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3450:     gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   3451:     gp=matrix(0,nhstepm,1,nlstate);
                   3452:     gm=matrix(0,nhstepm,1,nlstate);
                   3453: 
                   3454: 
                   3455:     for(theta=1; theta <=npar; theta++){
                   3456:       for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                   3457:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   3458:       }
                   3459:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   3460:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   3461: 
                   3462:       if (popbased==1) {
                   3463:        if(mobilav ==0){
                   3464:          for(i=1; i<=nlstate;i++)
                   3465:            prlim[i][i]=probs[(int)age][i][ij];
                   3466:        }else{ /* mobilav */ 
                   3467:          for(i=1; i<=nlstate;i++)
                   3468:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   3469:        }
                   3470:       }
                   3471:   
                   3472:       for(j=1; j<= nlstate; j++){
                   3473:        for(h=0; h<=nhstepm; h++){
                   3474:          for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   3475:            gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   3476:        }
                   3477:       }
                   3478:       /* This for computing probability of death (h=1 means
                   3479:          computed over hstepm matrices product = hstepm*stepm months) 
                   3480:          as a weighted average of prlim.
                   3481:       */
                   3482:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   3483:        for(i=1,gpp[j]=0.; i<= nlstate; i++)
                   3484:          gpp[j] += prlim[i][i]*p3mat[i][j][1];
                   3485:       }    
                   3486:       /* end probability of death */
                   3487: 
                   3488:       for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   3489:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   3490:       hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);  
                   3491:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   3492:  
                   3493:       if (popbased==1) {
                   3494:        if(mobilav ==0){
                   3495:          for(i=1; i<=nlstate;i++)
                   3496:            prlim[i][i]=probs[(int)age][i][ij];
                   3497:        }else{ /* mobilav */ 
                   3498:          for(i=1; i<=nlstate;i++)
                   3499:            prlim[i][i]=mobaverage[(int)age][i][ij];
                   3500:        }
                   3501:       }
                   3502: 
1.128     brouard  3503:       for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
1.126     brouard  3504:        for(h=0; h<=nhstepm; h++){
                   3505:          for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   3506:            gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   3507:        }
                   3508:       }
                   3509:       /* This for computing probability of death (h=1 means
                   3510:          computed over hstepm matrices product = hstepm*stepm months) 
                   3511:          as a weighted average of prlim.
                   3512:       */
                   3513:       for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   3514:        for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   3515:          gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   3516:       }    
                   3517:       /* end probability of death */
                   3518: 
                   3519:       for(j=1; j<= nlstate; j++) /* vareij */
                   3520:        for(h=0; h<=nhstepm; h++){
                   3521:          gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   3522:        }
                   3523: 
                   3524:       for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   3525:        gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   3526:       }
                   3527: 
                   3528:     } /* End theta */
                   3529: 
                   3530:     trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   3531: 
                   3532:     for(h=0; h<=nhstepm; h++) /* veij */
                   3533:       for(j=1; j<=nlstate;j++)
                   3534:        for(theta=1; theta <=npar; theta++)
                   3535:          trgradg[h][j][theta]=gradg[h][theta][j];
                   3536: 
                   3537:     for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   3538:       for(theta=1; theta <=npar; theta++)
                   3539:        trgradgp[j][theta]=gradgp[theta][j];
                   3540:   
                   3541: 
                   3542:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   3543:     for(i=1;i<=nlstate;i++)
                   3544:       for(j=1;j<=nlstate;j++)
                   3545:        vareij[i][j][(int)age] =0.;
                   3546: 
                   3547:     for(h=0;h<=nhstepm;h++){
                   3548:       for(k=0;k<=nhstepm;k++){
                   3549:        matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   3550:        matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   3551:        for(i=1;i<=nlstate;i++)
                   3552:          for(j=1;j<=nlstate;j++)
                   3553:            vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   3554:       }
                   3555:     }
                   3556:   
                   3557:     /* pptj */
                   3558:     matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   3559:     matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                   3560:     for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   3561:       for(i=nlstate+1;i<=nlstate+ndeath;i++)
                   3562:        varppt[j][i]=doldmp[j][i];
                   3563:     /* end ppptj */
                   3564:     /*  x centered again */
                   3565:     hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij);  
                   3566:     prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ij);
                   3567:  
                   3568:     if (popbased==1) {
                   3569:       if(mobilav ==0){
                   3570:        for(i=1; i<=nlstate;i++)
                   3571:          prlim[i][i]=probs[(int)age][i][ij];
                   3572:       }else{ /* mobilav */ 
                   3573:        for(i=1; i<=nlstate;i++)
                   3574:          prlim[i][i]=mobaverage[(int)age][i][ij];
                   3575:       }
                   3576:     }
                   3577:              
                   3578:     /* This for computing probability of death (h=1 means
                   3579:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   3580:        as a weighted average of prlim.
                   3581:     */
                   3582:     for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   3583:       for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                   3584:        gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   3585:     }    
                   3586:     /* end probability of death */
                   3587: 
                   3588:     fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   3589:     for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   3590:       fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   3591:       for(i=1; i<=nlstate;i++){
                   3592:        fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   3593:       }
                   3594:     } 
                   3595:     fprintf(ficresprobmorprev,"\n");
                   3596: 
                   3597:     fprintf(ficresvij,"%.0f ",age );
                   3598:     for(i=1; i<=nlstate;i++)
                   3599:       for(j=1; j<=nlstate;j++){
                   3600:        fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   3601:       }
                   3602:     fprintf(ficresvij,"\n");
                   3603:     free_matrix(gp,0,nhstepm,1,nlstate);
                   3604:     free_matrix(gm,0,nhstepm,1,nlstate);
                   3605:     free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   3606:     free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   3607:     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   3608:   } /* End age */
                   3609:   free_vector(gpp,nlstate+1,nlstate+ndeath);
                   3610:   free_vector(gmp,nlstate+1,nlstate+ndeath);
                   3611:   free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   3612:   free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
1.145     brouard  3613:   fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240");
1.126     brouard  3614:   /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
1.131     brouard  3615:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
1.126     brouard  3616: /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   3617: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   3618: /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
1.145     brouard  3619:   fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
                   3620:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95\%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
                   3621:   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
1.126     brouard  3622:   fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   3623:   fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.png\"> <br>\n", estepm,subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                   3624:   /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.png\"> <br>\n", stepm,YEARM,digitp,digit);
                   3625: */
                   3626: /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.png\";replot;",digitp,optionfilefiname,digit); */
                   3627:   fprintf(ficgp,"\nset out \"%s%s.png\";replot;\n",subdirf3(optionfilefiname,"varmuptjgr",digitp),digit);
                   3628: 
                   3629:   free_vector(xp,1,npar);
                   3630:   free_matrix(doldm,1,nlstate,1,nlstate);
                   3631:   free_matrix(dnewm,1,nlstate,1,npar);
                   3632:   free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   3633:   free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   3634:   free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   3635:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   3636:   fclose(ficresprobmorprev);
                   3637:   fflush(ficgp);
                   3638:   fflush(fichtm); 
                   3639: }  /* end varevsij */
                   3640: 
                   3641: /************ Variance of prevlim ******************/
                   3642: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij, char strstart[])
                   3643: {
                   3644:   /* Variance of prevalence limit */
                   3645:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
1.164     brouard  3646: 
1.126     brouard  3647:   double **dnewm,**doldm;
                   3648:   int i, j, nhstepm, hstepm;
                   3649:   double *xp;
                   3650:   double *gp, *gm;
                   3651:   double **gradg, **trgradg;
                   3652:   double age,agelim;
                   3653:   int theta;
                   3654:   
                   3655:   pstamp(ficresvpl);
                   3656:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
                   3657:   fprintf(ficresvpl,"# Age");
                   3658:   for(i=1; i<=nlstate;i++)
                   3659:       fprintf(ficresvpl," %1d-%1d",i,i);
                   3660:   fprintf(ficresvpl,"\n");
                   3661: 
                   3662:   xp=vector(1,npar);
                   3663:   dnewm=matrix(1,nlstate,1,npar);
                   3664:   doldm=matrix(1,nlstate,1,nlstate);
                   3665:   
                   3666:   hstepm=1*YEARM; /* Every year of age */
                   3667:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   3668:   agelim = AGESUP;
                   3669:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   3670:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   3671:     if (stepm >= YEARM) hstepm=1;
                   3672:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   3673:     gradg=matrix(1,npar,1,nlstate);
                   3674:     gp=vector(1,nlstate);
                   3675:     gm=vector(1,nlstate);
                   3676: 
                   3677:     for(theta=1; theta <=npar; theta++){
                   3678:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   3679:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   3680:       }
                   3681:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   3682:       for(i=1;i<=nlstate;i++)
                   3683:        gp[i] = prlim[i][i];
                   3684:     
                   3685:       for(i=1; i<=npar; i++) /* Computes gradient */
                   3686:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   3687:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
                   3688:       for(i=1;i<=nlstate;i++)
                   3689:        gm[i] = prlim[i][i];
                   3690: 
                   3691:       for(i=1;i<=nlstate;i++)
                   3692:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   3693:     } /* End theta */
                   3694: 
                   3695:     trgradg =matrix(1,nlstate,1,npar);
                   3696: 
                   3697:     for(j=1; j<=nlstate;j++)
                   3698:       for(theta=1; theta <=npar; theta++)
                   3699:        trgradg[j][theta]=gradg[theta][j];
                   3700: 
                   3701:     for(i=1;i<=nlstate;i++)
                   3702:       varpl[i][(int)age] =0.;
                   3703:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   3704:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                   3705:     for(i=1;i<=nlstate;i++)
                   3706:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   3707: 
                   3708:     fprintf(ficresvpl,"%.0f ",age );
                   3709:     for(i=1; i<=nlstate;i++)
                   3710:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   3711:     fprintf(ficresvpl,"\n");
                   3712:     free_vector(gp,1,nlstate);
                   3713:     free_vector(gm,1,nlstate);
                   3714:     free_matrix(gradg,1,npar,1,nlstate);
                   3715:     free_matrix(trgradg,1,nlstate,1,npar);
                   3716:   } /* End age */
                   3717: 
                   3718:   free_vector(xp,1,npar);
                   3719:   free_matrix(doldm,1,nlstate,1,npar);
                   3720:   free_matrix(dnewm,1,nlstate,1,nlstate);
                   3721: 
                   3722: }
                   3723: 
                   3724: /************ Variance of one-step probabilities  ******************/
                   3725: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
                   3726: {
1.164     brouard  3727:   int i, j=0,  k1, l1, tj;
1.126     brouard  3728:   int k2, l2, j1,  z1;
1.164     brouard  3729:   int k=0, l;
1.145     brouard  3730:   int first=1, first1, first2;
1.126     brouard  3731:   double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   3732:   double **dnewm,**doldm;
                   3733:   double *xp;
                   3734:   double *gp, *gm;
                   3735:   double **gradg, **trgradg;
                   3736:   double **mu;
1.164     brouard  3737:   double age, cov[NCOVMAX+1];
1.126     brouard  3738:   double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   3739:   int theta;
                   3740:   char fileresprob[FILENAMELENGTH];
                   3741:   char fileresprobcov[FILENAMELENGTH];
                   3742:   char fileresprobcor[FILENAMELENGTH];
                   3743:   double ***varpij;
                   3744: 
                   3745:   strcpy(fileresprob,"prob"); 
                   3746:   strcat(fileresprob,fileres);
                   3747:   if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   3748:     printf("Problem with resultfile: %s\n", fileresprob);
                   3749:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   3750:   }
                   3751:   strcpy(fileresprobcov,"probcov"); 
                   3752:   strcat(fileresprobcov,fileres);
                   3753:   if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   3754:     printf("Problem with resultfile: %s\n", fileresprobcov);
                   3755:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   3756:   }
                   3757:   strcpy(fileresprobcor,"probcor"); 
                   3758:   strcat(fileresprobcor,fileres);
                   3759:   if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   3760:     printf("Problem with resultfile: %s\n", fileresprobcor);
                   3761:     fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   3762:   }
                   3763:   printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   3764:   fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   3765:   printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   3766:   fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   3767:   printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   3768:   fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   3769:   pstamp(ficresprob);
                   3770:   fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   3771:   fprintf(ficresprob,"# Age");
                   3772:   pstamp(ficresprobcov);
                   3773:   fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   3774:   fprintf(ficresprobcov,"# Age");
                   3775:   pstamp(ficresprobcor);
                   3776:   fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   3777:   fprintf(ficresprobcor,"# Age");
                   3778: 
                   3779: 
                   3780:   for(i=1; i<=nlstate;i++)
                   3781:     for(j=1; j<=(nlstate+ndeath);j++){
                   3782:       fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   3783:       fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   3784:       fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   3785:     }  
                   3786:  /* fprintf(ficresprob,"\n");
                   3787:   fprintf(ficresprobcov,"\n");
                   3788:   fprintf(ficresprobcor,"\n");
                   3789:  */
1.131     brouard  3790:   xp=vector(1,npar);
1.126     brouard  3791:   dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   3792:   doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   3793:   mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   3794:   varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   3795:   first=1;
                   3796:   fprintf(ficgp,"\n# Routine varprob");
                   3797:   fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   3798:   fprintf(fichtm,"\n");
                   3799: 
                   3800:   fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of pairs of step probabilities (drawings)</a></h4></li>\n",optionfilehtmcov);
                   3801:   fprintf(fichtmcov,"\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n\
                   3802:   file %s<br>\n",optionfilehtmcov);
                   3803:   fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated\
                   3804: and drawn. It helps understanding how is the covariance between two incidences.\
                   3805:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
                   3806:   fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
                   3807: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   3808: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   3809: standard deviations wide on each axis. <br>\
                   3810:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   3811:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   3812: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                   3813: 
                   3814:   cov[1]=1;
1.145     brouard  3815:   /* tj=cptcoveff; */
                   3816:   tj = (int) pow(2,cptcoveff);
1.126     brouard  3817:   if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   3818:   j1=0;
1.145     brouard  3819:   for(j1=1; j1<=tj;j1++){
                   3820:     /*for(i1=1; i1<=ncodemax[t];i1++){ */
                   3821:     /*j1++;*/
1.126     brouard  3822:       if  (cptcovn>0) {
                   3823:        fprintf(ficresprob, "\n#********** Variable "); 
                   3824:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3825:        fprintf(ficresprob, "**********\n#\n");
                   3826:        fprintf(ficresprobcov, "\n#********** Variable "); 
                   3827:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3828:        fprintf(ficresprobcov, "**********\n#\n");
                   3829:        
                   3830:        fprintf(ficgp, "\n#********** Variable "); 
                   3831:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3832:        fprintf(ficgp, "**********\n#\n");
                   3833:        
                   3834:        
                   3835:        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                   3836:        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3837:        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                   3838:        
                   3839:        fprintf(ficresprobcor, "\n#********** Variable ");    
                   3840:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
                   3841:        fprintf(ficresprobcor, "**********\n#");    
                   3842:       }
                   3843:       
1.145     brouard  3844:       gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   3845:       trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   3846:       gp=vector(1,(nlstate)*(nlstate+ndeath));
                   3847:       gm=vector(1,(nlstate)*(nlstate+ndeath));
1.126     brouard  3848:       for (age=bage; age<=fage; age ++){ 
                   3849:        cov[2]=age;
                   3850:        for (k=1; k<=cptcovn;k++) {
1.145     brouard  3851:          cov[2+k]=nbcode[Tvar[k]][codtab[j1][Tvar[k]]];/* j1 1 2 3 4
                   3852:                                                         * 1  1 1 1 1
                   3853:                                                         * 2  2 1 1 1
                   3854:                                                         * 3  1 2 1 1
                   3855:                                                         */
                   3856:          /* nbcode[1][1]=0 nbcode[1][2]=1;*/
1.126     brouard  3857:        }
                   3858:        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
                   3859:        for (k=1; k<=cptcovprod;k++)
                   3860:          cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
                   3861:        
                   3862:     
                   3863:        for(theta=1; theta <=npar; theta++){
                   3864:          for(i=1; i<=npar; i++)
                   3865:            xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
                   3866:          
                   3867:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   3868:          
                   3869:          k=0;
                   3870:          for(i=1; i<= (nlstate); i++){
                   3871:            for(j=1; j<=(nlstate+ndeath);j++){
                   3872:              k=k+1;
                   3873:              gp[k]=pmmij[i][j];
                   3874:            }
                   3875:          }
                   3876:          
                   3877:          for(i=1; i<=npar; i++)
                   3878:            xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
                   3879:     
                   3880:          pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   3881:          k=0;
                   3882:          for(i=1; i<=(nlstate); i++){
                   3883:            for(j=1; j<=(nlstate+ndeath);j++){
                   3884:              k=k+1;
                   3885:              gm[k]=pmmij[i][j];
                   3886:            }
                   3887:          }
                   3888:      
                   3889:          for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                   3890:            gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                   3891:        }
                   3892: 
                   3893:        for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   3894:          for(theta=1; theta <=npar; theta++)
                   3895:            trgradg[j][theta]=gradg[theta][j];
                   3896:        
                   3897:        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   3898:        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
                   3899: 
                   3900:        pmij(pmmij,cov,ncovmodel,x,nlstate);
                   3901:        
                   3902:        k=0;
                   3903:        for(i=1; i<=(nlstate); i++){
                   3904:          for(j=1; j<=(nlstate+ndeath);j++){
                   3905:            k=k+1;
                   3906:            mu[k][(int) age]=pmmij[i][j];
                   3907:          }
                   3908:        }
                   3909:        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   3910:          for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   3911:            varpij[i][j][(int)age] = doldm[i][j];
                   3912: 
                   3913:        /*printf("\n%d ",(int)age);
                   3914:          for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3915:          printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3916:          fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   3917:          }*/
                   3918: 
                   3919:        fprintf(ficresprob,"\n%d ",(int)age);
                   3920:        fprintf(ficresprobcov,"\n%d ",(int)age);
                   3921:        fprintf(ficresprobcor,"\n%d ",(int)age);
                   3922: 
                   3923:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   3924:          fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   3925:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   3926:          fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   3927:          fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   3928:        }
                   3929:        i=0;
                   3930:        for (k=1; k<=(nlstate);k++){
                   3931:          for (l=1; l<=(nlstate+ndeath);l++){ 
1.145     brouard  3932:            i++;
1.126     brouard  3933:            fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   3934:            fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   3935:            for (j=1; j<=i;j++){
1.145     brouard  3936:              /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
1.126     brouard  3937:              fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   3938:              fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   3939:            }
                   3940:          }
                   3941:        }/* end of loop for state */
                   3942:       } /* end of loop for age */
1.145     brouard  3943:       free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   3944:       free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   3945:       free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   3946:       free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   3947:       
1.126     brouard  3948:       /* Confidence intervalle of pij  */
                   3949:       /*
1.131     brouard  3950:        fprintf(ficgp,"\nunset parametric;unset label");
1.126     brouard  3951:        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   3952:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   3953:        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   3954:        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   3955:        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   3956:        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   3957:       */
                   3958: 
                   3959:       /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
1.145     brouard  3960:       first1=1;first2=2;
1.126     brouard  3961:       for (k2=1; k2<=(nlstate);k2++){
                   3962:        for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   3963:          if(l2==k2) continue;
                   3964:          j=(k2-1)*(nlstate+ndeath)+l2;
                   3965:          for (k1=1; k1<=(nlstate);k1++){
                   3966:            for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   3967:              if(l1==k1) continue;
                   3968:              i=(k1-1)*(nlstate+ndeath)+l1;
                   3969:              if(i<=j) continue;
                   3970:              for (age=bage; age<=fage; age ++){ 
                   3971:                if ((int)age %5==0){
                   3972:                  v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   3973:                  v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3974:                  cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   3975:                  mu1=mu[i][(int) age]/stepm*YEARM ;
                   3976:                  mu2=mu[j][(int) age]/stepm*YEARM;
                   3977:                  c12=cv12/sqrt(v1*v2);
                   3978:                  /* Computing eigen value of matrix of covariance */
                   3979:                  lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   3980:                  lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
1.135     brouard  3981:                  if ((lc2 <0) || (lc1 <0) ){
1.145     brouard  3982:                    if(first2==1){
                   3983:                      first1=0;
                   3984:                    printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                   3985:                    }
                   3986:                    fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                   3987:                    /* lc1=fabs(lc1); */ /* If we want to have them positive */
                   3988:                    /* lc2=fabs(lc2); */
1.135     brouard  3989:                  }
                   3990: 
1.126     brouard  3991:                  /* Eigen vectors */
                   3992:                  v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   3993:                  /*v21=sqrt(1.-v11*v11); *//* error */
                   3994:                  v21=(lc1-v1)/cv12*v11;
                   3995:                  v12=-v21;
                   3996:                  v22=v11;
                   3997:                  tnalp=v21/v11;
                   3998:                  if(first1==1){
                   3999:                    first1=0;
                   4000:                    printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   4001:                  }
                   4002:                  fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   4003:                  /*printf(fignu*/
                   4004:                  /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   4005:                  /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   4006:                  if(first==1){
                   4007:                    first=0;
                   4008:                    fprintf(ficgp,"\nset parametric;unset label");
                   4009:                    fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
1.145     brouard  4010:                    fprintf(ficgp,"\nset ter png small size 320, 240");
1.126     brouard  4011:                    fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
                   4012:  :<a href=\"%s%d%1d%1d-%1d%1d.png\">\
                   4013: %s%d%1d%1d-%1d%1d.png</A>, ",k1,l1,k2,l2,\
                   4014:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2,\
                   4015:                            subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   4016:                    fprintf(fichtmcov,"\n<br><img src=\"%s%d%1d%1d-%1d%1d.png\"> ",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   4017:                    fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                   4018:                    fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\"",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   4019:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   4020:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   4021:                    fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   4022:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   4023:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   4024:                  }else{
                   4025:                    first=0;
                   4026:                    fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                   4027:                    fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   4028:                    fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   4029:                    fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",\
                   4030:                            mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),\
                   4031:                            mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   4032:                  }/* if first */
                   4033:                } /* age mod 5 */
                   4034:              } /* end loop age */
                   4035:              fprintf(ficgp,"\nset out \"%s%d%1d%1d-%1d%1d.png\";replot;",subdirf2(optionfilefiname,"varpijgr"), j1,k1,l1,k2,l2);
                   4036:              first=1;
                   4037:            } /*l12 */
                   4038:          } /* k12 */
                   4039:        } /*l1 */
                   4040:       }/* k1 */
1.145     brouard  4041:       /* } /* loop covariates */
1.126     brouard  4042:   }
                   4043:   free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   4044:   free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                   4045:   free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   4046:   free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
                   4047:   free_vector(xp,1,npar);
                   4048:   fclose(ficresprob);
                   4049:   fclose(ficresprobcov);
                   4050:   fclose(ficresprobcor);
                   4051:   fflush(ficgp);
                   4052:   fflush(fichtmcov);
                   4053: }
                   4054: 
                   4055: 
                   4056: /******************* Printing html file ***********/
                   4057: void printinghtml(char fileres[], char title[], char datafile[], int firstpass, \
                   4058:                  int lastpass, int stepm, int weightopt, char model[],\
                   4059:                  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
                   4060:                  int popforecast, int estepm ,\
                   4061:                  double jprev1, double mprev1,double anprev1, \
                   4062:                  double jprev2, double mprev2,double anprev2){
                   4063:   int jj1, k1, i1, cpt;
                   4064: 
                   4065:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                   4066:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                   4067: </ul>");
                   4068:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n \
                   4069:  - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> <br>\n ",
                   4070:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirf2(fileres,"p"),subdirf2(fileres,"p"));
                   4071:    fprintf(fichtm,"\
                   4072:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   4073:           stepm,subdirf2(fileres,"pij"),subdirf2(fileres,"pij"));
                   4074:    fprintf(fichtm,"\
                   4075:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                   4076:           subdirf2(fileres,"pl"),subdirf2(fileres,"pl"));
                   4077:    fprintf(fichtm,"\
1.128     brouard  4078:  - (a) Life expectancies by health status at initial age, ei. (b) health expectancies by health status at initial age, eij . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
1.126     brouard  4079:    <a href=\"%s\">%s</a> <br>\n",
                   4080:           estepm,subdirf2(fileres,"e"),subdirf2(fileres,"e"));
                   4081:    fprintf(fichtm,"\
                   4082:  - Population projections by age and states: \
                   4083:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileres,"f"),subdirf2(fileres,"f"));
                   4084: 
                   4085: fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
                   4086: 
1.145     brouard  4087:  m=pow(2,cptcoveff);
1.126     brouard  4088:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   4089: 
                   4090:  jj1=0;
                   4091:  for(k1=1; k1<=m;k1++){
                   4092:    for(i1=1; i1<=ncodemax[k1];i1++){
                   4093:      jj1++;
                   4094:      if (cptcovn > 0) {
                   4095:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   4096:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   4097:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   4098:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   4099:      }
                   4100:      /* Pij */
1.145     brouard  4101:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s%d_1.png\">%s%d_1.png</a><br> \
                   4102: <img src=\"%s%d_1.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1);     
1.126     brouard  4103:      /* Quasi-incidences */
                   4104:      fprintf(fichtm,"<br>- Pij or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
1.145     brouard  4105:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too: <a href=\"%s%d_2.png\">%s%d_2.png</a><br> \
                   4106: <img src=\"%s%d_2.png\">",stepm,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1,subdirf2(optionfilefiname,"pe"),jj1); 
1.126     brouard  4107:        /* Period (stable) prevalence in each health state */
1.154     brouard  4108:        for(cpt=1; cpt<=nlstate;cpt++){
1.166     brouard  4109:         fprintf(fichtm,"<br>- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s%d_%d.png\">%s%d_%d.png</a><br> \
                   4110: <img src=\"%s%d_%d.png\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1,subdirf2(optionfilefiname,"p"),cpt,jj1);
1.126     brouard  4111:        }
                   4112:      for(cpt=1; cpt<=nlstate;cpt++) {
1.154     brouard  4113:         fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) : <a href=\"%s%d%d.png\">%s%d%d.png</a> <br> \
                   4114: <img src=\"%s%d%d.png\">",cpt,nlstate,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1,subdirf2(optionfilefiname,"exp"),cpt,jj1);
1.126     brouard  4115:      }
                   4116:    } /* end i1 */
                   4117:  }/* End k1 */
                   4118:  fprintf(fichtm,"</ul>");
                   4119: 
                   4120: 
                   4121:  fprintf(fichtm,"\
                   4122: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
                   4123:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br>\n", rfileres,rfileres);
                   4124: 
                   4125:  fprintf(fichtm," - Variance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   4126:         subdirf2(fileres,"prob"),subdirf2(fileres,"prob"));
                   4127:  fprintf(fichtm,"\
                   4128:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   4129:         subdirf2(fileres,"probcov"),subdirf2(fileres,"probcov"));
                   4130: 
                   4131:  fprintf(fichtm,"\
                   4132:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   4133:         subdirf2(fileres,"probcor"),subdirf2(fileres,"probcor"));
                   4134:  fprintf(fichtm,"\
                   4135:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                   4136:    <a href=\"%s\">%s</a> <br>\n</li>",
                   4137:           estepm,subdirf2(fileres,"cve"),subdirf2(fileres,"cve"));
                   4138:  fprintf(fichtm,"\
                   4139:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                   4140:    <a href=\"%s\">%s</a> <br>\n</li>",
                   4141:           estepm,subdirf2(fileres,"stde"),subdirf2(fileres,"stde"));
                   4142:  fprintf(fichtm,"\
1.128     brouard  4143:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
1.126     brouard  4144:         estepm, subdirf2(fileres,"v"),subdirf2(fileres,"v"));
                   4145:  fprintf(fichtm,"\
1.128     brouard  4146:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
                   4147:         estepm, subdirf2(fileres,"t"),subdirf2(fileres,"t"));
1.126     brouard  4148:  fprintf(fichtm,"\
                   4149:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
                   4150:         subdirf2(fileres,"vpl"),subdirf2(fileres,"vpl"));
                   4151: 
                   4152: /*  if(popforecast==1) fprintf(fichtm,"\n */
                   4153: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                   4154: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                   4155: /*     <br>",fileres,fileres,fileres,fileres); */
                   4156: /*  else  */
                   4157: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
                   4158:  fflush(fichtm);
                   4159:  fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
                   4160: 
1.145     brouard  4161:  m=pow(2,cptcoveff);
1.126     brouard  4162:  if (cptcovn < 1) {m=1;ncodemax[1]=1;}
                   4163: 
                   4164:  jj1=0;
                   4165:  for(k1=1; k1<=m;k1++){
                   4166:    for(i1=1; i1<=ncodemax[k1];i1++){
                   4167:      jj1++;
                   4168:      if (cptcovn > 0) {
                   4169:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
                   4170:        for (cpt=1; cpt<=cptcoveff;cpt++) 
                   4171:         fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[jj1][cpt]]);
                   4172:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   4173:      }
                   4174:      for(cpt=1; cpt<=nlstate;cpt++) {
                   4175:        fprintf(fichtm,"<br>- Observed (cross-sectional) and period (incidence based) \
1.145     brouard  4176: prevalence (with 95%% confidence interval) in state (%d): %s%d_%d.png <br>\
                   4177: <img src=\"%s%d_%d.png\">",cpt,subdirf2(optionfilefiname,"v"),cpt,jj1,subdirf2(optionfilefiname,"v"),cpt,jj1);  
1.126     brouard  4178:      }
                   4179:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
1.128     brouard  4180: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
                   4181: true period expectancies (those weighted with period prevalences are also\
                   4182:  drawn in addition to the population based expectancies computed using\
                   4183:  observed and cahotic prevalences: %s%d.png<br>\
1.126     brouard  4184: <img src=\"%s%d.png\">",subdirf2(optionfilefiname,"e"),jj1,subdirf2(optionfilefiname,"e"),jj1);
                   4185:    } /* end i1 */
                   4186:  }/* End k1 */
                   4187:  fprintf(fichtm,"</ul>");
                   4188:  fflush(fichtm);
                   4189: }
                   4190: 
                   4191: /******************* Gnuplot file **************/
                   4192: void printinggnuplot(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                   4193: 
                   4194:   char dirfileres[132],optfileres[132];
1.164     brouard  4195:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,ij=0,l=0;
1.130     brouard  4196:   int ng=0;
1.126     brouard  4197: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                   4198: /*     printf("Problem with file %s",optionfilegnuplot); */
                   4199: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   4200: /*   } */
                   4201: 
                   4202:   /*#ifdef windows */
                   4203:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   4204:     /*#endif */
                   4205:   m=pow(2,cptcoveff);
                   4206: 
                   4207:   strcpy(dirfileres,optionfilefiname);
                   4208:   strcpy(optfileres,"vpl");
                   4209:  /* 1eme*/
1.153     brouard  4210:   fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'vpl' files\n");
1.126     brouard  4211:   for (cpt=1; cpt<= nlstate ; cpt ++) {
1.145     brouard  4212:     for (k1=1; k1<= m ; k1 ++) { /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
                   4213:      fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"v"),cpt,k1);
                   4214:      fprintf(ficgp,"\n#set out \"v%s%d_%d.png\" \n",optionfilefiname,cpt,k1);
1.126     brouard  4215:      fprintf(ficgp,"set xlabel \"Age\" \n\
                   4216: set ylabel \"Probability\" \n\
1.145     brouard  4217: set ter png small size 320, 240\n\
1.126     brouard  4218: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:2 \"\%%lf",ageminpar,fage,subdirf2(fileres,"vpl"),k1-1,k1-1);
                   4219: 
                   4220:      for (i=1; i<= nlstate ; i ++) {
                   4221:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
1.131     brouard  4222:        else        fprintf(ficgp," \%%*lf (\%%*lf)");
1.126     brouard  4223:      }
1.145     brouard  4224:      fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2+1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1);
1.126     brouard  4225:      for (i=1; i<= nlstate ; i ++) {
                   4226:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   4227:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4228:      } 
1.145     brouard  4229:      fprintf(ficgp,"\" t\"95\%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2-1.96*$3) \"\%%lf",subdirf2(fileres,"vpl"),k1-1,k1-1); 
1.126     brouard  4230:      for (i=1; i<= nlstate ; i ++) {
                   4231:        if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
                   4232:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4233:      }  
1.145     brouard  4234:      fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l lt 2",subdirf2(fileres,"p"),k1-1,k1-1,2+4*(cpt-1));
1.126     brouard  4235:    }
                   4236:   }
                   4237:   /*2 eme*/
1.153     brouard  4238:   fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files\n");
1.126     brouard  4239:   for (k1=1; k1<= m ; k1 ++) { 
                   4240:     fprintf(ficgp,"\nset out \"%s%d.png\" \n",subdirf2(optionfilefiname,"e"),k1);
1.145     brouard  4241:     fprintf(ficgp,"set ylabel \"Years\" \nset ter png small size 320, 240\nplot [%.f:%.f] ",ageminpar,fage);
1.126     brouard  4242:     
                   4243:     for (i=1; i<= nlstate+1 ; i ++) {
                   4244:       k=2*i;
                   4245:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:2 \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   4246:       for (j=1; j<= nlstate+1 ; j ++) {
                   4247:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   4248:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4249:       }   
                   4250:       if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
                   4251:       else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
                   4252:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   4253:       for (j=1; j<= nlstate+1 ; j ++) {
                   4254:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   4255:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4256:       }   
1.145     brouard  4257:       fprintf(ficgp,"\" t\"\" w l lt 0,");
1.126     brouard  4258:       fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",subdirf2(fileres,"t"),k1-1,k1-1);
                   4259:       for (j=1; j<= nlstate+1 ; j ++) {
                   4260:        if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
                   4261:        else fprintf(ficgp," \%%*lf (\%%*lf)");
                   4262:       }   
1.145     brouard  4263:       if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
                   4264:       else fprintf(ficgp,"\" t\"\" w l lt 0,");
1.126     brouard  4265:     }
                   4266:   }
                   4267:   
                   4268:   /*3eme*/
                   4269:   
                   4270:   for (k1=1; k1<= m ; k1 ++) { 
                   4271:     for (cpt=1; cpt<= nlstate ; cpt ++) {
                   4272:       /*       k=2+nlstate*(2*cpt-2); */
                   4273:       k=2+(nlstate+1)*(cpt-1);
                   4274:       fprintf(ficgp,"\nset out \"%s%d%d.png\" \n",subdirf2(optionfilefiname,"exp"),cpt,k1);
1.145     brouard  4275:       fprintf(ficgp,"set ter png small size 320, 240\n\
1.126     brouard  4276: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileres,"e"),k1-1,k1-1,k,cpt);
                   4277:       /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   4278:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   4279:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   4280:        fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   4281:        for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   4282:        fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   4283:        
                   4284:       */
                   4285:       for (i=1; i< nlstate ; i ++) {
                   4286:        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+i,cpt,i+1);
                   4287:        /*      fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
                   4288:        
                   4289:       } 
                   4290:       fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+nlstate,cpt);
                   4291:     }
                   4292:   }
                   4293:   
                   4294:   /* CV preval stable (period) */
1.153     brouard  4295:   for (k1=1; k1<= m ; k1 ++) { /* For each multivariate if any */
                   4296:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
1.126     brouard  4297:       k=3;
1.153     brouard  4298:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, cov=%d state=%d",k1, cpt);
1.145     brouard  4299:       fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"p"),cpt,k1);
1.126     brouard  4300:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.145     brouard  4301: set ter png small size 320, 240\n\
1.126     brouard  4302: unset log y\n\
1.153     brouard  4303: plot [%.f:%.f]  ", ageminpar, agemaxpar);
                   4304:       for (i=1; i<= nlstate ; i ++){
                   4305:        if(i==1)
                   4306:          fprintf(ficgp,"\"%s\"",subdirf2(fileres,"pij"));
                   4307:        else
                   4308:          fprintf(ficgp,", '' ");
1.154     brouard  4309:        l=(nlstate+ndeath)*(i-1)+1;
                   4310:        fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
1.153     brouard  4311:        for (j=1; j<= (nlstate-1) ; j ++)
                   4312:          fprintf(ficgp,"+$%d",k+l+j);
                   4313:        fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
                   4314:       } /* nlstate */
                   4315:       fprintf(ficgp,"\n");
                   4316:     } /* end cpt state*/ 
                   4317:   } /* end covariate */  
1.126     brouard  4318:   
                   4319:   /* proba elementaires */
                   4320:   for(i=1,jk=1; i <=nlstate; i++){
                   4321:     for(k=1; k <=(nlstate+ndeath); k++){
                   4322:       if (k != i) {
                   4323:        for(j=1; j <=ncovmodel; j++){
                   4324:          fprintf(ficgp,"p%d=%f ",jk,p[jk]);
                   4325:          jk++; 
                   4326:          fprintf(ficgp,"\n");
                   4327:        }
                   4328:       }
                   4329:     }
                   4330:    }
1.145     brouard  4331:   /*goto avoid;*/
1.126     brouard  4332:    for(ng=1; ng<=2;ng++){ /* Number of graphics: first is probabilities second is incidence per year*/
                   4333:      for(jk=1; jk <=m; jk++) {
1.145     brouard  4334:        fprintf(ficgp,"\nset out \"%s%d_%d.png\" \n",subdirf2(optionfilefiname,"pe"),jk,ng); 
1.126     brouard  4335:        if (ng==2)
                   4336:         fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                   4337:        else
                   4338:         fprintf(ficgp,"\nset title \"Probability\"\n");
1.145     brouard  4339:        fprintf(ficgp,"\nset ter png small size 320, 240\nset log y\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
1.126     brouard  4340:        i=1;
                   4341:        for(k2=1; k2<=nlstate; k2++) {
                   4342:         k3=i;
                   4343:         for(k=1; k<=(nlstate+ndeath); k++) {
                   4344:           if (k != k2){
                   4345:             if(ng==2)
                   4346:               fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   4347:             else
                   4348:               fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
1.141     brouard  4349:             ij=1;/* To be checked else nbcode[0][0] wrong */
1.126     brouard  4350:             for(j=3; j <=ncovmodel; j++) {
1.145     brouard  4351:               /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { /\* Bug valgrind *\/ */
                   4352:               /*        /\*fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);*\/ */
                   4353:               /*        ij++; */
                   4354:               /* } */
                   4355:               /* else */
1.126     brouard  4356:                 fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   4357:             }
                   4358:             fprintf(ficgp,")/(1");
                   4359:             
                   4360:             for(k1=1; k1 <=nlstate; k1++){   
                   4361:               fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   4362:               ij=1;
                   4363:               for(j=3; j <=ncovmodel; j++){
1.145     brouard  4364:                 /* if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) { */
                   4365:                 /*   fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]); */
                   4366:                 /*   ij++; */
                   4367:                 /* } */
                   4368:                 /* else */
1.126     brouard  4369:                   fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
                   4370:               }
                   4371:               fprintf(ficgp,")");
                   4372:             }
                   4373:             fprintf(ficgp,") t \"p%d%d\" ", k2,k);
                   4374:             if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
                   4375:             i=i+ncovmodel;
                   4376:           }
                   4377:         } /* end k */
                   4378:        } /* end k2 */
                   4379:      } /* end jk */
                   4380:    } /* end ng */
1.164     brouard  4381:  /* avoid: */
1.126     brouard  4382:    fflush(ficgp); 
                   4383: }  /* end gnuplot */
                   4384: 
                   4385: 
                   4386: /*************** Moving average **************/
                   4387: int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav){
                   4388: 
                   4389:   int i, cpt, cptcod;
                   4390:   int modcovmax =1;
                   4391:   int mobilavrange, mob;
                   4392:   double age;
                   4393: 
                   4394:   modcovmax=2*cptcoveff;/* Max number of modalities. We suppose 
                   4395:                           a covariate has 2 modalities */
                   4396:   if (cptcovn<1) modcovmax=1; /* At least 1 pass */
                   4397: 
                   4398:   if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                   4399:     if(mobilav==1) mobilavrange=5; /* default */
                   4400:     else mobilavrange=mobilav;
                   4401:     for (age=bage; age<=fage; age++)
                   4402:       for (i=1; i<=nlstate;i++)
                   4403:        for (cptcod=1;cptcod<=modcovmax;cptcod++)
                   4404:          mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   4405:     /* We keep the original values on the extreme ages bage, fage and for 
                   4406:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                   4407:        we use a 5 terms etc. until the borders are no more concerned. 
                   4408:     */ 
                   4409:     for (mob=3;mob <=mobilavrange;mob=mob+2){
                   4410:       for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
                   4411:        for (i=1; i<=nlstate;i++){
                   4412:          for (cptcod=1;cptcod<=modcovmax;cptcod++){
                   4413:            mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   4414:              for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   4415:                mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   4416:                mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   4417:              }
                   4418:            mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                   4419:          }
                   4420:        }
                   4421:       }/* end age */
                   4422:     }/* end mob */
                   4423:   }else return -1;
                   4424:   return 0;
                   4425: }/* End movingaverage */
                   4426: 
                   4427: 
                   4428: /************** Forecasting ******************/
                   4429: prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
                   4430:   /* proj1, year, month, day of starting projection 
                   4431:      agemin, agemax range of age
                   4432:      dateprev1 dateprev2 range of dates during which prevalence is computed
                   4433:      anproj2 year of en of projection (same day and month as proj1).
                   4434:   */
1.164     brouard  4435:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1;
1.126     brouard  4436:   double agec; /* generic age */
                   4437:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
                   4438:   double *popeffectif,*popcount;
                   4439:   double ***p3mat;
                   4440:   double ***mobaverage;
                   4441:   char fileresf[FILENAMELENGTH];
                   4442: 
                   4443:   agelim=AGESUP;
                   4444:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   4445:  
                   4446:   strcpy(fileresf,"f"); 
                   4447:   strcat(fileresf,fileres);
                   4448:   if((ficresf=fopen(fileresf,"w"))==NULL) {
                   4449:     printf("Problem with forecast resultfile: %s\n", fileresf);
                   4450:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                   4451:   }
                   4452:   printf("Computing forecasting: result on file '%s' \n", fileresf);
                   4453:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", fileresf);
                   4454: 
                   4455:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   4456: 
                   4457:   if (mobilav!=0) {
                   4458:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4459:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   4460:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   4461:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   4462:     }
                   4463:   }
                   4464: 
                   4465:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   4466:   if (stepm<=12) stepsize=1;
                   4467:   if(estepm < stepm){
                   4468:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   4469:   }
                   4470:   else  hstepm=estepm;   
                   4471: 
                   4472:   hstepm=hstepm/stepm; 
                   4473:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                   4474:                                fractional in yp1 */
                   4475:   anprojmean=yp;
                   4476:   yp2=modf((yp1*12),&yp);
                   4477:   mprojmean=yp;
                   4478:   yp1=modf((yp2*30.5),&yp);
                   4479:   jprojmean=yp;
                   4480:   if(jprojmean==0) jprojmean=1;
                   4481:   if(mprojmean==0) jprojmean=1;
                   4482: 
                   4483:   i1=cptcoveff;
                   4484:   if (cptcovn < 1){i1=1;}
                   4485:   
                   4486:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
                   4487:   
                   4488:   fprintf(ficresf,"#****** Routine prevforecast **\n");
                   4489: 
                   4490: /*           if (h==(int)(YEARM*yearp)){ */
                   4491:   for(cptcov=1, k=0;cptcov<=i1;cptcov++){
                   4492:     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   4493:       k=k+1;
                   4494:       fprintf(ficresf,"\n#******");
                   4495:       for(j=1;j<=cptcoveff;j++) {
                   4496:        fprintf(ficresf," V%d=%d, hpijx=probability over h years, hp.jx is weighted by observed prev ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   4497:       }
                   4498:       fprintf(ficresf,"******\n");
                   4499:       fprintf(ficresf,"# Covariate valuofcovar yearproj age");
                   4500:       for(j=1; j<=nlstate+ndeath;j++){ 
                   4501:        for(i=1; i<=nlstate;i++)              
                   4502:           fprintf(ficresf," p%d%d",i,j);
                   4503:        fprintf(ficresf," p.%d",j);
                   4504:       }
                   4505:       for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) { 
                   4506:        fprintf(ficresf,"\n");
                   4507:        fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
                   4508: 
                   4509:        for (agec=fage; agec>=(ageminpar-1); agec--){ 
                   4510:          nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                   4511:          nhstepm = nhstepm/hstepm; 
                   4512:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4513:          oldm=oldms;savm=savms;
                   4514:          hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   4515:        
                   4516:          for (h=0; h<=nhstepm; h++){
                   4517:            if (h*hstepm/YEARM*stepm ==yearp) {
                   4518:               fprintf(ficresf,"\n");
                   4519:               for(j=1;j<=cptcoveff;j++) 
                   4520:                 fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   4521:              fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                   4522:            } 
                   4523:            for(j=1; j<=nlstate+ndeath;j++) {
                   4524:              ppij=0.;
                   4525:              for(i=1; i<=nlstate;i++) {
                   4526:                if (mobilav==1) 
                   4527:                  ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod];
                   4528:                else {
                   4529:                  ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod];
                   4530:                }
                   4531:                if (h*hstepm/YEARM*stepm== yearp) {
                   4532:                  fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   4533:                }
                   4534:              } /* end i */
                   4535:              if (h*hstepm/YEARM*stepm==yearp) {
                   4536:                fprintf(ficresf," %.3f", ppij);
                   4537:              }
                   4538:            }/* end j */
                   4539:          } /* end h */
                   4540:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4541:        } /* end agec */
                   4542:       } /* end yearp */
                   4543:     } /* end cptcod */
                   4544:   } /* end  cptcov */
                   4545:        
                   4546:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4547: 
                   4548:   fclose(ficresf);
                   4549: }
                   4550: 
                   4551: /************** Forecasting *****not tested NB*************/
                   4552: populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){
                   4553:   
                   4554:   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h;
                   4555:   int *popage;
                   4556:   double calagedatem, agelim, kk1, kk2;
                   4557:   double *popeffectif,*popcount;
                   4558:   double ***p3mat,***tabpop,***tabpopprev;
                   4559:   double ***mobaverage;
                   4560:   char filerespop[FILENAMELENGTH];
                   4561: 
                   4562:   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4563:   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4564:   agelim=AGESUP;
                   4565:   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM;
                   4566:   
                   4567:   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   4568:   
                   4569:   
                   4570:   strcpy(filerespop,"pop"); 
                   4571:   strcat(filerespop,fileres);
                   4572:   if((ficrespop=fopen(filerespop,"w"))==NULL) {
                   4573:     printf("Problem with forecast resultfile: %s\n", filerespop);
                   4574:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop);
                   4575:   }
                   4576:   printf("Computing forecasting: result on file '%s' \n", filerespop);
                   4577:   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop);
                   4578: 
                   4579:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   4580: 
                   4581:   if (mobilav!=0) {
                   4582:     mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4583:     if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){
                   4584:       fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   4585:       printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   4586:     }
                   4587:   }
                   4588: 
                   4589:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   4590:   if (stepm<=12) stepsize=1;
                   4591:   
                   4592:   agelim=AGESUP;
                   4593:   
                   4594:   hstepm=1;
                   4595:   hstepm=hstepm/stepm; 
                   4596:   
                   4597:   if (popforecast==1) {
                   4598:     if((ficpop=fopen(popfile,"r"))==NULL) {
                   4599:       printf("Problem with population file : %s\n",popfile);exit(0);
                   4600:       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0);
                   4601:     } 
                   4602:     popage=ivector(0,AGESUP);
                   4603:     popeffectif=vector(0,AGESUP);
                   4604:     popcount=vector(0,AGESUP);
                   4605:     
                   4606:     i=1;   
                   4607:     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1;
                   4608:    
                   4609:     imx=i;
                   4610:     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
                   4611:   }
                   4612: 
                   4613:   for(cptcov=1,k=0;cptcov<=i2;cptcov++){
                   4614:    for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
                   4615:       k=k+1;
                   4616:       fprintf(ficrespop,"\n#******");
                   4617:       for(j=1;j<=cptcoveff;j++) {
                   4618:        fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   4619:       }
                   4620:       fprintf(ficrespop,"******\n");
                   4621:       fprintf(ficrespop,"# Age");
                   4622:       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j);
                   4623:       if (popforecast==1)  fprintf(ficrespop," [Population]");
                   4624:       
                   4625:       for (cpt=0; cpt<=0;cpt++) { 
                   4626:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   4627:        
                   4628:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
                   4629:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   4630:          nhstepm = nhstepm/hstepm; 
                   4631:          
                   4632:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4633:          oldm=oldms;savm=savms;
                   4634:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   4635:        
                   4636:          for (h=0; h<=nhstepm; h++){
                   4637:            if (h==(int) (calagedatem+YEARM*cpt)) {
                   4638:              fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   4639:            } 
                   4640:            for(j=1; j<=nlstate+ndeath;j++) {
                   4641:              kk1=0.;kk2=0;
                   4642:              for(i=1; i<=nlstate;i++) {              
                   4643:                if (mobilav==1) 
                   4644:                  kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
                   4645:                else {
                   4646:                  kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
                   4647:                }
                   4648:              }
                   4649:              if (h==(int)(calagedatem+12*cpt)){
                   4650:                tabpop[(int)(agedeb)][j][cptcod]=kk1;
                   4651:                  /*fprintf(ficrespop," %.3f", kk1);
                   4652:                    if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*/
                   4653:              }
                   4654:            }
                   4655:            for(i=1; i<=nlstate;i++){
                   4656:              kk1=0.;
                   4657:                for(j=1; j<=nlstate;j++){
                   4658:                  kk1= kk1+tabpop[(int)(agedeb)][j][cptcod]; 
                   4659:                }
                   4660:                  tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)];
                   4661:            }
                   4662: 
                   4663:            if (h==(int)(calagedatem+12*cpt)) for(j=1; j<=nlstate;j++) 
                   4664:              fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]);
                   4665:          }
                   4666:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4667:        }
                   4668:       }
                   4669:  
                   4670:   /******/
                   4671: 
                   4672:       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) { 
                   4673:        fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);   
                   4674:        for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){ 
                   4675:          nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); 
                   4676:          nhstepm = nhstepm/hstepm; 
                   4677:          
                   4678:          p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4679:          oldm=oldms;savm=savms;
                   4680:          hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);  
                   4681:          for (h=0; h<=nhstepm; h++){
                   4682:            if (h==(int) (calagedatem+YEARM*cpt)) {
                   4683:              fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm);
                   4684:            } 
                   4685:            for(j=1; j<=nlstate+ndeath;j++) {
                   4686:              kk1=0.;kk2=0;
                   4687:              for(i=1; i<=nlstate;i++) {              
                   4688:                kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];    
                   4689:              }
                   4690:              if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);        
                   4691:            }
                   4692:          }
                   4693:          free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   4694:        }
                   4695:       }
                   4696:    } 
                   4697:   }
                   4698:  
                   4699:   if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4700: 
                   4701:   if (popforecast==1) {
                   4702:     free_ivector(popage,0,AGESUP);
                   4703:     free_vector(popeffectif,0,AGESUP);
                   4704:     free_vector(popcount,0,AGESUP);
                   4705:   }
                   4706:   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4707:   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   4708:   fclose(ficrespop);
                   4709: } /* End of popforecast */
                   4710: 
                   4711: int fileappend(FILE *fichier, char *optionfich)
                   4712: {
                   4713:   if((fichier=fopen(optionfich,"a"))==NULL) {
                   4714:     printf("Problem with file: %s\n", optionfich);
                   4715:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
                   4716:     return (0);
                   4717:   }
                   4718:   fflush(fichier);
                   4719:   return (1);
                   4720: }
                   4721: 
                   4722: 
                   4723: /**************** function prwizard **********************/
                   4724: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
                   4725: {
                   4726: 
                   4727:   /* Wizard to print covariance matrix template */
                   4728: 
1.164     brouard  4729:   char ca[32], cb[32];
                   4730:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
1.126     brouard  4731:   int numlinepar;
                   4732: 
                   4733:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4734:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   4735:   for(i=1; i <=nlstate; i++){
                   4736:     jj=0;
                   4737:     for(j=1; j <=nlstate+ndeath; j++){
                   4738:       if(j==i) continue;
                   4739:       jj++;
                   4740:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   4741:       printf("%1d%1d",i,j);
                   4742:       fprintf(ficparo,"%1d%1d",i,j);
                   4743:       for(k=1; k<=ncovmodel;k++){
                   4744:        /*        printf(" %lf",param[i][j][k]); */
                   4745:        /*        fprintf(ficparo," %lf",param[i][j][k]); */
                   4746:        printf(" 0.");
                   4747:        fprintf(ficparo," 0.");
                   4748:       }
                   4749:       printf("\n");
                   4750:       fprintf(ficparo,"\n");
                   4751:     }
                   4752:   }
                   4753:   printf("# Scales (for hessian or gradient estimation)\n");
                   4754:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   4755:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
                   4756:   for(i=1; i <=nlstate; i++){
                   4757:     jj=0;
                   4758:     for(j=1; j <=nlstate+ndeath; j++){
                   4759:       if(j==i) continue;
                   4760:       jj++;
                   4761:       fprintf(ficparo,"%1d%1d",i,j);
                   4762:       printf("%1d%1d",i,j);
                   4763:       fflush(stdout);
                   4764:       for(k=1; k<=ncovmodel;k++){
                   4765:        /*      printf(" %le",delti3[i][j][k]); */
                   4766:        /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   4767:        printf(" 0.");
                   4768:        fprintf(ficparo," 0.");
                   4769:       }
                   4770:       numlinepar++;
                   4771:       printf("\n");
                   4772:       fprintf(ficparo,"\n");
                   4773:     }
                   4774:   }
                   4775:   printf("# Covariance matrix\n");
                   4776: /* # 121 Var(a12)\n\ */
                   4777: /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   4778: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   4779: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   4780: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   4781: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   4782: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   4783: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   4784:   fflush(stdout);
                   4785:   fprintf(ficparo,"# Covariance matrix\n");
                   4786:   /* # 121 Var(a12)\n\ */
                   4787:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   4788:   /* #   ...\n\ */
                   4789:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   4790:   
                   4791:   for(itimes=1;itimes<=2;itimes++){
                   4792:     jj=0;
                   4793:     for(i=1; i <=nlstate; i++){
                   4794:       for(j=1; j <=nlstate+ndeath; j++){
                   4795:        if(j==i) continue;
                   4796:        for(k=1; k<=ncovmodel;k++){
                   4797:          jj++;
                   4798:          ca[0]= k+'a'-1;ca[1]='\0';
                   4799:          if(itimes==1){
                   4800:            printf("#%1d%1d%d",i,j,k);
                   4801:            fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   4802:          }else{
                   4803:            printf("%1d%1d%d",i,j,k);
                   4804:            fprintf(ficparo,"%1d%1d%d",i,j,k);
                   4805:            /*  printf(" %.5le",matcov[i][j]); */
                   4806:          }
                   4807:          ll=0;
                   4808:          for(li=1;li <=nlstate; li++){
                   4809:            for(lj=1;lj <=nlstate+ndeath; lj++){
                   4810:              if(lj==li) continue;
                   4811:              for(lk=1;lk<=ncovmodel;lk++){
                   4812:                ll++;
                   4813:                if(ll<=jj){
                   4814:                  cb[0]= lk +'a'-1;cb[1]='\0';
                   4815:                  if(ll<jj){
                   4816:                    if(itimes==1){
                   4817:                      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4818:                      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   4819:                    }else{
                   4820:                      printf(" 0.");
                   4821:                      fprintf(ficparo," 0.");
                   4822:                    }
                   4823:                  }else{
                   4824:                    if(itimes==1){
                   4825:                      printf(" Var(%s%1d%1d)",ca,i,j);
                   4826:                      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                   4827:                    }else{
                   4828:                      printf(" 0.");
                   4829:                      fprintf(ficparo," 0.");
                   4830:                    }
                   4831:                  }
                   4832:                }
                   4833:              } /* end lk */
                   4834:            } /* end lj */
                   4835:          } /* end li */
                   4836:          printf("\n");
                   4837:          fprintf(ficparo,"\n");
                   4838:          numlinepar++;
                   4839:        } /* end k*/
                   4840:       } /*end j */
                   4841:     } /* end i */
                   4842:   } /* end itimes */
                   4843: 
                   4844: } /* end of prwizard */
                   4845: /******************* Gompertz Likelihood ******************************/
                   4846: double gompertz(double x[])
                   4847: { 
                   4848:   double A,B,L=0.0,sump=0.,num=0.;
                   4849:   int i,n=0; /* n is the size of the sample */
                   4850: 
                   4851:   for (i=0;i<=imx-1 ; i++) {
                   4852:     sump=sump+weight[i];
                   4853:     /*    sump=sump+1;*/
                   4854:     num=num+1;
                   4855:   }
                   4856:  
                   4857:  
                   4858:   /* for (i=0; i<=imx; i++) 
                   4859:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   4860: 
                   4861:   for (i=1;i<=imx ; i++)
                   4862:     {
                   4863:       if (cens[i] == 1 && wav[i]>1)
                   4864:        A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
                   4865:       
                   4866:       if (cens[i] == 0 && wav[i]>1)
                   4867:        A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                   4868:             +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
                   4869:       
                   4870:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   4871:       if (wav[i] > 1 ) { /* ??? */
                   4872:        L=L+A*weight[i];
                   4873:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   4874:       }
                   4875:     }
                   4876: 
                   4877:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   4878:  
                   4879:   return -2*L*num/sump;
                   4880: }
                   4881: 
1.136     brouard  4882: #ifdef GSL
                   4883: /******************* Gompertz_f Likelihood ******************************/
                   4884: double gompertz_f(const gsl_vector *v, void *params)
                   4885: { 
                   4886:   double A,B,LL=0.0,sump=0.,num=0.;
                   4887:   double *x= (double *) v->data;
                   4888:   int i,n=0; /* n is the size of the sample */
                   4889: 
                   4890:   for (i=0;i<=imx-1 ; i++) {
                   4891:     sump=sump+weight[i];
                   4892:     /*    sump=sump+1;*/
                   4893:     num=num+1;
                   4894:   }
                   4895:  
                   4896:  
                   4897:   /* for (i=0; i<=imx; i++) 
                   4898:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   4899:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
                   4900:   for (i=1;i<=imx ; i++)
                   4901:     {
                   4902:       if (cens[i] == 1 && wav[i]>1)
                   4903:        A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
                   4904:       
                   4905:       if (cens[i] == 0 && wav[i]>1)
                   4906:        A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                   4907:             +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
                   4908:       
                   4909:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   4910:       if (wav[i] > 1 ) { /* ??? */
                   4911:        LL=LL+A*weight[i];
                   4912:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   4913:       }
                   4914:     }
                   4915: 
                   4916:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   4917:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
                   4918:  
                   4919:   return -2*LL*num/sump;
                   4920: }
                   4921: #endif
                   4922: 
1.126     brouard  4923: /******************* Printing html file ***********/
                   4924: void printinghtmlmort(char fileres[], char title[], char datafile[], int firstpass, \
                   4925:                  int lastpass, int stepm, int weightopt, char model[],\
                   4926:                  int imx,  double p[],double **matcov,double agemortsup){
                   4927:   int i,k;
                   4928: 
                   4929:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
                   4930:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
                   4931:   for (i=1;i<=2;i++) 
                   4932:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   4933:   fprintf(fichtm,"<br><br><img src=\"graphmort.png\">");
                   4934:   fprintf(fichtm,"</ul>");
                   4935: 
                   4936: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
                   4937: 
                   4938:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
                   4939: 
                   4940:  for (k=agegomp;k<(agemortsup-2);k++) 
                   4941:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   4942: 
                   4943:  
                   4944:   fflush(fichtm);
                   4945: }
                   4946: 
                   4947: /******************* Gnuplot file **************/
                   4948: void printinggnuplotmort(char fileres[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
                   4949: 
                   4950:   char dirfileres[132],optfileres[132];
1.164     brouard  4951: 
1.126     brouard  4952:   int ng;
                   4953: 
                   4954: 
                   4955:   /*#ifdef windows */
                   4956:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   4957:     /*#endif */
                   4958: 
                   4959: 
                   4960:   strcpy(dirfileres,optionfilefiname);
                   4961:   strcpy(optfileres,"vpl");
                   4962:   fprintf(ficgp,"set out \"graphmort.png\"\n "); 
                   4963:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
1.145     brouard  4964:   fprintf(ficgp, "set ter png small size 320, 240\n set log y\n"); 
                   4965:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
1.126     brouard  4966:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
                   4967: 
                   4968: } 
                   4969: 
1.136     brouard  4970: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
                   4971: {
1.126     brouard  4972: 
1.136     brouard  4973:   /*-------- data file ----------*/
                   4974:   FILE *fic;
                   4975:   char dummy[]="                         ";
1.164     brouard  4976:   int i=0, j=0, n=0;
1.136     brouard  4977:   int linei, month, year,iout;
                   4978:   char line[MAXLINE], linetmp[MAXLINE];
1.164     brouard  4979:   char stra[MAXLINE], strb[MAXLINE];
1.136     brouard  4980:   char *stratrunc;
                   4981:   int lstra;
1.126     brouard  4982: 
                   4983: 
1.136     brouard  4984:   if((fic=fopen(datafile,"r"))==NULL)    {
                   4985:     printf("Problem while opening datafile: %s\n", datafile);return 1;
                   4986:     fprintf(ficlog,"Problem while opening datafile: %s\n", datafile);return 1;
                   4987:   }
1.126     brouard  4988: 
1.136     brouard  4989:   i=1;
                   4990:   linei=0;
                   4991:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
                   4992:     linei=linei+1;
                   4993:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
                   4994:       if(line[j] == '\t')
                   4995:        line[j] = ' ';
                   4996:     }
                   4997:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
                   4998:       ;
                   4999:     };
                   5000:     line[j+1]=0;  /* Trims blanks at end of line */
                   5001:     if(line[0]=='#'){
                   5002:       fprintf(ficlog,"Comment line\n%s\n",line);
                   5003:       printf("Comment line\n%s\n",line);
                   5004:       continue;
                   5005:     }
                   5006:     trimbb(linetmp,line); /* Trims multiple blanks in line */
1.164     brouard  5007:     strcpy(line, linetmp);
1.136     brouard  5008:   
1.126     brouard  5009: 
1.136     brouard  5010:     for (j=maxwav;j>=1;j--){
1.137     brouard  5011:       cutv(stra, strb, line, ' '); 
1.136     brouard  5012:       if(strb[0]=='.') { /* Missing status */
                   5013:        lval=-1;
                   5014:       }else{
                   5015:        errno=0;
                   5016:        lval=strtol(strb,&endptr,10); 
                   5017:       /*       if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                   5018:        if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  5019:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
                   5020:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
1.136     brouard  5021:          return 1;
                   5022:        }
                   5023:       }
                   5024:       s[j][i]=lval;
                   5025:       
                   5026:       strcpy(line,stra);
                   5027:       cutv(stra, strb,line,' ');
                   5028:       if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
                   5029:       }
1.145     brouard  5030:       else  if(iout=sscanf(strb,"%s.",dummy) != 0){
1.136     brouard  5031:        month=99;
                   5032:        year=9999;
                   5033:       }else{
1.141     brouard  5034:        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
                   5035:        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
1.136     brouard  5036:        return 1;
                   5037:       }
                   5038:       anint[j][i]= (double) year; 
                   5039:       mint[j][i]= (double)month; 
                   5040:       strcpy(line,stra);
                   5041:     } /* ENd Waves */
                   5042:     
                   5043:     cutv(stra, strb,line,' '); 
                   5044:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
                   5045:     }
                   5046:     else  if(iout=sscanf(strb,"%s.",dummy) != 0){
                   5047:       month=99;
                   5048:       year=9999;
                   5049:     }else{
1.141     brouard  5050:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
                   5051:        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.136     brouard  5052:        return 1;
                   5053:     }
                   5054:     andc[i]=(double) year; 
                   5055:     moisdc[i]=(double) month; 
                   5056:     strcpy(line,stra);
                   5057:     
                   5058:     cutv(stra, strb,line,' '); 
                   5059:     if(iout=sscanf(strb,"%d/%d",&month, &year) != 0){
                   5060:     }
1.145     brouard  5061:     else  if(iout=sscanf(strb,"%s.", dummy) != 0){
1.136     brouard  5062:       month=99;
                   5063:       year=9999;
                   5064:     }else{
1.141     brouard  5065:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
                   5066:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.136     brouard  5067:        return 1;
                   5068:     }
                   5069:     if (year==9999) {
1.141     brouard  5070:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
                   5071:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.136     brouard  5072:        return 1;
1.126     brouard  5073: 
1.136     brouard  5074:     }
                   5075:     annais[i]=(double)(year);
                   5076:     moisnais[i]=(double)(month); 
                   5077:     strcpy(line,stra);
                   5078:     
                   5079:     cutv(stra, strb,line,' '); 
                   5080:     errno=0;
                   5081:     dval=strtod(strb,&endptr); 
                   5082:     if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  5083:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
                   5084:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
1.136     brouard  5085:       fflush(ficlog);
                   5086:       return 1;
                   5087:     }
                   5088:     weight[i]=dval; 
                   5089:     strcpy(line,stra);
                   5090:     
                   5091:     for (j=ncovcol;j>=1;j--){
                   5092:       cutv(stra, strb,line,' '); 
                   5093:       if(strb[0]=='.') { /* Missing status */
                   5094:        lval=-1;
                   5095:       }else{
                   5096:        errno=0;
                   5097:        lval=strtol(strb,&endptr,10); 
                   5098:        if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  5099:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
                   5100:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
1.136     brouard  5101:          return 1;
                   5102:        }
                   5103:       }
                   5104:       if(lval <-1 || lval >1){
1.141     brouard  5105:        printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  5106:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   5107:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
                   5108:  For example, for multinomial values like 1, 2 and 3,\n \
                   5109:  build V1=0 V2=0 for the reference value (1),\n \
                   5110:         V1=1 V2=0 for (2) \n \
                   5111:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
                   5112:  output of IMaCh is often meaningless.\n \
                   5113:  Exiting.\n",lval,linei, i,line,j);
1.141     brouard  5114:        fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  5115:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   5116:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
                   5117:  For example, for multinomial values like 1, 2 and 3,\n \
                   5118:  build V1=0 V2=0 for the reference value (1),\n \
                   5119:         V1=1 V2=0 for (2) \n \
                   5120:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
                   5121:  output of IMaCh is often meaningless.\n \
                   5122:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
                   5123:        return 1;
                   5124:       }
                   5125:       covar[j][i]=(double)(lval);
                   5126:       strcpy(line,stra);
                   5127:     }  
                   5128:     lstra=strlen(stra);
                   5129:      
                   5130:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                   5131:       stratrunc = &(stra[lstra-9]);
                   5132:       num[i]=atol(stratrunc);
                   5133:     }
                   5134:     else
                   5135:       num[i]=atol(stra);
                   5136:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
                   5137:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
                   5138:     
                   5139:     i=i+1;
                   5140:   } /* End loop reading  data */
1.126     brouard  5141: 
1.136     brouard  5142:   *imax=i-1; /* Number of individuals */
                   5143:   fclose(fic);
                   5144:  
                   5145:   return (0);
1.164     brouard  5146:   /* endread: */
1.136     brouard  5147:     printf("Exiting readdata: ");
                   5148:     fclose(fic);
                   5149:     return (1);
1.126     brouard  5150: 
                   5151: 
                   5152: 
1.136     brouard  5153: }
1.145     brouard  5154: void removespace(char *str) {
                   5155:   char *p1 = str, *p2 = str;
                   5156:   do
                   5157:     while (*p2 == ' ')
                   5158:       p2++;
                   5159:   while (*p1++ = *p2++);
                   5160: }
                   5161: 
                   5162: int decodemodel ( char model[], int lastobs) /**< This routine decode the model and returns:
                   5163:    * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age
                   5164:    * - cptcovt total number of covariates of the model nbocc(+)+1 = 8
                   5165:    * - cptcovn or number of covariates k of the models excluding age*products =6
                   5166:    * - cptcovage number of covariates with age*products =2
                   5167:    * - cptcovs number of simple covariates
                   5168:    * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
                   5169:    *     which is a new column after the 9 (ncovcol) variables. 
                   5170:    * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
                   5171:    * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
                   5172:    *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
                   5173:    * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
                   5174:  */
1.136     brouard  5175: {
1.145     brouard  5176:   int i, j, k, ks;
1.164     brouard  5177:   int  j1, k1, k2;
1.136     brouard  5178:   char modelsav[80];
1.145     brouard  5179:   char stra[80], strb[80], strc[80], strd[80],stre[80];
1.136     brouard  5180: 
1.145     brouard  5181:   /*removespace(model);*/
1.136     brouard  5182:   if (strlen(model) >1){ /* If there is at least 1 covariate */
1.145     brouard  5183:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
                   5184:     j=nbocc(model,'+'); /**< j=Number of '+' */
                   5185:     j1=nbocc(model,'*'); /**< j1=Number of '*' */
                   5186:     cptcovs=j+1-j1; /**<  Number of simple covariates V1+V2*age+V3 +V3*V4=> V1 + V3 =2  */
                   5187:     cptcovt= j+1; /* Number of total covariates in the model V1 + V2*age+ V3 + V3*V4=> 4*/
                   5188:                   /* including age products which are counted in cptcovage.
                   5189:                  /* but the covariates which are products must be treated separately: ncovn=4- 2=2 (V1+V3). */
                   5190:     cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
                   5191:     cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
1.136     brouard  5192:     strcpy(modelsav,model); 
1.137     brouard  5193:     if (strstr(model,"AGE") !=0){
                   5194:       printf("Error. AGE must be in lower case 'age' model=%s ",model);
                   5195:       fprintf(ficlog,"Error. AGE must be in lower case model=%s ",model);fflush(ficlog);
1.136     brouard  5196:       return 1;
                   5197:     }
1.141     brouard  5198:     if (strstr(model,"v") !=0){
                   5199:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
                   5200:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
                   5201:       return 1;
                   5202:     }
1.136     brouard  5203:     
1.145     brouard  5204:     /*   Design
                   5205:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
                   5206:      *  <          ncovcol=8                >
                   5207:      * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
                   5208:      *   k=  1    2      3       4     5       6      7        8
                   5209:      *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
                   5210:      *  covar[k,i], value of kth covariate if not including age for individual i:
                   5211:      *       covar[1][i]= (V2), covar[4][i]=(V3), covar[8][i]=(V8)
                   5212:      *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[4]=3 Tvar[8]=8
                   5213:      *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
                   5214:      *  Tage[++cptcovage]=k
                   5215:      *       if products, new covar are created after ncovcol with k1
                   5216:      *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
                   5217:      *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
                   5218:      *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
                   5219:      *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
                   5220:      *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
                   5221:      *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
                   5222:      *  <          ncovcol=8                >
                   5223:      *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
                   5224:      *          k=  1    2      3       4     5       6      7        8    9   10   11  12
                   5225:      *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
                   5226:      * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
                   5227:      * p Tprod[1]@2={                         6, 5}
                   5228:      *p Tvard[1][1]@4= {7, 8, 5, 6}
                   5229:      * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
                   5230:      *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   5231:      *How to reorganize?
                   5232:      * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
                   5233:      * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
                   5234:      *       {2,   1,     4,      8,    5,      6,     3,       7}
                   5235:      * Struct []
                   5236:      */
                   5237: 
1.136     brouard  5238:     /* This loop fills the array Tvar from the string 'model'.*/
                   5239:     /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
1.137     brouard  5240:     /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
                   5241:     /*         k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
                   5242:     /*         k=3 V4 Tvar[k=3]= 4 (from V4) */
                   5243:     /*         k=2 V1 Tvar[k=2]= 1 (from V1) */
                   5244:     /*         k=1 Tvar[1]=2 (from V2) */
                   5245:     /*         k=5 Tvar[5] */
                   5246:     /* for (k=1; k<=cptcovn;k++) { */
                   5247:     /*         cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]]; */
                   5248:     /*         } */
                   5249:     /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
1.145     brouard  5250:     /*
                   5251:      * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
                   5252:     for(k=cptcovt; k>=1;k--) /**< Number of covariates */
                   5253:         Tvar[k]=0;
                   5254:     cptcovage=0;
                   5255:     for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
                   5256:       cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
                   5257:                                     modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
1.137     brouard  5258:       if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
1.136     brouard  5259:       /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
                   5260:       /*scanf("%d",i);*/
1.145     brouard  5261:       if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
                   5262:        cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
                   5263:        if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
                   5264:          /* covar is not filled and then is empty */
1.136     brouard  5265:          cptcovprod--;
1.145     brouard  5266:          cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
                   5267:          Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2 */
1.136     brouard  5268:          cptcovage++; /* Sums the number of covariates which include age as a product */
1.137     brouard  5269:          Tage[cptcovage]=k;  /* Tage[1] = 4 */
1.136     brouard  5270:          /*printf("stre=%s ", stre);*/
1.137     brouard  5271:        } else if (strcmp(strd,"age")==0) { /* or age*Vn */
1.136     brouard  5272:          cptcovprod--;
1.145     brouard  5273:          cutl(stre,strb,strc,'V');
1.136     brouard  5274:          Tvar[k]=atoi(stre);
                   5275:          cptcovage++;
                   5276:          Tage[cptcovage]=k;
1.137     brouard  5277:        } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
                   5278:          /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
1.145     brouard  5279:          cptcovn++;
                   5280:          cptcovprodnoage++;k1++;
                   5281:          cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
                   5282:          Tvar[k]=ncovcol+k1; /* For model-covariate k tells which data-covariate to use but
1.137     brouard  5283:                                  because this model-covariate is a construction we invent a new column
                   5284:                                  ncovcol + k1
                   5285:                                  If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                   5286:                                  Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
1.145     brouard  5287:          cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
1.137     brouard  5288:          Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
1.145     brouard  5289:          Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
                   5290:          Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
                   5291:          k2=k2+2;
                   5292:          Tvar[cptcovt+k2]=Tvard[k1][1]; /* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) */
                   5293:          Tvar[cptcovt+k2+1]=Tvard[k1][2];  /* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) */
1.137     brouard  5294:          for (i=1; i<=lastobs;i++){
                   5295:            /* Computes the new covariate which is a product of
1.145     brouard  5296:               covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
1.136     brouard  5297:            covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
1.137     brouard  5298:          }
                   5299:        } /* End age is not in the model */
                   5300:       } /* End if model includes a product */
1.136     brouard  5301:       else { /* no more sum */
                   5302:        /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                   5303:        /*  scanf("%d",i);*/
1.145     brouard  5304:        cutl(strd,strc,strb,'V');
                   5305:        ks++; /**< Number of simple covariates */
                   5306:        cptcovn++;
                   5307:        Tvar[k]=atoi(strd);
1.136     brouard  5308:       }
1.137     brouard  5309:       strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
1.136     brouard  5310:       /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
                   5311:        scanf("%d",i);*/
                   5312:     } /* end of loop + */
                   5313:   } /* end model */
                   5314:   
                   5315:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                   5316:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
                   5317: 
                   5318:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
                   5319:   printf("cptcovprod=%d ", cptcovprod);
                   5320:   fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
                   5321: 
                   5322:   scanf("%d ",i);*/
                   5323: 
                   5324: 
1.137     brouard  5325:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
1.164     brouard  5326:   /*endread:*/
1.136     brouard  5327:     printf("Exiting decodemodel: ");
                   5328:     return (1);
                   5329: }
                   5330: 
                   5331: calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
                   5332: {
                   5333:   int i, m;
                   5334: 
                   5335:   for (i=1; i<=imx; i++) {
                   5336:     for(m=2; (m<= maxwav); m++) {
                   5337:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
                   5338:        anint[m][i]=9999;
                   5339:        s[m][i]=-1;
                   5340:       }
                   5341:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
                   5342:        *nberr++;
                   5343:        printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                   5344:        fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results are biased\n",(int)moisdc[i],(int)andc[i],num[i],i);
                   5345:        s[m][i]=-1;
                   5346:       }
                   5347:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
                   5348:        *nberr++;
                   5349:        printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
                   5350:        fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
                   5351:        s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
                   5352:       }
                   5353:     }
                   5354:   }
                   5355: 
                   5356:   for (i=1; i<=imx; i++)  {
                   5357:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
                   5358:     for(m=firstpass; (m<= lastpass); m++){
                   5359:       if(s[m][i] >0 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){
                   5360:        if (s[m][i] >= nlstate+1) {
                   5361:          if(agedc[i]>0)
                   5362:            if((int)moisdc[i]!=99 && (int)andc[i]!=9999)
                   5363:              agev[m][i]=agedc[i];
                   5364:          /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
                   5365:            else {
                   5366:              if ((int)andc[i]!=9999){
                   5367:                nbwarn++;
                   5368:                printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   5369:                fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   5370:                agev[m][i]=-1;
                   5371:              }
                   5372:            }
                   5373:        }
                   5374:        else if(s[m][i] !=9){ /* Standard case, age in fractional
                   5375:                                 years but with the precision of a month */
                   5376:          agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                   5377:          if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
                   5378:            agev[m][i]=1;
                   5379:          else if(agev[m][i] < *agemin){ 
                   5380:            *agemin=agev[m][i];
                   5381:            printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
                   5382:          }
                   5383:          else if(agev[m][i] >*agemax){
                   5384:            *agemax=agev[m][i];
1.156     brouard  5385:            /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
1.136     brouard  5386:          }
                   5387:          /*agev[m][i]=anint[m][i]-annais[i];*/
                   5388:          /*     agev[m][i] = age[i]+2*m;*/
                   5389:        }
                   5390:        else { /* =9 */
                   5391:          agev[m][i]=1;
                   5392:          s[m][i]=-1;
                   5393:        }
                   5394:       }
                   5395:       else /*= 0 Unknown */
                   5396:        agev[m][i]=1;
                   5397:     }
                   5398:     
                   5399:   }
                   5400:   for (i=1; i<=imx; i++)  {
                   5401:     for(m=firstpass; (m<=lastpass); m++){
                   5402:       if (s[m][i] > (nlstate+ndeath)) {
                   5403:        *nberr++;
                   5404:        printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   5405:        fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   5406:        return 1;
                   5407:       }
                   5408:     }
                   5409:   }
                   5410: 
                   5411:   /*for (i=1; i<=imx; i++){
                   5412:   for (m=firstpass; (m<lastpass); m++){
                   5413:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
                   5414: }
                   5415: 
                   5416: }*/
                   5417: 
                   5418: 
1.139     brouard  5419:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
                   5420:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
1.136     brouard  5421: 
                   5422:   return (0);
1.164     brouard  5423:  /* endread:*/
1.136     brouard  5424:     printf("Exiting calandcheckages: ");
                   5425:     return (1);
                   5426: }
                   5427: 
1.167     brouard  5428: syscompilerinfo()
                   5429:  {
                   5430:    /* #include "syscompilerinfo.h"*/
                   5431: #include <gnu/libc-version.h>
                   5432: #if defined(__GNUC__)
                   5433: # if defined(__GNUC_PATCHLEVEL__)
                   5434: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   5435:                             + __GNUC_MINOR__ * 100 \
                   5436:                             + __GNUC_PATCHLEVEL__)
                   5437: # else
                   5438: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   5439:                             + __GNUC_MINOR__ * 100)
                   5440: # endif
                   5441: #endif
                   5442: 
                   5443: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
                   5444: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
                   5445:     // Windows (x64 and x86)
                   5446: #elif __unix__ // all unices, not all compilers
                   5447:     // Unix
                   5448: #elif __linux__
                   5449:     // linux
                   5450: #elif __APPLE__
                   5451:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though...
                   5452: #endif
                   5453: 
                   5454: /*  __MINGW32__          */
                   5455: /*  __CYGWIN__  */
                   5456: /* __MINGW64__  */
                   5457: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
                   5458: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
                   5459: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
                   5460: /* _WIN64  // Defined for applications for Win64. */
                   5461: /* _M_X64 // Defined for compilations that target x64 processors. */
                   5462: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
                   5463: #include <stdint.h>
                   5464: #if UINTPTR_MAX == 0xffffffff
                   5465:    printf("32-bit \n"); /* 32-bit */
                   5466: #elif UINTPTR_MAX == 0xffffffffffffffff
                   5467:   printf("64-bit \n");/* 64-bit */
                   5468: #else
                   5469:  printf("wtf-bit \n"); /* wtf */
                   5470: #endif
                   5471: 
                   5472: struct utsname sysInfo;
                   5473: 
                   5474:    if (uname(&sysInfo) != -1) {
                   5475:       puts(sysInfo.sysname);
                   5476:       puts(sysInfo.nodename);
                   5477:       puts(sysInfo.release);
                   5478:       puts(sysInfo.version);
                   5479:       puts(sysInfo.machine);
                   5480:    }
                   5481:    else
                   5482:       perror("uname() error");
                   5483:    printf("GNU C version %d\n", __GNUC_VERSION__);
                   5484:   printf("GNU libc version: %s\n", gnu_get_libc_version());
                   5485: 
                   5486:  }
1.136     brouard  5487: 
                   5488: /***********************************************/
                   5489: /**************** Main Program *****************/
                   5490: /***********************************************/
                   5491: 
                   5492: int main(int argc, char *argv[])
                   5493: {
                   5494: #ifdef GSL
                   5495:   const gsl_multimin_fminimizer_type *T;
                   5496:   size_t iteri = 0, it;
                   5497:   int rval = GSL_CONTINUE;
                   5498:   int status = GSL_SUCCESS;
                   5499:   double ssval;
                   5500: #endif
                   5501:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
1.164     brouard  5502:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
                   5503: 
                   5504:   int jj, ll, li, lj, lk;
1.136     brouard  5505:   int numlinepar=0; /* Current linenumber of parameter file */
                   5506:   int itimes;
                   5507:   int NDIM=2;
                   5508:   int vpopbased=0;
                   5509: 
1.164     brouard  5510:   char ca[32], cb[32];
1.136     brouard  5511:   /*  FILE *fichtm; *//* Html File */
                   5512:   /* FILE *ficgp;*/ /*Gnuplot File */
                   5513:   struct stat info;
1.164     brouard  5514:   double agedeb;
1.136     brouard  5515:   double ageminpar=1.e20,agemin=1.e20, agemaxpar=-1.e20, agemax=-1.e20;
                   5516: 
1.165     brouard  5517:   double fret;
1.136     brouard  5518:   double dum; /* Dummy variable */
                   5519:   double ***p3mat;
                   5520:   double ***mobaverage;
1.164     brouard  5521: 
                   5522:   char line[MAXLINE];
1.136     brouard  5523:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE],model[MAXLINE];
                   5524:   char pathr[MAXLINE], pathimach[MAXLINE]; 
1.164     brouard  5525:   char *tok, *val; /* pathtot */
1.136     brouard  5526:   int firstobs=1, lastobs=10;
1.164     brouard  5527:   int c,  h , cpt;
                   5528:   int jl;
                   5529:   int i1, j1, jk, stepsize;
                   5530:   int *tab; 
1.136     brouard  5531:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
                   5532:   int mobilav=0,popforecast=0;
                   5533:   int hstepm, nhstepm;
                   5534:   int agemortsup;
                   5535:   float  sumlpop=0.;
                   5536:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
                   5537:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
                   5538: 
1.164     brouard  5539:   double bage=0, fage=110, age, agelim, agebase;
1.136     brouard  5540:   double ftolpl=FTOL;
                   5541:   double **prlim;
                   5542:   double ***param; /* Matrix of parameters */
                   5543:   double  *p;
                   5544:   double **matcov; /* Matrix of covariance */
                   5545:   double ***delti3; /* Scale */
                   5546:   double *delti; /* Scale */
                   5547:   double ***eij, ***vareij;
                   5548:   double **varpl; /* Variances of prevalence limits by age */
                   5549:   double *epj, vepp;
1.164     brouard  5550: 
1.136     brouard  5551:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
                   5552:   double **ximort;
1.145     brouard  5553:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
1.136     brouard  5554:   int *dcwave;
                   5555: 
1.164     brouard  5556:   char z[1]="c";
1.136     brouard  5557: 
                   5558:   /*char  *strt;*/
                   5559:   char strtend[80];
1.126     brouard  5560: 
1.164     brouard  5561: 
1.126     brouard  5562: /*   setlocale (LC_ALL, ""); */
                   5563: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                   5564: /*   textdomain (PACKAGE); */
                   5565: /*   setlocale (LC_CTYPE, ""); */
                   5566: /*   setlocale (LC_MESSAGES, ""); */
                   5567: 
                   5568:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
1.157     brouard  5569:   rstart_time = time(NULL);  
                   5570:   /*  (void) gettimeofday(&start_time,&tzp);*/
                   5571:   start_time = *localtime(&rstart_time);
1.126     brouard  5572:   curr_time=start_time;
1.157     brouard  5573:   /*tml = *localtime(&start_time.tm_sec);*/
                   5574:   /* strcpy(strstart,asctime(&tml)); */
                   5575:   strcpy(strstart,asctime(&start_time));
1.126     brouard  5576: 
                   5577: /*  printf("Localtime (at start)=%s",strstart); */
1.157     brouard  5578: /*  tp.tm_sec = tp.tm_sec +86400; */
                   5579: /*  tm = *localtime(&start_time.tm_sec); */
1.126     brouard  5580: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                   5581: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                   5582: /*   tmg.tm_hour=tmg.tm_hour + 1; */
1.157     brouard  5583: /*   tp.tm_sec = mktime(&tmg); */
1.126     brouard  5584: /*   strt=asctime(&tmg); */
                   5585: /*   printf("Time(after) =%s",strstart);  */
                   5586: /*  (void) time (&time_value);
                   5587: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
                   5588: *  tm = *localtime(&time_value);
                   5589: *  strstart=asctime(&tm);
                   5590: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
                   5591: */
                   5592: 
                   5593:   nberr=0; /* Number of errors and warnings */
                   5594:   nbwarn=0;
                   5595:   getcwd(pathcd, size);
                   5596: 
                   5597:   printf("\n%s\n%s",version,fullversion);
                   5598:   if(argc <=1){
                   5599:     printf("\nEnter the parameter file name: ");
                   5600:     fgets(pathr,FILENAMELENGTH,stdin);
                   5601:     i=strlen(pathr);
                   5602:     if(pathr[i-1]=='\n')
                   5603:       pathr[i-1]='\0';
1.156     brouard  5604:     i=strlen(pathr);
                   5605:     if(pathr[i-1]==' ') /* This may happen when dragging on oS/X! */
                   5606:       pathr[i-1]='\0';
1.126     brouard  5607:    for (tok = pathr; tok != NULL; ){
                   5608:       printf("Pathr |%s|\n",pathr);
                   5609:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
                   5610:       printf("val= |%s| pathr=%s\n",val,pathr);
                   5611:       strcpy (pathtot, val);
                   5612:       if(pathr[0] == '\0') break; /* Dirty */
                   5613:     }
                   5614:   }
                   5615:   else{
                   5616:     strcpy(pathtot,argv[1]);
                   5617:   }
                   5618:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
                   5619:   /*cygwin_split_path(pathtot,path,optionfile);
                   5620:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
                   5621:   /* cutv(path,optionfile,pathtot,'\\');*/
                   5622: 
                   5623:   /* Split argv[0], imach program to get pathimach */
                   5624:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
                   5625:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   5626:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   5627:  /*   strcpy(pathimach,argv[0]); */
                   5628:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
                   5629:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
                   5630:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
                   5631:   chdir(path); /* Can be a relative path */
                   5632:   if(getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
                   5633:     printf("Current directory %s!\n",pathcd);
                   5634:   strcpy(command,"mkdir ");
                   5635:   strcat(command,optionfilefiname);
                   5636:   if((outcmd=system(command)) != 0){
                   5637:     printf("Problem creating directory or it already exists %s%s, err=%d\n",path,optionfilefiname,outcmd);
                   5638:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   5639:     /* fclose(ficlog); */
                   5640: /*     exit(1); */
                   5641:   }
                   5642: /*   if((imk=mkdir(optionfilefiname))<0){ */
                   5643: /*     perror("mkdir"); */
                   5644: /*   } */
                   5645: 
                   5646:   /*-------- arguments in the command line --------*/
                   5647: 
                   5648:   /* Log file */
                   5649:   strcat(filelog, optionfilefiname);
                   5650:   strcat(filelog,".log");    /* */
                   5651:   if((ficlog=fopen(filelog,"w"))==NULL)    {
                   5652:     printf("Problem with logfile %s\n",filelog);
                   5653:     goto end;
                   5654:   }
                   5655:   fprintf(ficlog,"Log filename:%s\n",filelog);
                   5656:   fprintf(ficlog,"\n%s\n%s",version,fullversion);
                   5657:   fprintf(ficlog,"\nEnter the parameter file name: \n");
                   5658:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
                   5659:  path=%s \n\
                   5660:  optionfile=%s\n\
                   5661:  optionfilext=%s\n\
1.156     brouard  5662:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.126     brouard  5663: 
1.167     brouard  5664:   syscompilerinfo();
                   5665: 
1.126     brouard  5666:   printf("Local time (at start):%s",strstart);
                   5667:   fprintf(ficlog,"Local time (at start): %s",strstart);
                   5668:   fflush(ficlog);
                   5669: /*   (void) gettimeofday(&curr_time,&tzp); */
1.157     brouard  5670: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
1.126     brouard  5671: 
                   5672:   /* */
                   5673:   strcpy(fileres,"r");
                   5674:   strcat(fileres, optionfilefiname);
                   5675:   strcat(fileres,".txt");    /* Other files have txt extension */
                   5676: 
                   5677:   /*---------arguments file --------*/
                   5678: 
                   5679:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
1.155     brouard  5680:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
                   5681:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
1.126     brouard  5682:     fflush(ficlog);
1.149     brouard  5683:     /* goto end; */
                   5684:     exit(70); 
1.126     brouard  5685:   }
                   5686: 
                   5687: 
                   5688: 
                   5689:   strcpy(filereso,"o");
                   5690:   strcat(filereso,fileres);
                   5691:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
                   5692:     printf("Problem with Output resultfile: %s\n", filereso);
                   5693:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
                   5694:     fflush(ficlog);
                   5695:     goto end;
                   5696:   }
                   5697: 
                   5698:   /* Reads comments: lines beginning with '#' */
                   5699:   numlinepar=0;
                   5700:   while((c=getc(ficpar))=='#' && c!= EOF){
                   5701:     ungetc(c,ficpar);
                   5702:     fgets(line, MAXLINE, ficpar);
                   5703:     numlinepar++;
1.141     brouard  5704:     fputs(line,stdout);
1.126     brouard  5705:     fputs(line,ficparo);
                   5706:     fputs(line,ficlog);
                   5707:   }
                   5708:   ungetc(c,ficpar);
                   5709: 
                   5710:   fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
                   5711:   numlinepar++;
                   5712:   printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model);
                   5713:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
                   5714:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol,nlstate,ndeath,maxwav, mle, weightopt,model);
                   5715:   fflush(ficlog);
                   5716:   while((c=getc(ficpar))=='#' && c!= EOF){
                   5717:     ungetc(c,ficpar);
                   5718:     fgets(line, MAXLINE, ficpar);
                   5719:     numlinepar++;
1.141     brouard  5720:     fputs(line, stdout);
                   5721:     //puts(line);
1.126     brouard  5722:     fputs(line,ficparo);
                   5723:     fputs(line,ficlog);
                   5724:   }
                   5725:   ungetc(c,ficpar);
                   5726: 
                   5727:    
1.145     brouard  5728:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
1.136     brouard  5729:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
                   5730:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
                   5731:      v1+v2*age+v2*v3 makes cptcovn = 3
                   5732:   */
                   5733:   if (strlen(model)>1) 
1.145     brouard  5734:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7*/
                   5735:   else
                   5736:     ncovmodel=2;
1.126     brouard  5737:   nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
1.133     brouard  5738:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
                   5739:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
1.131     brouard  5740:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
                   5741:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   5742:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   5743:     fflush(stdout);
                   5744:     fclose (ficlog);
                   5745:     goto end;
                   5746:   }
1.126     brouard  5747:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   5748:   delti=delti3[1][1];
                   5749:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
                   5750:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
                   5751:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   5752:     printf(" You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   5753:     fprintf(ficlog," You choose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   5754:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   5755:     fclose (ficparo);
                   5756:     fclose (ficlog);
                   5757:     goto end;
                   5758:     exit(0);
                   5759:   }
                   5760:   else if(mle==-3) {
                   5761:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
                   5762:     printf(" You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   5763:     fprintf(ficlog," You choose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   5764:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   5765:     matcov=matrix(1,npar,1,npar);
                   5766:   }
                   5767:   else{
1.145     brouard  5768:     /* Read guessed parameters */
1.126     brouard  5769:     /* Reads comments: lines beginning with '#' */
                   5770:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5771:       ungetc(c,ficpar);
                   5772:       fgets(line, MAXLINE, ficpar);
                   5773:       numlinepar++;
1.141     brouard  5774:       fputs(line,stdout);
1.126     brouard  5775:       fputs(line,ficparo);
                   5776:       fputs(line,ficlog);
                   5777:     }
                   5778:     ungetc(c,ficpar);
                   5779:     
                   5780:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   5781:     for(i=1; i <=nlstate; i++){
                   5782:       j=0;
                   5783:       for(jj=1; jj <=nlstate+ndeath; jj++){
                   5784:        if(jj==i) continue;
                   5785:        j++;
                   5786:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   5787:        if ((i1 != i) && (j1 != j)){
                   5788:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
                   5789: It might be a problem of design; if ncovcol and the model are correct\n \
                   5790: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
                   5791:          exit(1);
                   5792:        }
                   5793:        fprintf(ficparo,"%1d%1d",i1,j1);
                   5794:        if(mle==1)
                   5795:          printf("%1d%1d",i,j);
                   5796:        fprintf(ficlog,"%1d%1d",i,j);
                   5797:        for(k=1; k<=ncovmodel;k++){
                   5798:          fscanf(ficpar," %lf",&param[i][j][k]);
                   5799:          if(mle==1){
                   5800:            printf(" %lf",param[i][j][k]);
                   5801:            fprintf(ficlog," %lf",param[i][j][k]);
                   5802:          }
                   5803:          else
                   5804:            fprintf(ficlog," %lf",param[i][j][k]);
                   5805:          fprintf(ficparo," %lf",param[i][j][k]);
                   5806:        }
                   5807:        fscanf(ficpar,"\n");
                   5808:        numlinepar++;
                   5809:        if(mle==1)
                   5810:          printf("\n");
                   5811:        fprintf(ficlog,"\n");
                   5812:        fprintf(ficparo,"\n");
                   5813:       }
                   5814:     }  
                   5815:     fflush(ficlog);
                   5816: 
1.145     brouard  5817:     /* Reads scales values */
1.126     brouard  5818:     p=param[1][1];
                   5819:     
                   5820:     /* Reads comments: lines beginning with '#' */
                   5821:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5822:       ungetc(c,ficpar);
                   5823:       fgets(line, MAXLINE, ficpar);
                   5824:       numlinepar++;
1.141     brouard  5825:       fputs(line,stdout);
1.126     brouard  5826:       fputs(line,ficparo);
                   5827:       fputs(line,ficlog);
                   5828:     }
                   5829:     ungetc(c,ficpar);
                   5830: 
                   5831:     for(i=1; i <=nlstate; i++){
                   5832:       for(j=1; j <=nlstate+ndeath-1; j++){
                   5833:        fscanf(ficpar,"%1d%1d",&i1,&j1);
1.164     brouard  5834:        if ( (i1-i) * (j1-j) != 0){
1.126     brouard  5835:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   5836:          exit(1);
                   5837:        }
                   5838:        printf("%1d%1d",i,j);
                   5839:        fprintf(ficparo,"%1d%1d",i1,j1);
                   5840:        fprintf(ficlog,"%1d%1d",i1,j1);
                   5841:        for(k=1; k<=ncovmodel;k++){
                   5842:          fscanf(ficpar,"%le",&delti3[i][j][k]);
                   5843:          printf(" %le",delti3[i][j][k]);
                   5844:          fprintf(ficparo," %le",delti3[i][j][k]);
                   5845:          fprintf(ficlog," %le",delti3[i][j][k]);
                   5846:        }
                   5847:        fscanf(ficpar,"\n");
                   5848:        numlinepar++;
                   5849:        printf("\n");
                   5850:        fprintf(ficparo,"\n");
                   5851:        fprintf(ficlog,"\n");
                   5852:       }
                   5853:     }
                   5854:     fflush(ficlog);
                   5855: 
1.145     brouard  5856:     /* Reads covariance matrix */
1.126     brouard  5857:     delti=delti3[1][1];
                   5858: 
                   5859: 
                   5860:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
                   5861:   
                   5862:     /* Reads comments: lines beginning with '#' */
                   5863:     while((c=getc(ficpar))=='#' && c!= EOF){
                   5864:       ungetc(c,ficpar);
                   5865:       fgets(line, MAXLINE, ficpar);
                   5866:       numlinepar++;
1.141     brouard  5867:       fputs(line,stdout);
1.126     brouard  5868:       fputs(line,ficparo);
                   5869:       fputs(line,ficlog);
                   5870:     }
                   5871:     ungetc(c,ficpar);
                   5872:   
                   5873:     matcov=matrix(1,npar,1,npar);
1.131     brouard  5874:     for(i=1; i <=npar; i++)
                   5875:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
                   5876:       
1.126     brouard  5877:     for(i=1; i <=npar; i++){
1.145     brouard  5878:       fscanf(ficpar,"%s",str);
1.126     brouard  5879:       if(mle==1)
                   5880:        printf("%s",str);
                   5881:       fprintf(ficlog,"%s",str);
                   5882:       fprintf(ficparo,"%s",str);
                   5883:       for(j=1; j <=i; j++){
                   5884:        fscanf(ficpar," %le",&matcov[i][j]);
                   5885:        if(mle==1){
                   5886:          printf(" %.5le",matcov[i][j]);
                   5887:        }
                   5888:        fprintf(ficlog," %.5le",matcov[i][j]);
                   5889:        fprintf(ficparo," %.5le",matcov[i][j]);
                   5890:       }
                   5891:       fscanf(ficpar,"\n");
                   5892:       numlinepar++;
                   5893:       if(mle==1)
                   5894:        printf("\n");
                   5895:       fprintf(ficlog,"\n");
                   5896:       fprintf(ficparo,"\n");
                   5897:     }
                   5898:     for(i=1; i <=npar; i++)
                   5899:       for(j=i+1;j<=npar;j++)
                   5900:        matcov[i][j]=matcov[j][i];
                   5901:     
                   5902:     if(mle==1)
                   5903:       printf("\n");
                   5904:     fprintf(ficlog,"\n");
                   5905:     
                   5906:     fflush(ficlog);
                   5907:     
                   5908:     /*-------- Rewriting parameter file ----------*/
                   5909:     strcpy(rfileres,"r");    /* "Rparameterfile */
                   5910:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
                   5911:     strcat(rfileres,".");    /* */
                   5912:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
                   5913:     if((ficres =fopen(rfileres,"w"))==NULL) {
                   5914:       printf("Problem writing new parameter file: %s\n", fileres);goto end;
                   5915:       fprintf(ficlog,"Problem writing new parameter file: %s\n", fileres);goto end;
                   5916:     }
                   5917:     fprintf(ficres,"#%s\n",version);
                   5918:   }    /* End of mle != -3 */
                   5919: 
                   5920: 
                   5921:   n= lastobs;
                   5922:   num=lvector(1,n);
                   5923:   moisnais=vector(1,n);
                   5924:   annais=vector(1,n);
                   5925:   moisdc=vector(1,n);
                   5926:   andc=vector(1,n);
                   5927:   agedc=vector(1,n);
                   5928:   cod=ivector(1,n);
                   5929:   weight=vector(1,n);
                   5930:   for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
                   5931:   mint=matrix(1,maxwav,1,n);
                   5932:   anint=matrix(1,maxwav,1,n);
1.131     brouard  5933:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
1.126     brouard  5934:   tab=ivector(1,NCOVMAX);
1.144     brouard  5935:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.126     brouard  5936: 
1.136     brouard  5937:   /* Reads data from file datafile */
                   5938:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
                   5939:     goto end;
                   5940: 
                   5941:   /* Calculation of the number of parameters from char model */
1.137     brouard  5942:     /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
                   5943:        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
                   5944:        k=3 V4 Tvar[k=3]= 4 (from V4)
                   5945:        k=2 V1 Tvar[k=2]= 1 (from V1)
                   5946:        k=1 Tvar[1]=2 (from V2)
                   5947:     */
                   5948:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
                   5949:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
                   5950:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
                   5951:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
                   5952:   */
                   5953:   /* For model-covariate k tells which data-covariate to use but
                   5954:     because this model-covariate is a construction we invent a new column
                   5955:     ncovcol + k1
                   5956:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
                   5957:     Tvar[3=V1*V4]=4+1 etc */
1.145     brouard  5958:   Tprod=ivector(1,NCOVMAX); /* Gives the position of a product */
1.137     brouard  5959:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
                   5960:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
                   5961:   */
1.145     brouard  5962:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
                   5963:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
1.141     brouard  5964:                            * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                   5965:                            * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
1.145     brouard  5966:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
1.137     brouard  5967:                         4 covariates (3 plus signs)
                   5968:                         Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                   5969:                      */  
1.136     brouard  5970: 
                   5971:   if(decodemodel(model, lastobs) == 1)
                   5972:     goto end;
                   5973: 
1.137     brouard  5974:   if((double)(lastobs-imx)/(double)imx > 1.10){
                   5975:     nbwarn++;
                   5976:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   5977:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   5978:   }
1.136     brouard  5979:     /*  if(mle==1){*/
1.137     brouard  5980:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
                   5981:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
1.136     brouard  5982:   }
                   5983: 
                   5984:     /*-calculation of age at interview from date of interview and age at death -*/
                   5985:   agev=matrix(1,maxwav,1,imx);
                   5986: 
                   5987:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
                   5988:     goto end;
                   5989: 
1.126     brouard  5990: 
1.136     brouard  5991:   agegomp=(int)agemin;
                   5992:   free_vector(moisnais,1,n);
                   5993:   free_vector(annais,1,n);
1.126     brouard  5994:   /* free_matrix(mint,1,maxwav,1,n);
                   5995:      free_matrix(anint,1,maxwav,1,n);*/
                   5996:   free_vector(moisdc,1,n);
                   5997:   free_vector(andc,1,n);
1.145     brouard  5998:   /* */
                   5999:   
1.126     brouard  6000:   wav=ivector(1,imx);
                   6001:   dh=imatrix(1,lastpass-firstpass+1,1,imx);
                   6002:   bh=imatrix(1,lastpass-firstpass+1,1,imx);
                   6003:   mw=imatrix(1,lastpass-firstpass+1,1,imx);
                   6004:    
                   6005:   /* Concatenates waves */
                   6006:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
1.145     brouard  6007:   /* */
                   6008:  
1.126     brouard  6009:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
                   6010: 
                   6011:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
                   6012:   ncodemax[1]=1;
1.145     brouard  6013:   Ndum =ivector(-1,NCOVMAX);  
                   6014:   if (ncovmodel > 2)
                   6015:     tricode(Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
                   6016: 
                   6017:   codtab=imatrix(1,100,1,10); /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
                   6018:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtab[100][10]);*/
                   6019:   h=0;
                   6020: 
                   6021: 
                   6022:   /*if (cptcovn > 0) */
1.126     brouard  6023:       
1.145     brouard  6024:  
1.126     brouard  6025:   m=pow(2,cptcoveff);
                   6026:  
1.131     brouard  6027:   for(k=1;k<=cptcoveff; k++){ /* scans any effective covariate */
1.143     brouard  6028:     for(i=1; i <=pow(2,cptcoveff-k);i++){ /* i=1 to 8/1=8; i=1 to 8/2=4; i=1 to 8/8=1 */ 
                   6029:       for(j=1; j <= ncodemax[k]; j++){ /* For each modality of this covariate ncodemax=2*/
                   6030:        for(cpt=1; cpt <=pow(2,k-1); cpt++){  /* cpt=1 to 8/2**(3+1-1 or 3+1-3) =1 or 4 */ 
1.126     brouard  6031:          h++;
1.141     brouard  6032:          if (h>m) 
1.136     brouard  6033:            h=1;
1.144     brouard  6034:          /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
1.143     brouard  6035:           *     h     1     2     3     4
                   6036:           *______________________________  
                   6037:           *     1 i=1 1 i=1 1 i=1 1 i=1 1
                   6038:           *     2     2     1     1     1
                   6039:           *     3 i=2 1     2     1     1
                   6040:           *     4     2     2     1     1
                   6041:           *     5 i=3 1 i=2 1     2     1
                   6042:           *     6     2     1     2     1
                   6043:           *     7 i=4 1     2     2     1
                   6044:           *     8     2     2     2     1
                   6045:           *     9 i=5 1 i=3 1 i=2 1     1
                   6046:           *    10     2     1     1     1
                   6047:           *    11 i=6 1     2     1     1
                   6048:           *    12     2     2     1     1
                   6049:           *    13 i=7 1 i=4 1     2     1    
                   6050:           *    14     2     1     2     1
                   6051:           *    15 i=8 1     2     2     1
                   6052:           *    16     2     2     2     1
                   6053:           */
1.141     brouard  6054:          codtab[h][k]=j;
1.145     brouard  6055:          /*codtab[h][Tvar[k]]=j;*/
1.130     brouard  6056:          printf("h=%d k=%d j=%d codtab[h][k]=%d Tvar[k]=%d codtab[h][Tvar[k]]=%d \n",h, k,j,codtab[h][k],Tvar[k],codtab[h][Tvar[k]]);
1.126     brouard  6057:        } 
                   6058:       }
                   6059:     }
                   6060:   } 
                   6061:   /* printf("codtab[1][2]=%d codtab[2][2]=%d",codtab[1][2],codtab[2][2]); 
                   6062:      codtab[1][2]=1;codtab[2][2]=2; */
                   6063:   /* for(i=1; i <=m ;i++){ 
                   6064:      for(k=1; k <=cptcovn; k++){
1.131     brouard  6065:        printf("i=%d k=%d %d %d ",i,k,codtab[i][k], cptcoveff);
1.126     brouard  6066:      }
                   6067:      printf("\n");
                   6068:      }
                   6069:      scanf("%d",i);*/
1.145     brouard  6070: 
                   6071:  free_ivector(Ndum,-1,NCOVMAX);
                   6072: 
                   6073: 
1.126     brouard  6074:     
                   6075:   /*------------ gnuplot -------------*/
                   6076:   strcpy(optionfilegnuplot,optionfilefiname);
                   6077:   if(mle==-3)
                   6078:     strcat(optionfilegnuplot,"-mort");
                   6079:   strcat(optionfilegnuplot,".gp");
                   6080: 
                   6081:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
                   6082:     printf("Problem with file %s",optionfilegnuplot);
                   6083:   }
                   6084:   else{
                   6085:     fprintf(ficgp,"\n# %s\n", version); 
                   6086:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
1.141     brouard  6087:     //fprintf(ficgp,"set missing 'NaNq'\n");
                   6088:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
1.126     brouard  6089:   }
                   6090:   /*  fclose(ficgp);*/
                   6091:   /*--------- index.htm --------*/
                   6092: 
                   6093:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
                   6094:   if(mle==-3)
                   6095:     strcat(optionfilehtm,"-mort");
                   6096:   strcat(optionfilehtm,".htm");
                   6097:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
1.131     brouard  6098:     printf("Problem with %s \n",optionfilehtm);
                   6099:     exit(0);
1.126     brouard  6100:   }
                   6101: 
                   6102:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   6103:   strcat(optionfilehtmcov,"-cov.htm");
                   6104:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                   6105:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
                   6106:   }
                   6107:   else{
                   6108:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                   6109: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   6110: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n",\
                   6111:          optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   6112:   }
                   6113: 
                   6114:   fprintf(fichtm,"<html><head>\n<title>IMaCh %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                   6115: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   6116: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>\n\
                   6117: \n\
                   6118: <hr  size=\"2\" color=\"#EC5E5E\">\
                   6119:  <ul><li><h4>Parameter files</h4>\n\
                   6120:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                   6121:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                   6122:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                   6123:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                   6124:  - Date and time at start: %s</ul>\n",\
                   6125:          optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                   6126:          optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                   6127:          fileres,fileres,\
                   6128:          filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                   6129:   fflush(fichtm);
                   6130: 
                   6131:   strcpy(pathr,path);
                   6132:   strcat(pathr,optionfilefiname);
                   6133:   chdir(optionfilefiname); /* Move to directory named optionfile */
                   6134:   
                   6135:   /* Calculates basic frequencies. Computes observed prevalence at single age
                   6136:      and prints on file fileres'p'. */
                   6137:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart);
                   6138: 
                   6139:   fprintf(fichtm,"\n");
                   6140:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
                   6141: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   6142: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
                   6143:          imx,agemin,agemax,jmin,jmax,jmean);
                   6144:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   6145:     oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   6146:     newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   6147:     savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   6148:     oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
                   6149:     
                   6150:    
                   6151:   /* For Powell, parameters are in a vector p[] starting at p[1]
                   6152:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                   6153:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
                   6154: 
                   6155:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
                   6156: 
                   6157:   if (mle==-3){
1.136     brouard  6158:     ximort=matrix(1,NDIM,1,NDIM); 
                   6159: /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
1.126     brouard  6160:     cens=ivector(1,n);
                   6161:     ageexmed=vector(1,n);
                   6162:     agecens=vector(1,n);
                   6163:     dcwave=ivector(1,n);
                   6164:  
                   6165:     for (i=1; i<=imx; i++){
                   6166:       dcwave[i]=-1;
                   6167:       for (m=firstpass; m<=lastpass; m++)
                   6168:        if (s[m][i]>nlstate) {
                   6169:          dcwave[i]=m;
                   6170:          /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                   6171:          break;
                   6172:        }
                   6173:     }
                   6174: 
                   6175:     for (i=1; i<=imx; i++) {
                   6176:       if (wav[i]>0){
                   6177:        ageexmed[i]=agev[mw[1][i]][i];
                   6178:        j=wav[i];
                   6179:        agecens[i]=1.; 
                   6180: 
                   6181:        if (ageexmed[i]> 1 && wav[i] > 0){
                   6182:          agecens[i]=agev[mw[j][i]][i];
                   6183:          cens[i]= 1;
                   6184:        }else if (ageexmed[i]< 1) 
                   6185:          cens[i]= -1;
                   6186:        if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                   6187:          cens[i]=0 ;
                   6188:       }
                   6189:       else cens[i]=-1;
                   6190:     }
                   6191:     
                   6192:     for (i=1;i<=NDIM;i++) {
                   6193:       for (j=1;j<=NDIM;j++)
                   6194:        ximort[i][j]=(i == j ? 1.0 : 0.0);
                   6195:     }
                   6196:     
1.145     brouard  6197:     /*p[1]=0.0268; p[NDIM]=0.083;*/
1.126     brouard  6198:     /*printf("%lf %lf", p[1], p[2]);*/
                   6199:     
                   6200:     
1.136     brouard  6201: #ifdef GSL
                   6202:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
1.162     brouard  6203: #else
1.126     brouard  6204:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.136     brouard  6205: #endif
1.126     brouard  6206:     strcpy(filerespow,"pow-mort"); 
                   6207:     strcat(filerespow,fileres);
                   6208:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   6209:       printf("Problem with resultfile: %s\n", filerespow);
                   6210:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   6211:     }
1.136     brouard  6212: #ifdef GSL
                   6213:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
1.162     brouard  6214: #else
1.126     brouard  6215:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
1.136     brouard  6216: #endif
1.126     brouard  6217:     /*  for (i=1;i<=nlstate;i++)
                   6218:        for(j=1;j<=nlstate+ndeath;j++)
                   6219:        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   6220:     */
                   6221:     fprintf(ficrespow,"\n");
1.136     brouard  6222: #ifdef GSL
                   6223:     /* gsl starts here */ 
                   6224:     T = gsl_multimin_fminimizer_nmsimplex;
                   6225:     gsl_multimin_fminimizer *sfm = NULL;
                   6226:     gsl_vector *ss, *x;
                   6227:     gsl_multimin_function minex_func;
                   6228: 
                   6229:     /* Initial vertex size vector */
                   6230:     ss = gsl_vector_alloc (NDIM);
                   6231:     
                   6232:     if (ss == NULL){
                   6233:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
                   6234:     }
                   6235:     /* Set all step sizes to 1 */
                   6236:     gsl_vector_set_all (ss, 0.001);
                   6237: 
                   6238:     /* Starting point */
1.126     brouard  6239:     
1.136     brouard  6240:     x = gsl_vector_alloc (NDIM);
                   6241:     
                   6242:     if (x == NULL){
                   6243:       gsl_vector_free(ss);
                   6244:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
                   6245:     }
                   6246:   
                   6247:     /* Initialize method and iterate */
                   6248:     /*     p[1]=0.0268; p[NDIM]=0.083; */
                   6249: /*     gsl_vector_set(x, 0, 0.0268); */
                   6250: /*     gsl_vector_set(x, 1, 0.083); */
                   6251:     gsl_vector_set(x, 0, p[1]);
                   6252:     gsl_vector_set(x, 1, p[2]);
                   6253: 
                   6254:     minex_func.f = &gompertz_f;
                   6255:     minex_func.n = NDIM;
                   6256:     minex_func.params = (void *)&p; /* ??? */
                   6257:     
                   6258:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
                   6259:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
                   6260:     
                   6261:     printf("Iterations beginning .....\n\n");
                   6262:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
                   6263: 
                   6264:     iteri=0;
                   6265:     while (rval == GSL_CONTINUE){
                   6266:       iteri++;
                   6267:       status = gsl_multimin_fminimizer_iterate(sfm);
                   6268:       
                   6269:       if (status) printf("error: %s\n", gsl_strerror (status));
                   6270:       fflush(0);
                   6271:       
                   6272:       if (status) 
                   6273:         break;
                   6274:       
                   6275:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
                   6276:       ssval = gsl_multimin_fminimizer_size (sfm);
                   6277:       
                   6278:       if (rval == GSL_SUCCESS)
                   6279:         printf ("converged to a local maximum at\n");
                   6280:       
                   6281:       printf("%5d ", iteri);
                   6282:       for (it = 0; it < NDIM; it++){
                   6283:        printf ("%10.5f ", gsl_vector_get (sfm->x, it));
                   6284:       }
                   6285:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
                   6286:     }
                   6287:     
                   6288:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
                   6289:     
                   6290:     gsl_vector_free(x); /* initial values */
                   6291:     gsl_vector_free(ss); /* inital step size */
                   6292:     for (it=0; it<NDIM; it++){
                   6293:       p[it+1]=gsl_vector_get(sfm->x,it);
                   6294:       fprintf(ficrespow," %.12lf", p[it]);
                   6295:     }
                   6296:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
                   6297: #endif
                   6298: #ifdef POWELL
                   6299:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
                   6300: #endif  
1.126     brouard  6301:     fclose(ficrespow);
                   6302:     
                   6303:     hesscov(matcov, p, NDIM, delti, 1e-4, gompertz); 
                   6304: 
                   6305:     for(i=1; i <=NDIM; i++)
                   6306:       for(j=i+1;j<=NDIM;j++)
                   6307:        matcov[i][j]=matcov[j][i];
                   6308:     
                   6309:     printf("\nCovariance matrix\n ");
                   6310:     for(i=1; i <=NDIM; i++) {
                   6311:       for(j=1;j<=NDIM;j++){ 
                   6312:        printf("%f ",matcov[i][j]);
                   6313:       }
                   6314:       printf("\n ");
                   6315:     }
                   6316:     
                   6317:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
                   6318:     for (i=1;i<=NDIM;i++) 
                   6319:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   6320: 
                   6321:     lsurv=vector(1,AGESUP);
                   6322:     lpop=vector(1,AGESUP);
                   6323:     tpop=vector(1,AGESUP);
                   6324:     lsurv[agegomp]=100000;
                   6325:     
                   6326:     for (k=agegomp;k<=AGESUP;k++) {
                   6327:       agemortsup=k;
                   6328:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
                   6329:     }
                   6330:     
                   6331:     for (k=agegomp;k<agemortsup;k++)
                   6332:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
                   6333:     
                   6334:     for (k=agegomp;k<agemortsup;k++){
                   6335:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
                   6336:       sumlpop=sumlpop+lpop[k];
                   6337:     }
                   6338:     
                   6339:     tpop[agegomp]=sumlpop;
                   6340:     for (k=agegomp;k<(agemortsup-3);k++){
                   6341:       /*  tpop[k+1]=2;*/
                   6342:       tpop[k+1]=tpop[k]-lpop[k];
                   6343:     }
                   6344:     
                   6345:     
                   6346:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
                   6347:     for (k=agegomp;k<(agemortsup-2);k++) 
                   6348:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   6349:     
                   6350:     
                   6351:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   6352:     printinggnuplotmort(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   6353:     
                   6354:     printinghtmlmort(fileres,title,datafile, firstpass, lastpass, \
                   6355:                     stepm, weightopt,\
                   6356:                     model,imx,p,matcov,agemortsup);
                   6357:     
                   6358:     free_vector(lsurv,1,AGESUP);
                   6359:     free_vector(lpop,1,AGESUP);
                   6360:     free_vector(tpop,1,AGESUP);
1.136     brouard  6361: #ifdef GSL
                   6362:     free_ivector(cens,1,n);
                   6363:     free_vector(agecens,1,n);
                   6364:     free_ivector(dcwave,1,n);
                   6365:     free_matrix(ximort,1,NDIM,1,NDIM);
                   6366: #endif
1.126     brouard  6367:   } /* Endof if mle==-3 */
                   6368:   
                   6369:   else{ /* For mle >=1 */
1.132     brouard  6370:     globpr=0;/* debug */
                   6371:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
1.126     brouard  6372:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   6373:     for (k=1; k<=npar;k++)
                   6374:       printf(" %d %8.5f",k,p[k]);
                   6375:     printf("\n");
                   6376:     globpr=1; /* to print the contributions */
                   6377:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   6378:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   6379:     for (k=1; k<=npar;k++)
                   6380:       printf(" %d %8.5f",k,p[k]);
                   6381:     printf("\n");
                   6382:     if(mle>=1){ /* Could be 1 or 2 */
                   6383:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
                   6384:     }
                   6385:     
                   6386:     /*--------- results files --------------*/
                   6387:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate, ndeath, maxwav, weightopt,model);
                   6388:     
                   6389:     
                   6390:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   6391:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   6392:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   6393:     for(i=1,jk=1; i <=nlstate; i++){
                   6394:       for(k=1; k <=(nlstate+ndeath); k++){
                   6395:        if (k != i) {
                   6396:          printf("%d%d ",i,k);
                   6397:          fprintf(ficlog,"%d%d ",i,k);
                   6398:          fprintf(ficres,"%1d%1d ",i,k);
                   6399:          for(j=1; j <=ncovmodel; j++){
                   6400:            printf("%lf ",p[jk]);
                   6401:            fprintf(ficlog,"%lf ",p[jk]);
                   6402:            fprintf(ficres,"%lf ",p[jk]);
                   6403:            jk++; 
                   6404:          }
                   6405:          printf("\n");
                   6406:          fprintf(ficlog,"\n");
                   6407:          fprintf(ficres,"\n");
                   6408:        }
                   6409:       }
                   6410:     }
                   6411:     if(mle!=0){
                   6412:       /* Computing hessian and covariance matrix */
                   6413:       ftolhess=ftol; /* Usually correct */
                   6414:       hesscov(matcov, p, npar, delti, ftolhess, func);
                   6415:     }
                   6416:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   6417:     printf("# Scales (for hessian or gradient estimation)\n");
                   6418:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                   6419:     for(i=1,jk=1; i <=nlstate; i++){
                   6420:       for(j=1; j <=nlstate+ndeath; j++){
                   6421:        if (j!=i) {
                   6422:          fprintf(ficres,"%1d%1d",i,j);
                   6423:          printf("%1d%1d",i,j);
                   6424:          fprintf(ficlog,"%1d%1d",i,j);
                   6425:          for(k=1; k<=ncovmodel;k++){
                   6426:            printf(" %.5e",delti[jk]);
                   6427:            fprintf(ficlog," %.5e",delti[jk]);
                   6428:            fprintf(ficres," %.5e",delti[jk]);
                   6429:            jk++;
                   6430:          }
                   6431:          printf("\n");
                   6432:          fprintf(ficlog,"\n");
                   6433:          fprintf(ficres,"\n");
                   6434:        }
                   6435:       }
                   6436:     }
                   6437:     
                   6438:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   6439:     if(mle>=1)
                   6440:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   6441:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   6442:     /* # 121 Var(a12)\n\ */
                   6443:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   6444:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   6445:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   6446:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   6447:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   6448:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   6449:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   6450:     
                   6451:     
                   6452:     /* Just to have a covariance matrix which will be more understandable
                   6453:        even is we still don't want to manage dictionary of variables
                   6454:     */
                   6455:     for(itimes=1;itimes<=2;itimes++){
                   6456:       jj=0;
                   6457:       for(i=1; i <=nlstate; i++){
                   6458:        for(j=1; j <=nlstate+ndeath; j++){
                   6459:          if(j==i) continue;
                   6460:          for(k=1; k<=ncovmodel;k++){
                   6461:            jj++;
                   6462:            ca[0]= k+'a'-1;ca[1]='\0';
                   6463:            if(itimes==1){
                   6464:              if(mle>=1)
                   6465:                printf("#%1d%1d%d",i,j,k);
                   6466:              fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   6467:              fprintf(ficres,"#%1d%1d%d",i,j,k);
                   6468:            }else{
                   6469:              if(mle>=1)
                   6470:                printf("%1d%1d%d",i,j,k);
                   6471:              fprintf(ficlog,"%1d%1d%d",i,j,k);
                   6472:              fprintf(ficres,"%1d%1d%d",i,j,k);
                   6473:            }
                   6474:            ll=0;
                   6475:            for(li=1;li <=nlstate; li++){
                   6476:              for(lj=1;lj <=nlstate+ndeath; lj++){
                   6477:                if(lj==li) continue;
                   6478:                for(lk=1;lk<=ncovmodel;lk++){
                   6479:                  ll++;
                   6480:                  if(ll<=jj){
                   6481:                    cb[0]= lk +'a'-1;cb[1]='\0';
                   6482:                    if(ll<jj){
                   6483:                      if(itimes==1){
                   6484:                        if(mle>=1)
                   6485:                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   6486:                        fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   6487:                        fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   6488:                      }else{
                   6489:                        if(mle>=1)
                   6490:                          printf(" %.5e",matcov[jj][ll]); 
                   6491:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   6492:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   6493:                      }
                   6494:                    }else{
                   6495:                      if(itimes==1){
                   6496:                        if(mle>=1)
                   6497:                          printf(" Var(%s%1d%1d)",ca,i,j);
                   6498:                        fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                   6499:                        fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                   6500:                      }else{
                   6501:                        if(mle>=1)
                   6502:                          printf(" %.5e",matcov[jj][ll]); 
                   6503:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   6504:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   6505:                      }
                   6506:                    }
                   6507:                  }
                   6508:                } /* end lk */
                   6509:              } /* end lj */
                   6510:            } /* end li */
                   6511:            if(mle>=1)
                   6512:              printf("\n");
                   6513:            fprintf(ficlog,"\n");
                   6514:            fprintf(ficres,"\n");
                   6515:            numlinepar++;
                   6516:          } /* end k*/
                   6517:        } /*end j */
                   6518:       } /* end i */
                   6519:     } /* end itimes */
                   6520:     
                   6521:     fflush(ficlog);
                   6522:     fflush(ficres);
                   6523:     
                   6524:     while((c=getc(ficpar))=='#' && c!= EOF){
                   6525:       ungetc(c,ficpar);
                   6526:       fgets(line, MAXLINE, ficpar);
1.141     brouard  6527:       fputs(line,stdout);
1.126     brouard  6528:       fputs(line,ficparo);
                   6529:     }
                   6530:     ungetc(c,ficpar);
                   6531:     
                   6532:     estepm=0;
                   6533:     fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm);
                   6534:     if (estepm==0 || estepm < stepm) estepm=stepm;
                   6535:     if (fage <= 2) {
                   6536:       bage = ageminpar;
                   6537:       fage = agemaxpar;
                   6538:     }
                   6539:     
                   6540:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
                   6541:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   6542:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d\n",ageminpar,agemaxpar,bage,fage, estepm);
                   6543:     
                   6544:     while((c=getc(ficpar))=='#' && c!= EOF){
                   6545:       ungetc(c,ficpar);
                   6546:       fgets(line, MAXLINE, ficpar);
1.141     brouard  6547:       fputs(line,stdout);
1.126     brouard  6548:       fputs(line,ficparo);
                   6549:     }
                   6550:     ungetc(c,ficpar);
                   6551:     
                   6552:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
                   6553:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   6554:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   6555:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   6556:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   6557:     
                   6558:     while((c=getc(ficpar))=='#' && c!= EOF){
                   6559:       ungetc(c,ficpar);
                   6560:       fgets(line, MAXLINE, ficpar);
1.141     brouard  6561:       fputs(line,stdout);
1.126     brouard  6562:       fputs(line,ficparo);
                   6563:     }
                   6564:     ungetc(c,ficpar);
                   6565:     
                   6566:     
                   6567:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                   6568:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
                   6569:     
                   6570:     fscanf(ficpar,"pop_based=%d\n",&popbased);
                   6571:     fprintf(ficparo,"pop_based=%d\n",popbased);   
                   6572:     fprintf(ficres,"pop_based=%d\n",popbased);   
                   6573:     
                   6574:     while((c=getc(ficpar))=='#' && c!= EOF){
                   6575:       ungetc(c,ficpar);
                   6576:       fgets(line, MAXLINE, ficpar);
1.141     brouard  6577:       fputs(line,stdout);
1.126     brouard  6578:       fputs(line,ficparo);
                   6579:     }
                   6580:     ungetc(c,ficpar);
                   6581:     
                   6582:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
                   6583:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   6584:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   6585:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   6586:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   6587:     /* day and month of proj2 are not used but only year anproj2.*/
                   6588:     
                   6589:     
                   6590:     
1.145     brouard  6591:      /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
                   6592:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
1.126     brouard  6593:     
                   6594:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
                   6595:     printinggnuplot(fileres, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
                   6596:     
                   6597:     printinghtml(fileres,title,datafile, firstpass, lastpass, stepm, weightopt,\
                   6598:                 model,imx,jmin,jmax,jmean,rfileres,popforecast,estepm,\
                   6599:                 jprev1,mprev1,anprev1,jprev2,mprev2,anprev2);
                   6600:       
                   6601:    /*------------ free_vector  -------------*/
                   6602:    /*  chdir(path); */
                   6603:  
                   6604:     free_ivector(wav,1,imx);
                   6605:     free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
                   6606:     free_imatrix(bh,1,lastpass-firstpass+1,1,imx);
                   6607:     free_imatrix(mw,1,lastpass-firstpass+1,1,imx);   
                   6608:     free_lvector(num,1,n);
                   6609:     free_vector(agedc,1,n);
                   6610:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
                   6611:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
                   6612:     fclose(ficparo);
                   6613:     fclose(ficres);
                   6614: 
                   6615: 
                   6616:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
1.145     brouard  6617: #include "prevlim.h"  /* Use ficrespl, ficlog */
1.126     brouard  6618:     fclose(ficrespl);
                   6619: 
1.145     brouard  6620: #ifdef FREEEXIT2
                   6621: #include "freeexit2.h"
                   6622: #endif
                   6623: 
1.126     brouard  6624:     /*------------- h Pij x at various ages ------------*/
1.145     brouard  6625: #include "hpijx.h"
                   6626:     fclose(ficrespij);
1.126     brouard  6627: 
1.145     brouard  6628:   /*-------------- Variance of one-step probabilities---*/
                   6629:     k=1;
1.126     brouard  6630:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
                   6631: 
                   6632: 
                   6633:     probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   6634:     for(i=1;i<=AGESUP;i++)
                   6635:       for(j=1;j<=NCOVMAX;j++)
                   6636:        for(k=1;k<=NCOVMAX;k++)
                   6637:          probs[i][j][k]=0.;
                   6638: 
                   6639:     /*---------- Forecasting ------------------*/
                   6640:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
                   6641:     if(prevfcast==1){
                   6642:       /*    if(stepm ==1){*/
                   6643:       prevforecast(fileres, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
                   6644:       /* (popforecast==1) populforecast(fileres, anpyram,mpyram,jpyram, agemin,agemax, dateprev1, dateprev2,mobilav, agedeb, fage, popforecast, popfile, anpyram1,p, i1);*/
                   6645:       /*      }  */
                   6646:       /*      else{ */
                   6647:       /*        erreur=108; */
                   6648:       /*        printf("Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   6649:       /*        fprintf(ficlog,"Warning %d!! You can only forecast the prevalences if the optimization\n  has been performed with stepm = 1 (month) instead of %d or model=. instead of '%s'\n", erreur, stepm, model); */
                   6650:       /*      } */
                   6651:     }
                   6652:   
                   6653: 
1.127     brouard  6654:     /* Computes prevalence between agemin (i.e minimal age computed) and no more ageminpar */
                   6655: 
                   6656:     prevalence(probs, agemin, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   6657:     /*  printf("ageminpar=%f, agemax=%f, s[lastpass][imx]=%d, agev[lastpass][imx]=%f, nlstate=%d, imx=%d,  mint[lastpass][imx]=%f, anint[lastpass][imx]=%f,dateprev1=%f, dateprev2=%f, firstpass=%d, lastpass=%d\n",\
                   6658:        ageminpar, agemax, s[lastpass][imx], agev[lastpass][imx], nlstate, imx, mint[lastpass][imx],anint[lastpass][imx], dateprev1, dateprev2, firstpass, lastpass);
                   6659:     */
1.126     brouard  6660: 
1.127     brouard  6661:     if (mobilav!=0) {
                   6662:       mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   6663:       if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){
                   6664:        fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   6665:        printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   6666:       }
1.126     brouard  6667:     }
                   6668: 
                   6669: 
1.127     brouard  6670:     /*---------- Health expectancies, no variances ------------*/
                   6671: 
1.126     brouard  6672:     strcpy(filerese,"e");
                   6673:     strcat(filerese,fileres);
                   6674:     if((ficreseij=fopen(filerese,"w"))==NULL) {
                   6675:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   6676:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   6677:     }
                   6678:     printf("Computing Health Expectancies: result on file '%s' \n", filerese);
                   6679:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' \n", filerese);
1.145     brouard  6680:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   6681:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   6682:           
                   6683:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
1.127     brouard  6684:        fprintf(ficreseij,"\n#****** ");
                   6685:        for(j=1;j<=cptcoveff;j++) {
                   6686:          fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6687:        }
                   6688:        fprintf(ficreseij,"******\n");
                   6689: 
                   6690:        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   6691:        oldm=oldms;savm=savms;
                   6692:        evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart);  
                   6693:       
                   6694:        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
1.145     brouard  6695:       /*}*/
1.127     brouard  6696:     }
                   6697:     fclose(ficreseij);
                   6698: 
                   6699: 
                   6700:     /*---------- Health expectancies and variances ------------*/
                   6701: 
                   6702: 
                   6703:     strcpy(filerest,"t");
                   6704:     strcat(filerest,fileres);
                   6705:     if((ficrest=fopen(filerest,"w"))==NULL) {
                   6706:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                   6707:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
                   6708:     }
                   6709:     printf("Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
                   6710:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' \n", filerest); 
                   6711: 
1.126     brouard  6712: 
                   6713:     strcpy(fileresstde,"stde");
                   6714:     strcat(fileresstde,fileres);
                   6715:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
                   6716:       printf("Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
                   6717:       fprintf(ficlog,"Problem with Health Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
                   6718:     }
                   6719:     printf("Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
                   6720:     fprintf(ficlog,"Computing Health Expectancies and standard errors: result on file '%s' \n", fileresstde);
                   6721: 
                   6722:     strcpy(filerescve,"cve");
                   6723:     strcat(filerescve,fileres);
                   6724:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
                   6725:       printf("Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
                   6726:       fprintf(ficlog,"Problem with Covar. Health Exp. resultfile: %s\n", filerescve); exit(0);
                   6727:     }
                   6728:     printf("Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
                   6729:     fprintf(ficlog,"Computing Covar. of Health Expectancies: result on file '%s' \n", filerescve);
                   6730: 
                   6731:     strcpy(fileresv,"v");
                   6732:     strcat(fileresv,fileres);
                   6733:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
                   6734:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
                   6735:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
                   6736:     }
                   6737:     printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
                   6738:     fprintf(ficlog,"Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
                   6739: 
1.145     brouard  6740:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   6741:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   6742:           
                   6743:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
                   6744:        fprintf(ficrest,"\n#****** ");
1.126     brouard  6745:        for(j=1;j<=cptcoveff;j++) 
                   6746:          fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6747:        fprintf(ficrest,"******\n");
                   6748: 
                   6749:        fprintf(ficresstdeij,"\n#****** ");
                   6750:        fprintf(ficrescveij,"\n#****** ");
                   6751:        for(j=1;j<=cptcoveff;j++) {
                   6752:          fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6753:          fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6754:        }
                   6755:        fprintf(ficresstdeij,"******\n");
                   6756:        fprintf(ficrescveij,"******\n");
                   6757: 
                   6758:        fprintf(ficresvij,"\n#****** ");
                   6759:        for(j=1;j<=cptcoveff;j++) 
                   6760:          fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6761:        fprintf(ficresvij,"******\n");
                   6762: 
                   6763:        eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   6764:        oldm=oldms;savm=savms;
1.127     brouard  6765:        cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart);  
1.145     brouard  6766:        /*
                   6767:         */
                   6768:        /* goto endfree; */
1.126     brouard  6769:  
                   6770:        vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   6771:        pstamp(ficrest);
1.145     brouard  6772: 
                   6773: 
1.128     brouard  6774:        for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
1.145     brouard  6775:          oldm=oldms;savm=savms; /* Segmentation fault */
1.161     brouard  6776:          cptcod= 0; /* To be deleted */
                   6777:          varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart); /* cptcod not initialized Intel */
1.145     brouard  6778:          fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
1.128     brouard  6779:          if(vpopbased==1)
                   6780:            fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
                   6781:          else
                   6782:            fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
                   6783:          fprintf(ficrest,"# Age e.. (std) ");
                   6784:          for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                   6785:          fprintf(ficrest,"\n");
1.126     brouard  6786: 
1.128     brouard  6787:          epj=vector(1,nlstate+1);
                   6788:          for(age=bage; age <=fage ;age++){
                   6789:            prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
                   6790:            if (vpopbased==1) {
                   6791:              if(mobilav ==0){
                   6792:                for(i=1; i<=nlstate;i++)
                   6793:                  prlim[i][i]=probs[(int)age][i][k];
                   6794:              }else{ /* mobilav */ 
                   6795:                for(i=1; i<=nlstate;i++)
                   6796:                  prlim[i][i]=mobaverage[(int)age][i][k];
                   6797:              }
1.126     brouard  6798:            }
                   6799:        
1.128     brouard  6800:            fprintf(ficrest," %4.0f",age);
                   6801:            for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                   6802:              for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   6803:                epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   6804:                /*  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   6805:              }
                   6806:              epj[nlstate+1] +=epj[j];
1.126     brouard  6807:            }
                   6808: 
1.128     brouard  6809:            for(i=1, vepp=0.;i <=nlstate;i++)
                   6810:              for(j=1;j <=nlstate;j++)
                   6811:                vepp += vareij[i][j][(int)age];
                   6812:            fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                   6813:            for(j=1;j <=nlstate;j++){
                   6814:              fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                   6815:            }
                   6816:            fprintf(ficrest,"\n");
1.126     brouard  6817:          }
                   6818:        }
                   6819:        free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   6820:        free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   6821:        free_vector(epj,1,nlstate+1);
1.145     brouard  6822:       /*}*/
1.126     brouard  6823:     }
                   6824:     free_vector(weight,1,n);
1.145     brouard  6825:     free_imatrix(Tvard,1,NCOVMAX,1,2);
1.126     brouard  6826:     free_imatrix(s,1,maxwav+1,1,n);
                   6827:     free_matrix(anint,1,maxwav,1,n); 
                   6828:     free_matrix(mint,1,maxwav,1,n);
                   6829:     free_ivector(cod,1,n);
                   6830:     free_ivector(tab,1,NCOVMAX);
                   6831:     fclose(ficresstdeij);
                   6832:     fclose(ficrescveij);
                   6833:     fclose(ficresvij);
                   6834:     fclose(ficrest);
                   6835:     fclose(ficpar);
                   6836:   
                   6837:     /*------- Variance of period (stable) prevalence------*/   
                   6838: 
                   6839:     strcpy(fileresvpl,"vpl");
                   6840:     strcat(fileresvpl,fileres);
                   6841:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
                   6842:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
                   6843:       exit(0);
                   6844:     }
                   6845:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' \n", fileresvpl);
                   6846: 
1.145     brouard  6847:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   6848:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   6849:           
                   6850:     for (k=1; k <= (int) pow(2,cptcoveff); k++){
                   6851:        fprintf(ficresvpl,"\n#****** ");
1.126     brouard  6852:        for(j=1;j<=cptcoveff;j++) 
                   6853:          fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
                   6854:        fprintf(ficresvpl,"******\n");
                   6855:       
                   6856:        varpl=matrix(1,nlstate,(int) bage, (int) fage);
                   6857:        oldm=oldms;savm=savms;
                   6858:        varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k,strstart);
                   6859:        free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
1.145     brouard  6860:       /*}*/
1.126     brouard  6861:     }
                   6862: 
                   6863:     fclose(ficresvpl);
                   6864: 
                   6865:     /*---------- End : free ----------------*/
                   6866:     if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   6867:     free_ma3x(probs,1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
                   6868:   }  /* mle==-3 arrives here for freeing */
1.164     brouard  6869:  /* endfree:*/
1.141     brouard  6870:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
1.126     brouard  6871:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
                   6872:     free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   6873:     free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   6874:     free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   6875:     free_matrix(covar,0,NCOVMAX,1,n);
                   6876:     free_matrix(matcov,1,npar,1,npar);
                   6877:     /*free_vector(delti,1,npar);*/
                   6878:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   6879:     free_matrix(agev,1,maxwav,1,imx);
                   6880:     free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
                   6881: 
1.145     brouard  6882:     free_ivector(ncodemax,1,NCOVMAX);
                   6883:     free_ivector(Tvar,1,NCOVMAX);
                   6884:     free_ivector(Tprod,1,NCOVMAX);
                   6885:     free_ivector(Tvaraff,1,NCOVMAX);
                   6886:     free_ivector(Tage,1,NCOVMAX);
1.126     brouard  6887: 
                   6888:     free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
                   6889:     free_imatrix(codtab,1,100,1,10);
                   6890:   fflush(fichtm);
                   6891:   fflush(ficgp);
                   6892:   
                   6893: 
                   6894:   if((nberr >0) || (nbwarn>0)){
                   6895:     printf("End of Imach with %d errors and/or %d warnings\n",nberr,nbwarn);
                   6896:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d\n",nberr,nbwarn);
                   6897:   }else{
                   6898:     printf("End of Imach\n");
                   6899:     fprintf(ficlog,"End of Imach\n");
                   6900:   }
                   6901:   printf("See log file on %s\n",filelog);
                   6902:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
1.157     brouard  6903:   /*(void) gettimeofday(&end_time,&tzp);*/
                   6904:   rend_time = time(NULL);  
                   6905:   end_time = *localtime(&rend_time);
                   6906:   /* tml = *localtime(&end_time.tm_sec); */
                   6907:   strcpy(strtend,asctime(&end_time));
1.126     brouard  6908:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
                   6909:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
1.157     brouard  6910:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
1.126     brouard  6911: 
1.157     brouard  6912:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
                   6913:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
                   6914:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
1.126     brouard  6915:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
                   6916: /*   if(fileappend(fichtm,optionfilehtm)){ */
                   6917:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   6918:   fclose(fichtm);
                   6919:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   6920:   fclose(fichtmcov);
                   6921:   fclose(ficgp);
                   6922:   fclose(ficlog);
                   6923:   /*------ End -----------*/
                   6924: 
                   6925: 
                   6926:    printf("Before Current directory %s!\n",pathcd);
                   6927:    if(chdir(pathcd) != 0)
                   6928:     printf("Can't move to directory %s!\n",path);
                   6929:   if(getcwd(pathcd,MAXLINE) > 0)
                   6930:     printf("Current directory %s!\n",pathcd);
                   6931:   /*strcat(plotcmd,CHARSEPARATOR);*/
                   6932:   sprintf(plotcmd,"gnuplot");
1.157     brouard  6933: #ifdef _WIN32
1.126     brouard  6934:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
                   6935: #endif
                   6936:   if(!stat(plotcmd,&info)){
1.158     brouard  6937:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  6938:     if(!stat(getenv("GNUPLOTBIN"),&info)){
1.158     brouard  6939:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
1.126     brouard  6940:     }else
                   6941:       strcpy(pplotcmd,plotcmd);
1.157     brouard  6942: #ifdef __unix
1.126     brouard  6943:     strcpy(plotcmd,GNUPLOTPROGRAM);
                   6944:     if(!stat(plotcmd,&info)){
1.158     brouard  6945:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  6946:     }else
                   6947:       strcpy(pplotcmd,plotcmd);
                   6948: #endif
                   6949:   }else
                   6950:     strcpy(pplotcmd,plotcmd);
                   6951:   
                   6952:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
1.158     brouard  6953:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  6954: 
                   6955:   if((outcmd=system(plotcmd)) != 0){
1.158     brouard  6956:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
1.154     brouard  6957:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
1.152     brouard  6958:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
1.150     brouard  6959:     if((outcmd=system(plotcmd)) != 0)
1.153     brouard  6960:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
1.126     brouard  6961:   }
1.158     brouard  6962:   printf(" Successful, please wait...");
1.126     brouard  6963:   while (z[0] != 'q') {
                   6964:     /* chdir(path); */
1.154     brouard  6965:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
1.126     brouard  6966:     scanf("%s",z);
                   6967: /*     if (z[0] == 'c') system("./imach"); */
                   6968:     if (z[0] == 'e') {
1.158     brouard  6969: #ifdef __APPLE__
1.152     brouard  6970:       sprintf(pplotcmd, "open %s", optionfilehtm);
1.157     brouard  6971: #elif __linux
                   6972:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
1.153     brouard  6973: #else
1.152     brouard  6974:       sprintf(pplotcmd, "%s", optionfilehtm);
1.153     brouard  6975: #endif
                   6976:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
                   6977:       system(pplotcmd);
1.126     brouard  6978:     }
                   6979:     else if (z[0] == 'g') system(plotcmd);
                   6980:     else if (z[0] == 'q') exit(0);
                   6981:   }
                   6982:   end:
                   6983:   while (z[0] != 'q') {
                   6984:     printf("\nType  q for exiting: ");
                   6985:     scanf("%s",z);
                   6986:   }
                   6987: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>