Annotation of imach/src/imach.c, revision 1.248

1.248   ! brouard     1: /* $Id: imach.c,v 1.247 2016/09/02 11:11:21 brouard Exp $
1.126     brouard     2:   $State: Exp $
1.163     brouard     3:   $Log: imach.c,v $
1.248   ! brouard     4:   Revision 1.247  2016/09/02 11:11:21  brouard
        !             5:   *** empty log message ***
        !             6: 
1.247     brouard     7:   Revision 1.246  2016/09/02 08:49:22  brouard
                      8:   *** empty log message ***
                      9: 
1.246     brouard    10:   Revision 1.245  2016/09/02 07:25:01  brouard
                     11:   *** empty log message ***
                     12: 
1.245     brouard    13:   Revision 1.244  2016/09/02 07:17:34  brouard
                     14:   *** empty log message ***
                     15: 
1.244     brouard    16:   Revision 1.243  2016/09/02 06:45:35  brouard
                     17:   *** empty log message ***
                     18: 
1.243     brouard    19:   Revision 1.242  2016/08/30 15:01:20  brouard
                     20:   Summary: Fixing a lots
                     21: 
1.242     brouard    22:   Revision 1.241  2016/08/29 17:17:25  brouard
                     23:   Summary: gnuplot problem in Back projection to fix
                     24: 
1.241     brouard    25:   Revision 1.240  2016/08/29 07:53:18  brouard
                     26:   Summary: Better
                     27: 
1.240     brouard    28:   Revision 1.239  2016/08/26 15:51:03  brouard
                     29:   Summary: Improvement in Powell output in order to copy and paste
                     30: 
                     31:   Author:
                     32: 
1.239     brouard    33:   Revision 1.238  2016/08/26 14:23:35  brouard
                     34:   Summary: Starting tests of 0.99
                     35: 
1.238     brouard    36:   Revision 1.237  2016/08/26 09:20:19  brouard
                     37:   Summary: to valgrind
                     38: 
1.237     brouard    39:   Revision 1.236  2016/08/25 10:50:18  brouard
                     40:   *** empty log message ***
                     41: 
1.236     brouard    42:   Revision 1.235  2016/08/25 06:59:23  brouard
                     43:   *** empty log message ***
                     44: 
1.235     brouard    45:   Revision 1.234  2016/08/23 16:51:20  brouard
                     46:   *** empty log message ***
                     47: 
1.234     brouard    48:   Revision 1.233  2016/08/23 07:40:50  brouard
                     49:   Summary: not working
                     50: 
1.233     brouard    51:   Revision 1.232  2016/08/22 14:20:21  brouard
                     52:   Summary: not working
                     53: 
1.232     brouard    54:   Revision 1.231  2016/08/22 07:17:15  brouard
                     55:   Summary: not working
                     56: 
1.231     brouard    57:   Revision 1.230  2016/08/22 06:55:53  brouard
                     58:   Summary: Not working
                     59: 
1.230     brouard    60:   Revision 1.229  2016/07/23 09:45:53  brouard
                     61:   Summary: Completing for func too
                     62: 
1.229     brouard    63:   Revision 1.228  2016/07/22 17:45:30  brouard
                     64:   Summary: Fixing some arrays, still debugging
                     65: 
1.227     brouard    66:   Revision 1.226  2016/07/12 18:42:34  brouard
                     67:   Summary: temp
                     68: 
1.226     brouard    69:   Revision 1.225  2016/07/12 08:40:03  brouard
                     70:   Summary: saving but not running
                     71: 
1.225     brouard    72:   Revision 1.224  2016/07/01 13:16:01  brouard
                     73:   Summary: Fixes
                     74: 
1.224     brouard    75:   Revision 1.223  2016/02/19 09:23:35  brouard
                     76:   Summary: temporary
                     77: 
1.223     brouard    78:   Revision 1.222  2016/02/17 08:14:50  brouard
                     79:   Summary: Probably last 0.98 stable version 0.98r6
                     80: 
1.222     brouard    81:   Revision 1.221  2016/02/15 23:35:36  brouard
                     82:   Summary: minor bug
                     83: 
1.220     brouard    84:   Revision 1.219  2016/02/15 00:48:12  brouard
                     85:   *** empty log message ***
                     86: 
1.219     brouard    87:   Revision 1.218  2016/02/12 11:29:23  brouard
                     88:   Summary: 0.99 Back projections
                     89: 
1.218     brouard    90:   Revision 1.217  2015/12/23 17:18:31  brouard
                     91:   Summary: Experimental backcast
                     92: 
1.217     brouard    93:   Revision 1.216  2015/12/18 17:32:11  brouard
                     94:   Summary: 0.98r4 Warning and status=-2
                     95: 
                     96:   Version 0.98r4 is now:
                     97:    - displaying an error when status is -1, date of interview unknown and date of death known;
                     98:    - permitting a status -2 when the vital status is unknown at a known date of right truncation.
                     99:   Older changes concerning s=-2, dating from 2005 have been supersed.
                    100: 
1.216     brouard   101:   Revision 1.215  2015/12/16 08:52:24  brouard
                    102:   Summary: 0.98r4 working
                    103: 
1.215     brouard   104:   Revision 1.214  2015/12/16 06:57:54  brouard
                    105:   Summary: temporary not working
                    106: 
1.214     brouard   107:   Revision 1.213  2015/12/11 18:22:17  brouard
                    108:   Summary: 0.98r4
                    109: 
1.213     brouard   110:   Revision 1.212  2015/11/21 12:47:24  brouard
                    111:   Summary: minor typo
                    112: 
1.212     brouard   113:   Revision 1.211  2015/11/21 12:41:11  brouard
                    114:   Summary: 0.98r3 with some graph of projected cross-sectional
                    115: 
                    116:   Author: Nicolas Brouard
                    117: 
1.211     brouard   118:   Revision 1.210  2015/11/18 17:41:20  brouard
                    119:   Summary: Start working on projected prevalences
                    120: 
1.210     brouard   121:   Revision 1.209  2015/11/17 22:12:03  brouard
                    122:   Summary: Adding ftolpl parameter
                    123:   Author: N Brouard
                    124: 
                    125:   We had difficulties to get smoothed confidence intervals. It was due
                    126:   to the period prevalence which wasn't computed accurately. The inner
                    127:   parameter ftolpl is now an outer parameter of the .imach parameter
                    128:   file after estepm. If ftolpl is small 1.e-4 and estepm too,
                    129:   computation are long.
                    130: 
1.209     brouard   131:   Revision 1.208  2015/11/17 14:31:57  brouard
                    132:   Summary: temporary
                    133: 
1.208     brouard   134:   Revision 1.207  2015/10/27 17:36:57  brouard
                    135:   *** empty log message ***
                    136: 
1.207     brouard   137:   Revision 1.206  2015/10/24 07:14:11  brouard
                    138:   *** empty log message ***
                    139: 
1.206     brouard   140:   Revision 1.205  2015/10/23 15:50:53  brouard
                    141:   Summary: 0.98r3 some clarification for graphs on likelihood contributions
                    142: 
1.205     brouard   143:   Revision 1.204  2015/10/01 16:20:26  brouard
                    144:   Summary: Some new graphs of contribution to likelihood
                    145: 
1.204     brouard   146:   Revision 1.203  2015/09/30 17:45:14  brouard
                    147:   Summary: looking at better estimation of the hessian
                    148: 
                    149:   Also a better criteria for convergence to the period prevalence And
                    150:   therefore adding the number of years needed to converge. (The
                    151:   prevalence in any alive state shold sum to one
                    152: 
1.203     brouard   153:   Revision 1.202  2015/09/22 19:45:16  brouard
                    154:   Summary: Adding some overall graph on contribution to likelihood. Might change
                    155: 
1.202     brouard   156:   Revision 1.201  2015/09/15 17:34:58  brouard
                    157:   Summary: 0.98r0
                    158: 
                    159:   - Some new graphs like suvival functions
                    160:   - Some bugs fixed like model=1+age+V2.
                    161: 
1.201     brouard   162:   Revision 1.200  2015/09/09 16:53:55  brouard
                    163:   Summary: Big bug thanks to Flavia
                    164: 
                    165:   Even model=1+age+V2. did not work anymore
                    166: 
1.200     brouard   167:   Revision 1.199  2015/09/07 14:09:23  brouard
                    168:   Summary: 0.98q6 changing default small png format for graph to vectorized svg.
                    169: 
1.199     brouard   170:   Revision 1.198  2015/09/03 07:14:39  brouard
                    171:   Summary: 0.98q5 Flavia
                    172: 
1.198     brouard   173:   Revision 1.197  2015/09/01 18:24:39  brouard
                    174:   *** empty log message ***
                    175: 
1.197     brouard   176:   Revision 1.196  2015/08/18 23:17:52  brouard
                    177:   Summary: 0.98q5
                    178: 
1.196     brouard   179:   Revision 1.195  2015/08/18 16:28:39  brouard
                    180:   Summary: Adding a hack for testing purpose
                    181: 
                    182:   After reading the title, ftol and model lines, if the comment line has
                    183:   a q, starting with #q, the answer at the end of the run is quit. It
                    184:   permits to run test files in batch with ctest. The former workaround was
                    185:   $ echo q | imach foo.imach
                    186: 
1.195     brouard   187:   Revision 1.194  2015/08/18 13:32:00  brouard
                    188:   Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
                    189: 
1.194     brouard   190:   Revision 1.193  2015/08/04 07:17:42  brouard
                    191:   Summary: 0.98q4
                    192: 
1.193     brouard   193:   Revision 1.192  2015/07/16 16:49:02  brouard
                    194:   Summary: Fixing some outputs
                    195: 
1.192     brouard   196:   Revision 1.191  2015/07/14 10:00:33  brouard
                    197:   Summary: Some fixes
                    198: 
1.191     brouard   199:   Revision 1.190  2015/05/05 08:51:13  brouard
                    200:   Summary: Adding digits in output parameters (7 digits instead of 6)
                    201: 
                    202:   Fix 1+age+.
                    203: 
1.190     brouard   204:   Revision 1.189  2015/04/30 14:45:16  brouard
                    205:   Summary: 0.98q2
                    206: 
1.189     brouard   207:   Revision 1.188  2015/04/30 08:27:53  brouard
                    208:   *** empty log message ***
                    209: 
1.188     brouard   210:   Revision 1.187  2015/04/29 09:11:15  brouard
                    211:   *** empty log message ***
                    212: 
1.187     brouard   213:   Revision 1.186  2015/04/23 12:01:52  brouard
                    214:   Summary: V1*age is working now, version 0.98q1
                    215: 
                    216:   Some codes had been disabled in order to simplify and Vn*age was
                    217:   working in the optimization phase, ie, giving correct MLE parameters,
                    218:   but, as usual, outputs were not correct and program core dumped.
                    219: 
1.186     brouard   220:   Revision 1.185  2015/03/11 13:26:42  brouard
                    221:   Summary: Inclusion of compile and links command line for Intel Compiler
                    222: 
1.185     brouard   223:   Revision 1.184  2015/03/11 11:52:39  brouard
                    224:   Summary: Back from Windows 8. Intel Compiler
                    225: 
1.184     brouard   226:   Revision 1.183  2015/03/10 20:34:32  brouard
                    227:   Summary: 0.98q0, trying with directest, mnbrak fixed
                    228: 
                    229:   We use directest instead of original Powell test; probably no
                    230:   incidence on the results, but better justifications;
                    231:   We fixed Numerical Recipes mnbrak routine which was wrong and gave
                    232:   wrong results.
                    233: 
1.183     brouard   234:   Revision 1.182  2015/02/12 08:19:57  brouard
                    235:   Summary: Trying to keep directest which seems simpler and more general
                    236:   Author: Nicolas Brouard
                    237: 
1.182     brouard   238:   Revision 1.181  2015/02/11 23:22:24  brouard
                    239:   Summary: Comments on Powell added
                    240: 
                    241:   Author:
                    242: 
1.181     brouard   243:   Revision 1.180  2015/02/11 17:33:45  brouard
                    244:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
                    245: 
1.180     brouard   246:   Revision 1.179  2015/01/04 09:57:06  brouard
                    247:   Summary: back to OS/X
                    248: 
1.179     brouard   249:   Revision 1.178  2015/01/04 09:35:48  brouard
                    250:   *** empty log message ***
                    251: 
1.178     brouard   252:   Revision 1.177  2015/01/03 18:40:56  brouard
                    253:   Summary: Still testing ilc32 on OSX
                    254: 
1.177     brouard   255:   Revision 1.176  2015/01/03 16:45:04  brouard
                    256:   *** empty log message ***
                    257: 
1.176     brouard   258:   Revision 1.175  2015/01/03 16:33:42  brouard
                    259:   *** empty log message ***
                    260: 
1.175     brouard   261:   Revision 1.174  2015/01/03 16:15:49  brouard
                    262:   Summary: Still in cross-compilation
                    263: 
1.174     brouard   264:   Revision 1.173  2015/01/03 12:06:26  brouard
                    265:   Summary: trying to detect cross-compilation
                    266: 
1.173     brouard   267:   Revision 1.172  2014/12/27 12:07:47  brouard
                    268:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
                    269: 
1.172     brouard   270:   Revision 1.171  2014/12/23 13:26:59  brouard
                    271:   Summary: Back from Visual C
                    272: 
                    273:   Still problem with utsname.h on Windows
                    274: 
1.171     brouard   275:   Revision 1.170  2014/12/23 11:17:12  brouard
                    276:   Summary: Cleaning some \%% back to %%
                    277: 
                    278:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
                    279: 
1.170     brouard   280:   Revision 1.169  2014/12/22 23:08:31  brouard
                    281:   Summary: 0.98p
                    282: 
                    283:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
                    284: 
1.169     brouard   285:   Revision 1.168  2014/12/22 15:17:42  brouard
1.170     brouard   286:   Summary: update
1.169     brouard   287: 
1.168     brouard   288:   Revision 1.167  2014/12/22 13:50:56  brouard
                    289:   Summary: Testing uname and compiler version and if compiled 32 or 64
                    290: 
                    291:   Testing on Linux 64
                    292: 
1.167     brouard   293:   Revision 1.166  2014/12/22 11:40:47  brouard
                    294:   *** empty log message ***
                    295: 
1.166     brouard   296:   Revision 1.165  2014/12/16 11:20:36  brouard
                    297:   Summary: After compiling on Visual C
                    298: 
                    299:   * imach.c (Module): Merging 1.61 to 1.162
                    300: 
1.165     brouard   301:   Revision 1.164  2014/12/16 10:52:11  brouard
                    302:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
                    303: 
                    304:   * imach.c (Module): Merging 1.61 to 1.162
                    305: 
1.164     brouard   306:   Revision 1.163  2014/12/16 10:30:11  brouard
                    307:   * imach.c (Module): Merging 1.61 to 1.162
                    308: 
1.163     brouard   309:   Revision 1.162  2014/09/25 11:43:39  brouard
                    310:   Summary: temporary backup 0.99!
                    311: 
1.162     brouard   312:   Revision 1.1  2014/09/16 11:06:58  brouard
                    313:   Summary: With some code (wrong) for nlopt
                    314: 
                    315:   Author:
                    316: 
                    317:   Revision 1.161  2014/09/15 20:41:41  brouard
                    318:   Summary: Problem with macro SQR on Intel compiler
                    319: 
1.161     brouard   320:   Revision 1.160  2014/09/02 09:24:05  brouard
                    321:   *** empty log message ***
                    322: 
1.160     brouard   323:   Revision 1.159  2014/09/01 10:34:10  brouard
                    324:   Summary: WIN32
                    325:   Author: Brouard
                    326: 
1.159     brouard   327:   Revision 1.158  2014/08/27 17:11:51  brouard
                    328:   *** empty log message ***
                    329: 
1.158     brouard   330:   Revision 1.157  2014/08/27 16:26:55  brouard
                    331:   Summary: Preparing windows Visual studio version
                    332:   Author: Brouard
                    333: 
                    334:   In order to compile on Visual studio, time.h is now correct and time_t
                    335:   and tm struct should be used. difftime should be used but sometimes I
                    336:   just make the differences in raw time format (time(&now).
                    337:   Trying to suppress #ifdef LINUX
                    338:   Add xdg-open for __linux in order to open default browser.
                    339: 
1.157     brouard   340:   Revision 1.156  2014/08/25 20:10:10  brouard
                    341:   *** empty log message ***
                    342: 
1.156     brouard   343:   Revision 1.155  2014/08/25 18:32:34  brouard
                    344:   Summary: New compile, minor changes
                    345:   Author: Brouard
                    346: 
1.155     brouard   347:   Revision 1.154  2014/06/20 17:32:08  brouard
                    348:   Summary: Outputs now all graphs of convergence to period prevalence
                    349: 
1.154     brouard   350:   Revision 1.153  2014/06/20 16:45:46  brouard
                    351:   Summary: If 3 live state, convergence to period prevalence on same graph
                    352:   Author: Brouard
                    353: 
1.153     brouard   354:   Revision 1.152  2014/06/18 17:54:09  brouard
                    355:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
                    356: 
1.152     brouard   357:   Revision 1.151  2014/06/18 16:43:30  brouard
                    358:   *** empty log message ***
                    359: 
1.151     brouard   360:   Revision 1.150  2014/06/18 16:42:35  brouard
                    361:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
                    362:   Author: brouard
                    363: 
1.150     brouard   364:   Revision 1.149  2014/06/18 15:51:14  brouard
                    365:   Summary: Some fixes in parameter files errors
                    366:   Author: Nicolas Brouard
                    367: 
1.149     brouard   368:   Revision 1.148  2014/06/17 17:38:48  brouard
                    369:   Summary: Nothing new
                    370:   Author: Brouard
                    371: 
                    372:   Just a new packaging for OS/X version 0.98nS
                    373: 
1.148     brouard   374:   Revision 1.147  2014/06/16 10:33:11  brouard
                    375:   *** empty log message ***
                    376: 
1.147     brouard   377:   Revision 1.146  2014/06/16 10:20:28  brouard
                    378:   Summary: Merge
                    379:   Author: Brouard
                    380: 
                    381:   Merge, before building revised version.
                    382: 
1.146     brouard   383:   Revision 1.145  2014/06/10 21:23:15  brouard
                    384:   Summary: Debugging with valgrind
                    385:   Author: Nicolas Brouard
                    386: 
                    387:   Lot of changes in order to output the results with some covariates
                    388:   After the Edimburgh REVES conference 2014, it seems mandatory to
                    389:   improve the code.
                    390:   No more memory valgrind error but a lot has to be done in order to
                    391:   continue the work of splitting the code into subroutines.
                    392:   Also, decodemodel has been improved. Tricode is still not
                    393:   optimal. nbcode should be improved. Documentation has been added in
                    394:   the source code.
                    395: 
1.144     brouard   396:   Revision 1.143  2014/01/26 09:45:38  brouard
                    397:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
                    398: 
                    399:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    400:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
                    401: 
1.143     brouard   402:   Revision 1.142  2014/01/26 03:57:36  brouard
                    403:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
                    404: 
                    405:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    406: 
1.142     brouard   407:   Revision 1.141  2014/01/26 02:42:01  brouard
                    408:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    409: 
1.141     brouard   410:   Revision 1.140  2011/09/02 10:37:54  brouard
                    411:   Summary: times.h is ok with mingw32 now.
                    412: 
1.140     brouard   413:   Revision 1.139  2010/06/14 07:50:17  brouard
                    414:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
                    415:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
                    416: 
1.139     brouard   417:   Revision 1.138  2010/04/30 18:19:40  brouard
                    418:   *** empty log message ***
                    419: 
1.138     brouard   420:   Revision 1.137  2010/04/29 18:11:38  brouard
                    421:   (Module): Checking covariates for more complex models
                    422:   than V1+V2. A lot of change to be done. Unstable.
                    423: 
1.137     brouard   424:   Revision 1.136  2010/04/26 20:30:53  brouard
                    425:   (Module): merging some libgsl code. Fixing computation
                    426:   of likelione (using inter/intrapolation if mle = 0) in order to
                    427:   get same likelihood as if mle=1.
                    428:   Some cleaning of code and comments added.
                    429: 
1.136     brouard   430:   Revision 1.135  2009/10/29 15:33:14  brouard
                    431:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    432: 
1.135     brouard   433:   Revision 1.134  2009/10/29 13:18:53  brouard
                    434:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    435: 
1.134     brouard   436:   Revision 1.133  2009/07/06 10:21:25  brouard
                    437:   just nforces
                    438: 
1.133     brouard   439:   Revision 1.132  2009/07/06 08:22:05  brouard
                    440:   Many tings
                    441: 
1.132     brouard   442:   Revision 1.131  2009/06/20 16:22:47  brouard
                    443:   Some dimensions resccaled
                    444: 
1.131     brouard   445:   Revision 1.130  2009/05/26 06:44:34  brouard
                    446:   (Module): Max Covariate is now set to 20 instead of 8. A
                    447:   lot of cleaning with variables initialized to 0. Trying to make
                    448:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
                    449: 
1.130     brouard   450:   Revision 1.129  2007/08/31 13:49:27  lievre
                    451:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
                    452: 
1.129     lievre    453:   Revision 1.128  2006/06/30 13:02:05  brouard
                    454:   (Module): Clarifications on computing e.j
                    455: 
1.128     brouard   456:   Revision 1.127  2006/04/28 18:11:50  brouard
                    457:   (Module): Yes the sum of survivors was wrong since
                    458:   imach-114 because nhstepm was no more computed in the age
                    459:   loop. Now we define nhstepma in the age loop.
                    460:   (Module): In order to speed up (in case of numerous covariates) we
                    461:   compute health expectancies (without variances) in a first step
                    462:   and then all the health expectancies with variances or standard
                    463:   deviation (needs data from the Hessian matrices) which slows the
                    464:   computation.
                    465:   In the future we should be able to stop the program is only health
                    466:   expectancies and graph are needed without standard deviations.
                    467: 
1.127     brouard   468:   Revision 1.126  2006/04/28 17:23:28  brouard
                    469:   (Module): Yes the sum of survivors was wrong since
                    470:   imach-114 because nhstepm was no more computed in the age
                    471:   loop. Now we define nhstepma in the age loop.
                    472:   Version 0.98h
                    473: 
1.126     brouard   474:   Revision 1.125  2006/04/04 15:20:31  lievre
                    475:   Errors in calculation of health expectancies. Age was not initialized.
                    476:   Forecasting file added.
                    477: 
                    478:   Revision 1.124  2006/03/22 17:13:53  lievre
                    479:   Parameters are printed with %lf instead of %f (more numbers after the comma).
                    480:   The log-likelihood is printed in the log file
                    481: 
                    482:   Revision 1.123  2006/03/20 10:52:43  brouard
                    483:   * imach.c (Module): <title> changed, corresponds to .htm file
                    484:   name. <head> headers where missing.
                    485: 
                    486:   * imach.c (Module): Weights can have a decimal point as for
                    487:   English (a comma might work with a correct LC_NUMERIC environment,
                    488:   otherwise the weight is truncated).
                    489:   Modification of warning when the covariates values are not 0 or
                    490:   1.
                    491:   Version 0.98g
                    492: 
                    493:   Revision 1.122  2006/03/20 09:45:41  brouard
                    494:   (Module): Weights can have a decimal point as for
                    495:   English (a comma might work with a correct LC_NUMERIC environment,
                    496:   otherwise the weight is truncated).
                    497:   Modification of warning when the covariates values are not 0 or
                    498:   1.
                    499:   Version 0.98g
                    500: 
                    501:   Revision 1.121  2006/03/16 17:45:01  lievre
                    502:   * imach.c (Module): Comments concerning covariates added
                    503: 
                    504:   * imach.c (Module): refinements in the computation of lli if
                    505:   status=-2 in order to have more reliable computation if stepm is
                    506:   not 1 month. Version 0.98f
                    507: 
                    508:   Revision 1.120  2006/03/16 15:10:38  lievre
                    509:   (Module): refinements in the computation of lli if
                    510:   status=-2 in order to have more reliable computation if stepm is
                    511:   not 1 month. Version 0.98f
                    512: 
                    513:   Revision 1.119  2006/03/15 17:42:26  brouard
                    514:   (Module): Bug if status = -2, the loglikelihood was
                    515:   computed as likelihood omitting the logarithm. Version O.98e
                    516: 
                    517:   Revision 1.118  2006/03/14 18:20:07  brouard
                    518:   (Module): varevsij Comments added explaining the second
                    519:   table of variances if popbased=1 .
                    520:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    521:   (Module): Function pstamp added
                    522:   (Module): Version 0.98d
                    523: 
                    524:   Revision 1.117  2006/03/14 17:16:22  brouard
                    525:   (Module): varevsij Comments added explaining the second
                    526:   table of variances if popbased=1 .
                    527:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    528:   (Module): Function pstamp added
                    529:   (Module): Version 0.98d
                    530: 
                    531:   Revision 1.116  2006/03/06 10:29:27  brouard
                    532:   (Module): Variance-covariance wrong links and
                    533:   varian-covariance of ej. is needed (Saito).
                    534: 
                    535:   Revision 1.115  2006/02/27 12:17:45  brouard
                    536:   (Module): One freematrix added in mlikeli! 0.98c
                    537: 
                    538:   Revision 1.114  2006/02/26 12:57:58  brouard
                    539:   (Module): Some improvements in processing parameter
                    540:   filename with strsep.
                    541: 
                    542:   Revision 1.113  2006/02/24 14:20:24  brouard
                    543:   (Module): Memory leaks checks with valgrind and:
                    544:   datafile was not closed, some imatrix were not freed and on matrix
                    545:   allocation too.
                    546: 
                    547:   Revision 1.112  2006/01/30 09:55:26  brouard
                    548:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
                    549: 
                    550:   Revision 1.111  2006/01/25 20:38:18  brouard
                    551:   (Module): Lots of cleaning and bugs added (Gompertz)
                    552:   (Module): Comments can be added in data file. Missing date values
                    553:   can be a simple dot '.'.
                    554: 
                    555:   Revision 1.110  2006/01/25 00:51:50  brouard
                    556:   (Module): Lots of cleaning and bugs added (Gompertz)
                    557: 
                    558:   Revision 1.109  2006/01/24 19:37:15  brouard
                    559:   (Module): Comments (lines starting with a #) are allowed in data.
                    560: 
                    561:   Revision 1.108  2006/01/19 18:05:42  lievre
                    562:   Gnuplot problem appeared...
                    563:   To be fixed
                    564: 
                    565:   Revision 1.107  2006/01/19 16:20:37  brouard
                    566:   Test existence of gnuplot in imach path
                    567: 
                    568:   Revision 1.106  2006/01/19 13:24:36  brouard
                    569:   Some cleaning and links added in html output
                    570: 
                    571:   Revision 1.105  2006/01/05 20:23:19  lievre
                    572:   *** empty log message ***
                    573: 
                    574:   Revision 1.104  2005/09/30 16:11:43  lievre
                    575:   (Module): sump fixed, loop imx fixed, and simplifications.
                    576:   (Module): If the status is missing at the last wave but we know
                    577:   that the person is alive, then we can code his/her status as -2
                    578:   (instead of missing=-1 in earlier versions) and his/her
                    579:   contributions to the likelihood is 1 - Prob of dying from last
                    580:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
                    581:   the healthy state at last known wave). Version is 0.98
                    582: 
                    583:   Revision 1.103  2005/09/30 15:54:49  lievre
                    584:   (Module): sump fixed, loop imx fixed, and simplifications.
                    585: 
                    586:   Revision 1.102  2004/09/15 17:31:30  brouard
                    587:   Add the possibility to read data file including tab characters.
                    588: 
                    589:   Revision 1.101  2004/09/15 10:38:38  brouard
                    590:   Fix on curr_time
                    591: 
                    592:   Revision 1.100  2004/07/12 18:29:06  brouard
                    593:   Add version for Mac OS X. Just define UNIX in Makefile
                    594: 
                    595:   Revision 1.99  2004/06/05 08:57:40  brouard
                    596:   *** empty log message ***
                    597: 
                    598:   Revision 1.98  2004/05/16 15:05:56  brouard
                    599:   New version 0.97 . First attempt to estimate force of mortality
                    600:   directly from the data i.e. without the need of knowing the health
                    601:   state at each age, but using a Gompertz model: log u =a + b*age .
                    602:   This is the basic analysis of mortality and should be done before any
                    603:   other analysis, in order to test if the mortality estimated from the
                    604:   cross-longitudinal survey is different from the mortality estimated
                    605:   from other sources like vital statistic data.
                    606: 
                    607:   The same imach parameter file can be used but the option for mle should be -3.
                    608: 
1.133     brouard   609:   Agnès, who wrote this part of the code, tried to keep most of the
1.126     brouard   610:   former routines in order to include the new code within the former code.
                    611: 
                    612:   The output is very simple: only an estimate of the intercept and of
                    613:   the slope with 95% confident intervals.
                    614: 
                    615:   Current limitations:
                    616:   A) Even if you enter covariates, i.e. with the
                    617:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
                    618:   B) There is no computation of Life Expectancy nor Life Table.
                    619: 
                    620:   Revision 1.97  2004/02/20 13:25:42  lievre
                    621:   Version 0.96d. Population forecasting command line is (temporarily)
                    622:   suppressed.
                    623: 
                    624:   Revision 1.96  2003/07/15 15:38:55  brouard
                    625:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
                    626:   rewritten within the same printf. Workaround: many printfs.
                    627: 
                    628:   Revision 1.95  2003/07/08 07:54:34  brouard
                    629:   * imach.c (Repository):
                    630:   (Repository): Using imachwizard code to output a more meaningful covariance
                    631:   matrix (cov(a12,c31) instead of numbers.
                    632: 
                    633:   Revision 1.94  2003/06/27 13:00:02  brouard
                    634:   Just cleaning
                    635: 
                    636:   Revision 1.93  2003/06/25 16:33:55  brouard
                    637:   (Module): On windows (cygwin) function asctime_r doesn't
                    638:   exist so I changed back to asctime which exists.
                    639:   (Module): Version 0.96b
                    640: 
                    641:   Revision 1.92  2003/06/25 16:30:45  brouard
                    642:   (Module): On windows (cygwin) function asctime_r doesn't
                    643:   exist so I changed back to asctime which exists.
                    644: 
                    645:   Revision 1.91  2003/06/25 15:30:29  brouard
                    646:   * imach.c (Repository): Duplicated warning errors corrected.
                    647:   (Repository): Elapsed time after each iteration is now output. It
                    648:   helps to forecast when convergence will be reached. Elapsed time
                    649:   is stamped in powell.  We created a new html file for the graphs
                    650:   concerning matrix of covariance. It has extension -cov.htm.
                    651: 
                    652:   Revision 1.90  2003/06/24 12:34:15  brouard
                    653:   (Module): Some bugs corrected for windows. Also, when
                    654:   mle=-1 a template is output in file "or"mypar.txt with the design
                    655:   of the covariance matrix to be input.
                    656: 
                    657:   Revision 1.89  2003/06/24 12:30:52  brouard
                    658:   (Module): Some bugs corrected for windows. Also, when
                    659:   mle=-1 a template is output in file "or"mypar.txt with the design
                    660:   of the covariance matrix to be input.
                    661: 
                    662:   Revision 1.88  2003/06/23 17:54:56  brouard
                    663:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
                    664: 
                    665:   Revision 1.87  2003/06/18 12:26:01  brouard
                    666:   Version 0.96
                    667: 
                    668:   Revision 1.86  2003/06/17 20:04:08  brouard
                    669:   (Module): Change position of html and gnuplot routines and added
                    670:   routine fileappend.
                    671: 
                    672:   Revision 1.85  2003/06/17 13:12:43  brouard
                    673:   * imach.c (Repository): Check when date of death was earlier that
                    674:   current date of interview. It may happen when the death was just
                    675:   prior to the death. In this case, dh was negative and likelihood
                    676:   was wrong (infinity). We still send an "Error" but patch by
                    677:   assuming that the date of death was just one stepm after the
                    678:   interview.
                    679:   (Repository): Because some people have very long ID (first column)
                    680:   we changed int to long in num[] and we added a new lvector for
                    681:   memory allocation. But we also truncated to 8 characters (left
                    682:   truncation)
                    683:   (Repository): No more line truncation errors.
                    684: 
                    685:   Revision 1.84  2003/06/13 21:44:43  brouard
                    686:   * imach.c (Repository): Replace "freqsummary" at a correct
                    687:   place. It differs from routine "prevalence" which may be called
                    688:   many times. Probs is memory consuming and must be used with
                    689:   parcimony.
                    690:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
                    691: 
                    692:   Revision 1.83  2003/06/10 13:39:11  lievre
                    693:   *** empty log message ***
                    694: 
                    695:   Revision 1.82  2003/06/05 15:57:20  brouard
                    696:   Add log in  imach.c and  fullversion number is now printed.
                    697: 
                    698: */
                    699: /*
                    700:    Interpolated Markov Chain
                    701: 
                    702:   Short summary of the programme:
                    703:   
1.227     brouard   704:   This program computes Healthy Life Expectancies or State-specific
                    705:   (if states aren't health statuses) Expectancies from
                    706:   cross-longitudinal data. Cross-longitudinal data consist in: 
                    707: 
                    708:   -1- a first survey ("cross") where individuals from different ages
                    709:   are interviewed on their health status or degree of disability (in
                    710:   the case of a health survey which is our main interest)
                    711: 
                    712:   -2- at least a second wave of interviews ("longitudinal") which
                    713:   measure each change (if any) in individual health status.  Health
                    714:   expectancies are computed from the time spent in each health state
                    715:   according to a model. More health states you consider, more time is
                    716:   necessary to reach the Maximum Likelihood of the parameters involved
                    717:   in the model.  The simplest model is the multinomial logistic model
                    718:   where pij is the probability to be observed in state j at the second
                    719:   wave conditional to be observed in state i at the first
                    720:   wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
                    721:   etc , where 'age' is age and 'sex' is a covariate. If you want to
                    722:   have a more complex model than "constant and age", you should modify
                    723:   the program where the markup *Covariates have to be included here
                    724:   again* invites you to do it.  More covariates you add, slower the
1.126     brouard   725:   convergence.
                    726: 
                    727:   The advantage of this computer programme, compared to a simple
                    728:   multinomial logistic model, is clear when the delay between waves is not
                    729:   identical for each individual. Also, if a individual missed an
                    730:   intermediate interview, the information is lost, but taken into
                    731:   account using an interpolation or extrapolation.  
                    732: 
                    733:   hPijx is the probability to be observed in state i at age x+h
                    734:   conditional to the observed state i at age x. The delay 'h' can be
                    735:   split into an exact number (nh*stepm) of unobserved intermediate
                    736:   states. This elementary transition (by month, quarter,
                    737:   semester or year) is modelled as a multinomial logistic.  The hPx
                    738:   matrix is simply the matrix product of nh*stepm elementary matrices
                    739:   and the contribution of each individual to the likelihood is simply
                    740:   hPijx.
                    741: 
                    742:   Also this programme outputs the covariance matrix of the parameters but also
1.218     brouard   743:   of the life expectancies. It also computes the period (stable) prevalence.
                    744: 
                    745: Back prevalence and projections:
1.227     brouard   746: 
                    747:  - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
                    748:    double agemaxpar, double ftolpl, int *ncvyearp, double
                    749:    dateprev1,double dateprev2, int firstpass, int lastpass, int
                    750:    mobilavproj)
                    751: 
                    752:     Computes the back prevalence limit for any combination of
                    753:     covariate values k at any age between ageminpar and agemaxpar and
                    754:     returns it in **bprlim. In the loops,
                    755: 
                    756:    - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
                    757:        **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
                    758: 
                    759:    - hBijx Back Probability to be in state i at age x-h being in j at x
1.218     brouard   760:    Computes for any combination of covariates k and any age between bage and fage 
                    761:    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                    762:                        oldm=oldms;savm=savms;
1.227     brouard   763: 
                    764:    - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);
1.218     brouard   765:      Computes the transition matrix starting at age 'age' over
                    766:      'nhstepm*hstepm*stepm' months (i.e. until
                    767:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
1.227     brouard   768:      nhstepm*hstepm matrices. 
                    769: 
                    770:      Returns p3mat[i][j][h] after calling
                    771:      p3mat[i][j][h]=matprod2(newm,
                    772:      bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
                    773:      dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
                    774:      oldm);
1.226     brouard   775: 
                    776: Important routines
                    777: 
                    778: - func (or funcone), computes logit (pij) distinguishing
                    779:   o fixed variables (single or product dummies or quantitative);
                    780:   o varying variables by:
                    781:    (1) wave (single, product dummies, quantitative), 
                    782:    (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
                    783:        % fixed dummy (treated) or quantitative (not done because time-consuming);
                    784:        % varying dummy (not done) or quantitative (not done);
                    785: - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
                    786:   and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
                    787: - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
                    788:   o There are 2*cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
                    789:     race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
1.218     brouard   790: 
1.226     brouard   791: 
                    792:   
1.133     brouard   793:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
                    794:            Institut national d'études démographiques, Paris.
1.126     brouard   795:   This software have been partly granted by Euro-REVES, a concerted action
                    796:   from the European Union.
                    797:   It is copyrighted identically to a GNU software product, ie programme and
                    798:   software can be distributed freely for non commercial use. Latest version
                    799:   can be accessed at http://euroreves.ined.fr/imach .
                    800: 
                    801:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
                    802:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
                    803:   
                    804:   **********************************************************************/
                    805: /*
                    806:   main
                    807:   read parameterfile
                    808:   read datafile
                    809:   concatwav
                    810:   freqsummary
                    811:   if (mle >= 1)
                    812:     mlikeli
                    813:   print results files
                    814:   if mle==1 
                    815:      computes hessian
                    816:   read end of parameter file: agemin, agemax, bage, fage, estepm
                    817:       begin-prev-date,...
                    818:   open gnuplot file
                    819:   open html file
1.145     brouard   820:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
                    821:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                    822:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
                    823:     freexexit2 possible for memory heap.
                    824: 
                    825:   h Pij x                         | pij_nom  ficrestpij
                    826:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
                    827:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
                    828:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
                    829: 
                    830:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
                    831:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
                    832:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
                    833:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
                    834:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
                    835: 
1.126     brouard   836:   forecasting if prevfcast==1 prevforecast call prevalence()
                    837:   health expectancies
                    838:   Variance-covariance of DFLE
                    839:   prevalence()
                    840:    movingaverage()
                    841:   varevsij() 
                    842:   if popbased==1 varevsij(,popbased)
                    843:   total life expectancies
                    844:   Variance of period (stable) prevalence
                    845:  end
                    846: */
                    847: 
1.187     brouard   848: /* #define DEBUG */
                    849: /* #define DEBUGBRENT */
1.203     brouard   850: /* #define DEBUGLINMIN */
                    851: /* #define DEBUGHESS */
                    852: #define DEBUGHESSIJ
1.224     brouard   853: /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
1.165     brouard   854: #define POWELL /* Instead of NLOPT */
1.224     brouard   855: #define POWELLNOF3INFF1TEST /* Skip test */
1.186     brouard   856: /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
                    857: /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
1.126     brouard   858: 
                    859: #include <math.h>
                    860: #include <stdio.h>
                    861: #include <stdlib.h>
                    862: #include <string.h>
1.226     brouard   863: #include <ctype.h>
1.159     brouard   864: 
                    865: #ifdef _WIN32
                    866: #include <io.h>
1.172     brouard   867: #include <windows.h>
                    868: #include <tchar.h>
1.159     brouard   869: #else
1.126     brouard   870: #include <unistd.h>
1.159     brouard   871: #endif
1.126     brouard   872: 
                    873: #include <limits.h>
                    874: #include <sys/types.h>
1.171     brouard   875: 
                    876: #if defined(__GNUC__)
                    877: #include <sys/utsname.h> /* Doesn't work on Windows */
                    878: #endif
                    879: 
1.126     brouard   880: #include <sys/stat.h>
                    881: #include <errno.h>
1.159     brouard   882: /* extern int errno; */
1.126     brouard   883: 
1.157     brouard   884: /* #ifdef LINUX */
                    885: /* #include <time.h> */
                    886: /* #include "timeval.h" */
                    887: /* #else */
                    888: /* #include <sys/time.h> */
                    889: /* #endif */
                    890: 
1.126     brouard   891: #include <time.h>
                    892: 
1.136     brouard   893: #ifdef GSL
                    894: #include <gsl/gsl_errno.h>
                    895: #include <gsl/gsl_multimin.h>
                    896: #endif
                    897: 
1.167     brouard   898: 
1.162     brouard   899: #ifdef NLOPT
                    900: #include <nlopt.h>
                    901: typedef struct {
                    902:   double (* function)(double [] );
                    903: } myfunc_data ;
                    904: #endif
                    905: 
1.126     brouard   906: /* #include <libintl.h> */
                    907: /* #define _(String) gettext (String) */
                    908: 
1.141     brouard   909: #define MAXLINE 1024 /* Was 256. Overflow with 312 with 2 states and 4 covariates. Should be ok */
1.126     brouard   910: 
                    911: #define GNUPLOTPROGRAM "gnuplot"
                    912: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
                    913: #define FILENAMELENGTH 132
                    914: 
                    915: #define        GLOCK_ERROR_NOPATH              -1      /* empty path */
                    916: #define        GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
                    917: 
1.144     brouard   918: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
                    919: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
1.126     brouard   920: 
                    921: #define NINTERVMAX 8
1.144     brouard   922: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
                    923: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
                    924: #define NCOVMAX 20 /**< Maximum number of covariates, including generated covariates V1*V2 */
1.197     brouard   925: #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
1.211     brouard   926: /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
                    927: #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
1.126     brouard   928: #define MAXN 20000
1.144     brouard   929: #define YEARM 12. /**< Number of months per year */
1.218     brouard   930: /* #define AGESUP 130 */
                    931: #define AGESUP 150
                    932: #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
1.126     brouard   933: #define AGEBASE 40
1.194     brouard   934: #define AGEOVERFLOW 1.e20
1.164     brouard   935: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
1.157     brouard   936: #ifdef _WIN32
                    937: #define DIRSEPARATOR '\\'
                    938: #define CHARSEPARATOR "\\"
                    939: #define ODIRSEPARATOR '/'
                    940: #else
1.126     brouard   941: #define DIRSEPARATOR '/'
                    942: #define CHARSEPARATOR "/"
                    943: #define ODIRSEPARATOR '\\'
                    944: #endif
                    945: 
1.248   ! brouard   946: /* $Id: imach.c,v 1.247 2016/09/02 11:11:21 brouard Exp $ */
1.126     brouard   947: /* $State: Exp $ */
1.196     brouard   948: #include "version.h"
                    949: char version[]=__IMACH_VERSION__;
1.224     brouard   950: char copyright[]="February 2016,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2018";
1.248   ! brouard   951: char fullversion[]="$Revision: 1.247 $ $Date: 2016/09/02 11:11:21 $"; 
1.126     brouard   952: char strstart[80];
                    953: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
1.130     brouard   954: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
1.187     brouard   955: int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
1.145     brouard   956: /* Number of covariates model=V2+V1+ V3*age+V2*V4 */
                    957: int cptcovn=0; /**< cptcovn number of covariates added in the model (excepting constant and age and age*product) */
                    958: int cptcovt=0; /**< cptcovt number of covariates added in the model (excepting constant and age) */
1.225     brouard   959: int cptcovs=0; /**< cptcovs number of simple covariates in the model V2+V1 =2 */
                    960: int cptcovsnq=0; /**< cptcovsnq number of simple covariates in the model but non quantitative V2+V1 =2 */
1.145     brouard   961: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
                    962: int cptcovprodnoage=0; /**< Number of covariate products without age */   
                    963: int cptcoveff=0; /* Total number of covariates to vary for printing results */
1.233     brouard   964: int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
                    965: int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
1.232     brouard   966: int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */
1.234     brouard   967: int nsd=0; /**< Total number of single dummy variables (output) */
                    968: int nsq=0; /**< Total number of single quantitative variables (output) */
1.232     brouard   969: int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
1.225     brouard   970: int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
1.224     brouard   971: int ntveff=0; /**< ntveff number of effective time varying variables */
                    972: int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
1.145     brouard   973: int cptcov=0; /* Working variable */
1.218     brouard   974: int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
1.126     brouard   975: int npar=NPARMAX;
                    976: int nlstate=2; /* Number of live states */
                    977: int ndeath=1; /* Number of dead states */
1.130     brouard   978: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
1.223     brouard   979: int  nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ 
1.126     brouard   980: int popbased=0;
                    981: 
                    982: int *wav; /* Number of waves for this individuual 0 is possible */
1.130     brouard   983: int maxwav=0; /* Maxim number of waves */
                    984: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
                    985: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
                    986: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
1.126     brouard   987:                   to the likelihood and the sum of weights (done by funcone)*/
1.130     brouard   988: int mle=1, weightopt=0;
1.126     brouard   989: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
                    990: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
                    991: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                    992:           * wave mi and wave mi+1 is not an exact multiple of stepm. */
1.162     brouard   993: int countcallfunc=0;  /* Count the number of calls to func */
1.230     brouard   994: int selected(int kvar); /* Is covariate kvar selected for printing results */
                    995: 
1.130     brouard   996: double jmean=1; /* Mean space between 2 waves */
1.145     brouard   997: double **matprod2(); /* test */
1.126     brouard   998: double **oldm, **newm, **savm; /* Working pointers to matrices */
                    999: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
1.218     brouard  1000: double  **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
                   1001: 
1.136     brouard  1002: /*FILE *fic ; */ /* Used in readdata only */
1.217     brouard  1003: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
1.126     brouard  1004: FILE *ficlog, *ficrespow;
1.130     brouard  1005: int globpr=0; /* Global variable for printing or not */
1.126     brouard  1006: double fretone; /* Only one call to likelihood */
1.130     brouard  1007: long ipmx=0; /* Number of contributions */
1.126     brouard  1008: double sw; /* Sum of weights */
                   1009: char filerespow[FILENAMELENGTH];
                   1010: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
                   1011: FILE *ficresilk;
                   1012: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                   1013: FILE *ficresprobmorprev;
                   1014: FILE *fichtm, *fichtmcov; /* Html File */
                   1015: FILE *ficreseij;
                   1016: char filerese[FILENAMELENGTH];
                   1017: FILE *ficresstdeij;
                   1018: char fileresstde[FILENAMELENGTH];
                   1019: FILE *ficrescveij;
                   1020: char filerescve[FILENAMELENGTH];
                   1021: FILE  *ficresvij;
                   1022: char fileresv[FILENAMELENGTH];
                   1023: FILE  *ficresvpl;
                   1024: char fileresvpl[FILENAMELENGTH];
                   1025: char title[MAXLINE];
1.234     brouard  1026: char model[MAXLINE]; /**< The model line */
1.217     brouard  1027: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
1.126     brouard  1028: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
                   1029: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
                   1030: char command[FILENAMELENGTH];
                   1031: int  outcmd=0;
                   1032: 
1.217     brouard  1033: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
1.202     brouard  1034: char fileresu[FILENAMELENGTH]; /* fileres without r in front */
1.126     brouard  1035: char filelog[FILENAMELENGTH]; /* Log file */
                   1036: char filerest[FILENAMELENGTH];
                   1037: char fileregp[FILENAMELENGTH];
                   1038: char popfile[FILENAMELENGTH];
                   1039: 
                   1040: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
                   1041: 
1.157     brouard  1042: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
                   1043: /* struct timezone tzp; */
                   1044: /* extern int gettimeofday(); */
                   1045: struct tm tml, *gmtime(), *localtime();
                   1046: 
                   1047: extern time_t time();
                   1048: 
                   1049: struct tm start_time, end_time, curr_time, last_time, forecast_time;
                   1050: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
                   1051: struct tm tm;
                   1052: 
1.126     brouard  1053: char strcurr[80], strfor[80];
                   1054: 
                   1055: char *endptr;
                   1056: long lval;
                   1057: double dval;
                   1058: 
                   1059: #define NR_END 1
                   1060: #define FREE_ARG char*
                   1061: #define FTOL 1.0e-10
                   1062: 
                   1063: #define NRANSI 
1.240     brouard  1064: #define ITMAX 200
                   1065: #define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ 
1.126     brouard  1066: 
                   1067: #define TOL 2.0e-4 
                   1068: 
                   1069: #define CGOLD 0.3819660 
                   1070: #define ZEPS 1.0e-10 
                   1071: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                   1072: 
                   1073: #define GOLD 1.618034 
                   1074: #define GLIMIT 100.0 
                   1075: #define TINY 1.0e-20 
                   1076: 
                   1077: static double maxarg1,maxarg2;
                   1078: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
                   1079: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
                   1080:   
                   1081: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
                   1082: #define rint(a) floor(a+0.5)
1.166     brouard  1083: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
1.183     brouard  1084: #define mytinydouble 1.0e-16
1.166     brouard  1085: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
                   1086: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
                   1087: /* static double dsqrarg; */
                   1088: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
1.126     brouard  1089: static double sqrarg;
                   1090: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
                   1091: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
                   1092: int agegomp= AGEGOMP;
                   1093: 
                   1094: int imx; 
                   1095: int stepm=1;
                   1096: /* Stepm, step in month: minimum step interpolation*/
                   1097: 
                   1098: int estepm;
                   1099: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
                   1100: 
                   1101: int m,nb;
                   1102: long *num;
1.197     brouard  1103: int firstpass=0, lastpass=4,*cod, *cens;
1.192     brouard  1104: int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
                   1105:                   covariate for which somebody answered excluding 
                   1106:                   undefined. Usually 2: 0 and 1. */
                   1107: int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                   1108:                             covariate for which somebody answered including 
                   1109:                             undefined. Usually 3: -1, 0 and 1. */
1.126     brouard  1110: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
1.218     brouard  1111: double **pmmij, ***probs; /* Global pointer */
1.219     brouard  1112: double ***mobaverage, ***mobaverages; /* New global variable */
1.126     brouard  1113: double *ageexmed,*agecens;
                   1114: double dateintmean=0;
                   1115: 
                   1116: double *weight;
                   1117: int **s; /* Status */
1.141     brouard  1118: double *agedc;
1.145     brouard  1119: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
1.141     brouard  1120:                  * covar=matrix(0,NCOVMAX,1,n); 
1.187     brouard  1121:                  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
1.225     brouard  1122: double **coqvar; /* Fixed quantitative covariate iqv */
                   1123: double ***cotvar; /* Time varying covariate itv */
                   1124: double ***cotqvar; /* Time varying quantitative covariate itqv */
1.141     brouard  1125: double  idx; 
                   1126: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
1.234     brouard  1127: /*           V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1128: /*k          1  2   3   4     5    6    7     8    9 */
                   1129: /*Tvar[k]=   5  4   3   6     5    2    7     1    1 */
                   1130: /* Tndvar[k]    1   2   3               4          5 */
                   1131: /*TDvar         4   3   6               7          1 */ /* For outputs only; combination of dummies fixed or varying */
                   1132: /* Tns[k]    1  2   2              4               5 */ /* Number of single cova */
                   1133: /* TvarsD[k]    1   2                              3 */ /* Number of single dummy cova */
                   1134: /* TvarsDind    2   3                              9 */ /* position K of single dummy cova */
                   1135: /* TvarsQ[k] 1                     2                 */ /* Number of single quantitative cova */
                   1136: /* TvarsQind 1                     6                 */ /* position K of single quantitative cova */
                   1137: /* Tprod[i]=k           4               7            */
                   1138: /* Tage[i]=k                  5               8      */
                   1139: /* */
                   1140: /* Type                    */
                   1141: /* V         1  2  3  4  5 */
                   1142: /*           F  F  V  V  V */
                   1143: /*           D  Q  D  D  Q */
                   1144: /*                         */
                   1145: int *TvarsD;
                   1146: int *TvarsDind;
                   1147: int *TvarsQ;
                   1148: int *TvarsQind;
                   1149: 
1.235     brouard  1150: #define MAXRESULTLINES 10
                   1151: int nresult=0;
                   1152: int TKresult[MAXRESULTLINES];
1.237     brouard  1153: int Tresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
                   1154: int Tinvresult[MAXRESULTLINES][NCOVMAX];/* For dummy variable , value (output) */
1.235     brouard  1155: int Tvresult[MAXRESULTLINES][NCOVMAX]; /* For dummy variable , variable # (output) */
                   1156: double Tqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
1.237     brouard  1157: double Tqinvresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , value (output) */
1.235     brouard  1158: int Tvqresult[MAXRESULTLINES][NCOVMAX]; /* For quantitative variable , variable # (output) */
                   1159: 
1.234     brouard  1160: /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
1.232     brouard  1161: int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1162: int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1163: int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1164: int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1165: int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1166: int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.231     brouard  1167: int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1168: int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1169: int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1170: int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1171: int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1172: int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1173: int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   1174: int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   1175: 
1.230     brouard  1176: int *Tvarsel; /**< Selected covariates for output */
                   1177: double *Tvalsel; /**< Selected modality value of covariate for output */
1.226     brouard  1178: int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
1.227     brouard  1179: int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
                   1180: int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
1.238     brouard  1181: int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
                   1182: int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
1.197     brouard  1183: int *Tage;
1.227     brouard  1184: int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
1.228     brouard  1185: int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
1.230     brouard  1186: int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
                   1187: int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
1.145     brouard  1188: int *Ndum; /** Freq of modality (tricode */
1.200     brouard  1189: /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
1.227     brouard  1190: int **Tvard;
                   1191: int *Tprod;/**< Gives the k position of the k1 product */
1.238     brouard  1192: /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
1.227     brouard  1193: int *Tposprod; /**< Gives the k1 product from the k position */
1.238     brouard  1194:    /* if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2) */
                   1195:    /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
1.227     brouard  1196: int cptcovprod, *Tvaraff, *invalidvarcomb;
1.126     brouard  1197: double *lsurv, *lpop, *tpop;
                   1198: 
1.231     brouard  1199: #define FD 1; /* Fixed dummy covariate */
                   1200: #define FQ 2; /* Fixed quantitative covariate */
                   1201: #define FP 3; /* Fixed product covariate */
                   1202: #define FPDD 7; /* Fixed product dummy*dummy covariate */
                   1203: #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
                   1204: #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
                   1205: #define VD 10; /* Varying dummy covariate */
                   1206: #define VQ 11; /* Varying quantitative covariate */
                   1207: #define VP 12; /* Varying product covariate */
                   1208: #define VPDD 13; /* Varying product dummy*dummy covariate */
                   1209: #define VPDQ 14; /* Varying product dummy*quantitative covariate */
                   1210: #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
                   1211: #define APFD 16; /* Age product * fixed dummy covariate */
                   1212: #define APFQ 17; /* Age product * fixed quantitative covariate */
                   1213: #define APVD 18; /* Age product * varying dummy covariate */
                   1214: #define APVQ 19; /* Age product * varying quantitative covariate */
                   1215: 
                   1216: #define FTYPE 1; /* Fixed covariate */
                   1217: #define VTYPE 2; /* Varying covariate (loop in wave) */
                   1218: #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
                   1219: 
                   1220: struct kmodel{
                   1221:        int maintype; /* main type */
                   1222:        int subtype; /* subtype */
                   1223: };
                   1224: struct kmodel modell[NCOVMAX];
                   1225: 
1.143     brouard  1226: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
                   1227: double ftolhess; /**< Tolerance for computing hessian */
1.126     brouard  1228: 
                   1229: /**************** split *************************/
                   1230: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
                   1231: {
                   1232:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
                   1233:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
                   1234:   */ 
                   1235:   char *ss;                            /* pointer */
1.186     brouard  1236:   int  l1=0, l2=0;                             /* length counters */
1.126     brouard  1237: 
                   1238:   l1 = strlen(path );                  /* length of path */
                   1239:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
                   1240:   ss= strrchr( path, DIRSEPARATOR );           /* find last / */
                   1241:   if ( ss == NULL ) {                  /* no directory, so determine current directory */
                   1242:     strcpy( name, path );              /* we got the fullname name because no directory */
                   1243:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                   1244:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
                   1245:     /* get current working directory */
                   1246:     /*    extern  char* getcwd ( char *buf , int len);*/
1.184     brouard  1247: #ifdef WIN32
                   1248:     if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
                   1249: #else
                   1250:        if (getcwd(dirc, FILENAME_MAX) == NULL) {
                   1251: #endif
1.126     brouard  1252:       return( GLOCK_ERROR_GETCWD );
                   1253:     }
                   1254:     /* got dirc from getcwd*/
                   1255:     printf(" DIRC = %s \n",dirc);
1.205     brouard  1256:   } else {                             /* strip directory from path */
1.126     brouard  1257:     ss++;                              /* after this, the filename */
                   1258:     l2 = strlen( ss );                 /* length of filename */
                   1259:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
                   1260:     strcpy( name, ss );                /* save file name */
                   1261:     strncpy( dirc, path, l1 - l2 );    /* now the directory */
1.186     brouard  1262:     dirc[l1-l2] = '\0';                        /* add zero */
1.126     brouard  1263:     printf(" DIRC2 = %s \n",dirc);
                   1264:   }
                   1265:   /* We add a separator at the end of dirc if not exists */
                   1266:   l1 = strlen( dirc );                 /* length of directory */
                   1267:   if( dirc[l1-1] != DIRSEPARATOR ){
                   1268:     dirc[l1] =  DIRSEPARATOR;
                   1269:     dirc[l1+1] = 0; 
                   1270:     printf(" DIRC3 = %s \n",dirc);
                   1271:   }
                   1272:   ss = strrchr( name, '.' );           /* find last / */
                   1273:   if (ss >0){
                   1274:     ss++;
                   1275:     strcpy(ext,ss);                    /* save extension */
                   1276:     l1= strlen( name);
                   1277:     l2= strlen(ss)+1;
                   1278:     strncpy( finame, name, l1-l2);
                   1279:     finame[l1-l2]= 0;
                   1280:   }
                   1281: 
                   1282:   return( 0 );                         /* we're done */
                   1283: }
                   1284: 
                   1285: 
                   1286: /******************************************/
                   1287: 
                   1288: void replace_back_to_slash(char *s, char*t)
                   1289: {
                   1290:   int i;
                   1291:   int lg=0;
                   1292:   i=0;
                   1293:   lg=strlen(t);
                   1294:   for(i=0; i<= lg; i++) {
                   1295:     (s[i] = t[i]);
                   1296:     if (t[i]== '\\') s[i]='/';
                   1297:   }
                   1298: }
                   1299: 
1.132     brouard  1300: char *trimbb(char *out, char *in)
1.137     brouard  1301: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
1.132     brouard  1302:   char *s;
                   1303:   s=out;
                   1304:   while (*in != '\0'){
1.137     brouard  1305:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
1.132     brouard  1306:       in++;
                   1307:     }
                   1308:     *out++ = *in++;
                   1309:   }
                   1310:   *out='\0';
                   1311:   return s;
                   1312: }
                   1313: 
1.187     brouard  1314: /* char *substrchaine(char *out, char *in, char *chain) */
                   1315: /* { */
                   1316: /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
                   1317: /*   char *s, *t; */
                   1318: /*   t=in;s=out; */
                   1319: /*   while ((*in != *chain) && (*in != '\0')){ */
                   1320: /*     *out++ = *in++; */
                   1321: /*   } */
                   1322: 
                   1323: /*   /\* *in matches *chain *\/ */
                   1324: /*   while ((*in++ == *chain++) && (*in != '\0')){ */
                   1325: /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1326: /*   } */
                   1327: /*   in--; chain--; */
                   1328: /*   while ( (*in != '\0')){ */
                   1329: /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1330: /*     *out++ = *in++; */
                   1331: /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1332: /*   } */
                   1333: /*   *out='\0'; */
                   1334: /*   out=s; */
                   1335: /*   return out; */
                   1336: /* } */
                   1337: char *substrchaine(char *out, char *in, char *chain)
                   1338: {
                   1339:   /* Substract chain 'chain' from 'in', return and output 'out' */
                   1340:   /* in="V1+V1*age+age*age+V2", chain="age*age" */
                   1341: 
                   1342:   char *strloc;
                   1343: 
                   1344:   strcpy (out, in); 
                   1345:   strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
                   1346:   printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
                   1347:   if(strloc != NULL){ 
                   1348:     /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
                   1349:     memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
                   1350:     /* strcpy (strloc, strloc +strlen(chain));*/
                   1351:   }
                   1352:   printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
                   1353:   return out;
                   1354: }
                   1355: 
                   1356: 
1.145     brouard  1357: char *cutl(char *blocc, char *alocc, char *in, char occ)
                   1358: {
1.187     brouard  1359:   /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
1.145     brouard  1360:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
1.187     brouard  1361:      gives blocc="abcdef" and alocc="ghi2j".
1.145     brouard  1362:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
                   1363:   */
1.160     brouard  1364:   char *s, *t;
1.145     brouard  1365:   t=in;s=in;
                   1366:   while ((*in != occ) && (*in != '\0')){
                   1367:     *alocc++ = *in++;
                   1368:   }
                   1369:   if( *in == occ){
                   1370:     *(alocc)='\0';
                   1371:     s=++in;
                   1372:   }
                   1373:  
                   1374:   if (s == t) {/* occ not found */
                   1375:     *(alocc-(in-s))='\0';
                   1376:     in=s;
                   1377:   }
                   1378:   while ( *in != '\0'){
                   1379:     *blocc++ = *in++;
                   1380:   }
                   1381: 
                   1382:   *blocc='\0';
                   1383:   return t;
                   1384: }
1.137     brouard  1385: char *cutv(char *blocc, char *alocc, char *in, char occ)
                   1386: {
1.187     brouard  1387:   /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
1.137     brouard  1388:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
                   1389:      gives blocc="abcdef2ghi" and alocc="j".
                   1390:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
                   1391:   */
                   1392:   char *s, *t;
                   1393:   t=in;s=in;
                   1394:   while (*in != '\0'){
                   1395:     while( *in == occ){
                   1396:       *blocc++ = *in++;
                   1397:       s=in;
                   1398:     }
                   1399:     *blocc++ = *in++;
                   1400:   }
                   1401:   if (s == t) /* occ not found */
                   1402:     *(blocc-(in-s))='\0';
                   1403:   else
                   1404:     *(blocc-(in-s)-1)='\0';
                   1405:   in=s;
                   1406:   while ( *in != '\0'){
                   1407:     *alocc++ = *in++;
                   1408:   }
                   1409: 
                   1410:   *alocc='\0';
                   1411:   return s;
                   1412: }
                   1413: 
1.126     brouard  1414: int nbocc(char *s, char occ)
                   1415: {
                   1416:   int i,j=0;
                   1417:   int lg=20;
                   1418:   i=0;
                   1419:   lg=strlen(s);
                   1420:   for(i=0; i<= lg; i++) {
1.234     brouard  1421:     if  (s[i] == occ ) j++;
1.126     brouard  1422:   }
                   1423:   return j;
                   1424: }
                   1425: 
1.137     brouard  1426: /* void cutv(char *u,char *v, char*t, char occ) */
                   1427: /* { */
                   1428: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
                   1429: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
                   1430: /*      gives u="abcdef2ghi" and v="j" *\/ */
                   1431: /*   int i,lg,j,p=0; */
                   1432: /*   i=0; */
                   1433: /*   lg=strlen(t); */
                   1434: /*   for(j=0; j<=lg-1; j++) { */
                   1435: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
                   1436: /*   } */
1.126     brouard  1437: 
1.137     brouard  1438: /*   for(j=0; j<p; j++) { */
                   1439: /*     (u[j] = t[j]); */
                   1440: /*   } */
                   1441: /*      u[p]='\0'; */
1.126     brouard  1442: 
1.137     brouard  1443: /*    for(j=0; j<= lg; j++) { */
                   1444: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
                   1445: /*   } */
                   1446: /* } */
1.126     brouard  1447: 
1.160     brouard  1448: #ifdef _WIN32
                   1449: char * strsep(char **pp, const char *delim)
                   1450: {
                   1451:   char *p, *q;
                   1452:          
                   1453:   if ((p = *pp) == NULL)
                   1454:     return 0;
                   1455:   if ((q = strpbrk (p, delim)) != NULL)
                   1456:   {
                   1457:     *pp = q + 1;
                   1458:     *q = '\0';
                   1459:   }
                   1460:   else
                   1461:     *pp = 0;
                   1462:   return p;
                   1463: }
                   1464: #endif
                   1465: 
1.126     brouard  1466: /********************** nrerror ********************/
                   1467: 
                   1468: void nrerror(char error_text[])
                   1469: {
                   1470:   fprintf(stderr,"ERREUR ...\n");
                   1471:   fprintf(stderr,"%s\n",error_text);
                   1472:   exit(EXIT_FAILURE);
                   1473: }
                   1474: /*********************** vector *******************/
                   1475: double *vector(int nl, int nh)
                   1476: {
                   1477:   double *v;
                   1478:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
                   1479:   if (!v) nrerror("allocation failure in vector");
                   1480:   return v-nl+NR_END;
                   1481: }
                   1482: 
                   1483: /************************ free vector ******************/
                   1484: void free_vector(double*v, int nl, int nh)
                   1485: {
                   1486:   free((FREE_ARG)(v+nl-NR_END));
                   1487: }
                   1488: 
                   1489: /************************ivector *******************************/
                   1490: int *ivector(long nl,long nh)
                   1491: {
                   1492:   int *v;
                   1493:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                   1494:   if (!v) nrerror("allocation failure in ivector");
                   1495:   return v-nl+NR_END;
                   1496: }
                   1497: 
                   1498: /******************free ivector **************************/
                   1499: void free_ivector(int *v, long nl, long nh)
                   1500: {
                   1501:   free((FREE_ARG)(v+nl-NR_END));
                   1502: }
                   1503: 
                   1504: /************************lvector *******************************/
                   1505: long *lvector(long nl,long nh)
                   1506: {
                   1507:   long *v;
                   1508:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
                   1509:   if (!v) nrerror("allocation failure in ivector");
                   1510:   return v-nl+NR_END;
                   1511: }
                   1512: 
                   1513: /******************free lvector **************************/
                   1514: void free_lvector(long *v, long nl, long nh)
                   1515: {
                   1516:   free((FREE_ARG)(v+nl-NR_END));
                   1517: }
                   1518: 
                   1519: /******************* imatrix *******************************/
                   1520: int **imatrix(long nrl, long nrh, long ncl, long nch) 
                   1521:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
                   1522: { 
                   1523:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                   1524:   int **m; 
                   1525:   
                   1526:   /* allocate pointers to rows */ 
                   1527:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                   1528:   if (!m) nrerror("allocation failure 1 in matrix()"); 
                   1529:   m += NR_END; 
                   1530:   m -= nrl; 
                   1531:   
                   1532:   
                   1533:   /* allocate rows and set pointers to them */ 
                   1534:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
                   1535:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                   1536:   m[nrl] += NR_END; 
                   1537:   m[nrl] -= ncl; 
                   1538:   
                   1539:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                   1540:   
                   1541:   /* return pointer to array of pointers to rows */ 
                   1542:   return m; 
                   1543: } 
                   1544: 
                   1545: /****************** free_imatrix *************************/
                   1546: void free_imatrix(m,nrl,nrh,ncl,nch)
                   1547:       int **m;
                   1548:       long nch,ncl,nrh,nrl; 
                   1549:      /* free an int matrix allocated by imatrix() */ 
                   1550: { 
                   1551:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                   1552:   free((FREE_ARG) (m+nrl-NR_END)); 
                   1553: } 
                   1554: 
                   1555: /******************* matrix *******************************/
                   1556: double **matrix(long nrl, long nrh, long ncl, long nch)
                   1557: {
                   1558:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                   1559:   double **m;
                   1560: 
                   1561:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   1562:   if (!m) nrerror("allocation failure 1 in matrix()");
                   1563:   m += NR_END;
                   1564:   m -= nrl;
                   1565: 
                   1566:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   1567:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   1568:   m[nrl] += NR_END;
                   1569:   m[nrl] -= ncl;
                   1570: 
                   1571:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   1572:   return m;
1.145     brouard  1573:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
                   1574: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
                   1575: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
1.126     brouard  1576:    */
                   1577: }
                   1578: 
                   1579: /*************************free matrix ************************/
                   1580: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                   1581: {
                   1582:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   1583:   free((FREE_ARG)(m+nrl-NR_END));
                   1584: }
                   1585: 
                   1586: /******************* ma3x *******************************/
                   1587: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                   1588: {
                   1589:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                   1590:   double ***m;
                   1591: 
                   1592:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   1593:   if (!m) nrerror("allocation failure 1 in matrix()");
                   1594:   m += NR_END;
                   1595:   m -= nrl;
                   1596: 
                   1597:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   1598:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   1599:   m[nrl] += NR_END;
                   1600:   m[nrl] -= ncl;
                   1601: 
                   1602:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   1603: 
                   1604:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                   1605:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                   1606:   m[nrl][ncl] += NR_END;
                   1607:   m[nrl][ncl] -= nll;
                   1608:   for (j=ncl+1; j<=nch; j++) 
                   1609:     m[nrl][j]=m[nrl][j-1]+nlay;
                   1610:   
                   1611:   for (i=nrl+1; i<=nrh; i++) {
                   1612:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                   1613:     for (j=ncl+1; j<=nch; j++) 
                   1614:       m[i][j]=m[i][j-1]+nlay;
                   1615:   }
                   1616:   return m; 
                   1617:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                   1618:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                   1619:   */
                   1620: }
                   1621: 
                   1622: /*************************free ma3x ************************/
                   1623: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                   1624: {
                   1625:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                   1626:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   1627:   free((FREE_ARG)(m+nrl-NR_END));
                   1628: }
                   1629: 
                   1630: /*************** function subdirf ***********/
                   1631: char *subdirf(char fileres[])
                   1632: {
                   1633:   /* Caution optionfilefiname is hidden */
                   1634:   strcpy(tmpout,optionfilefiname);
                   1635:   strcat(tmpout,"/"); /* Add to the right */
                   1636:   strcat(tmpout,fileres);
                   1637:   return tmpout;
                   1638: }
                   1639: 
                   1640: /*************** function subdirf2 ***********/
                   1641: char *subdirf2(char fileres[], char *preop)
                   1642: {
                   1643:   
                   1644:   /* Caution optionfilefiname is hidden */
                   1645:   strcpy(tmpout,optionfilefiname);
                   1646:   strcat(tmpout,"/");
                   1647:   strcat(tmpout,preop);
                   1648:   strcat(tmpout,fileres);
                   1649:   return tmpout;
                   1650: }
                   1651: 
                   1652: /*************** function subdirf3 ***********/
                   1653: char *subdirf3(char fileres[], char *preop, char *preop2)
                   1654: {
                   1655:   
                   1656:   /* Caution optionfilefiname is hidden */
                   1657:   strcpy(tmpout,optionfilefiname);
                   1658:   strcat(tmpout,"/");
                   1659:   strcat(tmpout,preop);
                   1660:   strcat(tmpout,preop2);
                   1661:   strcat(tmpout,fileres);
                   1662:   return tmpout;
                   1663: }
1.213     brouard  1664:  
                   1665: /*************** function subdirfext ***********/
                   1666: char *subdirfext(char fileres[], char *preop, char *postop)
                   1667: {
                   1668:   
                   1669:   strcpy(tmpout,preop);
                   1670:   strcat(tmpout,fileres);
                   1671:   strcat(tmpout,postop);
                   1672:   return tmpout;
                   1673: }
1.126     brouard  1674: 
1.213     brouard  1675: /*************** function subdirfext3 ***********/
                   1676: char *subdirfext3(char fileres[], char *preop, char *postop)
                   1677: {
                   1678:   
                   1679:   /* Caution optionfilefiname is hidden */
                   1680:   strcpy(tmpout,optionfilefiname);
                   1681:   strcat(tmpout,"/");
                   1682:   strcat(tmpout,preop);
                   1683:   strcat(tmpout,fileres);
                   1684:   strcat(tmpout,postop);
                   1685:   return tmpout;
                   1686: }
                   1687:  
1.162     brouard  1688: char *asc_diff_time(long time_sec, char ascdiff[])
                   1689: {
                   1690:   long sec_left, days, hours, minutes;
                   1691:   days = (time_sec) / (60*60*24);
                   1692:   sec_left = (time_sec) % (60*60*24);
                   1693:   hours = (sec_left) / (60*60) ;
                   1694:   sec_left = (sec_left) %(60*60);
                   1695:   minutes = (sec_left) /60;
                   1696:   sec_left = (sec_left) % (60);
                   1697:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
                   1698:   return ascdiff;
                   1699: }
                   1700: 
1.126     brouard  1701: /***************** f1dim *************************/
                   1702: extern int ncom; 
                   1703: extern double *pcom,*xicom;
                   1704: extern double (*nrfunc)(double []); 
                   1705:  
                   1706: double f1dim(double x) 
                   1707: { 
                   1708:   int j; 
                   1709:   double f;
                   1710:   double *xt; 
                   1711:  
                   1712:   xt=vector(1,ncom); 
                   1713:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                   1714:   f=(*nrfunc)(xt); 
                   1715:   free_vector(xt,1,ncom); 
                   1716:   return f; 
                   1717: } 
                   1718: 
                   1719: /*****************brent *************************/
                   1720: double brent(double ax, double bx, double cx, double (*f)(double), double tol,         double *xmin) 
1.187     brouard  1721: {
                   1722:   /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
                   1723:    * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
                   1724:    * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
                   1725:    * the minimum is returned as xmin, and the minimum function value is returned as brent , the
                   1726:    * returned function value. 
                   1727:   */
1.126     brouard  1728:   int iter; 
                   1729:   double a,b,d,etemp;
1.159     brouard  1730:   double fu=0,fv,fw,fx;
1.164     brouard  1731:   double ftemp=0.;
1.126     brouard  1732:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
                   1733:   double e=0.0; 
                   1734:  
                   1735:   a=(ax < cx ? ax : cx); 
                   1736:   b=(ax > cx ? ax : cx); 
                   1737:   x=w=v=bx; 
                   1738:   fw=fv=fx=(*f)(x); 
                   1739:   for (iter=1;iter<=ITMAX;iter++) { 
                   1740:     xm=0.5*(a+b); 
                   1741:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                   1742:     /*         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                   1743:     printf(".");fflush(stdout);
                   1744:     fprintf(ficlog,".");fflush(ficlog);
1.162     brouard  1745: #ifdef DEBUGBRENT
1.126     brouard  1746:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   1747:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   1748:     /*         if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                   1749: #endif
                   1750:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                   1751:       *xmin=x; 
                   1752:       return fx; 
                   1753:     } 
                   1754:     ftemp=fu;
                   1755:     if (fabs(e) > tol1) { 
                   1756:       r=(x-w)*(fx-fv); 
                   1757:       q=(x-v)*(fx-fw); 
                   1758:       p=(x-v)*q-(x-w)*r; 
                   1759:       q=2.0*(q-r); 
                   1760:       if (q > 0.0) p = -p; 
                   1761:       q=fabs(q); 
                   1762:       etemp=e; 
                   1763:       e=d; 
                   1764:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
1.224     brouard  1765:                                d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
1.126     brouard  1766:       else { 
1.224     brouard  1767:                                d=p/q; 
                   1768:                                u=x+d; 
                   1769:                                if (u-a < tol2 || b-u < tol2) 
                   1770:                                        d=SIGN(tol1,xm-x); 
1.126     brouard  1771:       } 
                   1772:     } else { 
                   1773:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                   1774:     } 
                   1775:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                   1776:     fu=(*f)(u); 
                   1777:     if (fu <= fx) { 
                   1778:       if (u >= x) a=x; else b=x; 
                   1779:       SHFT(v,w,x,u) 
1.183     brouard  1780:       SHFT(fv,fw,fx,fu) 
                   1781:     } else { 
                   1782:       if (u < x) a=u; else b=u; 
                   1783:       if (fu <= fw || w == x) { 
1.224     brouard  1784:                                v=w; 
                   1785:                                w=u; 
                   1786:                                fv=fw; 
                   1787:                                fw=fu; 
1.183     brouard  1788:       } else if (fu <= fv || v == x || v == w) { 
1.224     brouard  1789:                                v=u; 
                   1790:                                fv=fu; 
1.183     brouard  1791:       } 
                   1792:     } 
1.126     brouard  1793:   } 
                   1794:   nrerror("Too many iterations in brent"); 
                   1795:   *xmin=x; 
                   1796:   return fx; 
                   1797: } 
                   1798: 
                   1799: /****************** mnbrak ***********************/
                   1800: 
                   1801: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                   1802:            double (*func)(double)) 
1.183     brouard  1803: { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
                   1804: the downhill direction (defined by the function as evaluated at the initial points) and returns
                   1805: new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
                   1806: values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
                   1807:    */
1.126     brouard  1808:   double ulim,u,r,q, dum;
                   1809:   double fu; 
1.187     brouard  1810: 
                   1811:   double scale=10.;
                   1812:   int iterscale=0;
                   1813: 
                   1814:   *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
                   1815:   *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
                   1816: 
                   1817: 
                   1818:   /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
                   1819:   /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
                   1820:   /*   *bx = *ax - (*ax - *bx)/scale; */
                   1821:   /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
                   1822:   /* } */
                   1823: 
1.126     brouard  1824:   if (*fb > *fa) { 
                   1825:     SHFT(dum,*ax,*bx,dum) 
1.183     brouard  1826:     SHFT(dum,*fb,*fa,dum) 
                   1827:   } 
1.126     brouard  1828:   *cx=(*bx)+GOLD*(*bx-*ax); 
                   1829:   *fc=(*func)(*cx); 
1.183     brouard  1830: #ifdef DEBUG
1.224     brouard  1831:   printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
                   1832:   fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
1.183     brouard  1833: #endif
1.224     brouard  1834:   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
1.126     brouard  1835:     r=(*bx-*ax)*(*fb-*fc); 
1.224     brouard  1836:     q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
1.126     brouard  1837:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
1.183     brouard  1838:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
                   1839:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
                   1840:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
1.126     brouard  1841:       fu=(*func)(u); 
1.163     brouard  1842: #ifdef DEBUG
                   1843:       /* f(x)=A(x-u)**2+f(u) */
                   1844:       double A, fparabu; 
                   1845:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   1846:       fparabu= *fa - A*(*ax-u)*(*ax-u);
1.224     brouard  1847:       printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
                   1848:       fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
1.183     brouard  1849:       /* And thus,it can be that fu > *fc even if fparabu < *fc */
                   1850:       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
                   1851:         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
                   1852:       /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
1.163     brouard  1853: #endif 
1.184     brouard  1854: #ifdef MNBRAKORIGINAL
1.183     brouard  1855: #else
1.191     brouard  1856: /*       if (fu > *fc) { */
                   1857: /* #ifdef DEBUG */
                   1858: /*       printf("mnbrak4  fu > fc \n"); */
                   1859: /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
                   1860: /* #endif */
                   1861: /*     /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
                   1862: /*     /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
                   1863: /*     dum=u; /\* Shifting c and u *\/ */
                   1864: /*     u = *cx; */
                   1865: /*     *cx = dum; */
                   1866: /*     dum = fu; */
                   1867: /*     fu = *fc; */
                   1868: /*     *fc =dum; */
                   1869: /*       } else { /\* end *\/ */
                   1870: /* #ifdef DEBUG */
                   1871: /*       printf("mnbrak3  fu < fc \n"); */
                   1872: /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
                   1873: /* #endif */
                   1874: /*     dum=u; /\* Shifting c and u *\/ */
                   1875: /*     u = *cx; */
                   1876: /*     *cx = dum; */
                   1877: /*     dum = fu; */
                   1878: /*     fu = *fc; */
                   1879: /*     *fc =dum; */
                   1880: /*       } */
1.224     brouard  1881: #ifdef DEBUGMNBRAK
                   1882:                 double A, fparabu; 
                   1883:      A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   1884:      fparabu= *fa - A*(*ax-u)*(*ax-u);
                   1885:      printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
                   1886:      fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
1.183     brouard  1887: #endif
1.191     brouard  1888:       dum=u; /* Shifting c and u */
                   1889:       u = *cx;
                   1890:       *cx = dum;
                   1891:       dum = fu;
                   1892:       fu = *fc;
                   1893:       *fc =dum;
1.183     brouard  1894: #endif
1.162     brouard  1895:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
1.183     brouard  1896: #ifdef DEBUG
1.224     brouard  1897:       printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
                   1898:       fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
1.183     brouard  1899: #endif
1.126     brouard  1900:       fu=(*func)(u); 
                   1901:       if (fu < *fc) { 
1.183     brouard  1902: #ifdef DEBUG
1.224     brouard  1903:                                printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
                   1904:                          fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
                   1905: #endif
                   1906:                          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                   1907:                                SHFT(*fb,*fc,fu,(*func)(u)) 
                   1908: #ifdef DEBUG
                   1909:                                        printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
1.183     brouard  1910: #endif
                   1911:       } 
1.162     brouard  1912:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
1.183     brouard  1913: #ifdef DEBUG
1.224     brouard  1914:       printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
                   1915:       fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
1.183     brouard  1916: #endif
1.126     brouard  1917:       u=ulim; 
                   1918:       fu=(*func)(u); 
1.183     brouard  1919:     } else { /* u could be left to b (if r > q parabola has a maximum) */
                   1920: #ifdef DEBUG
1.224     brouard  1921:       printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
                   1922:       fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
1.183     brouard  1923: #endif
1.126     brouard  1924:       u=(*cx)+GOLD*(*cx-*bx); 
                   1925:       fu=(*func)(u); 
1.224     brouard  1926: #ifdef DEBUG
                   1927:       printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
                   1928:       fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
                   1929: #endif
1.183     brouard  1930:     } /* end tests */
1.126     brouard  1931:     SHFT(*ax,*bx,*cx,u) 
1.183     brouard  1932:     SHFT(*fa,*fb,*fc,fu) 
                   1933: #ifdef DEBUG
1.224     brouard  1934:       printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
                   1935:       fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
1.183     brouard  1936: #endif
                   1937:   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
1.126     brouard  1938: } 
                   1939: 
                   1940: /*************** linmin ************************/
1.162     brouard  1941: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
                   1942: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
                   1943: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
                   1944: the value of func at the returned location p . This is actually all accomplished by calling the
                   1945: routines mnbrak and brent .*/
1.126     brouard  1946: int ncom; 
                   1947: double *pcom,*xicom;
                   1948: double (*nrfunc)(double []); 
                   1949:  
1.224     brouard  1950: #ifdef LINMINORIGINAL
1.126     brouard  1951: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
1.224     brouard  1952: #else
                   1953: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
                   1954: #endif
1.126     brouard  1955: { 
                   1956:   double brent(double ax, double bx, double cx, 
                   1957:               double (*f)(double), double tol, double *xmin); 
                   1958:   double f1dim(double x); 
                   1959:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                   1960:              double *fc, double (*func)(double)); 
                   1961:   int j; 
                   1962:   double xx,xmin,bx,ax; 
                   1963:   double fx,fb,fa;
1.187     brouard  1964: 
1.203     brouard  1965: #ifdef LINMINORIGINAL
                   1966: #else
                   1967:   double scale=10., axs, xxs; /* Scale added for infinity */
                   1968: #endif
                   1969:   
1.126     brouard  1970:   ncom=n; 
                   1971:   pcom=vector(1,n); 
                   1972:   xicom=vector(1,n); 
                   1973:   nrfunc=func; 
                   1974:   for (j=1;j<=n;j++) { 
                   1975:     pcom[j]=p[j]; 
1.202     brouard  1976:     xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
1.126     brouard  1977:   } 
1.187     brouard  1978: 
1.203     brouard  1979: #ifdef LINMINORIGINAL
                   1980:   xx=1.;
                   1981: #else
                   1982:   axs=0.0;
                   1983:   xxs=1.;
                   1984:   do{
                   1985:     xx= xxs;
                   1986: #endif
1.187     brouard  1987:     ax=0.;
                   1988:     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
                   1989:     /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
                   1990:     /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
                   1991:     /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
                   1992:     /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
                   1993:     /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
                   1994:     /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
1.203     brouard  1995: #ifdef LINMINORIGINAL
                   1996: #else
                   1997:     if (fx != fx){
1.224     brouard  1998:                        xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
                   1999:                        printf("|");
                   2000:                        fprintf(ficlog,"|");
1.203     brouard  2001: #ifdef DEBUGLINMIN
1.224     brouard  2002:                        printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
1.203     brouard  2003: #endif
                   2004:     }
1.224     brouard  2005:   }while(fx != fx && xxs > 1.e-5);
1.203     brouard  2006: #endif
                   2007:   
1.191     brouard  2008: #ifdef DEBUGLINMIN
                   2009:   printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
1.202     brouard  2010:   fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
1.191     brouard  2011: #endif
1.224     brouard  2012: #ifdef LINMINORIGINAL
                   2013: #else
                   2014:        if(fb == fx){ /* Flat function in the direction */
                   2015:                xmin=xx;
                   2016:     *flat=1;
                   2017:        }else{
                   2018:     *flat=0;
                   2019: #endif
                   2020:                /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
1.187     brouard  2021:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
                   2022:   /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
                   2023:   /* fmin = f(p[j] + xmin * xi[j]) */
                   2024:   /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
                   2025:   /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
1.126     brouard  2026: #ifdef DEBUG
1.224     brouard  2027:   printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
                   2028:   fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
                   2029: #endif
                   2030: #ifdef LINMINORIGINAL
                   2031: #else
                   2032:                        }
1.126     brouard  2033: #endif
1.191     brouard  2034: #ifdef DEBUGLINMIN
                   2035:   printf("linmin end ");
1.202     brouard  2036:   fprintf(ficlog,"linmin end ");
1.191     brouard  2037: #endif
1.126     brouard  2038:   for (j=1;j<=n;j++) { 
1.203     brouard  2039: #ifdef LINMINORIGINAL
                   2040:     xi[j] *= xmin; 
                   2041: #else
                   2042: #ifdef DEBUGLINMIN
                   2043:     if(xxs <1.0)
                   2044:       printf(" before xi[%d]=%12.8f", j,xi[j]);
                   2045: #endif
                   2046:     xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
                   2047: #ifdef DEBUGLINMIN
                   2048:     if(xxs <1.0)
                   2049:       printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
                   2050: #endif
                   2051: #endif
1.187     brouard  2052:     p[j] += xi[j]; /* Parameters values are updated accordingly */
1.126     brouard  2053:   } 
1.191     brouard  2054: #ifdef DEBUGLINMIN
1.203     brouard  2055:   printf("\n");
1.191     brouard  2056:   printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
1.202     brouard  2057:   fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
1.191     brouard  2058:   for (j=1;j<=n;j++) { 
1.202     brouard  2059:     printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
                   2060:     fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
                   2061:     if(j % ncovmodel == 0){
1.191     brouard  2062:       printf("\n");
1.202     brouard  2063:       fprintf(ficlog,"\n");
                   2064:     }
1.191     brouard  2065:   }
1.203     brouard  2066: #else
1.191     brouard  2067: #endif
1.126     brouard  2068:   free_vector(xicom,1,n); 
                   2069:   free_vector(pcom,1,n); 
                   2070: } 
                   2071: 
                   2072: 
                   2073: /*************** powell ************************/
1.162     brouard  2074: /*
                   2075: Minimization of a function func of n variables. Input consists of an initial starting point
                   2076: p[1..n] ; an initial matrix xi[1..n][1..n] , whose columns contain the initial set of di-
                   2077: rections (usually the n unit vectors); and ftol , the fractional tolerance in the function value
                   2078: such that failure to decrease by more than this amount on one iteration signals doneness. On
                   2079: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
                   2080: function value at p , and iter is the number of iterations taken. The routine linmin is used.
                   2081:  */
1.224     brouard  2082: #ifdef LINMINORIGINAL
                   2083: #else
                   2084:        int *flatdir; /* Function is vanishing in that direction */
1.225     brouard  2085:        int flat=0, flatd=0; /* Function is vanishing in that direction */
1.224     brouard  2086: #endif
1.126     brouard  2087: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                   2088:            double (*func)(double [])) 
                   2089: { 
1.224     brouard  2090: #ifdef LINMINORIGINAL
                   2091:  void linmin(double p[], double xi[], int n, double *fret, 
1.126     brouard  2092:              double (*func)(double [])); 
1.224     brouard  2093: #else 
1.241     brouard  2094:  void linmin(double p[], double xi[], int n, double *fret,
                   2095:             double (*func)(double []),int *flat); 
1.224     brouard  2096: #endif
1.239     brouard  2097:  int i,ibig,j,jk,k; 
1.126     brouard  2098:   double del,t,*pt,*ptt,*xit;
1.181     brouard  2099:   double directest;
1.126     brouard  2100:   double fp,fptt;
                   2101:   double *xits;
                   2102:   int niterf, itmp;
1.224     brouard  2103: #ifdef LINMINORIGINAL
                   2104: #else
                   2105: 
                   2106:   flatdir=ivector(1,n); 
                   2107:   for (j=1;j<=n;j++) flatdir[j]=0; 
                   2108: #endif
1.126     brouard  2109: 
                   2110:   pt=vector(1,n); 
                   2111:   ptt=vector(1,n); 
                   2112:   xit=vector(1,n); 
                   2113:   xits=vector(1,n); 
                   2114:   *fret=(*func)(p); 
                   2115:   for (j=1;j<=n;j++) pt[j]=p[j]; 
1.202     brouard  2116:   rcurr_time = time(NULL);  
1.126     brouard  2117:   for (*iter=1;;++(*iter)) { 
1.187     brouard  2118:     fp=(*fret); /* From former iteration or initial value */
1.126     brouard  2119:     ibig=0; 
                   2120:     del=0.0; 
1.157     brouard  2121:     rlast_time=rcurr_time;
                   2122:     /* (void) gettimeofday(&curr_time,&tzp); */
                   2123:     rcurr_time = time(NULL);  
                   2124:     curr_time = *localtime(&rcurr_time);
                   2125:     printf("\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
                   2126:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f %ld sec. %ld sec.",*iter,*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
                   2127: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
1.192     brouard  2128:     for (i=1;i<=n;i++) {
1.126     brouard  2129:       fprintf(ficrespow," %.12lf", p[i]);
                   2130:     }
1.239     brouard  2131:     fprintf(ficrespow,"\n");fflush(ficrespow);
                   2132:     printf("\n#model=  1      +     age ");
                   2133:     fprintf(ficlog,"\n#model=  1      +     age ");
                   2134:     if(nagesqr==1){
1.241     brouard  2135:        printf("  + age*age  ");
                   2136:        fprintf(ficlog,"  + age*age  ");
1.239     brouard  2137:     }
                   2138:     for(j=1;j <=ncovmodel-2;j++){
                   2139:       if(Typevar[j]==0) {
                   2140:        printf("  +      V%d  ",Tvar[j]);
                   2141:        fprintf(ficlog,"  +      V%d  ",Tvar[j]);
                   2142:       }else if(Typevar[j]==1) {
                   2143:        printf("  +    V%d*age ",Tvar[j]);
                   2144:        fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
                   2145:       }else if(Typevar[j]==2) {
                   2146:        printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   2147:        fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   2148:       }
                   2149:     }
1.126     brouard  2150:     printf("\n");
1.239     brouard  2151: /*     printf("12   47.0114589    0.0154322   33.2424412    0.3279905    2.3731903  */
                   2152: /* 13  -21.5392400    0.1118147    1.2680506    1.2973408   -1.0663662  */
1.126     brouard  2153:     fprintf(ficlog,"\n");
1.239     brouard  2154:     for(i=1,jk=1; i <=nlstate; i++){
                   2155:       for(k=1; k <=(nlstate+ndeath); k++){
                   2156:        if (k != i) {
                   2157:          printf("%d%d ",i,k);
                   2158:          fprintf(ficlog,"%d%d ",i,k);
                   2159:          for(j=1; j <=ncovmodel; j++){
                   2160:            printf("%12.7f ",p[jk]);
                   2161:            fprintf(ficlog,"%12.7f ",p[jk]);
                   2162:            jk++; 
                   2163:          }
                   2164:          printf("\n");
                   2165:          fprintf(ficlog,"\n");
                   2166:        }
                   2167:       }
                   2168:     }
1.241     brouard  2169:     if(*iter <=3 && *iter >1){
1.157     brouard  2170:       tml = *localtime(&rcurr_time);
                   2171:       strcpy(strcurr,asctime(&tml));
                   2172:       rforecast_time=rcurr_time; 
1.126     brouard  2173:       itmp = strlen(strcurr);
                   2174:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
1.241     brouard  2175:        strcurr[itmp-1]='\0';
1.162     brouard  2176:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.157     brouard  2177:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.126     brouard  2178:       for(niterf=10;niterf<=30;niterf+=10){
1.241     brouard  2179:        rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
                   2180:        forecast_time = *localtime(&rforecast_time);
                   2181:        strcpy(strfor,asctime(&forecast_time));
                   2182:        itmp = strlen(strfor);
                   2183:        if(strfor[itmp-1]=='\n')
                   2184:          strfor[itmp-1]='\0';
                   2185:        printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                   2186:        fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
1.126     brouard  2187:       }
                   2188:     }
1.187     brouard  2189:     for (i=1;i<=n;i++) { /* For each direction i */
                   2190:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
1.126     brouard  2191:       fptt=(*fret); 
                   2192: #ifdef DEBUG
1.203     brouard  2193:       printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
                   2194:       fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
1.126     brouard  2195: #endif
1.203     brouard  2196:       printf("%d",i);fflush(stdout); /* print direction (parameter) i */
1.126     brouard  2197:       fprintf(ficlog,"%d",i);fflush(ficlog);
1.224     brouard  2198: #ifdef LINMINORIGINAL
1.188     brouard  2199:       linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
1.224     brouard  2200: #else
                   2201:       linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
                   2202:                        flatdir[i]=flat; /* Function is vanishing in that direction i */
                   2203: #endif
                   2204:                        /* Outputs are fret(new point p) p is updated and xit rescaled */
1.188     brouard  2205:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
1.224     brouard  2206:                                /* because that direction will be replaced unless the gain del is small */
                   2207:                                /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
                   2208:                                /* Unless the n directions are conjugate some gain in the determinant may be obtained */
                   2209:                                /* with the new direction. */
                   2210:                                del=fabs(fptt-(*fret)); 
                   2211:                                ibig=i; 
1.126     brouard  2212:       } 
                   2213: #ifdef DEBUG
                   2214:       printf("%d %.12e",i,(*fret));
                   2215:       fprintf(ficlog,"%d %.12e",i,(*fret));
                   2216:       for (j=1;j<=n;j++) {
1.224     brouard  2217:                                xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                   2218:                                printf(" x(%d)=%.12e",j,xit[j]);
                   2219:                                fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
1.126     brouard  2220:       }
                   2221:       for(j=1;j<=n;j++) {
1.225     brouard  2222:                                printf(" p(%d)=%.12e",j,p[j]);
                   2223:                                fprintf(ficlog," p(%d)=%.12e",j,p[j]);
1.126     brouard  2224:       }
                   2225:       printf("\n");
                   2226:       fprintf(ficlog,"\n");
                   2227: #endif
1.187     brouard  2228:     } /* end loop on each direction i */
                   2229:     /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
1.188     brouard  2230:     /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
1.187     brouard  2231:     /* New value of last point Pn is not computed, P(n-1) */
1.224     brouard  2232:       for(j=1;j<=n;j++) {
1.225     brouard  2233:                                if(flatdir[j] >0){
                   2234:                                        printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                   2235:                                        fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                   2236:                                }
                   2237:                                /* printf("\n"); */
                   2238:                                /* fprintf(ficlog,"\n"); */
                   2239:                        }
1.243     brouard  2240:     /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */
                   2241:     if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */
1.188     brouard  2242:       /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
                   2243:       /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
                   2244:       /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
                   2245:       /* decreased of more than 3.84  */
                   2246:       /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
                   2247:       /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
                   2248:       /* By adding 10 parameters more the gain should be 18.31 */
1.224     brouard  2249:                        
1.188     brouard  2250:       /* Starting the program with initial values given by a former maximization will simply change */
                   2251:       /* the scales of the directions and the directions, because the are reset to canonical directions */
                   2252:       /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
                   2253:       /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
1.126     brouard  2254: #ifdef DEBUG
                   2255:       int k[2],l;
                   2256:       k[0]=1;
                   2257:       k[1]=-1;
                   2258:       printf("Max: %.12e",(*func)(p));
                   2259:       fprintf(ficlog,"Max: %.12e",(*func)(p));
                   2260:       for (j=1;j<=n;j++) {
                   2261:        printf(" %.12e",p[j]);
                   2262:        fprintf(ficlog," %.12e",p[j]);
                   2263:       }
                   2264:       printf("\n");
                   2265:       fprintf(ficlog,"\n");
                   2266:       for(l=0;l<=1;l++) {
                   2267:        for (j=1;j<=n;j++) {
                   2268:          ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                   2269:          printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   2270:          fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   2271:        }
                   2272:        printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   2273:        fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   2274:       }
                   2275: #endif
                   2276: 
1.224     brouard  2277: #ifdef LINMINORIGINAL
                   2278: #else
                   2279:       free_ivector(flatdir,1,n); 
                   2280: #endif
1.126     brouard  2281:       free_vector(xit,1,n); 
                   2282:       free_vector(xits,1,n); 
                   2283:       free_vector(ptt,1,n); 
                   2284:       free_vector(pt,1,n); 
                   2285:       return; 
1.192     brouard  2286:     } /* enough precision */ 
1.240     brouard  2287:     if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); 
1.181     brouard  2288:     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
1.126     brouard  2289:       ptt[j]=2.0*p[j]-pt[j]; 
                   2290:       xit[j]=p[j]-pt[j]; 
                   2291:       pt[j]=p[j]; 
                   2292:     } 
1.181     brouard  2293:     fptt=(*func)(ptt); /* f_3 */
1.224     brouard  2294: #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
                   2295:                if (*iter <=4) {
1.225     brouard  2296: #else
                   2297: #endif
1.224     brouard  2298: #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
1.192     brouard  2299: #else
1.161     brouard  2300:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
1.192     brouard  2301: #endif
1.162     brouard  2302:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
1.161     brouard  2303:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
1.162     brouard  2304:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
                   2305:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
                   2306:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
1.224     brouard  2307:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
                   2308:       /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
                   2309:       /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
1.161     brouard  2310:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
1.224     brouard  2311:       /*  Even if f3 <f1, directest can be negative and t >0 */
                   2312:       /* mu² and del² are equal when f3=f1 */
                   2313:                        /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
                   2314:                        /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
                   2315:                        /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
                   2316:                        /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
1.183     brouard  2317: #ifdef NRCORIGINAL
                   2318:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
                   2319: #else
                   2320:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
1.161     brouard  2321:       t= t- del*SQR(fp-fptt);
1.183     brouard  2322: #endif
1.202     brouard  2323:       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
1.161     brouard  2324: #ifdef DEBUG
1.181     brouard  2325:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
                   2326:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
1.161     brouard  2327:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   2328:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   2329:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   2330:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   2331:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   2332:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   2333: #endif
1.183     brouard  2334: #ifdef POWELLORIGINAL
                   2335:       if (t < 0.0) { /* Then we use it for new direction */
                   2336: #else
1.182     brouard  2337:       if (directest*t < 0.0) { /* Contradiction between both tests */
1.224     brouard  2338:                                printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
1.192     brouard  2339:         printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
1.224     brouard  2340:         fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
1.192     brouard  2341:         fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
                   2342:       } 
1.181     brouard  2343:       if (directest < 0.0) { /* Then we use it for new direction */
                   2344: #endif
1.191     brouard  2345: #ifdef DEBUGLINMIN
1.234     brouard  2346:        printf("Before linmin in direction P%d-P0\n",n);
                   2347:        for (j=1;j<=n;j++) {
                   2348:          printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2349:          fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2350:          if(j % ncovmodel == 0){
                   2351:            printf("\n");
                   2352:            fprintf(ficlog,"\n");
                   2353:          }
                   2354:        }
1.224     brouard  2355: #endif
                   2356: #ifdef LINMINORIGINAL
1.234     brouard  2357:        linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
1.224     brouard  2358: #else
1.234     brouard  2359:        linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
                   2360:        flatdir[i]=flat; /* Function is vanishing in that direction i */
1.191     brouard  2361: #endif
1.234     brouard  2362:        
1.191     brouard  2363: #ifdef DEBUGLINMIN
1.234     brouard  2364:        for (j=1;j<=n;j++) { 
                   2365:          printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2366:          fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2367:          if(j % ncovmodel == 0){
                   2368:            printf("\n");
                   2369:            fprintf(ficlog,"\n");
                   2370:          }
                   2371:        }
1.224     brouard  2372: #endif
1.234     brouard  2373:        for (j=1;j<=n;j++) { 
                   2374:          xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
                   2375:          xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
                   2376:        }
1.224     brouard  2377: #ifdef LINMINORIGINAL
                   2378: #else
1.234     brouard  2379:        for (j=1, flatd=0;j<=n;j++) {
                   2380:          if(flatdir[j]>0)
                   2381:            flatd++;
                   2382:        }
                   2383:        if(flatd >0){
                   2384:          printf("%d flat directions\n",flatd);
                   2385:          fprintf(ficlog,"%d flat directions\n",flatd);
                   2386:          for (j=1;j<=n;j++) { 
                   2387:            if(flatdir[j]>0){
                   2388:              printf("%d ",j);
                   2389:              fprintf(ficlog,"%d ",j);
                   2390:            }
                   2391:          }
                   2392:          printf("\n");
                   2393:          fprintf(ficlog,"\n");
                   2394:        }
1.191     brouard  2395: #endif
1.234     brouard  2396:        printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   2397:        fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   2398:        
1.126     brouard  2399: #ifdef DEBUG
1.234     brouard  2400:        printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   2401:        fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   2402:        for(j=1;j<=n;j++){
                   2403:          printf(" %lf",xit[j]);
                   2404:          fprintf(ficlog," %lf",xit[j]);
                   2405:        }
                   2406:        printf("\n");
                   2407:        fprintf(ficlog,"\n");
1.126     brouard  2408: #endif
1.192     brouard  2409:       } /* end of t or directest negative */
1.224     brouard  2410: #ifdef POWELLNOF3INFF1TEST
1.192     brouard  2411: #else
1.234     brouard  2412:       } /* end if (fptt < fp)  */
1.192     brouard  2413: #endif
1.225     brouard  2414: #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
1.234     brouard  2415:     } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
1.225     brouard  2416: #else
1.224     brouard  2417: #endif
1.234     brouard  2418:                } /* loop iteration */ 
1.126     brouard  2419: } 
1.234     brouard  2420:   
1.126     brouard  2421: /**** Prevalence limit (stable or period prevalence)  ****************/
1.234     brouard  2422:   
1.235     brouard  2423:   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
1.234     brouard  2424:   {
1.235     brouard  2425:     /* Computes the prevalence limit in each live state at age x and for covariate combination ij 
                   2426:        (and selected quantitative values in nres)
                   2427:        by left multiplying the unit
1.234     brouard  2428:        matrix by transitions matrix until convergence is reached with precision ftolpl */
1.206     brouard  2429:   /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
                   2430:   /* Wx is row vector: population in state 1, population in state 2, population dead */
                   2431:   /* or prevalence in state 1, prevalence in state 2, 0 */
                   2432:   /* newm is the matrix after multiplications, its rows are identical at a factor */
                   2433:   /* Initial matrix pimij */
                   2434:   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
                   2435:   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
                   2436:   /*  0,                   0                  , 1} */
                   2437:   /*
                   2438:    * and after some iteration: */
                   2439:   /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
                   2440:   /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
                   2441:   /*  0,                   0                  , 1} */
                   2442:   /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
                   2443:   /* {0.51571254859325999, 0.4842874514067399, */
                   2444:   /*  0.51326036147820708, 0.48673963852179264} */
                   2445:   /* If we start from prlim again, prlim tends to a constant matrix */
1.234     brouard  2446:     
1.126     brouard  2447:   int i, ii,j,k;
1.209     brouard  2448:   double *min, *max, *meandiff, maxmax,sumnew=0.;
1.145     brouard  2449:   /* double **matprod2(); */ /* test */
1.218     brouard  2450:   double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
1.126     brouard  2451:   double **newm;
1.209     brouard  2452:   double agefin, delaymax=200. ; /* 100 Max number of years to converge */
1.203     brouard  2453:   int ncvloop=0;
1.169     brouard  2454:   
1.209     brouard  2455:   min=vector(1,nlstate);
                   2456:   max=vector(1,nlstate);
                   2457:   meandiff=vector(1,nlstate);
                   2458: 
1.218     brouard  2459:        /* Starting with matrix unity */
1.126     brouard  2460:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   2461:     for (j=1;j<=nlstate+ndeath;j++){
                   2462:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   2463:     }
1.169     brouard  2464:   
                   2465:   cov[1]=1.;
                   2466:   
                   2467:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
1.202     brouard  2468:   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
1.126     brouard  2469:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
1.202     brouard  2470:     ncvloop++;
1.126     brouard  2471:     newm=savm;
                   2472:     /* Covariates have to be included here again */
1.138     brouard  2473:     cov[2]=agefin;
1.187     brouard  2474:     if(nagesqr==1)
                   2475:       cov[3]= agefin*agefin;;
1.234     brouard  2476:     for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
                   2477:                        /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
                   2478:       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
1.235     brouard  2479:       /* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
1.234     brouard  2480:     }
                   2481:     for (k=1; k<=nsq;k++) { /* For single varying covariates only */
                   2482:                        /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
1.235     brouard  2483:       cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
                   2484:       /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
1.138     brouard  2485:     }
1.237     brouard  2486:     for (k=1; k<=cptcovage;k++){  /* For product with age */
1.234     brouard  2487:       if(Dummy[Tvar[Tage[k]]]){
                   2488:        cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
                   2489:       } else{
1.235     brouard  2490:        cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
1.234     brouard  2491:       }
1.235     brouard  2492:       /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
1.234     brouard  2493:     }
1.237     brouard  2494:     for (k=1; k<=cptcovprod;k++){ /* For product without age */
1.235     brouard  2495:       /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
1.237     brouard  2496:       if(Dummy[Tvard[k][1]==0]){
                   2497:        if(Dummy[Tvard[k][2]==0]){
                   2498:          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
                   2499:        }else{
                   2500:          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];
                   2501:        }
                   2502:       }else{
                   2503:        if(Dummy[Tvard[k][2]==0]){
                   2504:          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];
                   2505:        }else{
                   2506:          cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];
                   2507:        }
                   2508:       }
1.234     brouard  2509:     }
1.138     brouard  2510:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   2511:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   2512:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
1.145     brouard  2513:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   2514:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.218     brouard  2515:                /* age and covariate values of ij are in 'cov' */
1.142     brouard  2516:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
1.138     brouard  2517:     
1.126     brouard  2518:     savm=oldm;
                   2519:     oldm=newm;
1.209     brouard  2520: 
                   2521:     for(j=1; j<=nlstate; j++){
                   2522:       max[j]=0.;
                   2523:       min[j]=1.;
                   2524:     }
                   2525:     for(i=1;i<=nlstate;i++){
                   2526:       sumnew=0;
                   2527:       for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                   2528:       for(j=1; j<=nlstate; j++){ 
                   2529:        prlim[i][j]= newm[i][j]/(1-sumnew);
                   2530:        max[j]=FMAX(max[j],prlim[i][j]);
                   2531:        min[j]=FMIN(min[j],prlim[i][j]);
                   2532:       }
                   2533:     }
                   2534: 
1.126     brouard  2535:     maxmax=0.;
1.209     brouard  2536:     for(j=1; j<=nlstate; j++){
                   2537:       meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
                   2538:       maxmax=FMAX(maxmax,meandiff[j]);
                   2539:       /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
1.169     brouard  2540:     } /* j loop */
1.203     brouard  2541:     *ncvyear= (int)age- (int)agefin;
1.208     brouard  2542:     /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.126     brouard  2543:     if(maxmax < ftolpl){
1.209     brouard  2544:       /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
                   2545:       free_vector(min,1,nlstate);
                   2546:       free_vector(max,1,nlstate);
                   2547:       free_vector(meandiff,1,nlstate);
1.126     brouard  2548:       return prlim;
                   2549:     }
1.169     brouard  2550:   } /* age loop */
1.208     brouard  2551:     /* After some age loop it doesn't converge */
1.209     brouard  2552:   printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
1.208     brouard  2553: Earliest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
1.209     brouard  2554:   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
                   2555:   free_vector(min,1,nlstate);
                   2556:   free_vector(max,1,nlstate);
                   2557:   free_vector(meandiff,1,nlstate);
1.208     brouard  2558:   
1.169     brouard  2559:   return prlim; /* should not reach here */
1.126     brouard  2560: }
                   2561: 
1.217     brouard  2562: 
                   2563:  /**** Back Prevalence limit (stable or period prevalence)  ****************/
                   2564: 
1.218     brouard  2565:  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
                   2566:  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
1.242     brouard  2567:   double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres)
1.217     brouard  2568: {
1.218     brouard  2569:   /* Computes the prevalence limit in each live state at age x and covariate ij by left multiplying the unit
1.217     brouard  2570:      matrix by transitions matrix until convergence is reached with precision ftolpl */
                   2571:   /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
                   2572:   /* Wx is row vector: population in state 1, population in state 2, population dead */
                   2573:   /* or prevalence in state 1, prevalence in state 2, 0 */
                   2574:   /* newm is the matrix after multiplications, its rows are identical at a factor */
                   2575:   /* Initial matrix pimij */
                   2576:   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
                   2577:   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
                   2578:   /*  0,                   0                  , 1} */
                   2579:   /*
                   2580:    * and after some iteration: */
                   2581:   /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
                   2582:   /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
                   2583:   /*  0,                   0                  , 1} */
                   2584:   /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
                   2585:   /* {0.51571254859325999, 0.4842874514067399, */
                   2586:   /*  0.51326036147820708, 0.48673963852179264} */
                   2587:   /* If we start from prlim again, prlim tends to a constant matrix */
                   2588: 
                   2589:   int i, ii,j,k;
1.247     brouard  2590:   int first=0;
1.217     brouard  2591:   double *min, *max, *meandiff, maxmax,sumnew=0.;
                   2592:   /* double **matprod2(); */ /* test */
                   2593:   double **out, cov[NCOVMAX+1], **bmij();
                   2594:   double **newm;
1.218     brouard  2595:   double        **dnewm, **doldm, **dsavm;  /* for use */
                   2596:   double        **oldm, **savm;  /* for use */
                   2597: 
1.217     brouard  2598:   double agefin, delaymax=200. ; /* 100 Max number of years to converge */
                   2599:   int ncvloop=0;
                   2600:   
                   2601:   min=vector(1,nlstate);
                   2602:   max=vector(1,nlstate);
                   2603:   meandiff=vector(1,nlstate);
                   2604: 
1.218     brouard  2605:        dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
                   2606:        oldm=oldms; savm=savms;
                   2607: 
                   2608:        /* Starting with matrix unity */
                   2609:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   2610:                for (j=1;j<=nlstate+ndeath;j++){
1.217     brouard  2611:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   2612:     }
                   2613:   
                   2614:   cov[1]=1.;
                   2615:   
                   2616:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   2617:   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
1.218     brouard  2618:   /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
                   2619:   for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /* A changer en age */
1.217     brouard  2620:     ncvloop++;
1.218     brouard  2621:     newm=savm; /* oldm should be kept from previous iteration or unity at start */
                   2622:                /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
1.217     brouard  2623:     /* Covariates have to be included here again */
                   2624:     cov[2]=agefin;
                   2625:     if(nagesqr==1)
                   2626:       cov[3]= agefin*agefin;;
1.242     brouard  2627:     for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
                   2628:                        /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
                   2629:       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
                   2630:       /* printf("bprevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
                   2631:     }
                   2632:     /* for (k=1; k<=cptcovn;k++) { */
                   2633:     /*   /\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\/ */
                   2634:     /*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
                   2635:     /*   /\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\/ */
                   2636:     /* } */
                   2637:     for (k=1; k<=nsq;k++) { /* For single varying covariates only */
                   2638:                        /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
                   2639:       cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
                   2640:       /* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
                   2641:     }
                   2642:     /* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; */
                   2643:     /* for (k=1; k<=cptcovprod;k++) /\* Useless *\/ */
                   2644:     /*   /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\/ */
                   2645:     /*   cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; */
                   2646:     for (k=1; k<=cptcovage;k++){  /* For product with age */
                   2647:       if(Dummy[Tvar[Tage[k]]]){
                   2648:        cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
                   2649:       } else{
                   2650:        cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
                   2651:       }
                   2652:       /* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
                   2653:     }
                   2654:     for (k=1; k<=cptcovprod;k++){ /* For product without age */
                   2655:       /* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
                   2656:       if(Dummy[Tvard[k][1]==0]){
                   2657:        if(Dummy[Tvard[k][2]==0]){
                   2658:          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
                   2659:        }else{
                   2660:          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k];
                   2661:        }
                   2662:       }else{
                   2663:        if(Dummy[Tvard[k][2]==0]){
                   2664:          cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]];
                   2665:        }else{
                   2666:          cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]];
                   2667:        }
                   2668:       }
1.217     brouard  2669:     }
                   2670:     
                   2671:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   2672:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   2673:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                   2674:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   2675:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.218     brouard  2676:                /* ij should be linked to the correct index of cov */
                   2677:                /* age and covariate values ij are in 'cov', but we need to pass
                   2678:                 * ij for the observed prevalence at age and status and covariate
                   2679:                 * number:  prevacurrent[(int)agefin][ii][ij]
                   2680:                 */
                   2681:     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
                   2682:     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
                   2683:     out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
1.217     brouard  2684:     savm=oldm;
                   2685:     oldm=newm;
                   2686:     for(j=1; j<=nlstate; j++){
                   2687:       max[j]=0.;
                   2688:       min[j]=1.;
                   2689:     }
                   2690:     for(j=1; j<=nlstate; j++){ 
                   2691:       for(i=1;i<=nlstate;i++){
1.234     brouard  2692:        /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
                   2693:        bprlim[i][j]= newm[i][j];
                   2694:        max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
                   2695:        min[i]=FMIN(min[i],bprlim[i][j]);
1.217     brouard  2696:       }
                   2697:     }
1.218     brouard  2698:                
1.217     brouard  2699:     maxmax=0.;
                   2700:     for(i=1; i<=nlstate; i++){
                   2701:       meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column */
                   2702:       maxmax=FMAX(maxmax,meandiff[i]);
                   2703:       /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
                   2704:     } /* j loop */
                   2705:     *ncvyear= -( (int)age- (int)agefin);
1.218     brouard  2706:     /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear);*/
1.217     brouard  2707:     if(maxmax < ftolpl){
1.220     brouard  2708:       /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.217     brouard  2709:       free_vector(min,1,nlstate);
                   2710:       free_vector(max,1,nlstate);
                   2711:       free_vector(meandiff,1,nlstate);
                   2712:       return bprlim;
                   2713:     }
                   2714:   } /* age loop */
                   2715:     /* After some age loop it doesn't converge */
1.247     brouard  2716:   if(first){
                   2717:     first=1;
                   2718:     printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\
                   2719: Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
                   2720:   }
                   2721:   fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
1.217     brouard  2722: Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
                   2723:   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
                   2724:   free_vector(min,1,nlstate);
                   2725:   free_vector(max,1,nlstate);
                   2726:   free_vector(meandiff,1,nlstate);
                   2727:   
                   2728:   return bprlim; /* should not reach here */
                   2729: }
                   2730: 
1.126     brouard  2731: /*************** transition probabilities ***************/ 
                   2732: 
                   2733: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                   2734: {
1.138     brouard  2735:   /* According to parameters values stored in x and the covariate's values stored in cov,
                   2736:      computes the probability to be observed in state j being in state i by appying the
                   2737:      model to the ncovmodel covariates (including constant and age).
                   2738:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   2739:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   2740:      ncth covariate in the global vector x is given by the formula:
                   2741:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   2742:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   2743:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   2744:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
                   2745:      Outputs ps[i][j] the probability to be observed in j being in j according to
                   2746:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
                   2747:   */
                   2748:   double s1, lnpijopii;
1.126     brouard  2749:   /*double t34;*/
1.164     brouard  2750:   int i,j, nc, ii, jj;
1.126     brouard  2751: 
1.223     brouard  2752:   for(i=1; i<= nlstate; i++){
                   2753:     for(j=1; j<i;j++){
                   2754:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   2755:        /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   2756:        lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   2757:        /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   2758:       }
                   2759:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   2760:       /*       printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   2761:     }
                   2762:     for(j=i+1; j<=nlstate+ndeath;j++){
                   2763:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   2764:        /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   2765:        lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   2766:        /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                   2767:       }
                   2768:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   2769:     }
                   2770:   }
1.218     brouard  2771:   
1.223     brouard  2772:   for(i=1; i<= nlstate; i++){
                   2773:     s1=0;
                   2774:     for(j=1; j<i; j++){
                   2775:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   2776:       /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   2777:     }
                   2778:     for(j=i+1; j<=nlstate+ndeath; j++){
                   2779:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   2780:       /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   2781:     }
                   2782:     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   2783:     ps[i][i]=1./(s1+1.);
                   2784:     /* Computing other pijs */
                   2785:     for(j=1; j<i; j++)
                   2786:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   2787:     for(j=i+1; j<=nlstate+ndeath; j++)
                   2788:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   2789:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   2790:   } /* end i */
1.218     brouard  2791:   
1.223     brouard  2792:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   2793:     for(jj=1; jj<= nlstate+ndeath; jj++){
                   2794:       ps[ii][jj]=0;
                   2795:       ps[ii][ii]=1;
                   2796:     }
                   2797:   }
1.218     brouard  2798:   
                   2799:   
1.223     brouard  2800:   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   2801:   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   2802:   /*   printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   2803:   /*   } */
                   2804:   /*   printf("\n "); */
                   2805:   /* } */
                   2806:   /* printf("\n ");printf("%lf ",cov[2]);*/
                   2807:   /*
                   2808:     for(i=1; i<= npar; i++) printf("%f ",x[i]);
1.218     brouard  2809:                goto end;*/
1.223     brouard  2810:   return ps;
1.126     brouard  2811: }
                   2812: 
1.218     brouard  2813: /*************** backward transition probabilities ***************/ 
                   2814: 
                   2815:  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   2816: /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   2817:  double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
                   2818: {
1.222     brouard  2819:   /* Computes the backward probability at age agefin and covariate ij
                   2820:    * and returns in **ps as well as **bmij.
                   2821:    */
1.218     brouard  2822:   int i, ii, j,k;
1.222     brouard  2823:   
                   2824:   double **out, **pmij();
                   2825:   double sumnew=0.;
1.218     brouard  2826:   double agefin;
1.222     brouard  2827:   
                   2828:   double **dnewm, **dsavm, **doldm;
                   2829:   double **bbmij;
                   2830:   
1.218     brouard  2831:   doldm=ddoldms; /* global pointers */
1.222     brouard  2832:   dnewm=ddnewms;
                   2833:   dsavm=ddsavms;
                   2834:   
                   2835:   agefin=cov[2];
                   2836:   /* bmij *//* age is cov[2], ij is included in cov, but we need for
                   2837:      the observed prevalence (with this covariate ij) */
                   2838:   dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate);
                   2839:   /* We do have the matrix Px in savm  and we need pij */
                   2840:   for (j=1;j<=nlstate+ndeath;j++){
                   2841:     sumnew=0.; /* w1 p11 + w2 p21 only on live states */
                   2842:     for (ii=1;ii<=nlstate;ii++){
                   2843:       sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij];
                   2844:     } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
                   2845:     for (ii=1;ii<=nlstate+ndeath;ii++){
                   2846:       if(sumnew >= 1.e-10){
                   2847:        /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
                   2848:        /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
                   2849:        /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
                   2850:        /*      doldm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
                   2851:        /* }else */
                   2852:        doldm[ii][j]=(ii==j ? 1./sumnew : 0.0);
                   2853:       }else{
1.242     brouard  2854:        ;
                   2855:        /* printf("ii=%d, i=%d, doldm=%lf dsavm=%lf, probs=%lf, sumnew=%lf,agefin=%d\n",ii,j,doldm[ii][j],dsavm[ii][j],prevacurrent[(int)agefin][ii][ij],sumnew, (int)agefin); */
1.222     brouard  2856:       }
                   2857:     } /*End ii */
                   2858:   } /* End j, At the end doldm is diag[1/(w_1p1i+w_2 p2i)] */
                   2859:   /* left Product of this diag matrix by dsavm=Px (newm=dsavm*doldm) */
                   2860:   bbmij=matprod2(dnewm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, doldm); /* Bug Valgrind */
                   2861:   /* dsavm=doldm; /\* dsavm is now diag [1/(w_1p1i+w_2 p2i)] but can be overwritten*\/ */
                   2862:   /* doldm=dnewm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
                   2863:   /* dnewm=dsavm; /\* doldm is now Px * diag [1/(w_1p1i+w_2 p2i)] *\/ */
                   2864:   /* left Product of this matrix by diag matrix of prevalences (savm) */
                   2865:   for (j=1;j<=nlstate+ndeath;j++){
                   2866:     for (ii=1;ii<=nlstate+ndeath;ii++){
                   2867:       dsavm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij] : 0.0);
                   2868:     }
                   2869:   } /* End j, At the end oldm is diag[1/(w_1p1i+w_2 p2i)] */
                   2870:   ps=matprod2(doldm, dsavm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dnewm); /* Bug Valgrind */
                   2871:   /* newm or out is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
                   2872:   /* end bmij */
                   2873:   return ps; 
1.218     brouard  2874: }
1.217     brouard  2875: /*************** transition probabilities ***************/ 
                   2876: 
1.218     brouard  2877: double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
1.217     brouard  2878: {
                   2879:   /* According to parameters values stored in x and the covariate's values stored in cov,
                   2880:      computes the probability to be observed in state j being in state i by appying the
                   2881:      model to the ncovmodel covariates (including constant and age).
                   2882:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   2883:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   2884:      ncth covariate in the global vector x is given by the formula:
                   2885:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   2886:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   2887:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   2888:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
                   2889:      Outputs ps[i][j] the probability to be observed in j being in j according to
                   2890:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
                   2891:   */
                   2892:   double s1, lnpijopii;
                   2893:   /*double t34;*/
                   2894:   int i,j, nc, ii, jj;
                   2895: 
1.234     brouard  2896:   for(i=1; i<= nlstate; i++){
                   2897:     for(j=1; j<i;j++){
                   2898:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   2899:        /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   2900:        lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   2901:        /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   2902:       }
                   2903:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   2904:       /*       printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   2905:     }
                   2906:     for(j=i+1; j<=nlstate+ndeath;j++){
                   2907:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   2908:        /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   2909:        lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   2910:        /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                   2911:       }
                   2912:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   2913:     }
                   2914:   }
                   2915:   
                   2916:   for(i=1; i<= nlstate; i++){
                   2917:     s1=0;
                   2918:     for(j=1; j<i; j++){
                   2919:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   2920:       /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   2921:     }
                   2922:     for(j=i+1; j<=nlstate+ndeath; j++){
                   2923:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   2924:       /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   2925:     }
                   2926:     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   2927:     ps[i][i]=1./(s1+1.);
                   2928:     /* Computing other pijs */
                   2929:     for(j=1; j<i; j++)
                   2930:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   2931:     for(j=i+1; j<=nlstate+ndeath; j++)
                   2932:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   2933:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   2934:   } /* end i */
                   2935:   
                   2936:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   2937:     for(jj=1; jj<= nlstate+ndeath; jj++){
                   2938:       ps[ii][jj]=0;
                   2939:       ps[ii][ii]=1;
                   2940:     }
                   2941:   }
                   2942:   /* Added for backcast */ /* Transposed matrix too */
                   2943:   for(jj=1; jj<= nlstate+ndeath; jj++){
                   2944:     s1=0.;
                   2945:     for(ii=1; ii<= nlstate+ndeath; ii++){
                   2946:       s1+=ps[ii][jj];
                   2947:     }
                   2948:     for(ii=1; ii<= nlstate; ii++){
                   2949:       ps[ii][jj]=ps[ii][jj]/s1;
                   2950:     }
                   2951:   }
                   2952:   /* Transposition */
                   2953:   for(jj=1; jj<= nlstate+ndeath; jj++){
                   2954:     for(ii=jj; ii<= nlstate+ndeath; ii++){
                   2955:       s1=ps[ii][jj];
                   2956:       ps[ii][jj]=ps[jj][ii];
                   2957:       ps[jj][ii]=s1;
                   2958:     }
                   2959:   }
                   2960:   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   2961:   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   2962:   /*   printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   2963:   /*   } */
                   2964:   /*   printf("\n "); */
                   2965:   /* } */
                   2966:   /* printf("\n ");printf("%lf ",cov[2]);*/
                   2967:   /*
                   2968:     for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   2969:     goto end;*/
                   2970:   return ps;
1.217     brouard  2971: }
                   2972: 
                   2973: 
1.126     brouard  2974: /**************** Product of 2 matrices ******************/
                   2975: 
1.145     brouard  2976: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
1.126     brouard  2977: {
                   2978:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   2979:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                   2980:   /* in, b, out are matrice of pointers which should have been initialized 
                   2981:      before: only the contents of out is modified. The function returns
                   2982:      a pointer to pointers identical to out */
1.145     brouard  2983:   int i, j, k;
1.126     brouard  2984:   for(i=nrl; i<= nrh; i++)
1.145     brouard  2985:     for(k=ncolol; k<=ncoloh; k++){
                   2986:       out[i][k]=0.;
                   2987:       for(j=ncl; j<=nch; j++)
                   2988:        out[i][k] +=in[i][j]*b[j][k];
                   2989:     }
1.126     brouard  2990:   return out;
                   2991: }
                   2992: 
                   2993: 
                   2994: /************* Higher Matrix Product ***************/
                   2995: 
1.235     brouard  2996: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
1.126     brouard  2997: {
1.218     brouard  2998:   /* Computes the transition matrix starting at age 'age' and combination of covariate values corresponding to ij over 
1.126     brouard  2999:      'nhstepm*hstepm*stepm' months (i.e. until
                   3000:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                   3001:      nhstepm*hstepm matrices. 
                   3002:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
                   3003:      (typically every 2 years instead of every month which is too big 
                   3004:      for the memory).
                   3005:      Model is determined by parameters x and covariates have to be 
                   3006:      included manually here. 
                   3007: 
                   3008:      */
                   3009: 
                   3010:   int i, j, d, h, k;
1.131     brouard  3011:   double **out, cov[NCOVMAX+1];
1.126     brouard  3012:   double **newm;
1.187     brouard  3013:   double agexact;
1.214     brouard  3014:   double agebegin, ageend;
1.126     brouard  3015: 
                   3016:   /* Hstepm could be zero and should return the unit matrix */
                   3017:   for (i=1;i<=nlstate+ndeath;i++)
                   3018:     for (j=1;j<=nlstate+ndeath;j++){
                   3019:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   3020:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   3021:     }
                   3022:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   3023:   for(h=1; h <=nhstepm; h++){
                   3024:     for(d=1; d <=hstepm; d++){
                   3025:       newm=savm;
                   3026:       /* Covariates have to be included here again */
                   3027:       cov[1]=1.;
1.214     brouard  3028:       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
1.187     brouard  3029:       cov[2]=agexact;
                   3030:       if(nagesqr==1)
1.227     brouard  3031:        cov[3]= agexact*agexact;
1.235     brouard  3032:       for (k=1; k<=nsd;k++) { /* For single dummy covariates only */
                   3033:                        /* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates */
                   3034:        cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];
                   3035:        /* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); */
                   3036:       }
                   3037:       for (k=1; k<=nsq;k++) { /* For single varying covariates only */
                   3038:        /* Here comes the value of quantitative after renumbering k with single quantitative covariates */
                   3039:        cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; 
                   3040:        /* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); */
                   3041:       }
                   3042:       for (k=1; k<=cptcovage;k++){
                   3043:        if(Dummy[Tvar[Tage[k]]]){
                   3044:          cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
                   3045:        } else{
                   3046:          cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; 
                   3047:        }
                   3048:        /* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); */
                   3049:       }
                   3050:       for (k=1; k<=cptcovprod;k++){ /*  */
                   3051:        /* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); */
                   3052:        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)];
                   3053:       }
                   3054:       /* for (k=1; k<=cptcovn;k++)  */
                   3055:       /*       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
                   3056:       /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
                   3057:       /*       cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
                   3058:       /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
                   3059:       /*       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
1.227     brouard  3060:       
                   3061:       
1.126     brouard  3062:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   3063:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
1.218     brouard  3064:                        /* right multiplication of oldm by the current matrix */
1.126     brouard  3065:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                   3066:                   pmij(pmmij,cov,ncovmodel,x,nlstate));
1.217     brouard  3067:       /* if((int)age == 70){ */
                   3068:       /*       printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
                   3069:       /*       for(i=1; i<=nlstate+ndeath; i++) { */
                   3070:       /*         printf("%d pmmij ",i); */
                   3071:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3072:       /*           printf("%f ",pmmij[i][j]); */
                   3073:       /*         } */
                   3074:       /*         printf(" oldm "); */
                   3075:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3076:       /*           printf("%f ",oldm[i][j]); */
                   3077:       /*         } */
                   3078:       /*         printf("\n"); */
                   3079:       /*       } */
                   3080:       /* } */
1.126     brouard  3081:       savm=oldm;
                   3082:       oldm=newm;
                   3083:     }
                   3084:     for(i=1; i<=nlstate+ndeath; i++)
                   3085:       for(j=1;j<=nlstate+ndeath;j++) {
1.218     brouard  3086:                                po[i][j][h]=newm[i][j];
                   3087:                                /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
1.126     brouard  3088:       }
1.128     brouard  3089:     /*printf("h=%d ",h);*/
1.126     brouard  3090:   } /* end h */
1.218     brouard  3091:        /*     printf("\n H=%d \n",h); */
1.126     brouard  3092:   return po;
                   3093: }
                   3094: 
1.217     brouard  3095: /************* Higher Back Matrix Product ***************/
1.218     brouard  3096: /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
1.222     brouard  3097: double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij )
1.217     brouard  3098: {
1.218     brouard  3099:   /* Computes the transition matrix starting at age 'age' over
1.217     brouard  3100:      'nhstepm*hstepm*stepm' months (i.e. until
1.218     brouard  3101:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
                   3102:      nhstepm*hstepm matrices.
                   3103:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step
                   3104:      (typically every 2 years instead of every month which is too big
1.217     brouard  3105:      for the memory).
1.218     brouard  3106:      Model is determined by parameters x and covariates have to be
                   3107:      included manually here.
1.217     brouard  3108: 
1.222     brouard  3109:   */
1.217     brouard  3110: 
                   3111:   int i, j, d, h, k;
                   3112:   double **out, cov[NCOVMAX+1];
                   3113:   double **newm;
                   3114:   double agexact;
                   3115:   double agebegin, ageend;
1.222     brouard  3116:   double **oldm, **savm;
1.217     brouard  3117: 
1.222     brouard  3118:   oldm=oldms;savm=savms;
1.217     brouard  3119:   /* Hstepm could be zero and should return the unit matrix */
                   3120:   for (i=1;i<=nlstate+ndeath;i++)
                   3121:     for (j=1;j<=nlstate+ndeath;j++){
                   3122:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   3123:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   3124:     }
                   3125:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   3126:   for(h=1; h <=nhstepm; h++){
                   3127:     for(d=1; d <=hstepm; d++){
                   3128:       newm=savm;
                   3129:       /* Covariates have to be included here again */
                   3130:       cov[1]=1.;
                   3131:       agexact=age-((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
                   3132:       /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
                   3133:       cov[2]=agexact;
                   3134:       if(nagesqr==1)
1.222     brouard  3135:        cov[3]= agexact*agexact;
1.218     brouard  3136:       for (k=1; k<=cptcovn;k++)
1.222     brouard  3137:        cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)];
                   3138:       /* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
1.217     brouard  3139:       for (k=1; k<=cptcovage;k++) /* Should start at cptcovn+1 */
1.222     brouard  3140:        /* cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
                   3141:        cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
                   3142:       /* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
1.217     brouard  3143:       for (k=1; k<=cptcovprod;k++) /* Useless because included in cptcovn */
1.222     brouard  3144:        cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
                   3145:       /* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
1.218     brouard  3146:                        
                   3147:                        
1.217     brouard  3148:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   3149:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
1.218     brouard  3150:       /* Careful transposed matrix */
1.222     brouard  3151:       /* age is in cov[2] */
1.218     brouard  3152:       /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
1.222     brouard  3153:       /*                                                1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
1.218     brouard  3154:       out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
1.222     brouard  3155:                   1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);
1.217     brouard  3156:       /* if((int)age == 70){ */
                   3157:       /*       printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
                   3158:       /*       for(i=1; i<=nlstate+ndeath; i++) { */
                   3159:       /*         printf("%d pmmij ",i); */
                   3160:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3161:       /*           printf("%f ",pmmij[i][j]); */
                   3162:       /*         } */
                   3163:       /*         printf(" oldm "); */
                   3164:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3165:       /*           printf("%f ",oldm[i][j]); */
                   3166:       /*         } */
                   3167:       /*         printf("\n"); */
                   3168:       /*       } */
                   3169:       /* } */
                   3170:       savm=oldm;
                   3171:       oldm=newm;
                   3172:     }
                   3173:     for(i=1; i<=nlstate+ndeath; i++)
                   3174:       for(j=1;j<=nlstate+ndeath;j++) {
1.222     brouard  3175:        po[i][j][h]=newm[i][j];
                   3176:        /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
1.217     brouard  3177:       }
                   3178:     /*printf("h=%d ",h);*/
                   3179:   } /* end h */
1.222     brouard  3180:   /*     printf("\n H=%d \n",h); */
1.217     brouard  3181:   return po;
                   3182: }
                   3183: 
                   3184: 
1.162     brouard  3185: #ifdef NLOPT
                   3186:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
                   3187:   double fret;
                   3188:   double *xt;
                   3189:   int j;
                   3190:   myfunc_data *d2 = (myfunc_data *) pd;
                   3191: /* xt = (p1-1); */
                   3192:   xt=vector(1,n); 
                   3193:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
                   3194: 
                   3195:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
                   3196:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
                   3197:   printf("Function = %.12lf ",fret);
                   3198:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
                   3199:   printf("\n");
                   3200:  free_vector(xt,1,n);
                   3201:   return fret;
                   3202: }
                   3203: #endif
1.126     brouard  3204: 
                   3205: /*************** log-likelihood *************/
                   3206: double func( double *x)
                   3207: {
1.226     brouard  3208:   int i, ii, j, k, mi, d, kk;
                   3209:   int ioffset=0;
                   3210:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
                   3211:   double **out;
                   3212:   double lli; /* Individual log likelihood */
                   3213:   int s1, s2;
1.228     brouard  3214:   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
1.226     brouard  3215:   double bbh, survp;
                   3216:   long ipmx;
                   3217:   double agexact;
                   3218:   /*extern weight */
                   3219:   /* We are differentiating ll according to initial status */
                   3220:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   3221:   /*for(i=1;i<imx;i++) 
                   3222:     printf(" %d\n",s[4][i]);
                   3223:   */
1.162     brouard  3224: 
1.226     brouard  3225:   ++countcallfunc;
1.162     brouard  3226: 
1.226     brouard  3227:   cov[1]=1.;
1.126     brouard  3228: 
1.226     brouard  3229:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.224     brouard  3230:   ioffset=0;
1.226     brouard  3231:   if(mle==1){
                   3232:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   3233:       /* Computes the values of the ncovmodel covariates of the model
                   3234:         depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
                   3235:         Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   3236:         to be observed in j being in i according to the model.
                   3237:       */
1.243     brouard  3238:       ioffset=2+nagesqr ;
1.233     brouard  3239:    /* Fixed */
1.234     brouard  3240:       for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
                   3241:        cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
                   3242:       }
1.226     brouard  3243:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
                   3244:         is 6, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2] 
                   3245:         has been calculated etc */
                   3246:       /* For an individual i, wav[i] gives the number of effective waves */
                   3247:       /* We compute the contribution to Likelihood of each effective transition
                   3248:         mw[mi][i] is real wave of the mi th effectve wave */
                   3249:       /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
                   3250:         s2=s[mw[mi+1][i]][i];
                   3251:         And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
                   3252:         But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
                   3253:         meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
                   3254:       */
                   3255:       for(mi=1; mi<= wav[i]-1; mi++){
1.234     brouard  3256:        for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
1.242     brouard  3257:          /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */
                   3258:          cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
1.234     brouard  3259:        }
                   3260:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   3261:          for (j=1;j<=nlstate+ndeath;j++){
                   3262:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3263:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3264:          }
                   3265:        for(d=0; d<dh[mi][i]; d++){
                   3266:          newm=savm;
                   3267:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   3268:          cov[2]=agexact;
                   3269:          if(nagesqr==1)
                   3270:            cov[3]= agexact*agexact;  /* Should be changed here */
                   3271:          for (kk=1; kk<=cptcovage;kk++) {
1.242     brouard  3272:          if(!FixedV[Tvar[Tage[kk]]])
1.234     brouard  3273:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
1.242     brouard  3274:          else
                   3275:            cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
1.234     brouard  3276:          }
                   3277:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   3278:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   3279:          savm=oldm;
                   3280:          oldm=newm;
                   3281:        } /* end mult */
                   3282:        
                   3283:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   3284:        /* But now since version 0.9 we anticipate for bias at large stepm.
                   3285:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   3286:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   3287:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   3288:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   3289:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   3290:         * probability in order to take into account the bias as a fraction of the way
1.231     brouard  3291:                                 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   3292:                                 * -stepm/2 to stepm/2 .
                   3293:                                 * For stepm=1 the results are the same as for previous versions of Imach.
                   3294:                                 * For stepm > 1 the results are less biased than in previous versions. 
                   3295:                                 */
1.234     brouard  3296:        s1=s[mw[mi][i]][i];
                   3297:        s2=s[mw[mi+1][i]][i];
                   3298:        bbh=(double)bh[mi][i]/(double)stepm; 
                   3299:        /* bias bh is positive if real duration
                   3300:         * is higher than the multiple of stepm and negative otherwise.
                   3301:         */
                   3302:        /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                   3303:        if( s2 > nlstate){ 
                   3304:          /* i.e. if s2 is a death state and if the date of death is known 
                   3305:             then the contribution to the likelihood is the probability to 
                   3306:             die between last step unit time and current  step unit time, 
                   3307:             which is also equal to probability to die before dh 
                   3308:             minus probability to die before dh-stepm . 
                   3309:             In version up to 0.92 likelihood was computed
                   3310:             as if date of death was unknown. Death was treated as any other
                   3311:             health state: the date of the interview describes the actual state
                   3312:             and not the date of a change in health state. The former idea was
                   3313:             to consider that at each interview the state was recorded
                   3314:             (healthy, disable or death) and IMaCh was corrected; but when we
                   3315:             introduced the exact date of death then we should have modified
                   3316:             the contribution of an exact death to the likelihood. This new
                   3317:             contribution is smaller and very dependent of the step unit
                   3318:             stepm. It is no more the probability to die between last interview
                   3319:             and month of death but the probability to survive from last
                   3320:             interview up to one month before death multiplied by the
                   3321:             probability to die within a month. Thanks to Chris
                   3322:             Jackson for correcting this bug.  Former versions increased
                   3323:             mortality artificially. The bad side is that we add another loop
                   3324:             which slows down the processing. The difference can be up to 10%
                   3325:             lower mortality.
                   3326:          */
                   3327:          /* If, at the beginning of the maximization mostly, the
                   3328:             cumulative probability or probability to be dead is
                   3329:             constant (ie = 1) over time d, the difference is equal to
                   3330:             0.  out[s1][3] = savm[s1][3]: probability, being at state
                   3331:             s1 at precedent wave, to be dead a month before current
                   3332:             wave is equal to probability, being at state s1 at
                   3333:             precedent wave, to be dead at mont of the current
                   3334:             wave. Then the observed probability (that this person died)
                   3335:             is null according to current estimated parameter. In fact,
                   3336:             it should be very low but not zero otherwise the log go to
                   3337:             infinity.
                   3338:          */
1.183     brouard  3339: /* #ifdef INFINITYORIGINAL */
                   3340: /*         lli=log(out[s1][s2] - savm[s1][s2]); */
                   3341: /* #else */
                   3342: /*       if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
                   3343: /*         lli=log(mytinydouble); */
                   3344: /*       else */
                   3345: /*         lli=log(out[s1][s2] - savm[s1][s2]); */
                   3346: /* #endif */
1.226     brouard  3347:          lli=log(out[s1][s2] - savm[s1][s2]);
1.216     brouard  3348:          
1.226     brouard  3349:        } else if  ( s2==-1 ) { /* alive */
                   3350:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   3351:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   3352:          /*survp += out[s1][j]; */
                   3353:          lli= log(survp);
                   3354:        }
                   3355:        else if  (s2==-4) { 
                   3356:          for (j=3,survp=0. ; j<=nlstate; j++)  
                   3357:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   3358:          lli= log(survp); 
                   3359:        } 
                   3360:        else if  (s2==-5) { 
                   3361:          for (j=1,survp=0. ; j<=2; j++)  
                   3362:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   3363:          lli= log(survp); 
                   3364:        } 
                   3365:        else{
                   3366:          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   3367:          /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   3368:        } 
                   3369:        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   3370:        /*if(lli ==000.0)*/
                   3371:        /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                   3372:        ipmx +=1;
                   3373:        sw += weight[i];
                   3374:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   3375:        /* if (lli < log(mytinydouble)){ */
                   3376:        /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
                   3377:        /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
                   3378:        /* } */
                   3379:       } /* end of wave */
                   3380:     } /* end of individual */
                   3381:   }  else if(mle==2){
                   3382:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   3383:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   3384:       for(mi=1; mi<= wav[i]-1; mi++){
                   3385:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   3386:          for (j=1;j<=nlstate+ndeath;j++){
                   3387:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3388:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3389:          }
                   3390:        for(d=0; d<=dh[mi][i]; d++){
                   3391:          newm=savm;
                   3392:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   3393:          cov[2]=agexact;
                   3394:          if(nagesqr==1)
                   3395:            cov[3]= agexact*agexact;
                   3396:          for (kk=1; kk<=cptcovage;kk++) {
                   3397:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   3398:          }
                   3399:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   3400:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   3401:          savm=oldm;
                   3402:          oldm=newm;
                   3403:        } /* end mult */
                   3404:       
                   3405:        s1=s[mw[mi][i]][i];
                   3406:        s2=s[mw[mi+1][i]][i];
                   3407:        bbh=(double)bh[mi][i]/(double)stepm; 
                   3408:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   3409:        ipmx +=1;
                   3410:        sw += weight[i];
                   3411:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   3412:       } /* end of wave */
                   3413:     } /* end of individual */
                   3414:   }  else if(mle==3){  /* exponential inter-extrapolation */
                   3415:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   3416:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   3417:       for(mi=1; mi<= wav[i]-1; mi++){
                   3418:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   3419:          for (j=1;j<=nlstate+ndeath;j++){
                   3420:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3421:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3422:          }
                   3423:        for(d=0; d<dh[mi][i]; d++){
                   3424:          newm=savm;
                   3425:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   3426:          cov[2]=agexact;
                   3427:          if(nagesqr==1)
                   3428:            cov[3]= agexact*agexact;
                   3429:          for (kk=1; kk<=cptcovage;kk++) {
                   3430:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   3431:          }
                   3432:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   3433:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   3434:          savm=oldm;
                   3435:          oldm=newm;
                   3436:        } /* end mult */
                   3437:       
                   3438:        s1=s[mw[mi][i]][i];
                   3439:        s2=s[mw[mi+1][i]][i];
                   3440:        bbh=(double)bh[mi][i]/(double)stepm; 
                   3441:        lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   3442:        ipmx +=1;
                   3443:        sw += weight[i];
                   3444:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   3445:       } /* end of wave */
                   3446:     } /* end of individual */
                   3447:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
                   3448:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   3449:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   3450:       for(mi=1; mi<= wav[i]-1; mi++){
                   3451:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   3452:          for (j=1;j<=nlstate+ndeath;j++){
                   3453:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3454:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3455:          }
                   3456:        for(d=0; d<dh[mi][i]; d++){
                   3457:          newm=savm;
                   3458:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   3459:          cov[2]=agexact;
                   3460:          if(nagesqr==1)
                   3461:            cov[3]= agexact*agexact;
                   3462:          for (kk=1; kk<=cptcovage;kk++) {
                   3463:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   3464:          }
1.126     brouard  3465:        
1.226     brouard  3466:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   3467:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   3468:          savm=oldm;
                   3469:          oldm=newm;
                   3470:        } /* end mult */
                   3471:       
                   3472:        s1=s[mw[mi][i]][i];
                   3473:        s2=s[mw[mi+1][i]][i];
                   3474:        if( s2 > nlstate){ 
                   3475:          lli=log(out[s1][s2] - savm[s1][s2]);
                   3476:        } else if  ( s2==-1 ) { /* alive */
                   3477:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   3478:            survp += out[s1][j];
                   3479:          lli= log(survp);
                   3480:        }else{
                   3481:          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   3482:        }
                   3483:        ipmx +=1;
                   3484:        sw += weight[i];
                   3485:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.126     brouard  3486: /*     printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
1.226     brouard  3487:       } /* end of wave */
                   3488:     } /* end of individual */
                   3489:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   3490:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   3491:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   3492:       for(mi=1; mi<= wav[i]-1; mi++){
                   3493:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   3494:          for (j=1;j<=nlstate+ndeath;j++){
                   3495:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3496:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3497:          }
                   3498:        for(d=0; d<dh[mi][i]; d++){
                   3499:          newm=savm;
                   3500:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   3501:          cov[2]=agexact;
                   3502:          if(nagesqr==1)
                   3503:            cov[3]= agexact*agexact;
                   3504:          for (kk=1; kk<=cptcovage;kk++) {
                   3505:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   3506:          }
1.126     brouard  3507:        
1.226     brouard  3508:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   3509:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   3510:          savm=oldm;
                   3511:          oldm=newm;
                   3512:        } /* end mult */
                   3513:       
                   3514:        s1=s[mw[mi][i]][i];
                   3515:        s2=s[mw[mi+1][i]][i];
                   3516:        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   3517:        ipmx +=1;
                   3518:        sw += weight[i];
                   3519:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   3520:        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                   3521:       } /* end of wave */
                   3522:     } /* end of individual */
                   3523:   } /* End of if */
                   3524:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   3525:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   3526:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   3527:   return -l;
1.126     brouard  3528: }
                   3529: 
                   3530: /*************** log-likelihood *************/
                   3531: double funcone( double *x)
                   3532: {
1.228     brouard  3533:   /* Same as func but slower because of a lot of printf and if */
1.126     brouard  3534:   int i, ii, j, k, mi, d, kk;
1.228     brouard  3535:   int ioffset=0;
1.131     brouard  3536:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
1.126     brouard  3537:   double **out;
                   3538:   double lli; /* Individual log likelihood */
                   3539:   double llt;
                   3540:   int s1, s2;
1.228     brouard  3541:   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
                   3542: 
1.126     brouard  3543:   double bbh, survp;
1.187     brouard  3544:   double agexact;
1.214     brouard  3545:   double agebegin, ageend;
1.126     brouard  3546:   /*extern weight */
                   3547:   /* We are differentiating ll according to initial status */
                   3548:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   3549:   /*for(i=1;i<imx;i++) 
                   3550:     printf(" %d\n",s[4][i]);
                   3551:   */
                   3552:   cov[1]=1.;
                   3553: 
                   3554:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.224     brouard  3555:   ioffset=0;
                   3556:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.243     brouard  3557:     /* ioffset=2+nagesqr+cptcovage; */
                   3558:     ioffset=2+nagesqr;
1.232     brouard  3559:     /* Fixed */
1.224     brouard  3560:     /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
1.232     brouard  3561:     /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
                   3562:     for (k=1; k<=ncovf;k++){ /* Simple and product fixed covariates without age* products */
                   3563:       cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
                   3564: /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
                   3565: /*    cov[2+6]=covar[Tvar[6]][i];  */
                   3566: /*    cov[2+6]=covar[2][i]; V2  */
                   3567: /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
                   3568: /*    cov[2+7]=covar[Tvar[7]][i];  */
                   3569: /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
                   3570: /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
                   3571: /*    cov[2+9]=covar[Tvar[9]][i];  */
                   3572: /*    cov[2+9]=covar[1][i]; V1  */
1.225     brouard  3573:     }
1.232     brouard  3574:     /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
                   3575:     /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
                   3576:     /* } */
1.231     brouard  3577:     /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
                   3578:     /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
                   3579:     /* } */
1.225     brouard  3580:     
1.233     brouard  3581: 
                   3582:     for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
1.232     brouard  3583:     /* Wave varying (but not age varying) */
                   3584:       for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
1.242     brouard  3585:        /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */
                   3586:        cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
                   3587:       }
1.232     brouard  3588:       /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */
1.242     brouard  3589:       /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */
                   3590:       /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */
                   3591:       /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */
                   3592:       /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */
                   3593:       /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */
1.232     brouard  3594:       /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
1.242     brouard  3595:       /*       iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
                   3596:       /*       /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
                   3597:       /*       cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
1.232     brouard  3598:       /* } */
1.126     brouard  3599:       for (ii=1;ii<=nlstate+ndeath;ii++)
1.242     brouard  3600:        for (j=1;j<=nlstate+ndeath;j++){
                   3601:          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3602:          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3603:        }
1.214     brouard  3604:       
                   3605:       agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
                   3606:       ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
                   3607:       for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
1.247     brouard  3608:       /* for(d=0; d<=0; d++){  /\* Delay between two effective waves Only one matrix to speed up*\/ */
1.242     brouard  3609:        /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   3610:          and mw[mi+1][i]. dh depends on stepm.*/
                   3611:        newm=savm;
1.247     brouard  3612:        agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;  /* Here d is needed */
1.242     brouard  3613:        cov[2]=agexact;
                   3614:        if(nagesqr==1)
                   3615:          cov[3]= agexact*agexact;
                   3616:        for (kk=1; kk<=cptcovage;kk++) {
                   3617:          if(!FixedV[Tvar[Tage[kk]]])
                   3618:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   3619:          else
                   3620:            cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
                   3621:        }
                   3622:        /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
                   3623:        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   3624:        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   3625:                     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   3626:        /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                   3627:        /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                   3628:        savm=oldm;
                   3629:        oldm=newm;
1.126     brouard  3630:       } /* end mult */
                   3631:       
                   3632:       s1=s[mw[mi][i]][i];
                   3633:       s2=s[mw[mi+1][i]][i];
1.217     brouard  3634:       /* if(s2==-1){ */
                   3635:       /*       printf(" s1=%d, s2=%d i=%d \n", s1, s2, i); */
                   3636:       /*       /\* exit(1); *\/ */
                   3637:       /* } */
1.126     brouard  3638:       bbh=(double)bh[mi][i]/(double)stepm; 
                   3639:       /* bias is positive if real duration
                   3640:        * is higher than the multiple of stepm and negative otherwise.
                   3641:        */
                   3642:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
1.242     brouard  3643:        lli=log(out[s1][s2] - savm[s1][s2]);
1.216     brouard  3644:       } else if  ( s2==-1 ) { /* alive */
1.242     brouard  3645:        for (j=1,survp=0. ; j<=nlstate; j++) 
                   3646:          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   3647:        lli= log(survp);
1.126     brouard  3648:       }else if (mle==1){
1.242     brouard  3649:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
1.126     brouard  3650:       } else if(mle==2){
1.242     brouard  3651:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
1.126     brouard  3652:       } else if(mle==3){  /* exponential inter-extrapolation */
1.242     brouard  3653:        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
1.126     brouard  3654:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
1.242     brouard  3655:        lli=log(out[s1][s2]); /* Original formula */
1.136     brouard  3656:       } else{  /* mle=0 back to 1 */
1.242     brouard  3657:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   3658:        /*lli=log(out[s1][s2]); */ /* Original formula */
1.126     brouard  3659:       } /* End of if */
                   3660:       ipmx +=1;
                   3661:       sw += weight[i];
                   3662:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.132     brouard  3663:       /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
1.126     brouard  3664:       if(globpr){
1.246     brouard  3665:        fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
1.126     brouard  3666:  %11.6f %11.6f %11.6f ", \
1.242     brouard  3667:                num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
                   3668:                2*weight[i]*lli,out[s1][s2],savm[s1][s2]);
                   3669:        for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                   3670:          llt +=ll[k]*gipmx/gsw;
                   3671:          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
                   3672:        }
                   3673:        fprintf(ficresilk," %10.6f\n", -llt);
1.126     brouard  3674:       }
1.232     brouard  3675:        } /* end of wave */
                   3676: } /* end of individual */
                   3677: for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   3678: /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   3679: l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   3680: if(globpr==0){ /* First time we count the contributions and weights */
                   3681:        gipmx=ipmx;
                   3682:        gsw=sw;
                   3683: }
                   3684: return -l;
1.126     brouard  3685: }
                   3686: 
                   3687: 
                   3688: /*************** function likelione ***********/
                   3689: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*funcone)(double []))
                   3690: {
                   3691:   /* This routine should help understanding what is done with 
                   3692:      the selection of individuals/waves and
                   3693:      to check the exact contribution to the likelihood.
                   3694:      Plotting could be done.
                   3695:    */
                   3696:   int k;
                   3697: 
                   3698:   if(*globpri !=0){ /* Just counts and sums, no printings */
1.201     brouard  3699:     strcpy(fileresilk,"ILK_"); 
1.202     brouard  3700:     strcat(fileresilk,fileresu);
1.126     brouard  3701:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   3702:       printf("Problem with resultfile: %s\n", fileresilk);
                   3703:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   3704:     }
1.214     brouard  3705:     fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                   3706:     fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
1.126     brouard  3707:     /*         i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   3708:     for(k=1; k<=nlstate; k++) 
                   3709:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                   3710:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
                   3711:   }
                   3712: 
                   3713:   *fretone=(*funcone)(p);
                   3714:   if(*globpri !=0){
                   3715:     fclose(ficresilk);
1.205     brouard  3716:     if (mle ==0)
                   3717:       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
                   3718:     else if(mle >=1)
                   3719:       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
                   3720:     fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
1.207     brouard  3721:     
1.208     brouard  3722:       
                   3723:     for (k=1; k<= nlstate ; k++) {
1.211     brouard  3724:       fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
1.208     brouard  3725: <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
                   3726:     }
1.207     brouard  3727:     fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
1.204     brouard  3728: <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
1.207     brouard  3729:     fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
1.204     brouard  3730: <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
1.207     brouard  3731:     fflush(fichtm);
1.205     brouard  3732:   }
1.126     brouard  3733:   return;
                   3734: }
                   3735: 
                   3736: 
                   3737: /*********** Maximum Likelihood Estimation ***************/
                   3738: 
                   3739: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   3740: {
1.165     brouard  3741:   int i,j, iter=0;
1.126     brouard  3742:   double **xi;
                   3743:   double fret;
                   3744:   double fretone; /* Only one call to likelihood */
                   3745:   /*  char filerespow[FILENAMELENGTH];*/
1.162     brouard  3746: 
                   3747: #ifdef NLOPT
                   3748:   int creturn;
                   3749:   nlopt_opt opt;
                   3750:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
                   3751:   double *lb;
                   3752:   double minf; /* the minimum objective value, upon return */
                   3753:   double * p1; /* Shifted parameters from 0 instead of 1 */
                   3754:   myfunc_data dinst, *d = &dinst;
                   3755: #endif
                   3756: 
                   3757: 
1.126     brouard  3758:   xi=matrix(1,npar,1,npar);
                   3759:   for (i=1;i<=npar;i++)
                   3760:     for (j=1;j<=npar;j++)
                   3761:       xi[i][j]=(i==j ? 1.0 : 0.0);
                   3762:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.201     brouard  3763:   strcpy(filerespow,"POW_"); 
1.126     brouard  3764:   strcat(filerespow,fileres);
                   3765:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   3766:     printf("Problem with resultfile: %s\n", filerespow);
                   3767:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   3768:   }
                   3769:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   3770:   for (i=1;i<=nlstate;i++)
                   3771:     for(j=1;j<=nlstate+ndeath;j++)
                   3772:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   3773:   fprintf(ficrespow,"\n");
1.162     brouard  3774: #ifdef POWELL
1.126     brouard  3775:   powell(p,xi,npar,ftol,&iter,&fret,func);
1.162     brouard  3776: #endif
1.126     brouard  3777: 
1.162     brouard  3778: #ifdef NLOPT
                   3779: #ifdef NEWUOA
                   3780:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
                   3781: #else
                   3782:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
                   3783: #endif
                   3784:   lb=vector(0,npar-1);
                   3785:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                   3786:   nlopt_set_lower_bounds(opt, lb);
                   3787:   nlopt_set_initial_step1(opt, 0.1);
                   3788:   
                   3789:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                   3790:   d->function = func;
                   3791:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                   3792:   nlopt_set_min_objective(opt, myfunc, d);
                   3793:   nlopt_set_xtol_rel(opt, ftol);
                   3794:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                   3795:     printf("nlopt failed! %d\n",creturn); 
                   3796:   }
                   3797:   else {
                   3798:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   3799:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                   3800:     iter=1; /* not equal */
                   3801:   }
                   3802:   nlopt_destroy(opt);
                   3803: #endif
1.126     brouard  3804:   free_matrix(xi,1,npar,1,npar);
                   3805:   fclose(ficrespow);
1.203     brouard  3806:   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   3807:   fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.180     brouard  3808:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.126     brouard  3809: 
                   3810: }
                   3811: 
                   3812: /**** Computes Hessian and covariance matrix ***/
1.203     brouard  3813: void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
1.126     brouard  3814: {
                   3815:   double  **a,**y,*x,pd;
1.203     brouard  3816:   /* double **hess; */
1.164     brouard  3817:   int i, j;
1.126     brouard  3818:   int *indx;
                   3819: 
                   3820:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
1.203     brouard  3821:   double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
1.126     brouard  3822:   void lubksb(double **a, int npar, int *indx, double b[]) ;
                   3823:   void ludcmp(double **a, int npar, int *indx, double *d) ;
                   3824:   double gompertz(double p[]);
1.203     brouard  3825:   /* hess=matrix(1,npar,1,npar); */
1.126     brouard  3826: 
                   3827:   printf("\nCalculation of the hessian matrix. Wait...\n");
                   3828:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                   3829:   for (i=1;i<=npar;i++){
1.203     brouard  3830:     printf("%d-",i);fflush(stdout);
                   3831:     fprintf(ficlog,"%d-",i);fflush(ficlog);
1.126     brouard  3832:    
                   3833:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                   3834:     
                   3835:     /*  printf(" %f ",p[i]);
                   3836:        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
                   3837:   }
                   3838:   
                   3839:   for (i=1;i<=npar;i++) {
                   3840:     for (j=1;j<=npar;j++)  {
                   3841:       if (j>i) { 
1.203     brouard  3842:        printf(".%d-%d",i,j);fflush(stdout);
                   3843:        fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
                   3844:        hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
1.126     brouard  3845:        
                   3846:        hess[j][i]=hess[i][j];    
                   3847:        /*printf(" %lf ",hess[i][j]);*/
                   3848:       }
                   3849:     }
                   3850:   }
                   3851:   printf("\n");
                   3852:   fprintf(ficlog,"\n");
                   3853: 
                   3854:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   3855:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   3856:   
                   3857:   a=matrix(1,npar,1,npar);
                   3858:   y=matrix(1,npar,1,npar);
                   3859:   x=vector(1,npar);
                   3860:   indx=ivector(1,npar);
                   3861:   for (i=1;i<=npar;i++)
                   3862:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   3863:   ludcmp(a,npar,indx,&pd);
                   3864: 
                   3865:   for (j=1;j<=npar;j++) {
                   3866:     for (i=1;i<=npar;i++) x[i]=0;
                   3867:     x[j]=1;
                   3868:     lubksb(a,npar,indx,x);
                   3869:     for (i=1;i<=npar;i++){ 
                   3870:       matcov[i][j]=x[i];
                   3871:     }
                   3872:   }
                   3873: 
                   3874:   printf("\n#Hessian matrix#\n");
                   3875:   fprintf(ficlog,"\n#Hessian matrix#\n");
                   3876:   for (i=1;i<=npar;i++) { 
                   3877:     for (j=1;j<=npar;j++) { 
1.203     brouard  3878:       printf("%.6e ",hess[i][j]);
                   3879:       fprintf(ficlog,"%.6e ",hess[i][j]);
1.126     brouard  3880:     }
                   3881:     printf("\n");
                   3882:     fprintf(ficlog,"\n");
                   3883:   }
                   3884: 
1.203     brouard  3885:   /* printf("\n#Covariance matrix#\n"); */
                   3886:   /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
                   3887:   /* for (i=1;i<=npar;i++) {  */
                   3888:   /*   for (j=1;j<=npar;j++) {  */
                   3889:   /*     printf("%.6e ",matcov[i][j]); */
                   3890:   /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
                   3891:   /*   } */
                   3892:   /*   printf("\n"); */
                   3893:   /*   fprintf(ficlog,"\n"); */
                   3894:   /* } */
                   3895: 
1.126     brouard  3896:   /* Recompute Inverse */
1.203     brouard  3897:   /* for (i=1;i<=npar;i++) */
                   3898:   /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
                   3899:   /* ludcmp(a,npar,indx,&pd); */
                   3900: 
                   3901:   /*  printf("\n#Hessian matrix recomputed#\n"); */
                   3902: 
                   3903:   /* for (j=1;j<=npar;j++) { */
                   3904:   /*   for (i=1;i<=npar;i++) x[i]=0; */
                   3905:   /*   x[j]=1; */
                   3906:   /*   lubksb(a,npar,indx,x); */
                   3907:   /*   for (i=1;i<=npar;i++){  */
                   3908:   /*     y[i][j]=x[i]; */
                   3909:   /*     printf("%.3e ",y[i][j]); */
                   3910:   /*     fprintf(ficlog,"%.3e ",y[i][j]); */
                   3911:   /*   } */
                   3912:   /*   printf("\n"); */
                   3913:   /*   fprintf(ficlog,"\n"); */
                   3914:   /* } */
                   3915: 
                   3916:   /* Verifying the inverse matrix */
                   3917: #ifdef DEBUGHESS
                   3918:   y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
1.126     brouard  3919: 
1.203     brouard  3920:    printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
                   3921:    fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
1.126     brouard  3922: 
                   3923:   for (j=1;j<=npar;j++) {
                   3924:     for (i=1;i<=npar;i++){ 
1.203     brouard  3925:       printf("%.2f ",y[i][j]);
                   3926:       fprintf(ficlog,"%.2f ",y[i][j]);
1.126     brouard  3927:     }
                   3928:     printf("\n");
                   3929:     fprintf(ficlog,"\n");
                   3930:   }
1.203     brouard  3931: #endif
1.126     brouard  3932: 
                   3933:   free_matrix(a,1,npar,1,npar);
                   3934:   free_matrix(y,1,npar,1,npar);
                   3935:   free_vector(x,1,npar);
                   3936:   free_ivector(indx,1,npar);
1.203     brouard  3937:   /* free_matrix(hess,1,npar,1,npar); */
1.126     brouard  3938: 
                   3939: 
                   3940: }
                   3941: 
                   3942: /*************** hessian matrix ****************/
                   3943: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
1.203     brouard  3944: { /* Around values of x, computes the function func and returns the scales delti and hessian */
1.126     brouard  3945:   int i;
                   3946:   int l=1, lmax=20;
1.203     brouard  3947:   double k1,k2, res, fx;
1.132     brouard  3948:   double p2[MAXPARM+1]; /* identical to x */
1.126     brouard  3949:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                   3950:   int k=0,kmax=10;
                   3951:   double l1;
                   3952: 
                   3953:   fx=func(x);
                   3954:   for (i=1;i<=npar;i++) p2[i]=x[i];
1.145     brouard  3955:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
1.126     brouard  3956:     l1=pow(10,l);
                   3957:     delts=delt;
                   3958:     for(k=1 ; k <kmax; k=k+1){
                   3959:       delt = delta*(l1*k);
                   3960:       p2[theta]=x[theta] +delt;
1.145     brouard  3961:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
1.126     brouard  3962:       p2[theta]=x[theta]-delt;
                   3963:       k2=func(p2)-fx;
                   3964:       /*res= (k1-2.0*fx+k2)/delt/delt; */
1.203     brouard  3965:       res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
1.126     brouard  3966:       
1.203     brouard  3967: #ifdef DEBUGHESSII
1.126     brouard  3968:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   3969:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   3970: #endif
                   3971:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   3972:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   3973:        k=kmax;
                   3974:       }
                   3975:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
1.164     brouard  3976:        k=kmax; l=lmax*10;
1.126     brouard  3977:       }
                   3978:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   3979:        delts=delt;
                   3980:       }
1.203     brouard  3981:     } /* End loop k */
1.126     brouard  3982:   }
                   3983:   delti[theta]=delts;
                   3984:   return res; 
                   3985:   
                   3986: }
                   3987: 
1.203     brouard  3988: double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
1.126     brouard  3989: {
                   3990:   int i;
1.164     brouard  3991:   int l=1, lmax=20;
1.126     brouard  3992:   double k1,k2,k3,k4,res,fx;
1.132     brouard  3993:   double p2[MAXPARM+1];
1.203     brouard  3994:   int k, kmax=1;
                   3995:   double v1, v2, cv12, lc1, lc2;
1.208     brouard  3996: 
                   3997:   int firstime=0;
1.203     brouard  3998:   
1.126     brouard  3999:   fx=func(x);
1.203     brouard  4000:   for (k=1; k<=kmax; k=k+10) {
1.126     brouard  4001:     for (i=1;i<=npar;i++) p2[i]=x[i];
1.203     brouard  4002:     p2[thetai]=x[thetai]+delti[thetai]*k;
                   4003:     p2[thetaj]=x[thetaj]+delti[thetaj]*k;
1.126     brouard  4004:     k1=func(p2)-fx;
                   4005:   
1.203     brouard  4006:     p2[thetai]=x[thetai]+delti[thetai]*k;
                   4007:     p2[thetaj]=x[thetaj]-delti[thetaj]*k;
1.126     brouard  4008:     k2=func(p2)-fx;
                   4009:   
1.203     brouard  4010:     p2[thetai]=x[thetai]-delti[thetai]*k;
                   4011:     p2[thetaj]=x[thetaj]+delti[thetaj]*k;
1.126     brouard  4012:     k3=func(p2)-fx;
                   4013:   
1.203     brouard  4014:     p2[thetai]=x[thetai]-delti[thetai]*k;
                   4015:     p2[thetaj]=x[thetaj]-delti[thetaj]*k;
1.126     brouard  4016:     k4=func(p2)-fx;
1.203     brouard  4017:     res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
                   4018:     if(k1*k2*k3*k4 <0.){
1.208     brouard  4019:       firstime=1;
1.203     brouard  4020:       kmax=kmax+10;
1.208     brouard  4021:     }
                   4022:     if(kmax >=10 || firstime ==1){
1.246     brouard  4023:       printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
                   4024:       fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
1.203     brouard  4025:       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   4026:       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   4027:     }
                   4028: #ifdef DEBUGHESSIJ
                   4029:     v1=hess[thetai][thetai];
                   4030:     v2=hess[thetaj][thetaj];
                   4031:     cv12=res;
                   4032:     /* Computing eigen value of Hessian matrix */
                   4033:     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   4034:     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   4035:     if ((lc2 <0) || (lc1 <0) ){
                   4036:       printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                   4037:       fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                   4038:       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   4039:       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   4040:     }
1.126     brouard  4041: #endif
                   4042:   }
                   4043:   return res;
                   4044: }
                   4045: 
1.203     brouard  4046:     /* Not done yet: Was supposed to fix if not exactly at the maximum */
                   4047: /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
                   4048: /* { */
                   4049: /*   int i; */
                   4050: /*   int l=1, lmax=20; */
                   4051: /*   double k1,k2,k3,k4,res,fx; */
                   4052: /*   double p2[MAXPARM+1]; */
                   4053: /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
                   4054: /*   int k=0,kmax=10; */
                   4055: /*   double l1; */
                   4056:   
                   4057: /*   fx=func(x); */
                   4058: /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
                   4059: /*     l1=pow(10,l); */
                   4060: /*     delts=delt; */
                   4061: /*     for(k=1 ; k <kmax; k=k+1){ */
                   4062: /*       delt = delti*(l1*k); */
                   4063: /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
                   4064: /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
                   4065: /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
                   4066: /*       k1=func(p2)-fx; */
                   4067:       
                   4068: /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
                   4069: /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
                   4070: /*       k2=func(p2)-fx; */
                   4071:       
                   4072: /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
                   4073: /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
                   4074: /*       k3=func(p2)-fx; */
                   4075:       
                   4076: /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
                   4077: /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
                   4078: /*       k4=func(p2)-fx; */
                   4079: /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
                   4080: /* #ifdef DEBUGHESSIJ */
                   4081: /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
                   4082: /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
                   4083: /* #endif */
                   4084: /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
                   4085: /*     k=kmax; */
                   4086: /*       } */
                   4087: /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
                   4088: /*     k=kmax; l=lmax*10; */
                   4089: /*       } */
                   4090: /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
                   4091: /*     delts=delt; */
                   4092: /*       } */
                   4093: /*     } /\* End loop k *\/ */
                   4094: /*   } */
                   4095: /*   delti[theta]=delts; */
                   4096: /*   return res;  */
                   4097: /* } */
                   4098: 
                   4099: 
1.126     brouard  4100: /************** Inverse of matrix **************/
                   4101: void ludcmp(double **a, int n, int *indx, double *d) 
                   4102: { 
                   4103:   int i,imax,j,k; 
                   4104:   double big,dum,sum,temp; 
                   4105:   double *vv; 
                   4106:  
                   4107:   vv=vector(1,n); 
                   4108:   *d=1.0; 
                   4109:   for (i=1;i<=n;i++) { 
                   4110:     big=0.0; 
                   4111:     for (j=1;j<=n;j++) 
                   4112:       if ((temp=fabs(a[i][j])) > big) big=temp; 
                   4113:     if (big == 0.0) nrerror("Singular matrix in routine ludcmp"); 
                   4114:     vv[i]=1.0/big; 
                   4115:   } 
                   4116:   for (j=1;j<=n;j++) { 
                   4117:     for (i=1;i<j;i++) { 
                   4118:       sum=a[i][j]; 
                   4119:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   4120:       a[i][j]=sum; 
                   4121:     } 
                   4122:     big=0.0; 
                   4123:     for (i=j;i<=n;i++) { 
                   4124:       sum=a[i][j]; 
                   4125:       for (k=1;k<j;k++) 
                   4126:        sum -= a[i][k]*a[k][j]; 
                   4127:       a[i][j]=sum; 
                   4128:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   4129:        big=dum; 
                   4130:        imax=i; 
                   4131:       } 
                   4132:     } 
                   4133:     if (j != imax) { 
                   4134:       for (k=1;k<=n;k++) { 
                   4135:        dum=a[imax][k]; 
                   4136:        a[imax][k]=a[j][k]; 
                   4137:        a[j][k]=dum; 
                   4138:       } 
                   4139:       *d = -(*d); 
                   4140:       vv[imax]=vv[j]; 
                   4141:     } 
                   4142:     indx[j]=imax; 
                   4143:     if (a[j][j] == 0.0) a[j][j]=TINY; 
                   4144:     if (j != n) { 
                   4145:       dum=1.0/(a[j][j]); 
                   4146:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                   4147:     } 
                   4148:   } 
                   4149:   free_vector(vv,1,n);  /* Doesn't work */
                   4150: ;
                   4151: } 
                   4152: 
                   4153: void lubksb(double **a, int n, int *indx, double b[]) 
                   4154: { 
                   4155:   int i,ii=0,ip,j; 
                   4156:   double sum; 
                   4157:  
                   4158:   for (i=1;i<=n;i++) { 
                   4159:     ip=indx[i]; 
                   4160:     sum=b[ip]; 
                   4161:     b[ip]=b[i]; 
                   4162:     if (ii) 
                   4163:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   4164:     else if (sum) ii=i; 
                   4165:     b[i]=sum; 
                   4166:   } 
                   4167:   for (i=n;i>=1;i--) { 
                   4168:     sum=b[i]; 
                   4169:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                   4170:     b[i]=sum/a[i][i]; 
                   4171:   } 
                   4172: } 
                   4173: 
                   4174: void pstamp(FILE *fichier)
                   4175: {
1.196     brouard  4176:   fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
1.126     brouard  4177: }
                   4178: 
                   4179: /************ Frequencies ********************/
1.226     brouard  4180: void  freqsummary(char fileres[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
                   4181:                  int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
                   4182:                  int firstpass,  int lastpass, int stepm, int weightopt, char model[])
                   4183: {  /* Some frequencies */
                   4184:   
1.227     brouard  4185:   int i, m, jk, j1, bool, z1,j, k, iv;
1.226     brouard  4186:   int iind=0, iage=0;
                   4187:   int mi; /* Effective wave */
                   4188:   int first;
                   4189:   double ***freq; /* Frequencies */
                   4190:   double *meanq;
                   4191:   double **meanqt;
                   4192:   double *pp, **prop, *posprop, *pospropt;
                   4193:   double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
                   4194:   char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
                   4195:   double agebegin, ageend;
                   4196:     
                   4197:   pp=vector(1,nlstate);
                   4198:   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
                   4199:   posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
                   4200:   pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
                   4201:   /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
                   4202:   meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
                   4203:   meanqt=matrix(1,lastpass,1,nqtveff);
                   4204:   strcpy(fileresp,"P_");
                   4205:   strcat(fileresp,fileresu);
                   4206:   /*strcat(fileresphtm,fileresu);*/
                   4207:   if((ficresp=fopen(fileresp,"w"))==NULL) {
                   4208:     printf("Problem with prevalence resultfile: %s\n", fileresp);
                   4209:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   4210:     exit(0);
                   4211:   }
1.240     brouard  4212:   
1.226     brouard  4213:   strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
                   4214:   if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
                   4215:     printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                   4216:     fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                   4217:     fflush(ficlog);
                   4218:     exit(70); 
                   4219:   }
                   4220:   else{
                   4221:     fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
1.240     brouard  4222: <hr size=\"2\" color=\"#EC5E5E\"> \n                                   \
1.214     brouard  4223: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.226     brouard  4224:            fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   4225:   }
1.237     brouard  4226:   fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm);
1.240     brouard  4227:   
1.226     brouard  4228:   strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
                   4229:   if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
                   4230:     printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                   4231:     fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                   4232:     fflush(ficlog);
                   4233:     exit(70); 
1.240     brouard  4234:   } else{
1.226     brouard  4235:     fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
1.240     brouard  4236: <hr size=\"2\" color=\"#EC5E5E\"> \n                                   \
1.214     brouard  4237: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.226     brouard  4238:            fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   4239:   }
1.240     brouard  4240:   fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr);
                   4241:   
1.226     brouard  4242:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+3+AGEMARGE);
                   4243:   j1=0;
1.126     brouard  4244:   
1.227     brouard  4245:   /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
                   4246:   j=cptcoveff;  /* Only dummy covariates of the model */
1.226     brouard  4247:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
1.240     brouard  4248:   
1.226     brouard  4249:   first=1;
1.240     brouard  4250:   
1.226     brouard  4251:   /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
                   4252:      reference=low_education V1=0,V2=0
                   4253:      med_educ                V1=1 V2=0, 
                   4254:      high_educ               V1=0 V2=1
                   4255:      Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcoveff 
                   4256:   */
1.240     brouard  4257:   
1.227     brouard  4258:   for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on covariates combination in order of model, excluding quantitatives V4=0, V3=0 for example, fixed or varying covariates */
1.226     brouard  4259:     posproptt=0.;
                   4260:     /*printf("cptcoveff=%d Tvaraff=%d", cptcoveff,Tvaraff[1]);
                   4261:       scanf("%d", i);*/
                   4262:     for (i=-5; i<=nlstate+ndeath; i++)  
                   4263:       for (jk=-5; jk<=nlstate+ndeath; jk++)  
1.240     brouard  4264:        for(m=iagemin; m <= iagemax+3; m++)
                   4265:          freq[i][jk][m]=0;
                   4266:     
1.226     brouard  4267:     for (i=1; i<=nlstate; i++)  {
                   4268:       for(m=iagemin; m <= iagemax+3; m++)
1.240     brouard  4269:        prop[i][m]=0;
1.226     brouard  4270:       posprop[i]=0;
                   4271:       pospropt[i]=0;
                   4272:     }
1.227     brouard  4273:     /* for (z1=1; z1<= nqfveff; z1++) {   */
                   4274:     /*   meanq[z1]+=0.; */
                   4275:     /*   for(m=1;m<=lastpass;m++){ */
                   4276:     /*         meanqt[m][z1]=0.; */
                   4277:     /*   } */
                   4278:     /* } */
1.240     brouard  4279:     
1.226     brouard  4280:     dateintsum=0;
                   4281:     k2cpt=0;
1.227     brouard  4282:     /* For that combination of covariate j1, we count and print the frequencies in one pass */
1.226     brouard  4283:     for (iind=1; iind<=imx; iind++) { /* For each individual iind */
                   4284:       bool=1;
1.227     brouard  4285:       if(anyvaryingduminmodel==0){ /* If All fixed covariates */
1.234     brouard  4286:        if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
1.227     brouard  4287:          /* for (z1=1; z1<= nqfveff; z1++) {   */
                   4288:          /*   meanq[z1]+=coqvar[Tvar[z1]][iind];  /\* Computes mean of quantitative with selected filter *\/ */
                   4289:          /* } */
1.234     brouard  4290:          for (z1=1; z1<=cptcoveff; z1++) {  
                   4291:            /* if(Tvaraff[z1] ==-20){ */
                   4292:            /*   /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
                   4293:            /* }else  if(Tvaraff[z1] ==-10){ */
                   4294:            /*   /\* sumnew+=coqvar[z1][iind]; *\/ */
                   4295:            /* }else  */
                   4296:            if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]){
                   4297:              /* Tests if this individual iind responded to j1 (V4=1 V3=0) */
                   4298:              bool=0;
                   4299:              /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", 
                   4300:                 bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),
                   4301:                 j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
                   4302:              /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
                   4303:            } /* Onlyf fixed */
                   4304:          } /* end z1 */
                   4305:        } /* cptcovn > 0 */
1.227     brouard  4306:       } /* end any */
                   4307:       if (bool==1){ /* We selected an individual iind satisfying combination j1 or all fixed */
1.234     brouard  4308:        /* for(m=firstpass; m<=lastpass; m++){ */
                   4309:        for(mi=1; mi<wav[iind];mi++){ /* For that wave */
                   4310:          m=mw[mi][iind];
                   4311:          if(anyvaryingduminmodel==1){ /* Some are varying covariates */
                   4312:            for (z1=1; z1<=cptcoveff; z1++) {
                   4313:              if( Fixed[Tmodelind[z1]]==1){
                   4314:                iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
                   4315:                if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
                   4316:                  bool=0;
                   4317:              }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
                   4318:                if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                   4319:                  bool=0;
                   4320:                }
                   4321:              }
                   4322:            }
                   4323:          }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
                   4324:          /* bool =0 we keep that guy which corresponds to the combination of dummy values */
                   4325:          if(bool==1){
                   4326:            /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                   4327:               and mw[mi+1][iind]. dh depends on stepm. */
                   4328:            agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
                   4329:            ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
                   4330:            if(m >=firstpass && m <=lastpass){
                   4331:              k2=anint[m][iind]+(mint[m][iind]/12.);
                   4332:              /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   4333:              if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
                   4334:              if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                   4335:              if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
                   4336:                prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
                   4337:              if (m<lastpass) {
                   4338:                /* if(s[m][iind]==4 && s[m+1][iind]==4) */
                   4339:                /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
                   4340:                if(s[m][iind]==-1)
                   4341:                  printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
                   4342:                freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
                   4343:                /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
                   4344:                freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
                   4345:              }
                   4346:            } /* end if between passes */  
                   4347:            if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99)) {
                   4348:              dateintsum=dateintsum+k2;
                   4349:              k2cpt++;
                   4350:              /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
                   4351:            }
                   4352:          } /* end bool 2 */
                   4353:        } /* end m */
1.226     brouard  4354:       } /* end bool */
                   4355:     } /* end iind = 1 to imx */
                   4356:     /* prop[s][age] is feeded for any initial and valid live state as well as
                   4357:        freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
1.240     brouard  4358:     
                   4359:     
1.226     brouard  4360:     /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
                   4361:     pstamp(ficresp);
1.240     brouard  4362:     if  (cptcoveff>0){
1.226     brouard  4363:       fprintf(ficresp, "\n#********** Variable "); 
                   4364:       fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
                   4365:       fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
1.240     brouard  4366:       fprintf(ficlog, "\n#********** Variable "); 
1.227     brouard  4367:       for (z1=1; z1<=cptcoveff; z1++){
1.240     brouard  4368:        if(DummyV[z1]){
                   4369:          fprintf(ficresp, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   4370:          fprintf(ficresphtm, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   4371:          fprintf(ficresphtmfr, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   4372:          fprintf(ficlog, "V%d (fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   4373:        }else{
                   4374:          fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   4375:          fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   4376:          fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   4377:          fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
                   4378:        }
1.226     brouard  4379:       }
                   4380:       fprintf(ficresp, "**********\n#");
                   4381:       fprintf(ficresphtm, "**********</h3>\n");
                   4382:       fprintf(ficresphtmfr, "**********</h3>\n");
                   4383:       fprintf(ficlog, "**********\n");
                   4384:     }
                   4385:     fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
                   4386:     for(i=1; i<=nlstate;i++) {
1.240     brouard  4387:       fprintf(ficresp, " Age Prev(%d)  N(%d)  N  ",i,i);
1.226     brouard  4388:       fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
                   4389:     }
                   4390:     fprintf(ficresp, "\n");
                   4391:     fprintf(ficresphtm, "\n");
1.240     brouard  4392:     
1.226     brouard  4393:     /* Header of frequency table by age */
                   4394:     fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
                   4395:     fprintf(ficresphtmfr,"<th>Age</th> ");
                   4396:     for(jk=-1; jk <=nlstate+ndeath; jk++){
                   4397:       for(m=-1; m <=nlstate+ndeath; m++){
1.234     brouard  4398:        if(jk!=0 && m!=0)
                   4399:          fprintf(ficresphtmfr,"<th>%d%d</th> ",jk,m);
1.226     brouard  4400:       }
                   4401:     }
                   4402:     fprintf(ficresphtmfr, "\n");
1.240     brouard  4403:     
1.226     brouard  4404:     /* For each age */
                   4405:     for(iage=iagemin; iage <= iagemax+3; iage++){
                   4406:       fprintf(ficresphtm,"<tr>");
                   4407:       if(iage==iagemax+1){
1.240     brouard  4408:        fprintf(ficlog,"1");
                   4409:        fprintf(ficresphtmfr,"<tr><th>0</th> ");
1.226     brouard  4410:       }else if(iage==iagemax+2){
1.240     brouard  4411:        fprintf(ficlog,"0");
                   4412:        fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
1.226     brouard  4413:       }else if(iage==iagemax+3){
1.240     brouard  4414:        fprintf(ficlog,"Total");
                   4415:        fprintf(ficresphtmfr,"<tr><th>Total</th> ");
1.226     brouard  4416:       }else{
1.240     brouard  4417:        if(first==1){
                   4418:          first=0;
                   4419:          printf("See log file for details...\n");
                   4420:        }
                   4421:        fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
                   4422:        fprintf(ficlog,"Age %d", iage);
1.226     brouard  4423:       }
                   4424:       for(jk=1; jk <=nlstate ; jk++){
1.240     brouard  4425:        for(m=-1, pp[jk]=0; m <=nlstate+ndeath ; m++)
                   4426:          pp[jk] += freq[jk][m][iage]; 
1.226     brouard  4427:       }
                   4428:       for(jk=1; jk <=nlstate ; jk++){
1.240     brouard  4429:        for(m=-1, pos=0; m <=0 ; m++)
                   4430:          pos += freq[jk][m][iage];
                   4431:        if(pp[jk]>=1.e-10){
                   4432:          if(first==1){
                   4433:            printf(" %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   4434:          }
                   4435:          fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",jk,pp[jk],jk,100*pos/pp[jk]);
                   4436:        }else{
                   4437:          if(first==1)
                   4438:            printf(" %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   4439:          fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",jk,pp[jk],jk);
                   4440:        }
1.226     brouard  4441:       }
1.240     brouard  4442:       
1.226     brouard  4443:       for(jk=1; jk <=nlstate ; jk++){ 
1.240     brouard  4444:        /* posprop[jk]=0; */
                   4445:        for(m=0, pp[jk]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
                   4446:          pp[jk] += freq[jk][m][iage];
1.226     brouard  4447:       }        /* pp[jk] is the total number of transitions starting from state jk and any ending status until this age */
1.240     brouard  4448:       
1.226     brouard  4449:       for(jk=1,pos=0, pospropta=0.; jk <=nlstate ; jk++){
1.240     brouard  4450:        pos += pp[jk]; /* pos is the total number of transitions until this age */
                   4451:        posprop[jk] += prop[jk][iage]; /* prop is the number of transitions from a live state
                   4452:                                          from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
                   4453:        pospropta += prop[jk][iage]; /* prop is the number of transitions from a live state
                   4454:                                        from jk at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
1.226     brouard  4455:       }
                   4456:       for(jk=1; jk <=nlstate ; jk++){
1.240     brouard  4457:        if(pos>=1.e-5){
                   4458:          if(first==1)
                   4459:            printf(" %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   4460:          fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",jk,pp[jk],jk,100*pp[jk]/pos);
                   4461:        }else{
                   4462:          if(first==1)
                   4463:            printf(" %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   4464:          fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",jk,pp[jk],jk);
                   4465:        }
                   4466:        if( iage <= iagemax){
                   4467:          if(pos>=1.e-5){
                   4468:            fprintf(ficresp," %d %.5f %.0f %.0f",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
                   4469:            fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[jk][iage]/pospropta, prop[jk][iage],pospropta);
                   4470:            /*probs[iage][jk][j1]= pp[jk]/pos;*/
                   4471:            /*printf("\niage=%d jk=%d j1=%d %.5f %.0f %.0f %f",iage,jk,j1,pp[jk]/pos, pp[jk],pos,probs[iage][jk][j1]);*/
                   4472:          }
                   4473:          else{
                   4474:            fprintf(ficresp," %d NaNq %.0f %.0f",iage,prop[jk][iage],pospropta);
                   4475:            fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[jk][iage],pospropta);
                   4476:          }
                   4477:        }
                   4478:        pospropt[jk] +=posprop[jk];
1.226     brouard  4479:       } /* end loop jk */
                   4480:       /* pospropt=0.; */
                   4481:       for(jk=-1; jk <=nlstate+ndeath; jk++){
1.240     brouard  4482:        for(m=-1; m <=nlstate+ndeath; m++){
                   4483:          if(freq[jk][m][iage] !=0 ) { /* minimizing output */
                   4484:            if(first==1){
                   4485:              printf(" %d%d=%.0f",jk,m,freq[jk][m][iage]);
                   4486:            }
                   4487:            fprintf(ficlog," %d%d=%.0f",jk,m,freq[jk][m][iage]);
                   4488:          }
                   4489:          if(jk!=0 && m!=0)
                   4490:            fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[jk][m][iage]);
                   4491:        }
1.226     brouard  4492:       } /* end loop jk */
                   4493:       posproptt=0.; 
                   4494:       for(jk=1; jk <=nlstate; jk++){
1.240     brouard  4495:        posproptt += pospropt[jk];
1.226     brouard  4496:       }
                   4497:       fprintf(ficresphtmfr,"</tr>\n ");
                   4498:       if(iage <= iagemax){
1.240     brouard  4499:        fprintf(ficresp,"\n");
                   4500:        fprintf(ficresphtm,"</tr>\n");
1.226     brouard  4501:       }
                   4502:       if(first==1)
1.240     brouard  4503:        printf("Others in log...\n");
1.226     brouard  4504:       fprintf(ficlog,"\n");
                   4505:     } /* end loop age iage */
                   4506:     fprintf(ficresphtm,"<tr><th>Tot</th>");
                   4507:     for(jk=1; jk <=nlstate ; jk++){
                   4508:       if(posproptt < 1.e-5){
1.240     brouard  4509:        fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[jk],posproptt);   
1.226     brouard  4510:       }else{
1.240     brouard  4511:        fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[jk]/posproptt,pospropt[jk],posproptt);    
1.226     brouard  4512:       }
                   4513:     }
                   4514:     fprintf(ficresphtm,"</tr>\n");
                   4515:     fprintf(ficresphtm,"</table>\n");
                   4516:     fprintf(ficresphtmfr,"</table>\n");
                   4517:     if(posproptt < 1.e-5){
                   4518:       fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
                   4519:       fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
                   4520:       fprintf(ficres,"\n  This combination (%d) is not valid and no result will be produced\n\n",j1);
                   4521:       invalidvarcomb[j1]=1;
                   4522:     }else{
                   4523:       fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced.</p>",j1);
                   4524:       invalidvarcomb[j1]=0;
                   4525:     }
                   4526:     fprintf(ficresphtmfr,"</table>\n");
                   4527:   } /* end selected combination of covariate j1 */
                   4528:   dateintmean=dateintsum/k2cpt; 
1.240     brouard  4529:   
1.226     brouard  4530:   fclose(ficresp);
                   4531:   fclose(ficresphtm);
                   4532:   fclose(ficresphtmfr);
                   4533:   free_vector(meanq,1,nqfveff);
                   4534:   free_matrix(meanqt,1,lastpass,1,nqtveff);
                   4535:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+3+AGEMARGE);
                   4536:   free_vector(pospropt,1,nlstate);
                   4537:   free_vector(posprop,1,nlstate);
                   4538:   free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+3+AGEMARGE);
                   4539:   free_vector(pp,1,nlstate);
                   4540:   /* End of freqsummary */
                   4541: }
1.126     brouard  4542: 
                   4543: /************ Prevalence ********************/
1.227     brouard  4544: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   4545: {  
                   4546:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   4547:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   4548:      We still use firstpass and lastpass as another selection.
                   4549:   */
1.126     brouard  4550:  
1.227     brouard  4551:   int i, m, jk, j1, bool, z1,j, iv;
                   4552:   int mi; /* Effective wave */
                   4553:   int iage;
                   4554:   double agebegin, ageend;
                   4555: 
                   4556:   double **prop;
                   4557:   double posprop; 
                   4558:   double  y2; /* in fractional years */
                   4559:   int iagemin, iagemax;
                   4560:   int first; /** to stop verbosity which is redirected to log file */
                   4561: 
                   4562:   iagemin= (int) agemin;
                   4563:   iagemax= (int) agemax;
                   4564:   /*pp=vector(1,nlstate);*/
                   4565:   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+3+AGEMARGE); 
                   4566:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   4567:   j1=0;
1.222     brouard  4568:   
1.227     brouard  4569:   /*j=cptcoveff;*/
                   4570:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
1.222     brouard  4571:   
1.227     brouard  4572:   first=1;
                   4573:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of covariate */
                   4574:     for (i=1; i<=nlstate; i++)  
                   4575:       for(iage=iagemin-AGEMARGE; iage <= iagemax+3+AGEMARGE; iage++)
                   4576:        prop[i][iage]=0.0;
                   4577:     printf("Prevalence combination of varying and fixed dummies %d\n",j1);
                   4578:     /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
                   4579:     fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
                   4580:     
                   4581:     for (i=1; i<=imx; i++) { /* Each individual */
                   4582:       bool=1;
                   4583:       /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
                   4584:       for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
                   4585:        m=mw[mi][i];
                   4586:        /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
                   4587:        /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
                   4588:        for (z1=1; z1<=cptcoveff; z1++){
                   4589:          if( Fixed[Tmodelind[z1]]==1){
                   4590:            iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
                   4591:            if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) /* iv=1 to ntv, right modality */
                   4592:              bool=0;
                   4593:          }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
                   4594:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,z1)]) {
                   4595:              bool=0;
                   4596:            }
                   4597:        }
                   4598:        if(bool==1){ /* Otherwise we skip that wave/person */
                   4599:          agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
                   4600:          /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
                   4601:          if(m >=firstpass && m <=lastpass){
                   4602:            y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   4603:            if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                   4604:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   4605:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
                   4606:              if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+3+AGEMARGE){
                   4607:                printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
                   4608:                exit(1);
                   4609:              }
                   4610:              if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   4611:                /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   4612:                prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
                   4613:                prop[s[m][i]][iagemax+3] += weight[i]; 
                   4614:              } /* end valid statuses */ 
                   4615:            } /* end selection of dates */
                   4616:          } /* end selection of waves */
                   4617:        } /* end bool */
                   4618:       } /* end wave */
                   4619:     } /* end individual */
                   4620:     for(i=iagemin; i <= iagemax+3; i++){  
                   4621:       for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   4622:        posprop += prop[jk][i]; 
                   4623:       } 
                   4624:       
                   4625:       for(jk=1; jk <=nlstate ; jk++){      
                   4626:        if( i <=  iagemax){ 
                   4627:          if(posprop>=1.e-5){ 
                   4628:            probs[i][jk][j1]= prop[jk][i]/posprop;
                   4629:          } else{
                   4630:            if(first==1){
                   4631:              first=0;
                   4632:              printf("Warning Observed prevalence probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,j1,probs[i][jk][j1]);
                   4633:            }
                   4634:          }
                   4635:        } 
                   4636:       }/* end jk */ 
                   4637:     }/* end i */ 
1.222     brouard  4638:      /*} *//* end i1 */
1.227     brouard  4639:   } /* end j1 */
1.222     brouard  4640:   
1.227     brouard  4641:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   4642:   /*free_vector(pp,1,nlstate);*/
                   4643:   free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+3+AGEMARGE);
                   4644: }  /* End of prevalence */
1.126     brouard  4645: 
                   4646: /************* Waves Concatenation ***************/
                   4647: 
                   4648: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   4649: {
                   4650:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   4651:      Death is a valid wave (if date is known).
                   4652:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   4653:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   4654:      and mw[mi+1][i]. dh depends on stepm.
1.227     brouard  4655:   */
1.126     brouard  4656: 
1.224     brouard  4657:   int i=0, mi=0, m=0, mli=0;
1.126     brouard  4658:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   4659:      double sum=0., jmean=0.;*/
1.224     brouard  4660:   int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
1.126     brouard  4661:   int j, k=0,jk, ju, jl;
                   4662:   double sum=0.;
                   4663:   first=0;
1.214     brouard  4664:   firstwo=0;
1.217     brouard  4665:   firsthree=0;
1.218     brouard  4666:   firstfour=0;
1.164     brouard  4667:   jmin=100000;
1.126     brouard  4668:   jmax=-1;
                   4669:   jmean=0.;
1.224     brouard  4670: 
                   4671: /* Treating live states */
1.214     brouard  4672:   for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
1.224     brouard  4673:     mi=0;  /* First valid wave */
1.227     brouard  4674:     mli=0; /* Last valid wave */
1.126     brouard  4675:     m=firstpass;
1.214     brouard  4676:     while(s[m][i] <= nlstate){  /* a live state */
1.227     brouard  4677:       if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
                   4678:        mli=m-1;/* mw[++mi][i]=m-1; */
                   4679:       }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
                   4680:        mw[++mi][i]=m;
                   4681:        mli=m;
1.224     brouard  4682:       } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
                   4683:       if(m < lastpass){ /* m < lastpass, standard case */
1.227     brouard  4684:        m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
1.216     brouard  4685:       }
1.227     brouard  4686:       else{ /* m >= lastpass, eventual special issue with warning */
1.224     brouard  4687: #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
1.227     brouard  4688:        break;
1.224     brouard  4689: #else
1.227     brouard  4690:        if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){
                   4691:          if(firsthree == 0){
                   4692:            printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
                   4693:            firsthree=1;
                   4694:          }
                   4695:          fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as pi. .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m);
                   4696:          mw[++mi][i]=m;
                   4697:          mli=m;
                   4698:        }
                   4699:        if(s[m][i]==-2){ /* Vital status is really unknown */
                   4700:          nbwarn++;
                   4701:          if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified? */
                   4702:            printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                   4703:            fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                   4704:          }
                   4705:          break;
                   4706:        }
                   4707:        break;
1.224     brouard  4708: #endif
1.227     brouard  4709:       }/* End m >= lastpass */
1.126     brouard  4710:     }/* end while */
1.224     brouard  4711: 
1.227     brouard  4712:     /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
1.216     brouard  4713:     /* After last pass */
1.224     brouard  4714: /* Treating death states */
1.214     brouard  4715:     if (s[m][i] > nlstate){  /* In a death state */
1.227     brouard  4716:       /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
                   4717:       /* } */
1.126     brouard  4718:       mi++;    /* Death is another wave */
                   4719:       /* if(mi==0)  never been interviewed correctly before death */
1.227     brouard  4720:       /* Only death is a correct wave */
1.126     brouard  4721:       mw[mi][i]=m;
1.224     brouard  4722:     }
                   4723: #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
1.227     brouard  4724:     else if ((int) andc[i] != 9999) { /* Status is negative. A death occured after lastpass, we can't take it into account because of potential bias */
1.216     brouard  4725:       /* m++; */
                   4726:       /* mi++; */
                   4727:       /* s[m][i]=nlstate+1;  /\* We are setting the status to the last of non live state *\/ */
                   4728:       /* mw[mi][i]=m; */
1.218     brouard  4729:       if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
1.227     brouard  4730:        if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* death occured before last wave and status should have been death instead of -1 */
                   4731:          nbwarn++;
                   4732:          if(firstfiv==0){
                   4733:            printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
                   4734:            firstfiv=1;
                   4735:          }else{
                   4736:            fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d interviewed at %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
                   4737:          }
                   4738:        }else{ /* Death occured afer last wave potential bias */
                   4739:          nberr++;
                   4740:          if(firstwo==0){
                   4741:            printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
                   4742:            firstwo=1;
                   4743:          }
                   4744:          fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
                   4745:        }
1.218     brouard  4746:       }else{ /* end date of interview is known */
1.227     brouard  4747:        /* death is known but not confirmed by death status at any wave */
                   4748:        if(firstfour==0){
                   4749:          printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
                   4750:          firstfour=1;
                   4751:        }
                   4752:        fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], i,m );
1.214     brouard  4753:       }
1.224     brouard  4754:     } /* end if date of death is known */
                   4755: #endif
                   4756:     wav[i]=mi; /* mi should be the last effective wave (or mli) */
                   4757:     /* wav[i]=mw[mi][i]; */
1.126     brouard  4758:     if(mi==0){
                   4759:       nbwarn++;
                   4760:       if(first==0){
1.227     brouard  4761:        printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                   4762:        first=1;
1.126     brouard  4763:       }
                   4764:       if(first==1){
1.227     brouard  4765:        fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
1.126     brouard  4766:       }
                   4767:     } /* end mi==0 */
                   4768:   } /* End individuals */
1.214     brouard  4769:   /* wav and mw are no more changed */
1.223     brouard  4770:        
1.214     brouard  4771:   
1.126     brouard  4772:   for(i=1; i<=imx; i++){
                   4773:     for(mi=1; mi<wav[i];mi++){
                   4774:       if (stepm <=0)
1.227     brouard  4775:        dh[mi][i]=1;
1.126     brouard  4776:       else{
1.227     brouard  4777:        if (s[mw[mi+1][i]][i] > nlstate) { /* A death */
                   4778:          if (agedc[i] < 2*AGESUP) {
                   4779:            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   4780:            if(j==0) j=1;  /* Survives at least one month after exam */
                   4781:            else if(j<0){
                   4782:              nberr++;
                   4783:              printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   4784:              j=1; /* Temporary Dangerous patch */
                   4785:              printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   4786:              fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   4787:              fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   4788:            }
                   4789:            k=k+1;
                   4790:            if (j >= jmax){
                   4791:              jmax=j;
                   4792:              ijmax=i;
                   4793:            }
                   4794:            if (j <= jmin){
                   4795:              jmin=j;
                   4796:              ijmin=i;
                   4797:            }
                   4798:            sum=sum+j;
                   4799:            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   4800:            /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   4801:          }
                   4802:        }
                   4803:        else{
                   4804:          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1.126     brouard  4805: /*       if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
1.223     brouard  4806:                                        
1.227     brouard  4807:          k=k+1;
                   4808:          if (j >= jmax) {
                   4809:            jmax=j;
                   4810:            ijmax=i;
                   4811:          }
                   4812:          else if (j <= jmin){
                   4813:            jmin=j;
                   4814:            ijmin=i;
                   4815:          }
                   4816:          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   4817:          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   4818:          if(j<0){
                   4819:            nberr++;
                   4820:            printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   4821:            fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   4822:          }
                   4823:          sum=sum+j;
                   4824:        }
                   4825:        jk= j/stepm;
                   4826:        jl= j -jk*stepm;
                   4827:        ju= j -(jk+1)*stepm;
                   4828:        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   4829:          if(jl==0){
                   4830:            dh[mi][i]=jk;
                   4831:            bh[mi][i]=0;
                   4832:          }else{ /* We want a negative bias in order to only have interpolation ie
                   4833:                  * to avoid the price of an extra matrix product in likelihood */
                   4834:            dh[mi][i]=jk+1;
                   4835:            bh[mi][i]=ju;
                   4836:          }
                   4837:        }else{
                   4838:          if(jl <= -ju){
                   4839:            dh[mi][i]=jk;
                   4840:            bh[mi][i]=jl;       /* bias is positive if real duration
                   4841:                                 * is higher than the multiple of stepm and negative otherwise.
                   4842:                                 */
                   4843:          }
                   4844:          else{
                   4845:            dh[mi][i]=jk+1;
                   4846:            bh[mi][i]=ju;
                   4847:          }
                   4848:          if(dh[mi][i]==0){
                   4849:            dh[mi][i]=1; /* At least one step */
                   4850:            bh[mi][i]=ju; /* At least one step */
                   4851:            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   4852:          }
                   4853:        } /* end if mle */
1.126     brouard  4854:       }
                   4855:     } /* end wave */
                   4856:   }
                   4857:   jmean=sum/k;
                   4858:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
1.141     brouard  4859:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
1.227     brouard  4860: }
1.126     brouard  4861: 
                   4862: /*********** Tricode ****************************/
1.220     brouard  4863:  void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
1.242     brouard  4864:  {
                   4865:    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                   4866:    /*    Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                   4867:     * Boring subroutine which should only output nbcode[Tvar[j]][k]
                   4868:     * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
                   4869:     * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
                   4870:     */
1.130     brouard  4871: 
1.242     brouard  4872:    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                   4873:    int modmaxcovj=0; /* Modality max of covariates j */
                   4874:    int cptcode=0; /* Modality max of covariates j */
                   4875:    int modmincovj=0; /* Modality min of covariates j */
1.145     brouard  4876: 
                   4877: 
1.242     brouard  4878:    /* cptcoveff=0;  */
                   4879:    /* *cptcov=0; */
1.126     brouard  4880:  
1.242     brouard  4881:    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
1.126     brouard  4882: 
1.242     brouard  4883:    /* Loop on covariates without age and products and no quantitative variable */
                   4884:    /* for (j=1; j<=(cptcovs); j++) { /\* From model V1 + V2*age+ V3 + V3*V4 keeps V1 + V3 = 2 only *\/ */
                   4885:    for (k=1; k<=cptcovt; k++) { /* From model V1 + V2*age + V3 + V3*V4 keeps V1 + V3 = 2 only */
                   4886:      for (j=-1; (j < maxncov); j++) Ndum[j]=0;
                   4887:      if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
                   4888:        switch(Fixed[k]) {
                   4889:        case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
                   4890:         for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
                   4891:           ij=(int)(covar[Tvar[k]][i]);
                   4892:           /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                   4893:            * If product of Vn*Vm, still boolean *:
                   4894:            * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                   4895:            * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                   4896:           /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                   4897:              modality of the nth covariate of individual i. */
                   4898:           if (ij > modmaxcovj)
                   4899:             modmaxcovj=ij; 
                   4900:           else if (ij < modmincovj) 
                   4901:             modmincovj=ij; 
                   4902:           if ((ij < -1) && (ij > NCOVMAX)){
                   4903:             printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                   4904:             exit(1);
                   4905:           }else
                   4906:             Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                   4907:           /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                   4908:           /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                   4909:           /* getting the maximum value of the modality of the covariate
                   4910:              (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                   4911:              female ies 1, then modmaxcovj=1.
                   4912:           */
                   4913:         } /* end for loop on individuals i */
                   4914:         printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                   4915:         fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                   4916:         cptcode=modmaxcovj;
                   4917:         /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                   4918:         /*for (i=0; i<=cptcode; i++) {*/
                   4919:         for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
                   4920:           printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                   4921:           fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                   4922:           if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
                   4923:             if( j != -1){
                   4924:               ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
                   4925:                                  covariate for which somebody answered excluding 
                   4926:                                  undefined. Usually 2: 0 and 1. */
                   4927:             }
                   4928:             ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
                   4929:                                     covariate for which somebody answered including 
                   4930:                                     undefined. Usually 3: -1, 0 and 1. */
                   4931:           }    /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
                   4932:                 * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                   4933:         } /* Ndum[-1] number of undefined modalities */
1.231     brouard  4934:                        
1.242     brouard  4935:         /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                   4936:         /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
                   4937:         /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
                   4938:         /* modmincovj=3; modmaxcovj = 7; */
                   4939:         /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
                   4940:         /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
                   4941:         /*              defining two dummy variables: variables V1_1 and V1_2.*/
                   4942:         /* nbcode[Tvar[j]][ij]=k; */
                   4943:         /* nbcode[Tvar[j]][1]=0; */
                   4944:         /* nbcode[Tvar[j]][2]=1; */
                   4945:         /* nbcode[Tvar[j]][3]=2; */
                   4946:         /* To be continued (not working yet). */
                   4947:         ij=0; /* ij is similar to i but can jump over null modalities */
                   4948:         for (i=modmincovj; i<=modmaxcovj; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
                   4949:           if (Ndum[i] == 0) { /* If nobody responded to this modality k */
                   4950:             break;
                   4951:           }
                   4952:           ij++;
                   4953:           nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1*/
                   4954:           cptcode = ij; /* New max modality for covar j */
                   4955:         } /* end of loop on modality i=-1 to 1 or more */
                   4956:         break;
                   4957:        case 1: /* Testing on varying covariate, could be simple and
                   4958:                * should look at waves or product of fixed *
                   4959:                * varying. No time to test -1, assuming 0 and 1 only */
                   4960:         ij=0;
                   4961:         for(i=0; i<=1;i++){
                   4962:           nbcode[Tvar[k]][++ij]=i;
                   4963:         }
                   4964:         break;
                   4965:        default:
                   4966:         break;
                   4967:        } /* end switch */
                   4968:      } /* end dummy test */
                   4969:     
                   4970:      /*   for (k=0; k<= cptcode; k++) { /\* k=-1 ? k=0 to 1 *\//\* Could be 1 to 4 *\//\* cptcode=modmaxcovj *\/ */
                   4971:      /*        /\*recode from 0 *\/ */
                   4972:      /*                                     k is a modality. If we have model=V1+V1*sex  */
                   4973:      /*                                     then: nbcode[1][1]=0 ; nbcode[1][2]=1; nbcode[2][1]=0 ; nbcode[2][2]=1; */
                   4974:      /*                                  But if some modality were not used, it is recoded from 0 to a newer modmaxcovj=cptcode *\/ */
                   4975:      /*        } */
                   4976:      /*        /\* cptcode = ij; *\/ /\* New max modality for covar j *\/ */
                   4977:      /*        if (ij > ncodemax[j]) { */
                   4978:      /*          printf( " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]);  */
                   4979:      /*          fprintf(ficlog, " Error ij=%d > ncodemax[%d]=%d\n", ij, j, ncodemax[j]); */
                   4980:      /*          break; */
                   4981:      /*        } */
                   4982:      /*   }  /\* end of loop on modality k *\/ */
                   4983:    } /* end of loop on model-covariate j. nbcode[Tvarj][1]=0 and nbcode[Tvarj][2]=1 sets the value of covariate j*/  
                   4984:   
                   4985:    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
                   4986:    /* Look at fixed dummy (single or product) covariates to check empty modalities */
                   4987:    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
                   4988:      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
                   4989:      ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
                   4990:      Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
                   4991:      /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
                   4992:    } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
                   4993:   
                   4994:    ij=0;
                   4995:    /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
                   4996:    for (k=1; k<=  cptcovt; k++) { /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
                   4997:      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
                   4998:      /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
                   4999:      if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy and non empty in the model */
                   5000:        /* If product not in single variable we don't print results */
                   5001:        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
                   5002:        ++ij;/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, */
                   5003:        Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
                   5004:        Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
                   5005:        TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
                   5006:        if(Fixed[k]!=0)
                   5007:         anyvaryingduminmodel=1;
                   5008:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
                   5009:        /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
                   5010:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
                   5011:        /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
                   5012:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
                   5013:        /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
                   5014:      } 
                   5015:    } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
                   5016:    /* ij--; */
                   5017:    /* cptcoveff=ij; /\*Number of total covariates*\/ */
                   5018:    *cptcov=ij; /*Number of total real effective covariates: effective
                   5019:                * because they can be excluded from the model and real
                   5020:                * if in the model but excluded because missing values, but how to get k from ij?*/
                   5021:    for(j=ij+1; j<= cptcovt; j++){
                   5022:      Tvaraff[j]=0;
                   5023:      Tmodelind[j]=0;
                   5024:    }
                   5025:    for(j=ntveff+1; j<= cptcovt; j++){
                   5026:      TmodelInvind[j]=0;
                   5027:    }
                   5028:    /* To be sorted */
                   5029:    ;
                   5030:  }
1.126     brouard  5031: 
1.145     brouard  5032: 
1.126     brouard  5033: /*********** Health Expectancies ****************/
                   5034: 
1.235     brouard  5035:  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
1.126     brouard  5036: 
                   5037: {
                   5038:   /* Health expectancies, no variances */
1.164     brouard  5039:   int i, j, nhstepm, hstepm, h, nstepm;
1.126     brouard  5040:   int nhstepma, nstepma; /* Decreasing with age */
                   5041:   double age, agelim, hf;
                   5042:   double ***p3mat;
                   5043:   double eip;
                   5044: 
1.238     brouard  5045:   /* pstamp(ficreseij); */
1.126     brouard  5046:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   5047:   fprintf(ficreseij,"# Age");
                   5048:   for(i=1; i<=nlstate;i++){
                   5049:     for(j=1; j<=nlstate;j++){
                   5050:       fprintf(ficreseij," e%1d%1d ",i,j);
                   5051:     }
                   5052:     fprintf(ficreseij," e%1d. ",i);
                   5053:   }
                   5054:   fprintf(ficreseij,"\n");
                   5055: 
                   5056:   
                   5057:   if(estepm < stepm){
                   5058:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   5059:   }
                   5060:   else  hstepm=estepm;   
                   5061:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   5062:    * This is mainly to measure the difference between two models: for example
                   5063:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   5064:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   5065:    * progression in between and thus overestimating or underestimating according
                   5066:    * to the curvature of the survival function. If, for the same date, we 
                   5067:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   5068:    * to compare the new estimate of Life expectancy with the same linear 
                   5069:    * hypothesis. A more precise result, taking into account a more precise
                   5070:    * curvature will be obtained if estepm is as small as stepm. */
                   5071: 
                   5072:   /* For example we decided to compute the life expectancy with the smallest unit */
                   5073:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   5074:      nhstepm is the number of hstepm from age to agelim 
                   5075:      nstepm is the number of stepm from age to agelin. 
                   5076:      Look at hpijx to understand the reason of that which relies in memory size
                   5077:      and note for a fixed period like estepm months */
                   5078:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   5079:      survival function given by stepm (the optimization length). Unfortunately it
                   5080:      means that if the survival funtion is printed only each two years of age and if
                   5081:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   5082:      results. So we changed our mind and took the option of the best precision.
                   5083:   */
                   5084:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   5085: 
                   5086:   agelim=AGESUP;
                   5087:   /* If stepm=6 months */
                   5088:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   5089:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   5090:     
                   5091: /* nhstepm age range expressed in number of stepm */
                   5092:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   5093:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   5094:   /* if (stepm >= YEARM) hstepm=1;*/
                   5095:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   5096:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5097: 
                   5098:   for (age=bage; age<=fage; age ++){ 
                   5099:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   5100:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   5101:     /* if (stepm >= YEARM) hstepm=1;*/
                   5102:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   5103: 
                   5104:     /* If stepm=6 months */
                   5105:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   5106:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   5107:     
1.235     brouard  5108:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
1.126     brouard  5109:     
                   5110:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   5111:     
                   5112:     printf("%d|",(int)age);fflush(stdout);
                   5113:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   5114:     
                   5115:     /* Computing expectancies */
                   5116:     for(i=1; i<=nlstate;i++)
                   5117:       for(j=1; j<=nlstate;j++)
                   5118:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   5119:          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   5120:          
                   5121:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   5122: 
                   5123:        }
                   5124: 
                   5125:     fprintf(ficreseij,"%3.0f",age );
                   5126:     for(i=1; i<=nlstate;i++){
                   5127:       eip=0;
                   5128:       for(j=1; j<=nlstate;j++){
                   5129:        eip +=eij[i][j][(int)age];
                   5130:        fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                   5131:       }
                   5132:       fprintf(ficreseij,"%9.4f", eip );
                   5133:     }
                   5134:     fprintf(ficreseij,"\n");
                   5135:     
                   5136:   }
                   5137:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5138:   printf("\n");
                   5139:   fprintf(ficlog,"\n");
                   5140:   
                   5141: }
                   5142: 
1.235     brouard  5143:  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
1.126     brouard  5144: 
                   5145: {
                   5146:   /* Covariances of health expectancies eij and of total life expectancies according
1.222     brouard  5147:      to initial status i, ei. .
1.126     brouard  5148:   */
                   5149:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                   5150:   int nhstepma, nstepma; /* Decreasing with age */
                   5151:   double age, agelim, hf;
                   5152:   double ***p3matp, ***p3matm, ***varhe;
                   5153:   double **dnewm,**doldm;
                   5154:   double *xp, *xm;
                   5155:   double **gp, **gm;
                   5156:   double ***gradg, ***trgradg;
                   5157:   int theta;
                   5158: 
                   5159:   double eip, vip;
                   5160: 
                   5161:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                   5162:   xp=vector(1,npar);
                   5163:   xm=vector(1,npar);
                   5164:   dnewm=matrix(1,nlstate*nlstate,1,npar);
                   5165:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   5166:   
                   5167:   pstamp(ficresstdeij);
                   5168:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                   5169:   fprintf(ficresstdeij,"# Age");
                   5170:   for(i=1; i<=nlstate;i++){
                   5171:     for(j=1; j<=nlstate;j++)
                   5172:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   5173:     fprintf(ficresstdeij," e%1d. ",i);
                   5174:   }
                   5175:   fprintf(ficresstdeij,"\n");
                   5176: 
                   5177:   pstamp(ficrescveij);
                   5178:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                   5179:   fprintf(ficrescveij,"# Age");
                   5180:   for(i=1; i<=nlstate;i++)
                   5181:     for(j=1; j<=nlstate;j++){
                   5182:       cptj= (j-1)*nlstate+i;
                   5183:       for(i2=1; i2<=nlstate;i2++)
                   5184:        for(j2=1; j2<=nlstate;j2++){
                   5185:          cptj2= (j2-1)*nlstate+i2;
                   5186:          if(cptj2 <= cptj)
                   5187:            fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                   5188:        }
                   5189:     }
                   5190:   fprintf(ficrescveij,"\n");
                   5191:   
                   5192:   if(estepm < stepm){
                   5193:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   5194:   }
                   5195:   else  hstepm=estepm;   
                   5196:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   5197:    * This is mainly to measure the difference between two models: for example
                   5198:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   5199:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   5200:    * progression in between and thus overestimating or underestimating according
                   5201:    * to the curvature of the survival function. If, for the same date, we 
                   5202:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   5203:    * to compare the new estimate of Life expectancy with the same linear 
                   5204:    * hypothesis. A more precise result, taking into account a more precise
                   5205:    * curvature will be obtained if estepm is as small as stepm. */
                   5206: 
                   5207:   /* For example we decided to compute the life expectancy with the smallest unit */
                   5208:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   5209:      nhstepm is the number of hstepm from age to agelim 
                   5210:      nstepm is the number of stepm from age to agelin. 
                   5211:      Look at hpijx to understand the reason of that which relies in memory size
                   5212:      and note for a fixed period like estepm months */
                   5213:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   5214:      survival function given by stepm (the optimization length). Unfortunately it
                   5215:      means that if the survival funtion is printed only each two years of age and if
                   5216:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   5217:      results. So we changed our mind and took the option of the best precision.
                   5218:   */
                   5219:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   5220: 
                   5221:   /* If stepm=6 months */
                   5222:   /* nhstepm age range expressed in number of stepm */
                   5223:   agelim=AGESUP;
                   5224:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
                   5225:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   5226:   /* if (stepm >= YEARM) hstepm=1;*/
                   5227:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   5228:   
                   5229:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5230:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5231:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   5232:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                   5233:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   5234:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
                   5235: 
                   5236:   for (age=bage; age<=fage; age ++){ 
                   5237:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   5238:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   5239:     /* if (stepm >= YEARM) hstepm=1;*/
                   5240:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
1.218     brouard  5241:                
1.126     brouard  5242:     /* If stepm=6 months */
                   5243:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   5244:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   5245:     
                   5246:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
1.218     brouard  5247:                
1.126     brouard  5248:     /* Computing  Variances of health expectancies */
                   5249:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                   5250:        decrease memory allocation */
                   5251:     for(theta=1; theta <=npar; theta++){
                   5252:       for(i=1; i<=npar; i++){ 
1.222     brouard  5253:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   5254:        xm[i] = x[i] - (i==theta ?delti[theta]:0);
1.126     brouard  5255:       }
1.235     brouard  5256:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
                   5257:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
1.218     brouard  5258:                        
1.126     brouard  5259:       for(j=1; j<= nlstate; j++){
1.222     brouard  5260:        for(i=1; i<=nlstate; i++){
                   5261:          for(h=0; h<=nhstepm-1; h++){
                   5262:            gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                   5263:            gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                   5264:          }
                   5265:        }
1.126     brouard  5266:       }
1.218     brouard  5267:                        
1.126     brouard  5268:       for(ij=1; ij<= nlstate*nlstate; ij++)
1.222     brouard  5269:        for(h=0; h<=nhstepm-1; h++){
                   5270:          gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                   5271:        }
1.126     brouard  5272:     }/* End theta */
                   5273:     
                   5274:     
                   5275:     for(h=0; h<=nhstepm-1; h++)
                   5276:       for(j=1; j<=nlstate*nlstate;j++)
1.222     brouard  5277:        for(theta=1; theta <=npar; theta++)
                   5278:          trgradg[h][j][theta]=gradg[h][theta][j];
1.126     brouard  5279:     
1.218     brouard  5280:                
1.222     brouard  5281:     for(ij=1;ij<=nlstate*nlstate;ij++)
1.126     brouard  5282:       for(ji=1;ji<=nlstate*nlstate;ji++)
1.222     brouard  5283:        varhe[ij][ji][(int)age] =0.;
1.218     brouard  5284:                
1.222     brouard  5285:     printf("%d|",(int)age);fflush(stdout);
                   5286:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   5287:     for(h=0;h<=nhstepm-1;h++){
1.126     brouard  5288:       for(k=0;k<=nhstepm-1;k++){
1.222     brouard  5289:        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   5290:        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   5291:        for(ij=1;ij<=nlstate*nlstate;ij++)
                   5292:          for(ji=1;ji<=nlstate*nlstate;ji++)
                   5293:            varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
1.126     brouard  5294:       }
                   5295:     }
1.218     brouard  5296:                
1.126     brouard  5297:     /* Computing expectancies */
1.235     brouard  5298:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
1.126     brouard  5299:     for(i=1; i<=nlstate;i++)
                   5300:       for(j=1; j<=nlstate;j++)
1.222     brouard  5301:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   5302:          eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
1.218     brouard  5303:                                        
1.222     brouard  5304:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
1.218     brouard  5305:                                        
1.222     brouard  5306:        }
1.218     brouard  5307:                
1.126     brouard  5308:     fprintf(ficresstdeij,"%3.0f",age );
                   5309:     for(i=1; i<=nlstate;i++){
                   5310:       eip=0.;
                   5311:       vip=0.;
                   5312:       for(j=1; j<=nlstate;j++){
1.222     brouard  5313:        eip += eij[i][j][(int)age];
                   5314:        for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                   5315:          vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                   5316:        fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
1.126     brouard  5317:       }
                   5318:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   5319:     }
                   5320:     fprintf(ficresstdeij,"\n");
1.218     brouard  5321:                
1.126     brouard  5322:     fprintf(ficrescveij,"%3.0f",age );
                   5323:     for(i=1; i<=nlstate;i++)
                   5324:       for(j=1; j<=nlstate;j++){
1.222     brouard  5325:        cptj= (j-1)*nlstate+i;
                   5326:        for(i2=1; i2<=nlstate;i2++)
                   5327:          for(j2=1; j2<=nlstate;j2++){
                   5328:            cptj2= (j2-1)*nlstate+i2;
                   5329:            if(cptj2 <= cptj)
                   5330:              fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                   5331:          }
1.126     brouard  5332:       }
                   5333:     fprintf(ficrescveij,"\n");
1.218     brouard  5334:                
1.126     brouard  5335:   }
                   5336:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   5337:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   5338:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   5339:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                   5340:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5341:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5342:   printf("\n");
                   5343:   fprintf(ficlog,"\n");
1.218     brouard  5344:        
1.126     brouard  5345:   free_vector(xm,1,npar);
                   5346:   free_vector(xp,1,npar);
                   5347:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   5348:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   5349:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   5350: }
1.218     brouard  5351:  
1.126     brouard  5352: /************ Variance ******************/
1.235     brouard  5353:  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
1.218     brouard  5354:  {
                   5355:    /* Variance of health expectancies */
                   5356:    /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);*/
                   5357:    /* double **newm;*/
                   5358:    /* int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav)*/
                   5359:   
                   5360:    /* int movingaverage(); */
                   5361:    double **dnewm,**doldm;
                   5362:    double **dnewmp,**doldmp;
                   5363:    int i, j, nhstepm, hstepm, h, nstepm ;
                   5364:    int k;
                   5365:    double *xp;
                   5366:    double **gp, **gm;  /* for var eij */
                   5367:    double ***gradg, ***trgradg; /*for var eij */
                   5368:    double **gradgp, **trgradgp; /* for var p point j */
                   5369:    double *gpp, *gmp; /* for var p point j */
                   5370:    double **varppt; /* for var p point j nlstate to nlstate+ndeath */
                   5371:    double ***p3mat;
                   5372:    double age,agelim, hf;
                   5373:    /* double ***mobaverage; */
                   5374:    int theta;
                   5375:    char digit[4];
                   5376:    char digitp[25];
                   5377: 
                   5378:    char fileresprobmorprev[FILENAMELENGTH];
                   5379: 
                   5380:    if(popbased==1){
                   5381:      if(mobilav!=0)
                   5382:        strcpy(digitp,"-POPULBASED-MOBILAV_");
                   5383:      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
                   5384:    }
                   5385:    else 
                   5386:      strcpy(digitp,"-STABLBASED_");
1.126     brouard  5387: 
1.218     brouard  5388:    /* if (mobilav!=0) { */
                   5389:    /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   5390:    /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
                   5391:    /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
                   5392:    /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
                   5393:    /*   } */
                   5394:    /* } */
                   5395: 
                   5396:    strcpy(fileresprobmorprev,"PRMORPREV-"); 
                   5397:    sprintf(digit,"%-d",ij);
                   5398:    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   5399:    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   5400:    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   5401:    strcat(fileresprobmorprev,fileresu);
                   5402:    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   5403:      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   5404:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   5405:    }
                   5406:    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   5407:    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   5408:    pstamp(ficresprobmorprev);
                   5409:    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
1.238     brouard  5410:    fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
                   5411:    for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
                   5412:      fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   5413:    }
                   5414:    for(j=1;j<=cptcoveff;j++) 
                   5415:      fprintf(ficresprobmorprev,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,j)]);
                   5416:    fprintf(ficresprobmorprev,"\n");
                   5417: 
1.218     brouard  5418:    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   5419:    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   5420:      fprintf(ficresprobmorprev," p.%-d SE",j);
                   5421:      for(i=1; i<=nlstate;i++)
                   5422:        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   5423:    }  
                   5424:    fprintf(ficresprobmorprev,"\n");
                   5425:   
                   5426:    fprintf(ficgp,"\n# Routine varevsij");
                   5427:    fprintf(ficgp,"\nunset title \n");
                   5428:    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
                   5429:    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   5430:    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
                   5431:    /*   } */
                   5432:    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   5433:    pstamp(ficresvij);
                   5434:    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
                   5435:    if(popbased==1)
                   5436:      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
                   5437:    else
                   5438:      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
                   5439:    fprintf(ficresvij,"# Age");
                   5440:    for(i=1; i<=nlstate;i++)
                   5441:      for(j=1; j<=nlstate;j++)
                   5442:        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
                   5443:    fprintf(ficresvij,"\n");
                   5444: 
                   5445:    xp=vector(1,npar);
                   5446:    dnewm=matrix(1,nlstate,1,npar);
                   5447:    doldm=matrix(1,nlstate,1,nlstate);
                   5448:    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   5449:    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   5450: 
                   5451:    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   5452:    gpp=vector(nlstate+1,nlstate+ndeath);
                   5453:    gmp=vector(nlstate+1,nlstate+ndeath);
                   5454:    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
1.126     brouard  5455:   
1.218     brouard  5456:    if(estepm < stepm){
                   5457:      printf ("Problem %d lower than %d\n",estepm, stepm);
                   5458:    }
                   5459:    else  hstepm=estepm;   
                   5460:    /* For example we decided to compute the life expectancy with the smallest unit */
                   5461:    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   5462:       nhstepm is the number of hstepm from age to agelim 
                   5463:       nstepm is the number of stepm from age to agelim. 
                   5464:       Look at function hpijx to understand why because of memory size limitations, 
                   5465:       we decided (b) to get a life expectancy respecting the most precise curvature of the
                   5466:       survival function given by stepm (the optimization length). Unfortunately it
                   5467:       means that if the survival funtion is printed every two years of age and if
                   5468:       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   5469:       results. So we changed our mind and took the option of the best precision.
                   5470:    */
                   5471:    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   5472:    agelim = AGESUP;
                   5473:    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   5474:      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   5475:      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   5476:      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5477:      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   5478:      gp=matrix(0,nhstepm,1,nlstate);
                   5479:      gm=matrix(0,nhstepm,1,nlstate);
                   5480:                
                   5481:                
                   5482:      for(theta=1; theta <=npar; theta++){
                   5483:        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                   5484:         xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   5485:        }
                   5486:                        
1.242     brouard  5487:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
1.218     brouard  5488:                        
                   5489:        if (popbased==1) {
                   5490:         if(mobilav ==0){
                   5491:           for(i=1; i<=nlstate;i++)
                   5492:             prlim[i][i]=probs[(int)age][i][ij];
                   5493:         }else{ /* mobilav */ 
                   5494:           for(i=1; i<=nlstate;i++)
                   5495:             prlim[i][i]=mobaverage[(int)age][i][ij];
                   5496:         }
                   5497:        }
                   5498:                        
1.235     brouard  5499:        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=1 to nhstepm */
1.218     brouard  5500:        for(j=1; j<= nlstate; j++){
                   5501:         for(h=0; h<=nhstepm; h++){
                   5502:           for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   5503:             gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   5504:         }
                   5505:        }
                   5506:        /* Next for computing probability of death (h=1 means
                   5507:          computed over hstepm matrices product = hstepm*stepm months) 
                   5508:          as a weighted average of prlim.
                   5509:        */
                   5510:        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   5511:         for(i=1,gpp[j]=0.; i<= nlstate; i++)
                   5512:           gpp[j] += prlim[i][i]*p3mat[i][j][1];
                   5513:        }    
                   5514:        /* end probability of death */
                   5515:                        
                   5516:        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   5517:         xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   5518:                        
1.242     brouard  5519:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);
1.218     brouard  5520:                        
                   5521:        if (popbased==1) {
                   5522:         if(mobilav ==0){
                   5523:           for(i=1; i<=nlstate;i++)
                   5524:             prlim[i][i]=probs[(int)age][i][ij];
                   5525:         }else{ /* mobilav */ 
                   5526:           for(i=1; i<=nlstate;i++)
                   5527:             prlim[i][i]=mobaverage[(int)age][i][ij];
                   5528:         }
                   5529:        }
                   5530:                        
1.235     brouard  5531:        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
1.218     brouard  5532:                        
                   5533:        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
                   5534:         for(h=0; h<=nhstepm; h++){
                   5535:           for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   5536:             gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   5537:         }
                   5538:        }
                   5539:        /* This for computing probability of death (h=1 means
                   5540:          computed over hstepm matrices product = hstepm*stepm months) 
                   5541:          as a weighted average of prlim.
                   5542:        */
                   5543:        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   5544:         for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   5545:           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   5546:        }    
                   5547:        /* end probability of death */
                   5548:                        
                   5549:        for(j=1; j<= nlstate; j++) /* vareij */
                   5550:         for(h=0; h<=nhstepm; h++){
                   5551:           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   5552:         }
                   5553:                        
                   5554:        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu */
                   5555:         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   5556:        }
                   5557:                        
                   5558:      } /* End theta */
                   5559:                
                   5560:      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   5561:                
                   5562:      for(h=0; h<=nhstepm; h++) /* veij */
                   5563:        for(j=1; j<=nlstate;j++)
                   5564:         for(theta=1; theta <=npar; theta++)
                   5565:           trgradg[h][j][theta]=gradg[h][theta][j];
                   5566:                
                   5567:      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   5568:        for(theta=1; theta <=npar; theta++)
                   5569:         trgradgp[j][theta]=gradgp[theta][j];
                   5570:                
                   5571:                
                   5572:      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   5573:      for(i=1;i<=nlstate;i++)
                   5574:        for(j=1;j<=nlstate;j++)
                   5575:         vareij[i][j][(int)age] =0.;
                   5576:                
                   5577:      for(h=0;h<=nhstepm;h++){
                   5578:        for(k=0;k<=nhstepm;k++){
                   5579:         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   5580:         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   5581:         for(i=1;i<=nlstate;i++)
                   5582:           for(j=1;j<=nlstate;j++)
                   5583:             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   5584:        }
                   5585:      }
                   5586:                
                   5587:      /* pptj */
                   5588:      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   5589:      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                   5590:      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   5591:        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                   5592:         varppt[j][i]=doldmp[j][i];
                   5593:      /* end ppptj */
                   5594:      /*  x centered again */
                   5595:                
1.242     brouard  5596:      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
1.218     brouard  5597:                
                   5598:      if (popbased==1) {
                   5599:        if(mobilav ==0){
                   5600:         for(i=1; i<=nlstate;i++)
                   5601:           prlim[i][i]=probs[(int)age][i][ij];
                   5602:        }else{ /* mobilav */ 
                   5603:         for(i=1; i<=nlstate;i++)
                   5604:           prlim[i][i]=mobaverage[(int)age][i][ij];
                   5605:        }
                   5606:      }
                   5607:                
                   5608:      /* This for computing probability of death (h=1 means
                   5609:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   5610:        as a weighted average of prlim.
                   5611:      */
1.235     brouard  5612:      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
1.218     brouard  5613:      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   5614:        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                   5615:         gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   5616:      }    
                   5617:      /* end probability of death */
                   5618:                
                   5619:      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   5620:      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   5621:        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   5622:        for(i=1; i<=nlstate;i++){
                   5623:         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   5624:        }
                   5625:      } 
                   5626:      fprintf(ficresprobmorprev,"\n");
                   5627:                
                   5628:      fprintf(ficresvij,"%.0f ",age );
                   5629:      for(i=1; i<=nlstate;i++)
                   5630:        for(j=1; j<=nlstate;j++){
                   5631:         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   5632:        }
                   5633:      fprintf(ficresvij,"\n");
                   5634:      free_matrix(gp,0,nhstepm,1,nlstate);
                   5635:      free_matrix(gm,0,nhstepm,1,nlstate);
                   5636:      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   5637:      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   5638:      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   5639:    } /* End age */
                   5640:    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   5641:    free_vector(gmp,nlstate+1,nlstate+ndeath);
                   5642:    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   5643:    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   5644:    /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
                   5645:    fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
                   5646:    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   5647:    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                   5648:    fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                   5649:    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   5650:    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   5651:    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   5652:    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
                   5653:    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
                   5654:    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
                   5655:    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   5656:    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                   5657:    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
1.126     brouard  5658:     */
1.218     brouard  5659:    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
                   5660:    fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
1.126     brouard  5661: 
1.218     brouard  5662:    free_vector(xp,1,npar);
                   5663:    free_matrix(doldm,1,nlstate,1,nlstate);
                   5664:    free_matrix(dnewm,1,nlstate,1,npar);
                   5665:    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   5666:    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   5667:    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   5668:    /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   5669:    fclose(ficresprobmorprev);
                   5670:    fflush(ficgp);
                   5671:    fflush(fichtm); 
                   5672:  }  /* end varevsij */
1.126     brouard  5673: 
                   5674: /************ Variance of prevlim ******************/
1.235     brouard  5675:  void varprevlim(char fileres[], double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
1.126     brouard  5676: {
1.205     brouard  5677:   /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
1.126     brouard  5678:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
1.164     brouard  5679: 
1.126     brouard  5680:   double **dnewm,**doldm;
                   5681:   int i, j, nhstepm, hstepm;
                   5682:   double *xp;
                   5683:   double *gp, *gm;
                   5684:   double **gradg, **trgradg;
1.208     brouard  5685:   double **mgm, **mgp;
1.126     brouard  5686:   double age,agelim;
                   5687:   int theta;
                   5688:   
                   5689:   pstamp(ficresvpl);
                   5690:   fprintf(ficresvpl,"# Standard deviation of period (stable) prevalences \n");
1.241     brouard  5691:   fprintf(ficresvpl,"# Age ");
                   5692:   if(nresult >=1)
                   5693:     fprintf(ficresvpl," Result# ");
1.126     brouard  5694:   for(i=1; i<=nlstate;i++)
                   5695:       fprintf(ficresvpl," %1d-%1d",i,i);
                   5696:   fprintf(ficresvpl,"\n");
                   5697: 
                   5698:   xp=vector(1,npar);
                   5699:   dnewm=matrix(1,nlstate,1,npar);
                   5700:   doldm=matrix(1,nlstate,1,nlstate);
                   5701:   
                   5702:   hstepm=1*YEARM; /* Every year of age */
                   5703:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   5704:   agelim = AGESUP;
                   5705:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   5706:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   5707:     if (stepm >= YEARM) hstepm=1;
                   5708:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   5709:     gradg=matrix(1,npar,1,nlstate);
1.208     brouard  5710:     mgp=matrix(1,npar,1,nlstate);
                   5711:     mgm=matrix(1,npar,1,nlstate);
1.126     brouard  5712:     gp=vector(1,nlstate);
                   5713:     gm=vector(1,nlstate);
                   5714: 
                   5715:     for(theta=1; theta <=npar; theta++){
                   5716:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   5717:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   5718:       }
1.209     brouard  5719:       if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
1.235     brouard  5720:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.209     brouard  5721:       else
1.235     brouard  5722:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.208     brouard  5723:       for(i=1;i<=nlstate;i++){
1.126     brouard  5724:        gp[i] = prlim[i][i];
1.208     brouard  5725:        mgp[theta][i] = prlim[i][i];
                   5726:       }
1.126     brouard  5727:       for(i=1; i<=npar; i++) /* Computes gradient */
                   5728:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
1.209     brouard  5729:       if((int)age==79 ||(int)age== 80 ||(int)age== 81 )
1.235     brouard  5730:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.209     brouard  5731:       else
1.235     brouard  5732:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.208     brouard  5733:       for(i=1;i<=nlstate;i++){
1.126     brouard  5734:        gm[i] = prlim[i][i];
1.208     brouard  5735:        mgm[theta][i] = prlim[i][i];
                   5736:       }
1.126     brouard  5737:       for(i=1;i<=nlstate;i++)
                   5738:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
1.209     brouard  5739:       /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
1.126     brouard  5740:     } /* End theta */
                   5741: 
                   5742:     trgradg =matrix(1,nlstate,1,npar);
                   5743: 
                   5744:     for(j=1; j<=nlstate;j++)
                   5745:       for(theta=1; theta <=npar; theta++)
                   5746:        trgradg[j][theta]=gradg[theta][j];
1.209     brouard  5747:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   5748:     /*   printf("\nmgm mgp %d ",(int)age); */
                   5749:     /*   for(j=1; j<=nlstate;j++){ */
                   5750:     /*         printf(" %d ",j); */
                   5751:     /*         for(theta=1; theta <=npar; theta++) */
                   5752:     /*           printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
                   5753:     /*         printf("\n "); */
                   5754:     /*   } */
                   5755:     /* } */
                   5756:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   5757:     /*   printf("\n gradg %d ",(int)age); */
                   5758:     /*   for(j=1; j<=nlstate;j++){ */
                   5759:     /*         printf("%d ",j); */
                   5760:     /*         for(theta=1; theta <=npar; theta++) */
                   5761:     /*           printf("%d %lf ",theta,gradg[theta][j]); */
                   5762:     /*         printf("\n "); */
                   5763:     /*   } */
                   5764:     /* } */
1.126     brouard  5765: 
                   5766:     for(i=1;i<=nlstate;i++)
                   5767:       varpl[i][(int)age] =0.;
1.209     brouard  5768:     if((int)age==79 ||(int)age== 80  ||(int)age== 81){
1.205     brouard  5769:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   5770:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
                   5771:     }else{
1.126     brouard  5772:     matprod2(dnewm,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   5773:     matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg);
1.205     brouard  5774:     }
1.126     brouard  5775:     for(i=1;i<=nlstate;i++)
                   5776:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   5777: 
                   5778:     fprintf(ficresvpl,"%.0f ",age );
1.241     brouard  5779:     if(nresult >=1)
                   5780:       fprintf(ficresvpl,"%d ",nres );
1.126     brouard  5781:     for(i=1; i<=nlstate;i++)
                   5782:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
                   5783:     fprintf(ficresvpl,"\n");
                   5784:     free_vector(gp,1,nlstate);
                   5785:     free_vector(gm,1,nlstate);
1.208     brouard  5786:     free_matrix(mgm,1,npar,1,nlstate);
                   5787:     free_matrix(mgp,1,npar,1,nlstate);
1.126     brouard  5788:     free_matrix(gradg,1,npar,1,nlstate);
                   5789:     free_matrix(trgradg,1,nlstate,1,npar);
                   5790:   } /* End age */
                   5791: 
                   5792:   free_vector(xp,1,npar);
                   5793:   free_matrix(doldm,1,nlstate,1,npar);
                   5794:   free_matrix(dnewm,1,nlstate,1,nlstate);
                   5795: 
                   5796: }
                   5797: 
                   5798: /************ Variance of one-step probabilities  ******************/
                   5799: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
1.222     brouard  5800:  {
                   5801:    int i, j=0,  k1, l1, tj;
                   5802:    int k2, l2, j1,  z1;
                   5803:    int k=0, l;
                   5804:    int first=1, first1, first2;
                   5805:    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   5806:    double **dnewm,**doldm;
                   5807:    double *xp;
                   5808:    double *gp, *gm;
                   5809:    double **gradg, **trgradg;
                   5810:    double **mu;
                   5811:    double age, cov[NCOVMAX+1];
                   5812:    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   5813:    int theta;
                   5814:    char fileresprob[FILENAMELENGTH];
                   5815:    char fileresprobcov[FILENAMELENGTH];
                   5816:    char fileresprobcor[FILENAMELENGTH];
                   5817:    double ***varpij;
                   5818: 
                   5819:    strcpy(fileresprob,"PROB_"); 
                   5820:    strcat(fileresprob,fileres);
                   5821:    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   5822:      printf("Problem with resultfile: %s\n", fileresprob);
                   5823:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   5824:    }
                   5825:    strcpy(fileresprobcov,"PROBCOV_"); 
                   5826:    strcat(fileresprobcov,fileresu);
                   5827:    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   5828:      printf("Problem with resultfile: %s\n", fileresprobcov);
                   5829:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   5830:    }
                   5831:    strcpy(fileresprobcor,"PROBCOR_"); 
                   5832:    strcat(fileresprobcor,fileresu);
                   5833:    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   5834:      printf("Problem with resultfile: %s\n", fileresprobcor);
                   5835:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   5836:    }
                   5837:    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   5838:    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   5839:    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   5840:    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   5841:    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   5842:    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   5843:    pstamp(ficresprob);
                   5844:    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   5845:    fprintf(ficresprob,"# Age");
                   5846:    pstamp(ficresprobcov);
                   5847:    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   5848:    fprintf(ficresprobcov,"# Age");
                   5849:    pstamp(ficresprobcor);
                   5850:    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   5851:    fprintf(ficresprobcor,"# Age");
1.126     brouard  5852: 
                   5853: 
1.222     brouard  5854:    for(i=1; i<=nlstate;i++)
                   5855:      for(j=1; j<=(nlstate+ndeath);j++){
                   5856:        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   5857:        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   5858:        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   5859:      }  
                   5860:    /* fprintf(ficresprob,"\n");
                   5861:       fprintf(ficresprobcov,"\n");
                   5862:       fprintf(ficresprobcor,"\n");
                   5863:    */
                   5864:    xp=vector(1,npar);
                   5865:    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   5866:    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   5867:    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   5868:    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   5869:    first=1;
                   5870:    fprintf(ficgp,"\n# Routine varprob");
                   5871:    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   5872:    fprintf(fichtm,"\n");
                   5873: 
                   5874:    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back.</li>\n",optionfilehtmcov);
                   5875:    fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
                   5876:    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
1.126     brouard  5877: and drawn. It helps understanding how is the covariance between two incidences.\
                   5878:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
1.222     brouard  5879:    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
1.126     brouard  5880: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   5881: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   5882: standard deviations wide on each axis. <br>\
                   5883:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   5884:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   5885: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                   5886: 
1.222     brouard  5887:    cov[1]=1;
                   5888:    /* tj=cptcoveff; */
1.225     brouard  5889:    tj = (int) pow(2,cptcoveff);
1.222     brouard  5890:    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   5891:    j1=0;
1.224     brouard  5892:    for(j1=1; j1<=tj;j1++){  /* For each valid combination of covariates or only once*/
1.222     brouard  5893:      if  (cptcovn>0) {
                   5894:        fprintf(ficresprob, "\n#********** Variable "); 
1.225     brouard  5895:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
1.222     brouard  5896:        fprintf(ficresprob, "**********\n#\n");
                   5897:        fprintf(ficresprobcov, "\n#********** Variable "); 
1.225     brouard  5898:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcov, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
1.222     brouard  5899:        fprintf(ficresprobcov, "**********\n#\n");
1.220     brouard  5900:                        
1.222     brouard  5901:        fprintf(ficgp, "\n#********** Variable "); 
1.225     brouard  5902:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficgp, " V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
1.222     brouard  5903:        fprintf(ficgp, "**********\n#\n");
1.220     brouard  5904:                        
                   5905:                        
1.222     brouard  5906:        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
1.225     brouard  5907:        for (z1=1; z1<=cptcoveff; z1++) fprintf(fichtm, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
1.222     brouard  5908:        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
1.220     brouard  5909:                        
1.222     brouard  5910:        fprintf(ficresprobcor, "\n#********** Variable ");    
1.225     brouard  5911:        for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprobcor, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,z1)]);
1.222     brouard  5912:        fprintf(ficresprobcor, "**********\n#");    
                   5913:        if(invalidvarcomb[j1]){
                   5914:         fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
                   5915:         fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
                   5916:         continue;
                   5917:        }
                   5918:      }
                   5919:      gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   5920:      trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   5921:      gp=vector(1,(nlstate)*(nlstate+ndeath));
                   5922:      gm=vector(1,(nlstate)*(nlstate+ndeath));
                   5923:      for (age=bage; age<=fage; age ++){ 
                   5924:        cov[2]=age;
                   5925:        if(nagesqr==1)
                   5926:         cov[3]= age*age;
                   5927:        for (k=1; k<=cptcovn;k++) {
                   5928:         cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)];
                   5929:         /*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*//* j1 1 2 3 4
                   5930:                                                                    * 1  1 1 1 1
                   5931:                                                                    * 2  2 1 1 1
                   5932:                                                                    * 3  1 2 1 1
                   5933:                                                                    */
                   5934:         /* nbcode[1][1]=0 nbcode[1][2]=1;*/
                   5935:        }
                   5936:        /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; */
                   5937:        for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2];
                   5938:        for (k=1; k<=cptcovprod;k++)
                   5939:         cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)];
1.220     brouard  5940:                        
                   5941:                        
1.222     brouard  5942:        for(theta=1; theta <=npar; theta++){
                   5943:         for(i=1; i<=npar; i++)
                   5944:           xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
1.220     brouard  5945:                                
1.222     brouard  5946:         pmij(pmmij,cov,ncovmodel,xp,nlstate);
1.220     brouard  5947:                                
1.222     brouard  5948:         k=0;
                   5949:         for(i=1; i<= (nlstate); i++){
                   5950:           for(j=1; j<=(nlstate+ndeath);j++){
                   5951:             k=k+1;
                   5952:             gp[k]=pmmij[i][j];
                   5953:           }
                   5954:         }
1.220     brouard  5955:                                
1.222     brouard  5956:         for(i=1; i<=npar; i++)
                   5957:           xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
1.220     brouard  5958:                                
1.222     brouard  5959:         pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   5960:         k=0;
                   5961:         for(i=1; i<=(nlstate); i++){
                   5962:           for(j=1; j<=(nlstate+ndeath);j++){
                   5963:             k=k+1;
                   5964:             gm[k]=pmmij[i][j];
                   5965:           }
                   5966:         }
1.220     brouard  5967:                                
1.222     brouard  5968:         for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                   5969:           gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                   5970:        }
1.126     brouard  5971: 
1.222     brouard  5972:        for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   5973:         for(theta=1; theta <=npar; theta++)
                   5974:           trgradg[j][theta]=gradg[theta][j];
1.220     brouard  5975:                        
1.222     brouard  5976:        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   5977:        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
1.220     brouard  5978:                        
1.222     brouard  5979:        pmij(pmmij,cov,ncovmodel,x,nlstate);
1.220     brouard  5980:                        
1.222     brouard  5981:        k=0;
                   5982:        for(i=1; i<=(nlstate); i++){
                   5983:         for(j=1; j<=(nlstate+ndeath);j++){
                   5984:           k=k+1;
                   5985:           mu[k][(int) age]=pmmij[i][j];
                   5986:         }
                   5987:        }
                   5988:        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   5989:         for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   5990:           varpij[i][j][(int)age] = doldm[i][j];
1.220     brouard  5991:                        
1.222     brouard  5992:        /*printf("\n%d ",(int)age);
                   5993:         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   5994:         printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   5995:         fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   5996:         }*/
1.220     brouard  5997:                        
1.222     brouard  5998:        fprintf(ficresprob,"\n%d ",(int)age);
                   5999:        fprintf(ficresprobcov,"\n%d ",(int)age);
                   6000:        fprintf(ficresprobcor,"\n%d ",(int)age);
1.220     brouard  6001:                        
1.222     brouard  6002:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   6003:         fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   6004:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   6005:         fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   6006:         fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   6007:        }
                   6008:        i=0;
                   6009:        for (k=1; k<=(nlstate);k++){
                   6010:         for (l=1; l<=(nlstate+ndeath);l++){ 
                   6011:           i++;
                   6012:           fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   6013:           fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   6014:           for (j=1; j<=i;j++){
                   6015:             /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                   6016:             fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   6017:             fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   6018:           }
                   6019:         }
                   6020:        }/* end of loop for state */
                   6021:      } /* end of loop for age */
                   6022:      free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   6023:      free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   6024:      free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   6025:      free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   6026:     
                   6027:      /* Confidence intervalle of pij  */
                   6028:      /*
                   6029:        fprintf(ficgp,"\nunset parametric;unset label");
                   6030:        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   6031:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   6032:        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   6033:        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   6034:        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   6035:        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   6036:      */
                   6037:                
                   6038:      /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   6039:      first1=1;first2=2;
                   6040:      for (k2=1; k2<=(nlstate);k2++){
                   6041:        for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   6042:         if(l2==k2) continue;
                   6043:         j=(k2-1)*(nlstate+ndeath)+l2;
                   6044:         for (k1=1; k1<=(nlstate);k1++){
                   6045:           for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   6046:             if(l1==k1) continue;
                   6047:             i=(k1-1)*(nlstate+ndeath)+l1;
                   6048:             if(i<=j) continue;
                   6049:             for (age=bage; age<=fage; age ++){ 
                   6050:               if ((int)age %5==0){
                   6051:                 v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   6052:                 v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   6053:                 cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   6054:                 mu1=mu[i][(int) age]/stepm*YEARM ;
                   6055:                 mu2=mu[j][(int) age]/stepm*YEARM;
                   6056:                 c12=cv12/sqrt(v1*v2);
                   6057:                 /* Computing eigen value of matrix of covariance */
                   6058:                 lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   6059:                 lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   6060:                 if ((lc2 <0) || (lc1 <0) ){
                   6061:                   if(first2==1){
                   6062:                     first1=0;
                   6063:                     printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                   6064:                   }
                   6065:                   fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                   6066:                   /* lc1=fabs(lc1); */ /* If we want to have them positive */
                   6067:                   /* lc2=fabs(lc2); */
                   6068:                 }
1.220     brouard  6069:                                                                
1.222     brouard  6070:                 /* Eigen vectors */
                   6071:                 v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
                   6072:                 /*v21=sqrt(1.-v11*v11); *//* error */
                   6073:                 v21=(lc1-v1)/cv12*v11;
                   6074:                 v12=-v21;
                   6075:                 v22=v11;
                   6076:                 tnalp=v21/v11;
                   6077:                 if(first1==1){
                   6078:                   first1=0;
                   6079:                   printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   6080:                 }
                   6081:                 fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   6082:                 /*printf(fignu*/
                   6083:                 /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   6084:                 /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   6085:                 if(first==1){
                   6086:                   first=0;
                   6087:                   fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                   6088:                   fprintf(ficgp,"\nset parametric;unset label");
                   6089:                   fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                   6090:                   fprintf(ficgp,"\nset ter svg size 640, 480");
                   6091:                   fprintf(fichtmcov,"\n<br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
1.220     brouard  6092:  :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                          \
1.201     brouard  6093: %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
1.222     brouard  6094:                           subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
                   6095:                           subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   6096:                   fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   6097:                   fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                   6098:                   fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   6099:                   fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   6100:                   fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   6101:                   fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
                   6102:                           mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                                                         \
                   6103:                           mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   6104:                 }else{
                   6105:                   first=0;
                   6106:                   fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                   6107:                   fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   6108:                   fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   6109:                   fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
                   6110:                           mu1,std,v11,sqrt(lc1),v12,sqrt(lc2),                                 \
                   6111:                           mu2,std,v21,sqrt(lc1),v22,sqrt(lc2));
                   6112:                 }/* if first */
                   6113:               } /* age mod 5 */
                   6114:             } /* end loop age */
                   6115:             fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   6116:             first=1;
                   6117:           } /*l12 */
                   6118:         } /* k12 */
                   6119:        } /*l1 */
                   6120:      }/* k1 */
                   6121:    }  /* loop on combination of covariates j1 */
                   6122:    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   6123:    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                   6124:    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   6125:    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
                   6126:    free_vector(xp,1,npar);
                   6127:    fclose(ficresprob);
                   6128:    fclose(ficresprobcov);
                   6129:    fclose(ficresprobcor);
                   6130:    fflush(ficgp);
                   6131:    fflush(fichtmcov);
                   6132:  }
1.126     brouard  6133: 
                   6134: 
                   6135: /******************* Printing html file ***********/
1.201     brouard  6136: void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
1.126     brouard  6137:                  int lastpass, int stepm, int weightopt, char model[],\
                   6138:                  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
1.217     brouard  6139:                  int popforecast, int prevfcast, int backcast, int estepm , \
1.213     brouard  6140:                  double jprev1, double mprev1,double anprev1, double dateprev1, \
                   6141:                  double jprev2, double mprev2,double anprev2, double dateprev2){
1.237     brouard  6142:   int jj1, k1, i1, cpt, k4, nres;
1.126     brouard  6143: 
                   6144:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                   6145:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                   6146: </ul>");
1.237     brouard  6147:    fprintf(fichtm,"<ul><li> model=1+age+%s\n \
                   6148: </ul>", model);
1.214     brouard  6149:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
                   6150:    fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
                   6151:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
                   6152:    fprintf(fichtm,"<li> - Observed prevalence in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
1.213     brouard  6153:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
                   6154:    fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
1.126     brouard  6155:    fprintf(fichtm,"\
                   6156:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
1.201     brouard  6157:           stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
1.126     brouard  6158:    fprintf(fichtm,"\
1.217     brouard  6159:  - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   6160:           stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
                   6161:    fprintf(fichtm,"\
1.126     brouard  6162:  - Period (stable) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
1.201     brouard  6163:           subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
1.126     brouard  6164:    fprintf(fichtm,"\
1.217     brouard  6165:  - Period (stable) back prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
                   6166:           subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
                   6167:    fprintf(fichtm,"\
1.211     brouard  6168:  - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
1.126     brouard  6169:    <a href=\"%s\">%s</a> <br>\n",
1.201     brouard  6170:           estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
1.211     brouard  6171:    if(prevfcast==1){
                   6172:      fprintf(fichtm,"\
                   6173:  - Prevalence projections by age and states:                           \
1.201     brouard  6174:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
1.211     brouard  6175:    }
1.126     brouard  6176: 
1.222     brouard  6177:    fprintf(fichtm," \n<ul><li><b>Graphs</b></li><p>");
1.126     brouard  6178: 
1.225     brouard  6179:    m=pow(2,cptcoveff);
1.222     brouard  6180:    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
1.126     brouard  6181: 
1.222     brouard  6182:    jj1=0;
1.237     brouard  6183: 
                   6184:    for(nres=1; nres <= nresult; nres++) /* For each resultline */
1.241     brouard  6185:    for(k1=1; k1<=m;k1++){ /* For each combination of covariate */
1.237     brouard  6186:      if(TKresult[nres]!= k1)
                   6187:        continue;
1.220     brouard  6188: 
1.222     brouard  6189:      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
                   6190:      jj1++;
                   6191:      if (cptcovn > 0) {
                   6192:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
1.225     brouard  6193:        for (cpt=1; cpt<=cptcoveff;cpt++){ 
1.237     brouard  6194:         fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]);
                   6195:         printf(" V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);fflush(stdout);
                   6196:         /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
                   6197:         /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
1.222     brouard  6198:        }
1.237     brouard  6199:        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   6200:        fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6201:        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);fflush(stdout);
                   6202:       }
                   6203:        
1.230     brouard  6204:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
1.222     brouard  6205:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
                   6206:        if(invalidvarcomb[k1]){
                   6207:         fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
                   6208:         printf("\nCombination (%d) ignored because no cases \n",k1); 
                   6209:         continue;
                   6210:        }
                   6211:      }
                   6212:      /* aij, bij */
1.241     brouard  6213:      fprintf(fichtm,"<br>- Logit model (yours is: 1+age+%s), for example: logit(pij)=log(pij/pii)= aij+ bij age + V1 age + etc. as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \
                   6214: <img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
1.222     brouard  6215:      /* Pij */
1.241     brouard  6216:      fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \
                   6217: <img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);     
1.222     brouard  6218:      /* Quasi-incidences */
                   6219:      fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
1.220     brouard  6220:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
1.211     brouard  6221:  incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
1.241     brouard  6222: divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \
                   6223: <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); 
1.222     brouard  6224:      /* Survival functions (period) in state j */
                   6225:      for(cpt=1; cpt<=nlstate;cpt++){
1.241     brouard  6226:        fprintf(fichtm,"<br>\n- Survival functions in state %d. Or probability to survive in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
                   6227: <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
1.222     brouard  6228:      }
                   6229:      /* State specific survival functions (period) */
                   6230:      for(cpt=1; cpt<=nlstate;cpt++){
                   6231:        fprintf(fichtm,"<br>\n- Survival functions from state %d in each live state and total.\
1.220     brouard  6232:  Or probability to survive in various states (1 to %d) being in state %d at different ages.    \
1.241     brouard  6233:  <a href=\"%s_%d-%d-%d.svg\">%s_%d%d-%d.svg</a><br> <img src=\"%s_%d-%d-%d.svg\">", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
1.222     brouard  6234:      }
                   6235:      /* Period (stable) prevalence in each health state */
                   6236:      for(cpt=1; cpt<=nlstate;cpt++){
1.241     brouard  6237:        fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
                   6238: <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.222     brouard  6239:      }
                   6240:      if(backcast==1){
                   6241:        /* Period (stable) back prevalence in each health state */
                   6242:        for(cpt=1; cpt<=nlstate;cpt++){
1.241     brouard  6243:         fprintf(fichtm,"<br>\n- Convergence to period (stable) back prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
                   6244: <img src=\"%s_%d-%d-%d.svg\">", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
1.222     brouard  6245:        }
1.217     brouard  6246:      }
1.222     brouard  6247:      if(prevfcast==1){
                   6248:        /* Projection of prevalence up to period (stable) prevalence in each health state */
                   6249:        for(cpt=1; cpt<=nlstate;cpt++){
1.241     brouard  6250:         fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f) up to period (stable) prevalence in state %d. Or probability to be in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> \
                   6251: <img src=\"%s_%d-%d-%d.svg\">", dateprev1, dateprev2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
1.222     brouard  6252:        }
                   6253:      }
1.220     brouard  6254:         
1.222     brouard  6255:      for(cpt=1; cpt<=nlstate;cpt++) {
1.241     brouard  6256:        fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a> <br> \
                   6257: <img src=\"%s_%d-%d-%d.svg\">",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
1.222     brouard  6258:      }
                   6259:      /* } /\* end i1 *\/ */
                   6260:    }/* End k1 */
                   6261:    fprintf(fichtm,"</ul>");
1.126     brouard  6262: 
1.222     brouard  6263:    fprintf(fichtm,"\
1.126     brouard  6264: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
1.193     brouard  6265:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
1.203     brouard  6266:  - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
1.197     brouard  6267: But because parameters are usually highly correlated (a higher incidence of disability \
                   6268: and a higher incidence of recovery can give very close observed transition) it might \
                   6269: be very useful to look not only at linear confidence intervals estimated from the \
                   6270: variances but at the covariance matrix. And instead of looking at the estimated coefficients \
                   6271: (parameters) of the logistic regression, it might be more meaningful to visualize the \
                   6272: covariance matrix of the one-step probabilities. \
                   6273: See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
1.126     brouard  6274: 
1.222     brouard  6275:    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   6276:           subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
                   6277:    fprintf(fichtm,"\
1.126     brouard  6278:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  6279:           subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
1.126     brouard  6280: 
1.222     brouard  6281:    fprintf(fichtm,"\
1.126     brouard  6282:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  6283:           subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
                   6284:    fprintf(fichtm,"\
1.126     brouard  6285:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                   6286:    <a href=\"%s\">%s</a> <br>\n</li>",
1.201     brouard  6287:           estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
1.222     brouard  6288:    fprintf(fichtm,"\
1.126     brouard  6289:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                   6290:    <a href=\"%s\">%s</a> <br>\n</li>",
1.201     brouard  6291:           estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
1.222     brouard  6292:    fprintf(fichtm,"\
1.128     brouard  6293:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the period prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
1.222     brouard  6294:           estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
                   6295:    fprintf(fichtm,"\
1.128     brouard  6296:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  6297:           estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
                   6298:    fprintf(fichtm,"\
1.126     brouard  6299:  - Standard deviation of period (stable) prevalences: <a href=\"%s\">%s</a> <br>\n",\
1.222     brouard  6300:           subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
1.126     brouard  6301: 
                   6302: /*  if(popforecast==1) fprintf(fichtm,"\n */
                   6303: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                   6304: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                   6305: /*     <br>",fileres,fileres,fileres,fileres); */
                   6306: /*  else  */
                   6307: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
1.222     brouard  6308:    fflush(fichtm);
                   6309:    fprintf(fichtm," <ul><li><b>Graphs</b></li><p>");
1.126     brouard  6310: 
1.225     brouard  6311:    m=pow(2,cptcoveff);
1.222     brouard  6312:    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
1.126     brouard  6313: 
1.222     brouard  6314:    jj1=0;
1.237     brouard  6315: 
1.241     brouard  6316:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.222     brouard  6317:    for(k1=1; k1<=m;k1++){
1.237     brouard  6318:      if(TKresult[nres]!= k1)
                   6319:        continue;
1.222     brouard  6320:      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
                   6321:      jj1++;
1.126     brouard  6322:      if (cptcovn > 0) {
                   6323:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
1.225     brouard  6324:        for (cpt=1; cpt<=cptcoveff;cpt++)  /**< cptcoveff number of variables */
1.237     brouard  6325:         fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],Tresult[nres][cpt]);
                   6326:         /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
                   6327:        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   6328:        fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6329:       }
                   6330: 
1.126     brouard  6331:        fprintf(fichtm," ************\n<hr size=\"2\" color=\"#EC5E5E\">");
1.220     brouard  6332: 
1.222     brouard  6333:        if(invalidvarcomb[k1]){
                   6334:         fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
                   6335:         continue;
                   6336:        }
1.126     brouard  6337:      }
                   6338:      for(cpt=1; cpt<=nlstate;cpt++) {
1.218     brouard  6339:        fprintf(fichtm,"\n<br>- Observed (cross-sectional) and period (incidence based) \
1.241     brouard  6340: prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>\n <br>\
                   6341: <img src=\"%s_%d-%d-%d.svg\">",cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);  
1.126     brouard  6342:      }
                   6343:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
1.128     brouard  6344: health expectancies in states (1) and (2). If popbased=1 the smooth (due to the model) \
                   6345: true period expectancies (those weighted with period prevalences are also\
                   6346:  drawn in addition to the population based expectancies computed using\
1.241     brouard  6347:  observed and cahotic prevalences:  <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>\n<br>\
                   6348: <img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);
1.222     brouard  6349:      /* } /\* end i1 *\/ */
                   6350:    }/* End k1 */
1.241     brouard  6351:   }/* End nres */
1.222     brouard  6352:    fprintf(fichtm,"</ul>");
                   6353:    fflush(fichtm);
1.126     brouard  6354: }
                   6355: 
                   6356: /******************* Gnuplot file **************/
1.223     brouard  6357: void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , int prevfcast, int backcast, char pathc[], double p[]){
1.126     brouard  6358: 
                   6359:   char dirfileres[132],optfileres[132];
1.223     brouard  6360:   char gplotcondition[132];
1.237     brouard  6361:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0;
1.211     brouard  6362:   int lv=0, vlv=0, kl=0;
1.130     brouard  6363:   int ng=0;
1.201     brouard  6364:   int vpopbased;
1.223     brouard  6365:   int ioffset; /* variable offset for columns */
1.235     brouard  6366:   int nres=0; /* Index of resultline */
1.219     brouard  6367: 
1.126     brouard  6368: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                   6369: /*     printf("Problem with file %s",optionfilegnuplot); */
                   6370: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   6371: /*   } */
                   6372: 
                   6373:   /*#ifdef windows */
                   6374:   fprintf(ficgp,"cd \"%s\" \n",pathc);
1.223     brouard  6375:   /*#endif */
1.225     brouard  6376:   m=pow(2,cptcoveff);
1.126     brouard  6377: 
1.202     brouard  6378:   /* Contribution to likelihood */
                   6379:   /* Plot the probability implied in the likelihood */
1.223     brouard  6380:   fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
                   6381:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
                   6382:   /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
                   6383:   fprintf(ficgp,"\nset ter pngcairo size 640, 480");
1.204     brouard  6384: /* nice for mle=4 plot by number of matrix products.
1.202     brouard  6385:    replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
                   6386: /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
1.223     brouard  6387:   /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
                   6388:   fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
                   6389:   fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
                   6390:   fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
                   6391:   fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
                   6392:   for (i=1; i<= nlstate ; i ++) {
                   6393:     fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
                   6394:     fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
                   6395:     fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
                   6396:     for (j=2; j<= nlstate+ndeath ; j ++) {
                   6397:       fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
                   6398:     }
                   6399:     fprintf(ficgp,";\nset out; unset ylabel;\n"); 
                   6400:   }
                   6401:   /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */               
                   6402:   /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
                   6403:   /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
                   6404:   fprintf(ficgp,"\nset out;unset log\n");
                   6405:   /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
1.202     brouard  6406: 
1.126     brouard  6407:   strcpy(dirfileres,optionfilefiname);
                   6408:   strcpy(optfileres,"vpl");
1.223     brouard  6409:   /* 1eme*/
1.238     brouard  6410:   for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
                   6411:     for (k1=1; k1<= m ; k1 ++){ /* For each valid combination of covariate */
1.236     brouard  6412:       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.238     brouard  6413:        /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
                   6414:        if(TKresult[nres]!= k1)
                   6415:          continue;
                   6416:        /* We are interested in selected combination by the resultline */
1.246     brouard  6417:        /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */
1.238     brouard  6418:        fprintf(ficgp,"\n# 1st: Period (stable) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
                   6419:        for (k=1; k<=cptcoveff; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   6420:          lv= decodtabm(k1,k,cptcoveff); /* Should be the value of the covariate corresponding to k1 combination */
                   6421:          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6422:          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   6423:          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   6424:          vlv= nbcode[Tvaraff[k]][lv]; /* vlv is the value of the covariate lv, 0 or 1 */
                   6425:          /* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv */
1.246     brouard  6426:          /* printf(" V%d=%d ",Tvaraff[k],vlv); */
1.238     brouard  6427:          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
                   6428:        }
                   6429:        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
1.246     brouard  6430:          /* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
1.238     brouard  6431:          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6432:        }       
1.246     brouard  6433:        /* printf("\n#\n"); */
1.238     brouard  6434:        fprintf(ficgp,"\n#\n");
                   6435:        if(invalidvarcomb[k1]){
                   6436:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   6437:          continue;
                   6438:        }
1.235     brouard  6439:       
1.241     brouard  6440:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
                   6441:        fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);
                   6442:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres);
1.235     brouard  6443:       
1.238     brouard  6444:        for (i=1; i<= nlstate ; i ++) {
                   6445:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   6446:          else        fprintf(ficgp," %%*lf (%%*lf)");
                   6447:        }
1.242     brouard  6448:        fprintf(ficgp,"\" t\"Period (stable) prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres);
1.238     brouard  6449:        for (i=1; i<= nlstate ; i ++) {
                   6450:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   6451:          else fprintf(ficgp," %%*lf (%%*lf)");
                   6452:        } 
1.242     brouard  6453:        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); 
1.238     brouard  6454:        for (i=1; i<= nlstate ; i ++) {
                   6455:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   6456:          else fprintf(ficgp," %%*lf (%%*lf)");
                   6457:        }  
                   6458:        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1));
                   6459:        if(backcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
                   6460:          /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
1.242     brouard  6461:          fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */
1.238     brouard  6462:          if(cptcoveff ==0){
1.245     brouard  6463:            fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3",    2+(cpt-1),  cpt );
1.238     brouard  6464:          }else{
                   6465:            kl=0;
                   6466:            for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
                   6467:              lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                   6468:              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6469:              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   6470:              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   6471:              vlv= nbcode[Tvaraff[k]][lv];
1.223     brouard  6472:              kl++;
1.238     brouard  6473:              /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   6474:              /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   6475:              /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   6476:              /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   6477:              if(k==cptcoveff){
1.245     brouard  6478:                fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
1.242     brouard  6479:                        2+cptcoveff*2+(cpt-1),  cpt );  /* 4 or 6 ?*/
1.238     brouard  6480:              }else{
                   6481:                fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                   6482:                kl++;
                   6483:              }
                   6484:            } /* end covariate */
                   6485:          } /* end if no covariate */
                   6486:        } /* end if backcast */
                   6487:        fprintf(ficgp,"\nset out \n");
                   6488:       } /* nres */
1.201     brouard  6489:     } /* k1 */
                   6490:   } /* cpt */
1.235     brouard  6491: 
                   6492:   
1.126     brouard  6493:   /*2 eme*/
1.238     brouard  6494:   for (k1=1; k1<= m ; k1 ++){  
                   6495:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   6496:       if(TKresult[nres]!= k1)
                   6497:        continue;
                   6498:       fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
                   6499:       for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
1.225     brouard  6500:        lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
1.223     brouard  6501:        /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6502:        /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   6503:        /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   6504:        vlv= nbcode[Tvaraff[k]][lv];
                   6505:        fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
1.211     brouard  6506:       }
1.237     brouard  6507:       /* for(k=1; k <= ncovds; k++){ */
1.236     brouard  6508:       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
1.238     brouard  6509:        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
1.236     brouard  6510:        fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
1.238     brouard  6511:       }
1.211     brouard  6512:       fprintf(ficgp,"\n#\n");
1.223     brouard  6513:       if(invalidvarcomb[k1]){
                   6514:        fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   6515:        continue;
                   6516:       }
1.219     brouard  6517:                        
1.241     brouard  6518:       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres);
1.238     brouard  6519:       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
                   6520:        if(vpopbased==0)
                   6521:          fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
                   6522:        else
                   6523:          fprintf(ficgp,"\nreplot ");
                   6524:        for (i=1; i<= nlstate+1 ; i ++) {
                   6525:          k=2*i;
                   6526:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1, vpopbased);
                   6527:          for (j=1; j<= nlstate+1 ; j ++) {
                   6528:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   6529:            else fprintf(ficgp," %%*lf (%%*lf)");
                   6530:          }   
                   6531:          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
                   6532:          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
                   6533:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
                   6534:          for (j=1; j<= nlstate+1 ; j ++) {
                   6535:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   6536:            else fprintf(ficgp," %%*lf (%%*lf)");
                   6537:          }   
                   6538:          fprintf(ficgp,"\" t\"\" w l lt 0,");
                   6539:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),k1-1,k1-1,vpopbased);
                   6540:          for (j=1; j<= nlstate+1 ; j ++) {
                   6541:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   6542:            else fprintf(ficgp," %%*lf (%%*lf)");
                   6543:          }   
                   6544:          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
                   6545:          else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
                   6546:        } /* state */
                   6547:       } /* vpopbased */
1.244     brouard  6548:       fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; \n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */
1.238     brouard  6549:     } /* end nres */
                   6550:   } /* k1 end 2 eme*/
                   6551:        
                   6552:        
                   6553:   /*3eme*/
                   6554:   for (k1=1; k1<= m ; k1 ++){
                   6555:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.240     brouard  6556:       if(TKresult[nres]!= k1)
1.238     brouard  6557:        continue;
                   6558: 
                   6559:       for (cpt=1; cpt<= nlstate ; cpt ++) {
                   6560:        fprintf(ficgp,"\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
                   6561:        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
                   6562:          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
                   6563:          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6564:          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   6565:          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   6566:          vlv= nbcode[Tvaraff[k]][lv];
                   6567:          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
                   6568:        }
                   6569:        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   6570:          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6571:        }       
                   6572:        fprintf(ficgp,"\n#\n");
                   6573:        if(invalidvarcomb[k1]){
                   6574:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   6575:          continue;
                   6576:        }
                   6577:                        
                   6578:        /*       k=2+nlstate*(2*cpt-2); */
                   6579:        k=2+(nlstate+1)*(cpt-1);
1.241     brouard  6580:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
1.238     brouard  6581:        fprintf(ficgp,"set ter svg size 640, 480\n\
1.201     brouard  6582: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),k1-1,k1-1,k,cpt);
1.238     brouard  6583:        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   6584:          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   6585:          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   6586:          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   6587:          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   6588:          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
1.219     brouard  6589:                                
1.238     brouard  6590:        */
                   6591:        for (i=1; i< nlstate ; i ++) {
                   6592:          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+i,cpt,i+1);
                   6593:          /*    fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
1.219     brouard  6594:                                
1.238     brouard  6595:        } 
                   6596:        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),k1-1,k1-1,k+nlstate,cpt);
                   6597:       }
                   6598:     } /* end nres */
                   6599:   } /* end kl 3eme */
1.126     brouard  6600:   
1.223     brouard  6601:   /* 4eme */
1.201     brouard  6602:   /* Survival functions (period) from state i in state j by initial state i */
1.238     brouard  6603:   for (k1=1; k1<=m; k1++){    /* For each covariate and each value */
                   6604:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   6605:       if(TKresult[nres]!= k1)
1.223     brouard  6606:        continue;
1.238     brouard  6607:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
                   6608:        fprintf(ficgp,"\n#\n#\n# Survival functions in state j : 'LIJ_' files, cov=%d state=%d",k1, cpt);
                   6609:        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
                   6610:          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
                   6611:          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6612:          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   6613:          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   6614:          vlv= nbcode[Tvaraff[k]][lv];
                   6615:          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
                   6616:        }
                   6617:        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   6618:          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6619:        }       
                   6620:        fprintf(ficgp,"\n#\n");
                   6621:        if(invalidvarcomb[k1]){
                   6622:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   6623:          continue;
1.223     brouard  6624:        }
1.238     brouard  6625:       
1.241     brouard  6626:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
1.238     brouard  6627:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
                   6628: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   6629:        k=3;
                   6630:        for (i=1; i<= nlstate ; i ++){
                   6631:          if(i==1){
                   6632:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   6633:          }else{
                   6634:            fprintf(ficgp,", '' ");
                   6635:          }
                   6636:          l=(nlstate+ndeath)*(i-1)+1;
                   6637:          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
                   6638:          for (j=2; j<= nlstate+ndeath ; j ++)
                   6639:            fprintf(ficgp,"+$%d",k+l+j-1);
                   6640:          fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
                   6641:        } /* nlstate */
                   6642:        fprintf(ficgp,"\nset out\n");
                   6643:       } /* end cpt state*/ 
                   6644:     } /* end nres */
                   6645:   } /* end covariate k1 */  
                   6646: 
1.220     brouard  6647: /* 5eme */
1.201     brouard  6648:   /* Survival functions (period) from state i in state j by final state j */
1.238     brouard  6649:   for (k1=1; k1<= m ; k1++){ /* For each covariate combination if any */
                   6650:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   6651:       if(TKresult[nres]!= k1)
1.227     brouard  6652:        continue;
1.238     brouard  6653:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
                   6654:        fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
                   6655:        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
                   6656:          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
                   6657:          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6658:          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   6659:          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   6660:          vlv= nbcode[Tvaraff[k]][lv];
                   6661:          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
                   6662:        }
                   6663:        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   6664:          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6665:        }       
                   6666:        fprintf(ficgp,"\n#\n");
                   6667:        if(invalidvarcomb[k1]){
                   6668:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   6669:          continue;
                   6670:        }
1.227     brouard  6671:       
1.241     brouard  6672:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
1.238     brouard  6673:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
                   6674: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   6675:        k=3;
                   6676:        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
                   6677:          if(j==1)
                   6678:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   6679:          else
                   6680:            fprintf(ficgp,", '' ");
                   6681:          l=(nlstate+ndeath)*(cpt-1) +j;
                   6682:          fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
                   6683:          /* for (i=2; i<= nlstate+ndeath ; i ++) */
                   6684:          /*   fprintf(ficgp,"+$%d",k+l+i-1); */
                   6685:          fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
                   6686:        } /* nlstate */
                   6687:        fprintf(ficgp,", '' ");
                   6688:        fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
                   6689:        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
                   6690:          l=(nlstate+ndeath)*(cpt-1) +j;
                   6691:          if(j < nlstate)
                   6692:            fprintf(ficgp,"$%d +",k+l);
                   6693:          else
                   6694:            fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
                   6695:        }
                   6696:        fprintf(ficgp,"\nset out\n");
                   6697:       } /* end cpt state*/ 
                   6698:     } /* end covariate */  
                   6699:   } /* end nres */
1.227     brouard  6700:   
1.220     brouard  6701: /* 6eme */
1.202     brouard  6702:   /* CV preval stable (period) for each covariate */
1.237     brouard  6703:   for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
                   6704:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   6705:     if(TKresult[nres]!= k1)
                   6706:       continue;
1.153     brouard  6707:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
1.227     brouard  6708:       
1.211     brouard  6709:       fprintf(ficgp,"\n#\n#\n#CV preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
1.225     brouard  6710:       for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
1.227     brouard  6711:        lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
                   6712:        /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6713:        /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   6714:        /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   6715:        vlv= nbcode[Tvaraff[k]][lv];
                   6716:        fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
1.211     brouard  6717:       }
1.237     brouard  6718:       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   6719:        fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6720:       }        
1.211     brouard  6721:       fprintf(ficgp,"\n#\n");
1.223     brouard  6722:       if(invalidvarcomb[k1]){
1.227     brouard  6723:        fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   6724:        continue;
1.223     brouard  6725:       }
1.227     brouard  6726:       
1.241     brouard  6727:       fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.126     brouard  6728:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.238     brouard  6729: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.211     brouard  6730:       k=3; /* Offset */
1.153     brouard  6731:       for (i=1; i<= nlstate ; i ++){
1.227     brouard  6732:        if(i==1)
                   6733:          fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   6734:        else
                   6735:          fprintf(ficgp,", '' ");
                   6736:        l=(nlstate+ndeath)*(i-1)+1;
                   6737:        fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
                   6738:        for (j=2; j<= nlstate ; j ++)
                   6739:          fprintf(ficgp,"+$%d",k+l+j-1);
                   6740:        fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
1.153     brouard  6741:       } /* nlstate */
1.201     brouard  6742:       fprintf(ficgp,"\nset out\n");
1.153     brouard  6743:     } /* end cpt state*/ 
                   6744:   } /* end covariate */  
1.227     brouard  6745:   
                   6746:   
1.220     brouard  6747: /* 7eme */
1.218     brouard  6748:   if(backcast == 1){
1.217     brouard  6749:     /* CV back preval stable (period) for each covariate */
1.237     brouard  6750:     for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
                   6751:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   6752:       if(TKresult[nres]!= k1)
                   6753:        continue;
1.218     brouard  6754:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
1.227     brouard  6755:        fprintf(ficgp,"\n#\n#\n#CV Back preval stable (period): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
                   6756:        for (k=1; k<=cptcoveff; k++){    /* For each covariate and each value */
                   6757:          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate number corresponding to k1 combination */
                   6758:          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6759:          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
1.223     brouard  6760:          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
1.227     brouard  6761:          vlv= nbcode[Tvaraff[k]][lv];
                   6762:          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
                   6763:        }
1.237     brouard  6764:        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   6765:          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6766:        }       
1.227     brouard  6767:        fprintf(ficgp,"\n#\n");
                   6768:        if(invalidvarcomb[k1]){
                   6769:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   6770:          continue;
                   6771:        }
                   6772:        
1.241     brouard  6773:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
1.227     brouard  6774:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.238     brouard  6775: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.227     brouard  6776:        k=3; /* Offset */
                   6777:        for (i=1; i<= nlstate ; i ++){
                   6778:          if(i==1)
                   6779:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
                   6780:          else
                   6781:            fprintf(ficgp,", '' ");
                   6782:          /* l=(nlstate+ndeath)*(i-1)+1; */
                   6783:          l=(nlstate+ndeath)*(cpt-1)+1;
                   6784:          /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
                   6785:          /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
                   6786:          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+(cpt-1)+i-1); /* a vérifier */
                   6787:          /* for (j=2; j<= nlstate ; j ++) */
                   6788:          /*    fprintf(ficgp,"+$%d",k+l+j-1); */
                   6789:          /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
                   6790:          fprintf(ficgp,") t \"bprev(%d,%d)\" w l",i,cpt);
                   6791:        } /* nlstate */
                   6792:        fprintf(ficgp,"\nset out\n");
1.218     brouard  6793:       } /* end cpt state*/ 
                   6794:     } /* end covariate */  
                   6795:   } /* End if backcast */
                   6796:   
1.223     brouard  6797:   /* 8eme */
1.218     brouard  6798:   if(prevfcast==1){
                   6799:     /* Projection from cross-sectional to stable (period) for each covariate */
                   6800:     
1.237     brouard  6801:     for (k1=1; k1<= m ; k1 ++) /* For each covariate combination if any */
                   6802:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   6803:       if(TKresult[nres]!= k1)
                   6804:        continue;
1.211     brouard  6805:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
1.227     brouard  6806:        fprintf(ficgp,"\n#\n#\n#Projection of prevalence to stable (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
                   6807:        for (k=1; k<=cptcoveff; k++){    /* For each correspondig covariate value  */
                   6808:          lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to k1 combination and kth covariate */
                   6809:          /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6810:          /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   6811:          /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   6812:          vlv= nbcode[Tvaraff[k]][lv];
                   6813:          fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv);
                   6814:        }
1.237     brouard  6815:        for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   6816:          fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6817:        }       
1.227     brouard  6818:        fprintf(ficgp,"\n#\n");
                   6819:        if(invalidvarcomb[k1]){
                   6820:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   6821:          continue;
                   6822:        }
                   6823:        
                   6824:        fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
1.241     brouard  6825:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
1.227     brouard  6826:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
1.238     brouard  6827: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.227     brouard  6828:        for (i=1; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
                   6829:          /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   6830:          /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   6831:          /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   6832:          /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   6833:          if(i==1){
                   6834:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
                   6835:          }else{
                   6836:            fprintf(ficgp,",\\\n '' ");
                   6837:          }
                   6838:          if(cptcoveff ==0){ /* No covariate */
                   6839:            ioffset=2; /* Age is in 2 */
                   6840:            /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   6841:            /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   6842:            /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   6843:            /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   6844:            fprintf(ficgp," u %d:(", ioffset); 
                   6845:            if(i==nlstate+1)
                   6846:              fprintf(ficgp," $%d/(1.-$%d)) t 'pw.%d' with line ",      \
                   6847:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   6848:            else
                   6849:              fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                   6850:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                   6851:          }else{ /* more than 2 covariates */
                   6852:            if(cptcoveff ==1){
                   6853:              ioffset=4; /* Age is in 4 */
                   6854:            }else{
                   6855:              ioffset=6; /* Age is in 6 */
                   6856:              /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   6857:              /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
                   6858:            }   
                   6859:            fprintf(ficgp," u %d:(",ioffset); 
                   6860:            kl=0;
                   6861:            strcpy(gplotcondition,"(");
                   6862:            for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
                   6863:              lv= decodtabm(k1,k,cptcoveff); /* Should be the covariate value corresponding to combination k1 and covariate k */
                   6864:              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   6865:              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   6866:              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   6867:              vlv= nbcode[Tvaraff[k]][lv]; /* Value of the modality of Tvaraff[k] */
                   6868:              kl++;
                   6869:              sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                   6870:              kl++;
                   6871:              if(k <cptcoveff && cptcoveff>1)
                   6872:                sprintf(gplotcondition+strlen(gplotcondition)," && ");
                   6873:            }
                   6874:            strcpy(gplotcondition+strlen(gplotcondition),")");
                   6875:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   6876:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   6877:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   6878:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   6879:            if(i==nlstate+1){
                   6880:              fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p.%d' with line ", gplotcondition, \
                   6881:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   6882:            }else{
                   6883:              fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                   6884:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                   6885:            }
                   6886:          } /* end if covariate */
                   6887:        } /* nlstate */
                   6888:        fprintf(ficgp,"\nset out\n");
1.223     brouard  6889:       } /* end cpt state*/
                   6890:     } /* end covariate */
                   6891:   } /* End if prevfcast */
1.227     brouard  6892:   
                   6893:   
1.238     brouard  6894:   /* 9eme writing MLE parameters */
                   6895:   fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n");
1.126     brouard  6896:   for(i=1,jk=1; i <=nlstate; i++){
1.187     brouard  6897:     fprintf(ficgp,"# initial state %d\n",i);
1.126     brouard  6898:     for(k=1; k <=(nlstate+ndeath); k++){
                   6899:       if (k != i) {
1.227     brouard  6900:        fprintf(ficgp,"#   current state %d\n",k);
                   6901:        for(j=1; j <=ncovmodel; j++){
                   6902:          fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
                   6903:          jk++; 
                   6904:        }
                   6905:        fprintf(ficgp,"\n");
1.126     brouard  6906:       }
                   6907:     }
1.223     brouard  6908:   }
1.187     brouard  6909:   fprintf(ficgp,"##############\n#\n");
1.227     brouard  6910:   
1.145     brouard  6911:   /*goto avoid;*/
1.238     brouard  6912:   /* 10eme Graphics of probabilities or incidences using written MLE parameters */
                   6913:   fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n");
1.187     brouard  6914:   fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
                   6915:   fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
                   6916:   fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
                   6917:   fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
                   6918:   fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   6919:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
                   6920:   fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   6921:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
                   6922:   fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
                   6923:   fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   6924:   fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
                   6925:   fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
                   6926:   fprintf(ficgp,"#\n");
1.223     brouard  6927:   for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
1.238     brouard  6928:     fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
1.237     brouard  6929:     fprintf(ficgp,"#model=%s \n",model);
1.238     brouard  6930:     fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
1.237     brouard  6931:     fprintf(ficgp,"#   jk=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */
                   6932:     for(jk=1; jk <=m; jk++)  /* For each combination of covariate */
                   6933:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   6934:       if(TKresult[nres]!= jk)
                   6935:        continue;
                   6936:       fprintf(ficgp,"# Combination of dummy  jk=%d and ",jk);
                   6937:       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   6938:        fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   6939:       }        
                   6940:       fprintf(ficgp,"\n#\n");
1.241     brouard  6941:       fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),jk,ng,nres);
1.223     brouard  6942:       fprintf(ficgp,"\nset ter svg size 640, 480 ");
                   6943:       if (ng==1){
                   6944:        fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
                   6945:        fprintf(ficgp,"\nunset log y");
                   6946:       }else if (ng==2){
                   6947:        fprintf(ficgp,"\nset ylabel \"Probability\"\n");
                   6948:        fprintf(ficgp,"\nset log y");
                   6949:       }else if (ng==3){
                   6950:        fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                   6951:        fprintf(ficgp,"\nset log y");
                   6952:       }else
                   6953:        fprintf(ficgp,"\nunset title ");
                   6954:       fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                   6955:       i=1;
                   6956:       for(k2=1; k2<=nlstate; k2++) {
                   6957:        k3=i;
                   6958:        for(k=1; k<=(nlstate+ndeath); k++) {
                   6959:          if (k != k2){
                   6960:            switch( ng) {
                   6961:            case 1:
                   6962:              if(nagesqr==0)
                   6963:                fprintf(ficgp," p%d+p%d*x",i,i+1);
                   6964:              else /* nagesqr =1 */
                   6965:                fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                   6966:              break;
                   6967:            case 2: /* ng=2 */
                   6968:              if(nagesqr==0)
                   6969:                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                   6970:              else /* nagesqr =1 */
                   6971:                fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                   6972:              break;
                   6973:            case 3:
                   6974:              if(nagesqr==0)
                   6975:                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   6976:              else /* nagesqr =1 */
                   6977:                fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                   6978:              break;
                   6979:            }
                   6980:            ij=1;/* To be checked else nbcode[0][0] wrong */
1.237     brouard  6981:            ijp=1; /* product no age */
                   6982:            /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
                   6983:            for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
1.223     brouard  6984:              /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
1.237     brouard  6985:              if(j==Tage[ij]) { /* Product by age */
                   6986:                if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
1.238     brouard  6987:                  if(DummyV[j]==0){
1.237     brouard  6988:                    fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                   6989:                  }else{ /* quantitative */
                   6990:                    fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                   6991:                    /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                   6992:                  }
                   6993:                  ij++;
                   6994:                }
                   6995:              }else if(j==Tprod[ijp]) { /* */ 
                   6996:                /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   6997:                if(ijp <=cptcovprod) { /* Product */
1.238     brouard  6998:                  if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                   6999:                    if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
1.237     brouard  7000:                      /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(jk,j)],nbcode[Tvard[ijp][2]][codtabm(jk,j)]); */
                   7001:                      fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                   7002:                    }else{ /* Vn is dummy and Vm is quanti */
                   7003:                      /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(jk,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                   7004:                      fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   7005:                    }
                   7006:                  }else{ /* Vn*Vm Vn is quanti */
1.238     brouard  7007:                    if(DummyV[Tvard[ijp][2]]==0){
1.237     brouard  7008:                      fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                   7009:                    }else{ /* Both quanti */
                   7010:                      fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   7011:                    }
                   7012:                  }
1.238     brouard  7013:                  ijp++;
1.237     brouard  7014:                }
                   7015:              } else{  /* simple covariate */
                   7016:                /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(jk,j)]); /\* Valgrind bug nbcode *\/ */
                   7017:                if(Dummy[j]==0){
                   7018:                  fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
                   7019:                }else{ /* quantitative */
                   7020:                  fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
1.223     brouard  7021:                  /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                   7022:                }
1.237     brouard  7023:              } /* end simple */
                   7024:            } /* end j */
1.223     brouard  7025:          }else{
                   7026:            i=i-ncovmodel;
                   7027:            if(ng !=1 ) /* For logit formula of log p11 is more difficult to get */
                   7028:              fprintf(ficgp," (1.");
                   7029:          }
1.227     brouard  7030:          
1.223     brouard  7031:          if(ng != 1){
                   7032:            fprintf(ficgp,")/(1");
1.227     brouard  7033:            
1.223     brouard  7034:            for(k1=1; k1 <=nlstate; k1++){ 
                   7035:              if(nagesqr==0)
                   7036:                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1);
                   7037:              else /* nagesqr =1 */
                   7038:                fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(k1-1)*ncovmodel,k3+(k1-1)*ncovmodel+1,k3+(k1-1)*ncovmodel+1+nagesqr);
1.217     brouard  7039:               
1.223     brouard  7040:              ij=1;
                   7041:              for(j=3; j <=ncovmodel-nagesqr; j++){
1.237     brouard  7042:                if((j-2)==Tage[ij]) { /* Bug valgrind */
                   7043:                  if(ij <=cptcovage) { /* Bug valgrind */
1.223     brouard  7044:                    fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);
                   7045:                    /* fprintf(ficgp,"+p%d*%d*x",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,Tvar[j-2])]); */
                   7046:                    ij++;
                   7047:                  }
                   7048:                }
                   7049:                else
1.225     brouard  7050:                  fprintf(ficgp,"+p%d*%d",k3+(k1-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(jk,j-2)]);/* Valgrind bug nbcode */
1.223     brouard  7051:              }
                   7052:              fprintf(ficgp,")");
                   7053:            }
                   7054:            fprintf(ficgp,")");
                   7055:            if(ng ==2)
                   7056:              fprintf(ficgp," t \"p%d%d\" ", k2,k);
                   7057:            else /* ng= 3 */
                   7058:              fprintf(ficgp," t \"i%d%d\" ", k2,k);
                   7059:          }else{ /* end ng <> 1 */
                   7060:            if( k !=k2) /* logit p11 is hard to draw */
                   7061:              fprintf(ficgp," t \"logit(p%d%d)\" ", k2,k);
                   7062:          }
                   7063:          if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
                   7064:            fprintf(ficgp,",");
                   7065:          if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
                   7066:            fprintf(ficgp,",");
                   7067:          i=i+ncovmodel;
                   7068:        } /* end k */
                   7069:       } /* end k2 */
                   7070:       fprintf(ficgp,"\n set out\n");
                   7071:     } /* end jk */
                   7072:   } /* end ng */
                   7073:   /* avoid: */
                   7074:   fflush(ficgp); 
1.126     brouard  7075: }  /* end gnuplot */
                   7076: 
                   7077: 
                   7078: /*************** Moving average **************/
1.219     brouard  7079: /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
1.222     brouard  7080:  int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
1.218     brouard  7081:    
1.222     brouard  7082:    int i, cpt, cptcod;
                   7083:    int modcovmax =1;
                   7084:    int mobilavrange, mob;
                   7085:    int iage=0;
                   7086: 
                   7087:    double sum=0.;
                   7088:    double age;
                   7089:    double *sumnewp, *sumnewm;
                   7090:    double *agemingood, *agemaxgood; /* Currently identical for all covariates */
                   7091:   
                   7092:   
1.225     brouard  7093:    /* modcovmax=2*cptcoveff;/\* Max number of modalities. We suppose  */
1.222     brouard  7094:    /*             a covariate has 2 modalities, should be equal to ncovcombmax  *\/ */
                   7095: 
                   7096:    sumnewp = vector(1,ncovcombmax);
                   7097:    sumnewm = vector(1,ncovcombmax);
                   7098:    agemingood = vector(1,ncovcombmax); 
                   7099:    agemaxgood = vector(1,ncovcombmax);
                   7100: 
                   7101:    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                   7102:      sumnewm[cptcod]=0.;
                   7103:      sumnewp[cptcod]=0.;
                   7104:      agemingood[cptcod]=0;
                   7105:      agemaxgood[cptcod]=0;
                   7106:    }
                   7107:    if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
                   7108:   
                   7109:    if(mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                   7110:      if(mobilav==1) mobilavrange=5; /* default */
                   7111:      else mobilavrange=mobilav;
                   7112:      for (age=bage; age<=fage; age++)
                   7113:        for (i=1; i<=nlstate;i++)
                   7114:         for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
                   7115:           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   7116:      /* We keep the original values on the extreme ages bage, fage and for 
                   7117:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                   7118:        we use a 5 terms etc. until the borders are no more concerned. 
                   7119:      */ 
                   7120:      for (mob=3;mob <=mobilavrange;mob=mob+2){
                   7121:        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
                   7122:         for (i=1; i<=nlstate;i++){
                   7123:           for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                   7124:             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   7125:             for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   7126:               mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   7127:               mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   7128:             }
                   7129:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
                   7130:           }
                   7131:         }
                   7132:        }/* end age */
                   7133:      }/* end mob */
                   7134:    }else
                   7135:      return -1;
                   7136:    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                   7137:      /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
                   7138:      if(invalidvarcomb[cptcod]){
                   7139:        printf("\nCombination (%d) ignored because no cases \n",cptcod); 
                   7140:        continue;
                   7141:      }
1.219     brouard  7142: 
1.222     brouard  7143:      agemingood[cptcod]=fage-(mob-1)/2;
                   7144:      for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, finding the youngest wrong */
                   7145:        sumnewm[cptcod]=0.;
                   7146:        for (i=1; i<=nlstate;i++){
                   7147:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   7148:        }
                   7149:        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   7150:         agemingood[cptcod]=age;
                   7151:        }else{ /* bad */
                   7152:         for (i=1; i<=nlstate;i++){
                   7153:           mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
                   7154:         } /* i */
                   7155:        } /* end bad */
                   7156:      }/* age */
                   7157:      sum=0.;
                   7158:      for (i=1; i<=nlstate;i++){
                   7159:        sum+=mobaverage[(int)agemingood[cptcod]][i][cptcod];
                   7160:      }
                   7161:      if(fabs(sum - 1.) > 1.e-3) { /* bad */
                   7162:        printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any descending age!\n",cptcod);
                   7163:        /* for (i=1; i<=nlstate;i++){ */
                   7164:        /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
                   7165:        /* } /\* i *\/ */
                   7166:      } /* end bad */
                   7167:      /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
                   7168:      /* From youngest, finding the oldest wrong */
                   7169:      agemaxgood[cptcod]=bage+(mob-1)/2;
                   7170:      for (age=bage+(mob-1)/2; age<=fage; age++){
                   7171:        sumnewm[cptcod]=0.;
                   7172:        for (i=1; i<=nlstate;i++){
                   7173:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   7174:        }
                   7175:        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   7176:         agemaxgood[cptcod]=age;
                   7177:        }else{ /* bad */
                   7178:         for (i=1; i<=nlstate;i++){
                   7179:           mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
                   7180:         } /* i */
                   7181:        } /* end bad */
                   7182:      }/* age */
                   7183:      sum=0.;
                   7184:      for (i=1; i<=nlstate;i++){
                   7185:        sum+=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
                   7186:      }
                   7187:      if(fabs(sum - 1.) > 1.e-3) { /* bad */
                   7188:        printf("For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one at any ascending age!\n",cptcod);
                   7189:        /* for (i=1; i<=nlstate;i++){ */
                   7190:        /*   mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
                   7191:        /* } /\* i *\/ */
                   7192:      } /* end bad */
                   7193:                
                   7194:      for (age=bage; age<=fage; age++){
1.235     brouard  7195:        /* printf("%d %d ", cptcod, (int)age); */
1.222     brouard  7196:        sumnewp[cptcod]=0.;
                   7197:        sumnewm[cptcod]=0.;
                   7198:        for (i=1; i<=nlstate;i++){
                   7199:         sumnewp[cptcod]+=probs[(int)age][i][cptcod];
                   7200:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   7201:         /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
                   7202:        }
                   7203:        /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
                   7204:      }
                   7205:      /* printf("\n"); */
                   7206:      /* } */
                   7207:      /* brutal averaging */
                   7208:      for (i=1; i<=nlstate;i++){
                   7209:        for (age=1; age<=bage; age++){
                   7210:         mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
                   7211:         /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
                   7212:        }       
                   7213:        for (age=fage; age<=AGESUP; age++){
                   7214:         mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
                   7215:         /* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); */
                   7216:        }
                   7217:      } /* end i status */
                   7218:      for (i=nlstate+1; i<=nlstate+ndeath;i++){
                   7219:        for (age=1; age<=AGESUP; age++){
                   7220:         /*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*/
                   7221:         mobaverage[(int)age][i][cptcod]=0.;
                   7222:        }
                   7223:      }
                   7224:    }/* end cptcod */
                   7225:    free_vector(sumnewm,1, ncovcombmax);
                   7226:    free_vector(sumnewp,1, ncovcombmax);
                   7227:    free_vector(agemaxgood,1, ncovcombmax);
                   7228:    free_vector(agemingood,1, ncovcombmax);
                   7229:    return 0;
                   7230:  }/* End movingaverage */
1.218     brouard  7231:  
1.126     brouard  7232: 
                   7233: /************** Forecasting ******************/
1.235     brouard  7234:  void prevforecast(char fileres[], double anproj1, double mproj1, double jproj1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anproj2, double p[], int cptcoveff){
1.126     brouard  7235:   /* proj1, year, month, day of starting projection 
                   7236:      agemin, agemax range of age
                   7237:      dateprev1 dateprev2 range of dates during which prevalence is computed
                   7238:      anproj2 year of en of projection (same day and month as proj1).
                   7239:   */
1.235     brouard  7240:    int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
1.126     brouard  7241:   double agec; /* generic age */
                   7242:   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean;
                   7243:   double *popeffectif,*popcount;
                   7244:   double ***p3mat;
1.218     brouard  7245:   /* double ***mobaverage; */
1.126     brouard  7246:   char fileresf[FILENAMELENGTH];
                   7247: 
                   7248:   agelim=AGESUP;
1.211     brouard  7249:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   7250:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   7251:      We still use firstpass and lastpass as another selection.
                   7252:   */
1.214     brouard  7253:   /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
                   7254:   /*         firstpass, lastpass,  stepm,  weightopt, model); */
1.126     brouard  7255:  
1.201     brouard  7256:   strcpy(fileresf,"F_"); 
                   7257:   strcat(fileresf,fileresu);
1.126     brouard  7258:   if((ficresf=fopen(fileresf,"w"))==NULL) {
                   7259:     printf("Problem with forecast resultfile: %s\n", fileresf);
                   7260:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                   7261:   }
1.235     brouard  7262:   printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
                   7263:   fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
1.126     brouard  7264: 
1.225     brouard  7265:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
1.126     brouard  7266: 
                   7267: 
                   7268:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   7269:   if (stepm<=12) stepsize=1;
                   7270:   if(estepm < stepm){
                   7271:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   7272:   }
                   7273:   else  hstepm=estepm;   
                   7274: 
                   7275:   hstepm=hstepm/stepm; 
                   7276:   yp1=modf(dateintmean,&yp);/* extracts integral of datemean in yp  and
                   7277:                                fractional in yp1 */
                   7278:   anprojmean=yp;
                   7279:   yp2=modf((yp1*12),&yp);
                   7280:   mprojmean=yp;
                   7281:   yp1=modf((yp2*30.5),&yp);
                   7282:   jprojmean=yp;
                   7283:   if(jprojmean==0) jprojmean=1;
                   7284:   if(mprojmean==0) jprojmean=1;
                   7285: 
1.227     brouard  7286:   i1=pow(2,cptcoveff);
1.126     brouard  7287:   if (cptcovn < 1){i1=1;}
                   7288:   
                   7289:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2); 
                   7290:   
                   7291:   fprintf(ficresf,"#****** Routine prevforecast **\n");
1.227     brouard  7292:   
1.126     brouard  7293: /*           if (h==(int)(YEARM*yearp)){ */
1.235     brouard  7294:   for(nres=1; nres <= nresult; nres++) /* For each resultline */
                   7295:   for(k=1; k<=i1;k++){
                   7296:     if(TKresult[nres]!= k)
                   7297:       continue;
1.227     brouard  7298:     if(invalidvarcomb[k]){
                   7299:       printf("\nCombination (%d) projection ignored because no cases \n",k); 
                   7300:       continue;
                   7301:     }
                   7302:     fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
                   7303:     for(j=1;j<=cptcoveff;j++) {
                   7304:       fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   7305:     }
1.235     brouard  7306:     for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
1.238     brouard  7307:       fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
1.235     brouard  7308:     }
1.227     brouard  7309:     fprintf(ficresf," yearproj age");
                   7310:     for(j=1; j<=nlstate+ndeath;j++){ 
                   7311:       for(i=1; i<=nlstate;i++)               
                   7312:        fprintf(ficresf," p%d%d",i,j);
                   7313:       fprintf(ficresf," wp.%d",j);
                   7314:     }
                   7315:     for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {
                   7316:       fprintf(ficresf,"\n");
                   7317:       fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jproj1,mproj1,anproj1+yearp);   
                   7318:       for (agec=fage; agec>=(ageminpar-1); agec--){ 
                   7319:        nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                   7320:        nhstepm = nhstepm/hstepm; 
                   7321:        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   7322:        oldm=oldms;savm=savms;
1.235     brouard  7323:        hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
1.227     brouard  7324:        
                   7325:        for (h=0; h<=nhstepm; h++){
                   7326:          if (h*hstepm/YEARM*stepm ==yearp) {
                   7327:            fprintf(ficresf,"\n");
                   7328:            for(j=1;j<=cptcoveff;j++) 
                   7329:              fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   7330:            fprintf(ficresf,"%.f %.f ",anproj1+yearp,agec+h*hstepm/YEARM*stepm);
                   7331:          } 
                   7332:          for(j=1; j<=nlstate+ndeath;j++) {
                   7333:            ppij=0.;
                   7334:            for(i=1; i<=nlstate;i++) {
                   7335:              if (mobilav==1) 
                   7336:                ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][k];
                   7337:              else {
                   7338:                ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
                   7339:              }
                   7340:              if (h*hstepm/YEARM*stepm== yearp) {
                   7341:                fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   7342:              }
                   7343:            } /* end i */
                   7344:            if (h*hstepm/YEARM*stepm==yearp) {
                   7345:              fprintf(ficresf," %.3f", ppij);
                   7346:            }
                   7347:          }/* end j */
                   7348:        } /* end h */
                   7349:        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   7350:       } /* end agec */
                   7351:     } /* end yearp */
                   7352:   } /* end  k */
1.219     brouard  7353:        
1.126     brouard  7354:   fclose(ficresf);
1.215     brouard  7355:   printf("End of Computing forecasting \n");
                   7356:   fprintf(ficlog,"End of Computing forecasting\n");
                   7357: 
1.126     brouard  7358: }
                   7359: 
1.218     brouard  7360: /* /\************** Back Forecasting ******************\/ */
1.225     brouard  7361: /* void prevbackforecast(char fileres[], double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
1.218     brouard  7362: /*   /\* back1, year, month, day of starting backection  */
                   7363: /*      agemin, agemax range of age */
                   7364: /*      dateprev1 dateprev2 range of dates during which prevalence is computed */
                   7365: /*      anback2 year of en of backection (same day and month as back1). */
                   7366: /*   *\/ */
                   7367: /*   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1; */
                   7368: /*   double agec; /\* generic age *\/ */
                   7369: /*   double agelim, ppij, yp,yp1,yp2,jprojmean,mprojmean,anprojmean; */
                   7370: /*   double *popeffectif,*popcount; */
                   7371: /*   double ***p3mat; */
                   7372: /*   /\* double ***mobaverage; *\/ */
                   7373: /*   char fileresfb[FILENAMELENGTH]; */
                   7374:        
                   7375: /*   agelim=AGESUP; */
                   7376: /*   /\* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people */
                   7377: /*      in each health status at the date of interview (if between dateprev1 and dateprev2). */
                   7378: /*      We still use firstpass and lastpass as another selection. */
                   7379: /*   *\/ */
                   7380: /*   /\* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ *\/ */
                   7381: /*   /\*             firstpass, lastpass,  stepm,  weightopt, model); *\/ */
                   7382: /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
                   7383:        
                   7384: /*   strcpy(fileresfb,"FB_");  */
                   7385: /*   strcat(fileresfb,fileresu); */
                   7386: /*   if((ficresfb=fopen(fileresfb,"w"))==NULL) { */
                   7387: /*     printf("Problem with back forecast resultfile: %s\n", fileresfb); */
                   7388: /*     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb); */
                   7389: /*   } */
                   7390: /*   printf("Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
                   7391: /*   fprintf(ficlog,"Computing back forecasting: result on file '%s', please wait... \n", fileresfb); */
                   7392:        
1.225     brouard  7393: /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
1.218     brouard  7394:        
                   7395: /*   /\* if (mobilav!=0) { *\/ */
                   7396: /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
                   7397: /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
                   7398: /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   7399: /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   7400: /*   /\*   } *\/ */
                   7401: /*   /\* } *\/ */
                   7402:        
                   7403: /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
                   7404: /*   if (stepm<=12) stepsize=1; */
                   7405: /*   if(estepm < stepm){ */
                   7406: /*     printf ("Problem %d lower than %d\n",estepm, stepm); */
                   7407: /*   } */
                   7408: /*   else  hstepm=estepm;    */
                   7409:        
                   7410: /*   hstepm=hstepm/stepm;  */
                   7411: /*   yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                   7412: /*                                fractional in yp1 *\/ */
                   7413: /*   anprojmean=yp; */
                   7414: /*   yp2=modf((yp1*12),&yp); */
                   7415: /*   mprojmean=yp; */
                   7416: /*   yp1=modf((yp2*30.5),&yp); */
                   7417: /*   jprojmean=yp; */
                   7418: /*   if(jprojmean==0) jprojmean=1; */
                   7419: /*   if(mprojmean==0) jprojmean=1; */
                   7420:        
1.225     brouard  7421: /*   i1=cptcoveff; */
1.218     brouard  7422: /*   if (cptcovn < 1){i1=1;} */
1.217     brouard  7423:   
1.218     brouard  7424: /*   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jprojmean,mprojmean,anprojmean,dateintmean,dateprev1,dateprev2);  */
1.217     brouard  7425:   
1.218     brouard  7426: /*   fprintf(ficresfb,"#****** Routine prevbackforecast **\n"); */
                   7427:        
                   7428: /*     /\*           if (h==(int)(YEARM*yearp)){ *\/ */
                   7429: /*   for(cptcov=1, k=0;cptcov<=i1;cptcov++){ */
1.225     brouard  7430: /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
1.218     brouard  7431: /*       k=k+1; */
                   7432: /*       fprintf(ficresfb,"\n#****** hbijx=probability over h years, hp.jx is weighted by observed prev \n#"); */
1.225     brouard  7433: /*       for(j=1;j<=cptcoveff;j++) { */
1.218     brouard  7434: /*                             fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
                   7435: /*       } */
                   7436: /*       fprintf(ficresfb," yearbproj age"); */
                   7437: /*       for(j=1; j<=nlstate+ndeath;j++){  */
                   7438: /*                             for(i=1; i<=nlstate;i++)               */
                   7439: /*           fprintf(ficresfb," p%d%d",i,j); */
                   7440: /*                             fprintf(ficresfb," p.%d",j); */
                   7441: /*       } */
                   7442: /*       for (yearp=0; yearp>=(anback2-anback1);yearp -=stepsize) {  */
                   7443: /*                             /\* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  *\/ */
                   7444: /*                             fprintf(ficresfb,"\n"); */
                   7445: /*                             fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp);    */
                   7446: /*                             for (agec=fage; agec>=(ageminpar-1); agec--){  */
                   7447: /*                                     nhstepm=(int) rint((agelim-agec)*YEARM/stepm);  */
                   7448: /*                                     nhstepm = nhstepm/hstepm;  */
                   7449: /*                                     p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   7450: /*                                     oldm=oldms;savm=savms; */
                   7451: /*                                     hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm,oldm,savm, dnewm, doldm, dsavm, k);       */
                   7452: /*                                     for (h=0; h<=nhstepm; h++){ */
                   7453: /*                                             if (h*hstepm/YEARM*stepm ==yearp) { */
                   7454: /*               fprintf(ficresfb,"\n"); */
1.225     brouard  7455: /*               for(j=1;j<=cptcoveff;j++)  */
1.218     brouard  7456: /*                 fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
                   7457: /*                                                     fprintf(ficresfb,"%.f %.f ",anback1+yearp,agec+h*hstepm/YEARM*stepm); */
                   7458: /*                                             }  */
                   7459: /*                                             for(j=1; j<=nlstate+ndeath;j++) { */
                   7460: /*                                                     ppij=0.; */
                   7461: /*                                                     for(i=1; i<=nlstate;i++) { */
                   7462: /*                                                             if (mobilav==1)  */
                   7463: /*                                                                     ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][i][cptcod]; */
                   7464: /*                                                             else { */
                   7465: /*                                                                     ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][cptcod]; */
                   7466: /*                                                             } */
                   7467: /*                                                             if (h*hstepm/YEARM*stepm== yearp) { */
                   7468: /*                                                                     fprintf(ficresfb," %.3f", p3mat[i][j][h]); */
                   7469: /*                                                             } */
                   7470: /*                                                     } /\* end i *\/ */
                   7471: /*                                                     if (h*hstepm/YEARM*stepm==yearp) { */
                   7472: /*                                                             fprintf(ficresfb," %.3f", ppij); */
                   7473: /*                                                     } */
                   7474: /*                                             }/\* end j *\/ */
                   7475: /*                                     } /\* end h *\/ */
                   7476: /*                                     free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   7477: /*                             } /\* end agec *\/ */
                   7478: /*       } /\* end yearp *\/ */
                   7479: /*     } /\* end cptcod *\/ */
                   7480: /*   } /\* end  cptcov *\/ */
                   7481:        
                   7482: /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
                   7483:        
                   7484: /*   fclose(ficresfb); */
                   7485: /*   printf("End of Computing Back forecasting \n"); */
                   7486: /*   fprintf(ficlog,"End of Computing Back forecasting\n"); */
1.217     brouard  7487:        
1.218     brouard  7488: /* } */
1.217     brouard  7489: 
1.126     brouard  7490: /************** Forecasting *****not tested NB*************/
1.227     brouard  7491: /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
1.126     brouard  7492:   
1.227     brouard  7493: /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
                   7494: /*   int *popage; */
                   7495: /*   double calagedatem, agelim, kk1, kk2; */
                   7496: /*   double *popeffectif,*popcount; */
                   7497: /*   double ***p3mat,***tabpop,***tabpopprev; */
                   7498: /*   /\* double ***mobaverage; *\/ */
                   7499: /*   char filerespop[FILENAMELENGTH]; */
1.126     brouard  7500: 
1.227     brouard  7501: /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   7502: /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   7503: /*   agelim=AGESUP; */
                   7504: /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
1.126     brouard  7505:   
1.227     brouard  7506: /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
1.126     brouard  7507:   
                   7508:   
1.227     brouard  7509: /*   strcpy(filerespop,"POP_");  */
                   7510: /*   strcat(filerespop,fileresu); */
                   7511: /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
                   7512: /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
                   7513: /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
                   7514: /*   } */
                   7515: /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
                   7516: /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
1.126     brouard  7517: 
1.227     brouard  7518: /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
1.126     brouard  7519: 
1.227     brouard  7520: /*   /\* if (mobilav!=0) { *\/ */
                   7521: /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
                   7522: /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
                   7523: /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   7524: /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   7525: /*   /\*   } *\/ */
                   7526: /*   /\* } *\/ */
1.126     brouard  7527: 
1.227     brouard  7528: /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
                   7529: /*   if (stepm<=12) stepsize=1; */
1.126     brouard  7530:   
1.227     brouard  7531: /*   agelim=AGESUP; */
1.126     brouard  7532:   
1.227     brouard  7533: /*   hstepm=1; */
                   7534: /*   hstepm=hstepm/stepm;  */
1.218     brouard  7535:        
1.227     brouard  7536: /*   if (popforecast==1) { */
                   7537: /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
                   7538: /*       printf("Problem with population file : %s\n",popfile);exit(0); */
                   7539: /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
                   7540: /*     }  */
                   7541: /*     popage=ivector(0,AGESUP); */
                   7542: /*     popeffectif=vector(0,AGESUP); */
                   7543: /*     popcount=vector(0,AGESUP); */
1.126     brouard  7544:     
1.227     brouard  7545: /*     i=1;    */
                   7546: /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
1.218     brouard  7547:     
1.227     brouard  7548: /*     imx=i; */
                   7549: /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
                   7550: /*   } */
1.218     brouard  7551:   
1.227     brouard  7552: /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
                   7553: /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
                   7554: /*       k=k+1; */
                   7555: /*       fprintf(ficrespop,"\n#******"); */
                   7556: /*       for(j=1;j<=cptcoveff;j++) { */
                   7557: /*     fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
                   7558: /*       } */
                   7559: /*       fprintf(ficrespop,"******\n"); */
                   7560: /*       fprintf(ficrespop,"# Age"); */
                   7561: /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
                   7562: /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
1.126     brouard  7563:       
1.227     brouard  7564: /*       for (cpt=0; cpt<=0;cpt++) {  */
                   7565: /*     fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
1.126     brouard  7566:        
1.227     brouard  7567: /*     for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
                   7568: /*       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
                   7569: /*       nhstepm = nhstepm/hstepm;  */
1.126     brouard  7570:          
1.227     brouard  7571: /*       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   7572: /*       oldm=oldms;savm=savms; */
                   7573: /*       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
1.218     brouard  7574:          
1.227     brouard  7575: /*       for (h=0; h<=nhstepm; h++){ */
                   7576: /*         if (h==(int) (calagedatem+YEARM*cpt)) { */
                   7577: /*           fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
                   7578: /*         }  */
                   7579: /*         for(j=1; j<=nlstate+ndeath;j++) { */
                   7580: /*           kk1=0.;kk2=0; */
                   7581: /*           for(i=1; i<=nlstate;i++) {               */
                   7582: /*             if (mobilav==1)  */
                   7583: /*               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
                   7584: /*             else { */
                   7585: /*               kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
                   7586: /*             } */
                   7587: /*           } */
                   7588: /*           if (h==(int)(calagedatem+12*cpt)){ */
                   7589: /*             tabpop[(int)(agedeb)][j][cptcod]=kk1; */
                   7590: /*             /\*fprintf(ficrespop," %.3f", kk1); */
                   7591: /*               if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
                   7592: /*           } */
                   7593: /*         } */
                   7594: /*         for(i=1; i<=nlstate;i++){ */
                   7595: /*           kk1=0.; */
                   7596: /*           for(j=1; j<=nlstate;j++){ */
                   7597: /*             kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
                   7598: /*           } */
                   7599: /*           tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
                   7600: /*         } */
1.218     brouard  7601:            
1.227     brouard  7602: /*         if (h==(int)(calagedatem+12*cpt)) */
                   7603: /*           for(j=1; j<=nlstate;j++)  */
                   7604: /*             fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
                   7605: /*       } */
                   7606: /*       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   7607: /*     } */
                   7608: /*       } */
1.218     brouard  7609:       
1.227     brouard  7610: /*       /\******\/ */
1.218     brouard  7611:       
1.227     brouard  7612: /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
                   7613: /*     fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
                   7614: /*     for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
                   7615: /*       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
                   7616: /*       nhstepm = nhstepm/hstepm;  */
1.126     brouard  7617:          
1.227     brouard  7618: /*       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   7619: /*       oldm=oldms;savm=savms; */
                   7620: /*       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
                   7621: /*       for (h=0; h<=nhstepm; h++){ */
                   7622: /*         if (h==(int) (calagedatem+YEARM*cpt)) { */
                   7623: /*           fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
                   7624: /*         }  */
                   7625: /*         for(j=1; j<=nlstate+ndeath;j++) { */
                   7626: /*           kk1=0.;kk2=0; */
                   7627: /*           for(i=1; i<=nlstate;i++) {               */
                   7628: /*             kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
                   7629: /*           } */
                   7630: /*           if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
                   7631: /*         } */
                   7632: /*       } */
                   7633: /*       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   7634: /*     } */
                   7635: /*       } */
                   7636: /*     }  */
                   7637: /*   } */
1.218     brouard  7638:   
1.227     brouard  7639: /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
1.218     brouard  7640:   
1.227     brouard  7641: /*   if (popforecast==1) { */
                   7642: /*     free_ivector(popage,0,AGESUP); */
                   7643: /*     free_vector(popeffectif,0,AGESUP); */
                   7644: /*     free_vector(popcount,0,AGESUP); */
                   7645: /*   } */
                   7646: /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   7647: /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   7648: /*   fclose(ficrespop); */
                   7649: /* } /\* End of popforecast *\/ */
1.218     brouard  7650:  
1.126     brouard  7651: int fileappend(FILE *fichier, char *optionfich)
                   7652: {
                   7653:   if((fichier=fopen(optionfich,"a"))==NULL) {
                   7654:     printf("Problem with file: %s\n", optionfich);
                   7655:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
                   7656:     return (0);
                   7657:   }
                   7658:   fflush(fichier);
                   7659:   return (1);
                   7660: }
                   7661: 
                   7662: 
                   7663: /**************** function prwizard **********************/
                   7664: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
                   7665: {
                   7666: 
                   7667:   /* Wizard to print covariance matrix template */
                   7668: 
1.164     brouard  7669:   char ca[32], cb[32];
                   7670:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
1.126     brouard  7671:   int numlinepar;
                   7672: 
                   7673:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   7674:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   7675:   for(i=1; i <=nlstate; i++){
                   7676:     jj=0;
                   7677:     for(j=1; j <=nlstate+ndeath; j++){
                   7678:       if(j==i) continue;
                   7679:       jj++;
                   7680:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   7681:       printf("%1d%1d",i,j);
                   7682:       fprintf(ficparo,"%1d%1d",i,j);
                   7683:       for(k=1; k<=ncovmodel;k++){
                   7684:        /*        printf(" %lf",param[i][j][k]); */
                   7685:        /*        fprintf(ficparo," %lf",param[i][j][k]); */
                   7686:        printf(" 0.");
                   7687:        fprintf(ficparo," 0.");
                   7688:       }
                   7689:       printf("\n");
                   7690:       fprintf(ficparo,"\n");
                   7691:     }
                   7692:   }
                   7693:   printf("# Scales (for hessian or gradient estimation)\n");
                   7694:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   7695:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
                   7696:   for(i=1; i <=nlstate; i++){
                   7697:     jj=0;
                   7698:     for(j=1; j <=nlstate+ndeath; j++){
                   7699:       if(j==i) continue;
                   7700:       jj++;
                   7701:       fprintf(ficparo,"%1d%1d",i,j);
                   7702:       printf("%1d%1d",i,j);
                   7703:       fflush(stdout);
                   7704:       for(k=1; k<=ncovmodel;k++){
                   7705:        /*      printf(" %le",delti3[i][j][k]); */
                   7706:        /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   7707:        printf(" 0.");
                   7708:        fprintf(ficparo," 0.");
                   7709:       }
                   7710:       numlinepar++;
                   7711:       printf("\n");
                   7712:       fprintf(ficparo,"\n");
                   7713:     }
                   7714:   }
                   7715:   printf("# Covariance matrix\n");
                   7716: /* # 121 Var(a12)\n\ */
                   7717: /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   7718: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   7719: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   7720: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   7721: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   7722: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   7723: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   7724:   fflush(stdout);
                   7725:   fprintf(ficparo,"# Covariance matrix\n");
                   7726:   /* # 121 Var(a12)\n\ */
                   7727:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   7728:   /* #   ...\n\ */
                   7729:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   7730:   
                   7731:   for(itimes=1;itimes<=2;itimes++){
                   7732:     jj=0;
                   7733:     for(i=1; i <=nlstate; i++){
                   7734:       for(j=1; j <=nlstate+ndeath; j++){
                   7735:        if(j==i) continue;
                   7736:        for(k=1; k<=ncovmodel;k++){
                   7737:          jj++;
                   7738:          ca[0]= k+'a'-1;ca[1]='\0';
                   7739:          if(itimes==1){
                   7740:            printf("#%1d%1d%d",i,j,k);
                   7741:            fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   7742:          }else{
                   7743:            printf("%1d%1d%d",i,j,k);
                   7744:            fprintf(ficparo,"%1d%1d%d",i,j,k);
                   7745:            /*  printf(" %.5le",matcov[i][j]); */
                   7746:          }
                   7747:          ll=0;
                   7748:          for(li=1;li <=nlstate; li++){
                   7749:            for(lj=1;lj <=nlstate+ndeath; lj++){
                   7750:              if(lj==li) continue;
                   7751:              for(lk=1;lk<=ncovmodel;lk++){
                   7752:                ll++;
                   7753:                if(ll<=jj){
                   7754:                  cb[0]= lk +'a'-1;cb[1]='\0';
                   7755:                  if(ll<jj){
                   7756:                    if(itimes==1){
                   7757:                      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   7758:                      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   7759:                    }else{
                   7760:                      printf(" 0.");
                   7761:                      fprintf(ficparo," 0.");
                   7762:                    }
                   7763:                  }else{
                   7764:                    if(itimes==1){
                   7765:                      printf(" Var(%s%1d%1d)",ca,i,j);
                   7766:                      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                   7767:                    }else{
                   7768:                      printf(" 0.");
                   7769:                      fprintf(ficparo," 0.");
                   7770:                    }
                   7771:                  }
                   7772:                }
                   7773:              } /* end lk */
                   7774:            } /* end lj */
                   7775:          } /* end li */
                   7776:          printf("\n");
                   7777:          fprintf(ficparo,"\n");
                   7778:          numlinepar++;
                   7779:        } /* end k*/
                   7780:       } /*end j */
                   7781:     } /* end i */
                   7782:   } /* end itimes */
                   7783: 
                   7784: } /* end of prwizard */
                   7785: /******************* Gompertz Likelihood ******************************/
                   7786: double gompertz(double x[])
                   7787: { 
                   7788:   double A,B,L=0.0,sump=0.,num=0.;
                   7789:   int i,n=0; /* n is the size of the sample */
                   7790: 
1.220     brouard  7791:   for (i=1;i<=imx ; i++) {
1.126     brouard  7792:     sump=sump+weight[i];
                   7793:     /*    sump=sump+1;*/
                   7794:     num=num+1;
                   7795:   }
                   7796:  
                   7797:  
                   7798:   /* for (i=0; i<=imx; i++) 
                   7799:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   7800: 
                   7801:   for (i=1;i<=imx ; i++)
                   7802:     {
                   7803:       if (cens[i] == 1 && wav[i]>1)
                   7804:        A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
                   7805:       
                   7806:       if (cens[i] == 0 && wav[i]>1)
                   7807:        A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
                   7808:             +log(x[1]/YEARM)+x[2]*(agedc[i]-agegomp)+log(YEARM);  
                   7809:       
                   7810:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   7811:       if (wav[i] > 1 ) { /* ??? */
                   7812:        L=L+A*weight[i];
                   7813:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   7814:       }
                   7815:     }
                   7816: 
                   7817:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   7818:  
                   7819:   return -2*L*num/sump;
                   7820: }
                   7821: 
1.136     brouard  7822: #ifdef GSL
                   7823: /******************* Gompertz_f Likelihood ******************************/
                   7824: double gompertz_f(const gsl_vector *v, void *params)
                   7825: { 
                   7826:   double A,B,LL=0.0,sump=0.,num=0.;
                   7827:   double *x= (double *) v->data;
                   7828:   int i,n=0; /* n is the size of the sample */
                   7829: 
                   7830:   for (i=0;i<=imx-1 ; i++) {
                   7831:     sump=sump+weight[i];
                   7832:     /*    sump=sump+1;*/
                   7833:     num=num+1;
                   7834:   }
                   7835:  
                   7836:  
                   7837:   /* for (i=0; i<=imx; i++) 
                   7838:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   7839:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
                   7840:   for (i=1;i<=imx ; i++)
                   7841:     {
                   7842:       if (cens[i] == 1 && wav[i]>1)
                   7843:        A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
                   7844:       
                   7845:       if (cens[i] == 0 && wav[i]>1)
                   7846:        A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                   7847:             +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
                   7848:       
                   7849:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   7850:       if (wav[i] > 1 ) { /* ??? */
                   7851:        LL=LL+A*weight[i];
                   7852:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   7853:       }
                   7854:     }
                   7855: 
                   7856:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   7857:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
                   7858:  
                   7859:   return -2*LL*num/sump;
                   7860: }
                   7861: #endif
                   7862: 
1.126     brouard  7863: /******************* Printing html file ***********/
1.201     brouard  7864: void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
1.126     brouard  7865:                  int lastpass, int stepm, int weightopt, char model[],\
                   7866:                  int imx,  double p[],double **matcov,double agemortsup){
                   7867:   int i,k;
                   7868: 
                   7869:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
                   7870:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
                   7871:   for (i=1;i<=2;i++) 
                   7872:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
1.199     brouard  7873:   fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
1.126     brouard  7874:   fprintf(fichtm,"</ul>");
                   7875: 
                   7876: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
                   7877: 
                   7878:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
                   7879: 
                   7880:  for (k=agegomp;k<(agemortsup-2);k++) 
                   7881:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   7882: 
                   7883:  
                   7884:   fflush(fichtm);
                   7885: }
                   7886: 
                   7887: /******************* Gnuplot file **************/
1.201     brouard  7888: void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
1.126     brouard  7889: 
                   7890:   char dirfileres[132],optfileres[132];
1.164     brouard  7891: 
1.126     brouard  7892:   int ng;
                   7893: 
                   7894: 
                   7895:   /*#ifdef windows */
                   7896:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   7897:     /*#endif */
                   7898: 
                   7899: 
                   7900:   strcpy(dirfileres,optionfilefiname);
                   7901:   strcpy(optfileres,"vpl");
1.199     brouard  7902:   fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
1.126     brouard  7903:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
1.199     brouard  7904:   fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
1.145     brouard  7905:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
1.126     brouard  7906:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
                   7907: 
                   7908: } 
                   7909: 
1.136     brouard  7910: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
                   7911: {
1.126     brouard  7912: 
1.136     brouard  7913:   /*-------- data file ----------*/
                   7914:   FILE *fic;
                   7915:   char dummy[]="                         ";
1.240     brouard  7916:   int i=0, j=0, n=0, iv=0, v;
1.223     brouard  7917:   int lstra;
1.136     brouard  7918:   int linei, month, year,iout;
                   7919:   char line[MAXLINE], linetmp[MAXLINE];
1.164     brouard  7920:   char stra[MAXLINE], strb[MAXLINE];
1.136     brouard  7921:   char *stratrunc;
1.223     brouard  7922: 
1.240     brouard  7923:   DummyV=ivector(1,NCOVMAX); /* 1 to 3 */
                   7924:   FixedV=ivector(1,NCOVMAX); /* 1 to 3 */
1.126     brouard  7925: 
1.240     brouard  7926:   for(v=1; v <=ncovcol;v++){
                   7927:     DummyV[v]=0;
                   7928:     FixedV[v]=0;
                   7929:   }
                   7930:   for(v=ncovcol+1; v <=ncovcol+nqv;v++){
                   7931:     DummyV[v]=1;
                   7932:     FixedV[v]=0;
                   7933:   }
                   7934:   for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){
                   7935:     DummyV[v]=0;
                   7936:     FixedV[v]=1;
                   7937:   }
                   7938:   for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){
                   7939:     DummyV[v]=1;
                   7940:     FixedV[v]=1;
                   7941:   }
                   7942:   for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){
                   7943:     printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
                   7944:     fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
                   7945:   }
1.126     brouard  7946: 
1.136     brouard  7947:   if((fic=fopen(datafile,"r"))==NULL)    {
1.218     brouard  7948:     printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
                   7949:     fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
1.136     brouard  7950:   }
1.126     brouard  7951: 
1.136     brouard  7952:   i=1;
                   7953:   linei=0;
                   7954:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
                   7955:     linei=linei+1;
                   7956:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
                   7957:       if(line[j] == '\t')
                   7958:        line[j] = ' ';
                   7959:     }
                   7960:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
                   7961:       ;
                   7962:     };
                   7963:     line[j+1]=0;  /* Trims blanks at end of line */
                   7964:     if(line[0]=='#'){
                   7965:       fprintf(ficlog,"Comment line\n%s\n",line);
                   7966:       printf("Comment line\n%s\n",line);
                   7967:       continue;
                   7968:     }
                   7969:     trimbb(linetmp,line); /* Trims multiple blanks in line */
1.164     brouard  7970:     strcpy(line, linetmp);
1.223     brouard  7971:     
                   7972:     /* Loops on waves */
                   7973:     for (j=maxwav;j>=1;j--){
                   7974:       for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
1.238     brouard  7975:        cutv(stra, strb, line, ' '); 
                   7976:        if(strb[0]=='.') { /* Missing value */
                   7977:          lval=-1;
                   7978:          cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
                   7979:          cotvar[j][ntv+iv][i]=-1; /* For performance reasons */
                   7980:          if(isalpha(strb[1])) { /* .m or .d Really Missing value */
                   7981:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
                   7982:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
                   7983:            return 1;
                   7984:          }
                   7985:        }else{
                   7986:          errno=0;
                   7987:          /* what_kind_of_number(strb); */
                   7988:          dval=strtod(strb,&endptr); 
                   7989:          /* if( strb[0]=='\0' || (*endptr != '\0')){ */
                   7990:          /* if(strb != endptr && *endptr == '\0') */
                   7991:          /*    dval=dlval; */
                   7992:          /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                   7993:          if( strb[0]=='\0' || (*endptr != '\0')){
                   7994:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
                   7995:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
                   7996:            return 1;
                   7997:          }
                   7998:          cotqvar[j][iv][i]=dval; 
                   7999:          cotvar[j][ntv+iv][i]=dval; 
                   8000:        }
                   8001:        strcpy(line,stra);
1.223     brouard  8002:       }/* end loop ntqv */
1.225     brouard  8003:       
1.223     brouard  8004:       for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
1.238     brouard  8005:        cutv(stra, strb, line, ' '); 
                   8006:        if(strb[0]=='.') { /* Missing value */
                   8007:          lval=-1;
                   8008:        }else{
                   8009:          errno=0;
                   8010:          lval=strtol(strb,&endptr,10); 
                   8011:          /*    if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                   8012:          if( strb[0]=='\0' || (*endptr != '\0')){
                   8013:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
                   8014:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
                   8015:            return 1;
                   8016:          }
                   8017:        }
                   8018:        if(lval <-1 || lval >1){
                   8019:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.223     brouard  8020:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   8021:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.238     brouard  8022:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   8023:  build V1=0 V2=0 for the reference value (1),\n                                \
                   8024:         V1=1 V2=0 for (2) \n                                           \
1.223     brouard  8025:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.238     brouard  8026:  output of IMaCh is often meaningless.\n                               \
1.223     brouard  8027:  Exiting.\n",lval,linei, i,line,j);
1.238     brouard  8028:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.223     brouard  8029:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   8030:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.238     brouard  8031:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   8032:  build V1=0 V2=0 for the reference value (1),\n                                \
                   8033:         V1=1 V2=0 for (2) \n                                           \
1.223     brouard  8034:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.238     brouard  8035:  output of IMaCh is often meaningless.\n                               \
1.223     brouard  8036:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
1.238     brouard  8037:          return 1;
                   8038:        }
                   8039:        cotvar[j][iv][i]=(double)(lval);
                   8040:        strcpy(line,stra);
1.223     brouard  8041:       }/* end loop ntv */
1.225     brouard  8042:       
1.223     brouard  8043:       /* Statuses  at wave */
1.137     brouard  8044:       cutv(stra, strb, line, ' '); 
1.223     brouard  8045:       if(strb[0]=='.') { /* Missing value */
1.238     brouard  8046:        lval=-1;
1.136     brouard  8047:       }else{
1.238     brouard  8048:        errno=0;
                   8049:        lval=strtol(strb,&endptr,10); 
                   8050:        /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                   8051:        if( strb[0]=='\0' || (*endptr != '\0')){
                   8052:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
                   8053:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
                   8054:          return 1;
                   8055:        }
1.136     brouard  8056:       }
1.225     brouard  8057:       
1.136     brouard  8058:       s[j][i]=lval;
1.225     brouard  8059:       
1.223     brouard  8060:       /* Date of Interview */
1.136     brouard  8061:       strcpy(line,stra);
                   8062:       cutv(stra, strb,line,' ');
1.169     brouard  8063:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  8064:       }
1.169     brouard  8065:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
1.225     brouard  8066:        month=99;
                   8067:        year=9999;
1.136     brouard  8068:       }else{
1.225     brouard  8069:        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
                   8070:        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
                   8071:        return 1;
1.136     brouard  8072:       }
                   8073:       anint[j][i]= (double) year; 
                   8074:       mint[j][i]= (double)month; 
                   8075:       strcpy(line,stra);
1.223     brouard  8076:     } /* End loop on waves */
1.225     brouard  8077:     
1.223     brouard  8078:     /* Date of death */
1.136     brouard  8079:     cutv(stra, strb,line,' '); 
1.169     brouard  8080:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  8081:     }
1.169     brouard  8082:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
1.136     brouard  8083:       month=99;
                   8084:       year=9999;
                   8085:     }else{
1.141     brouard  8086:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
1.225     brouard  8087:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
                   8088:       return 1;
1.136     brouard  8089:     }
                   8090:     andc[i]=(double) year; 
                   8091:     moisdc[i]=(double) month; 
                   8092:     strcpy(line,stra);
                   8093:     
1.223     brouard  8094:     /* Date of birth */
1.136     brouard  8095:     cutv(stra, strb,line,' '); 
1.169     brouard  8096:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  8097:     }
1.169     brouard  8098:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
1.136     brouard  8099:       month=99;
                   8100:       year=9999;
                   8101:     }else{
1.141     brouard  8102:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
                   8103:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.225     brouard  8104:       return 1;
1.136     brouard  8105:     }
                   8106:     if (year==9999) {
1.141     brouard  8107:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
                   8108:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.225     brouard  8109:       return 1;
                   8110:       
1.136     brouard  8111:     }
                   8112:     annais[i]=(double)(year);
                   8113:     moisnais[i]=(double)(month); 
                   8114:     strcpy(line,stra);
1.225     brouard  8115:     
1.223     brouard  8116:     /* Sample weight */
1.136     brouard  8117:     cutv(stra, strb,line,' '); 
                   8118:     errno=0;
                   8119:     dval=strtod(strb,&endptr); 
                   8120:     if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  8121:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
                   8122:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
1.136     brouard  8123:       fflush(ficlog);
                   8124:       return 1;
                   8125:     }
                   8126:     weight[i]=dval; 
                   8127:     strcpy(line,stra);
1.225     brouard  8128:     
1.223     brouard  8129:     for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
                   8130:       cutv(stra, strb, line, ' '); 
                   8131:       if(strb[0]=='.') { /* Missing value */
1.225     brouard  8132:        lval=-1;
1.223     brouard  8133:       }else{
1.225     brouard  8134:        errno=0;
                   8135:        /* what_kind_of_number(strb); */
                   8136:        dval=strtod(strb,&endptr);
                   8137:        /* if(strb != endptr && *endptr == '\0') */
                   8138:        /*   dval=dlval; */
                   8139:        /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                   8140:        if( strb[0]=='\0' || (*endptr != '\0')){
                   8141:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
                   8142:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
                   8143:          return 1;
                   8144:        }
                   8145:        coqvar[iv][i]=dval; 
1.226     brouard  8146:        covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
1.223     brouard  8147:       }
                   8148:       strcpy(line,stra);
                   8149:     }/* end loop nqv */
1.136     brouard  8150:     
1.223     brouard  8151:     /* Covariate values */
1.136     brouard  8152:     for (j=ncovcol;j>=1;j--){
                   8153:       cutv(stra, strb,line,' '); 
1.223     brouard  8154:       if(strb[0]=='.') { /* Missing covariate value */
1.225     brouard  8155:        lval=-1;
1.136     brouard  8156:       }else{
1.225     brouard  8157:        errno=0;
                   8158:        lval=strtol(strb,&endptr,10); 
                   8159:        if( strb[0]=='\0' || (*endptr != '\0')){
                   8160:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
                   8161:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
                   8162:          return 1;
                   8163:        }
1.136     brouard  8164:       }
                   8165:       if(lval <-1 || lval >1){
1.225     brouard  8166:        printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  8167:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   8168:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.225     brouard  8169:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   8170:  build V1=0 V2=0 for the reference value (1),\n                                \
                   8171:         V1=1 V2=0 for (2) \n                                           \
1.136     brouard  8172:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.225     brouard  8173:  output of IMaCh is often meaningless.\n                               \
1.136     brouard  8174:  Exiting.\n",lval,linei, i,line,j);
1.225     brouard  8175:        fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  8176:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   8177:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.225     brouard  8178:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   8179:  build V1=0 V2=0 for the reference value (1),\n                                \
                   8180:         V1=1 V2=0 for (2) \n                                           \
1.136     brouard  8181:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.225     brouard  8182:  output of IMaCh is often meaningless.\n                               \
1.136     brouard  8183:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
1.225     brouard  8184:        return 1;
1.136     brouard  8185:       }
                   8186:       covar[j][i]=(double)(lval);
                   8187:       strcpy(line,stra);
                   8188:     }  
                   8189:     lstra=strlen(stra);
1.225     brouard  8190:     
1.136     brouard  8191:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                   8192:       stratrunc = &(stra[lstra-9]);
                   8193:       num[i]=atol(stratrunc);
                   8194:     }
                   8195:     else
                   8196:       num[i]=atol(stra);
                   8197:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
                   8198:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
                   8199:     
                   8200:     i=i+1;
                   8201:   } /* End loop reading  data */
1.225     brouard  8202:   
1.136     brouard  8203:   *imax=i-1; /* Number of individuals */
                   8204:   fclose(fic);
1.225     brouard  8205:   
1.136     brouard  8206:   return (0);
1.164     brouard  8207:   /* endread: */
1.225     brouard  8208:   printf("Exiting readdata: ");
                   8209:   fclose(fic);
                   8210:   return (1);
1.223     brouard  8211: }
1.126     brouard  8212: 
1.234     brouard  8213: void removefirstspace(char **stri){/*, char stro[]) {*/
1.230     brouard  8214:   char *p1 = *stri, *p2 = *stri;
1.235     brouard  8215:   while (*p2 == ' ')
1.234     brouard  8216:     p2++; 
                   8217:   /* while ((*p1++ = *p2++) !=0) */
                   8218:   /*   ; */
                   8219:   /* do */
                   8220:   /*   while (*p2 == ' ') */
                   8221:   /*     p2++; */
                   8222:   /* while (*p1++ == *p2++); */
                   8223:   *stri=p2; 
1.145     brouard  8224: }
                   8225: 
1.235     brouard  8226: int decoderesult ( char resultline[], int nres)
1.230     brouard  8227: /**< This routine decode one result line and returns the combination # of dummy covariates only **/
                   8228: {
1.235     brouard  8229:   int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
1.230     brouard  8230:   char resultsav[MAXLINE];
1.234     brouard  8231:   int resultmodel[MAXLINE];
                   8232:   int modelresult[MAXLINE];
1.230     brouard  8233:   char stra[80], strb[80], strc[80], strd[80],stre[80];
                   8234: 
1.234     brouard  8235:   removefirstspace(&resultline);
1.233     brouard  8236:   printf("decoderesult:%s\n",resultline);
1.230     brouard  8237: 
                   8238:   if (strstr(resultline,"v") !=0){
                   8239:     printf("Error. 'v' must be in upper case 'V' result: %s ",resultline);
                   8240:     fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultline);fflush(ficlog);
                   8241:     return 1;
                   8242:   }
                   8243:   trimbb(resultsav, resultline);
                   8244:   if (strlen(resultsav) >1){
                   8245:     j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' */
                   8246:   }
1.234     brouard  8247:   if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
                   8248:     printf("ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
                   8249:     fprintf(ficlog,"ERROR: the number of variable in the resultline, %d, differs from the number of variable used in the model line, %d.\n",j, cptcovs);
                   8250:   }
                   8251:   for(k=1; k<=j;k++){ /* Loop on any covariate of the result line */
                   8252:     if(nbocc(resultsav,'=') >1){
                   8253:        cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' 
                   8254:                                      resultsav= V4=1 V5=25.1 V3=0 strb=V3=0 stra= V4=1 V5=25.1 */
                   8255:        cutl(strc,strd,strb,'=');  /* strb:V4=1 strc=1 strd=V4 */
                   8256:     }else
                   8257:       cutl(strc,strd,resultsav,'=');
1.230     brouard  8258:     Tvalsel[k]=atof(strc); /* 1 */
1.234     brouard  8259:     
1.230     brouard  8260:     cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
                   8261:     Tvarsel[k]=atoi(strc);
                   8262:     /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
                   8263:     /* cptcovsel++;     */
                   8264:     if (nbocc(stra,'=') >0)
                   8265:       strcpy(resultsav,stra); /* and analyzes it */
                   8266:   }
1.235     brouard  8267:   /* Checking for missing or useless values in comparison of current model needs */
1.236     brouard  8268:   for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   8269:     if(Typevar[k1]==0){ /* Single covariate in model */
1.234     brouard  8270:       match=0;
1.236     brouard  8271:       for(k2=1; k2 <=j;k2++){/* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
1.237     brouard  8272:        if(Tvar[k1]==Tvarsel[k2]) {/* Tvar[1]=5 == Tvarsel[2]=5   */
1.236     brouard  8273:          modelresult[k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
1.234     brouard  8274:          match=1;
                   8275:          break;
                   8276:        }
                   8277:       }
                   8278:       if(match == 0){
                   8279:        printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
                   8280:       }
                   8281:     }
                   8282:   }
1.235     brouard  8283:   /* Checking for missing or useless values in comparison of current model needs */
                   8284:   for(k2=1; k2 <=j;k2++){ /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
1.234     brouard  8285:     match=0;
1.235     brouard  8286:     for(k1=1; k1<= cptcovt ;k1++){ /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   8287:       if(Typevar[k1]==0){ /* Single */
1.237     brouard  8288:        if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4   */
1.235     brouard  8289:          resultmodel[k1]=k2;  /* resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
1.234     brouard  8290:          ++match;
                   8291:        }
                   8292:       }
                   8293:     }
                   8294:     if(match == 0){
                   8295:       printf("Error in result line: %d value missing; result: %s, model=%s\n",k1, resultline, model);
                   8296:     }else if(match > 1){
                   8297:       printf("Error in result line: %d doubled; result: %s, model=%s\n",k2, resultline, model);
                   8298:     }
                   8299:   }
1.235     brouard  8300:       
1.234     brouard  8301:   /* We need to deduce which combination number is chosen and save quantitative values */
1.235     brouard  8302:   /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   8303:   /* result line V4=1 V5=25.1 V3=0  V2=8 V1=1 */
                   8304:   /* should give a combination of dummy V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 5 + (1offset) = 6*/
                   8305:   /* result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   8306:   /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
                   8307:   /*    1 0 0 0 */
                   8308:   /*    2 1 0 0 */
                   8309:   /*    3 0 1 0 */ 
                   8310:   /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 */
                   8311:   /*    5 0 0 1 */
                   8312:   /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 */
                   8313:   /*    7 0 1 1 */
                   8314:   /*    8 1 1 1 */
1.237     brouard  8315:   /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
                   8316:   /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
                   8317:   /* V5*age V5 known which value for nres?  */
                   8318:   /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
1.235     brouard  8319:   for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* model line */
                   8320:     if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Single dummy */
1.237     brouard  8321:       k3= resultmodel[k1]; /* resultmodel[2(V4)] = 1=k3 */
1.235     brouard  8322:       k2=(int)Tvarsel[k3]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
                   8323:       k+=Tvalsel[k3]*pow(2,k4);  /*  Tvalsel[1]=1  */
1.237     brouard  8324:       Tresult[nres][k4+1]=Tvalsel[k3];/* Tresult[nres][1]=1(V4=1)  Tresult[nres][2]=0(V3=0) */
                   8325:       Tvresult[nres][k4+1]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
                   8326:       Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
1.235     brouard  8327:       printf("Decoderesult Dummy k=%d, V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k2, k3, (int)Tvalsel[k3], k4);
                   8328:       k4++;;
                   8329:     }  else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Single quantitative */
                   8330:       k3q= resultmodel[k1]; /* resultmodel[2] = 1=k3 */
                   8331:       k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 */
1.237     brouard  8332:       Tqresult[nres][k4q+1]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
                   8333:       Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
                   8334:       Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
1.235     brouard  8335:       printf("Decoderesult Quantitative nres=%d, V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
                   8336:       k4q++;;
                   8337:     }
                   8338:   }
1.234     brouard  8339:   
1.235     brouard  8340:   TKresult[nres]=++k; /* Combination for the nresult and the model */
1.230     brouard  8341:   return (0);
                   8342: }
1.235     brouard  8343: 
1.230     brouard  8344: int decodemodel( char model[], int lastobs)
                   8345:  /**< This routine decodes the model and returns:
1.224     brouard  8346:        * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
                   8347:        * - nagesqr = 1 if age*age in the model, otherwise 0.
                   8348:        * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
                   8349:        * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
                   8350:        * - cptcovage number of covariates with age*products =2
                   8351:        * - cptcovs number of simple covariates
                   8352:        * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
                   8353:        *     which is a new column after the 9 (ncovcol) variables. 
                   8354:        * - if k is a product Vn*Vm covar[k][i] is filled with correct values for each individual
                   8355:        * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
                   8356:        *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
                   8357:        * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
                   8358:        */
1.136     brouard  8359: {
1.238     brouard  8360:   int i, j, k, ks, v;
1.227     brouard  8361:   int  j1, k1, k2, k3, k4;
1.136     brouard  8362:   char modelsav[80];
1.145     brouard  8363:   char stra[80], strb[80], strc[80], strd[80],stre[80];
1.187     brouard  8364:   char *strpt;
1.136     brouard  8365: 
1.145     brouard  8366:   /*removespace(model);*/
1.136     brouard  8367:   if (strlen(model) >1){ /* If there is at least 1 covariate */
1.145     brouard  8368:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
1.137     brouard  8369:     if (strstr(model,"AGE") !=0){
1.192     brouard  8370:       printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
                   8371:       fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
1.136     brouard  8372:       return 1;
                   8373:     }
1.141     brouard  8374:     if (strstr(model,"v") !=0){
                   8375:       printf("Error. 'v' must be in upper case 'V' model=%s ",model);
                   8376:       fprintf(ficlog,"Error. 'v' must be in upper case model=%s ",model);fflush(ficlog);
                   8377:       return 1;
                   8378:     }
1.187     brouard  8379:     strcpy(modelsav,model); 
                   8380:     if ((strpt=strstr(model,"age*age")) !=0){
                   8381:       printf(" strpt=%s, model=%s\n",strpt, model);
                   8382:       if(strpt != model){
1.234     brouard  8383:        printf("Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
1.192     brouard  8384:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
1.187     brouard  8385:  corresponding column of parameters.\n",model);
1.234     brouard  8386:        fprintf(ficlog,"Error in model: 'model=%s'; 'age*age' should in first place before other covariates\n \
1.192     brouard  8387:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
1.187     brouard  8388:  corresponding column of parameters.\n",model); fflush(ficlog);
1.234     brouard  8389:        return 1;
1.225     brouard  8390:       }
1.187     brouard  8391:       nagesqr=1;
                   8392:       if (strstr(model,"+age*age") !=0)
1.234     brouard  8393:        substrchaine(modelsav, model, "+age*age");
1.187     brouard  8394:       else if (strstr(model,"age*age+") !=0)
1.234     brouard  8395:        substrchaine(modelsav, model, "age*age+");
1.187     brouard  8396:       else 
1.234     brouard  8397:        substrchaine(modelsav, model, "age*age");
1.187     brouard  8398:     }else
                   8399:       nagesqr=0;
                   8400:     if (strlen(modelsav) >1){
                   8401:       j=nbocc(modelsav,'+'); /**< j=Number of '+' */
                   8402:       j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
1.224     brouard  8403:       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2  */
1.187     brouard  8404:       cptcovt= j+1; /* Number of total covariates in the model, not including
1.225     brouard  8405:                     * cst, age and age*age 
                   8406:                     * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
                   8407:       /* including age products which are counted in cptcovage.
                   8408:        * but the covariates which are products must be treated 
                   8409:        * separately: ncovn=4- 2=2 (V1+V3). */
1.187     brouard  8410:       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
                   8411:       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
1.225     brouard  8412:       
                   8413:       
1.187     brouard  8414:       /*   Design
                   8415:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
                   8416:        *  <          ncovcol=8                >
                   8417:        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
                   8418:        *   k=  1    2      3       4     5       6      7        8
                   8419:        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
                   8420:        *  covar[k,i], value of kth covariate if not including age for individual i:
1.224     brouard  8421:        *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
                   8422:        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
1.187     brouard  8423:        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
                   8424:        *  Tage[++cptcovage]=k
                   8425:        *       if products, new covar are created after ncovcol with k1
                   8426:        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
                   8427:        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
                   8428:        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
                   8429:        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
                   8430:        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
                   8431:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
                   8432:        *  <          ncovcol=8                >
                   8433:        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
                   8434:        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
                   8435:        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
                   8436:        * p Tvar[1]@12={2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
                   8437:        * p Tprod[1]@2={                         6, 5}
                   8438:        *p Tvard[1][1]@4= {7, 8, 5, 6}
                   8439:        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
                   8440:        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
                   8441:        *How to reorganize?
                   8442:        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
                   8443:        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
                   8444:        *       {2,   1,     4,      8,    5,      6,     3,       7}
                   8445:        * Struct []
                   8446:        */
1.225     brouard  8447:       
1.187     brouard  8448:       /* This loop fills the array Tvar from the string 'model'.*/
                   8449:       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
                   8450:       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
                   8451:       /*       k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
                   8452:       /*       k=3 V4 Tvar[k=3]= 4 (from V4) */
                   8453:       /*       k=2 V1 Tvar[k=2]= 1 (from V1) */
                   8454:       /*       k=1 Tvar[1]=2 (from V2) */
                   8455:       /*       k=5 Tvar[5] */
                   8456:       /* for (k=1; k<=cptcovn;k++) { */
1.198     brouard  8457:       /*       cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
1.187     brouard  8458:       /*       } */
1.198     brouard  8459:       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
1.187     brouard  8460:       /*
                   8461:        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
1.227     brouard  8462:       for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
                   8463:         Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
                   8464:       }
1.187     brouard  8465:       cptcovage=0;
                   8466:       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model */
1.234     brouard  8467:        cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' 
1.225     brouard  8468:                                         modelsav==V2+V1+V4+V3*age strb=V3*age stra=V2+V1+V4 */ 
1.234     brouard  8469:        if (nbocc(modelsav,'+')==0) strcpy(strb,modelsav); /* and analyzes it */
                   8470:        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
                   8471:        /*scanf("%d",i);*/
                   8472:        if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V4+V3*age strb=V3*age */
                   8473:          cutl(strc,strd,strb,'*'); /**< strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
                   8474:          if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
                   8475:            /* covar is not filled and then is empty */
                   8476:            cptcovprod--;
                   8477:            cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
                   8478:            Tvar[k]=atoi(stre);  /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
                   8479:            Typevar[k]=1;  /* 1 for age product */
                   8480:            cptcovage++; /* Sums the number of covariates which include age as a product */
                   8481:            Tage[cptcovage]=k;  /* Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
                   8482:            /*printf("stre=%s ", stre);*/
                   8483:          } else if (strcmp(strd,"age")==0) { /* or age*Vn */
                   8484:            cptcovprod--;
                   8485:            cutl(stre,strb,strc,'V');
                   8486:            Tvar[k]=atoi(stre);
                   8487:            Typevar[k]=1;  /* 1 for age product */
                   8488:            cptcovage++;
                   8489:            Tage[cptcovage]=k;
                   8490:          } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
                   8491:            /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
                   8492:            cptcovn++;
                   8493:            cptcovprodnoage++;k1++;
                   8494:            cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
                   8495:            Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                   8496:                                                because this model-covariate is a construction we invent a new column
                   8497:                                                which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                   8498:                                                If already ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2
                   8499:                                                Tvar[3=V1*V4]=4+1 Tvar[5=V3*V2]=4 + 2= 6, etc */
                   8500:            Typevar[k]=2;  /* 2 for double fixed dummy covariates */
                   8501:            cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
                   8502:            Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
                   8503:            Tposprod[k]=k1; /* Tpsprod[3]=1, Tposprod[2]=5 */
                   8504:            Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
                   8505:            Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
                   8506:            k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
                   8507:            /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
                   8508:            /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
1.225     brouard  8509:             /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
1.234     brouard  8510:            /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
                   8511:            for (i=1; i<=lastobs;i++){
                   8512:              /* Computes the new covariate which is a product of
                   8513:                 covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                   8514:              covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
                   8515:            }
                   8516:          } /* End age is not in the model */
                   8517:        } /* End if model includes a product */
                   8518:        else { /* no more sum */
                   8519:          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                   8520:          /*  scanf("%d",i);*/
                   8521:          cutl(strd,strc,strb,'V');
                   8522:          ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
                   8523:          cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
                   8524:          Tvar[k]=atoi(strd);
                   8525:          Typevar[k]=0;  /* 0 for simple covariates */
                   8526:        }
                   8527:        strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
1.223     brouard  8528:                                /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
1.225     brouard  8529:                                  scanf("%d",i);*/
1.187     brouard  8530:       } /* end of loop + on total covariates */
                   8531:     } /* end if strlen(modelsave == 0) age*age might exist */
                   8532:   } /* end if strlen(model == 0) */
1.136     brouard  8533:   
                   8534:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                   8535:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
1.225     brouard  8536:   
1.136     brouard  8537:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
1.225     brouard  8538:      printf("cptcovprod=%d ", cptcovprod);
                   8539:      fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
                   8540:      scanf("%d ",i);*/
                   8541: 
                   8542: 
1.230     brouard  8543: /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
                   8544:    of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
1.226     brouard  8545: /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
                   8546:    model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
                   8547:    k =           1    2   3     4       5       6      7      8        9
                   8548:    Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
                   8549:    Typevar[k]=   0    0   0     2       1       0      2      1        1
1.227     brouard  8550:    Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
                   8551:    Dummy[k]      1    0   0     0       3       1      1      2        3
                   8552:          Tmodelind[combination of covar]=k;
1.225     brouard  8553: */  
                   8554: /* Dispatching between quantitative and time varying covariates */
1.226     brouard  8555:   /* If Tvar[k] >ncovcol it is a product */
1.225     brouard  8556:   /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
1.226     brouard  8557:        /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
1.227     brouard  8558:   printf("Model=%s\n\
                   8559: Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
                   8560: Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
                   8561: Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
                   8562:   fprintf(ficlog,"Model=%s\n\
                   8563: Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
                   8564: Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
                   8565: Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
1.240     brouard  8566:   for(k=1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}
1.234     brouard  8567:   for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
                   8568:     if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
1.227     brouard  8569:       Fixed[k]= 0;
                   8570:       Dummy[k]= 0;
1.225     brouard  8571:       ncoveff++;
1.232     brouard  8572:       ncovf++;
1.234     brouard  8573:       nsd++;
                   8574:       modell[k].maintype= FTYPE;
                   8575:       TvarsD[nsd]=Tvar[k];
                   8576:       TvarsDind[nsd]=k;
                   8577:       TvarF[ncovf]=Tvar[k];
                   8578:       TvarFind[ncovf]=k;
                   8579:       TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   8580:       TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   8581:     }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */
                   8582:       Fixed[k]= 0;
                   8583:       Dummy[k]= 0;
                   8584:       ncoveff++;
                   8585:       ncovf++;
                   8586:       modell[k].maintype= FTYPE;
                   8587:       TvarF[ncovf]=Tvar[k];
                   8588:       TvarFind[ncovf]=k;
1.230     brouard  8589:       TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.231     brouard  8590:       TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.240     brouard  8591:     }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
1.227     brouard  8592:       Fixed[k]= 0;
                   8593:       Dummy[k]= 1;
1.230     brouard  8594:       nqfveff++;
1.234     brouard  8595:       modell[k].maintype= FTYPE;
                   8596:       modell[k].subtype= FQ;
                   8597:       nsq++;
                   8598:       TvarsQ[nsq]=Tvar[k];
                   8599:       TvarsQind[nsq]=k;
1.232     brouard  8600:       ncovf++;
1.234     brouard  8601:       TvarF[ncovf]=Tvar[k];
                   8602:       TvarFind[ncovf]=k;
1.231     brouard  8603:       TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
1.230     brouard  8604:       TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
1.242     brouard  8605:     }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */
1.227     brouard  8606:       Fixed[k]= 1;
                   8607:       Dummy[k]= 0;
1.225     brouard  8608:       ntveff++; /* Only simple time varying dummy variable */
1.234     brouard  8609:       modell[k].maintype= VTYPE;
                   8610:       modell[k].subtype= VD;
                   8611:       nsd++;
                   8612:       TvarsD[nsd]=Tvar[k];
                   8613:       TvarsDind[nsd]=k;
                   8614:       ncovv++; /* Only simple time varying variables */
                   8615:       TvarV[ncovv]=Tvar[k];
1.242     brouard  8616:       TvarVind[ncovv]=k; /* TvarVind[2]=2  TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
1.231     brouard  8617:       TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
                   8618:       TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
1.228     brouard  8619:       printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
                   8620:       printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
1.231     brouard  8621:     }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
1.234     brouard  8622:       Fixed[k]= 1;
                   8623:       Dummy[k]= 1;
                   8624:       nqtveff++;
                   8625:       modell[k].maintype= VTYPE;
                   8626:       modell[k].subtype= VQ;
                   8627:       ncovv++; /* Only simple time varying variables */
                   8628:       nsq++;
                   8629:       TvarsQ[nsq]=Tvar[k];
                   8630:       TvarsQind[nsq]=k;
                   8631:       TvarV[ncovv]=Tvar[k];
1.242     brouard  8632:       TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
1.231     brouard  8633:       TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   8634:       TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
1.234     brouard  8635:       TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
                   8636:       /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
                   8637:       printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
1.228     brouard  8638:       printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
1.227     brouard  8639:     }else if (Typevar[k] == 1) {  /* product with age */
1.234     brouard  8640:       ncova++;
                   8641:       TvarA[ncova]=Tvar[k];
                   8642:       TvarAind[ncova]=k;
1.231     brouard  8643:       if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
1.240     brouard  8644:        Fixed[k]= 2;
                   8645:        Dummy[k]= 2;
                   8646:        modell[k].maintype= ATYPE;
                   8647:        modell[k].subtype= APFD;
                   8648:        /* ncoveff++; */
1.227     brouard  8649:       }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
1.240     brouard  8650:        Fixed[k]= 2;
                   8651:        Dummy[k]= 3;
                   8652:        modell[k].maintype= ATYPE;
                   8653:        modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
                   8654:        /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
1.227     brouard  8655:       }else if( Tvar[k] <=ncovcol+nqv+ntv ){
1.240     brouard  8656:        Fixed[k]= 3;
                   8657:        Dummy[k]= 2;
                   8658:        modell[k].maintype= ATYPE;
                   8659:        modell[k].subtype= APVD;                /*      Product age * varying dummy */
                   8660:        /* ntveff++; /\* Only simple time varying dummy variable *\/ */
1.227     brouard  8661:       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
1.240     brouard  8662:        Fixed[k]= 3;
                   8663:        Dummy[k]= 3;
                   8664:        modell[k].maintype= ATYPE;
                   8665:        modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
                   8666:        /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
1.227     brouard  8667:       }
                   8668:     }else if (Typevar[k] == 2) {  /* product without age */
                   8669:       k1=Tposprod[k];
                   8670:       if(Tvard[k1][1] <=ncovcol){
1.240     brouard  8671:        if(Tvard[k1][2] <=ncovcol){
                   8672:          Fixed[k]= 1;
                   8673:          Dummy[k]= 0;
                   8674:          modell[k].maintype= FTYPE;
                   8675:          modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
                   8676:          ncovf++; /* Fixed variables without age */
                   8677:          TvarF[ncovf]=Tvar[k];
                   8678:          TvarFind[ncovf]=k;
                   8679:        }else if(Tvard[k1][2] <=ncovcol+nqv){
                   8680:          Fixed[k]= 0;  /* or 2 ?*/
                   8681:          Dummy[k]= 1;
                   8682:          modell[k].maintype= FTYPE;
                   8683:          modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
                   8684:          ncovf++; /* Varying variables without age */
                   8685:          TvarF[ncovf]=Tvar[k];
                   8686:          TvarFind[ncovf]=k;
                   8687:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   8688:          Fixed[k]= 1;
                   8689:          Dummy[k]= 0;
                   8690:          modell[k].maintype= VTYPE;
                   8691:          modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
                   8692:          ncovv++; /* Varying variables without age */
                   8693:          TvarV[ncovv]=Tvar[k];
                   8694:          TvarVind[ncovv]=k;
                   8695:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   8696:          Fixed[k]= 1;
                   8697:          Dummy[k]= 1;
                   8698:          modell[k].maintype= VTYPE;
                   8699:          modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
                   8700:          ncovv++; /* Varying variables without age */
                   8701:          TvarV[ncovv]=Tvar[k];
                   8702:          TvarVind[ncovv]=k;
                   8703:        }
1.227     brouard  8704:       }else if(Tvard[k1][1] <=ncovcol+nqv){
1.240     brouard  8705:        if(Tvard[k1][2] <=ncovcol){
                   8706:          Fixed[k]= 0;  /* or 2 ?*/
                   8707:          Dummy[k]= 1;
                   8708:          modell[k].maintype= FTYPE;
                   8709:          modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
                   8710:          ncovf++; /* Fixed variables without age */
                   8711:          TvarF[ncovf]=Tvar[k];
                   8712:          TvarFind[ncovf]=k;
                   8713:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   8714:          Fixed[k]= 1;
                   8715:          Dummy[k]= 1;
                   8716:          modell[k].maintype= VTYPE;
                   8717:          modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
                   8718:          ncovv++; /* Varying variables without age */
                   8719:          TvarV[ncovv]=Tvar[k];
                   8720:          TvarVind[ncovv]=k;
                   8721:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   8722:          Fixed[k]= 1;
                   8723:          Dummy[k]= 1;
                   8724:          modell[k].maintype= VTYPE;
                   8725:          modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
                   8726:          ncovv++; /* Varying variables without age */
                   8727:          TvarV[ncovv]=Tvar[k];
                   8728:          TvarVind[ncovv]=k;
                   8729:          ncovv++; /* Varying variables without age */
                   8730:          TvarV[ncovv]=Tvar[k];
                   8731:          TvarVind[ncovv]=k;
                   8732:        }
1.227     brouard  8733:       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
1.240     brouard  8734:        if(Tvard[k1][2] <=ncovcol){
                   8735:          Fixed[k]= 1;
                   8736:          Dummy[k]= 1;
                   8737:          modell[k].maintype= VTYPE;
                   8738:          modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
                   8739:          ncovv++; /* Varying variables without age */
                   8740:          TvarV[ncovv]=Tvar[k];
                   8741:          TvarVind[ncovv]=k;
                   8742:        }else if(Tvard[k1][2] <=ncovcol+nqv){
                   8743:          Fixed[k]= 1;
                   8744:          Dummy[k]= 1;
                   8745:          modell[k].maintype= VTYPE;
                   8746:          modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
                   8747:          ncovv++; /* Varying variables without age */
                   8748:          TvarV[ncovv]=Tvar[k];
                   8749:          TvarVind[ncovv]=k;
                   8750:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   8751:          Fixed[k]= 1;
                   8752:          Dummy[k]= 0;
                   8753:          modell[k].maintype= VTYPE;
                   8754:          modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
                   8755:          ncovv++; /* Varying variables without age */
                   8756:          TvarV[ncovv]=Tvar[k];
                   8757:          TvarVind[ncovv]=k;
                   8758:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   8759:          Fixed[k]= 1;
                   8760:          Dummy[k]= 1;
                   8761:          modell[k].maintype= VTYPE;
                   8762:          modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
                   8763:          ncovv++; /* Varying variables without age */
                   8764:          TvarV[ncovv]=Tvar[k];
                   8765:          TvarVind[ncovv]=k;
                   8766:        }
1.227     brouard  8767:       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
1.240     brouard  8768:        if(Tvard[k1][2] <=ncovcol){
                   8769:          Fixed[k]= 1;
                   8770:          Dummy[k]= 1;
                   8771:          modell[k].maintype= VTYPE;
                   8772:          modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
                   8773:          ncovv++; /* Varying variables without age */
                   8774:          TvarV[ncovv]=Tvar[k];
                   8775:          TvarVind[ncovv]=k;
                   8776:        }else if(Tvard[k1][2] <=ncovcol+nqv){
                   8777:          Fixed[k]= 1;
                   8778:          Dummy[k]= 1;
                   8779:          modell[k].maintype= VTYPE;
                   8780:          modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
                   8781:          ncovv++; /* Varying variables without age */
                   8782:          TvarV[ncovv]=Tvar[k];
                   8783:          TvarVind[ncovv]=k;
                   8784:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   8785:          Fixed[k]= 1;
                   8786:          Dummy[k]= 1;
                   8787:          modell[k].maintype= VTYPE;
                   8788:          modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
                   8789:          ncovv++; /* Varying variables without age */
                   8790:          TvarV[ncovv]=Tvar[k];
                   8791:          TvarVind[ncovv]=k;
                   8792:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   8793:          Fixed[k]= 1;
                   8794:          Dummy[k]= 1;
                   8795:          modell[k].maintype= VTYPE;
                   8796:          modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
                   8797:          ncovv++; /* Varying variables without age */
                   8798:          TvarV[ncovv]=Tvar[k];
                   8799:          TvarVind[ncovv]=k;
                   8800:        }
1.227     brouard  8801:       }else{
1.240     brouard  8802:        printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   8803:        fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   8804:       } /*end k1*/
1.225     brouard  8805:     }else{
1.226     brouard  8806:       printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
                   8807:       fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
1.225     brouard  8808:     }
1.227     brouard  8809:     printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
1.231     brouard  8810:     printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype);
1.227     brouard  8811:     fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
                   8812:   }
                   8813:   /* Searching for doublons in the model */
                   8814:   for(k1=1; k1<= cptcovt;k1++){
                   8815:     for(k2=1; k2 <k1;k2++){
                   8816:       if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){
1.234     brouard  8817:        if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
                   8818:          if(Tvar[k1]==Tvar[k2]){
                   8819:            printf("Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
                   8820:            fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
                   8821:            return(1);
                   8822:          }
                   8823:        }else if (Typevar[k1] ==2){
                   8824:          k3=Tposprod[k1];
                   8825:          k4=Tposprod[k2];
                   8826:          if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
                   8827:            printf("Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
                   8828:            fprintf(ficlog,"Error duplication in the model=%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
                   8829:            return(1);
                   8830:          }
                   8831:        }
1.227     brouard  8832:       }
                   8833:     }
1.225     brouard  8834:   }
                   8835:   printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
                   8836:   fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
1.234     brouard  8837:   printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
                   8838:   fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
1.137     brouard  8839:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
1.164     brouard  8840:   /*endread:*/
1.225     brouard  8841:   printf("Exiting decodemodel: ");
                   8842:   return (1);
1.136     brouard  8843: }
                   8844: 
1.169     brouard  8845: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
1.248   ! brouard  8846: {/* Check ages at death */
1.136     brouard  8847:   int i, m;
1.218     brouard  8848:   int firstone=0;
                   8849:   
1.136     brouard  8850:   for (i=1; i<=imx; i++) {
                   8851:     for(m=2; (m<= maxwav); m++) {
                   8852:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
                   8853:        anint[m][i]=9999;
1.216     brouard  8854:        if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
                   8855:          s[m][i]=-1;
1.136     brouard  8856:       }
                   8857:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
1.169     brouard  8858:        *nberr = *nberr + 1;
1.218     brouard  8859:        if(firstone == 0){
                   8860:          firstone=1;
                   8861:        printf("Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\nOther similar cases in log file\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
                   8862:        }
                   8863:        fprintf(ficlog,"Error! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown, you must set an arbitrary year of death or he/she is skipped and results can be biased (%d) because status is a death state %d at wave %d. Wave dropped.\n",(int)moisdc[i],(int)andc[i],num[i],i, *nberr,s[m][i],m);
1.136     brouard  8864:        s[m][i]=-1;
                   8865:       }
                   8866:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
1.169     brouard  8867:        (*nberr)++;
1.136     brouard  8868:        printf("Error! Month of death of individual %ld on line %d was unknown %2d, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,(int)moisdc[i]); 
                   8869:        fprintf(ficlog,"Error! Month of death of individual %ld on line %d was unknown %f, you should set it otherwise the information on the death is skipped and results are biased.\n",num[i],i,moisdc[i]); 
                   8870:        s[m][i]=-1; /* We prefer to skip it (and to skip it in version 0.8a1 too */
                   8871:       }
                   8872:     }
                   8873:   }
                   8874: 
                   8875:   for (i=1; i<=imx; i++)  {
                   8876:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
                   8877:     for(m=firstpass; (m<= lastpass); m++){
1.214     brouard  8878:       if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
1.136     brouard  8879:        if (s[m][i] >= nlstate+1) {
1.169     brouard  8880:          if(agedc[i]>0){
                   8881:            if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
1.136     brouard  8882:              agev[m][i]=agedc[i];
1.214     brouard  8883:              /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
1.169     brouard  8884:            }else {
1.136     brouard  8885:              if ((int)andc[i]!=9999){
                   8886:                nbwarn++;
                   8887:                printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   8888:                fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   8889:                agev[m][i]=-1;
                   8890:              }
                   8891:            }
1.169     brouard  8892:          } /* agedc > 0 */
1.214     brouard  8893:        } /* end if */
1.136     brouard  8894:        else if(s[m][i] !=9){ /* Standard case, age in fractional
                   8895:                                 years but with the precision of a month */
                   8896:          agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                   8897:          if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
                   8898:            agev[m][i]=1;
                   8899:          else if(agev[m][i] < *agemin){ 
                   8900:            *agemin=agev[m][i];
                   8901:            printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
                   8902:          }
                   8903:          else if(agev[m][i] >*agemax){
                   8904:            *agemax=agev[m][i];
1.156     brouard  8905:            /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
1.136     brouard  8906:          }
                   8907:          /*agev[m][i]=anint[m][i]-annais[i];*/
                   8908:          /*     agev[m][i] = age[i]+2*m;*/
1.214     brouard  8909:        } /* en if 9*/
1.136     brouard  8910:        else { /* =9 */
1.214     brouard  8911:          /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
1.136     brouard  8912:          agev[m][i]=1;
                   8913:          s[m][i]=-1;
                   8914:        }
                   8915:       }
1.214     brouard  8916:       else if(s[m][i]==0) /*= 0 Unknown */
1.136     brouard  8917:        agev[m][i]=1;
1.214     brouard  8918:       else{
                   8919:        printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
                   8920:        fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
                   8921:        agev[m][i]=0;
                   8922:       }
                   8923:     } /* End for lastpass */
                   8924:   }
1.136     brouard  8925:     
                   8926:   for (i=1; i<=imx; i++)  {
                   8927:     for(m=firstpass; (m<=lastpass); m++){
                   8928:       if (s[m][i] > (nlstate+ndeath)) {
1.169     brouard  8929:        (*nberr)++;
1.136     brouard  8930:        printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   8931:        fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   8932:        return 1;
                   8933:       }
                   8934:     }
                   8935:   }
                   8936: 
                   8937:   /*for (i=1; i<=imx; i++){
                   8938:   for (m=firstpass; (m<lastpass); m++){
                   8939:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
                   8940: }
                   8941: 
                   8942: }*/
                   8943: 
                   8944: 
1.139     brouard  8945:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
                   8946:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
1.136     brouard  8947: 
                   8948:   return (0);
1.164     brouard  8949:  /* endread:*/
1.136     brouard  8950:     printf("Exiting calandcheckages: ");
                   8951:     return (1);
                   8952: }
                   8953: 
1.172     brouard  8954: #if defined(_MSC_VER)
                   8955: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
                   8956: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
                   8957: //#include "stdafx.h"
                   8958: //#include <stdio.h>
                   8959: //#include <tchar.h>
                   8960: //#include <windows.h>
                   8961: //#include <iostream>
                   8962: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
                   8963: 
                   8964: LPFN_ISWOW64PROCESS fnIsWow64Process;
                   8965: 
                   8966: BOOL IsWow64()
                   8967: {
                   8968:        BOOL bIsWow64 = FALSE;
                   8969: 
                   8970:        //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
                   8971:        //  (HANDLE, PBOOL);
                   8972: 
                   8973:        //LPFN_ISWOW64PROCESS fnIsWow64Process;
                   8974: 
                   8975:        HMODULE module = GetModuleHandle(_T("kernel32"));
                   8976:        const char funcName[] = "IsWow64Process";
                   8977:        fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   8978:                GetProcAddress(module, funcName);
                   8979: 
                   8980:        if (NULL != fnIsWow64Process)
                   8981:        {
                   8982:                if (!fnIsWow64Process(GetCurrentProcess(),
                   8983:                        &bIsWow64))
                   8984:                        //throw std::exception("Unknown error");
                   8985:                        printf("Unknown error\n");
                   8986:        }
                   8987:        return bIsWow64 != FALSE;
                   8988: }
                   8989: #endif
1.177     brouard  8990: 
1.191     brouard  8991: void syscompilerinfo(int logged)
1.167     brouard  8992:  {
                   8993:    /* #include "syscompilerinfo.h"*/
1.185     brouard  8994:    /* command line Intel compiler 32bit windows, XP compatible:*/
                   8995:    /* /GS /W3 /Gy
                   8996:       /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
                   8997:       "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
                   8998:       "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
1.186     brouard  8999:       /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
                   9000:    */ 
                   9001:    /* 64 bits */
1.185     brouard  9002:    /*
                   9003:      /GS /W3 /Gy
                   9004:      /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
                   9005:      /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
                   9006:      /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
                   9007:      "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
                   9008:    /* Optimization are useless and O3 is slower than O2 */
                   9009:    /*
                   9010:      /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
                   9011:      /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
                   9012:      /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
                   9013:      /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
                   9014:    */
1.186     brouard  9015:    /* Link is */ /* /OUT:"visual studio
1.185     brouard  9016:       2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
                   9017:       /PDB:"visual studio
                   9018:       2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
                   9019:       "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
                   9020:       "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
                   9021:       "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
                   9022:       /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
                   9023:       /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
                   9024:       uiAccess='false'"
                   9025:       /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
                   9026:       /NOLOGO /TLBID:1
                   9027:    */
1.177     brouard  9028: #if defined __INTEL_COMPILER
1.178     brouard  9029: #if defined(__GNUC__)
                   9030:        struct utsname sysInfo;  /* For Intel on Linux and OS/X */
                   9031: #endif
1.177     brouard  9032: #elif defined(__GNUC__) 
1.179     brouard  9033: #ifndef  __APPLE__
1.174     brouard  9034: #include <gnu/libc-version.h>  /* Only on gnu */
1.179     brouard  9035: #endif
1.177     brouard  9036:    struct utsname sysInfo;
1.178     brouard  9037:    int cross = CROSS;
                   9038:    if (cross){
                   9039:           printf("Cross-");
1.191     brouard  9040:           if(logged) fprintf(ficlog, "Cross-");
1.178     brouard  9041:    }
1.174     brouard  9042: #endif
                   9043: 
1.171     brouard  9044: #include <stdint.h>
1.178     brouard  9045: 
1.191     brouard  9046:    printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
1.169     brouard  9047: #if defined(__clang__)
1.191     brouard  9048:    printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");      /* Clang/LLVM. ---------------------------------------------- */
1.169     brouard  9049: #endif
                   9050: #if defined(__ICC) || defined(__INTEL_COMPILER)
1.191     brouard  9051:    printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
1.169     brouard  9052: #endif
                   9053: #if defined(__GNUC__) || defined(__GNUG__)
1.191     brouard  9054:    printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
1.169     brouard  9055: #endif
                   9056: #if defined(__HP_cc) || defined(__HP_aCC)
1.191     brouard  9057:    printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
1.169     brouard  9058: #endif
                   9059: #if defined(__IBMC__) || defined(__IBMCPP__)
1.191     brouard  9060:    printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
1.169     brouard  9061: #endif
                   9062: #if defined(_MSC_VER)
1.191     brouard  9063:    printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
1.169     brouard  9064: #endif
                   9065: #if defined(__PGI)
1.191     brouard  9066:    printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
1.169     brouard  9067: #endif
                   9068: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
1.191     brouard  9069:    printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
1.167     brouard  9070: #endif
1.191     brouard  9071:    printf(" for "); if (logged) fprintf(ficlog, " for ");
1.169     brouard  9072:    
1.167     brouard  9073: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
                   9074: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
                   9075:     // Windows (x64 and x86)
1.191     brouard  9076:    printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
1.167     brouard  9077: #elif __unix__ // all unices, not all compilers
                   9078:     // Unix
1.191     brouard  9079:    printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
1.167     brouard  9080: #elif __linux__
                   9081:     // linux
1.191     brouard  9082:    printf("linux ");if(logged) fprintf(ficlog,"linux ");
1.167     brouard  9083: #elif __APPLE__
1.174     brouard  9084:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
1.191     brouard  9085:    printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
1.167     brouard  9086: #endif
                   9087: 
                   9088: /*  __MINGW32__          */
                   9089: /*  __CYGWIN__  */
                   9090: /* __MINGW64__  */
                   9091: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
                   9092: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
                   9093: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
                   9094: /* _WIN64  // Defined for applications for Win64. */
                   9095: /* _M_X64 // Defined for compilations that target x64 processors. */
                   9096: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
1.171     brouard  9097: 
1.167     brouard  9098: #if UINTPTR_MAX == 0xffffffff
1.191     brouard  9099:    printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
1.167     brouard  9100: #elif UINTPTR_MAX == 0xffffffffffffffff
1.191     brouard  9101:    printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
1.167     brouard  9102: #else
1.191     brouard  9103:    printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
1.167     brouard  9104: #endif
                   9105: 
1.169     brouard  9106: #if defined(__GNUC__)
                   9107: # if defined(__GNUC_PATCHLEVEL__)
                   9108: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   9109:                             + __GNUC_MINOR__ * 100 \
                   9110:                             + __GNUC_PATCHLEVEL__)
                   9111: # else
                   9112: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   9113:                             + __GNUC_MINOR__ * 100)
                   9114: # endif
1.174     brouard  9115:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
1.191     brouard  9116:    if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
1.176     brouard  9117: 
                   9118:    if (uname(&sysInfo) != -1) {
                   9119:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
1.191     brouard  9120:         if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
1.176     brouard  9121:    }
                   9122:    else
                   9123:       perror("uname() error");
1.179     brouard  9124:    //#ifndef __INTEL_COMPILER 
                   9125: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
1.174     brouard  9126:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
1.191     brouard  9127:    if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
1.177     brouard  9128: #endif
1.169     brouard  9129: #endif
1.172     brouard  9130: 
                   9131:    //   void main()
                   9132:    //   {
1.169     brouard  9133: #if defined(_MSC_VER)
1.174     brouard  9134:    if (IsWow64()){
1.191     brouard  9135:           printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
                   9136:           if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
1.174     brouard  9137:    }
                   9138:    else{
1.191     brouard  9139:           printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
                   9140:           if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
1.174     brouard  9141:    }
1.172     brouard  9142:    //     printf("\nPress Enter to continue...");
                   9143:    //     getchar();
                   9144:    //   }
                   9145: 
1.169     brouard  9146: #endif
                   9147:    
1.167     brouard  9148: 
1.219     brouard  9149: }
1.136     brouard  9150: 
1.219     brouard  9151: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
1.180     brouard  9152:   /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
1.235     brouard  9153:   int i, j, k, i1, k4=0, nres=0 ;
1.202     brouard  9154:   /* double ftolpl = 1.e-10; */
1.180     brouard  9155:   double age, agebase, agelim;
1.203     brouard  9156:   double tot;
1.180     brouard  9157: 
1.202     brouard  9158:   strcpy(filerespl,"PL_");
                   9159:   strcat(filerespl,fileresu);
                   9160:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
                   9161:     printf("Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
                   9162:     fprintf(ficlog,"Problem with period (stable) prevalence resultfile: %s\n", filerespl);return 1;
                   9163:   }
1.227     brouard  9164:   printf("\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
                   9165:   fprintf(ficlog,"\nComputing period (stable) prevalence: result on file '%s' \n", filerespl);
1.202     brouard  9166:   pstamp(ficrespl);
1.203     brouard  9167:   fprintf(ficrespl,"# Period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
1.202     brouard  9168:   fprintf(ficrespl,"#Age ");
                   9169:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
                   9170:   fprintf(ficrespl,"\n");
1.180     brouard  9171:   
1.219     brouard  9172:   /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
1.180     brouard  9173: 
1.219     brouard  9174:   agebase=ageminpar;
                   9175:   agelim=agemaxpar;
1.180     brouard  9176: 
1.227     brouard  9177:   /* i1=pow(2,ncoveff); */
1.234     brouard  9178:   i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
1.219     brouard  9179:   if (cptcovn < 1){i1=1;}
1.180     brouard  9180: 
1.238     brouard  9181:   for(k=1; k<=i1;k++){ /* For each combination k of dummy covariates in the model */
                   9182:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   9183:       if(TKresult[nres]!= k)
                   9184:        continue;
1.235     brouard  9185: 
1.238     brouard  9186:       /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   9187:       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
                   9188:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   9189:       /* k=k+1; */
                   9190:       /* to clean */
                   9191:       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
                   9192:       fprintf(ficrespl,"#******");
                   9193:       printf("#******");
                   9194:       fprintf(ficlog,"#******");
                   9195:       for(j=1;j<=cptcoveff ;j++) {/* all covariates */
                   9196:        fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); /* Here problem for varying dummy*/
                   9197:        printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9198:        fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9199:       }
                   9200:       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   9201:        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   9202:        fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   9203:        fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   9204:       }
                   9205:       fprintf(ficrespl,"******\n");
                   9206:       printf("******\n");
                   9207:       fprintf(ficlog,"******\n");
                   9208:       if(invalidvarcomb[k]){
                   9209:        printf("\nCombination (%d) ignored because no case \n",k); 
                   9210:        fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
                   9211:        fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
                   9212:        continue;
                   9213:       }
1.219     brouard  9214: 
1.238     brouard  9215:       fprintf(ficrespl,"#Age ");
                   9216:       for(j=1;j<=cptcoveff;j++) {
                   9217:        fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9218:       }
                   9219:       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
                   9220:       fprintf(ficrespl,"Total Years_to_converge\n");
1.227     brouard  9221:     
1.238     brouard  9222:       for (age=agebase; age<=agelim; age++){
                   9223:        /* for (age=agebase; age<=agebase; age++){ */
                   9224:        prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres);
                   9225:        fprintf(ficrespl,"%.0f ",age );
                   9226:        for(j=1;j<=cptcoveff;j++)
                   9227:          fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9228:        tot=0.;
                   9229:        for(i=1; i<=nlstate;i++){
                   9230:          tot +=  prlim[i][i];
                   9231:          fprintf(ficrespl," %.5f", prlim[i][i]);
                   9232:        }
                   9233:        fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
                   9234:       } /* Age */
                   9235:       /* was end of cptcod */
                   9236:     } /* cptcov */
                   9237:   } /* nres */
1.219     brouard  9238:   return 0;
1.180     brouard  9239: }
                   9240: 
1.218     brouard  9241: int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
                   9242:        /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
                   9243:        
                   9244:        /* Computes the back prevalence limit  for any combination      of covariate values 
                   9245:    * at any age between ageminpar and agemaxpar
                   9246:         */
1.235     brouard  9247:   int i, j, k, i1, nres=0 ;
1.217     brouard  9248:   /* double ftolpl = 1.e-10; */
                   9249:   double age, agebase, agelim;
                   9250:   double tot;
1.218     brouard  9251:   /* double ***mobaverage; */
                   9252:   /* double     **dnewm, **doldm, **dsavm;  /\* for use *\/ */
1.217     brouard  9253: 
                   9254:   strcpy(fileresplb,"PLB_");
                   9255:   strcat(fileresplb,fileresu);
                   9256:   if((ficresplb=fopen(fileresplb,"w"))==NULL) {
                   9257:     printf("Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
                   9258:     fprintf(ficlog,"Problem with period (stable) back prevalence resultfile: %s\n", fileresplb);return 1;
                   9259:   }
                   9260:   printf("Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
                   9261:   fprintf(ficlog,"Computing period (stable) back prevalence: result on file '%s' \n", fileresplb);
                   9262:   pstamp(ficresplb);
                   9263:   fprintf(ficresplb,"# Period (stable) back prevalence. Precision given by ftolpl=%g \n", ftolpl);
                   9264:   fprintf(ficresplb,"#Age ");
                   9265:   for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
                   9266:   fprintf(ficresplb,"\n");
                   9267:   
1.218     brouard  9268:   
                   9269:   /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
                   9270:   
                   9271:   agebase=ageminpar;
                   9272:   agelim=agemaxpar;
                   9273:   
                   9274:   
1.227     brouard  9275:   i1=pow(2,cptcoveff);
1.218     brouard  9276:   if (cptcovn < 1){i1=1;}
1.227     brouard  9277:   
1.238     brouard  9278:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   9279:     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
                   9280:       if(TKresult[nres]!= k)
                   9281:        continue;
                   9282:       //printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));
                   9283:       fprintf(ficresplb,"#******");
                   9284:       printf("#******");
                   9285:       fprintf(ficlog,"#******");
                   9286:       for(j=1;j<=cptcoveff ;j++) {/* all covariates */
                   9287:        fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9288:        printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9289:        fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9290:       }
                   9291:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
                   9292:        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   9293:        fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   9294:        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   9295:       }
                   9296:       fprintf(ficresplb,"******\n");
                   9297:       printf("******\n");
                   9298:       fprintf(ficlog,"******\n");
                   9299:       if(invalidvarcomb[k]){
                   9300:        printf("\nCombination (%d) ignored because no cases \n",k); 
                   9301:        fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
                   9302:        fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
                   9303:        continue;
                   9304:       }
1.218     brouard  9305:     
1.238     brouard  9306:       fprintf(ficresplb,"#Age ");
                   9307:       for(j=1;j<=cptcoveff;j++) {
                   9308:        fprintf(ficresplb,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9309:       }
                   9310:       for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
                   9311:       fprintf(ficresplb,"Total Years_to_converge\n");
1.218     brouard  9312:     
                   9313:     
1.238     brouard  9314:       for (age=agebase; age<=agelim; age++){
                   9315:        /* for (age=agebase; age<=agebase; age++){ */
                   9316:        if(mobilavproj > 0){
                   9317:          /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
                   9318:          /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
1.242     brouard  9319:          bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres);
1.238     brouard  9320:        }else if (mobilavproj == 0){
                   9321:          printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
                   9322:          fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
                   9323:          exit(1);
                   9324:        }else{
                   9325:          /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
1.242     brouard  9326:          bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres);
1.238     brouard  9327:        }
                   9328:        fprintf(ficresplb,"%.0f ",age );
                   9329:        for(j=1;j<=cptcoveff;j++)
                   9330:          fprintf(ficresplb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9331:        tot=0.;
                   9332:        for(i=1; i<=nlstate;i++){
                   9333:          tot +=  bprlim[i][i];
                   9334:          fprintf(ficresplb," %.5f", bprlim[i][i]);
                   9335:        }
                   9336:        fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
                   9337:       } /* Age */
                   9338:       /* was end of cptcod */
                   9339:     } /* end of any combination */
                   9340:   } /* end of nres */  
1.218     brouard  9341:   /* hBijx(p, bage, fage); */
                   9342:   /* fclose(ficrespijb); */
                   9343:   
                   9344:   return 0;
1.217     brouard  9345: }
1.218     brouard  9346:  
1.180     brouard  9347: int hPijx(double *p, int bage, int fage){
                   9348:     /*------------- h Pij x at various ages ------------*/
                   9349: 
                   9350:   int stepsize;
                   9351:   int agelim;
                   9352:   int hstepm;
                   9353:   int nhstepm;
1.235     brouard  9354:   int h, i, i1, j, k, k4, nres=0;
1.180     brouard  9355: 
                   9356:   double agedeb;
                   9357:   double ***p3mat;
                   9358: 
1.201     brouard  9359:     strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
1.180     brouard  9360:     if((ficrespij=fopen(filerespij,"w"))==NULL) {
                   9361:       printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
                   9362:       fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
                   9363:     }
                   9364:     printf("Computing pij: result on file '%s' \n", filerespij);
                   9365:     fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
                   9366:   
                   9367:     stepsize=(int) (stepm+YEARM-1)/YEARM;
                   9368:     /*if (stepm<=24) stepsize=2;*/
                   9369: 
                   9370:     agelim=AGESUP;
                   9371:     hstepm=stepsize*YEARM; /* Every year of age */
                   9372:     hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
1.218     brouard  9373:                
1.180     brouard  9374:     /* hstepm=1;   aff par mois*/
                   9375:     pstamp(ficrespij);
                   9376:     fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
1.227     brouard  9377:     i1= pow(2,cptcoveff);
1.218     brouard  9378:                /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   9379:                /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   9380:                /*      k=k+1;  */
1.235     brouard  9381:     for(nres=1; nres <= nresult; nres++) /* For each resultline */
                   9382:     for(k=1; k<=i1;k++){
                   9383:       if(TKresult[nres]!= k)
                   9384:        continue;
1.183     brouard  9385:       fprintf(ficrespij,"\n#****** ");
1.227     brouard  9386:       for(j=1;j<=cptcoveff;j++) 
1.198     brouard  9387:        fprintf(ficrespij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
1.235     brouard  9388:       for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   9389:        printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   9390:        fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   9391:       }
1.183     brouard  9392:       fprintf(ficrespij,"******\n");
                   9393:       
                   9394:       for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
                   9395:        nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   9396:        nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   9397:        
                   9398:        /*        nhstepm=nhstepm*YEARM; aff par mois*/
1.180     brouard  9399:        
1.183     brouard  9400:        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   9401:        oldm=oldms;savm=savms;
1.235     brouard  9402:        hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
1.183     brouard  9403:        fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
                   9404:        for(i=1; i<=nlstate;i++)
                   9405:          for(j=1; j<=nlstate+ndeath;j++)
                   9406:            fprintf(ficrespij," %1d-%1d",i,j);
                   9407:        fprintf(ficrespij,"\n");
                   9408:        for (h=0; h<=nhstepm; h++){
                   9409:          /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
                   9410:          fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
1.180     brouard  9411:          for(i=1; i<=nlstate;i++)
                   9412:            for(j=1; j<=nlstate+ndeath;j++)
1.183     brouard  9413:              fprintf(ficrespij," %.5f", p3mat[i][j][h]);
1.180     brouard  9414:          fprintf(ficrespij,"\n");
                   9415:        }
1.183     brouard  9416:        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   9417:        fprintf(ficrespij,"\n");
                   9418:       }
1.180     brouard  9419:       /*}*/
                   9420:     }
1.218     brouard  9421:     return 0;
1.180     brouard  9422: }
1.218     brouard  9423:  
                   9424:  int hBijx(double *p, int bage, int fage, double ***prevacurrent){
1.217     brouard  9425:     /*------------- h Bij x at various ages ------------*/
                   9426: 
                   9427:   int stepsize;
1.218     brouard  9428:   /* int agelim; */
                   9429:        int ageminl;
1.217     brouard  9430:   int hstepm;
                   9431:   int nhstepm;
1.238     brouard  9432:   int h, i, i1, j, k, nres;
1.218     brouard  9433:        
1.217     brouard  9434:   double agedeb;
                   9435:   double ***p3mat;
1.218     brouard  9436:        
                   9437:   strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
                   9438:   if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
                   9439:     printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
                   9440:     fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
                   9441:   }
                   9442:   printf("Computing pij back: result on file '%s' \n", filerespijb);
                   9443:   fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
                   9444:   
                   9445:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   9446:   /*if (stepm<=24) stepsize=2;*/
1.217     brouard  9447:   
1.218     brouard  9448:   /* agelim=AGESUP; */
                   9449:   ageminl=30;
                   9450:   hstepm=stepsize*YEARM; /* Every year of age */
                   9451:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
                   9452:   
                   9453:   /* hstepm=1;   aff par mois*/
                   9454:   pstamp(ficrespijb);
                   9455:   fprintf(ficrespijb,"#****** h Pij x Back Probability to be in state i at age x-h being in j at x ");
1.227     brouard  9456:   i1= pow(2,cptcoveff);
1.218     brouard  9457:   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   9458:   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   9459:   /*   k=k+1;  */
1.238     brouard  9460:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   9461:     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
                   9462:       if(TKresult[nres]!= k)
                   9463:        continue;
                   9464:       fprintf(ficrespijb,"\n#****** ");
                   9465:       for(j=1;j<=cptcoveff;j++)
                   9466:        fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   9467:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
                   9468:        fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   9469:       }
                   9470:       fprintf(ficrespijb,"******\n");
                   9471:       if(invalidvarcomb[k]){
                   9472:        fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
                   9473:        continue;
                   9474:       }
                   9475:       
                   9476:       /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
                   9477:       for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
                   9478:        /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
                   9479:        nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */
                   9480:        nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 */
                   9481:        
                   9482:        /*        nhstepm=nhstepm*YEARM; aff par mois*/
                   9483:        
                   9484:        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   9485:        /* oldm=oldms;savm=savms; */
                   9486:        /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
                   9487:        hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k);
                   9488:        /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
                   9489:        fprintf(ficrespijb,"# Cov Agex agex-h hpijx with i,j=");
1.217     brouard  9490:        for(i=1; i<=nlstate;i++)
                   9491:          for(j=1; j<=nlstate+ndeath;j++)
1.238     brouard  9492:            fprintf(ficrespijb," %1d-%1d",i,j);
1.217     brouard  9493:        fprintf(ficrespijb,"\n");
1.238     brouard  9494:        for (h=0; h<=nhstepm; h++){
                   9495:          /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
                   9496:          fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
                   9497:          /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
                   9498:          for(i=1; i<=nlstate;i++)
                   9499:            for(j=1; j<=nlstate+ndeath;j++)
                   9500:              fprintf(ficrespijb," %.5f", p3mat[i][j][h]);
                   9501:          fprintf(ficrespijb,"\n");
                   9502:        }
                   9503:        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   9504:        fprintf(ficrespijb,"\n");
                   9505:       } /* end age deb */
                   9506:     } /* end combination */
                   9507:   } /* end nres */
1.218     brouard  9508:   return 0;
                   9509:  } /*  hBijx */
1.217     brouard  9510: 
1.180     brouard  9511: 
1.136     brouard  9512: /***********************************************/
                   9513: /**************** Main Program *****************/
                   9514: /***********************************************/
                   9515: 
                   9516: int main(int argc, char *argv[])
                   9517: {
                   9518: #ifdef GSL
                   9519:   const gsl_multimin_fminimizer_type *T;
                   9520:   size_t iteri = 0, it;
                   9521:   int rval = GSL_CONTINUE;
                   9522:   int status = GSL_SUCCESS;
                   9523:   double ssval;
                   9524: #endif
                   9525:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
1.164     brouard  9526:   int i,j, k, n=MAXN,iter=0,m,size=100, cptcod;
1.209     brouard  9527:   int ncvyear=0; /* Number of years needed for the period prevalence to converge */
1.164     brouard  9528:   int jj, ll, li, lj, lk;
1.136     brouard  9529:   int numlinepar=0; /* Current linenumber of parameter file */
1.197     brouard  9530:   int num_filled;
1.136     brouard  9531:   int itimes;
                   9532:   int NDIM=2;
                   9533:   int vpopbased=0;
1.235     brouard  9534:   int nres=0;
1.136     brouard  9535: 
1.164     brouard  9536:   char ca[32], cb[32];
1.136     brouard  9537:   /*  FILE *fichtm; *//* Html File */
                   9538:   /* FILE *ficgp;*/ /*Gnuplot File */
                   9539:   struct stat info;
1.191     brouard  9540:   double agedeb=0.;
1.194     brouard  9541: 
                   9542:   double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
1.219     brouard  9543:   double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
1.136     brouard  9544: 
1.165     brouard  9545:   double fret;
1.191     brouard  9546:   double dum=0.; /* Dummy variable */
1.136     brouard  9547:   double ***p3mat;
1.218     brouard  9548:   /* double ***mobaverage; */
1.164     brouard  9549: 
                   9550:   char line[MAXLINE];
1.197     brouard  9551:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
                   9552: 
1.234     brouard  9553:   char  modeltemp[MAXLINE];
1.230     brouard  9554:   char resultline[MAXLINE];
                   9555:   
1.136     brouard  9556:   char pathr[MAXLINE], pathimach[MAXLINE]; 
1.164     brouard  9557:   char *tok, *val; /* pathtot */
1.136     brouard  9558:   int firstobs=1, lastobs=10;
1.195     brouard  9559:   int c,  h , cpt, c2;
1.191     brouard  9560:   int jl=0;
                   9561:   int i1, j1, jk, stepsize=0;
1.194     brouard  9562:   int count=0;
                   9563: 
1.164     brouard  9564:   int *tab; 
1.136     brouard  9565:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
1.217     brouard  9566:   int backcast=0;
1.136     brouard  9567:   int mobilav=0,popforecast=0;
1.191     brouard  9568:   int hstepm=0, nhstepm=0;
1.136     brouard  9569:   int agemortsup;
                   9570:   float  sumlpop=0.;
                   9571:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
                   9572:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
                   9573: 
1.191     brouard  9574:   double bage=0, fage=110., age, agelim=0., agebase=0.;
1.136     brouard  9575:   double ftolpl=FTOL;
                   9576:   double **prlim;
1.217     brouard  9577:   double **bprlim;
1.136     brouard  9578:   double ***param; /* Matrix of parameters */
                   9579:   double  *p;
                   9580:   double **matcov; /* Matrix of covariance */
1.203     brouard  9581:   double **hess; /* Hessian matrix */
1.136     brouard  9582:   double ***delti3; /* Scale */
                   9583:   double *delti; /* Scale */
                   9584:   double ***eij, ***vareij;
                   9585:   double **varpl; /* Variances of prevalence limits by age */
                   9586:   double *epj, vepp;
1.164     brouard  9587: 
1.136     brouard  9588:   double dateprev1, dateprev2,jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000;
1.217     brouard  9589:   double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000;
                   9590: 
1.136     brouard  9591:   double **ximort;
1.145     brouard  9592:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
1.136     brouard  9593:   int *dcwave;
                   9594: 
1.164     brouard  9595:   char z[1]="c";
1.136     brouard  9596: 
                   9597:   /*char  *strt;*/
                   9598:   char strtend[80];
1.126     brouard  9599: 
1.164     brouard  9600: 
1.126     brouard  9601: /*   setlocale (LC_ALL, ""); */
                   9602: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                   9603: /*   textdomain (PACKAGE); */
                   9604: /*   setlocale (LC_CTYPE, ""); */
                   9605: /*   setlocale (LC_MESSAGES, ""); */
                   9606: 
                   9607:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
1.157     brouard  9608:   rstart_time = time(NULL);  
                   9609:   /*  (void) gettimeofday(&start_time,&tzp);*/
                   9610:   start_time = *localtime(&rstart_time);
1.126     brouard  9611:   curr_time=start_time;
1.157     brouard  9612:   /*tml = *localtime(&start_time.tm_sec);*/
                   9613:   /* strcpy(strstart,asctime(&tml)); */
                   9614:   strcpy(strstart,asctime(&start_time));
1.126     brouard  9615: 
                   9616: /*  printf("Localtime (at start)=%s",strstart); */
1.157     brouard  9617: /*  tp.tm_sec = tp.tm_sec +86400; */
                   9618: /*  tm = *localtime(&start_time.tm_sec); */
1.126     brouard  9619: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                   9620: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                   9621: /*   tmg.tm_hour=tmg.tm_hour + 1; */
1.157     brouard  9622: /*   tp.tm_sec = mktime(&tmg); */
1.126     brouard  9623: /*   strt=asctime(&tmg); */
                   9624: /*   printf("Time(after) =%s",strstart);  */
                   9625: /*  (void) time (&time_value);
                   9626: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
                   9627: *  tm = *localtime(&time_value);
                   9628: *  strstart=asctime(&tm);
                   9629: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
                   9630: */
                   9631: 
                   9632:   nberr=0; /* Number of errors and warnings */
                   9633:   nbwarn=0;
1.184     brouard  9634: #ifdef WIN32
                   9635:   _getcwd(pathcd, size);
                   9636: #else
1.126     brouard  9637:   getcwd(pathcd, size);
1.184     brouard  9638: #endif
1.191     brouard  9639:   syscompilerinfo(0);
1.196     brouard  9640:   printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
1.126     brouard  9641:   if(argc <=1){
                   9642:     printf("\nEnter the parameter file name: ");
1.205     brouard  9643:     if(!fgets(pathr,FILENAMELENGTH,stdin)){
                   9644:       printf("ERROR Empty parameter file name\n");
                   9645:       goto end;
                   9646:     }
1.126     brouard  9647:     i=strlen(pathr);
                   9648:     if(pathr[i-1]=='\n')
                   9649:       pathr[i-1]='\0';
1.156     brouard  9650:     i=strlen(pathr);
1.205     brouard  9651:     if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
1.156     brouard  9652:       pathr[i-1]='\0';
1.205     brouard  9653:     }
                   9654:     i=strlen(pathr);
                   9655:     if( i==0 ){
                   9656:       printf("ERROR Empty parameter file name\n");
                   9657:       goto end;
                   9658:     }
                   9659:     for (tok = pathr; tok != NULL; ){
1.126     brouard  9660:       printf("Pathr |%s|\n",pathr);
                   9661:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
                   9662:       printf("val= |%s| pathr=%s\n",val,pathr);
                   9663:       strcpy (pathtot, val);
                   9664:       if(pathr[0] == '\0') break; /* Dirty */
                   9665:     }
                   9666:   }
                   9667:   else{
                   9668:     strcpy(pathtot,argv[1]);
                   9669:   }
                   9670:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
                   9671:   /*cygwin_split_path(pathtot,path,optionfile);
                   9672:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
                   9673:   /* cutv(path,optionfile,pathtot,'\\');*/
                   9674: 
                   9675:   /* Split argv[0], imach program to get pathimach */
                   9676:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
                   9677:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   9678:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   9679:  /*   strcpy(pathimach,argv[0]); */
                   9680:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
                   9681:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
                   9682:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
1.184     brouard  9683: #ifdef WIN32
                   9684:   _chdir(path); /* Can be a relative path */
                   9685:   if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
                   9686: #else
1.126     brouard  9687:   chdir(path); /* Can be a relative path */
1.184     brouard  9688:   if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
                   9689: #endif
                   9690:   printf("Current directory %s!\n",pathcd);
1.126     brouard  9691:   strcpy(command,"mkdir ");
                   9692:   strcat(command,optionfilefiname);
                   9693:   if((outcmd=system(command)) != 0){
1.169     brouard  9694:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
1.126     brouard  9695:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   9696:     /* fclose(ficlog); */
                   9697: /*     exit(1); */
                   9698:   }
                   9699: /*   if((imk=mkdir(optionfilefiname))<0){ */
                   9700: /*     perror("mkdir"); */
                   9701: /*   } */
                   9702: 
                   9703:   /*-------- arguments in the command line --------*/
                   9704: 
1.186     brouard  9705:   /* Main Log file */
1.126     brouard  9706:   strcat(filelog, optionfilefiname);
                   9707:   strcat(filelog,".log");    /* */
                   9708:   if((ficlog=fopen(filelog,"w"))==NULL)    {
                   9709:     printf("Problem with logfile %s\n",filelog);
                   9710:     goto end;
                   9711:   }
                   9712:   fprintf(ficlog,"Log filename:%s\n",filelog);
1.197     brouard  9713:   fprintf(ficlog,"Version %s %s",version,fullversion);
1.126     brouard  9714:   fprintf(ficlog,"\nEnter the parameter file name: \n");
                   9715:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
                   9716:  path=%s \n\
                   9717:  optionfile=%s\n\
                   9718:  optionfilext=%s\n\
1.156     brouard  9719:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.126     brouard  9720: 
1.197     brouard  9721:   syscompilerinfo(1);
1.167     brouard  9722: 
1.126     brouard  9723:   printf("Local time (at start):%s",strstart);
                   9724:   fprintf(ficlog,"Local time (at start): %s",strstart);
                   9725:   fflush(ficlog);
                   9726: /*   (void) gettimeofday(&curr_time,&tzp); */
1.157     brouard  9727: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
1.126     brouard  9728: 
                   9729:   /* */
                   9730:   strcpy(fileres,"r");
                   9731:   strcat(fileres, optionfilefiname);
1.201     brouard  9732:   strcat(fileresu, optionfilefiname); /* Without r in front */
1.126     brouard  9733:   strcat(fileres,".txt");    /* Other files have txt extension */
1.201     brouard  9734:   strcat(fileresu,".txt");    /* Other files have txt extension */
1.126     brouard  9735: 
1.186     brouard  9736:   /* Main ---------arguments file --------*/
1.126     brouard  9737: 
                   9738:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
1.155     brouard  9739:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
                   9740:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
1.126     brouard  9741:     fflush(ficlog);
1.149     brouard  9742:     /* goto end; */
                   9743:     exit(70); 
1.126     brouard  9744:   }
                   9745: 
                   9746: 
                   9747: 
                   9748:   strcpy(filereso,"o");
1.201     brouard  9749:   strcat(filereso,fileresu);
1.126     brouard  9750:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
                   9751:     printf("Problem with Output resultfile: %s\n", filereso);
                   9752:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
                   9753:     fflush(ficlog);
                   9754:     goto end;
                   9755:   }
                   9756: 
                   9757:   /* Reads comments: lines beginning with '#' */
                   9758:   numlinepar=0;
1.197     brouard  9759: 
                   9760:     /* First parameter line */
                   9761:   while(fgets(line, MAXLINE, ficpar)) {
                   9762:     /* If line starts with a # it is a comment */
                   9763:     if (line[0] == '#') {
                   9764:       numlinepar++;
                   9765:       fputs(line,stdout);
                   9766:       fputs(line,ficparo);
                   9767:       fputs(line,ficlog);
                   9768:       continue;
                   9769:     }else
                   9770:       break;
                   9771:   }
                   9772:   if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                   9773:                        title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
                   9774:     if (num_filled != 5) {
                   9775:       printf("Should be 5 parameters\n");
                   9776:     }
1.126     brouard  9777:     numlinepar++;
1.197     brouard  9778:     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
                   9779:   }
                   9780:   /* Second parameter line */
                   9781:   while(fgets(line, MAXLINE, ficpar)) {
                   9782:     /* If line starts with a # it is a comment */
                   9783:     if (line[0] == '#') {
                   9784:       numlinepar++;
                   9785:       fputs(line,stdout);
                   9786:       fputs(line,ficparo);
                   9787:       fputs(line,ficlog);
                   9788:       continue;
                   9789:     }else
                   9790:       break;
                   9791:   }
1.223     brouard  9792:   if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                   9793:                        &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
                   9794:     if (num_filled != 11) {
                   9795:       printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
1.209     brouard  9796:       printf("but line=%s\n",line);
1.197     brouard  9797:     }
1.223     brouard  9798:     printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.126     brouard  9799:   }
1.203     brouard  9800:   /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
1.209     brouard  9801:   /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
1.197     brouard  9802:   /* Third parameter line */
                   9803:   while(fgets(line, MAXLINE, ficpar)) {
                   9804:     /* If line starts with a # it is a comment */
                   9805:     if (line[0] == '#') {
                   9806:       numlinepar++;
                   9807:       fputs(line,stdout);
                   9808:       fputs(line,ficparo);
                   9809:       fputs(line,ficlog);
                   9810:       continue;
                   9811:     }else
                   9812:       break;
                   9813:   }
1.201     brouard  9814:   if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
                   9815:     if (num_filled == 0)
                   9816:             model[0]='\0';
                   9817:     else if (num_filled != 1){
1.197     brouard  9818:       printf("ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
                   9819:       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age.' %s\n",num_filled, line);
                   9820:       model[0]='\0';
                   9821:       goto end;
                   9822:     }
                   9823:     else{
                   9824:       if (model[0]=='+'){
                   9825:        for(i=1; i<=strlen(model);i++)
                   9826:          modeltemp[i-1]=model[i];
1.201     brouard  9827:        strcpy(model,modeltemp); 
1.197     brouard  9828:       }
                   9829:     }
1.199     brouard  9830:     /* printf(" model=1+age%s modeltemp= %s, model=%s\n",model, modeltemp, model);fflush(stdout); */
1.203     brouard  9831:     printf("model=1+age+%s\n",model);fflush(stdout);
1.197     brouard  9832:   }
                   9833:   /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
                   9834:   /* numlinepar=numlinepar+3; /\* In general *\/ */
                   9835:   /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
1.223     brouard  9836:   fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
                   9837:   fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model);
1.126     brouard  9838:   fflush(ficlog);
1.190     brouard  9839:   /* if(model[0]=='#'|| model[0]== '\0'){ */
                   9840:   if(model[0]=='#'){
1.187     brouard  9841:     printf("Error in 'model' line: model should start with 'model=1+age+' and end with '.' \n \
                   9842:  'model=1+age+.' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age.' or \n \
                   9843:  'model=1+age+V1+V2.' or 'model=1+age+V1+V2+V1*V2.' etc. \n");         \
                   9844:     if(mle != -1){
                   9845:       printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter file.\n");
                   9846:       exit(1);
                   9847:     }
                   9848:   }
1.126     brouard  9849:   while((c=getc(ficpar))=='#' && c!= EOF){
                   9850:     ungetc(c,ficpar);
                   9851:     fgets(line, MAXLINE, ficpar);
                   9852:     numlinepar++;
1.195     brouard  9853:     if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
                   9854:       z[0]=line[1];
                   9855:     }
                   9856:     /* printf("****line [1] = %c \n",line[1]); */
1.141     brouard  9857:     fputs(line, stdout);
                   9858:     //puts(line);
1.126     brouard  9859:     fputs(line,ficparo);
                   9860:     fputs(line,ficlog);
                   9861:   }
                   9862:   ungetc(c,ficpar);
                   9863: 
                   9864:    
1.145     brouard  9865:   covar=matrix(0,NCOVMAX,1,n);  /**< used in readdata */
1.225     brouard  9866:   coqvar=matrix(1,nqv,1,n);  /**< Fixed quantitative covariate */
1.233     brouard  9867:   cotvar=ma3x(1,maxwav,1,ntv+nqtv,1,n);  /**< Time varying covariate (dummy and quantitative)*/
1.225     brouard  9868:   cotqvar=ma3x(1,maxwav,1,nqtv,1,n);  /**< Time varying quantitative covariate */
1.136     brouard  9869:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
                   9870:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
                   9871:      v1+v2*age+v2*v3 makes cptcovn = 3
                   9872:   */
                   9873:   if (strlen(model)>1) 
1.187     brouard  9874:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
1.145     brouard  9875:   else
1.187     brouard  9876:     ncovmodel=2; /* Constant and age */
1.133     brouard  9877:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
                   9878:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
1.131     brouard  9879:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
                   9880:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   9881:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   9882:     fflush(stdout);
                   9883:     fclose (ficlog);
                   9884:     goto end;
                   9885:   }
1.126     brouard  9886:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   9887:   delti=delti3[1][1];
                   9888:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
                   9889:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
1.247     brouard  9890: /* We could also provide initial parameters values giving by simple logistic regression 
                   9891:  * only one way, that is without matrix product. We will have nlstate maximizations */
                   9892:       /* for(i=1;i<nlstate;i++){ */
                   9893:       /*       /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
                   9894:       /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
                   9895:       /* } */
1.126     brouard  9896:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
1.191     brouard  9897:     printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   9898:     fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
1.126     brouard  9899:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   9900:     fclose (ficparo);
                   9901:     fclose (ficlog);
                   9902:     goto end;
                   9903:     exit(0);
1.248   ! brouard  9904:   } else if(mle==-2) { /* Guessing from means */
        !          9905:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
        !          9906:     printf(" You chose mle=-2, look at file %s for a template of covariance matrix \n",filereso);
        !          9907:     fprintf(ficlog," You chose mle=-2, look at file %s for a template of covariance matrix \n",filereso);
        !          9908:    
1.220     brouard  9909:   }  else if(mle==-5) { /* Main Wizard */
1.126     brouard  9910:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
1.192     brouard  9911:     printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   9912:     fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
1.126     brouard  9913:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   9914:     matcov=matrix(1,npar,1,npar);
1.203     brouard  9915:     hess=matrix(1,npar,1,npar);
1.220     brouard  9916:   }  else{ /* Begin of mle != -1 or -5 */
1.145     brouard  9917:     /* Read guessed parameters */
1.126     brouard  9918:     /* Reads comments: lines beginning with '#' */
                   9919:     while((c=getc(ficpar))=='#' && c!= EOF){
                   9920:       ungetc(c,ficpar);
                   9921:       fgets(line, MAXLINE, ficpar);
                   9922:       numlinepar++;
1.141     brouard  9923:       fputs(line,stdout);
1.126     brouard  9924:       fputs(line,ficparo);
                   9925:       fputs(line,ficlog);
                   9926:     }
                   9927:     ungetc(c,ficpar);
                   9928:     
                   9929:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   9930:     for(i=1; i <=nlstate; i++){
1.234     brouard  9931:       j=0;
1.126     brouard  9932:       for(jj=1; jj <=nlstate+ndeath; jj++){
1.234     brouard  9933:        if(jj==i) continue;
                   9934:        j++;
                   9935:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   9936:        if ((i1 != i) || (j1 != jj)){
                   9937:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
1.126     brouard  9938: It might be a problem of design; if ncovcol and the model are correct\n \
                   9939: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
1.234     brouard  9940:          exit(1);
                   9941:        }
                   9942:        fprintf(ficparo,"%1d%1d",i1,j1);
                   9943:        if(mle==1)
                   9944:          printf("%1d%1d",i,jj);
                   9945:        fprintf(ficlog,"%1d%1d",i,jj);
                   9946:        for(k=1; k<=ncovmodel;k++){
                   9947:          fscanf(ficpar," %lf",&param[i][j][k]);
                   9948:          if(mle==1){
                   9949:            printf(" %lf",param[i][j][k]);
                   9950:            fprintf(ficlog," %lf",param[i][j][k]);
                   9951:          }
                   9952:          else
                   9953:            fprintf(ficlog," %lf",param[i][j][k]);
                   9954:          fprintf(ficparo," %lf",param[i][j][k]);
                   9955:        }
                   9956:        fscanf(ficpar,"\n");
                   9957:        numlinepar++;
                   9958:        if(mle==1)
                   9959:          printf("\n");
                   9960:        fprintf(ficlog,"\n");
                   9961:        fprintf(ficparo,"\n");
1.126     brouard  9962:       }
                   9963:     }  
                   9964:     fflush(ficlog);
1.234     brouard  9965:     
1.145     brouard  9966:     /* Reads scales values */
1.126     brouard  9967:     p=param[1][1];
                   9968:     
                   9969:     /* Reads comments: lines beginning with '#' */
                   9970:     while((c=getc(ficpar))=='#' && c!= EOF){
                   9971:       ungetc(c,ficpar);
                   9972:       fgets(line, MAXLINE, ficpar);
                   9973:       numlinepar++;
1.141     brouard  9974:       fputs(line,stdout);
1.126     brouard  9975:       fputs(line,ficparo);
                   9976:       fputs(line,ficlog);
                   9977:     }
                   9978:     ungetc(c,ficpar);
                   9979: 
                   9980:     for(i=1; i <=nlstate; i++){
                   9981:       for(j=1; j <=nlstate+ndeath-1; j++){
1.234     brouard  9982:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   9983:        if ( (i1-i) * (j1-j) != 0){
                   9984:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   9985:          exit(1);
                   9986:        }
                   9987:        printf("%1d%1d",i,j);
                   9988:        fprintf(ficparo,"%1d%1d",i1,j1);
                   9989:        fprintf(ficlog,"%1d%1d",i1,j1);
                   9990:        for(k=1; k<=ncovmodel;k++){
                   9991:          fscanf(ficpar,"%le",&delti3[i][j][k]);
                   9992:          printf(" %le",delti3[i][j][k]);
                   9993:          fprintf(ficparo," %le",delti3[i][j][k]);
                   9994:          fprintf(ficlog," %le",delti3[i][j][k]);
                   9995:        }
                   9996:        fscanf(ficpar,"\n");
                   9997:        numlinepar++;
                   9998:        printf("\n");
                   9999:        fprintf(ficparo,"\n");
                   10000:        fprintf(ficlog,"\n");
1.126     brouard  10001:       }
                   10002:     }
                   10003:     fflush(ficlog);
1.234     brouard  10004:     
1.145     brouard  10005:     /* Reads covariance matrix */
1.126     brouard  10006:     delti=delti3[1][1];
1.220     brouard  10007:                
                   10008:                
1.126     brouard  10009:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
1.220     brouard  10010:                
1.126     brouard  10011:     /* Reads comments: lines beginning with '#' */
                   10012:     while((c=getc(ficpar))=='#' && c!= EOF){
                   10013:       ungetc(c,ficpar);
                   10014:       fgets(line, MAXLINE, ficpar);
                   10015:       numlinepar++;
1.141     brouard  10016:       fputs(line,stdout);
1.126     brouard  10017:       fputs(line,ficparo);
                   10018:       fputs(line,ficlog);
                   10019:     }
                   10020:     ungetc(c,ficpar);
1.220     brouard  10021:                
1.126     brouard  10022:     matcov=matrix(1,npar,1,npar);
1.203     brouard  10023:     hess=matrix(1,npar,1,npar);
1.131     brouard  10024:     for(i=1; i <=npar; i++)
                   10025:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
1.220     brouard  10026:                
1.194     brouard  10027:     /* Scans npar lines */
1.126     brouard  10028:     for(i=1; i <=npar; i++){
1.226     brouard  10029:       count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
1.194     brouard  10030:       if(count != 3){
1.226     brouard  10031:        printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
1.194     brouard  10032: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
                   10033: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
1.226     brouard  10034:        fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
1.194     brouard  10035: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
                   10036: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
1.226     brouard  10037:        exit(1);
1.220     brouard  10038:       }else{
1.226     brouard  10039:        if(mle==1)
                   10040:          printf("%1d%1d%d",i1,j1,jk);
                   10041:       }
                   10042:       fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
                   10043:       fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
1.126     brouard  10044:       for(j=1; j <=i; j++){
1.226     brouard  10045:        fscanf(ficpar," %le",&matcov[i][j]);
                   10046:        if(mle==1){
                   10047:          printf(" %.5le",matcov[i][j]);
                   10048:        }
                   10049:        fprintf(ficlog," %.5le",matcov[i][j]);
                   10050:        fprintf(ficparo," %.5le",matcov[i][j]);
1.126     brouard  10051:       }
                   10052:       fscanf(ficpar,"\n");
                   10053:       numlinepar++;
                   10054:       if(mle==1)
1.220     brouard  10055:                                printf("\n");
1.126     brouard  10056:       fprintf(ficlog,"\n");
                   10057:       fprintf(ficparo,"\n");
                   10058:     }
1.194     brouard  10059:     /* End of read covariance matrix npar lines */
1.126     brouard  10060:     for(i=1; i <=npar; i++)
                   10061:       for(j=i+1;j<=npar;j++)
1.226     brouard  10062:        matcov[i][j]=matcov[j][i];
1.126     brouard  10063:     
                   10064:     if(mle==1)
                   10065:       printf("\n");
                   10066:     fprintf(ficlog,"\n");
                   10067:     
                   10068:     fflush(ficlog);
                   10069:     
                   10070:     /*-------- Rewriting parameter file ----------*/
                   10071:     strcpy(rfileres,"r");    /* "Rparameterfile */
                   10072:     strcat(rfileres,optionfilefiname);    /* Parameter file first name*/
                   10073:     strcat(rfileres,".");    /* */
                   10074:     strcat(rfileres,optionfilext);    /* Other files have txt extension */
                   10075:     if((ficres =fopen(rfileres,"w"))==NULL) {
1.201     brouard  10076:       printf("Problem writing new parameter file: %s\n", rfileres);goto end;
                   10077:       fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
1.126     brouard  10078:     }
                   10079:     fprintf(ficres,"#%s\n",version);
                   10080:   }    /* End of mle != -3 */
1.218     brouard  10081:   
1.186     brouard  10082:   /*  Main data
                   10083:    */
1.126     brouard  10084:   n= lastobs;
                   10085:   num=lvector(1,n);
                   10086:   moisnais=vector(1,n);
                   10087:   annais=vector(1,n);
                   10088:   moisdc=vector(1,n);
                   10089:   andc=vector(1,n);
1.220     brouard  10090:   weight=vector(1,n);
1.126     brouard  10091:   agedc=vector(1,n);
                   10092:   cod=ivector(1,n);
1.220     brouard  10093:   for(i=1;i<=n;i++){
1.234     brouard  10094:     num[i]=0;
                   10095:     moisnais[i]=0;
                   10096:     annais[i]=0;
                   10097:     moisdc[i]=0;
                   10098:     andc[i]=0;
                   10099:     agedc[i]=0;
                   10100:     cod[i]=0;
                   10101:     weight[i]=1.0; /* Equal weights, 1 by default */
                   10102:   }
1.126     brouard  10103:   mint=matrix(1,maxwav,1,n);
                   10104:   anint=matrix(1,maxwav,1,n);
1.131     brouard  10105:   s=imatrix(1,maxwav+1,1,n); /* s[i][j] health state for wave i and individual j */ 
1.126     brouard  10106:   tab=ivector(1,NCOVMAX);
1.144     brouard  10107:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.192     brouard  10108:   ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.126     brouard  10109: 
1.136     brouard  10110:   /* Reads data from file datafile */
                   10111:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
                   10112:     goto end;
                   10113: 
                   10114:   /* Calculation of the number of parameters from char model */
1.234     brouard  10115:   /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
1.137     brouard  10116:        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
                   10117:        k=3 V4 Tvar[k=3]= 4 (from V4)
                   10118:        k=2 V1 Tvar[k=2]= 1 (from V1)
                   10119:        k=1 Tvar[1]=2 (from V2)
1.234     brouard  10120:   */
                   10121:   
                   10122:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
                   10123:   TvarsDind=ivector(1,NCOVMAX); /*  */
                   10124:   TvarsD=ivector(1,NCOVMAX); /*  */
                   10125:   TvarsQind=ivector(1,NCOVMAX); /*  */
                   10126:   TvarsQ=ivector(1,NCOVMAX); /*  */
1.232     brouard  10127:   TvarF=ivector(1,NCOVMAX); /*  */
                   10128:   TvarFind=ivector(1,NCOVMAX); /*  */
                   10129:   TvarV=ivector(1,NCOVMAX); /*  */
                   10130:   TvarVind=ivector(1,NCOVMAX); /*  */
                   10131:   TvarA=ivector(1,NCOVMAX); /*  */
                   10132:   TvarAind=ivector(1,NCOVMAX); /*  */
1.231     brouard  10133:   TvarFD=ivector(1,NCOVMAX); /*  */
                   10134:   TvarFDind=ivector(1,NCOVMAX); /*  */
                   10135:   TvarFQ=ivector(1,NCOVMAX); /*  */
                   10136:   TvarFQind=ivector(1,NCOVMAX); /*  */
                   10137:   TvarVD=ivector(1,NCOVMAX); /*  */
                   10138:   TvarVDind=ivector(1,NCOVMAX); /*  */
                   10139:   TvarVQ=ivector(1,NCOVMAX); /*  */
                   10140:   TvarVQind=ivector(1,NCOVMAX); /*  */
                   10141: 
1.230     brouard  10142:   Tvalsel=vector(1,NCOVMAX); /*  */
1.233     brouard  10143:   Tvarsel=ivector(1,NCOVMAX); /*  */
1.226     brouard  10144:   Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
                   10145:   Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
                   10146:   Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
1.137     brouard  10147:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
                   10148:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
                   10149:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
                   10150:   */
                   10151:   /* For model-covariate k tells which data-covariate to use but
                   10152:     because this model-covariate is a construction we invent a new column
                   10153:     ncovcol + k1
                   10154:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
                   10155:     Tvar[3=V1*V4]=4+1 etc */
1.227     brouard  10156:   Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
                   10157:   Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
1.137     brouard  10158:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
                   10159:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
1.227     brouard  10160:      Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
1.137     brouard  10161:   */
1.145     brouard  10162:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
                   10163:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
1.141     brouard  10164:                            * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                   10165:                            * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
1.145     brouard  10166:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
1.137     brouard  10167:                         4 covariates (3 plus signs)
                   10168:                         Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
                   10169:                      */  
1.230     brouard  10170:   Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
1.227     brouard  10171:                                * individual dummy, fixed or varying:
                   10172:                                * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                   10173:                                * 3, 1, 0, 0, 0, 0, 0, 0},
1.230     brouard  10174:                                * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                   10175:                                * V1 df, V2 qf, V3 & V4 dv, V5 qv
                   10176:                                * Tmodelind[1]@9={9,0,3,2,}*/
                   10177:   TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
                   10178:   TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
1.228     brouard  10179:                                * individual quantitative, fixed or varying:
                   10180:                                * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                   10181:                                * 3, 1, 0, 0, 0, 0, 0, 0},
                   10182:                                * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
1.186     brouard  10183: /* Main decodemodel */
                   10184: 
1.187     brouard  10185: 
1.223     brouard  10186:   if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
1.136     brouard  10187:     goto end;
                   10188: 
1.137     brouard  10189:   if((double)(lastobs-imx)/(double)imx > 1.10){
                   10190:     nbwarn++;
                   10191:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   10192:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   10193:   }
1.136     brouard  10194:     /*  if(mle==1){*/
1.137     brouard  10195:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
                   10196:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
1.136     brouard  10197:   }
                   10198: 
                   10199:     /*-calculation of age at interview from date of interview and age at death -*/
                   10200:   agev=matrix(1,maxwav,1,imx);
                   10201: 
                   10202:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
                   10203:     goto end;
                   10204: 
1.126     brouard  10205: 
1.136     brouard  10206:   agegomp=(int)agemin;
                   10207:   free_vector(moisnais,1,n);
                   10208:   free_vector(annais,1,n);
1.126     brouard  10209:   /* free_matrix(mint,1,maxwav,1,n);
                   10210:      free_matrix(anint,1,maxwav,1,n);*/
1.215     brouard  10211:   /* free_vector(moisdc,1,n); */
                   10212:   /* free_vector(andc,1,n); */
1.145     brouard  10213:   /* */
                   10214:   
1.126     brouard  10215:   wav=ivector(1,imx);
1.214     brouard  10216:   /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
                   10217:   /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
                   10218:   /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
                   10219:   dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
                   10220:   bh=imatrix(1,lastpass-firstpass+2,1,imx);
                   10221:   mw=imatrix(1,lastpass-firstpass+2,1,imx);
1.126     brouard  10222:    
                   10223:   /* Concatenates waves */
1.214     brouard  10224:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   10225:      Death is a valid wave (if date is known).
                   10226:      mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
                   10227:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   10228:      and mw[mi+1][i]. dh depends on stepm.
                   10229:   */
                   10230: 
1.126     brouard  10231:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
1.248   ! brouard  10232:   /* Concatenates waves */
1.145     brouard  10233:  
1.215     brouard  10234:   free_vector(moisdc,1,n);
                   10235:   free_vector(andc,1,n);
                   10236: 
1.126     brouard  10237:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
                   10238:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
                   10239:   ncodemax[1]=1;
1.145     brouard  10240:   Ndum =ivector(-1,NCOVMAX);  
1.225     brouard  10241:   cptcoveff=0;
1.220     brouard  10242:   if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
                   10243:     tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; */
1.227     brouard  10244:   }
                   10245:   
                   10246:   ncovcombmax=pow(2,cptcoveff);
                   10247:   invalidvarcomb=ivector(1, ncovcombmax); 
                   10248:   for(i=1;i<ncovcombmax;i++)
                   10249:     invalidvarcomb[i]=0;
                   10250:   
1.211     brouard  10251:   /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
1.186     brouard  10252:      V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
1.211     brouard  10253:   /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
1.227     brouard  10254:   
1.200     brouard  10255:   /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
1.198     brouard  10256:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
1.186     brouard  10257:   /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
1.211     brouard  10258:   /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
                   10259:    * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
                   10260:    * (currently 0 or 1) in the data.
                   10261:    * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
                   10262:    * corresponding modality (h,j).
                   10263:    */
                   10264: 
1.145     brouard  10265:   h=0;
                   10266:   /*if (cptcovn > 0) */
1.126     brouard  10267:   m=pow(2,cptcoveff);
                   10268:  
1.144     brouard  10269:          /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
1.211     brouard  10270:           * For k=4 covariates, h goes from 1 to m=2**k
                   10271:           * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
                   10272:            * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
1.186     brouard  10273:           *     h\k   1     2     3     4
1.143     brouard  10274:           *______________________________  
                   10275:           *     1 i=1 1 i=1 1 i=1 1 i=1 1
                   10276:           *     2     2     1     1     1
                   10277:           *     3 i=2 1     2     1     1
                   10278:           *     4     2     2     1     1
                   10279:           *     5 i=3 1 i=2 1     2     1
                   10280:           *     6     2     1     2     1
                   10281:           *     7 i=4 1     2     2     1
                   10282:           *     8     2     2     2     1
1.197     brouard  10283:           *     9 i=5 1 i=3 1 i=2 1     2
                   10284:           *    10     2     1     1     2
                   10285:           *    11 i=6 1     2     1     2
                   10286:           *    12     2     2     1     2
                   10287:           *    13 i=7 1 i=4 1     2     2    
                   10288:           *    14     2     1     2     2
                   10289:           *    15 i=8 1     2     2     2
                   10290:           *    16     2     2     2     2
1.143     brouard  10291:           */
1.212     brouard  10292:   /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
1.211     brouard  10293:      /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
                   10294:      * and the value of each covariate?
                   10295:      * V1=1, V2=1, V3=2, V4=1 ?
                   10296:      * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
                   10297:      * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
                   10298:      * In order to get the real value in the data, we use nbcode
                   10299:      * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
                   10300:      * We are keeping this crazy system in order to be able (in the future?) 
                   10301:      * to have more than 2 values (0 or 1) for a covariate.
                   10302:      * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
                   10303:      * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
                   10304:      *              bbbbbbbb
                   10305:      *              76543210     
                   10306:      *   h-1        00000101 (6-1=5)
1.219     brouard  10307:      *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
1.211     brouard  10308:      *           &
                   10309:      *     1        00000001 (1)
1.219     brouard  10310:      *              00000000        = 1 & ((h-1) >> (k-1))
                   10311:      *          +1= 00000001 =1 
1.211     brouard  10312:      *
                   10313:      * h=14, k=3 => h'=h-1=13, k'=k-1=2
                   10314:      *          h'      1101 =2^3+2^2+0x2^1+2^0
                   10315:      *    >>k'            11
                   10316:      *          &   00000001
                   10317:      *            = 00000001
                   10318:      *      +1    = 00000010=2    =  codtabm(14,3)   
                   10319:      * Reverse h=6 and m=16?
                   10320:      * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
                   10321:      * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
                   10322:      * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
                   10323:      * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
                   10324:      * V3=decodtabm(14,3,2**4)=2
                   10325:      *          h'=13   1101 =2^3+2^2+0x2^1+2^0
                   10326:      *(h-1) >> (j-1)    0011 =13 >> 2
                   10327:      *          &1 000000001
                   10328:      *           = 000000001
                   10329:      *         +1= 000000010 =2
                   10330:      *                  2211
                   10331:      *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
                   10332:      *                  V3=2
1.220     brouard  10333:                 * codtabm and decodtabm are identical
1.211     brouard  10334:      */
                   10335: 
1.145     brouard  10336: 
                   10337:  free_ivector(Ndum,-1,NCOVMAX);
                   10338: 
                   10339: 
1.126     brouard  10340:     
1.186     brouard  10341:   /* Initialisation of ----------- gnuplot -------------*/
1.126     brouard  10342:   strcpy(optionfilegnuplot,optionfilefiname);
                   10343:   if(mle==-3)
1.201     brouard  10344:     strcat(optionfilegnuplot,"-MORT_");
1.126     brouard  10345:   strcat(optionfilegnuplot,".gp");
                   10346: 
                   10347:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
                   10348:     printf("Problem with file %s",optionfilegnuplot);
                   10349:   }
                   10350:   else{
1.204     brouard  10351:     fprintf(ficgp,"\n# IMaCh-%s\n", version); 
1.126     brouard  10352:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
1.141     brouard  10353:     //fprintf(ficgp,"set missing 'NaNq'\n");
                   10354:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
1.126     brouard  10355:   }
                   10356:   /*  fclose(ficgp);*/
1.186     brouard  10357: 
                   10358: 
                   10359:   /* Initialisation of --------- index.htm --------*/
1.126     brouard  10360: 
                   10361:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
                   10362:   if(mle==-3)
1.201     brouard  10363:     strcat(optionfilehtm,"-MORT_");
1.126     brouard  10364:   strcat(optionfilehtm,".htm");
                   10365:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
1.131     brouard  10366:     printf("Problem with %s \n",optionfilehtm);
                   10367:     exit(0);
1.126     brouard  10368:   }
                   10369: 
                   10370:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   10371:   strcat(optionfilehtmcov,"-cov.htm");
                   10372:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                   10373:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
                   10374:   }
                   10375:   else{
                   10376:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                   10377: <hr size=\"2\" color=\"#EC5E5E\"> \n\
1.204     brouard  10378: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.126     brouard  10379:          optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   10380:   }
                   10381: 
1.213     brouard  10382:   fprintf(fichtm,"<html><head>\n<head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n<title>IMaCh %s</title></head>\n <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n<font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>-EUROREVES-Institut de longévité-2013-2016-Japan Society for the Promotion of Sciences 日本学術振興会 (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br>  \
1.204     brouard  10383: <hr size=\"2\" color=\"#EC5E5E\"> \n\
                   10384: <font size=\"2\">IMaCh-%s <br> %s</font> \
1.126     brouard  10385: <hr size=\"2\" color=\"#EC5E5E\"> \n\
1.204     brouard  10386: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
1.126     brouard  10387: \n\
                   10388: <hr  size=\"2\" color=\"#EC5E5E\">\
                   10389:  <ul><li><h4>Parameter files</h4>\n\
                   10390:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                   10391:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                   10392:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                   10393:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                   10394:  - Date and time at start: %s</ul>\n",\
                   10395:          optionfilehtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model,\
                   10396:          optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                   10397:          fileres,fileres,\
                   10398:          filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                   10399:   fflush(fichtm);
                   10400: 
                   10401:   strcpy(pathr,path);
                   10402:   strcat(pathr,optionfilefiname);
1.184     brouard  10403: #ifdef WIN32
                   10404:   _chdir(optionfilefiname); /* Move to directory named optionfile */
                   10405: #else
1.126     brouard  10406:   chdir(optionfilefiname); /* Move to directory named optionfile */
1.184     brouard  10407: #endif
                   10408:          
1.126     brouard  10409:   
1.220     brouard  10410:   /* Calculates basic frequencies. Computes observed prevalence at single age 
                   10411:                 and for any valid combination of covariates
1.126     brouard  10412:      and prints on file fileres'p'. */
1.227     brouard  10413:   freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
                   10414:              firstpass, lastpass,  stepm,  weightopt, model);
1.126     brouard  10415: 
                   10416:   fprintf(fichtm,"\n");
                   10417:   fprintf(fichtm,"<br>Total number of observations=%d <br>\n\
                   10418: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   10419: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
                   10420:          imx,agemin,agemax,jmin,jmax,jmean);
                   10421:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
1.220     brouard  10422:        oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   10423:        newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   10424:        savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   10425:        oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
1.218     brouard  10426: 
1.126     brouard  10427:   /* For Powell, parameters are in a vector p[] starting at p[1]
                   10428:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                   10429:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
                   10430: 
                   10431:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
1.186     brouard  10432:   /* For mortality only */
1.126     brouard  10433:   if (mle==-3){
1.136     brouard  10434:     ximort=matrix(1,NDIM,1,NDIM); 
1.248   ! brouard  10435:     for(i=1;i<=NDIM;i++)
        !          10436:       for(j=1;j<=NDIM;j++)
        !          10437:        ximort[i][j]=0.;
1.186     brouard  10438:     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
1.126     brouard  10439:     cens=ivector(1,n);
                   10440:     ageexmed=vector(1,n);
                   10441:     agecens=vector(1,n);
                   10442:     dcwave=ivector(1,n);
1.223     brouard  10443:                
1.126     brouard  10444:     for (i=1; i<=imx; i++){
                   10445:       dcwave[i]=-1;
                   10446:       for (m=firstpass; m<=lastpass; m++)
1.226     brouard  10447:        if (s[m][i]>nlstate) {
                   10448:          dcwave[i]=m;
                   10449:          /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                   10450:          break;
                   10451:        }
1.126     brouard  10452:     }
1.226     brouard  10453:     
1.126     brouard  10454:     for (i=1; i<=imx; i++) {
                   10455:       if (wav[i]>0){
1.226     brouard  10456:        ageexmed[i]=agev[mw[1][i]][i];
                   10457:        j=wav[i];
                   10458:        agecens[i]=1.; 
                   10459:        
                   10460:        if (ageexmed[i]> 1 && wav[i] > 0){
                   10461:          agecens[i]=agev[mw[j][i]][i];
                   10462:          cens[i]= 1;
                   10463:        }else if (ageexmed[i]< 1) 
                   10464:          cens[i]= -1;
                   10465:        if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                   10466:          cens[i]=0 ;
1.126     brouard  10467:       }
                   10468:       else cens[i]=-1;
                   10469:     }
                   10470:     
                   10471:     for (i=1;i<=NDIM;i++) {
                   10472:       for (j=1;j<=NDIM;j++)
1.226     brouard  10473:        ximort[i][j]=(i == j ? 1.0 : 0.0);
1.126     brouard  10474:     }
                   10475:     
1.145     brouard  10476:     /*p[1]=0.0268; p[NDIM]=0.083;*/
1.126     brouard  10477:     /*printf("%lf %lf", p[1], p[2]);*/
                   10478:     
                   10479:     
1.136     brouard  10480: #ifdef GSL
                   10481:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
1.162     brouard  10482: #else
1.126     brouard  10483:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.136     brouard  10484: #endif
1.201     brouard  10485:     strcpy(filerespow,"POW-MORT_"); 
                   10486:     strcat(filerespow,fileresu);
1.126     brouard  10487:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   10488:       printf("Problem with resultfile: %s\n", filerespow);
                   10489:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   10490:     }
1.136     brouard  10491: #ifdef GSL
                   10492:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
1.162     brouard  10493: #else
1.126     brouard  10494:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
1.136     brouard  10495: #endif
1.126     brouard  10496:     /*  for (i=1;i<=nlstate;i++)
                   10497:        for(j=1;j<=nlstate+ndeath;j++)
                   10498:        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   10499:     */
                   10500:     fprintf(ficrespow,"\n");
1.136     brouard  10501: #ifdef GSL
                   10502:     /* gsl starts here */ 
                   10503:     T = gsl_multimin_fminimizer_nmsimplex;
                   10504:     gsl_multimin_fminimizer *sfm = NULL;
                   10505:     gsl_vector *ss, *x;
                   10506:     gsl_multimin_function minex_func;
                   10507: 
                   10508:     /* Initial vertex size vector */
                   10509:     ss = gsl_vector_alloc (NDIM);
                   10510:     
                   10511:     if (ss == NULL){
                   10512:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
                   10513:     }
                   10514:     /* Set all step sizes to 1 */
                   10515:     gsl_vector_set_all (ss, 0.001);
                   10516: 
                   10517:     /* Starting point */
1.126     brouard  10518:     
1.136     brouard  10519:     x = gsl_vector_alloc (NDIM);
                   10520:     
                   10521:     if (x == NULL){
                   10522:       gsl_vector_free(ss);
                   10523:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
                   10524:     }
                   10525:   
                   10526:     /* Initialize method and iterate */
                   10527:     /*     p[1]=0.0268; p[NDIM]=0.083; */
1.186     brouard  10528:     /*     gsl_vector_set(x, 0, 0.0268); */
                   10529:     /*     gsl_vector_set(x, 1, 0.083); */
1.136     brouard  10530:     gsl_vector_set(x, 0, p[1]);
                   10531:     gsl_vector_set(x, 1, p[2]);
                   10532: 
                   10533:     minex_func.f = &gompertz_f;
                   10534:     minex_func.n = NDIM;
                   10535:     minex_func.params = (void *)&p; /* ??? */
                   10536:     
                   10537:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
                   10538:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
                   10539:     
                   10540:     printf("Iterations beginning .....\n\n");
                   10541:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
                   10542: 
                   10543:     iteri=0;
                   10544:     while (rval == GSL_CONTINUE){
                   10545:       iteri++;
                   10546:       status = gsl_multimin_fminimizer_iterate(sfm);
                   10547:       
                   10548:       if (status) printf("error: %s\n", gsl_strerror (status));
                   10549:       fflush(0);
                   10550:       
                   10551:       if (status) 
                   10552:         break;
                   10553:       
                   10554:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
                   10555:       ssval = gsl_multimin_fminimizer_size (sfm);
                   10556:       
                   10557:       if (rval == GSL_SUCCESS)
                   10558:         printf ("converged to a local maximum at\n");
                   10559:       
                   10560:       printf("%5d ", iteri);
                   10561:       for (it = 0; it < NDIM; it++){
                   10562:        printf ("%10.5f ", gsl_vector_get (sfm->x, it));
                   10563:       }
                   10564:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
                   10565:     }
                   10566:     
                   10567:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
                   10568:     
                   10569:     gsl_vector_free(x); /* initial values */
                   10570:     gsl_vector_free(ss); /* inital step size */
                   10571:     for (it=0; it<NDIM; it++){
                   10572:       p[it+1]=gsl_vector_get(sfm->x,it);
                   10573:       fprintf(ficrespow," %.12lf", p[it]);
                   10574:     }
                   10575:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
                   10576: #endif
                   10577: #ifdef POWELL
                   10578:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
                   10579: #endif  
1.126     brouard  10580:     fclose(ficrespow);
                   10581:     
1.203     brouard  10582:     hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
1.126     brouard  10583: 
                   10584:     for(i=1; i <=NDIM; i++)
                   10585:       for(j=i+1;j<=NDIM;j++)
1.220     brouard  10586:                                matcov[i][j]=matcov[j][i];
1.126     brouard  10587:     
                   10588:     printf("\nCovariance matrix\n ");
1.203     brouard  10589:     fprintf(ficlog,"\nCovariance matrix\n ");
1.126     brouard  10590:     for(i=1; i <=NDIM; i++) {
                   10591:       for(j=1;j<=NDIM;j++){ 
1.220     brouard  10592:                                printf("%f ",matcov[i][j]);
                   10593:                                fprintf(ficlog,"%f ",matcov[i][j]);
1.126     brouard  10594:       }
1.203     brouard  10595:       printf("\n ");  fprintf(ficlog,"\n ");
1.126     brouard  10596:     }
                   10597:     
                   10598:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
1.193     brouard  10599:     for (i=1;i<=NDIM;i++) {
1.126     brouard  10600:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
1.193     brouard  10601:       fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   10602:     }
1.126     brouard  10603:     lsurv=vector(1,AGESUP);
                   10604:     lpop=vector(1,AGESUP);
                   10605:     tpop=vector(1,AGESUP);
                   10606:     lsurv[agegomp]=100000;
                   10607:     
                   10608:     for (k=agegomp;k<=AGESUP;k++) {
                   10609:       agemortsup=k;
                   10610:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
                   10611:     }
                   10612:     
                   10613:     for (k=agegomp;k<agemortsup;k++)
                   10614:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
                   10615:     
                   10616:     for (k=agegomp;k<agemortsup;k++){
                   10617:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
                   10618:       sumlpop=sumlpop+lpop[k];
                   10619:     }
                   10620:     
                   10621:     tpop[agegomp]=sumlpop;
                   10622:     for (k=agegomp;k<(agemortsup-3);k++){
                   10623:       /*  tpop[k+1]=2;*/
                   10624:       tpop[k+1]=tpop[k]-lpop[k];
                   10625:     }
                   10626:     
                   10627:     
                   10628:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
                   10629:     for (k=agegomp;k<(agemortsup-2);k++) 
                   10630:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   10631:     
                   10632:     
                   10633:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
1.220     brouard  10634:                ageminpar=50;
                   10635:                agemaxpar=100;
1.194     brouard  10636:     if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
                   10637:        printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
                   10638: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   10639: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
                   10640:        fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
                   10641: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   10642: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.220     brouard  10643:     }else{
                   10644:                        printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                   10645:                        fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
1.201     brouard  10646:       printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
1.220     brouard  10647:                }
1.201     brouard  10648:     printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
1.126     brouard  10649:                     stepm, weightopt,\
                   10650:                     model,imx,p,matcov,agemortsup);
                   10651:     
                   10652:     free_vector(lsurv,1,AGESUP);
                   10653:     free_vector(lpop,1,AGESUP);
                   10654:     free_vector(tpop,1,AGESUP);
1.220     brouard  10655:     free_matrix(ximort,1,NDIM,1,NDIM);
1.136     brouard  10656:     free_ivector(cens,1,n);
                   10657:     free_vector(agecens,1,n);
                   10658:     free_ivector(dcwave,1,n);
1.220     brouard  10659: #ifdef GSL
1.136     brouard  10660: #endif
1.186     brouard  10661:   } /* Endof if mle==-3 mortality only */
1.205     brouard  10662:   /* Standard  */
                   10663:   else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
                   10664:     globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
                   10665:     /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
1.132     brouard  10666:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
1.126     brouard  10667:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   10668:     for (k=1; k<=npar;k++)
                   10669:       printf(" %d %8.5f",k,p[k]);
                   10670:     printf("\n");
1.205     brouard  10671:     if(mle>=1){ /* Could be 1 or 2, Real Maximization */
                   10672:       /* mlikeli uses func not funcone */
1.247     brouard  10673:       /* for(i=1;i<nlstate;i++){ */
                   10674:       /*       /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
                   10675:       /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
                   10676:       /* } */
1.205     brouard  10677:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
                   10678:     }
                   10679:     if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
                   10680:       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
                   10681:       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
                   10682:       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   10683:     }
                   10684:     globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
1.126     brouard  10685:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   10686:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   10687:     for (k=1; k<=npar;k++)
                   10688:       printf(" %d %8.5f",k,p[k]);
                   10689:     printf("\n");
                   10690:     
                   10691:     /*--------- results files --------------*/
1.224     brouard  10692:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model);
1.126     brouard  10693:     
                   10694:     
                   10695:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   10696:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   10697:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   10698:     for(i=1,jk=1; i <=nlstate; i++){
                   10699:       for(k=1; k <=(nlstate+ndeath); k++){
1.225     brouard  10700:        if (k != i) {
                   10701:          printf("%d%d ",i,k);
                   10702:          fprintf(ficlog,"%d%d ",i,k);
                   10703:          fprintf(ficres,"%1d%1d ",i,k);
                   10704:          for(j=1; j <=ncovmodel; j++){
                   10705:            printf("%12.7f ",p[jk]);
                   10706:            fprintf(ficlog,"%12.7f ",p[jk]);
                   10707:            fprintf(ficres,"%12.7f ",p[jk]);
                   10708:            jk++; 
                   10709:          }
                   10710:          printf("\n");
                   10711:          fprintf(ficlog,"\n");
                   10712:          fprintf(ficres,"\n");
                   10713:        }
1.126     brouard  10714:       }
                   10715:     }
1.203     brouard  10716:     if(mle != 0){
                   10717:       /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
1.126     brouard  10718:       ftolhess=ftol; /* Usually correct */
1.203     brouard  10719:       hesscov(matcov, hess, p, npar, delti, ftolhess, func);
                   10720:       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
                   10721:       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
                   10722:       for(i=1,jk=1; i <=nlstate; i++){
1.225     brouard  10723:        for(k=1; k <=(nlstate+ndeath); k++){
                   10724:          if (k != i) {
                   10725:            printf("%d%d ",i,k);
                   10726:            fprintf(ficlog,"%d%d ",i,k);
                   10727:            for(j=1; j <=ncovmodel; j++){
                   10728:              printf("%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                   10729:              fprintf(ficlog,"%12.7f W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk], p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                   10730:              jk++; 
                   10731:            }
                   10732:            printf("\n");
                   10733:            fprintf(ficlog,"\n");
                   10734:          }
                   10735:        }
1.193     brouard  10736:       }
1.203     brouard  10737:     } /* end of hesscov and Wald tests */
1.225     brouard  10738:     
1.203     brouard  10739:     /*  */
1.126     brouard  10740:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   10741:     printf("# Scales (for hessian or gradient estimation)\n");
                   10742:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                   10743:     for(i=1,jk=1; i <=nlstate; i++){
                   10744:       for(j=1; j <=nlstate+ndeath; j++){
1.225     brouard  10745:        if (j!=i) {
                   10746:          fprintf(ficres,"%1d%1d",i,j);
                   10747:          printf("%1d%1d",i,j);
                   10748:          fprintf(ficlog,"%1d%1d",i,j);
                   10749:          for(k=1; k<=ncovmodel;k++){
                   10750:            printf(" %.5e",delti[jk]);
                   10751:            fprintf(ficlog," %.5e",delti[jk]);
                   10752:            fprintf(ficres," %.5e",delti[jk]);
                   10753:            jk++;
                   10754:          }
                   10755:          printf("\n");
                   10756:          fprintf(ficlog,"\n");
                   10757:          fprintf(ficres,"\n");
                   10758:        }
1.126     brouard  10759:       }
                   10760:     }
                   10761:     
                   10762:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
1.203     brouard  10763:     if(mle >= 1) /* To big for the screen */
1.126     brouard  10764:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   10765:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   10766:     /* # 121 Var(a12)\n\ */
                   10767:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   10768:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   10769:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   10770:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   10771:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   10772:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   10773:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   10774:     
                   10775:     
                   10776:     /* Just to have a covariance matrix which will be more understandable
                   10777:        even is we still don't want to manage dictionary of variables
                   10778:     */
                   10779:     for(itimes=1;itimes<=2;itimes++){
                   10780:       jj=0;
                   10781:       for(i=1; i <=nlstate; i++){
1.225     brouard  10782:        for(j=1; j <=nlstate+ndeath; j++){
                   10783:          if(j==i) continue;
                   10784:          for(k=1; k<=ncovmodel;k++){
                   10785:            jj++;
                   10786:            ca[0]= k+'a'-1;ca[1]='\0';
                   10787:            if(itimes==1){
                   10788:              if(mle>=1)
                   10789:                printf("#%1d%1d%d",i,j,k);
                   10790:              fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   10791:              fprintf(ficres,"#%1d%1d%d",i,j,k);
                   10792:            }else{
                   10793:              if(mle>=1)
                   10794:                printf("%1d%1d%d",i,j,k);
                   10795:              fprintf(ficlog,"%1d%1d%d",i,j,k);
                   10796:              fprintf(ficres,"%1d%1d%d",i,j,k);
                   10797:            }
                   10798:            ll=0;
                   10799:            for(li=1;li <=nlstate; li++){
                   10800:              for(lj=1;lj <=nlstate+ndeath; lj++){
                   10801:                if(lj==li) continue;
                   10802:                for(lk=1;lk<=ncovmodel;lk++){
                   10803:                  ll++;
                   10804:                  if(ll<=jj){
                   10805:                    cb[0]= lk +'a'-1;cb[1]='\0';
                   10806:                    if(ll<jj){
                   10807:                      if(itimes==1){
                   10808:                        if(mle>=1)
                   10809:                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   10810:                        fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   10811:                        fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   10812:                      }else{
                   10813:                        if(mle>=1)
                   10814:                          printf(" %.5e",matcov[jj][ll]); 
                   10815:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   10816:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   10817:                      }
                   10818:                    }else{
                   10819:                      if(itimes==1){
                   10820:                        if(mle>=1)
                   10821:                          printf(" Var(%s%1d%1d)",ca,i,j);
                   10822:                        fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                   10823:                        fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                   10824:                      }else{
                   10825:                        if(mle>=1)
                   10826:                          printf(" %.7e",matcov[jj][ll]); 
                   10827:                        fprintf(ficlog," %.7e",matcov[jj][ll]); 
                   10828:                        fprintf(ficres," %.7e",matcov[jj][ll]); 
                   10829:                      }
                   10830:                    }
                   10831:                  }
                   10832:                } /* end lk */
                   10833:              } /* end lj */
                   10834:            } /* end li */
                   10835:            if(mle>=1)
                   10836:              printf("\n");
                   10837:            fprintf(ficlog,"\n");
                   10838:            fprintf(ficres,"\n");
                   10839:            numlinepar++;
                   10840:          } /* end k*/
                   10841:        } /*end j */
1.126     brouard  10842:       } /* end i */
                   10843:     } /* end itimes */
                   10844:     
                   10845:     fflush(ficlog);
                   10846:     fflush(ficres);
1.225     brouard  10847:     while(fgets(line, MAXLINE, ficpar)) {
                   10848:       /* If line starts with a # it is a comment */
                   10849:       if (line[0] == '#') {
                   10850:        numlinepar++;
                   10851:        fputs(line,stdout);
                   10852:        fputs(line,ficparo);
                   10853:        fputs(line,ficlog);
                   10854:        continue;
                   10855:       }else
                   10856:        break;
                   10857:     }
                   10858:     
1.209     brouard  10859:     /* while((c=getc(ficpar))=='#' && c!= EOF){ */
                   10860:     /*   ungetc(c,ficpar); */
                   10861:     /*   fgets(line, MAXLINE, ficpar); */
                   10862:     /*   fputs(line,stdout); */
                   10863:     /*   fputs(line,ficparo); */
                   10864:     /* } */
                   10865:     /* ungetc(c,ficpar); */
1.126     brouard  10866:     
                   10867:     estepm=0;
1.209     brouard  10868:     if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
1.225     brouard  10869:       
                   10870:       if (num_filled != 6) {
                   10871:        printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                   10872:        fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                   10873:        goto end;
                   10874:       }
                   10875:       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
                   10876:     }
                   10877:     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
                   10878:     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
                   10879:     
1.209     brouard  10880:     /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
1.126     brouard  10881:     if (estepm==0 || estepm < stepm) estepm=stepm;
                   10882:     if (fage <= 2) {
                   10883:       bage = ageminpar;
                   10884:       fage = agemaxpar;
                   10885:     }
                   10886:     
                   10887:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
1.211     brouard  10888:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   10889:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
1.220     brouard  10890:                
1.186     brouard  10891:     /* Other stuffs, more or less useful */    
1.126     brouard  10892:     while((c=getc(ficpar))=='#' && c!= EOF){
                   10893:       ungetc(c,ficpar);
                   10894:       fgets(line, MAXLINE, ficpar);
1.141     brouard  10895:       fputs(line,stdout);
1.126     brouard  10896:       fputs(line,ficparo);
                   10897:     }
                   10898:     ungetc(c,ficpar);
                   10899:     
                   10900:     fscanf(ficpar,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav);
                   10901:     fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   10902:     fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   10903:     printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   10904:     fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   10905:     
                   10906:     while((c=getc(ficpar))=='#' && c!= EOF){
                   10907:       ungetc(c,ficpar);
                   10908:       fgets(line, MAXLINE, ficpar);
1.141     brouard  10909:       fputs(line,stdout);
1.126     brouard  10910:       fputs(line,ficparo);
                   10911:     }
                   10912:     ungetc(c,ficpar);
                   10913:     
                   10914:     
                   10915:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                   10916:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
                   10917:     
                   10918:     fscanf(ficpar,"pop_based=%d\n",&popbased);
1.193     brouard  10919:     fprintf(ficlog,"pop_based=%d\n",popbased);
1.126     brouard  10920:     fprintf(ficparo,"pop_based=%d\n",popbased);   
                   10921:     fprintf(ficres,"pop_based=%d\n",popbased);   
                   10922:     
                   10923:     while((c=getc(ficpar))=='#' && c!= EOF){
                   10924:       ungetc(c,ficpar);
                   10925:       fgets(line, MAXLINE, ficpar);
1.141     brouard  10926:       fputs(line,stdout);
1.238     brouard  10927:       fputs(line,ficres);
1.126     brouard  10928:       fputs(line,ficparo);
                   10929:     }
                   10930:     ungetc(c,ficpar);
                   10931:     
                   10932:     fscanf(ficpar,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj);
                   10933:     fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   10934:     printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   10935:     fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   10936:     fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   10937:     /* day and month of proj2 are not used but only year anproj2.*/
                   10938:     
1.217     brouard  10939:     while((c=getc(ficpar))=='#' && c!= EOF){
                   10940:       ungetc(c,ficpar);
                   10941:       fgets(line, MAXLINE, ficpar);
                   10942:       fputs(line,stdout);
                   10943:       fputs(line,ficparo);
1.238     brouard  10944:       fputs(line,ficres);
1.217     brouard  10945:     }
                   10946:     ungetc(c,ficpar);
                   10947:     
                   10948:     fscanf(ficpar,"backcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&backcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj);
1.223     brouard  10949:     fprintf(ficparo,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   10950:     fprintf(ficlog,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   10951:     fprintf(ficres,"backcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",backcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
1.217     brouard  10952:     /* day and month of proj2 are not used but only year anproj2.*/
1.126     brouard  10953:     
1.230     brouard  10954:     /* Results */
1.235     brouard  10955:     nresult=0;
1.230     brouard  10956:     while(fgets(line, MAXLINE, ficpar)) {
                   10957:       /* If line starts with a # it is a comment */
                   10958:       if (line[0] == '#') {
                   10959:        numlinepar++;
                   10960:        fputs(line,stdout);
                   10961:        fputs(line,ficparo);
                   10962:        fputs(line,ficlog);
1.238     brouard  10963:        fputs(line,ficres);
1.230     brouard  10964:        continue;
                   10965:       }else
                   10966:        break;
                   10967:     }
1.240     brouard  10968:     if (!feof(ficpar))
1.230     brouard  10969:     while((num_filled=sscanf(line,"result:%[^\n]\n",resultline)) !=EOF){
1.240     brouard  10970:       if (num_filled == 0){
1.230     brouard  10971:        resultline[0]='\0';
1.240     brouard  10972:       break;
                   10973:       } else if (num_filled != 1){
1.230     brouard  10974:        printf("ERROR %d: result line should be at minimum 'result=' %s\n",num_filled, line);
                   10975:       }
1.235     brouard  10976:       nresult++; /* Sum of resultlines */
                   10977:       printf("Result %d: result=%s\n",nresult, resultline);
                   10978:       if(nresult > MAXRESULTLINES){
                   10979:        printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
                   10980:        fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\n",MAXRESULTLINES,nresult);
                   10981:        goto end;
                   10982:       }
                   10983:       decoderesult(resultline, nresult); /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
1.238     brouard  10984:       fprintf(ficparo,"result: %s\n",resultline);
                   10985:       fprintf(ficres,"result: %s\n",resultline);
                   10986:       fprintf(ficlog,"result: %s\n",resultline);
1.230     brouard  10987:       while(fgets(line, MAXLINE, ficpar)) {
                   10988:        /* If line starts with a # it is a comment */
                   10989:        if (line[0] == '#') {
                   10990:          numlinepar++;
                   10991:          fputs(line,stdout);
                   10992:          fputs(line,ficparo);
1.238     brouard  10993:          fputs(line,ficres);
1.230     brouard  10994:          fputs(line,ficlog);
                   10995:          continue;
                   10996:        }else
                   10997:          break;
                   10998:       }
                   10999:       if (feof(ficpar))
                   11000:        break;
                   11001:       else{ /* Processess output results for this combination of covariate values */
                   11002:       }                                   
1.240     brouard  11003:     } /* end while */
1.230     brouard  11004: 
                   11005: 
1.126     brouard  11006:     
1.230     brouard  11007:     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
1.145     brouard  11008:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
1.126     brouard  11009:     
                   11010:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
1.194     brouard  11011:     if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
1.230     brouard  11012:       printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
1.194     brouard  11013: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   11014: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.230     brouard  11015:       fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
1.194     brouard  11016: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   11017: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.220     brouard  11018:     }else{
1.218     brouard  11019:       printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p);
1.220     brouard  11020:     }
                   11021:     printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
1.225     brouard  11022:                 model,imx,jmin,jmax,jmean,rfileres,popforecast,prevfcast,backcast, estepm, \
                   11023:                 jprev1,mprev1,anprev1,dateprev1,jprev2,mprev2,anprev2,dateprev2);
1.220     brouard  11024:                
1.225     brouard  11025:     /*------------ free_vector  -------------*/
                   11026:     /*  chdir(path); */
1.220     brouard  11027:                
1.215     brouard  11028:     /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
                   11029:     /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
                   11030:     /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
                   11031:     /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
1.126     brouard  11032:     free_lvector(num,1,n);
                   11033:     free_vector(agedc,1,n);
                   11034:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
                   11035:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
                   11036:     fclose(ficparo);
                   11037:     fclose(ficres);
1.220     brouard  11038:                
                   11039:                
1.186     brouard  11040:     /* Other results (useful)*/
1.220     brouard  11041:                
                   11042:                
1.126     brouard  11043:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
1.180     brouard  11044:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
                   11045:     prlim=matrix(1,nlstate,1,nlstate);
1.209     brouard  11046:     prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
1.126     brouard  11047:     fclose(ficrespl);
                   11048: 
                   11049:     /*------------- h Pij x at various ages ------------*/
1.180     brouard  11050:     /*#include "hpijx.h"*/
                   11051:     hPijx(p, bage, fage);
1.145     brouard  11052:     fclose(ficrespij);
1.227     brouard  11053:     
1.220     brouard  11054:     /* ncovcombmax=  pow(2,cptcoveff); */
1.219     brouard  11055:     /*-------------- Variance of one-step probabilities---*/
1.145     brouard  11056:     k=1;
1.126     brouard  11057:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
1.227     brouard  11058:     
1.219     brouard  11059:     /* Prevalence for each covariates in probs[age][status][cov] */
1.218     brouard  11060:     probs= ma3x(1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
1.126     brouard  11061:     for(i=1;i<=AGESUP;i++)
1.219     brouard  11062:       for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
1.225     brouard  11063:        for(k=1;k<=ncovcombmax;k++)
                   11064:          probs[i][j][k]=0.;
1.219     brouard  11065:     prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
                   11066:     if (mobilav!=0 ||mobilavproj !=0 ) {
                   11067:       mobaverages= ma3x(1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
1.227     brouard  11068:       for(i=1;i<=AGESUP;i++)
                   11069:        for(j=1;j<=nlstate;j++)
                   11070:          for(k=1;k<=ncovcombmax;k++)
                   11071:            mobaverages[i][j][k]=0.;
1.219     brouard  11072:       mobaverage=mobaverages;
                   11073:       if (mobilav!=0) {
1.235     brouard  11074:        printf("Movingaveraging observed prevalence\n");
1.227     brouard  11075:        if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
                   11076:          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   11077:          printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   11078:        }
1.219     brouard  11079:       }
                   11080:       /* /\* Prevalence for each covariates in probs[age][status][cov] *\/ */
                   11081:       /* prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
                   11082:       else if (mobilavproj !=0) {
1.235     brouard  11083:        printf("Movingaveraging projected observed prevalence\n");
1.227     brouard  11084:        if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
                   11085:          fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
                   11086:          printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
                   11087:        }
1.219     brouard  11088:       }
                   11089:     }/* end if moving average */
1.227     brouard  11090:     
1.126     brouard  11091:     /*---------- Forecasting ------------------*/
                   11092:     /*if((stepm == 1) && (strcmp(model,".")==0)){*/
                   11093:     if(prevfcast==1){
                   11094:       /*    if(stepm ==1){*/
1.225     brouard  11095:       prevforecast(fileresu, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);
1.126     brouard  11096:     }
1.217     brouard  11097:     if(backcast==1){
1.219     brouard  11098:       ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);       
                   11099:       ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);       
                   11100:       ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
                   11101: 
                   11102:       /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
                   11103: 
                   11104:       bprlim=matrix(1,nlstate,1,nlstate);
                   11105:       back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
                   11106:       fclose(ficresplb);
                   11107: 
1.222     brouard  11108:       hBijx(p, bage, fage, mobaverage);
                   11109:       fclose(ficrespijb);
1.219     brouard  11110:       free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
                   11111: 
                   11112:       /* prevbackforecast(fileresu, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, mobilavproj,
1.225     brouard  11113:         bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
1.219     brouard  11114:       free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   11115:       free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   11116:       free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   11117:     }
1.217     brouard  11118:     
1.186     brouard  11119:  
                   11120:     /* ------ Other prevalence ratios------------ */
1.126     brouard  11121: 
1.215     brouard  11122:     free_ivector(wav,1,imx);
                   11123:     free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
                   11124:     free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
                   11125:     free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
1.218     brouard  11126:                
                   11127:                
1.127     brouard  11128:     /*---------- Health expectancies, no variances ------------*/
1.218     brouard  11129:                
1.201     brouard  11130:     strcpy(filerese,"E_");
                   11131:     strcat(filerese,fileresu);
1.126     brouard  11132:     if((ficreseij=fopen(filerese,"w"))==NULL) {
                   11133:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   11134:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   11135:     }
1.208     brouard  11136:     printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
                   11137:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
1.238     brouard  11138: 
                   11139:     pstamp(ficreseij);
1.219     brouard  11140:                
1.235     brouard  11141:     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
                   11142:     if (cptcovn < 1){i1=1;}
                   11143:     
                   11144:     for(nres=1; nres <= nresult; nres++) /* For each resultline */
                   11145:     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
                   11146:       if(TKresult[nres]!= k)
                   11147:        continue;
1.219     brouard  11148:       fprintf(ficreseij,"\n#****** ");
1.235     brouard  11149:       printf("\n#****** ");
1.225     brouard  11150:       for(j=1;j<=cptcoveff;j++) {
1.227     brouard  11151:        fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
1.235     brouard  11152:        printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   11153:       }
                   11154:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
                   11155:        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11156:        fprintf(ficreseij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
1.219     brouard  11157:       }
                   11158:       fprintf(ficreseij,"******\n");
1.235     brouard  11159:       printf("******\n");
1.219     brouard  11160:       
                   11161:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   11162:       oldm=oldms;savm=savms;
1.235     brouard  11163:       evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
1.127     brouard  11164:       
1.219     brouard  11165:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
1.127     brouard  11166:     }
                   11167:     fclose(ficreseij);
1.208     brouard  11168:     printf("done evsij\n");fflush(stdout);
                   11169:     fprintf(ficlog,"done evsij\n");fflush(ficlog);
1.218     brouard  11170:                
1.227     brouard  11171:     /*---------- State-specific expectancies and variances ------------*/
1.218     brouard  11172:                
                   11173:                
1.201     brouard  11174:     strcpy(filerest,"T_");
                   11175:     strcat(filerest,fileresu);
1.127     brouard  11176:     if((ficrest=fopen(filerest,"w"))==NULL) {
                   11177:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                   11178:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
                   11179:     }
1.208     brouard  11180:     printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
                   11181:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
1.218     brouard  11182:                
1.126     brouard  11183: 
1.201     brouard  11184:     strcpy(fileresstde,"STDE_");
                   11185:     strcat(fileresstde,fileresu);
1.126     brouard  11186:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
1.227     brouard  11187:       printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
                   11188:       fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
1.126     brouard  11189:     }
1.227     brouard  11190:     printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
                   11191:     fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
1.126     brouard  11192: 
1.201     brouard  11193:     strcpy(filerescve,"CVE_");
                   11194:     strcat(filerescve,fileresu);
1.126     brouard  11195:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
1.227     brouard  11196:       printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
                   11197:       fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
1.126     brouard  11198:     }
1.227     brouard  11199:     printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
                   11200:     fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
1.126     brouard  11201: 
1.201     brouard  11202:     strcpy(fileresv,"V_");
                   11203:     strcat(fileresv,fileresu);
1.126     brouard  11204:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
                   11205:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
                   11206:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
                   11207:     }
1.227     brouard  11208:     printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
                   11209:     fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
1.126     brouard  11210: 
1.145     brouard  11211:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   11212:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   11213:           
1.235     brouard  11214:     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
                   11215:     if (cptcovn < 1){i1=1;}
                   11216:     
                   11217:     for(nres=1; nres <= nresult; nres++) /* For each resultline */
                   11218:     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
                   11219:       if(TKresult[nres]!= k)
                   11220:        continue;
1.242     brouard  11221:       printf("\n#****** Result for:");
                   11222:       fprintf(ficrest,"\n#****** Result for:");
                   11223:       fprintf(ficlog,"\n#****** Result for:");
1.227     brouard  11224:       for(j=1;j<=cptcoveff;j++){ 
                   11225:        printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   11226:        fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   11227:        fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   11228:       }
1.235     brouard  11229:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
                   11230:        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11231:        fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11232:        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11233:       }        
1.208     brouard  11234:       fprintf(ficrest,"******\n");
1.227     brouard  11235:       fprintf(ficlog,"******\n");
                   11236:       printf("******\n");
1.208     brouard  11237:       
                   11238:       fprintf(ficresstdeij,"\n#****** ");
                   11239:       fprintf(ficrescveij,"\n#****** ");
1.225     brouard  11240:       for(j=1;j<=cptcoveff;j++) {
1.227     brouard  11241:        fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   11242:        fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
1.208     brouard  11243:       }
1.235     brouard  11244:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
                   11245:        fprintf(ficresstdeij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11246:        fprintf(ficrescveij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11247:       }        
1.208     brouard  11248:       fprintf(ficresstdeij,"******\n");
                   11249:       fprintf(ficrescveij,"******\n");
                   11250:       
                   11251:       fprintf(ficresvij,"\n#****** ");
1.238     brouard  11252:       /* pstamp(ficresvij); */
1.225     brouard  11253:       for(j=1;j<=cptcoveff;j++) 
1.227     brouard  11254:        fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
1.235     brouard  11255:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
                   11256:        fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11257:       }        
1.208     brouard  11258:       fprintf(ficresvij,"******\n");
                   11259:       
                   11260:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   11261:       oldm=oldms;savm=savms;
1.235     brouard  11262:       printf(" cvevsij ");
                   11263:       fprintf(ficlog, " cvevsij ");
                   11264:       cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
1.208     brouard  11265:       printf(" end cvevsij \n ");
                   11266:       fprintf(ficlog, " end cvevsij \n ");
                   11267:       
                   11268:       /*
                   11269:        */
                   11270:       /* goto endfree; */
                   11271:       
                   11272:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   11273:       pstamp(ficrest);
                   11274:       
                   11275:       
                   11276:       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
1.227     brouard  11277:        oldm=oldms;savm=savms; /* ZZ Segmentation fault */
                   11278:        cptcod= 0; /* To be deleted */
                   11279:        printf("varevsij vpopbased=%d \n",vpopbased);
                   11280:        fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
1.235     brouard  11281:        varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
1.227     brouard  11282:        fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
                   11283:        if(vpopbased==1)
                   11284:          fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
                   11285:        else
                   11286:          fprintf(ficrest,"the age specific period (stable) prevalences in each health state \n");
                   11287:        fprintf(ficrest,"# Age popbased mobilav e.. (std) ");
                   11288:        for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                   11289:        fprintf(ficrest,"\n");
                   11290:        /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
                   11291:        epj=vector(1,nlstate+1);
                   11292:        printf("Computing age specific period (stable) prevalences in each health state \n");
                   11293:        fprintf(ficlog,"Computing age specific period (stable) prevalences in each health state \n");
                   11294:        for(age=bage; age <=fage ;age++){
1.235     brouard  11295:          prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
1.227     brouard  11296:          if (vpopbased==1) {
                   11297:            if(mobilav ==0){
                   11298:              for(i=1; i<=nlstate;i++)
                   11299:                prlim[i][i]=probs[(int)age][i][k];
                   11300:            }else{ /* mobilav */ 
                   11301:              for(i=1; i<=nlstate;i++)
                   11302:                prlim[i][i]=mobaverage[(int)age][i][k];
                   11303:            }
                   11304:          }
1.219     brouard  11305:          
1.227     brouard  11306:          fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
                   11307:          /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
                   11308:          /* printf(" age %4.0f ",age); */
                   11309:          for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                   11310:            for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   11311:              epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   11312:              /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   11313:              /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                   11314:            }
                   11315:            epj[nlstate+1] +=epj[j];
                   11316:          }
                   11317:          /* printf(" age %4.0f \n",age); */
1.219     brouard  11318:          
1.227     brouard  11319:          for(i=1, vepp=0.;i <=nlstate;i++)
                   11320:            for(j=1;j <=nlstate;j++)
                   11321:              vepp += vareij[i][j][(int)age];
                   11322:          fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                   11323:          for(j=1;j <=nlstate;j++){
                   11324:            fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                   11325:          }
                   11326:          fprintf(ficrest,"\n");
                   11327:        }
1.208     brouard  11328:       } /* End vpopbased */
                   11329:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   11330:       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   11331:       free_vector(epj,1,nlstate+1);
1.235     brouard  11332:       printf("done selection\n");fflush(stdout);
                   11333:       fprintf(ficlog,"done selection\n");fflush(ficlog);
1.208     brouard  11334:       
1.145     brouard  11335:       /*}*/
1.235     brouard  11336:     } /* End k selection */
1.227     brouard  11337: 
                   11338:     printf("done State-specific expectancies\n");fflush(stdout);
                   11339:     fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
                   11340: 
1.126     brouard  11341:     /*------- Variance of period (stable) prevalence------*/   
1.227     brouard  11342:     
1.201     brouard  11343:     strcpy(fileresvpl,"VPL_");
                   11344:     strcat(fileresvpl,fileresu);
1.126     brouard  11345:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
                   11346:       printf("Problem with variance of period (stable) prevalence  resultfile: %s\n", fileresvpl);
                   11347:       exit(0);
                   11348:     }
1.208     brouard  11349:     printf("Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
                   11350:     fprintf(ficlog, "Computing Variance-covariance of period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
1.227     brouard  11351:     
1.145     brouard  11352:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   11353:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
1.227     brouard  11354:     
1.235     brouard  11355:     i1=pow(2,cptcoveff);
                   11356:     if (cptcovn < 1){i1=1;}
                   11357: 
                   11358:     for(nres=1; nres <= nresult; nres++) /* For each resultline */
                   11359:     for(k=1; k<=i1;k++){
                   11360:       if(TKresult[nres]!= k)
                   11361:        continue;
1.227     brouard  11362:       fprintf(ficresvpl,"\n#****** ");
                   11363:       printf("\n#****** ");
                   11364:       fprintf(ficlog,"\n#****** ");
                   11365:       for(j=1;j<=cptcoveff;j++) {
                   11366:        fprintf(ficresvpl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   11367:        fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   11368:        printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]);
                   11369:       }
1.235     brouard  11370:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
                   11371:        printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11372:        fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11373:        fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]);
                   11374:       }        
1.227     brouard  11375:       fprintf(ficresvpl,"******\n");
                   11376:       printf("******\n");
                   11377:       fprintf(ficlog,"******\n");
                   11378:       
                   11379:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
                   11380:       oldm=oldms;savm=savms;
1.235     brouard  11381:       varprevlim(fileres, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, strstart, nres);
1.227     brouard  11382:       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
1.145     brouard  11383:       /*}*/
1.126     brouard  11384:     }
1.227     brouard  11385:     
1.126     brouard  11386:     fclose(ficresvpl);
1.208     brouard  11387:     printf("done variance-covariance of period prevalence\n");fflush(stdout);
                   11388:     fprintf(ficlog,"done variance-covariance of period prevalence\n");fflush(ficlog);
1.227     brouard  11389:     
                   11390:     free_vector(weight,1,n);
                   11391:     free_imatrix(Tvard,1,NCOVMAX,1,2);
                   11392:     free_imatrix(s,1,maxwav+1,1,n);
                   11393:     free_matrix(anint,1,maxwav,1,n); 
                   11394:     free_matrix(mint,1,maxwav,1,n);
                   11395:     free_ivector(cod,1,n);
                   11396:     free_ivector(tab,1,NCOVMAX);
                   11397:     fclose(ficresstdeij);
                   11398:     fclose(ficrescveij);
                   11399:     fclose(ficresvij);
                   11400:     fclose(ficrest);
                   11401:     fclose(ficpar);
                   11402:     
                   11403:     
1.126     brouard  11404:     /*---------- End : free ----------------*/
1.219     brouard  11405:     if (mobilav!=0 ||mobilavproj !=0)
                   11406:       free_ma3x(mobaverages,1, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
1.218     brouard  11407:     free_ma3x(probs,1,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
1.220     brouard  11408:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
                   11409:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
1.126     brouard  11410:   }  /* mle==-3 arrives here for freeing */
1.227     brouard  11411:   /* endfree:*/
                   11412:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   11413:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   11414:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   11415:   free_ma3x(cotqvar,1,maxwav,1,nqtv,1,n);
1.233     brouard  11416:   free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,1,n);
1.227     brouard  11417:   free_matrix(coqvar,1,maxwav,1,n);
                   11418:   free_matrix(covar,0,NCOVMAX,1,n);
                   11419:   free_matrix(matcov,1,npar,1,npar);
                   11420:   free_matrix(hess,1,npar,1,npar);
                   11421:   /*free_vector(delti,1,npar);*/
                   11422:   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   11423:   free_matrix(agev,1,maxwav,1,imx);
                   11424:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
                   11425:   
                   11426:   free_ivector(ncodemax,1,NCOVMAX);
                   11427:   free_ivector(ncodemaxwundef,1,NCOVMAX);
                   11428:   free_ivector(Dummy,-1,NCOVMAX);
                   11429:   free_ivector(Fixed,-1,NCOVMAX);
1.238     brouard  11430:   free_ivector(DummyV,1,NCOVMAX);
                   11431:   free_ivector(FixedV,1,NCOVMAX);
1.227     brouard  11432:   free_ivector(Typevar,-1,NCOVMAX);
                   11433:   free_ivector(Tvar,1,NCOVMAX);
1.234     brouard  11434:   free_ivector(TvarsQ,1,NCOVMAX);
                   11435:   free_ivector(TvarsQind,1,NCOVMAX);
                   11436:   free_ivector(TvarsD,1,NCOVMAX);
                   11437:   free_ivector(TvarsDind,1,NCOVMAX);
1.231     brouard  11438:   free_ivector(TvarFD,1,NCOVMAX);
                   11439:   free_ivector(TvarFDind,1,NCOVMAX);
1.232     brouard  11440:   free_ivector(TvarF,1,NCOVMAX);
                   11441:   free_ivector(TvarFind,1,NCOVMAX);
                   11442:   free_ivector(TvarV,1,NCOVMAX);
                   11443:   free_ivector(TvarVind,1,NCOVMAX);
                   11444:   free_ivector(TvarA,1,NCOVMAX);
                   11445:   free_ivector(TvarAind,1,NCOVMAX);
1.231     brouard  11446:   free_ivector(TvarFQ,1,NCOVMAX);
                   11447:   free_ivector(TvarFQind,1,NCOVMAX);
                   11448:   free_ivector(TvarVD,1,NCOVMAX);
                   11449:   free_ivector(TvarVDind,1,NCOVMAX);
                   11450:   free_ivector(TvarVQ,1,NCOVMAX);
                   11451:   free_ivector(TvarVQind,1,NCOVMAX);
1.230     brouard  11452:   free_ivector(Tvarsel,1,NCOVMAX);
                   11453:   free_vector(Tvalsel,1,NCOVMAX);
1.227     brouard  11454:   free_ivector(Tposprod,1,NCOVMAX);
                   11455:   free_ivector(Tprod,1,NCOVMAX);
                   11456:   free_ivector(Tvaraff,1,NCOVMAX);
                   11457:   free_ivector(invalidvarcomb,1,ncovcombmax);
                   11458:   free_ivector(Tage,1,NCOVMAX);
                   11459:   free_ivector(Tmodelind,1,NCOVMAX);
1.228     brouard  11460:   free_ivector(TmodelInvind,1,NCOVMAX);
                   11461:   free_ivector(TmodelInvQind,1,NCOVMAX);
1.227     brouard  11462:   
                   11463:   free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
                   11464:   /* free_imatrix(codtab,1,100,1,10); */
1.126     brouard  11465:   fflush(fichtm);
                   11466:   fflush(ficgp);
                   11467:   
1.227     brouard  11468:   
1.126     brouard  11469:   if((nberr >0) || (nbwarn>0)){
1.216     brouard  11470:     printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
                   11471:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
1.126     brouard  11472:   }else{
                   11473:     printf("End of Imach\n");
                   11474:     fprintf(ficlog,"End of Imach\n");
                   11475:   }
                   11476:   printf("See log file on %s\n",filelog);
                   11477:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
1.157     brouard  11478:   /*(void) gettimeofday(&end_time,&tzp);*/
                   11479:   rend_time = time(NULL);  
                   11480:   end_time = *localtime(&rend_time);
                   11481:   /* tml = *localtime(&end_time.tm_sec); */
                   11482:   strcpy(strtend,asctime(&end_time));
1.126     brouard  11483:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
                   11484:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
1.157     brouard  11485:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
1.227     brouard  11486:   
1.157     brouard  11487:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
                   11488:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
                   11489:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
1.126     brouard  11490:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
                   11491: /*   if(fileappend(fichtm,optionfilehtm)){ */
                   11492:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   11493:   fclose(fichtm);
                   11494:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   11495:   fclose(fichtmcov);
                   11496:   fclose(ficgp);
                   11497:   fclose(ficlog);
                   11498:   /*------ End -----------*/
1.227     brouard  11499:   
                   11500:   
                   11501:   printf("Before Current directory %s!\n",pathcd);
1.184     brouard  11502: #ifdef WIN32
1.227     brouard  11503:   if (_chdir(pathcd) != 0)
                   11504:     printf("Can't move to directory %s!\n",path);
                   11505:   if(_getcwd(pathcd,MAXLINE) > 0)
1.184     brouard  11506: #else
1.227     brouard  11507:     if(chdir(pathcd) != 0)
                   11508:       printf("Can't move to directory %s!\n", path);
                   11509:   if (getcwd(pathcd, MAXLINE) > 0)
1.184     brouard  11510: #endif 
1.126     brouard  11511:     printf("Current directory %s!\n",pathcd);
                   11512:   /*strcat(plotcmd,CHARSEPARATOR);*/
                   11513:   sprintf(plotcmd,"gnuplot");
1.157     brouard  11514: #ifdef _WIN32
1.126     brouard  11515:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
                   11516: #endif
                   11517:   if(!stat(plotcmd,&info)){
1.158     brouard  11518:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  11519:     if(!stat(getenv("GNUPLOTBIN"),&info)){
1.158     brouard  11520:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
1.126     brouard  11521:     }else
                   11522:       strcpy(pplotcmd,plotcmd);
1.157     brouard  11523: #ifdef __unix
1.126     brouard  11524:     strcpy(plotcmd,GNUPLOTPROGRAM);
                   11525:     if(!stat(plotcmd,&info)){
1.158     brouard  11526:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  11527:     }else
                   11528:       strcpy(pplotcmd,plotcmd);
                   11529: #endif
                   11530:   }else
                   11531:     strcpy(pplotcmd,plotcmd);
                   11532:   
                   11533:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
1.158     brouard  11534:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
1.227     brouard  11535:   
1.126     brouard  11536:   if((outcmd=system(plotcmd)) != 0){
1.158     brouard  11537:     printf("gnuplot command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
1.154     brouard  11538:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
1.152     brouard  11539:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
1.150     brouard  11540:     if((outcmd=system(plotcmd)) != 0)
1.153     brouard  11541:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
1.126     brouard  11542:   }
1.158     brouard  11543:   printf(" Successful, please wait...");
1.126     brouard  11544:   while (z[0] != 'q') {
                   11545:     /* chdir(path); */
1.154     brouard  11546:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
1.126     brouard  11547:     scanf("%s",z);
                   11548: /*     if (z[0] == 'c') system("./imach"); */
                   11549:     if (z[0] == 'e') {
1.158     brouard  11550: #ifdef __APPLE__
1.152     brouard  11551:       sprintf(pplotcmd, "open %s", optionfilehtm);
1.157     brouard  11552: #elif __linux
                   11553:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
1.153     brouard  11554: #else
1.152     brouard  11555:       sprintf(pplotcmd, "%s", optionfilehtm);
1.153     brouard  11556: #endif
                   11557:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
                   11558:       system(pplotcmd);
1.126     brouard  11559:     }
                   11560:     else if (z[0] == 'g') system(plotcmd);
                   11561:     else if (z[0] == 'q') exit(0);
                   11562:   }
1.227     brouard  11563: end:
1.126     brouard  11564:   while (z[0] != 'q') {
1.195     brouard  11565:     printf("\nType  q for exiting: "); fflush(stdout);
1.126     brouard  11566:     scanf("%s",z);
                   11567:   }
                   11568: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>