Annotation of imach/src/imach.c, revision 1.23
1.23 ! lievre 1: /* $Id: imach.c,v 1.22 2002/02/22 17:54:20 brouard Exp $
1.22 brouard 2: Interpolate Markov Chain
3:
4: Short summary of the programme:
5:
6: This program computes Healthy Life Expectancies from
7: cross-longitudinal data. Cross-longitudinal data consist in: -1- a
8: first survey ("cross") where individuals from different ages are
9: interviewed on their health status or degree of disability (in the
10: case of a health survey which is our main interest) -2- at least a
11: second wave of interviews ("longitudinal") which measure each change
12: (if any) in individual health status. Health expectancies are
13: computed from the time spent in each health state according to a
14: model. More health states you consider, more time is necessary to reach the
15: Maximum Likelihood of the parameters involved in the model. The
16: simplest model is the multinomial logistic model where pij is the
17: probabibility to be observed in state j at the second wave
18: conditional to be observed in state i at the first wave. Therefore
19: the model is: log(pij/pii)= aij + bij*age+ cij*sex + etc , where
20: 'age' is age and 'sex' is a covariate. If you want to have a more
21: complex model than "constant and age", you should modify the program
22: where the markup *Covariates have to be included here again* invites
23: you to do it. More covariates you add, slower the
24: convergence.
25:
26: The advantage of this computer programme, compared to a simple
27: multinomial logistic model, is clear when the delay between waves is not
28: identical for each individual. Also, if a individual missed an
29: intermediate interview, the information is lost, but taken into
30: account using an interpolation or extrapolation.
31:
32: hPijx is the probability to be observed in state i at age x+h
33: conditional to the observed state i at age x. The delay 'h' can be
34: split into an exact number (nh*stepm) of unobserved intermediate
35: states. This elementary transition (by month or quarter trimester,
36: semester or year) is model as a multinomial logistic. The hPx
37: matrix is simply the matrix product of nh*stepm elementary matrices
38: and the contribution of each individual to the likelihood is simply
39: hPijx.
1.2 lievre 40:
41: Also this programme outputs the covariance matrix of the parameters but also
42: of the life expectancies. It also computes the prevalence limits.
43:
44: Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
45: Institut national d'études démographiques, Paris.
46: This software have been partly granted by Euro-REVES, a concerted action
47: from the European Union.
48: It is copyrighted identically to a GNU software product, ie programme and
49: software can be distributed freely for non commercial use. Latest version
50: can be accessed at http://euroreves.ined.fr/imach .
51: **********************************************************************/
52:
53: #include <math.h>
54: #include <stdio.h>
55: #include <stdlib.h>
56: #include <unistd.h>
57:
58: #define MAXLINE 256
1.22 brouard 59: #define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"
1.2 lievre 60: #define FILENAMELENGTH 80
61: /*#define DEBUG*/
62: #define windows
1.5 lievre 63: #define GLOCK_ERROR_NOPATH -1 /* empty path */
64: #define GLOCK_ERROR_GETCWD -2 /* cannot get cwd */
65:
1.2 lievre 66: #define MAXPARM 30 /* Maximum number of parameters for the optimization */
67: #define NPARMAX 64 /* (nlstate+ndeath-1)*nlstate*ncovmodel */
68:
69: #define NINTERVMAX 8
70: #define NLSTATEMAX 8 /* Maximum number of live states (for func) */
71: #define NDEATHMAX 8 /* Maximum number of dead states (for func) */
72: #define NCOVMAX 8 /* Maximum number of covariates */
1.3 lievre 73: #define MAXN 20000
1.2 lievre 74: #define YEARM 12. /* Number of months per year */
75: #define AGESUP 130
76: #define AGEBASE 40
77:
78:
1.21 lievre 79: int erreur; /* Error number */
1.2 lievre 80: int nvar;
1.8 lievre 81: int cptcovn, cptcovage=0, cptcoveff=0,cptcov;
1.2 lievre 82: int npar=NPARMAX;
83: int nlstate=2; /* Number of live states */
84: int ndeath=1; /* Number of dead states */
85: int ncovmodel, ncov; /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
1.15 lievre 86: int popbased=0;
1.2 lievre 87:
88: int *wav; /* Number of waves for this individuual 0 is possible */
89: int maxwav; /* Maxim number of waves */
1.8 lievre 90: int jmin, jmax; /* min, max spacing between 2 waves */
1.2 lievre 91: int mle, weightopt;
92: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
93: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
1.8 lievre 94: double jmean; /* Mean space between 2 waves */
1.2 lievre 95: double **oldm, **newm, **savm; /* Working pointers to matrices */
96: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
1.13 lievre 97: FILE *fic,*ficpar, *ficparo,*ficres, *ficrespl, *ficrespij, *ficrest,*ficresf;
1.16 lievre 98: FILE *ficgp, *fichtm,*ficresprob,*ficpop;
1.2 lievre 99: FILE *ficreseij;
100: char filerese[FILENAMELENGTH];
101: FILE *ficresvij;
102: char fileresv[FILENAMELENGTH];
103: FILE *ficresvpl;
104: char fileresvpl[FILENAMELENGTH];
105:
106: #define NR_END 1
107: #define FREE_ARG char*
108: #define FTOL 1.0e-10
109:
110: #define NRANSI
111: #define ITMAX 200
112:
113: #define TOL 2.0e-4
114:
115: #define CGOLD 0.3819660
116: #define ZEPS 1.0e-10
117: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d);
118:
119: #define GOLD 1.618034
120: #define GLIMIT 100.0
121: #define TINY 1.0e-20
122:
123: static double maxarg1,maxarg2;
124: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
125: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
126:
127: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
128: #define rint(a) floor(a+0.5)
129:
130: static double sqrarg;
131: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
132: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
133:
134: int imx;
135: int stepm;
136: /* Stepm, step in month: minimum step interpolation*/
137:
138: int m,nb;
1.6 lievre 139: int *num, firstpass=0, lastpass=4,*cod, *ncodemax, *Tage;
1.2 lievre 140: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
1.13 lievre 141: double **pmmij, ***probs, ***mobaverage;
1.19 lievre 142: double dateintmean=0;
1.2 lievre 143:
144: double *weight;
145: int **s; /* Status */
146: double *agedc, **covar, idx;
1.7 lievre 147: int **nbcode, *Tcode, *Tvar, **codtab, **Tvard, *Tprod, cptcovprod, *Tvaraff;
1.2 lievre 148:
149: double ftol=FTOL; /* Tolerance for computing Max Likelihood */
150: double ftolhess; /* Tolerance for computing hessian */
151:
1.7 lievre 152: /**************** split *************************/
1.22 brouard 153: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
1.5 lievre 154: {
155: char *s; /* pointer */
156: int l1, l2; /* length counters */
157:
158: l1 = strlen( path ); /* length of path */
159: if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
1.22 brouard 160: #ifdef windows
1.5 lievre 161: s = strrchr( path, '\\' ); /* find last / */
1.22 brouard 162: #else
163: s = strrchr( path, '/' ); /* find last / */
164: #endif
1.5 lievre 165: if ( s == NULL ) { /* no directory, so use current */
166: #if defined(__bsd__) /* get current working directory */
167: extern char *getwd( );
168:
169: if ( getwd( dirc ) == NULL ) {
170: #else
171: extern char *getcwd( );
172:
173: if ( getcwd( dirc, FILENAME_MAX ) == NULL ) {
174: #endif
175: return( GLOCK_ERROR_GETCWD );
176: }
177: strcpy( name, path ); /* we've got it */
178: } else { /* strip direcotry from path */
179: s++; /* after this, the filename */
180: l2 = strlen( s ); /* length of filename */
181: if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
182: strcpy( name, s ); /* save file name */
183: strncpy( dirc, path, l1 - l2 ); /* now the directory */
184: dirc[l1-l2] = 0; /* add zero */
185: }
186: l1 = strlen( dirc ); /* length of directory */
1.22 brouard 187: #ifdef windows
1.5 lievre 188: if ( dirc[l1-1] != '\\' ) { dirc[l1] = '\\'; dirc[l1+1] = 0; }
1.22 brouard 189: #else
190: if ( dirc[l1-1] != '/' ) { dirc[l1] = '/'; dirc[l1+1] = 0; }
191: #endif
192: s = strrchr( name, '.' ); /* find last / */
193: s++;
194: strcpy(ext,s); /* save extension */
195: l1= strlen( name);
196: l2= strlen( s)+1;
197: strncpy( finame, name, l1-l2);
198: finame[l1-l2]= 0;
1.5 lievre 199: return( 0 ); /* we're done */
200: }
201:
202:
1.2 lievre 203: /******************************************/
204:
205: void replace(char *s, char*t)
206: {
207: int i;
208: int lg=20;
209: i=0;
210: lg=strlen(t);
211: for(i=0; i<= lg; i++) {
212: (s[i] = t[i]);
213: if (t[i]== '\\') s[i]='/';
214: }
215: }
216:
217: int nbocc(char *s, char occ)
218: {
219: int i,j=0;
220: int lg=20;
221: i=0;
222: lg=strlen(s);
223: for(i=0; i<= lg; i++) {
224: if (s[i] == occ ) j++;
225: }
226: return j;
227: }
228:
229: void cutv(char *u,char *v, char*t, char occ)
230: {
1.6 lievre 231: int i,lg,j,p=0;
1.2 lievre 232: i=0;
233: for(j=0; j<=strlen(t)-1; j++) {
1.3 lievre 234: if((t[j]!= occ) && (t[j+1]== occ)) p=j+1;
1.2 lievre 235: }
236:
237: lg=strlen(t);
238: for(j=0; j<p; j++) {
239: (u[j] = t[j]);
240: }
1.6 lievre 241: u[p]='\0';
1.2 lievre 242:
243: for(j=0; j<= lg; j++) {
244: if (j>=(p+1))(v[j-p-1] = t[j]);
245: }
246: }
247:
248: /********************** nrerror ********************/
249:
250: void nrerror(char error_text[])
251: {
252: fprintf(stderr,"ERREUR ...\n");
253: fprintf(stderr,"%s\n",error_text);
254: exit(1);
255: }
256: /*********************** vector *******************/
257: double *vector(int nl, int nh)
258: {
259: double *v;
260: v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
261: if (!v) nrerror("allocation failure in vector");
262: return v-nl+NR_END;
263: }
264:
265: /************************ free vector ******************/
266: void free_vector(double*v, int nl, int nh)
267: {
268: free((FREE_ARG)(v+nl-NR_END));
269: }
270:
271: /************************ivector *******************************/
272: int *ivector(long nl,long nh)
273: {
274: int *v;
275: v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
276: if (!v) nrerror("allocation failure in ivector");
277: return v-nl+NR_END;
278: }
279:
280: /******************free ivector **************************/
281: void free_ivector(int *v, long nl, long nh)
282: {
283: free((FREE_ARG)(v+nl-NR_END));
284: }
285:
286: /******************* imatrix *******************************/
287: int **imatrix(long nrl, long nrh, long ncl, long nch)
288: /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */
289: {
290: long i, nrow=nrh-nrl+1,ncol=nch-ncl+1;
291: int **m;
292:
293: /* allocate pointers to rows */
294: m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*)));
295: if (!m) nrerror("allocation failure 1 in matrix()");
296: m += NR_END;
297: m -= nrl;
298:
299:
300: /* allocate rows and set pointers to them */
301: m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int)));
302: if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
303: m[nrl] += NR_END;
304: m[nrl] -= ncl;
305:
306: for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol;
307:
308: /* return pointer to array of pointers to rows */
309: return m;
310: }
311:
312: /****************** free_imatrix *************************/
313: void free_imatrix(m,nrl,nrh,ncl,nch)
314: int **m;
315: long nch,ncl,nrh,nrl;
316: /* free an int matrix allocated by imatrix() */
317: {
318: free((FREE_ARG) (m[nrl]+ncl-NR_END));
319: free((FREE_ARG) (m+nrl-NR_END));
320: }
321:
322: /******************* matrix *******************************/
323: double **matrix(long nrl, long nrh, long ncl, long nch)
324: {
325: long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
326: double **m;
327:
328: m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
329: if (!m) nrerror("allocation failure 1 in matrix()");
330: m += NR_END;
331: m -= nrl;
332:
333: m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
334: if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
335: m[nrl] += NR_END;
336: m[nrl] -= ncl;
337:
338: for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
339: return m;
340: }
341:
342: /*************************free matrix ************************/
343: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
344: {
345: free((FREE_ARG)(m[nrl]+ncl-NR_END));
346: free((FREE_ARG)(m+nrl-NR_END));
347: }
348:
349: /******************* ma3x *******************************/
350: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
351: {
352: long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
353: double ***m;
354:
355: m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
356: if (!m) nrerror("allocation failure 1 in matrix()");
357: m += NR_END;
358: m -= nrl;
359:
360: m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
361: if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
362: m[nrl] += NR_END;
363: m[nrl] -= ncl;
364:
365: for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
366:
367: m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
368: if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
369: m[nrl][ncl] += NR_END;
370: m[nrl][ncl] -= nll;
371: for (j=ncl+1; j<=nch; j++)
372: m[nrl][j]=m[nrl][j-1]+nlay;
373:
374: for (i=nrl+1; i<=nrh; i++) {
375: m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
376: for (j=ncl+1; j<=nch; j++)
377: m[i][j]=m[i][j-1]+nlay;
378: }
379: return m;
380: }
381:
382: /*************************free ma3x ************************/
383: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
384: {
385: free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
386: free((FREE_ARG)(m[nrl]+ncl-NR_END));
387: free((FREE_ARG)(m+nrl-NR_END));
388: }
389:
390: /***************** f1dim *************************/
391: extern int ncom;
392: extern double *pcom,*xicom;
393: extern double (*nrfunc)(double []);
394:
395: double f1dim(double x)
396: {
397: int j;
398: double f;
399: double *xt;
400:
401: xt=vector(1,ncom);
402: for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j];
403: f=(*nrfunc)(xt);
404: free_vector(xt,1,ncom);
405: return f;
406: }
407:
408: /*****************brent *************************/
409: double brent(double ax, double bx, double cx, double (*f)(double), double tol, double *xmin)
410: {
411: int iter;
412: double a,b,d,etemp;
413: double fu,fv,fw,fx;
414: double ftemp;
415: double p,q,r,tol1,tol2,u,v,w,x,xm;
416: double e=0.0;
417:
418: a=(ax < cx ? ax : cx);
419: b=(ax > cx ? ax : cx);
420: x=w=v=bx;
421: fw=fv=fx=(*f)(x);
422: for (iter=1;iter<=ITMAX;iter++) {
423: xm=0.5*(a+b);
424: tol2=2.0*(tol1=tol*fabs(x)+ZEPS);
425: /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
426: printf(".");fflush(stdout);
427: #ifdef DEBUG
428: printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
429: /* if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
430: #endif
431: if (fabs(x-xm) <= (tol2-0.5*(b-a))){
432: *xmin=x;
433: return fx;
434: }
435: ftemp=fu;
436: if (fabs(e) > tol1) {
437: r=(x-w)*(fx-fv);
438: q=(x-v)*(fx-fw);
439: p=(x-v)*q-(x-w)*r;
440: q=2.0*(q-r);
441: if (q > 0.0) p = -p;
442: q=fabs(q);
443: etemp=e;
444: e=d;
445: if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x))
446: d=CGOLD*(e=(x >= xm ? a-x : b-x));
447: else {
448: d=p/q;
449: u=x+d;
450: if (u-a < tol2 || b-u < tol2)
451: d=SIGN(tol1,xm-x);
452: }
453: } else {
454: d=CGOLD*(e=(x >= xm ? a-x : b-x));
455: }
456: u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d));
457: fu=(*f)(u);
458: if (fu <= fx) {
459: if (u >= x) a=x; else b=x;
460: SHFT(v,w,x,u)
461: SHFT(fv,fw,fx,fu)
462: } else {
463: if (u < x) a=u; else b=u;
464: if (fu <= fw || w == x) {
465: v=w;
466: w=u;
467: fv=fw;
468: fw=fu;
469: } else if (fu <= fv || v == x || v == w) {
470: v=u;
471: fv=fu;
472: }
473: }
474: }
475: nrerror("Too many iterations in brent");
476: *xmin=x;
477: return fx;
478: }
479:
480: /****************** mnbrak ***********************/
481:
482: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc,
483: double (*func)(double))
484: {
485: double ulim,u,r,q, dum;
486: double fu;
487:
488: *fa=(*func)(*ax);
489: *fb=(*func)(*bx);
490: if (*fb > *fa) {
491: SHFT(dum,*ax,*bx,dum)
492: SHFT(dum,*fb,*fa,dum)
493: }
494: *cx=(*bx)+GOLD*(*bx-*ax);
495: *fc=(*func)(*cx);
496: while (*fb > *fc) {
497: r=(*bx-*ax)*(*fb-*fc);
498: q=(*bx-*cx)*(*fb-*fa);
499: u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/
500: (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r));
501: ulim=(*bx)+GLIMIT*(*cx-*bx);
502: if ((*bx-u)*(u-*cx) > 0.0) {
503: fu=(*func)(u);
504: } else if ((*cx-u)*(u-ulim) > 0.0) {
505: fu=(*func)(u);
506: if (fu < *fc) {
507: SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx))
508: SHFT(*fb,*fc,fu,(*func)(u))
509: }
510: } else if ((u-ulim)*(ulim-*cx) >= 0.0) {
511: u=ulim;
512: fu=(*func)(u);
513: } else {
514: u=(*cx)+GOLD*(*cx-*bx);
515: fu=(*func)(u);
516: }
517: SHFT(*ax,*bx,*cx,u)
518: SHFT(*fa,*fb,*fc,fu)
519: }
520: }
521:
522: /*************** linmin ************************/
523:
524: int ncom;
525: double *pcom,*xicom;
526: double (*nrfunc)(double []);
527:
528: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []))
529: {
530: double brent(double ax, double bx, double cx,
531: double (*f)(double), double tol, double *xmin);
532: double f1dim(double x);
533: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb,
534: double *fc, double (*func)(double));
535: int j;
536: double xx,xmin,bx,ax;
537: double fx,fb,fa;
538:
539: ncom=n;
540: pcom=vector(1,n);
541: xicom=vector(1,n);
542: nrfunc=func;
543: for (j=1;j<=n;j++) {
544: pcom[j]=p[j];
545: xicom[j]=xi[j];
546: }
547: ax=0.0;
548: xx=1.0;
549: mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);
550: *fret=brent(ax,xx,bx,f1dim,TOL,&xmin);
551: #ifdef DEBUG
552: printf("retour brent fret=%.12e xmin=%.12e\n",*fret,xmin);
553: #endif
554: for (j=1;j<=n;j++) {
555: xi[j] *= xmin;
556: p[j] += xi[j];
557: }
558: free_vector(xicom,1,n);
559: free_vector(pcom,1,n);
560: }
561:
562: /*************** powell ************************/
563: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret,
564: double (*func)(double []))
565: {
566: void linmin(double p[], double xi[], int n, double *fret,
567: double (*func)(double []));
568: int i,ibig,j;
569: double del,t,*pt,*ptt,*xit;
570: double fp,fptt;
571: double *xits;
572: pt=vector(1,n);
573: ptt=vector(1,n);
574: xit=vector(1,n);
575: xits=vector(1,n);
576: *fret=(*func)(p);
577: for (j=1;j<=n;j++) pt[j]=p[j];
578: for (*iter=1;;++(*iter)) {
579: fp=(*fret);
580: ibig=0;
581: del=0.0;
582: printf("\nPowell iter=%d -2*LL=%.12f",*iter,*fret);
583: for (i=1;i<=n;i++)
584: printf(" %d %.12f",i, p[i]);
585: printf("\n");
586: for (i=1;i<=n;i++) {
587: for (j=1;j<=n;j++) xit[j]=xi[j][i];
588: fptt=(*fret);
589: #ifdef DEBUG
590: printf("fret=%lf \n",*fret);
591: #endif
592: printf("%d",i);fflush(stdout);
593: linmin(p,xit,n,fret,func);
594: if (fabs(fptt-(*fret)) > del) {
595: del=fabs(fptt-(*fret));
596: ibig=i;
597: }
598: #ifdef DEBUG
599: printf("%d %.12e",i,(*fret));
600: for (j=1;j<=n;j++) {
601: xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
602: printf(" x(%d)=%.12e",j,xit[j]);
603: }
604: for(j=1;j<=n;j++)
605: printf(" p=%.12e",p[j]);
606: printf("\n");
607: #endif
608: }
609: if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) {
610: #ifdef DEBUG
611: int k[2],l;
612: k[0]=1;
613: k[1]=-1;
614: printf("Max: %.12e",(*func)(p));
615: for (j=1;j<=n;j++)
616: printf(" %.12e",p[j]);
617: printf("\n");
618: for(l=0;l<=1;l++) {
619: for (j=1;j<=n;j++) {
620: ptt[j]=p[j]+(p[j]-pt[j])*k[l];
621: printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
622: }
623: printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
624: }
625: #endif
626:
627:
628: free_vector(xit,1,n);
629: free_vector(xits,1,n);
630: free_vector(ptt,1,n);
631: free_vector(pt,1,n);
632: return;
633: }
634: if (*iter == ITMAX) nrerror("powell exceeding maximum iterations.");
635: for (j=1;j<=n;j++) {
636: ptt[j]=2.0*p[j]-pt[j];
637: xit[j]=p[j]-pt[j];
638: pt[j]=p[j];
639: }
640: fptt=(*func)(ptt);
641: if (fptt < fp) {
642: t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt);
643: if (t < 0.0) {
644: linmin(p,xit,n,fret,func);
645: for (j=1;j<=n;j++) {
646: xi[j][ibig]=xi[j][n];
647: xi[j][n]=xit[j];
648: }
649: #ifdef DEBUG
650: printf("Direction changed last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
651: for(j=1;j<=n;j++)
652: printf(" %.12e",xit[j]);
653: printf("\n");
654: #endif
655: }
656: }
657: }
658: }
659:
660: /**** Prevalence limit ****************/
661:
662: double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int ij)
663: {
664: /* Computes the prevalence limit in each live state at age x by left multiplying the unit
665: matrix by transitions matrix until convergence is reached */
666:
667: int i, ii,j,k;
668: double min, max, maxmin, maxmax,sumnew=0.;
669: double **matprod2();
670: double **out, cov[NCOVMAX], **pmij();
671: double **newm;
672: double agefin, delaymax=50 ; /* Max number of years to converge */
673:
674: for (ii=1;ii<=nlstate+ndeath;ii++)
675: for (j=1;j<=nlstate+ndeath;j++){
676: oldm[ii][j]=(ii==j ? 1.0 : 0.0);
677: }
1.6 lievre 678:
679: cov[1]=1.;
680:
681: /* Even if hstepm = 1, at least one multiplication by the unit matrix */
1.2 lievre 682: for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
683: newm=savm;
684: /* Covariates have to be included here again */
1.6 lievre 685: cov[2]=agefin;
686:
687: for (k=1; k<=cptcovn;k++) {
1.7 lievre 688: cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
689: /*printf("ij=%d Tvar[k]=%d nbcode=%d cov=%lf\n",ij, Tvar[k],nbcode[Tvar[k]][codtab[ij][Tvar[k]]],cov[2+k]);*/
1.6 lievre 690: }
691: for (k=1; k<=cptcovage;k++)
692: cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
1.7 lievre 693: for (k=1; k<=cptcovprod;k++)
694: cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
695:
696: /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
697: /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
698:
1.2 lievre 699: out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
700:
701: savm=oldm;
702: oldm=newm;
703: maxmax=0.;
704: for(j=1;j<=nlstate;j++){
705: min=1.;
706: max=0.;
707: for(i=1; i<=nlstate; i++) {
708: sumnew=0;
709: for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
710: prlim[i][j]= newm[i][j]/(1-sumnew);
711: max=FMAX(max,prlim[i][j]);
712: min=FMIN(min,prlim[i][j]);
713: }
714: maxmin=max-min;
715: maxmax=FMAX(maxmax,maxmin);
716: }
717: if(maxmax < ftolpl){
718: return prlim;
719: }
720: }
721: }
722:
1.12 lievre 723: /*************** transition probabilities ***************/
1.2 lievre 724:
725: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
726: {
727: double s1, s2;
728: /*double t34;*/
729: int i,j,j1, nc, ii, jj;
730:
731: for(i=1; i<= nlstate; i++){
732: for(j=1; j<i;j++){
733: for (nc=1, s2=0.;nc <=ncovmodel; nc++){
734: /*s2 += param[i][j][nc]*cov[nc];*/
735: s2 += x[(i-1)*nlstate*ncovmodel+(j-1)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
736: /*printf("Int j<i s1=%.17e, s2=%.17e\n",s1,s2);*/
737: }
738: ps[i][j]=s2;
739: /*printf("s1=%.17e, s2=%.17e\n",s1,s2);*/
740: }
741: for(j=i+1; j<=nlstate+ndeath;j++){
742: for (nc=1, s2=0.;nc <=ncovmodel; nc++){
743: s2 += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];
744: /*printf("Int j>i s1=%.17e, s2=%.17e %lx %lx\n",s1,s2,s1,s2);*/
745: }
1.22 brouard 746: ps[i][j]=s2;
1.2 lievre 747: }
748: }
1.12 lievre 749: /*ps[3][2]=1;*/
750:
1.2 lievre 751: for(i=1; i<= nlstate; i++){
752: s1=0;
753: for(j=1; j<i; j++)
754: s1+=exp(ps[i][j]);
755: for(j=i+1; j<=nlstate+ndeath; j++)
756: s1+=exp(ps[i][j]);
757: ps[i][i]=1./(s1+1.);
758: for(j=1; j<i; j++)
759: ps[i][j]= exp(ps[i][j])*ps[i][i];
760: for(j=i+1; j<=nlstate+ndeath; j++)
761: ps[i][j]= exp(ps[i][j])*ps[i][i];
762: /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
763: } /* end i */
764:
765: for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
766: for(jj=1; jj<= nlstate+ndeath; jj++){
767: ps[ii][jj]=0;
768: ps[ii][ii]=1;
769: }
770: }
771:
1.12 lievre 772:
1.2 lievre 773: /* for(ii=1; ii<= nlstate+ndeath; ii++){
774: for(jj=1; jj<= nlstate+ndeath; jj++){
775: printf("%lf ",ps[ii][jj]);
776: }
777: printf("\n ");
778: }
779: printf("\n ");printf("%lf ",cov[2]);*/
780: /*
781: for(i=1; i<= npar; i++) printf("%f ",x[i]);
782: goto end;*/
783: return ps;
784: }
785:
786: /**************** Product of 2 matrices ******************/
787:
788: double **matprod2(double **out, double **in,long nrl, long nrh, long ncl, long nch, long ncolol, long ncoloh, double **b)
789: {
1.13 lievre 790: /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
1.2 lievre 791: b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
792: /* in, b, out are matrice of pointers which should have been initialized
793: before: only the contents of out is modified. The function returns
794: a pointer to pointers identical to out */
795: long i, j, k;
796: for(i=nrl; i<= nrh; i++)
797: for(k=ncolol; k<=ncoloh; k++)
798: for(j=ncl,out[i][k]=0.; j<=nch; j++)
799: out[i][k] +=in[i][j]*b[j][k];
800:
801: return out;
802: }
803:
804:
805: /************* Higher Matrix Product ***************/
806:
807: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij )
808: {
809: /* Computes the transition matrix starting at age 'age' over 'nhstepm*hstepm*stepm' month
810: duration (i.e. until
811: age (in years) age+nhstepm*stepm/12) by multiplying nhstepm*hstepm matrices.
812: Output is stored in matrix po[i][j][h] for h every 'hstepm' step
813: (typically every 2 years instead of every month which is too big).
814: Model is determined by parameters x and covariates have to be
815: included manually here.
816:
817: */
818:
819: int i, j, d, h, k;
820: double **out, cov[NCOVMAX];
821: double **newm;
822:
823: /* Hstepm could be zero and should return the unit matrix */
824: for (i=1;i<=nlstate+ndeath;i++)
825: for (j=1;j<=nlstate+ndeath;j++){
826: oldm[i][j]=(i==j ? 1.0 : 0.0);
827: po[i][j][0]=(i==j ? 1.0 : 0.0);
828: }
829: /* Even if hstepm = 1, at least one multiplication by the unit matrix */
830: for(h=1; h <=nhstepm; h++){
831: for(d=1; d <=hstepm; d++){
832: newm=savm;
833: /* Covariates have to be included here again */
834: cov[1]=1.;
835: cov[2]=age+((h-1)*hstepm + (d-1))*stepm/YEARM;
1.7 lievre 836: for (k=1; k<=cptcovn;k++) cov[2+k]=nbcode[Tvar[k]][codtab[ij][Tvar[k]]];
1.12 lievre 837: for (k=1; k<=cptcovage;k++)
1.7 lievre 838: cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2];
1.12 lievre 839: for (k=1; k<=cptcovprod;k++)
1.7 lievre 840: cov[2+Tprod[k]]=nbcode[Tvard[k][1]][codtab[ij][Tvard[k][1]]]*nbcode[Tvard[k][2]][codtab[ij][Tvard[k][2]]];
841:
842:
1.2 lievre 843: /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
844: /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
845: out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
846: pmij(pmmij,cov,ncovmodel,x,nlstate));
847: savm=oldm;
848: oldm=newm;
849: }
850: for(i=1; i<=nlstate+ndeath; i++)
851: for(j=1;j<=nlstate+ndeath;j++) {
852: po[i][j][h]=newm[i][j];
853: /*printf("i=%d j=%d h=%d po[i][j][h]=%f ",i,j,h,po[i][j][h]);
854: */
855: }
856: } /* end h */
857: return po;
858: }
859:
860:
861: /*************** log-likelihood *************/
862: double func( double *x)
863: {
1.6 lievre 864: int i, ii, j, k, mi, d, kk;
1.2 lievre 865: double l, ll[NLSTATEMAX], cov[NCOVMAX];
866: double **out;
867: double sw; /* Sum of weights */
868: double lli; /* Individual log likelihood */
869: long ipmx;
870: /*extern weight */
871: /* We are differentiating ll according to initial status */
872: /* for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
873: /*for(i=1;i<imx;i++)
1.8 lievre 874: printf(" %d\n",s[4][i]);
1.2 lievre 875: */
1.6 lievre 876: cov[1]=1.;
1.2 lievre 877:
878: for(k=1; k<=nlstate; k++) ll[k]=0.;
879: for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.6 lievre 880: for (k=1; k<=cptcovn;k++) cov[2+k]=covar[Tvar[k]][i];
1.8 lievre 881: for(mi=1; mi<= wav[i]-1; mi++){
1.2 lievre 882: for (ii=1;ii<=nlstate+ndeath;ii++)
883: for (j=1;j<=nlstate+ndeath;j++) oldm[ii][j]=(ii==j ? 1.0 : 0.0);
1.8 lievre 884: for(d=0; d<dh[mi][i]; d++){
885: newm=savm;
886: cov[2]=agev[mw[mi][i]][i]+d*stepm/YEARM;
887: for (kk=1; kk<=cptcovage;kk++) {
888: cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
889: }
890:
891: out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
892: 1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
893: savm=oldm;
894: oldm=newm;
895:
896:
1.2 lievre 897: } /* end mult */
1.8 lievre 898:
1.2 lievre 899: lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);
900: /* printf(" %f ",out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/
901: ipmx +=1;
902: sw += weight[i];
903: ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
904: } /* end of wave */
905: } /* end of individual */
906:
907: for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
908: /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
909: l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
910: return -l;
911: }
912:
913:
914: /*********** Maximum Likelihood Estimation ***************/
915:
916: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
917: {
918: int i,j, iter;
919: double **xi,*delti;
920: double fret;
921: xi=matrix(1,npar,1,npar);
922: for (i=1;i<=npar;i++)
923: for (j=1;j<=npar;j++)
924: xi[i][j]=(i==j ? 1.0 : 0.0);
925: printf("Powell\n");
926: powell(p,xi,npar,ftol,&iter,&fret,func);
927:
928: printf("\n#Number of iterations = %d, -2 Log likelihood = %.12f\n",iter,func(p));
1.21 lievre 929: fprintf(ficres,"#Number of iterations = %d, -2 Log likelihood = %.12f \n",iter,func(p));
1.2 lievre 930:
931: }
932:
933: /**** Computes Hessian and covariance matrix ***/
934: void hesscov(double **matcov, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
935: {
936: double **a,**y,*x,pd;
937: double **hess;
938: int i, j,jk;
939: int *indx;
940:
941: double hessii(double p[], double delta, int theta, double delti[]);
942: double hessij(double p[], double delti[], int i, int j);
943: void lubksb(double **a, int npar, int *indx, double b[]) ;
944: void ludcmp(double **a, int npar, int *indx, double *d) ;
945:
946: hess=matrix(1,npar,1,npar);
947:
948: printf("\nCalculation of the hessian matrix. Wait...\n");
949: for (i=1;i<=npar;i++){
950: printf("%d",i);fflush(stdout);
951: hess[i][i]=hessii(p,ftolhess,i,delti);
952: /*printf(" %f ",p[i]);*/
1.12 lievre 953: /*printf(" %lf ",hess[i][i]);*/
1.2 lievre 954: }
1.12 lievre 955:
1.2 lievre 956: for (i=1;i<=npar;i++) {
957: for (j=1;j<=npar;j++) {
958: if (j>i) {
959: printf(".%d%d",i,j);fflush(stdout);
960: hess[i][j]=hessij(p,delti,i,j);
1.12 lievre 961: hess[j][i]=hess[i][j];
962: /*printf(" %lf ",hess[i][j]);*/
1.2 lievre 963: }
964: }
965: }
966: printf("\n");
967:
968: printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
969:
970: a=matrix(1,npar,1,npar);
971: y=matrix(1,npar,1,npar);
972: x=vector(1,npar);
973: indx=ivector(1,npar);
974: for (i=1;i<=npar;i++)
975: for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
976: ludcmp(a,npar,indx,&pd);
977:
978: for (j=1;j<=npar;j++) {
979: for (i=1;i<=npar;i++) x[i]=0;
980: x[j]=1;
981: lubksb(a,npar,indx,x);
982: for (i=1;i<=npar;i++){
983: matcov[i][j]=x[i];
984: }
985: }
986:
987: printf("\n#Hessian matrix#\n");
988: for (i=1;i<=npar;i++) {
989: for (j=1;j<=npar;j++) {
990: printf("%.3e ",hess[i][j]);
991: }
992: printf("\n");
993: }
994:
995: /* Recompute Inverse */
996: for (i=1;i<=npar;i++)
997: for (j=1;j<=npar;j++) a[i][j]=matcov[i][j];
998: ludcmp(a,npar,indx,&pd);
999:
1000: /* printf("\n#Hessian matrix recomputed#\n");
1001:
1002: for (j=1;j<=npar;j++) {
1003: for (i=1;i<=npar;i++) x[i]=0;
1004: x[j]=1;
1005: lubksb(a,npar,indx,x);
1006: for (i=1;i<=npar;i++){
1007: y[i][j]=x[i];
1008: printf("%.3e ",y[i][j]);
1009: }
1010: printf("\n");
1011: }
1012: */
1013:
1014: free_matrix(a,1,npar,1,npar);
1015: free_matrix(y,1,npar,1,npar);
1016: free_vector(x,1,npar);
1017: free_ivector(indx,1,npar);
1018: free_matrix(hess,1,npar,1,npar);
1019:
1020:
1021: }
1022:
1023: /*************** hessian matrix ****************/
1024: double hessii( double x[], double delta, int theta, double delti[])
1025: {
1026: int i;
1027: int l=1, lmax=20;
1028: double k1,k2;
1029: double p2[NPARMAX+1];
1030: double res;
1031: double delt, delts, nkhi=10.,nkhif=1., khi=1.e-4;
1032: double fx;
1033: int k=0,kmax=10;
1034: double l1;
1035:
1036: fx=func(x);
1037: for (i=1;i<=npar;i++) p2[i]=x[i];
1038: for(l=0 ; l <=lmax; l++){
1039: l1=pow(10,l);
1040: delts=delt;
1041: for(k=1 ; k <kmax; k=k+1){
1042: delt = delta*(l1*k);
1043: p2[theta]=x[theta] +delt;
1044: k1=func(p2)-fx;
1045: p2[theta]=x[theta]-delt;
1046: k2=func(p2)-fx;
1047: /*res= (k1-2.0*fx+k2)/delt/delt; */
1048: res= (k1+k2)/delt/delt/2.; /* Divided by because L and not 2*L */
1049:
1050: #ifdef DEBUG
1051: printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
1052: #endif
1053: /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
1054: if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
1055: k=kmax;
1056: }
1057: else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
1058: k=kmax; l=lmax*10.;
1059: }
1060: else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){
1061: delts=delt;
1062: }
1063: }
1064: }
1065: delti[theta]=delts;
1.12 lievre 1066: return res;
1.3 lievre 1067:
1.2 lievre 1068: }
1069:
1070: double hessij( double x[], double delti[], int thetai,int thetaj)
1071: {
1072: int i;
1073: int l=1, l1, lmax=20;
1074: double k1,k2,k3,k4,res,fx;
1075: double p2[NPARMAX+1];
1076: int k;
1077:
1078: fx=func(x);
1079: for (k=1; k<=2; k++) {
1080: for (i=1;i<=npar;i++) p2[i]=x[i];
1081: p2[thetai]=x[thetai]+delti[thetai]/k;
1082: p2[thetaj]=x[thetaj]+delti[thetaj]/k;
1083: k1=func(p2)-fx;
1084:
1085: p2[thetai]=x[thetai]+delti[thetai]/k;
1086: p2[thetaj]=x[thetaj]-delti[thetaj]/k;
1087: k2=func(p2)-fx;
1088:
1089: p2[thetai]=x[thetai]-delti[thetai]/k;
1090: p2[thetaj]=x[thetaj]+delti[thetaj]/k;
1091: k3=func(p2)-fx;
1092:
1093: p2[thetai]=x[thetai]-delti[thetai]/k;
1094: p2[thetaj]=x[thetaj]-delti[thetaj]/k;
1095: k4=func(p2)-fx;
1096: res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /* Because of L not 2*L */
1097: #ifdef DEBUG
1098: printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
1099: #endif
1100: }
1101: return res;
1102: }
1103:
1104: /************** Inverse of matrix **************/
1105: void ludcmp(double **a, int n, int *indx, double *d)
1106: {
1107: int i,imax,j,k;
1108: double big,dum,sum,temp;
1109: double *vv;
1110:
1111: vv=vector(1,n);
1112: *d=1.0;
1113: for (i=1;i<=n;i++) {
1114: big=0.0;
1115: for (j=1;j<=n;j++)
1116: if ((temp=fabs(a[i][j])) > big) big=temp;
1117: if (big == 0.0) nrerror("Singular matrix in routine ludcmp");
1118: vv[i]=1.0/big;
1119: }
1120: for (j=1;j<=n;j++) {
1121: for (i=1;i<j;i++) {
1122: sum=a[i][j];
1123: for (k=1;k<i;k++) sum -= a[i][k]*a[k][j];
1124: a[i][j]=sum;
1125: }
1126: big=0.0;
1127: for (i=j;i<=n;i++) {
1128: sum=a[i][j];
1129: for (k=1;k<j;k++)
1130: sum -= a[i][k]*a[k][j];
1131: a[i][j]=sum;
1132: if ( (dum=vv[i]*fabs(sum)) >= big) {
1133: big=dum;
1134: imax=i;
1135: }
1136: }
1137: if (j != imax) {
1138: for (k=1;k<=n;k++) {
1139: dum=a[imax][k];
1140: a[imax][k]=a[j][k];
1141: a[j][k]=dum;
1142: }
1143: *d = -(*d);
1144: vv[imax]=vv[j];
1145: }
1146: indx[j]=imax;
1147: if (a[j][j] == 0.0) a[j][j]=TINY;
1148: if (j != n) {
1149: dum=1.0/(a[j][j]);
1150: for (i=j+1;i<=n;i++) a[i][j] *= dum;
1151: }
1152: }
1153: free_vector(vv,1,n); /* Doesn't work */
1154: ;
1155: }
1156:
1157: void lubksb(double **a, int n, int *indx, double b[])
1158: {
1159: int i,ii=0,ip,j;
1160: double sum;
1161:
1162: for (i=1;i<=n;i++) {
1163: ip=indx[i];
1164: sum=b[ip];
1165: b[ip]=b[i];
1166: if (ii)
1167: for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j];
1168: else if (sum) ii=i;
1169: b[i]=sum;
1170: }
1171: for (i=n;i>=1;i--) {
1172: sum=b[i];
1173: for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j];
1174: b[i]=sum/a[i][i];
1175: }
1176: }
1177:
1178: /************ Frequencies ********************/
1.19 lievre 1179: void freqsummary(char fileres[], int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2)
1.2 lievre 1180: { /* Some frequencies */
1181:
1.18 lievre 1182: int i, m, jk, k1,i1, j1, bool, z1,z2,j;
1.2 lievre 1183: double ***freq; /* Frequencies */
1184: double *pp;
1.19 lievre 1185: double pos, k2, dateintsum=0,k2cpt=0;
1.2 lievre 1186: FILE *ficresp;
1187: char fileresp[FILENAMELENGTH];
1188:
1189: pp=vector(1,nlstate);
1.19 lievre 1190: probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.2 lievre 1191: strcpy(fileresp,"p");
1192: strcat(fileresp,fileres);
1193: if((ficresp=fopen(fileresp,"w"))==NULL) {
1194: printf("Problem with prevalence resultfile: %s\n", fileresp);
1195: exit(0);
1196: }
1197: freq= ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
1198: j1=0;
1199:
1.7 lievre 1200: j=cptcoveff;
1.2 lievre 1201: if (cptcovn<1) {j=1;ncodemax[1]=1;}
1202:
1203: for(k1=1; k1<=j;k1++){
1204: for(i1=1; i1<=ncodemax[k1];i1++){
1205: j1++;
1.8 lievre 1206: /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
1207: scanf("%d", i);*/
1.2 lievre 1208: for (i=-1; i<=nlstate+ndeath; i++)
1209: for (jk=-1; jk<=nlstate+ndeath; jk++)
1210: for(m=agemin; m <= agemax+3; m++)
1211: freq[i][jk][m]=0;
1.19 lievre 1212:
1213: dateintsum=0;
1214: k2cpt=0;
1.2 lievre 1215: for (i=1; i<=imx; i++) {
1216: bool=1;
1217: if (cptcovn>0) {
1.7 lievre 1218: for (z1=1; z1<=cptcoveff; z1++)
1.8 lievre 1219: if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
1220: bool=0;
1.2 lievre 1221: }
1.18 lievre 1222: if (bool==1) {
1.19 lievre 1223: for(m=firstpass; m<=lastpass; m++){
1224: k2=anint[m][i]+(mint[m][i]/12.);
1225: if ((k2>=dateprev1) && (k2<=dateprev2)) {
1.18 lievre 1226: if(agev[m][i]==0) agev[m][i]=agemax+1;
1227: if(agev[m][i]==1) agev[m][i]=agemax+2;
1228: freq[s[m][i]][s[m+1][i]][(int)agev[m][i]] += weight[i];
1229: freq[s[m][i]][s[m+1][i]][(int) agemax+3] += weight[i];
1.19 lievre 1230: if ((agev[m][i]>1) && (agev[m][i]< (agemax+3))) {
1231: dateintsum=dateintsum+k2;
1232: k2cpt++;
1233: }
1234:
1.18 lievre 1235: }
1236: }
1.19 lievre 1237: }
1.2 lievre 1238: }
1239: if (cptcovn>0) {
1.7 lievre 1240: fprintf(ficresp, "\n#********** Variable ");
1241: for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtab[j1][z1]]);
1242: fprintf(ficresp, "**********\n#");
1.8 lievre 1243: }
1.2 lievre 1244: for(i=1; i<=nlstate;i++)
1245: fprintf(ficresp, " Age Prev(%d) N(%d) N",i,i);
1246: fprintf(ficresp, "\n");
1247:
1248: for(i=(int)agemin; i <= (int)agemax+3; i++){
1249: if(i==(int)agemax+3)
1250: printf("Total");
1251: else
1252: printf("Age %d", i);
1253: for(jk=1; jk <=nlstate ; jk++){
1254: for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
1.14 lievre 1255: pp[jk] += freq[jk][m][i];
1.2 lievre 1256: }
1257: for(jk=1; jk <=nlstate ; jk++){
1258: for(m=-1, pos=0; m <=0 ; m++)
1259: pos += freq[jk][m][i];
1260: if(pp[jk]>=1.e-10)
1261: printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
1262: else
1263: printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
1264: }
1.14 lievre 1265:
1266: for(jk=1; jk <=nlstate ; jk++){
1267: for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
1.2 lievre 1268: pp[jk] += freq[jk][m][i];
1.14 lievre 1269: }
1270:
1.2 lievre 1271: for(jk=1,pos=0; jk <=nlstate ; jk++)
1272: pos += pp[jk];
1273: for(jk=1; jk <=nlstate ; jk++){
1274: if(pos>=1.e-5)
1275: printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
1276: else
1277: printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
1278: if( i <= (int) agemax){
1.13 lievre 1279: if(pos>=1.e-5){
1.2 lievre 1280: fprintf(ficresp," %d %.5f %.0f %.0f",i,pp[jk]/pos, pp[jk],pos);
1.13 lievre 1281: probs[i][jk][j1]= pp[jk]/pos;
1282: /*printf("\ni=%d jk=%d j1=%d %.5f %.0f %.0f %f",i,jk,j1,pp[jk]/pos, pp[jk],pos,probs[i][jk][j1]);*/
1283: }
1.2 lievre 1284: else
1285: fprintf(ficresp," %d NaNq %.0f %.0f",i,pp[jk],pos);
1286: }
1287: }
1288: for(jk=-1; jk <=nlstate+ndeath; jk++)
1289: for(m=-1; m <=nlstate+ndeath; m++)
1290: if(freq[jk][m][i] !=0 ) printf(" %d%d=%.0f",jk,m,freq[jk][m][i]);
1291: if(i <= (int) agemax)
1292: fprintf(ficresp,"\n");
1293: printf("\n");
1294: }
1295: }
1296: }
1.19 lievre 1297: dateintmean=dateintsum/k2cpt;
1.2 lievre 1298:
1299: fclose(ficresp);
1300: free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
1301: free_vector(pp,1,nlstate);
1302:
1.19 lievre 1303: /* End of Freq */
1304: }
1.2 lievre 1305:
1.15 lievre 1306: /************ Prevalence ********************/
1.19 lievre 1307: void prevalence(int agemin, int agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, double calagedate)
1.15 lievre 1308: { /* Some frequencies */
1309:
1310: int i, m, jk, k1, i1, j1, bool, z1,z2,j;
1311: double ***freq; /* Frequencies */
1312: double *pp;
1.18 lievre 1313: double pos, k2;
1.15 lievre 1314:
1315: pp=vector(1,nlstate);
1.19 lievre 1316: probs= ma3x(1,AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.15 lievre 1317:
1318: freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,agemin,agemax+3);
1319: j1=0;
1320:
1321: j=cptcoveff;
1322: if (cptcovn<1) {j=1;ncodemax[1]=1;}
1323:
1324: for(k1=1; k1<=j;k1++){
1325: for(i1=1; i1<=ncodemax[k1];i1++){
1326: j1++;
1327:
1328: for (i=-1; i<=nlstate+ndeath; i++)
1329: for (jk=-1; jk<=nlstate+ndeath; jk++)
1330: for(m=agemin; m <= agemax+3; m++)
1.19 lievre 1331: freq[i][jk][m]=0;
1.15 lievre 1332:
1333: for (i=1; i<=imx; i++) {
1334: bool=1;
1335: if (cptcovn>0) {
1336: for (z1=1; z1<=cptcoveff; z1++)
1337: if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtab[j1][z1]])
1338: bool=0;
1.19 lievre 1339: }
1340: if (bool==1) {
1341: for(m=firstpass; m<=lastpass; m++){
1342: k2=anint[m][i]+(mint[m][i]/12.);
1343: if ((k2>=dateprev1) && (k2<=dateprev2)) {
1.18 lievre 1344: if(agev[m][i]==0) agev[m][i]=agemax+1;
1345: if(agev[m][i]==1) agev[m][i]=agemax+2;
1.20 lievre 1346: freq[s[m][i]][s[m+1][i]][(int)(agev[m][i]+1-((int)calagedate %12)/12.)] += weight[i];
1.19 lievre 1347: freq[s[m][i]][s[m+1][i]][(int)(agemax+3+1)] += weight[i];
1.18 lievre 1348: }
1.15 lievre 1349: }
1350: }
1351: }
1.19 lievre 1352:
1.18 lievre 1353: for(i=(int)agemin; i <= (int)agemax+3; i++){
1354: for(jk=1; jk <=nlstate ; jk++){
1355: for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
1356: pp[jk] += freq[jk][m][i];
1357: }
1358: for(jk=1; jk <=nlstate ; jk++){
1359: for(m=-1, pos=0; m <=0 ; m++)
1.15 lievre 1360: pos += freq[jk][m][i];
1361: }
1362:
1363: for(jk=1; jk <=nlstate ; jk++){
1364: for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)
1365: pp[jk] += freq[jk][m][i];
1366: }
1367:
1368: for(jk=1,pos=0; jk <=nlstate ; jk++) pos += pp[jk];
1369:
1370: for(jk=1; jk <=nlstate ; jk++){
1371: if( i <= (int) agemax){
1372: if(pos>=1.e-5){
1373: probs[i][jk][j1]= pp[jk]/pos;
1374: }
1375: }
1376: }
1377:
1.18 lievre 1378: }
1.15 lievre 1379: }
1380: }
1381:
1382:
1383: free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath,(int) agemin,(int) agemax+3);
1384: free_vector(pp,1,nlstate);
1385:
1386: } /* End of Freq */
1.19 lievre 1387:
1.2 lievre 1388: /************* Waves Concatenation ***************/
1389:
1390: void concatwav(int wav[], int **dh, int **mw, int **s, double *agedc, double **agev, int firstpass, int lastpass, int imx, int nlstate, int stepm)
1391: {
1392: /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
1393: Death is a valid wave (if date is known).
1394: mw[mi][i] is the mi (mi=1 to wav[i]) effective wave of individual i
1395: dh[m][i] of dh[mw[mi][i][i] is the delay between two effective waves m=mw[mi][i]
1396: and mw[mi+1][i]. dh depends on stepm.
1397: */
1398:
1399: int i, mi, m;
1.8 lievre 1400: /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
1401: double sum=0., jmean=0.;*/
1.2 lievre 1402:
1.11 lievre 1403: int j, k=0,jk, ju, jl;
1404: double sum=0.;
1405: jmin=1e+5;
1406: jmax=-1;
1407: jmean=0.;
1.2 lievre 1408: for(i=1; i<=imx; i++){
1409: mi=0;
1410: m=firstpass;
1411: while(s[m][i] <= nlstate){
1412: if(s[m][i]>=1)
1413: mw[++mi][i]=m;
1414: if(m >=lastpass)
1415: break;
1416: else
1417: m++;
1418: }/* end while */
1419: if (s[m][i] > nlstate){
1420: mi++; /* Death is another wave */
1421: /* if(mi==0) never been interviewed correctly before death */
1422: /* Only death is a correct wave */
1423: mw[mi][i]=m;
1424: }
1425:
1426: wav[i]=mi;
1427: if(mi==0)
1428: printf("Warning, no any valid information for:%d line=%d\n",num[i],i);
1429: }
1430:
1431: for(i=1; i<=imx; i++){
1432: for(mi=1; mi<wav[i];mi++){
1433: if (stepm <=0)
1434: dh[mi][i]=1;
1435: else{
1436: if (s[mw[mi+1][i]][i] > nlstate) {
1.10 lievre 1437: if (agedc[i] < 2*AGESUP) {
1.2 lievre 1438: j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12);
1.8 lievre 1439: if(j==0) j=1; /* Survives at least one month after exam */
1440: k=k+1;
1441: if (j >= jmax) jmax=j;
1.11 lievre 1442: if (j <= jmin) jmin=j;
1.8 lievre 1443: sum=sum+j;
1.12 lievre 1444: /* if (j<10) printf("j=%d num=%d ",j,i); */
1.10 lievre 1445: }
1.2 lievre 1446: }
1447: else{
1448: j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1449: k=k+1;
1450: if (j >= jmax) jmax=j;
1451: else if (j <= jmin)jmin=j;
1.12 lievre 1452: /* if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
1.2 lievre 1453: sum=sum+j;
1454: }
1455: jk= j/stepm;
1456: jl= j -jk*stepm;
1457: ju= j -(jk+1)*stepm;
1458: if(jl <= -ju)
1459: dh[mi][i]=jk;
1460: else
1461: dh[mi][i]=jk+1;
1462: if(dh[mi][i]==0)
1463: dh[mi][i]=1; /* At least one step */
1464: }
1465: }
1466: }
1.8 lievre 1467: jmean=sum/k;
1468: printf("Delay (in months) between two waves Min=%d Max=%d Mean=%f\n\n ",jmin, jmax,jmean);
1.12 lievre 1469: }
1.2 lievre 1470: /*********** Tricode ****************************/
1471: void tricode(int *Tvar, int **nbcode, int imx)
1472: {
1.7 lievre 1473: int Ndum[20],ij=1, k, j, i;
1.2 lievre 1474: int cptcode=0;
1.7 lievre 1475: cptcoveff=0;
1476:
1477: for (k=0; k<19; k++) Ndum[k]=0;
1.2 lievre 1478: for (k=1; k<=7; k++) ncodemax[k]=0;
1.6 lievre 1479:
1.7 lievre 1480: for (j=1; j<=(cptcovn+2*cptcovprod); j++) {
1.2 lievre 1481: for (i=1; i<=imx; i++) {
1482: ij=(int)(covar[Tvar[j]][i]);
1483: Ndum[ij]++;
1.8 lievre 1484: /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
1.2 lievre 1485: if (ij > cptcode) cptcode=ij;
1486: }
1.7 lievre 1487:
1.2 lievre 1488: for (i=0; i<=cptcode; i++) {
1489: if(Ndum[i]!=0) ncodemax[j]++;
1490: }
1491: ij=1;
1.7 lievre 1492:
1.8 lievre 1493:
1.2 lievre 1494: for (i=1; i<=ncodemax[j]; i++) {
1.7 lievre 1495: for (k=0; k<=19; k++) {
1.2 lievre 1496: if (Ndum[k] != 0) {
1497: nbcode[Tvar[j]][ij]=k;
1498: ij++;
1499: }
1500: if (ij > ncodemax[j]) break;
1501: }
1502: }
1.7 lievre 1503: }
1.8 lievre 1504:
1505: for (k=0; k<19; k++) Ndum[k]=0;
1506:
1.12 lievre 1507: for (i=1; i<=ncovmodel-2; i++) {
1.7 lievre 1508: ij=Tvar[i];
1509: Ndum[ij]++;
1510: }
1.8 lievre 1511:
1.7 lievre 1512: ij=1;
1.8 lievre 1513: for (i=1; i<=10; i++) {
1.7 lievre 1514: if((Ndum[i]!=0) && (i<=ncov)){
1.8 lievre 1515: Tvaraff[ij]=i;
1516: ij++;
1.7 lievre 1517: }
1518: }
1519:
1.8 lievre 1520: cptcoveff=ij-1;
1.6 lievre 1521: }
1.2 lievre 1522:
1523: /*********** Health Expectancies ****************/
1524:
1525: void evsij(char fileres[], double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int ij)
1526: {
1527: /* Health expectancies */
1528: int i, j, nhstepm, hstepm, h;
1529: double age, agelim,hf;
1530: double ***p3mat;
1531:
1532: fprintf(ficreseij,"# Health expectancies\n");
1533: fprintf(ficreseij,"# Age");
1534: for(i=1; i<=nlstate;i++)
1535: for(j=1; j<=nlstate;j++)
1536: fprintf(ficreseij," %1d-%1d",i,j);
1537: fprintf(ficreseij,"\n");
1538:
1539: hstepm=1*YEARM; /* Every j years of age (in month) */
1540: hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
1541:
1542: agelim=AGESUP;
1543: for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
1544: /* nhstepm age range expressed in number of stepm */
1545: nhstepm=(int) rint((agelim-age)*YEARM/stepm);
1546: /* Typically if 20 years = 20*12/6=40 stepm */
1547: if (stepm >= YEARM) hstepm=1;
1548: nhstepm = nhstepm/hstepm;/* Expressed in hstepm, typically 40/4=10 */
1549: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1550: /* Computed by stepm unit matrices, product of hstepm matrices, stored
1551: in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
1552: hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, ij);
1553:
1554:
1555: for(i=1; i<=nlstate;i++)
1556: for(j=1; j<=nlstate;j++)
1557: for (h=0, eij[i][j][(int)age]=0; h<=nhstepm; h++){
1558: eij[i][j][(int)age] +=p3mat[i][j][h];
1559: }
1560:
1561: hf=1;
1562: if (stepm >= YEARM) hf=stepm/YEARM;
1563: fprintf(ficreseij,"%.0f",age );
1564: for(i=1; i<=nlstate;i++)
1565: for(j=1; j<=nlstate;j++){
1566: fprintf(ficreseij," %.4f", hf*eij[i][j][(int)age]);
1567: }
1568: fprintf(ficreseij,"\n");
1569: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1570: }
1571: }
1572:
1573: /************ Variance ******************/
1574: void varevsij(char fileres[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
1575: {
1576: /* Variance of health expectancies */
1577: /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
1578: double **newm;
1579: double **dnewm,**doldm;
1580: int i, j, nhstepm, hstepm, h;
1581: int k, cptcode;
1.12 lievre 1582: double *xp;
1.2 lievre 1583: double **gp, **gm;
1584: double ***gradg, ***trgradg;
1585: double ***p3mat;
1586: double age,agelim;
1587: int theta;
1588:
1589: fprintf(ficresvij,"# Covariances of life expectancies\n");
1590: fprintf(ficresvij,"# Age");
1591: for(i=1; i<=nlstate;i++)
1592: for(j=1; j<=nlstate;j++)
1593: fprintf(ficresvij," Cov(e%1d, e%1d)",i,j);
1594: fprintf(ficresvij,"\n");
1595:
1596: xp=vector(1,npar);
1597: dnewm=matrix(1,nlstate,1,npar);
1598: doldm=matrix(1,nlstate,1,nlstate);
1599:
1600: hstepm=1*YEARM; /* Every year of age */
1601: hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
1602: agelim = AGESUP;
1603: for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
1604: nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
1605: if (stepm >= YEARM) hstepm=1;
1606: nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
1607: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1608: gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
1609: gp=matrix(0,nhstepm,1,nlstate);
1610: gm=matrix(0,nhstepm,1,nlstate);
1611:
1612: for(theta=1; theta <=npar; theta++){
1613: for(i=1; i<=npar; i++){ /* Computes gradient */
1614: xp[i] = x[i] + (i==theta ?delti[theta]:0);
1615: }
1616: hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
1617: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1.14 lievre 1618:
1619: if (popbased==1) {
1620: for(i=1; i<=nlstate;i++)
1621: prlim[i][i]=probs[(int)age][i][ij];
1622: }
1623:
1.2 lievre 1624: for(j=1; j<= nlstate; j++){
1625: for(h=0; h<=nhstepm; h++){
1626: for(i=1, gp[h][j]=0.;i<=nlstate;i++)
1627: gp[h][j] += prlim[i][i]*p3mat[i][j][h];
1628: }
1629: }
1630:
1631: for(i=1; i<=npar; i++) /* Computes gradient */
1632: xp[i] = x[i] - (i==theta ?delti[theta]:0);
1633: hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij);
1634: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1.14 lievre 1635:
1636: if (popbased==1) {
1637: for(i=1; i<=nlstate;i++)
1638: prlim[i][i]=probs[(int)age][i][ij];
1639: }
1640:
1.2 lievre 1641: for(j=1; j<= nlstate; j++){
1642: for(h=0; h<=nhstepm; h++){
1643: for(i=1, gm[h][j]=0.;i<=nlstate;i++)
1644: gm[h][j] += prlim[i][i]*p3mat[i][j][h];
1645: }
1646: }
1.14 lievre 1647:
1.2 lievre 1648: for(j=1; j<= nlstate; j++)
1649: for(h=0; h<=nhstepm; h++){
1650: gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
1651: }
1652: } /* End theta */
1653:
1654: trgradg =ma3x(0,nhstepm,1,nlstate,1,npar);
1655:
1656: for(h=0; h<=nhstepm; h++)
1657: for(j=1; j<=nlstate;j++)
1658: for(theta=1; theta <=npar; theta++)
1659: trgradg[h][j][theta]=gradg[h][theta][j];
1660:
1661: for(i=1;i<=nlstate;i++)
1662: for(j=1;j<=nlstate;j++)
1663: vareij[i][j][(int)age] =0.;
1664: for(h=0;h<=nhstepm;h++){
1665: for(k=0;k<=nhstepm;k++){
1666: matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
1667: matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
1668: for(i=1;i<=nlstate;i++)
1669: for(j=1;j<=nlstate;j++)
1670: vareij[i][j][(int)age] += doldm[i][j];
1671: }
1672: }
1673: h=1;
1674: if (stepm >= YEARM) h=stepm/YEARM;
1675: fprintf(ficresvij,"%.0f ",age );
1676: for(i=1; i<=nlstate;i++)
1677: for(j=1; j<=nlstate;j++){
1678: fprintf(ficresvij," %.4f", h*vareij[i][j][(int)age]);
1679: }
1680: fprintf(ficresvij,"\n");
1681: free_matrix(gp,0,nhstepm,1,nlstate);
1682: free_matrix(gm,0,nhstepm,1,nlstate);
1683: free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
1684: free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
1685: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
1686: } /* End age */
1687:
1688: free_vector(xp,1,npar);
1689: free_matrix(doldm,1,nlstate,1,npar);
1690: free_matrix(dnewm,1,nlstate,1,nlstate);
1691:
1692: }
1693:
1694: /************ Variance of prevlim ******************/
1695: void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int ij)
1696: {
1697: /* Variance of prevalence limit */
1698: /* double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
1699: double **newm;
1700: double **dnewm,**doldm;
1701: int i, j, nhstepm, hstepm;
1702: int k, cptcode;
1703: double *xp;
1704: double *gp, *gm;
1705: double **gradg, **trgradg;
1706: double age,agelim;
1707: int theta;
1708:
1709: fprintf(ficresvpl,"# Standard deviation of prevalences limit\n");
1710: fprintf(ficresvpl,"# Age");
1711: for(i=1; i<=nlstate;i++)
1712: fprintf(ficresvpl," %1d-%1d",i,i);
1713: fprintf(ficresvpl,"\n");
1714:
1715: xp=vector(1,npar);
1716: dnewm=matrix(1,nlstate,1,npar);
1717: doldm=matrix(1,nlstate,1,nlstate);
1718:
1719: hstepm=1*YEARM; /* Every year of age */
1720: hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */
1721: agelim = AGESUP;
1722: for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
1723: nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
1724: if (stepm >= YEARM) hstepm=1;
1725: nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
1726: gradg=matrix(1,npar,1,nlstate);
1727: gp=vector(1,nlstate);
1728: gm=vector(1,nlstate);
1729:
1730: for(theta=1; theta <=npar; theta++){
1731: for(i=1; i<=npar; i++){ /* Computes gradient */
1732: xp[i] = x[i] + (i==theta ?delti[theta]:0);
1733: }
1734: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1735: for(i=1;i<=nlstate;i++)
1736: gp[i] = prlim[i][i];
1737:
1738: for(i=1; i<=npar; i++) /* Computes gradient */
1739: xp[i] = x[i] - (i==theta ?delti[theta]:0);
1740: prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ij);
1741: for(i=1;i<=nlstate;i++)
1742: gm[i] = prlim[i][i];
1743:
1744: for(i=1;i<=nlstate;i++)
1745: gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
1746: } /* End theta */
1747:
1748: trgradg =matrix(1,nlstate,1,npar);
1749:
1750: for(j=1; j<=nlstate;j++)
1751: for(theta=1; theta <=npar; theta++)
1752: trgradg[j][theta]=gradg[theta][j];
1753:
1754: for(i=1;i<=nlstate;i++)
1755: varpl[i][(int)age] =0.;
1756: matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
1757: matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
1758: for(i=1;i<=nlstate;i++)
1759: varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
1760:
1761: fprintf(ficresvpl,"%.0f ",age );
1762: for(i=1; i<=nlstate;i++)
1763: fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
1764: fprintf(ficresvpl,"\n");
1765: free_vector(gp,1,nlstate);
1766: free_vector(gm,1,nlstate);
1767: free_matrix(gradg,1,npar,1,nlstate);
1768: free_matrix(trgradg,1,nlstate,1,npar);
1769: } /* End age */
1770:
1771: free_vector(xp,1,npar);
1772: free_matrix(doldm,1,nlstate,1,npar);
1773: free_matrix(dnewm,1,nlstate,1,nlstate);
1774:
1775: }
1776:
1.13 lievre 1777: /************ Variance of one-step probabilities ******************/
1778: void varprob(char fileres[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij)
1779: {
1780: int i, j;
1781: int k=0, cptcode;
1782: double **dnewm,**doldm;
1783: double *xp;
1784: double *gp, *gm;
1785: double **gradg, **trgradg;
1786: double age,agelim, cov[NCOVMAX];
1787: int theta;
1788: char fileresprob[FILENAMELENGTH];
1789:
1790: strcpy(fileresprob,"prob");
1791: strcat(fileresprob,fileres);
1792: if((ficresprob=fopen(fileresprob,"w"))==NULL) {
1793: printf("Problem with resultfile: %s\n", fileresprob);
1794: }
1795: printf("Computing variance of one-step probabilities: result on file '%s' \n",fileresprob);
1796:
1.2 lievre 1797:
1.13 lievre 1798: xp=vector(1,npar);
1799: dnewm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
1800: doldm=matrix(1,(nlstate+ndeath)*(nlstate+ndeath),1,(nlstate+ndeath)*(nlstate+ndeath));
1801:
1802: cov[1]=1;
1803: for (age=bage; age<=fage; age ++){
1804: cov[2]=age;
1805: gradg=matrix(1,npar,1,9);
1806: trgradg=matrix(1,9,1,npar);
1807: gp=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
1808: gm=vector(1,(nlstate+ndeath)*(nlstate+ndeath));
1809:
1810: for(theta=1; theta <=npar; theta++){
1811: for(i=1; i<=npar; i++)
1812: xp[i] = x[i] + (i==theta ?delti[theta]:0);
1813:
1814: pmij(pmmij,cov,ncovmodel,xp,nlstate);
1815:
1816: k=0;
1817: for(i=1; i<= (nlstate+ndeath); i++){
1818: for(j=1; j<=(nlstate+ndeath);j++){
1819: k=k+1;
1820: gp[k]=pmmij[i][j];
1821: }
1822: }
1823:
1824: for(i=1; i<=npar; i++)
1825: xp[i] = x[i] - (i==theta ?delti[theta]:0);
1826:
1827:
1828: pmij(pmmij,cov,ncovmodel,xp,nlstate);
1829: k=0;
1830: for(i=1; i<=(nlstate+ndeath); i++){
1831: for(j=1; j<=(nlstate+ndeath);j++){
1832: k=k+1;
1833: gm[k]=pmmij[i][j];
1834: }
1835: }
1836:
1837: for(i=1; i<= (nlstate+ndeath)*(nlstate+ndeath); i++)
1838: gradg[theta][i]=(gp[i]-gm[i])/2./delti[theta];
1839: }
1840:
1841: for(j=1; j<=(nlstate+ndeath)*(nlstate+ndeath);j++)
1842: for(theta=1; theta <=npar; theta++)
1843: trgradg[j][theta]=gradg[theta][j];
1844:
1845: matprod2(dnewm,trgradg,1,9,1,npar,1,npar,matcov);
1846: matprod2(doldm,dnewm,1,9,1,npar,1,9,gradg);
1847:
1848: pmij(pmmij,cov,ncovmodel,x,nlstate);
1849:
1850: k=0;
1851: for(i=1; i<=(nlstate+ndeath); i++){
1852: for(j=1; j<=(nlstate+ndeath);j++){
1853: k=k+1;
1854: gm[k]=pmmij[i][j];
1855: }
1856: }
1857:
1858: /*printf("\n%d ",(int)age);
1859: for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){
1860:
1861:
1862: printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
1863: }*/
1864:
1865: fprintf(ficresprob,"\n%d ",(int)age);
1866:
1867: for (i=1; i<=(nlstate+ndeath)*(nlstate+ndeath-1);i++){
1868: if (i== 2) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);
1869: if (i== 4) fprintf(ficresprob,"%.3e %.3e ",gm[i],doldm[i][i]);
1870: }
1871:
1872: free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
1873: free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
1874: free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
1875: free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
1876: }
1877: free_vector(xp,1,npar);
1878: fclose(ficresprob);
1879: exit(0);
1880: }
1.2 lievre 1881:
1882: /***********************************************/
1883: /**************** Main Program *****************/
1884: /***********************************************/
1885:
1.22 brouard 1886: int main(int argc, char *argv[])
1.2 lievre 1887: {
1888:
1.8 lievre 1889: int i,j, k, n=MAXN,iter,m,size,cptcode, cptcod;
1.2 lievre 1890: double agedeb, agefin,hf;
1891: double agemin=1.e20, agemax=-1.e20;
1892:
1893: double fret;
1894: double **xi,tmp,delta;
1895:
1896: double dum; /* Dummy variable */
1897: double ***p3mat;
1898: int *indx;
1899: char line[MAXLINE], linepar[MAXLINE];
1900: char title[MAXLINE];
1.9 lievre 1901: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH], filerespl[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH];
1.22 brouard 1902: char optionfilext[10], optionfilefiname[FILENAMELENGTH], optionfilegnuplot[FILENAMELENGTH], plotcmd[FILENAMELENGTH];
1903:
1.23 ! lievre 1904: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filereso[FILENAMELENGTH], fileresf[FILENAMELENGTH];
1.22 brouard 1905:
1.2 lievre 1906: char filerest[FILENAMELENGTH];
1907: char fileregp[FILENAMELENGTH];
1.16 lievre 1908: char popfile[FILENAMELENGTH];
1.2 lievre 1909: char path[80],pathc[80],pathcd[80],pathtot[80],model[20];
1910: int firstobs=1, lastobs=10;
1911: int sdeb, sfin; /* Status at beginning and end */
1912: int c, h , cpt,l;
1913: int ju,jl, mi;
1.7 lievre 1914: int i1,j1, k1,k2,k3,jk,aa,bb, stepsize, ij;
1.14 lievre 1915: int jnais,jdc,jint4,jint1,jint2,jint3,**outcome,**adl,*tab;
1.19 lievre 1916: int mobilav=0,popforecast=0;
1.2 lievre 1917: int hstepm, nhstepm;
1.19 lievre 1918: int *popage;/*boolprev=0 if date and zero if wave*/
1919: double jprev1, mprev1,anprev1,jprev2, mprev2,anprev2;
1.14 lievre 1920:
1.2 lievre 1921: double bage, fage, age, agelim, agebase;
1922: double ftolpl=FTOL;
1923: double **prlim;
1924: double *severity;
1925: double ***param; /* Matrix of parameters */
1926: double *p;
1927: double **matcov; /* Matrix of covariance */
1928: double ***delti3; /* Scale */
1929: double *delti; /* Scale */
1930: double ***eij, ***vareij;
1931: double **varpl; /* Variances of prevalence limits by age */
1932: double *epj, vepp;
1.16 lievre 1933: double kk1, kk2;
1934: double *popeffectif,*popcount;
1.19 lievre 1935: double dateprev1, dateprev2,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,jprojmean,mprojmean,anprojmean, calagedate;
1936: double yp,yp1,yp2;
1.13 lievre 1937:
1.22 brouard 1938: char version[80]="Imach version 0.7, February 2002, INED-EUROREVES ";
1.2 lievre 1939: char *alph[]={"a","a","b","c","d","e"}, str[4];
1.5 lievre 1940:
1.13 lievre 1941:
1.2 lievre 1942: char z[1]="c", occ;
1943: #include <sys/time.h>
1944: #include <time.h>
1945: char stra[80], strb[80], strc[80], strd[80],stre[80],modelsav[80];
1.19 lievre 1946:
1.2 lievre 1947: /* long total_usecs;
1948: struct timeval start_time, end_time;
1949:
1950: gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
1951:
1952:
1.22 brouard 1953: printf("\n%s",version);
1954: if(argc <=1){
1955: printf("\nEnter the parameter file name: ");
1956: scanf("%s",pathtot);
1957: }
1958: else{
1959: strcpy(pathtot,argv[1]);
1960: }
1961: /*if(getcwd(pathcd, 80)!= NULL)printf ("Error pathcd\n");*/
1.5 lievre 1962: /*cygwin_split_path(pathtot,path,optionfile);
1963: printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
1964: /* cutv(path,optionfile,pathtot,'\\');*/
1965:
1.22 brouard 1966: split(pathtot,path,optionfile,optionfilext,optionfilefiname);
1967: printf("pathtot=%s, path=%s, optionfile=%s optionfilext=%s optionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
1.2 lievre 1968: chdir(path);
1969: replace(pathc,path);
1970:
1971: /*-------- arguments in the command line --------*/
1972:
1973: strcpy(fileres,"r");
1.22 brouard 1974: strcat(fileres, optionfilefiname);
1975: strcat(fileres,".txt"); /* Other files have txt extension */
1.2 lievre 1976:
1977: /*---------arguments file --------*/
1978:
1979: if((ficpar=fopen(optionfile,"r"))==NULL) {
1980: printf("Problem with optionfile %s\n",optionfile);
1981: goto end;
1982: }
1983:
1984: strcpy(filereso,"o");
1985: strcat(filereso,fileres);
1986: if((ficparo=fopen(filereso,"w"))==NULL) {
1987: printf("Problem with Output resultfile: %s\n", filereso);goto end;
1988: }
1989:
1990: /* Reads comments: lines beginning with '#' */
1991: while((c=getc(ficpar))=='#' && c!= EOF){
1992: ungetc(c,ficpar);
1993: fgets(line, MAXLINE, ficpar);
1994: puts(line);
1995: fputs(line,ficparo);
1996: }
1997: ungetc(c,ficpar);
1998:
1999: fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncov, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model);
2000: printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate,ndeath, maxwav, mle, weightopt,model);
2001: fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncov,nlstate,ndeath,maxwav, mle, weightopt,model);
1.14 lievre 2002: while((c=getc(ficpar))=='#' && c!= EOF){
2003: ungetc(c,ficpar);
2004: fgets(line, MAXLINE, ficpar);
2005: puts(line);
2006: fputs(line,ficparo);
2007: }
2008: ungetc(c,ficpar);
2009:
1.19 lievre 2010:
1.8 lievre 2011: covar=matrix(0,NCOVMAX,1,n);
2012: cptcovn=0;
2013: if (strlen(model)>1) cptcovn=nbocc(model,'+')+1;
1.2 lievre 2014:
2015: ncovmodel=2+cptcovn;
2016: nvar=ncovmodel-1; /* Suppressing age as a basic covariate */
2017:
2018: /* Read guess parameters */
2019: /* Reads comments: lines beginning with '#' */
2020: while((c=getc(ficpar))=='#' && c!= EOF){
2021: ungetc(c,ficpar);
2022: fgets(line, MAXLINE, ficpar);
2023: puts(line);
2024: fputs(line,ficparo);
2025: }
2026: ungetc(c,ficpar);
2027:
2028: param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
2029: for(i=1; i <=nlstate; i++)
2030: for(j=1; j <=nlstate+ndeath-1; j++){
2031: fscanf(ficpar,"%1d%1d",&i1,&j1);
2032: fprintf(ficparo,"%1d%1d",i1,j1);
2033: printf("%1d%1d",i,j);
2034: for(k=1; k<=ncovmodel;k++){
2035: fscanf(ficpar," %lf",¶m[i][j][k]);
2036: printf(" %lf",param[i][j][k]);
2037: fprintf(ficparo," %lf",param[i][j][k]);
2038: }
2039: fscanf(ficpar,"\n");
2040: printf("\n");
2041: fprintf(ficparo,"\n");
2042: }
2043:
1.12 lievre 2044: npar= (nlstate+ndeath-1)*nlstate*ncovmodel;
2045:
1.2 lievre 2046: p=param[1][1];
2047:
2048: /* Reads comments: lines beginning with '#' */
2049: while((c=getc(ficpar))=='#' && c!= EOF){
2050: ungetc(c,ficpar);
2051: fgets(line, MAXLINE, ficpar);
2052: puts(line);
2053: fputs(line,ficparo);
2054: }
2055: ungetc(c,ficpar);
2056:
2057: delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
2058: delti=vector(1,npar); /* Scale of each paramater (output from hesscov) */
2059: for(i=1; i <=nlstate; i++){
2060: for(j=1; j <=nlstate+ndeath-1; j++){
2061: fscanf(ficpar,"%1d%1d",&i1,&j1);
2062: printf("%1d%1d",i,j);
2063: fprintf(ficparo,"%1d%1d",i1,j1);
2064: for(k=1; k<=ncovmodel;k++){
2065: fscanf(ficpar,"%le",&delti3[i][j][k]);
2066: printf(" %le",delti3[i][j][k]);
2067: fprintf(ficparo," %le",delti3[i][j][k]);
2068: }
2069: fscanf(ficpar,"\n");
2070: printf("\n");
2071: fprintf(ficparo,"\n");
2072: }
2073: }
2074: delti=delti3[1][1];
2075:
2076: /* Reads comments: lines beginning with '#' */
2077: while((c=getc(ficpar))=='#' && c!= EOF){
2078: ungetc(c,ficpar);
2079: fgets(line, MAXLINE, ficpar);
2080: puts(line);
2081: fputs(line,ficparo);
2082: }
2083: ungetc(c,ficpar);
2084:
2085: matcov=matrix(1,npar,1,npar);
2086: for(i=1; i <=npar; i++){
2087: fscanf(ficpar,"%s",&str);
2088: printf("%s",str);
2089: fprintf(ficparo,"%s",str);
2090: for(j=1; j <=i; j++){
2091: fscanf(ficpar," %le",&matcov[i][j]);
2092: printf(" %.5le",matcov[i][j]);
2093: fprintf(ficparo," %.5le",matcov[i][j]);
2094: }
2095: fscanf(ficpar,"\n");
2096: printf("\n");
2097: fprintf(ficparo,"\n");
2098: }
2099: for(i=1; i <=npar; i++)
2100: for(j=i+1;j<=npar;j++)
2101: matcov[i][j]=matcov[j][i];
2102:
2103: printf("\n");
2104:
2105:
2106: /*-------- data file ----------*/
2107: if((ficres =fopen(fileres,"w"))==NULL) {
2108: printf("Problem with resultfile: %s\n", fileres);goto end;
2109: }
2110: fprintf(ficres,"#%s\n",version);
2111:
2112: if((fic=fopen(datafile,"r"))==NULL) {
2113: printf("Problem with datafile: %s\n", datafile);goto end;
2114: }
2115:
2116: n= lastobs;
2117: severity = vector(1,maxwav);
2118: outcome=imatrix(1,maxwav+1,1,n);
2119: num=ivector(1,n);
2120: moisnais=vector(1,n);
2121: annais=vector(1,n);
2122: moisdc=vector(1,n);
2123: andc=vector(1,n);
2124: agedc=vector(1,n);
2125: cod=ivector(1,n);
2126: weight=vector(1,n);
2127: for(i=1;i<=n;i++) weight[i]=1.0; /* Equal weights, 1 by default */
2128: mint=matrix(1,maxwav,1,n);
2129: anint=matrix(1,maxwav,1,n);
2130: s=imatrix(1,maxwav+1,1,n);
2131: adl=imatrix(1,maxwav+1,1,n);
2132: tab=ivector(1,NCOVMAX);
1.3 lievre 2133: ncodemax=ivector(1,8);
1.2 lievre 2134:
1.12 lievre 2135: i=1;
1.2 lievre 2136: while (fgets(line, MAXLINE, fic) != NULL) {
2137: if ((i >= firstobs) && (i <=lastobs)) {
2138:
2139: for (j=maxwav;j>=1;j--){
2140: cutv(stra, strb,line,' '); s[j][i]=atoi(strb);
2141: strcpy(line,stra);
2142: cutv(stra, strb,line,'/'); anint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
2143: cutv(stra, strb,line,' '); mint[j][i]=(double)(atoi(strb)); strcpy(line,stra);
2144: }
2145:
2146: cutv(stra, strb,line,'/'); andc[i]=(double)(atoi(strb)); strcpy(line,stra);
2147: cutv(stra, strb,line,' '); moisdc[i]=(double)(atoi(strb)); strcpy(line,stra);
2148:
2149: cutv(stra, strb,line,'/'); annais[i]=(double)(atoi(strb)); strcpy(line,stra);
2150: cutv(stra, strb,line,' '); moisnais[i]=(double)(atoi(strb)); strcpy(line,stra);
2151:
2152: cutv(stra, strb,line,' '); weight[i]=(double)(atoi(strb)); strcpy(line,stra);
2153: for (j=ncov;j>=1;j--){
2154: cutv(stra, strb,line,' '); covar[j][i]=(double)(atoi(strb)); strcpy(line,stra);
2155: }
2156: num[i]=atol(stra);
1.12 lievre 2157:
2158: /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
2159: printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
1.2 lievre 2160:
2161: i=i+1;
2162: }
2163: }
1.12 lievre 2164: /* printf("ii=%d", ij);
2165: scanf("%d",i);*/
2166: imx=i-1; /* Number of individuals */
1.3 lievre 2167:
1.12 lievre 2168: /* for (i=1; i<=imx; i++){
2169: if ((s[1][i]==3) && (s[2][i]==2)) s[2][i]=3;
2170: if ((s[2][i]==3) && (s[3][i]==2)) s[3][i]=3;
2171: if ((s[3][i]==3) && (s[4][i]==2)) s[4][i]=3;
1.14 lievre 2172: }
1.19 lievre 2173:
2174: for (i=1; i<=imx; i++)
2175: if (covar[1][i]==0) printf("%d %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]), (weight[i]), (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]), (mint[2][i]), (anint[2][i]), (s[2][i]), (mint[3][i]), (anint[3][i]), (s[3][i]), (mint[4][i]), (anint[4][i]), (s[4][i]));*/
1.2 lievre 2176:
2177: /* Calculation of the number of parameter from char model*/
1.7 lievre 2178: Tvar=ivector(1,15);
2179: Tprod=ivector(1,15);
2180: Tvaraff=ivector(1,15);
2181: Tvard=imatrix(1,15,1,2);
1.6 lievre 2182: Tage=ivector(1,15);
1.2 lievre 2183:
2184: if (strlen(model) >1){
1.7 lievre 2185: j=0, j1=0, k1=1, k2=1;
1.2 lievre 2186: j=nbocc(model,'+');
1.6 lievre 2187: j1=nbocc(model,'*');
1.2 lievre 2188: cptcovn=j+1;
1.7 lievre 2189: cptcovprod=j1;
1.3 lievre 2190:
1.8 lievre 2191:
1.2 lievre 2192: strcpy(modelsav,model);
1.8 lievre 2193: if ((strcmp(model,"age")==0) || (strcmp(model,"age*age")==0)){
2194: printf("Error. Non available option model=%s ",model);
2195: goto end;
2196: }
2197:
2198: for(i=(j+1); i>=1;i--){
2199: cutv(stra,strb,modelsav,'+');
2200: if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav);
2201: /* printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
2202: /*scanf("%d",i);*/
2203: if (strchr(strb,'*')) {
2204: cutv(strd,strc,strb,'*');
2205: if (strcmp(strc,"age")==0) {
1.7 lievre 2206: cptcovprod--;
1.8 lievre 2207: cutv(strb,stre,strd,'V');
2208: Tvar[i]=atoi(stre);
2209: cptcovage++;
2210: Tage[cptcovage]=i;
2211: /*printf("stre=%s ", stre);*/
1.7 lievre 2212: }
1.8 lievre 2213: else if (strcmp(strd,"age")==0) {
1.7 lievre 2214: cptcovprod--;
1.8 lievre 2215: cutv(strb,stre,strc,'V');
2216: Tvar[i]=atoi(stre);
2217: cptcovage++;
2218: Tage[cptcovage]=i;
1.7 lievre 2219: }
2220: else {
1.8 lievre 2221: cutv(strb,stre,strc,'V');
2222: Tvar[i]=ncov+k1;
2223: cutv(strb,strc,strd,'V');
2224: Tprod[k1]=i;
2225: Tvard[k1][1]=atoi(strc);
2226: Tvard[k1][2]=atoi(stre);
2227: Tvar[cptcovn+k2]=Tvard[k1][1];
2228: Tvar[cptcovn+k2+1]=Tvard[k1][2];
1.7 lievre 2229: for (k=1; k<=lastobs;k++)
1.8 lievre 2230: covar[ncov+k1][k]=covar[atoi(stre)][k]*covar[atoi(strc)][k];
2231: k1++;
2232: k2=k2+2;
1.7 lievre 2233: }
1.2 lievre 2234: }
1.8 lievre 2235: else {
2236: /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
2237: /* scanf("%d",i);*/
2238: cutv(strd,strc,strb,'V');
2239: Tvar[i]=atoi(strc);
2240: }
2241: strcpy(modelsav,stra);
2242: /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
2243: scanf("%d",i);*/
1.2 lievre 2244: }
1.8 lievre 2245: }
2246:
2247: /*printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
2248: printf("cptcovprod=%d ", cptcovprod);
2249: scanf("%d ",i);*/
1.2 lievre 2250: fclose(fic);
2251:
1.7 lievre 2252: /* if(mle==1){*/
1.2 lievre 2253: if (weightopt != 1) { /* Maximisation without weights*/
2254: for(i=1;i<=n;i++) weight[i]=1.0;
2255: }
2256: /*-calculation of age at interview from date of interview and age at death -*/
2257: agev=matrix(1,maxwav,1,imx);
1.12 lievre 2258:
2259: for (i=1; i<=imx; i++)
2260: for(m=2; (m<= maxwav); m++)
2261: if ((mint[m][i]== 99) && (s[m][i] <= nlstate)){
2262: anint[m][i]=9999;
2263: s[m][i]=-1;
2264: }
1.2 lievre 2265:
2266: for (i=1; i<=imx; i++) {
2267: agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
2268: for(m=1; (m<= maxwav); m++){
2269: if(s[m][i] >0){
2270: if (s[m][i] == nlstate+1) {
2271: if(agedc[i]>0)
2272: if(moisdc[i]!=99 && andc[i]!=9999)
2273: agev[m][i]=agedc[i];
1.8 lievre 2274: else {
2275: if (andc[i]!=9999){
1.2 lievre 2276: printf("Warning negative age at death: %d line:%d\n",num[i],i);
2277: agev[m][i]=-1;
1.8 lievre 2278: }
1.2 lievre 2279: }
2280: }
2281: else if(s[m][i] !=9){ /* Should no more exist */
2282: agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
1.3 lievre 2283: if(mint[m][i]==99 || anint[m][i]==9999)
1.2 lievre 2284: agev[m][i]=1;
2285: else if(agev[m][i] <agemin){
2286: agemin=agev[m][i];
2287: /*printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], agemin);*/
2288: }
2289: else if(agev[m][i] >agemax){
2290: agemax=agev[m][i];
2291: /* printf(" anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.0f\n",m,i,anint[m][i], i,annais[i], agemax);*/
2292: }
2293: /*agev[m][i]=anint[m][i]-annais[i];*/
2294: /* agev[m][i] = age[i]+2*m;*/
2295: }
2296: else { /* =9 */
2297: agev[m][i]=1;
2298: s[m][i]=-1;
2299: }
2300: }
2301: else /*= 0 Unknown */
2302: agev[m][i]=1;
2303: }
2304:
2305: }
2306: for (i=1; i<=imx; i++) {
2307: for(m=1; (m<= maxwav); m++){
2308: if (s[m][i] > (nlstate+ndeath)) {
2309: printf("Error: Wrong value in nlstate or ndeath\n");
2310: goto end;
2311: }
2312: }
2313: }
2314:
2315: printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, agemin, agemax);
2316:
2317: free_vector(severity,1,maxwav);
2318: free_imatrix(outcome,1,maxwav+1,1,n);
2319: free_vector(moisnais,1,n);
2320: free_vector(annais,1,n);
1.17 lievre 2321: /* free_matrix(mint,1,maxwav,1,n);
2322: free_matrix(anint,1,maxwav,1,n);*/
1.2 lievre 2323: free_vector(moisdc,1,n);
2324: free_vector(andc,1,n);
2325:
2326:
2327: wav=ivector(1,imx);
2328: dh=imatrix(1,lastpass-firstpass+1,1,imx);
2329: mw=imatrix(1,lastpass-firstpass+1,1,imx);
2330:
2331: /* Concatenates waves */
2332: concatwav(wav, dh, mw, s, agedc, agev, firstpass, lastpass, imx, nlstate, stepm);
2333:
2334:
1.6 lievre 2335: Tcode=ivector(1,100);
1.8 lievre 2336: nbcode=imatrix(0,NCOVMAX,0,NCOVMAX);
1.7 lievre 2337: ncodemax[1]=1;
2338: if (cptcovn > 0) tricode(Tvar,nbcode,imx);
2339:
1.2 lievre 2340: codtab=imatrix(1,100,1,10);
2341: h=0;
1.7 lievre 2342: m=pow(2,cptcoveff);
1.2 lievre 2343:
1.7 lievre 2344: for(k=1;k<=cptcoveff; k++){
1.2 lievre 2345: for(i=1; i <=(m/pow(2,k));i++){
2346: for(j=1; j <= ncodemax[k]; j++){
1.7 lievre 2347: for(cpt=1; cpt <=(m/pow(2,cptcoveff+1-k)); cpt++){
1.2 lievre 2348: h++;
2349: if (h>m) h=1;codtab[h][k]=j;
2350: }
2351: }
2352: }
2353: }
1.22 brouard 2354:
2355:
2356: /*for(i=1; i <=m ;i++){
2357: for(k=1; k <=cptcovn; k++){
2358: printf("i=%d k=%d %d %d",i,k,codtab[i][k], cptcoveff);
2359: }
2360: printf("\n");
2361: }
2362: scanf("%d",i);*/
1.2 lievre 2363:
2364: /* Calculates basic frequencies. Computes observed prevalence at single age
2365: and prints on file fileres'p'. */
1.18 lievre 2366:
1.19 lievre 2367:
1.18 lievre 2368:
1.19 lievre 2369: pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
1.2 lievre 2370: oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2371: newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2372: savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2373: oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
1.12 lievre 2374:
1.2 lievre 2375: /* For Powell, parameters are in a vector p[] starting at p[1]
2376: so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
2377: p=param[1][1]; /* *(*(*(param +1)+1)+0) */
1.7 lievre 2378:
2379: if(mle==1){
1.2 lievre 2380: mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
1.7 lievre 2381: }
1.2 lievre 2382:
2383: /*--------- results files --------------*/
1.16 lievre 2384: fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncov=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncov, nlstate, ndeath, maxwav, mle,weightopt,model);
1.19 lievre 2385:
1.16 lievre 2386:
1.2 lievre 2387: jk=1;
2388: fprintf(ficres,"# Parameters\n");
2389: printf("# Parameters\n");
2390: for(i=1,jk=1; i <=nlstate; i++){
2391: for(k=1; k <=(nlstate+ndeath); k++){
2392: if (k != i)
2393: {
2394: printf("%d%d ",i,k);
2395: fprintf(ficres,"%1d%1d ",i,k);
2396: for(j=1; j <=ncovmodel; j++){
2397: printf("%f ",p[jk]);
2398: fprintf(ficres,"%f ",p[jk]);
2399: jk++;
2400: }
2401: printf("\n");
2402: fprintf(ficres,"\n");
2403: }
2404: }
2405: }
1.7 lievre 2406: if(mle==1){
1.2 lievre 2407: /* Computing hessian and covariance matrix */
2408: ftolhess=ftol; /* Usually correct */
2409: hesscov(matcov, p, npar, delti, ftolhess, func);
1.7 lievre 2410: }
1.2 lievre 2411: fprintf(ficres,"# Scales\n");
2412: printf("# Scales\n");
2413: for(i=1,jk=1; i <=nlstate; i++){
2414: for(j=1; j <=nlstate+ndeath; j++){
2415: if (j!=i) {
2416: fprintf(ficres,"%1d%1d",i,j);
2417: printf("%1d%1d",i,j);
2418: for(k=1; k<=ncovmodel;k++){
2419: printf(" %.5e",delti[jk]);
2420: fprintf(ficres," %.5e",delti[jk]);
2421: jk++;
2422: }
2423: printf("\n");
2424: fprintf(ficres,"\n");
2425: }
2426: }
1.18 lievre 2427: }
1.2 lievre 2428:
2429: k=1;
2430: fprintf(ficres,"# Covariance\n");
2431: printf("# Covariance\n");
2432: for(i=1;i<=npar;i++){
2433: /* if (k>nlstate) k=1;
2434: i1=(i-1)/(ncovmodel*nlstate)+1;
2435: fprintf(ficres,"%s%d%d",alph[k],i1,tab[i]);
2436: printf("%s%d%d",alph[k],i1,tab[i]);*/
2437: fprintf(ficres,"%3d",i);
2438: printf("%3d",i);
2439: for(j=1; j<=i;j++){
2440: fprintf(ficres," %.5e",matcov[i][j]);
2441: printf(" %.5e",matcov[i][j]);
2442: }
2443: fprintf(ficres,"\n");
2444: printf("\n");
2445: k++;
2446: }
2447:
2448: while((c=getc(ficpar))=='#' && c!= EOF){
2449: ungetc(c,ficpar);
2450: fgets(line, MAXLINE, ficpar);
2451: puts(line);
2452: fputs(line,ficparo);
2453: }
2454: ungetc(c,ficpar);
2455:
2456: fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);
2457:
2458: if (fage <= 2) {
2459: bage = agemin;
2460: fage = agemax;
2461: }
1.22 brouard 2462:
2463: fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
1.2 lievre 2464: fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);
1.19 lievre 2465: fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);
2466:
2467: while((c=getc(ficpar))=='#' && c!= EOF){
2468: ungetc(c,ficpar);
2469: fgets(line, MAXLINE, ficpar);
2470: puts(line);
2471: fputs(line,ficparo);
2472: }
2473: ungetc(c,ficpar);
2474:
2475: fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mob_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
2476: fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
2477: fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mob_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
2478:
2479: while((c=getc(ficpar))=='#' && c!= EOF){
2480: ungetc(c,ficpar);
2481: fgets(line, MAXLINE, ficpar);
2482: puts(line);
2483: fputs(line,ficparo);
2484: }
2485: ungetc(c,ficpar);
2486:
1.7 lievre 2487:
1.19 lievre 2488: dateprev1=anprev1+mprev1/12.+jprev1/365.;
2489: dateprev2=anprev2+mprev2/12.+jprev2/365.;
2490:
2491: fscanf(ficpar,"pop_based=%d\n",&popbased);
2492: fprintf(ficparo,"pop_based=%d\n",popbased);
2493: fprintf(ficres,"pop_based=%d\n",popbased);
2494:
2495: while((c=getc(ficpar))=='#' && c!= EOF){
2496: ungetc(c,ficpar);
2497: fgets(line, MAXLINE, ficpar);
2498: puts(line);
2499: fputs(line,ficparo);
2500: }
2501: ungetc(c,ficpar);
2502: fscanf(ficpar,"popforecast=%d popfile=%s starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf\n",&popforecast,popfile,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2);
2503: fprintf(ficparo,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
2504: fprintf(ficres,"popforecast=%d popfile=%s starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf\n",popforecast,popfile,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2);
2505:
2506: freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2);
2507:
1.22 brouard 2508:
2509: /*------------ gnuplot -------------*/
2510: /*chdir(pathcd);*/
2511: strcpy(optionfilegnuplot,optionfilefiname);
2512: strcat(optionfilegnuplot,".plt");
2513: if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
2514: printf("Problem with file %s",optionfilegnuplot);goto end;
2515: }
1.2 lievre 2516: #ifdef windows
1.22 brouard 2517: fprintf(ficgp,"cd \"%s\" \n",pathc);
1.2 lievre 2518: #endif
1.7 lievre 2519: m=pow(2,cptcoveff);
1.2 lievre 2520:
2521: /* 1eme*/
2522: for (cpt=1; cpt<= nlstate ; cpt ++) {
2523: for (k1=1; k1<= m ; k1 ++) {
2524:
2525: #ifdef windows
2526: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"vpl%s\" every :::%d::%d u 1:2 \"\%%lf",agemin,fage,fileres,k1-1,k1-1);
2527: #endif
2528: #ifdef unix
2529: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nplot [%.f:%.f] \"vpl%s\" u 1:2 \"\%%lf",agemin,fage,fileres);
2530: #endif
2531:
2532: for (i=1; i<= nlstate ; i ++) {
2533: if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
2534: else fprintf(ficgp," \%%*lf (\%%*lf)");
2535: }
2536: fprintf(ficgp,"\" t\"Stationary prevalence\" w l 0,\"vpl%s\" every :::%d::%d u 1:($2+2*$3) \"\%%lf",fileres,k1-1,k1-1);
2537: for (i=1; i<= nlstate ; i ++) {
2538: if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
2539: else fprintf(ficgp," \%%*lf (\%%*lf)");
2540: }
2541: fprintf(ficgp,"\" t\"95\%% CI\" w l 1,\"vpl%s\" every :::%d::%d u 1:($2-2*$3) \"\%%lf",fileres,k1-1,k1-1);
2542: for (i=1; i<= nlstate ; i ++) {
2543: if (i==cpt) fprintf(ficgp," \%%lf (\%%lf)");
2544: else fprintf(ficgp," \%%*lf (\%%*lf)");
2545: }
2546: fprintf(ficgp,"\" t\"\" w l 1,\"p%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence \" w l 2",fileres,k1-1,k1-1,2+4*(cpt-1));
2547: #ifdef unix
2548: fprintf(ficgp,"\nset ter gif small size 400,300");
2549: #endif
2550: fprintf(ficgp,"\nset out \"v%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
2551: }
2552: }
2553: /*2 eme*/
2554:
2555: for (k1=1; k1<= m ; k1 ++) {
2556: fprintf(ficgp,"set ylabel \"Years\" \nset ter gif small size 400,300\nplot [%.f:%.f] ",agemin,fage);
2557:
2558: for (i=1; i<= nlstate+1 ; i ++) {
2559: k=2*i;
2560: fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:2 \"\%%lf",fileres,k1-1,k1-1);
2561: for (j=1; j<= nlstate+1 ; j ++) {
2562: if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
2563: else fprintf(ficgp," \%%*lf (\%%*lf)");
2564: }
2565: if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l ,");
2566: else fprintf(ficgp,"\" t\"LE in state (%d)\" w l ,",i-1);
2567: fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2-$3*2) \"\%%lf",fileres,k1-1,k1-1);
2568: for (j=1; j<= nlstate+1 ; j ++) {
2569: if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
2570: else fprintf(ficgp," \%%*lf (\%%*lf)");
2571: }
2572: fprintf(ficgp,"\" t\"\" w l 0,");
2573: fprintf(ficgp,"\"t%s\" every :::%d::%d u 1:($2+$3*2) \"\%%lf",fileres,k1-1,k1-1);
2574: for (j=1; j<= nlstate+1 ; j ++) {
2575: if (j==i) fprintf(ficgp," \%%lf (\%%lf)");
2576: else fprintf(ficgp," \%%*lf (\%%*lf)");
2577: }
2578: if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l 0");
2579: else fprintf(ficgp,"\" t\"\" w l 0,");
2580: }
2581: fprintf(ficgp,"\nset out \"e%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),k1);
2582: }
2583:
2584: /*3eme*/
2585:
1.5 lievre 2586: for (k1=1; k1<= m ; k1 ++) {
1.2 lievre 2587: for (cpt=1; cpt<= nlstate ; cpt ++) {
2588: k=2+nlstate*(cpt-1);
2589: fprintf(ficgp,"set ter gif small size 400,300\nplot [%.f:%.f] \"e%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",agemin,fage,fileres,k1-1,k1-1,k,cpt);
2590: for (i=1; i< nlstate ; i ++) {
2591: fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",fileres,k1-1,k1-1,k+i,cpt,i+1);
2592: }
2593: fprintf(ficgp,"\nset out \"exp%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
2594: }
1.5 lievre 2595: }
1.2 lievre 2596:
2597: /* CV preval stat */
1.5 lievre 2598: for (k1=1; k1<= m ; k1 ++) {
1.2 lievre 2599: for (cpt=1; cpt<nlstate ; cpt ++) {
2600: k=3;
2601: fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter gif small size 400,300\nplot [%.f:%.f] \"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",agemin,agemax,fileres,k1,k+cpt+1,k+1);
2602: for (i=1; i< nlstate ; i ++)
2603: fprintf(ficgp,"+$%d",k+i+1);
2604: fprintf(ficgp,")) t\"prev(%d,%d)\" w l",cpt,cpt+1);
2605:
2606: l=3+(nlstate+ndeath)*cpt;
2607: fprintf(ficgp,",\"pij%s\" u ($1==%d ? ($3):1/0):($%d/($%d",fileres,k1,l+cpt+1,l+1);
2608: for (i=1; i< nlstate ; i ++) {
2609: l=3+(nlstate+ndeath)*cpt;
2610: fprintf(ficgp,"+$%d",l+i+1);
2611: }
2612: fprintf(ficgp,")) t\"prev(%d,%d)\" w l\n",cpt+1,cpt+1);
2613: fprintf(ficgp,"set out \"p%s%d%d.gif\" \nreplot\n\n",strtok(optionfile, "."),cpt,k1);
2614: }
1.13 lievre 2615: }
1.5 lievre 2616:
1.2 lievre 2617: /* proba elementaires */
1.5 lievre 2618: for(i=1,jk=1; i <=nlstate; i++){
1.2 lievre 2619: for(k=1; k <=(nlstate+ndeath); k++){
2620: if (k != i) {
2621: for(j=1; j <=ncovmodel; j++){
1.5 lievre 2622: /*fprintf(ficgp,"%s%1d%1d=%f ",alph[j],i,k,p[jk]);*/
2623: /*fprintf(ficgp,"%s",alph[1]);*/
2624: fprintf(ficgp,"p%d=%f ",jk,p[jk]);
1.2 lievre 2625: jk++;
2626: fprintf(ficgp,"\n");
2627: }
2628: }
2629: }
1.5 lievre 2630: }
2631:
1.2 lievre 2632: for(jk=1; jk <=m; jk++) {
2633: fprintf(ficgp,"\nset ter gif small size 400,300\nset log y\nplot [%.f:%.f] ",agemin,agemax);
1.5 lievre 2634: i=1;
2635: for(k2=1; k2<=nlstate; k2++) {
2636: k3=i;
2637: for(k=1; k<=(nlstate+ndeath); k++) {
2638: if (k != k2){
2639: fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
1.7 lievre 2640: ij=1;
2641: for(j=3; j <=ncovmodel; j++) {
2642: if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
2643: fprintf(ficgp,"+p%d*%d*x",i+j-1,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
2644: ij++;
2645: }
2646: else
1.6 lievre 2647: fprintf(ficgp,"+p%d*%d",i+j-1,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
1.7 lievre 2648: }
2649: fprintf(ficgp,")/(1");
1.6 lievre 2650:
2651: for(k1=1; k1 <=nlstate; k1++){
2652: fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
1.7 lievre 2653: ij=1;
2654: for(j=3; j <=ncovmodel; j++){
2655: if(((j-2)==Tage[ij]) &&(ij <=cptcovage)) {
2656: fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][Tvar[j-2]]]);
2657: ij++;
2658: }
2659: else
1.6 lievre 2660: fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2,nbcode[Tvar[j-2]][codtab[jk][j-2]]);
1.7 lievre 2661: }
1.6 lievre 2662: fprintf(ficgp,")");
1.5 lievre 2663: }
2664: fprintf(ficgp,") t \"p%d%d\" ", k2,k);
2665: if ((k+k2)!= (nlstate*2+ndeath)) fprintf(ficgp,",");
1.6 lievre 2666: i=i+ncovmodel;
1.5 lievre 2667: }
2668: }
2669: }
1.6 lievre 2670: fprintf(ficgp,"\nset out \"pe%s%d.gif\" \nreplot\n\n",strtok(optionfile, "."),jk);
2671: }
1.5 lievre 2672:
2673: fclose(ficgp);
1.21 lievre 2674: /* end gnuplot */
1.5 lievre 2675:
2676: chdir(path);
1.15 lievre 2677:
1.2 lievre 2678: free_ivector(wav,1,imx);
2679: free_imatrix(dh,1,lastpass-firstpass+1,1,imx);
1.15 lievre 2680: free_imatrix(mw,1,lastpass-firstpass+1,1,imx);
1.2 lievre 2681: free_ivector(num,1,n);
2682: free_vector(agedc,1,n);
2683: /*free_matrix(covar,1,NCOVMAX,1,n);*/
2684: fclose(ficparo);
2685: fclose(ficres);
1.7 lievre 2686: /* }*/
1.2 lievre 2687:
2688: /*________fin mle=1_________*/
2689:
2690:
2691:
2692: /* No more information from the sample is required now */
2693: /* Reads comments: lines beginning with '#' */
2694: while((c=getc(ficpar))=='#' && c!= EOF){
2695: ungetc(c,ficpar);
2696: fgets(line, MAXLINE, ficpar);
2697: puts(line);
2698: fputs(line,ficparo);
2699: }
2700: ungetc(c,ficpar);
2701:
2702: fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf\n",&agemin,&agemax, &bage, &fage);
2703: printf("agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax, bage, fage);
2704: fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f\n",agemin,agemax,bage,fage);
2705: /*--------- index.htm --------*/
2706:
1.9 lievre 2707: strcpy(optionfilehtm,optionfile);
2708: strcat(optionfilehtm,".htm");
2709: if((fichtm=fopen(optionfilehtm,"w"))==NULL) {
2710: printf("Problem with %s \n",optionfilehtm);goto end;
1.2 lievre 2711: }
2712:
1.16 lievre 2713: fprintf(fichtm,"<body><ul> <font size=\"6\">Imach, Version 0.7 </font> <hr size=\"2\" color=\"#EC5E5E\">
1.8 lievre 2714: Titre=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=%s<br>
2715: Total number of observations=%d <br>
2716: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>
2717: <hr size=\"2\" color=\"#EC5E5E\">
2718: <li>Outputs files<br><br>\n
1.2 lievre 2719: - Observed prevalence in each state: <a href=\"p%s\">p%s</a> <br>\n
2720: - Estimated parameters and the covariance matrix: <a href=\"%s\">%s</a> <br>
2721: - Stationary prevalence in each state: <a href=\"pl%s\">pl%s</a> <br>
2722: - Transition probabilities: <a href=\"pij%s\">pij%s</a><br>
2723: - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>
2724: - Life expectancies by age and initial health status: <a href=\"e%s\">e%s</a> <br>
2725: - Variances of life expectancies by age and initial health status: <a href=\"v%s\">v%s</a><br>
2726: - Health expectancies with their variances: <a href=\"t%s\">t%s</a> <br>
1.14 lievre 2727: - Standard deviation of stationary prevalences: <a href=\"vpl%s\">vpl%s</a> <br>
1.18 lievre 2728: - Prevalences and population forecasting: <a href=\"f%s\">f%s</a> <br>
1.14 lievre 2729: <br>",title,datafile,firstpass,lastpass,stepm, weightopt,model,imx,jmin,jmax,jmean,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres,fileres);
1.2 lievre 2730:
1.8 lievre 2731: fprintf(fichtm," <li>Graphs</li><p>");
1.2 lievre 2732:
1.7 lievre 2733: m=cptcoveff;
1.2 lievre 2734: if (cptcovn < 1) {m=1;ncodemax[1]=1;}
2735:
2736: j1=0;
2737: for(k1=1; k1<=m;k1++){
2738: for(i1=1; i1<=ncodemax[k1];i1++){
2739: j1++;
2740: if (cptcovn > 0) {
1.8 lievre 2741: fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
1.7 lievre 2742: for (cpt=1; cpt<=cptcoveff;cpt++)
2743: fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtab[j1][cpt]]);
1.8 lievre 2744: fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
1.2 lievre 2745: }
2746: fprintf(fichtm,"<br>- Probabilities: pe%s%d.gif<br>
2747: <img src=\"pe%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);
2748: for(cpt=1; cpt<nlstate;cpt++){
2749: fprintf(fichtm,"<br>- Prevalence of disability : p%s%d%d.gif<br>
2750: <img src=\"p%s%d%d.gif\">",strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
2751: }
2752: for(cpt=1; cpt<=nlstate;cpt++) {
2753: fprintf(fichtm,"<br>- Observed and stationary prevalence (with confident
2754: interval) in state (%d): v%s%d%d.gif <br>
2755: <img src=\"v%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
2756: }
2757: for(cpt=1; cpt<=nlstate;cpt++) {
2758: fprintf(fichtm,"\n<br>- Health life expectancies by age and initial health state (%d): exp%s%d%d.gif <br>
1.5 lievre 2759: <img src=\"exp%s%d%d.gif\">",cpt,strtok(optionfile, "."),cpt,j1,strtok(optionfile, "."),cpt,j1);
1.2 lievre 2760: }
2761: fprintf(fichtm,"\n<br>- Total life expectancy by age and
2762: health expectancies in states (1) and (2): e%s%d.gif<br>
2763: <img src=\"e%s%d.gif\">",strtok(optionfile, "."),j1,strtok(optionfile, "."),j1);
2764: fprintf(fichtm,"\n</body>");
2765: }
2766: }
2767: fclose(fichtm);
2768:
2769: /*--------------- Prevalence limit --------------*/
2770:
2771: strcpy(filerespl,"pl");
2772: strcat(filerespl,fileres);
2773: if((ficrespl=fopen(filerespl,"w"))==NULL) {
2774: printf("Problem with Prev limit resultfile: %s\n", filerespl);goto end;
2775: }
2776: printf("Computing prevalence limit: result on file '%s' \n", filerespl);
2777: fprintf(ficrespl,"#Prevalence limit\n");
2778: fprintf(ficrespl,"#Age ");
2779: for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
2780: fprintf(ficrespl,"\n");
2781:
2782: prlim=matrix(1,nlstate,1,nlstate);
2783: pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2784: oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2785: newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2786: savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
2787: oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
2788: k=0;
2789: agebase=agemin;
2790: agelim=agemax;
2791: ftolpl=1.e-10;
1.7 lievre 2792: i1=cptcoveff;
1.2 lievre 2793: if (cptcovn < 1){i1=1;}
2794:
2795: for(cptcov=1;cptcov<=i1;cptcov++){
2796: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
2797: k=k+1;
2798: /*printf("cptcov=%d cptcod=%d codtab=%d nbcode=%d\n",cptcov, cptcod,Tcode[cptcode],codtab[cptcod][cptcov]);*/
1.6 lievre 2799: fprintf(ficrespl,"\n#******");
1.7 lievre 2800: for(j=1;j<=cptcoveff;j++)
2801: fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 2802: fprintf(ficrespl,"******\n");
2803:
2804: for (age=agebase; age<=agelim; age++){
2805: prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
2806: fprintf(ficrespl,"%.0f",age );
2807: for(i=1; i<=nlstate;i++)
2808: fprintf(ficrespl," %.5f", prlim[i][i]);
2809: fprintf(ficrespl,"\n");
2810: }
2811: }
2812: }
2813: fclose(ficrespl);
1.13 lievre 2814:
1.2 lievre 2815: /*------------- h Pij x at various ages ------------*/
2816:
2817: strcpy(filerespij,"pij"); strcat(filerespij,fileres);
2818: if((ficrespij=fopen(filerespij,"w"))==NULL) {
2819: printf("Problem with Pij resultfile: %s\n", filerespij);goto end;
2820: }
2821: printf("Computing pij: result on file '%s' \n", filerespij);
2822:
2823: stepsize=(int) (stepm+YEARM-1)/YEARM;
1.13 lievre 2824: /*if (stepm<=24) stepsize=2;*/
1.2 lievre 2825:
2826: agelim=AGESUP;
2827: hstepm=stepsize*YEARM; /* Every year of age */
2828: hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
2829:
2830: k=0;
2831: for(cptcov=1;cptcov<=i1;cptcov++){
2832: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
2833: k=k+1;
2834: fprintf(ficrespij,"\n#****** ");
1.7 lievre 2835: for(j=1;j<=cptcoveff;j++)
2836: fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 2837: fprintf(ficrespij,"******\n");
2838:
2839: for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
2840: nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
2841: nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
2842: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2843: oldm=oldms;savm=savms;
2844: hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
2845: fprintf(ficrespij,"# Age");
2846: for(i=1; i<=nlstate;i++)
2847: for(j=1; j<=nlstate+ndeath;j++)
2848: fprintf(ficrespij," %1d-%1d",i,j);
2849: fprintf(ficrespij,"\n");
2850: for (h=0; h<=nhstepm; h++){
2851: fprintf(ficrespij,"%d %.0f %.0f",k,agedeb, agedeb+ h*hstepm/YEARM*stepm );
2852: for(i=1; i<=nlstate;i++)
2853: for(j=1; j<=nlstate+ndeath;j++)
2854: fprintf(ficrespij," %.5f", p3mat[i][j][h]);
2855: fprintf(ficrespij,"\n");
2856: }
2857: free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2858: fprintf(ficrespij,"\n");
2859: }
2860: }
2861: }
2862:
1.13 lievre 2863: /* varprob(fileres, matcov, p, delti, nlstate, (int) bage, (int) fage,k);*/
2864:
1.2 lievre 2865: fclose(ficrespij);
2866:
1.21 lievre 2867: if(stepm == 1) {
1.13 lievre 2868: /*---------- Forecasting ------------------*/
1.19 lievre 2869: calagedate=(anproj1+mproj1/12.+jproj1/365.-dateintmean)*YEARM;
2870:
1.21 lievre 2871: /*printf("calage= %f", calagedate);*/
2872:
1.19 lievre 2873: prevalence(agemin, agemax, s, agev, nlstate, imx,Tvar,nbcode, ncodemax,mint,anint,dateprev1,dateprev2, calagedate);
2874:
1.13 lievre 2875:
2876: strcpy(fileresf,"f");
2877: strcat(fileresf,fileres);
2878: if((ficresf=fopen(fileresf,"w"))==NULL) {
2879: printf("Problem with forecast resultfile: %s\n", fileresf);goto end;
2880: }
2881: printf("Computing forecasting: result on file '%s' \n", fileresf);
2882:
1.18 lievre 2883: free_matrix(mint,1,maxwav,1,n);
2884: free_matrix(anint,1,maxwav,1,n);
2885: free_matrix(agev,1,maxwav,1,imx);
1.13 lievre 2886: /* Mobile average */
2887:
2888: if (cptcoveff==0) ncodemax[cptcoveff]=1;
2889:
1.14 lievre 2890: if (mobilav==1) {
2891: mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
2892: for (agedeb=bage+3; agedeb<=fage-2; agedeb++)
2893: for (i=1; i<=nlstate;i++)
2894: for (cptcod=1;cptcod<=ncodemax[cptcov];cptcod++)
2895: mobaverage[(int)agedeb][i][cptcod]=0.;
2896:
2897: for (agedeb=bage+4; agedeb<=fage; agedeb++){
2898: for (i=1; i<=nlstate;i++){
2899: for (cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
2900: for (cpt=0;cpt<=4;cpt++){
2901: mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]+probs[(int)agedeb-cpt][i][cptcod];
1.13 lievre 2902: }
2903: mobaverage[(int)agedeb-2][i][cptcod]=mobaverage[(int)agedeb-2][i][cptcod]/5;
1.14 lievre 2904: }
1.13 lievre 2905: }
1.14 lievre 2906: }
1.13 lievre 2907: }
2908:
2909: stepsize=(int) (stepm+YEARM-1)/YEARM;
1.15 lievre 2910: if (stepm<=12) stepsize=1;
1.13 lievre 2911:
2912: agelim=AGESUP;
1.19 lievre 2913: /*hstepm=stepsize*YEARM; *//* Every year of age */
2914: hstepm=1;
1.15 lievre 2915: hstepm=hstepm/stepm; /* Typically 2 years, = 2 years/6 months = 4 */
1.19 lievre 2916: yp1=modf(dateintmean,&yp);
2917: anprojmean=yp;
2918: yp2=modf((yp1*12),&yp);
2919: mprojmean=yp;
2920: yp1=modf((yp2*30.5),&yp);
2921: jprojmean=yp;
1.20 lievre 2922: if(jprojmean==0) jprojmean=1;
2923: if(mprojmean==0) jprojmean=1;
2924:
2925: fprintf(ficresf,"# Estimated date of observed prevalence: %.lf/%.lf/%.lf ",jprojmean,mprojmean,anprojmean);
1.19 lievre 2926:
1.16 lievre 2927: if (popforecast==1) {
2928: if((ficpop=fopen(popfile,"r"))==NULL) {
2929: printf("Problem with population file : %s\n",popfile);goto end;
2930: }
2931: popage=ivector(0,AGESUP);
2932: popeffectif=vector(0,AGESUP);
2933: popcount=vector(0,AGESUP);
2934:
2935: i=1;
2936: while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF)
2937: {
2938: i=i+1;
2939: }
2940: imx=i;
1.19 lievre 2941:
2942: for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i];
1.16 lievre 2943: }
1.15 lievre 2944:
1.13 lievre 2945: for(cptcov=1;cptcov<=i1;cptcov++){
2946: for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){
2947: k=k+1;
1.19 lievre 2948: fprintf(ficresf,"\n#******");
1.13 lievre 2949: for(j=1;j<=cptcoveff;j++) {
1.19 lievre 2950: fprintf(ficresf," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.13 lievre 2951: }
2952: fprintf(ficresf,"******\n");
1.19 lievre 2953: fprintf(ficresf,"# StartingAge FinalAge");
1.13 lievre 2954: for(j=1; j<=nlstate+ndeath;j++) fprintf(ficresf," P.%d",j);
1.16 lievre 2955: if (popforecast==1) fprintf(ficresf," [Population]");
1.21 lievre 2956:
2957: for (cpt=0; cpt<4;cpt++) {
1.16 lievre 2958: fprintf(ficresf,"\n");
1.21 lievre 2959: fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+cpt);
2960:
2961: for (agedeb=(fage-((int)calagedate %12/12.)); agedeb>=(bage-((int)calagedate %12)/12.); agedeb--){ /* If stepm=6 months */
1.15 lievre 2962: nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);
2963: nhstepm = nhstepm/hstepm;
2964: /*printf("agedeb=%.lf stepm=%d hstepm=%d nhstepm=%d \n",agedeb,stepm,hstepm,nhstepm);*/
1.13 lievre 2965:
2966: p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
2967: oldm=oldms;savm=savms;
2968: hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
1.21 lievre 2969:
1.13 lievre 2970: for (h=0; h<=nhstepm; h++){
1.20 lievre 2971: if (h==(int) (calagedate+YEARM*cpt)) {
2972: fprintf(ficresf,"\n %.f ",agedeb+h*hstepm/YEARM*stepm);
1.21 lievre 2973: }
1.19 lievre 2974: for(j=1; j<=nlstate+ndeath;j++) {
2975: kk1=0.;kk2=0;
2976: for(i=1; i<=nlstate;i++) {
2977: if (mobilav==1)
1.20 lievre 2978: kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod];
1.19 lievre 2979: else {
2980: kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod];
1.20 lievre 2981: /* fprintf(ficresf," p3=%.3f p=%.3f ", p3mat[i][j][h], probs[(int)(agedeb)+1][i][cptcod]);*/
1.19 lievre 2982: }
2983:
2984: if (popforecast==1) kk2=kk1*popeffectif[(int)agedeb];
2985: }
1.15 lievre 2986:
1.19 lievre 2987: if (h==(int)(calagedate+12*cpt)){
2988: fprintf(ficresf," %.3f", kk1);
2989:
2990: if (popforecast==1) fprintf(ficresf," [%.f]", kk2);
1.16 lievre 2991: }
1.13 lievre 2992: }
1.14 lievre 2993: }
1.23 ! lievre 2994: /* free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);*/
1.16 lievre 2995: }
1.13 lievre 2996: }
2997: }
1.14 lievre 2998: }
1.23 ! lievre 2999: /* if (mobilav==1) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX);
1.16 lievre 3000: if (popforecast==1) {
3001: free_ivector(popage,0,AGESUP);
3002: free_vector(popeffectif,0,AGESUP);
3003: free_vector(popcount,0,AGESUP);
3004: }
1.15 lievre 3005: free_imatrix(s,1,maxwav+1,1,n);
1.23 ! lievre 3006: free_vector(weight,1,n);*/
1.13 lievre 3007: fclose(ficresf);
1.21 lievre 3008: }/* End forecasting */
3009: else{
3010: erreur=108;
3011: printf("Error %d!! You can only forecast the prevalences if the optimization\n has been performed with stepm = 1 (month) instead of %d\n", erreur, stepm);
3012: }
3013:
1.2 lievre 3014: /*---------- Health expectancies and variances ------------*/
3015:
3016: strcpy(filerest,"t");
3017: strcat(filerest,fileres);
3018: if((ficrest=fopen(filerest,"w"))==NULL) {
3019: printf("Problem with total LE resultfile: %s\n", filerest);goto end;
3020: }
3021: printf("Computing Total LEs with variances: file '%s' \n", filerest);
3022:
3023:
3024: strcpy(filerese,"e");
3025: strcat(filerese,fileres);
3026: if((ficreseij=fopen(filerese,"w"))==NULL) {
3027: printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
3028: }
3029: printf("Computing Health Expectancies: result on file '%s' \n", filerese);
3030:
3031: strcpy(fileresv,"v");
3032: strcat(fileresv,fileres);
3033: if((ficresvij=fopen(fileresv,"w"))==NULL) {
3034: printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
3035: }
3036: printf("Computing Variance-covariance of DFLEs: file '%s' \n", fileresv);
3037:
3038: k=0;
3039: for(cptcov=1;cptcov<=i1;cptcov++){
3040: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
3041: k=k+1;
3042: fprintf(ficrest,"\n#****** ");
1.7 lievre 3043: for(j=1;j<=cptcoveff;j++)
3044: fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 3045: fprintf(ficrest,"******\n");
3046:
3047: fprintf(ficreseij,"\n#****** ");
1.7 lievre 3048: for(j=1;j<=cptcoveff;j++)
1.2 lievre 3049: fprintf(ficreseij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);
3050: fprintf(ficreseij,"******\n");
3051:
3052: fprintf(ficresvij,"\n#****** ");
1.7 lievre 3053: for(j=1;j<=cptcoveff;j++)
1.2 lievre 3054: fprintf(ficresvij,"V%d=%d ",j,nbcode[j][codtab[k][j]]);
3055: fprintf(ficresvij,"******\n");
3056:
3057: eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
3058: oldm=oldms;savm=savms;
3059: evsij(fileres, eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k);
3060: vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
3061: oldm=oldms;savm=savms;
3062: varevsij(fileres, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
3063:
3064: fprintf(ficrest,"#Total LEs with variances: e.. (std) ");
3065: for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
3066: fprintf(ficrest,"\n");
3067:
3068: hf=1;
3069: if (stepm >= YEARM) hf=stepm/YEARM;
3070: epj=vector(1,nlstate+1);
3071: for(age=bage; age <=fage ;age++){
3072: prevalim(prlim, nlstate, p, age, oldm, savm,ftolpl,k);
1.14 lievre 3073: if (popbased==1) {
3074: for(i=1; i<=nlstate;i++)
3075: prlim[i][i]=probs[(int)age][i][k];
3076: }
3077:
1.2 lievre 3078: fprintf(ficrest," %.0f",age);
3079: for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
3080: for(i=1, epj[j]=0.;i <=nlstate;i++) {
3081: epj[j] += prlim[i][i]*hf*eij[i][j][(int)age];
3082: }
3083: epj[nlstate+1] +=epj[j];
3084: }
3085: for(i=1, vepp=0.;i <=nlstate;i++)
3086: for(j=1;j <=nlstate;j++)
3087: vepp += vareij[i][j][(int)age];
3088: fprintf(ficrest," %.2f (%.2f)", epj[nlstate+1],hf*sqrt(vepp));
3089: for(j=1;j <=nlstate;j++){
3090: fprintf(ficrest," %.2f (%.2f)", epj[j],hf*sqrt(vareij[j][j][(int)age]));
3091: }
3092: fprintf(ficrest,"\n");
3093: }
3094: }
3095: }
3096:
1.13 lievre 3097:
3098:
3099:
1.2 lievre 3100: fclose(ficreseij);
3101: fclose(ficresvij);
3102: fclose(ficrest);
3103: fclose(ficpar);
3104: free_vector(epj,1,nlstate+1);
1.5 lievre 3105: /* scanf("%d ",i); */
1.2 lievre 3106:
3107: /*------- Variance limit prevalence------*/
3108:
3109: strcpy(fileresvpl,"vpl");
3110: strcat(fileresvpl,fileres);
3111: if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
3112: printf("Problem with variance prev lim resultfile: %s\n", fileresvpl);
3113: exit(0);
3114: }
3115: printf("Computing Variance-covariance of Prevalence limit: file '%s' \n", fileresvpl);
3116:
3117: k=0;
3118: for(cptcov=1;cptcov<=i1;cptcov++){
3119: for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
3120: k=k+1;
3121: fprintf(ficresvpl,"\n#****** ");
1.7 lievre 3122: for(j=1;j<=cptcoveff;j++)
3123: fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtab[k][j]]);
1.2 lievre 3124: fprintf(ficresvpl,"******\n");
3125:
3126: varpl=matrix(1,nlstate,(int) bage, (int) fage);
3127: oldm=oldms;savm=savms;
3128: varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl,k);
3129: }
3130: }
3131:
3132: fclose(ficresvpl);
3133:
3134: /*---------- End : free ----------------*/
3135: free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
3136:
3137: free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
3138: free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
3139:
3140:
3141: free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
3142: free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
3143: free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
3144: free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
1.13 lievre 3145:
1.2 lievre 3146: free_matrix(matcov,1,npar,1,npar);
3147: free_vector(delti,1,npar);
3148:
3149: free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
3150:
1.21 lievre 3151: if(erreur >0)
3152: printf("End of Imach with error %d\n",erreur);
3153: else printf("End of Imach\n");
1.2 lievre 3154: /* gettimeofday(&end_time, (struct timezone*)0);*/ /* after time */
3155:
3156: /* printf("Total time was %d Sec. %d uSec.\n", end_time.tv_sec -start_time.tv_sec, end_time.tv_usec -start_time.tv_usec);*/
3157: /*printf("Total time was %d uSec.\n", total_usecs);*/
3158: /*------ End -----------*/
1.12 lievre 3159:
1.2 lievre 3160:
3161: end:
3162: #ifdef windows
1.22 brouard 3163: /* chdir(pathcd);*/
1.2 lievre 3164: #endif
1.22 brouard 3165: /*system("wgnuplot graph.plt");*/
3166: /*system("../gp37mgw/wgnuplot graph.plt");*/
3167: /*system("cd ../gp37mgw");*/
3168: /* system("..\\gp37mgw\\wgnuplot graph.plt");*/
3169: strcpy(plotcmd,GNUPLOTPROGRAM);
3170: strcat(plotcmd," ");
3171: strcat(plotcmd,optionfilegnuplot);
3172: system(plotcmd);
1.2 lievre 3173:
3174: #ifdef windows
3175: while (z[0] != 'q') {
1.22 brouard 3176: chdir(path);
1.2 lievre 3177: printf("\nType e to edit output files, c to start again, and q for exiting: ");
3178: scanf("%s",z);
3179: if (z[0] == 'c') system("./imach");
3180: else if (z[0] == 'e') {
3181: chdir(path);
1.10 lievre 3182: system(optionfilehtm);
1.2 lievre 3183: }
3184: else if (z[0] == 'q') exit(0);
3185: }
3186: #endif
3187: }
3188:
3189:
FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>