Annotation of imach/src/imach.c, revision 1.338

1.338   ! brouard     1: /* $Id: imach.c,v 1.337 2022/09/02 14:26:02 brouard Exp $
1.126     brouard     2:   $State: Exp $
1.163     brouard     3:   $Log: imach.c,v $
1.338   ! brouard     4:   Revision 1.337  2022/09/02 14:26:02  brouard
        !             5:   Summary: version 0.99r35
        !             6: 
        !             7:   * src/imach.c: Version 0.99r35 because it outputs same results with
        !             8:   1+age+V1+V1*age for females and 1+age for females only
        !             9:   (education=1 noweight)
        !            10: 
1.337     brouard    11:   Revision 1.336  2022/08/31 09:52:36  brouard
                     12:   *** empty log message ***
                     13: 
1.336     brouard    14:   Revision 1.335  2022/08/31 08:23:16  brouard
                     15:   Summary: improvements...
                     16: 
1.335     brouard    17:   Revision 1.334  2022/08/25 09:08:41  brouard
                     18:   Summary: In progress for quantitative
                     19: 
1.334     brouard    20:   Revision 1.333  2022/08/21 09:10:30  brouard
                     21:   * src/imach.c (Module): Version 0.99r33 A lot of changes in
                     22:   reassigning covariates: my first idea was that people will always
                     23:   use the first covariate V1 into the model but in fact they are
                     24:   producing data with many covariates and can use an equation model
                     25:   with some of the covariate; it means that in a model V2+V3 instead
                     26:   of codtabm(k,Tvaraff[j]) which calculates for combination k, for
                     27:   three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
                     28:   the equation model is restricted to two variables only (V2, V3)
                     29:   and the combination for V2 should be codtabm(k,1) instead of
                     30:   (codtabm(k,2), and the code should be
                     31:   codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
                     32:   made. All of these should be simplified once a day like we did in
                     33:   hpxij() for example by using precov[nres] which is computed in
                     34:   decoderesult for each nres of each resultline. Loop should be done
                     35:   on the equation model globally by distinguishing only product with
                     36:   age (which are changing with age) and no more on type of
                     37:   covariates, single dummies, single covariates.
                     38: 
1.333     brouard    39:   Revision 1.332  2022/08/21 09:06:25  brouard
                     40:   Summary: Version 0.99r33
                     41: 
                     42:   * src/imach.c (Module): Version 0.99r33 A lot of changes in
                     43:   reassigning covariates: my first idea was that people will always
                     44:   use the first covariate V1 into the model but in fact they are
                     45:   producing data with many covariates and can use an equation model
                     46:   with some of the covariate; it means that in a model V2+V3 instead
                     47:   of codtabm(k,Tvaraff[j]) which calculates for combination k, for
                     48:   three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
                     49:   the equation model is restricted to two variables only (V2, V3)
                     50:   and the combination for V2 should be codtabm(k,1) instead of
                     51:   (codtabm(k,2), and the code should be
                     52:   codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
                     53:   made. All of these should be simplified once a day like we did in
                     54:   hpxij() for example by using precov[nres] which is computed in
                     55:   decoderesult for each nres of each resultline. Loop should be done
                     56:   on the equation model globally by distinguishing only product with
                     57:   age (which are changing with age) and no more on type of
                     58:   covariates, single dummies, single covariates.
                     59: 
1.332     brouard    60:   Revision 1.331  2022/08/07 05:40:09  brouard
                     61:   *** empty log message ***
                     62: 
1.331     brouard    63:   Revision 1.330  2022/08/06 07:18:25  brouard
                     64:   Summary: last 0.99r31
                     65: 
                     66:   *  imach.c (Module): Version of imach using partly decoderesult to rebuild xpxij function
                     67: 
1.330     brouard    68:   Revision 1.329  2022/08/03 17:29:54  brouard
                     69:   *  imach.c (Module): Many errors in graphs fixed with Vn*age covariates.
                     70: 
1.329     brouard    71:   Revision 1.328  2022/07/27 17:40:48  brouard
                     72:   Summary: valgrind bug fixed by initializing to zero DummyV as well as Tage
                     73: 
1.328     brouard    74:   Revision 1.327  2022/07/27 14:47:35  brouard
                     75:   Summary: Still a problem for one-step probabilities in case of quantitative variables
                     76: 
1.327     brouard    77:   Revision 1.326  2022/07/26 17:33:55  brouard
                     78:   Summary: some test with nres=1
                     79: 
1.326     brouard    80:   Revision 1.325  2022/07/25 14:27:23  brouard
                     81:   Summary: r30
                     82: 
                     83:   * imach.c (Module): Error cptcovn instead of nsd in bmij (was
                     84:   coredumped, revealed by Feiuno, thank you.
                     85: 
1.325     brouard    86:   Revision 1.324  2022/07/23 17:44:26  brouard
                     87:   *** empty log message ***
                     88: 
1.324     brouard    89:   Revision 1.323  2022/07/22 12:30:08  brouard
                     90:   *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
                     91: 
1.323     brouard    92:   Revision 1.322  2022/07/22 12:27:48  brouard
                     93:   *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
                     94: 
1.322     brouard    95:   Revision 1.321  2022/07/22 12:04:24  brouard
                     96:   Summary: r28
                     97: 
                     98:   *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
                     99: 
1.321     brouard   100:   Revision 1.320  2022/06/02 05:10:11  brouard
                    101:   *** empty log message ***
                    102: 
1.320     brouard   103:   Revision 1.319  2022/06/02 04:45:11  brouard
                    104:   * imach.c (Module): Adding the Wald tests from the log to the main
                    105:   htm for better display of the maximum likelihood estimators.
                    106: 
1.319     brouard   107:   Revision 1.318  2022/05/24 08:10:59  brouard
                    108:   * imach.c (Module): Some attempts to find a bug of wrong estimates
                    109:   of confidencce intervals with product in the equation modelC
                    110: 
1.318     brouard   111:   Revision 1.317  2022/05/15 15:06:23  brouard
                    112:   * imach.c (Module):  Some minor improvements
                    113: 
1.317     brouard   114:   Revision 1.316  2022/05/11 15:11:31  brouard
                    115:   Summary: r27
                    116: 
1.316     brouard   117:   Revision 1.315  2022/05/11 15:06:32  brouard
                    118:   *** empty log message ***
                    119: 
1.315     brouard   120:   Revision 1.314  2022/04/13 17:43:09  brouard
                    121:   * imach.c (Module): Adding link to text data files
                    122: 
1.314     brouard   123:   Revision 1.313  2022/04/11 15:57:42  brouard
                    124:   * imach.c (Module): Error in rewriting the 'r' file with yearsfproj or yearsbproj fixed
                    125: 
1.313     brouard   126:   Revision 1.312  2022/04/05 21:24:39  brouard
                    127:   *** empty log message ***
                    128: 
1.312     brouard   129:   Revision 1.311  2022/04/05 21:03:51  brouard
                    130:   Summary: Fixed quantitative covariates
                    131: 
                    132:          Fixed covariates (dummy or quantitative)
                    133:        with missing values have never been allowed but are ERRORS and
                    134:        program quits. Standard deviations of fixed covariates were
                    135:        wrongly computed. Mean and standard deviations of time varying
                    136:        covariates are still not computed.
                    137: 
1.311     brouard   138:   Revision 1.310  2022/03/17 08:45:53  brouard
                    139:   Summary: 99r25
                    140: 
                    141:   Improving detection of errors: result lines should be compatible with
                    142:   the model.
                    143: 
1.310     brouard   144:   Revision 1.309  2021/05/20 12:39:14  brouard
                    145:   Summary: Version 0.99r24
                    146: 
1.309     brouard   147:   Revision 1.308  2021/03/31 13:11:57  brouard
                    148:   Summary: Version 0.99r23
                    149: 
                    150: 
                    151:   * imach.c (Module): Still bugs in the result loop. Thank to Holly Benett
                    152: 
1.308     brouard   153:   Revision 1.307  2021/03/08 18:11:32  brouard
                    154:   Summary: 0.99r22 fixed bug on result:
                    155: 
1.307     brouard   156:   Revision 1.306  2021/02/20 15:44:02  brouard
                    157:   Summary: Version 0.99r21
                    158: 
                    159:   * imach.c (Module): Fix bug on quitting after result lines!
                    160:   (Module): Version 0.99r21
                    161: 
1.306     brouard   162:   Revision 1.305  2021/02/20 15:28:30  brouard
                    163:   * imach.c (Module): Fix bug on quitting after result lines!
                    164: 
1.305     brouard   165:   Revision 1.304  2021/02/12 11:34:20  brouard
                    166:   * imach.c (Module): The use of a Windows BOM (huge) file is now an error
                    167: 
1.304     brouard   168:   Revision 1.303  2021/02/11 19:50:15  brouard
                    169:   *  (Module): imach.c Someone entered 'results:' instead of 'result:'. Now it is an error which is printed.
                    170: 
1.303     brouard   171:   Revision 1.302  2020/02/22 21:00:05  brouard
                    172:   *  (Module): imach.c Update mle=-3 (for computing Life expectancy
                    173:   and life table from the data without any state)
                    174: 
1.302     brouard   175:   Revision 1.301  2019/06/04 13:51:20  brouard
                    176:   Summary: Error in 'r'parameter file backcast yearsbproj instead of yearsfproj
                    177: 
1.301     brouard   178:   Revision 1.300  2019/05/22 19:09:45  brouard
                    179:   Summary: version 0.99r19 of May 2019
                    180: 
1.300     brouard   181:   Revision 1.299  2019/05/22 18:37:08  brouard
                    182:   Summary: Cleaned 0.99r19
                    183: 
1.299     brouard   184:   Revision 1.298  2019/05/22 18:19:56  brouard
                    185:   *** empty log message ***
                    186: 
1.298     brouard   187:   Revision 1.297  2019/05/22 17:56:10  brouard
                    188:   Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1
                    189: 
1.297     brouard   190:   Revision 1.296  2019/05/20 13:03:18  brouard
                    191:   Summary: Projection syntax simplified
                    192: 
                    193: 
                    194:   We can now start projections, forward or backward, from the mean date
                    195:   of inteviews up to or down to a number of years of projection:
                    196:   prevforecast=1 yearsfproj=15.3 mobil_average=0
                    197:   or
                    198:   prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0
                    199:   or
                    200:   prevbackcast=1 yearsbproj=12.3 mobil_average=1
                    201:   or
                    202:   prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1
                    203: 
1.296     brouard   204:   Revision 1.295  2019/05/18 09:52:50  brouard
                    205:   Summary: doxygen tex bug
                    206: 
1.295     brouard   207:   Revision 1.294  2019/05/16 14:54:33  brouard
                    208:   Summary: There was some wrong lines added
                    209: 
1.294     brouard   210:   Revision 1.293  2019/05/09 15:17:34  brouard
                    211:   *** empty log message ***
                    212: 
1.293     brouard   213:   Revision 1.292  2019/05/09 14:17:20  brouard
                    214:   Summary: Some updates
                    215: 
1.292     brouard   216:   Revision 1.291  2019/05/09 13:44:18  brouard
                    217:   Summary: Before ncovmax
                    218: 
1.291     brouard   219:   Revision 1.290  2019/05/09 13:39:37  brouard
                    220:   Summary: 0.99r18 unlimited number of individuals
                    221: 
                    222:   The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur.
                    223: 
1.290     brouard   224:   Revision 1.289  2018/12/13 09:16:26  brouard
                    225:   Summary: Bug for young ages (<-30) will be in r17
                    226: 
1.289     brouard   227:   Revision 1.288  2018/05/02 20:58:27  brouard
                    228:   Summary: Some bugs fixed
                    229: 
1.288     brouard   230:   Revision 1.287  2018/05/01 17:57:25  brouard
                    231:   Summary: Bug fixed by providing frequencies only for non missing covariates
                    232: 
1.287     brouard   233:   Revision 1.286  2018/04/27 14:27:04  brouard
                    234:   Summary: some minor bugs
                    235: 
1.286     brouard   236:   Revision 1.285  2018/04/21 21:02:16  brouard
                    237:   Summary: Some bugs fixed, valgrind tested
                    238: 
1.285     brouard   239:   Revision 1.284  2018/04/20 05:22:13  brouard
                    240:   Summary: Computing mean and stdeviation of fixed quantitative variables
                    241: 
1.284     brouard   242:   Revision 1.283  2018/04/19 14:49:16  brouard
                    243:   Summary: Some minor bugs fixed
                    244: 
1.283     brouard   245:   Revision 1.282  2018/02/27 22:50:02  brouard
                    246:   *** empty log message ***
                    247: 
1.282     brouard   248:   Revision 1.281  2018/02/27 19:25:23  brouard
                    249:   Summary: Adding second argument for quitting
                    250: 
1.281     brouard   251:   Revision 1.280  2018/02/21 07:58:13  brouard
                    252:   Summary: 0.99r15
                    253: 
                    254:   New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c
                    255: 
1.280     brouard   256:   Revision 1.279  2017/07/20 13:35:01  brouard
                    257:   Summary: temporary working
                    258: 
1.279     brouard   259:   Revision 1.278  2017/07/19 14:09:02  brouard
                    260:   Summary: Bug for mobil_average=0 and prevforecast fixed(?)
                    261: 
1.278     brouard   262:   Revision 1.277  2017/07/17 08:53:49  brouard
                    263:   Summary: BOM files can be read now
                    264: 
1.277     brouard   265:   Revision 1.276  2017/06/30 15:48:31  brouard
                    266:   Summary: Graphs improvements
                    267: 
1.276     brouard   268:   Revision 1.275  2017/06/30 13:39:33  brouard
                    269:   Summary: Saito's color
                    270: 
1.275     brouard   271:   Revision 1.274  2017/06/29 09:47:08  brouard
                    272:   Summary: Version 0.99r14
                    273: 
1.274     brouard   274:   Revision 1.273  2017/06/27 11:06:02  brouard
                    275:   Summary: More documentation on projections
                    276: 
1.273     brouard   277:   Revision 1.272  2017/06/27 10:22:40  brouard
                    278:   Summary: Color of backprojection changed from 6 to 5(yellow)
                    279: 
1.272     brouard   280:   Revision 1.271  2017/06/27 10:17:50  brouard
                    281:   Summary: Some bug with rint
                    282: 
1.271     brouard   283:   Revision 1.270  2017/05/24 05:45:29  brouard
                    284:   *** empty log message ***
                    285: 
1.270     brouard   286:   Revision 1.269  2017/05/23 08:39:25  brouard
                    287:   Summary: Code into subroutine, cleanings
                    288: 
1.269     brouard   289:   Revision 1.268  2017/05/18 20:09:32  brouard
                    290:   Summary: backprojection and confidence intervals of backprevalence
                    291: 
1.268     brouard   292:   Revision 1.267  2017/05/13 10:25:05  brouard
                    293:   Summary: temporary save for backprojection
                    294: 
1.267     brouard   295:   Revision 1.266  2017/05/13 07:26:12  brouard
                    296:   Summary: Version 0.99r13 (improvements and bugs fixed)
                    297: 
1.266     brouard   298:   Revision 1.265  2017/04/26 16:22:11  brouard
                    299:   Summary: imach 0.99r13 Some bugs fixed
                    300: 
1.265     brouard   301:   Revision 1.264  2017/04/26 06:01:29  brouard
                    302:   Summary: Labels in graphs
                    303: 
1.264     brouard   304:   Revision 1.263  2017/04/24 15:23:15  brouard
                    305:   Summary: to save
                    306: 
1.263     brouard   307:   Revision 1.262  2017/04/18 16:48:12  brouard
                    308:   *** empty log message ***
                    309: 
1.262     brouard   310:   Revision 1.261  2017/04/05 10:14:09  brouard
                    311:   Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1
                    312: 
1.261     brouard   313:   Revision 1.260  2017/04/04 17:46:59  brouard
                    314:   Summary: Gnuplot indexations fixed (humm)
                    315: 
1.260     brouard   316:   Revision 1.259  2017/04/04 13:01:16  brouard
                    317:   Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3
                    318: 
1.259     brouard   319:   Revision 1.258  2017/04/03 10:17:47  brouard
                    320:   Summary: Version 0.99r12
                    321: 
                    322:   Some cleanings, conformed with updated documentation.
                    323: 
1.258     brouard   324:   Revision 1.257  2017/03/29 16:53:30  brouard
                    325:   Summary: Temp
                    326: 
1.257     brouard   327:   Revision 1.256  2017/03/27 05:50:23  brouard
                    328:   Summary: Temporary
                    329: 
1.256     brouard   330:   Revision 1.255  2017/03/08 16:02:28  brouard
                    331:   Summary: IMaCh version 0.99r10 bugs in gnuplot fixed
                    332: 
1.255     brouard   333:   Revision 1.254  2017/03/08 07:13:00  brouard
                    334:   Summary: Fixing data parameter line
                    335: 
1.254     brouard   336:   Revision 1.253  2016/12/15 11:59:41  brouard
                    337:   Summary: 0.99 in progress
                    338: 
1.253     brouard   339:   Revision 1.252  2016/09/15 21:15:37  brouard
                    340:   *** empty log message ***
                    341: 
1.252     brouard   342:   Revision 1.251  2016/09/15 15:01:13  brouard
                    343:   Summary: not working
                    344: 
1.251     brouard   345:   Revision 1.250  2016/09/08 16:07:27  brouard
                    346:   Summary: continue
                    347: 
1.250     brouard   348:   Revision 1.249  2016/09/07 17:14:18  brouard
                    349:   Summary: Starting values from frequencies
                    350: 
1.249     brouard   351:   Revision 1.248  2016/09/07 14:10:18  brouard
                    352:   *** empty log message ***
                    353: 
1.248     brouard   354:   Revision 1.247  2016/09/02 11:11:21  brouard
                    355:   *** empty log message ***
                    356: 
1.247     brouard   357:   Revision 1.246  2016/09/02 08:49:22  brouard
                    358:   *** empty log message ***
                    359: 
1.246     brouard   360:   Revision 1.245  2016/09/02 07:25:01  brouard
                    361:   *** empty log message ***
                    362: 
1.245     brouard   363:   Revision 1.244  2016/09/02 07:17:34  brouard
                    364:   *** empty log message ***
                    365: 
1.244     brouard   366:   Revision 1.243  2016/09/02 06:45:35  brouard
                    367:   *** empty log message ***
                    368: 
1.243     brouard   369:   Revision 1.242  2016/08/30 15:01:20  brouard
                    370:   Summary: Fixing a lots
                    371: 
1.242     brouard   372:   Revision 1.241  2016/08/29 17:17:25  brouard
                    373:   Summary: gnuplot problem in Back projection to fix
                    374: 
1.241     brouard   375:   Revision 1.240  2016/08/29 07:53:18  brouard
                    376:   Summary: Better
                    377: 
1.240     brouard   378:   Revision 1.239  2016/08/26 15:51:03  brouard
                    379:   Summary: Improvement in Powell output in order to copy and paste
                    380: 
                    381:   Author:
                    382: 
1.239     brouard   383:   Revision 1.238  2016/08/26 14:23:35  brouard
                    384:   Summary: Starting tests of 0.99
                    385: 
1.238     brouard   386:   Revision 1.237  2016/08/26 09:20:19  brouard
                    387:   Summary: to valgrind
                    388: 
1.237     brouard   389:   Revision 1.236  2016/08/25 10:50:18  brouard
                    390:   *** empty log message ***
                    391: 
1.236     brouard   392:   Revision 1.235  2016/08/25 06:59:23  brouard
                    393:   *** empty log message ***
                    394: 
1.235     brouard   395:   Revision 1.234  2016/08/23 16:51:20  brouard
                    396:   *** empty log message ***
                    397: 
1.234     brouard   398:   Revision 1.233  2016/08/23 07:40:50  brouard
                    399:   Summary: not working
                    400: 
1.233     brouard   401:   Revision 1.232  2016/08/22 14:20:21  brouard
                    402:   Summary: not working
                    403: 
1.232     brouard   404:   Revision 1.231  2016/08/22 07:17:15  brouard
                    405:   Summary: not working
                    406: 
1.231     brouard   407:   Revision 1.230  2016/08/22 06:55:53  brouard
                    408:   Summary: Not working
                    409: 
1.230     brouard   410:   Revision 1.229  2016/07/23 09:45:53  brouard
                    411:   Summary: Completing for func too
                    412: 
1.229     brouard   413:   Revision 1.228  2016/07/22 17:45:30  brouard
                    414:   Summary: Fixing some arrays, still debugging
                    415: 
1.227     brouard   416:   Revision 1.226  2016/07/12 18:42:34  brouard
                    417:   Summary: temp
                    418: 
1.226     brouard   419:   Revision 1.225  2016/07/12 08:40:03  brouard
                    420:   Summary: saving but not running
                    421: 
1.225     brouard   422:   Revision 1.224  2016/07/01 13:16:01  brouard
                    423:   Summary: Fixes
                    424: 
1.224     brouard   425:   Revision 1.223  2016/02/19 09:23:35  brouard
                    426:   Summary: temporary
                    427: 
1.223     brouard   428:   Revision 1.222  2016/02/17 08:14:50  brouard
                    429:   Summary: Probably last 0.98 stable version 0.98r6
                    430: 
1.222     brouard   431:   Revision 1.221  2016/02/15 23:35:36  brouard
                    432:   Summary: minor bug
                    433: 
1.220     brouard   434:   Revision 1.219  2016/02/15 00:48:12  brouard
                    435:   *** empty log message ***
                    436: 
1.219     brouard   437:   Revision 1.218  2016/02/12 11:29:23  brouard
                    438:   Summary: 0.99 Back projections
                    439: 
1.218     brouard   440:   Revision 1.217  2015/12/23 17:18:31  brouard
                    441:   Summary: Experimental backcast
                    442: 
1.217     brouard   443:   Revision 1.216  2015/12/18 17:32:11  brouard
                    444:   Summary: 0.98r4 Warning and status=-2
                    445: 
                    446:   Version 0.98r4 is now:
                    447:    - displaying an error when status is -1, date of interview unknown and date of death known;
                    448:    - permitting a status -2 when the vital status is unknown at a known date of right truncation.
                    449:   Older changes concerning s=-2, dating from 2005 have been supersed.
                    450: 
1.216     brouard   451:   Revision 1.215  2015/12/16 08:52:24  brouard
                    452:   Summary: 0.98r4 working
                    453: 
1.215     brouard   454:   Revision 1.214  2015/12/16 06:57:54  brouard
                    455:   Summary: temporary not working
                    456: 
1.214     brouard   457:   Revision 1.213  2015/12/11 18:22:17  brouard
                    458:   Summary: 0.98r4
                    459: 
1.213     brouard   460:   Revision 1.212  2015/11/21 12:47:24  brouard
                    461:   Summary: minor typo
                    462: 
1.212     brouard   463:   Revision 1.211  2015/11/21 12:41:11  brouard
                    464:   Summary: 0.98r3 with some graph of projected cross-sectional
                    465: 
                    466:   Author: Nicolas Brouard
                    467: 
1.211     brouard   468:   Revision 1.210  2015/11/18 17:41:20  brouard
1.252     brouard   469:   Summary: Start working on projected prevalences  Revision 1.209  2015/11/17 22:12:03  brouard
1.210     brouard   470:   Summary: Adding ftolpl parameter
                    471:   Author: N Brouard
                    472: 
                    473:   We had difficulties to get smoothed confidence intervals. It was due
                    474:   to the period prevalence which wasn't computed accurately. The inner
                    475:   parameter ftolpl is now an outer parameter of the .imach parameter
                    476:   file after estepm. If ftolpl is small 1.e-4 and estepm too,
                    477:   computation are long.
                    478: 
1.209     brouard   479:   Revision 1.208  2015/11/17 14:31:57  brouard
                    480:   Summary: temporary
                    481: 
1.208     brouard   482:   Revision 1.207  2015/10/27 17:36:57  brouard
                    483:   *** empty log message ***
                    484: 
1.207     brouard   485:   Revision 1.206  2015/10/24 07:14:11  brouard
                    486:   *** empty log message ***
                    487: 
1.206     brouard   488:   Revision 1.205  2015/10/23 15:50:53  brouard
                    489:   Summary: 0.98r3 some clarification for graphs on likelihood contributions
                    490: 
1.205     brouard   491:   Revision 1.204  2015/10/01 16:20:26  brouard
                    492:   Summary: Some new graphs of contribution to likelihood
                    493: 
1.204     brouard   494:   Revision 1.203  2015/09/30 17:45:14  brouard
                    495:   Summary: looking at better estimation of the hessian
                    496: 
                    497:   Also a better criteria for convergence to the period prevalence And
                    498:   therefore adding the number of years needed to converge. (The
                    499:   prevalence in any alive state shold sum to one
                    500: 
1.203     brouard   501:   Revision 1.202  2015/09/22 19:45:16  brouard
                    502:   Summary: Adding some overall graph on contribution to likelihood. Might change
                    503: 
1.202     brouard   504:   Revision 1.201  2015/09/15 17:34:58  brouard
                    505:   Summary: 0.98r0
                    506: 
                    507:   - Some new graphs like suvival functions
                    508:   - Some bugs fixed like model=1+age+V2.
                    509: 
1.201     brouard   510:   Revision 1.200  2015/09/09 16:53:55  brouard
                    511:   Summary: Big bug thanks to Flavia
                    512: 
                    513:   Even model=1+age+V2. did not work anymore
                    514: 
1.200     brouard   515:   Revision 1.199  2015/09/07 14:09:23  brouard
                    516:   Summary: 0.98q6 changing default small png format for graph to vectorized svg.
                    517: 
1.199     brouard   518:   Revision 1.198  2015/09/03 07:14:39  brouard
                    519:   Summary: 0.98q5 Flavia
                    520: 
1.198     brouard   521:   Revision 1.197  2015/09/01 18:24:39  brouard
                    522:   *** empty log message ***
                    523: 
1.197     brouard   524:   Revision 1.196  2015/08/18 23:17:52  brouard
                    525:   Summary: 0.98q5
                    526: 
1.196     brouard   527:   Revision 1.195  2015/08/18 16:28:39  brouard
                    528:   Summary: Adding a hack for testing purpose
                    529: 
                    530:   After reading the title, ftol and model lines, if the comment line has
                    531:   a q, starting with #q, the answer at the end of the run is quit. It
                    532:   permits to run test files in batch with ctest. The former workaround was
                    533:   $ echo q | imach foo.imach
                    534: 
1.195     brouard   535:   Revision 1.194  2015/08/18 13:32:00  brouard
                    536:   Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
                    537: 
1.194     brouard   538:   Revision 1.193  2015/08/04 07:17:42  brouard
                    539:   Summary: 0.98q4
                    540: 
1.193     brouard   541:   Revision 1.192  2015/07/16 16:49:02  brouard
                    542:   Summary: Fixing some outputs
                    543: 
1.192     brouard   544:   Revision 1.191  2015/07/14 10:00:33  brouard
                    545:   Summary: Some fixes
                    546: 
1.191     brouard   547:   Revision 1.190  2015/05/05 08:51:13  brouard
                    548:   Summary: Adding digits in output parameters (7 digits instead of 6)
                    549: 
                    550:   Fix 1+age+.
                    551: 
1.190     brouard   552:   Revision 1.189  2015/04/30 14:45:16  brouard
                    553:   Summary: 0.98q2
                    554: 
1.189     brouard   555:   Revision 1.188  2015/04/30 08:27:53  brouard
                    556:   *** empty log message ***
                    557: 
1.188     brouard   558:   Revision 1.187  2015/04/29 09:11:15  brouard
                    559:   *** empty log message ***
                    560: 
1.187     brouard   561:   Revision 1.186  2015/04/23 12:01:52  brouard
                    562:   Summary: V1*age is working now, version 0.98q1
                    563: 
                    564:   Some codes had been disabled in order to simplify and Vn*age was
                    565:   working in the optimization phase, ie, giving correct MLE parameters,
                    566:   but, as usual, outputs were not correct and program core dumped.
                    567: 
1.186     brouard   568:   Revision 1.185  2015/03/11 13:26:42  brouard
                    569:   Summary: Inclusion of compile and links command line for Intel Compiler
                    570: 
1.185     brouard   571:   Revision 1.184  2015/03/11 11:52:39  brouard
                    572:   Summary: Back from Windows 8. Intel Compiler
                    573: 
1.184     brouard   574:   Revision 1.183  2015/03/10 20:34:32  brouard
                    575:   Summary: 0.98q0, trying with directest, mnbrak fixed
                    576: 
                    577:   We use directest instead of original Powell test; probably no
                    578:   incidence on the results, but better justifications;
                    579:   We fixed Numerical Recipes mnbrak routine which was wrong and gave
                    580:   wrong results.
                    581: 
1.183     brouard   582:   Revision 1.182  2015/02/12 08:19:57  brouard
                    583:   Summary: Trying to keep directest which seems simpler and more general
                    584:   Author: Nicolas Brouard
                    585: 
1.182     brouard   586:   Revision 1.181  2015/02/11 23:22:24  brouard
                    587:   Summary: Comments on Powell added
                    588: 
                    589:   Author:
                    590: 
1.181     brouard   591:   Revision 1.180  2015/02/11 17:33:45  brouard
                    592:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
                    593: 
1.180     brouard   594:   Revision 1.179  2015/01/04 09:57:06  brouard
                    595:   Summary: back to OS/X
                    596: 
1.179     brouard   597:   Revision 1.178  2015/01/04 09:35:48  brouard
                    598:   *** empty log message ***
                    599: 
1.178     brouard   600:   Revision 1.177  2015/01/03 18:40:56  brouard
                    601:   Summary: Still testing ilc32 on OSX
                    602: 
1.177     brouard   603:   Revision 1.176  2015/01/03 16:45:04  brouard
                    604:   *** empty log message ***
                    605: 
1.176     brouard   606:   Revision 1.175  2015/01/03 16:33:42  brouard
                    607:   *** empty log message ***
                    608: 
1.175     brouard   609:   Revision 1.174  2015/01/03 16:15:49  brouard
                    610:   Summary: Still in cross-compilation
                    611: 
1.174     brouard   612:   Revision 1.173  2015/01/03 12:06:26  brouard
                    613:   Summary: trying to detect cross-compilation
                    614: 
1.173     brouard   615:   Revision 1.172  2014/12/27 12:07:47  brouard
                    616:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
                    617: 
1.172     brouard   618:   Revision 1.171  2014/12/23 13:26:59  brouard
                    619:   Summary: Back from Visual C
                    620: 
                    621:   Still problem with utsname.h on Windows
                    622: 
1.171     brouard   623:   Revision 1.170  2014/12/23 11:17:12  brouard
                    624:   Summary: Cleaning some \%% back to %%
                    625: 
                    626:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
                    627: 
1.170     brouard   628:   Revision 1.169  2014/12/22 23:08:31  brouard
                    629:   Summary: 0.98p
                    630: 
                    631:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
                    632: 
1.169     brouard   633:   Revision 1.168  2014/12/22 15:17:42  brouard
1.170     brouard   634:   Summary: update
1.169     brouard   635: 
1.168     brouard   636:   Revision 1.167  2014/12/22 13:50:56  brouard
                    637:   Summary: Testing uname and compiler version and if compiled 32 or 64
                    638: 
                    639:   Testing on Linux 64
                    640: 
1.167     brouard   641:   Revision 1.166  2014/12/22 11:40:47  brouard
                    642:   *** empty log message ***
                    643: 
1.166     brouard   644:   Revision 1.165  2014/12/16 11:20:36  brouard
                    645:   Summary: After compiling on Visual C
                    646: 
                    647:   * imach.c (Module): Merging 1.61 to 1.162
                    648: 
1.165     brouard   649:   Revision 1.164  2014/12/16 10:52:11  brouard
                    650:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
                    651: 
                    652:   * imach.c (Module): Merging 1.61 to 1.162
                    653: 
1.164     brouard   654:   Revision 1.163  2014/12/16 10:30:11  brouard
                    655:   * imach.c (Module): Merging 1.61 to 1.162
                    656: 
1.163     brouard   657:   Revision 1.162  2014/09/25 11:43:39  brouard
                    658:   Summary: temporary backup 0.99!
                    659: 
1.162     brouard   660:   Revision 1.1  2014/09/16 11:06:58  brouard
                    661:   Summary: With some code (wrong) for nlopt
                    662: 
                    663:   Author:
                    664: 
                    665:   Revision 1.161  2014/09/15 20:41:41  brouard
                    666:   Summary: Problem with macro SQR on Intel compiler
                    667: 
1.161     brouard   668:   Revision 1.160  2014/09/02 09:24:05  brouard
                    669:   *** empty log message ***
                    670: 
1.160     brouard   671:   Revision 1.159  2014/09/01 10:34:10  brouard
                    672:   Summary: WIN32
                    673:   Author: Brouard
                    674: 
1.159     brouard   675:   Revision 1.158  2014/08/27 17:11:51  brouard
                    676:   *** empty log message ***
                    677: 
1.158     brouard   678:   Revision 1.157  2014/08/27 16:26:55  brouard
                    679:   Summary: Preparing windows Visual studio version
                    680:   Author: Brouard
                    681: 
                    682:   In order to compile on Visual studio, time.h is now correct and time_t
                    683:   and tm struct should be used. difftime should be used but sometimes I
                    684:   just make the differences in raw time format (time(&now).
                    685:   Trying to suppress #ifdef LINUX
                    686:   Add xdg-open for __linux in order to open default browser.
                    687: 
1.157     brouard   688:   Revision 1.156  2014/08/25 20:10:10  brouard
                    689:   *** empty log message ***
                    690: 
1.156     brouard   691:   Revision 1.155  2014/08/25 18:32:34  brouard
                    692:   Summary: New compile, minor changes
                    693:   Author: Brouard
                    694: 
1.155     brouard   695:   Revision 1.154  2014/06/20 17:32:08  brouard
                    696:   Summary: Outputs now all graphs of convergence to period prevalence
                    697: 
1.154     brouard   698:   Revision 1.153  2014/06/20 16:45:46  brouard
                    699:   Summary: If 3 live state, convergence to period prevalence on same graph
                    700:   Author: Brouard
                    701: 
1.153     brouard   702:   Revision 1.152  2014/06/18 17:54:09  brouard
                    703:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
                    704: 
1.152     brouard   705:   Revision 1.151  2014/06/18 16:43:30  brouard
                    706:   *** empty log message ***
                    707: 
1.151     brouard   708:   Revision 1.150  2014/06/18 16:42:35  brouard
                    709:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
                    710:   Author: brouard
                    711: 
1.150     brouard   712:   Revision 1.149  2014/06/18 15:51:14  brouard
                    713:   Summary: Some fixes in parameter files errors
                    714:   Author: Nicolas Brouard
                    715: 
1.149     brouard   716:   Revision 1.148  2014/06/17 17:38:48  brouard
                    717:   Summary: Nothing new
                    718:   Author: Brouard
                    719: 
                    720:   Just a new packaging for OS/X version 0.98nS
                    721: 
1.148     brouard   722:   Revision 1.147  2014/06/16 10:33:11  brouard
                    723:   *** empty log message ***
                    724: 
1.147     brouard   725:   Revision 1.146  2014/06/16 10:20:28  brouard
                    726:   Summary: Merge
                    727:   Author: Brouard
                    728: 
                    729:   Merge, before building revised version.
                    730: 
1.146     brouard   731:   Revision 1.145  2014/06/10 21:23:15  brouard
                    732:   Summary: Debugging with valgrind
                    733:   Author: Nicolas Brouard
                    734: 
                    735:   Lot of changes in order to output the results with some covariates
                    736:   After the Edimburgh REVES conference 2014, it seems mandatory to
                    737:   improve the code.
                    738:   No more memory valgrind error but a lot has to be done in order to
                    739:   continue the work of splitting the code into subroutines.
                    740:   Also, decodemodel has been improved. Tricode is still not
                    741:   optimal. nbcode should be improved. Documentation has been added in
                    742:   the source code.
                    743: 
1.144     brouard   744:   Revision 1.143  2014/01/26 09:45:38  brouard
                    745:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
                    746: 
                    747:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    748:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
                    749: 
1.143     brouard   750:   Revision 1.142  2014/01/26 03:57:36  brouard
                    751:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
                    752: 
                    753:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    754: 
1.142     brouard   755:   Revision 1.141  2014/01/26 02:42:01  brouard
                    756:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    757: 
1.141     brouard   758:   Revision 1.140  2011/09/02 10:37:54  brouard
                    759:   Summary: times.h is ok with mingw32 now.
                    760: 
1.140     brouard   761:   Revision 1.139  2010/06/14 07:50:17  brouard
                    762:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
                    763:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
                    764: 
1.139     brouard   765:   Revision 1.138  2010/04/30 18:19:40  brouard
                    766:   *** empty log message ***
                    767: 
1.138     brouard   768:   Revision 1.137  2010/04/29 18:11:38  brouard
                    769:   (Module): Checking covariates for more complex models
                    770:   than V1+V2. A lot of change to be done. Unstable.
                    771: 
1.137     brouard   772:   Revision 1.136  2010/04/26 20:30:53  brouard
                    773:   (Module): merging some libgsl code. Fixing computation
                    774:   of likelione (using inter/intrapolation if mle = 0) in order to
                    775:   get same likelihood as if mle=1.
                    776:   Some cleaning of code and comments added.
                    777: 
1.136     brouard   778:   Revision 1.135  2009/10/29 15:33:14  brouard
                    779:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    780: 
1.135     brouard   781:   Revision 1.134  2009/10/29 13:18:53  brouard
                    782:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    783: 
1.134     brouard   784:   Revision 1.133  2009/07/06 10:21:25  brouard
                    785:   just nforces
                    786: 
1.133     brouard   787:   Revision 1.132  2009/07/06 08:22:05  brouard
                    788:   Many tings
                    789: 
1.132     brouard   790:   Revision 1.131  2009/06/20 16:22:47  brouard
                    791:   Some dimensions resccaled
                    792: 
1.131     brouard   793:   Revision 1.130  2009/05/26 06:44:34  brouard
                    794:   (Module): Max Covariate is now set to 20 instead of 8. A
                    795:   lot of cleaning with variables initialized to 0. Trying to make
                    796:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
                    797: 
1.130     brouard   798:   Revision 1.129  2007/08/31 13:49:27  lievre
                    799:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
                    800: 
1.129     lievre    801:   Revision 1.128  2006/06/30 13:02:05  brouard
                    802:   (Module): Clarifications on computing e.j
                    803: 
1.128     brouard   804:   Revision 1.127  2006/04/28 18:11:50  brouard
                    805:   (Module): Yes the sum of survivors was wrong since
                    806:   imach-114 because nhstepm was no more computed in the age
                    807:   loop. Now we define nhstepma in the age loop.
                    808:   (Module): In order to speed up (in case of numerous covariates) we
                    809:   compute health expectancies (without variances) in a first step
                    810:   and then all the health expectancies with variances or standard
                    811:   deviation (needs data from the Hessian matrices) which slows the
                    812:   computation.
                    813:   In the future we should be able to stop the program is only health
                    814:   expectancies and graph are needed without standard deviations.
                    815: 
1.127     brouard   816:   Revision 1.126  2006/04/28 17:23:28  brouard
                    817:   (Module): Yes the sum of survivors was wrong since
                    818:   imach-114 because nhstepm was no more computed in the age
                    819:   loop. Now we define nhstepma in the age loop.
                    820:   Version 0.98h
                    821: 
1.126     brouard   822:   Revision 1.125  2006/04/04 15:20:31  lievre
                    823:   Errors in calculation of health expectancies. Age was not initialized.
                    824:   Forecasting file added.
                    825: 
                    826:   Revision 1.124  2006/03/22 17:13:53  lievre
                    827:   Parameters are printed with %lf instead of %f (more numbers after the comma).
                    828:   The log-likelihood is printed in the log file
                    829: 
                    830:   Revision 1.123  2006/03/20 10:52:43  brouard
                    831:   * imach.c (Module): <title> changed, corresponds to .htm file
                    832:   name. <head> headers where missing.
                    833: 
                    834:   * imach.c (Module): Weights can have a decimal point as for
                    835:   English (a comma might work with a correct LC_NUMERIC environment,
                    836:   otherwise the weight is truncated).
                    837:   Modification of warning when the covariates values are not 0 or
                    838:   1.
                    839:   Version 0.98g
                    840: 
                    841:   Revision 1.122  2006/03/20 09:45:41  brouard
                    842:   (Module): Weights can have a decimal point as for
                    843:   English (a comma might work with a correct LC_NUMERIC environment,
                    844:   otherwise the weight is truncated).
                    845:   Modification of warning when the covariates values are not 0 or
                    846:   1.
                    847:   Version 0.98g
                    848: 
                    849:   Revision 1.121  2006/03/16 17:45:01  lievre
                    850:   * imach.c (Module): Comments concerning covariates added
                    851: 
                    852:   * imach.c (Module): refinements in the computation of lli if
                    853:   status=-2 in order to have more reliable computation if stepm is
                    854:   not 1 month. Version 0.98f
                    855: 
                    856:   Revision 1.120  2006/03/16 15:10:38  lievre
                    857:   (Module): refinements in the computation of lli if
                    858:   status=-2 in order to have more reliable computation if stepm is
                    859:   not 1 month. Version 0.98f
                    860: 
                    861:   Revision 1.119  2006/03/15 17:42:26  brouard
                    862:   (Module): Bug if status = -2, the loglikelihood was
                    863:   computed as likelihood omitting the logarithm. Version O.98e
                    864: 
                    865:   Revision 1.118  2006/03/14 18:20:07  brouard
                    866:   (Module): varevsij Comments added explaining the second
                    867:   table of variances if popbased=1 .
                    868:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    869:   (Module): Function pstamp added
                    870:   (Module): Version 0.98d
                    871: 
                    872:   Revision 1.117  2006/03/14 17:16:22  brouard
                    873:   (Module): varevsij Comments added explaining the second
                    874:   table of variances if popbased=1 .
                    875:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    876:   (Module): Function pstamp added
                    877:   (Module): Version 0.98d
                    878: 
                    879:   Revision 1.116  2006/03/06 10:29:27  brouard
                    880:   (Module): Variance-covariance wrong links and
                    881:   varian-covariance of ej. is needed (Saito).
                    882: 
                    883:   Revision 1.115  2006/02/27 12:17:45  brouard
                    884:   (Module): One freematrix added in mlikeli! 0.98c
                    885: 
                    886:   Revision 1.114  2006/02/26 12:57:58  brouard
                    887:   (Module): Some improvements in processing parameter
                    888:   filename with strsep.
                    889: 
                    890:   Revision 1.113  2006/02/24 14:20:24  brouard
                    891:   (Module): Memory leaks checks with valgrind and:
                    892:   datafile was not closed, some imatrix were not freed and on matrix
                    893:   allocation too.
                    894: 
                    895:   Revision 1.112  2006/01/30 09:55:26  brouard
                    896:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
                    897: 
                    898:   Revision 1.111  2006/01/25 20:38:18  brouard
                    899:   (Module): Lots of cleaning and bugs added (Gompertz)
                    900:   (Module): Comments can be added in data file. Missing date values
                    901:   can be a simple dot '.'.
                    902: 
                    903:   Revision 1.110  2006/01/25 00:51:50  brouard
                    904:   (Module): Lots of cleaning and bugs added (Gompertz)
                    905: 
                    906:   Revision 1.109  2006/01/24 19:37:15  brouard
                    907:   (Module): Comments (lines starting with a #) are allowed in data.
                    908: 
                    909:   Revision 1.108  2006/01/19 18:05:42  lievre
                    910:   Gnuplot problem appeared...
                    911:   To be fixed
                    912: 
                    913:   Revision 1.107  2006/01/19 16:20:37  brouard
                    914:   Test existence of gnuplot in imach path
                    915: 
                    916:   Revision 1.106  2006/01/19 13:24:36  brouard
                    917:   Some cleaning and links added in html output
                    918: 
                    919:   Revision 1.105  2006/01/05 20:23:19  lievre
                    920:   *** empty log message ***
                    921: 
                    922:   Revision 1.104  2005/09/30 16:11:43  lievre
                    923:   (Module): sump fixed, loop imx fixed, and simplifications.
                    924:   (Module): If the status is missing at the last wave but we know
                    925:   that the person is alive, then we can code his/her status as -2
                    926:   (instead of missing=-1 in earlier versions) and his/her
                    927:   contributions to the likelihood is 1 - Prob of dying from last
                    928:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
                    929:   the healthy state at last known wave). Version is 0.98
                    930: 
                    931:   Revision 1.103  2005/09/30 15:54:49  lievre
                    932:   (Module): sump fixed, loop imx fixed, and simplifications.
                    933: 
                    934:   Revision 1.102  2004/09/15 17:31:30  brouard
                    935:   Add the possibility to read data file including tab characters.
                    936: 
                    937:   Revision 1.101  2004/09/15 10:38:38  brouard
                    938:   Fix on curr_time
                    939: 
                    940:   Revision 1.100  2004/07/12 18:29:06  brouard
                    941:   Add version for Mac OS X. Just define UNIX in Makefile
                    942: 
                    943:   Revision 1.99  2004/06/05 08:57:40  brouard
                    944:   *** empty log message ***
                    945: 
                    946:   Revision 1.98  2004/05/16 15:05:56  brouard
                    947:   New version 0.97 . First attempt to estimate force of mortality
                    948:   directly from the data i.e. without the need of knowing the health
                    949:   state at each age, but using a Gompertz model: log u =a + b*age .
                    950:   This is the basic analysis of mortality and should be done before any
                    951:   other analysis, in order to test if the mortality estimated from the
                    952:   cross-longitudinal survey is different from the mortality estimated
                    953:   from other sources like vital statistic data.
                    954: 
                    955:   The same imach parameter file can be used but the option for mle should be -3.
                    956: 
1.324     brouard   957:   Agnès, who wrote this part of the code, tried to keep most of the
1.126     brouard   958:   former routines in order to include the new code within the former code.
                    959: 
                    960:   The output is very simple: only an estimate of the intercept and of
                    961:   the slope with 95% confident intervals.
                    962: 
                    963:   Current limitations:
                    964:   A) Even if you enter covariates, i.e. with the
                    965:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
                    966:   B) There is no computation of Life Expectancy nor Life Table.
                    967: 
                    968:   Revision 1.97  2004/02/20 13:25:42  lievre
                    969:   Version 0.96d. Population forecasting command line is (temporarily)
                    970:   suppressed.
                    971: 
                    972:   Revision 1.96  2003/07/15 15:38:55  brouard
                    973:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
                    974:   rewritten within the same printf. Workaround: many printfs.
                    975: 
                    976:   Revision 1.95  2003/07/08 07:54:34  brouard
                    977:   * imach.c (Repository):
                    978:   (Repository): Using imachwizard code to output a more meaningful covariance
                    979:   matrix (cov(a12,c31) instead of numbers.
                    980: 
                    981:   Revision 1.94  2003/06/27 13:00:02  brouard
                    982:   Just cleaning
                    983: 
                    984:   Revision 1.93  2003/06/25 16:33:55  brouard
                    985:   (Module): On windows (cygwin) function asctime_r doesn't
                    986:   exist so I changed back to asctime which exists.
                    987:   (Module): Version 0.96b
                    988: 
                    989:   Revision 1.92  2003/06/25 16:30:45  brouard
                    990:   (Module): On windows (cygwin) function asctime_r doesn't
                    991:   exist so I changed back to asctime which exists.
                    992: 
                    993:   Revision 1.91  2003/06/25 15:30:29  brouard
                    994:   * imach.c (Repository): Duplicated warning errors corrected.
                    995:   (Repository): Elapsed time after each iteration is now output. It
                    996:   helps to forecast when convergence will be reached. Elapsed time
                    997:   is stamped in powell.  We created a new html file for the graphs
                    998:   concerning matrix of covariance. It has extension -cov.htm.
                    999: 
                   1000:   Revision 1.90  2003/06/24 12:34:15  brouard
                   1001:   (Module): Some bugs corrected for windows. Also, when
                   1002:   mle=-1 a template is output in file "or"mypar.txt with the design
                   1003:   of the covariance matrix to be input.
                   1004: 
                   1005:   Revision 1.89  2003/06/24 12:30:52  brouard
                   1006:   (Module): Some bugs corrected for windows. Also, when
                   1007:   mle=-1 a template is output in file "or"mypar.txt with the design
                   1008:   of the covariance matrix to be input.
                   1009: 
                   1010:   Revision 1.88  2003/06/23 17:54:56  brouard
                   1011:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
                   1012: 
                   1013:   Revision 1.87  2003/06/18 12:26:01  brouard
                   1014:   Version 0.96
                   1015: 
                   1016:   Revision 1.86  2003/06/17 20:04:08  brouard
                   1017:   (Module): Change position of html and gnuplot routines and added
                   1018:   routine fileappend.
                   1019: 
                   1020:   Revision 1.85  2003/06/17 13:12:43  brouard
                   1021:   * imach.c (Repository): Check when date of death was earlier that
                   1022:   current date of interview. It may happen when the death was just
                   1023:   prior to the death. In this case, dh was negative and likelihood
                   1024:   was wrong (infinity). We still send an "Error" but patch by
                   1025:   assuming that the date of death was just one stepm after the
                   1026:   interview.
                   1027:   (Repository): Because some people have very long ID (first column)
                   1028:   we changed int to long in num[] and we added a new lvector for
                   1029:   memory allocation. But we also truncated to 8 characters (left
                   1030:   truncation)
                   1031:   (Repository): No more line truncation errors.
                   1032: 
                   1033:   Revision 1.84  2003/06/13 21:44:43  brouard
                   1034:   * imach.c (Repository): Replace "freqsummary" at a correct
                   1035:   place. It differs from routine "prevalence" which may be called
                   1036:   many times. Probs is memory consuming and must be used with
                   1037:   parcimony.
                   1038:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
                   1039: 
                   1040:   Revision 1.83  2003/06/10 13:39:11  lievre
                   1041:   *** empty log message ***
                   1042: 
                   1043:   Revision 1.82  2003/06/05 15:57:20  brouard
                   1044:   Add log in  imach.c and  fullversion number is now printed.
                   1045: 
                   1046: */
                   1047: /*
                   1048:    Interpolated Markov Chain
                   1049: 
                   1050:   Short summary of the programme:
                   1051:   
1.227     brouard  1052:   This program computes Healthy Life Expectancies or State-specific
                   1053:   (if states aren't health statuses) Expectancies from
                   1054:   cross-longitudinal data. Cross-longitudinal data consist in: 
                   1055: 
                   1056:   -1- a first survey ("cross") where individuals from different ages
                   1057:   are interviewed on their health status or degree of disability (in
                   1058:   the case of a health survey which is our main interest)
                   1059: 
                   1060:   -2- at least a second wave of interviews ("longitudinal") which
                   1061:   measure each change (if any) in individual health status.  Health
                   1062:   expectancies are computed from the time spent in each health state
                   1063:   according to a model. More health states you consider, more time is
                   1064:   necessary to reach the Maximum Likelihood of the parameters involved
                   1065:   in the model.  The simplest model is the multinomial logistic model
                   1066:   where pij is the probability to be observed in state j at the second
                   1067:   wave conditional to be observed in state i at the first
                   1068:   wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
                   1069:   etc , where 'age' is age and 'sex' is a covariate. If you want to
                   1070:   have a more complex model than "constant and age", you should modify
                   1071:   the program where the markup *Covariates have to be included here
                   1072:   again* invites you to do it.  More covariates you add, slower the
1.126     brouard  1073:   convergence.
                   1074: 
                   1075:   The advantage of this computer programme, compared to a simple
                   1076:   multinomial logistic model, is clear when the delay between waves is not
                   1077:   identical for each individual. Also, if a individual missed an
                   1078:   intermediate interview, the information is lost, but taken into
                   1079:   account using an interpolation or extrapolation.  
                   1080: 
                   1081:   hPijx is the probability to be observed in state i at age x+h
                   1082:   conditional to the observed state i at age x. The delay 'h' can be
                   1083:   split into an exact number (nh*stepm) of unobserved intermediate
                   1084:   states. This elementary transition (by month, quarter,
                   1085:   semester or year) is modelled as a multinomial logistic.  The hPx
                   1086:   matrix is simply the matrix product of nh*stepm elementary matrices
                   1087:   and the contribution of each individual to the likelihood is simply
                   1088:   hPijx.
                   1089: 
                   1090:   Also this programme outputs the covariance matrix of the parameters but also
1.218     brouard  1091:   of the life expectancies. It also computes the period (stable) prevalence.
                   1092: 
                   1093: Back prevalence and projections:
1.227     brouard  1094: 
                   1095:  - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
                   1096:    double agemaxpar, double ftolpl, int *ncvyearp, double
                   1097:    dateprev1,double dateprev2, int firstpass, int lastpass, int
                   1098:    mobilavproj)
                   1099: 
                   1100:     Computes the back prevalence limit for any combination of
                   1101:     covariate values k at any age between ageminpar and agemaxpar and
                   1102:     returns it in **bprlim. In the loops,
                   1103: 
                   1104:    - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
                   1105:        **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
                   1106: 
                   1107:    - hBijx Back Probability to be in state i at age x-h being in j at x
1.218     brouard  1108:    Computes for any combination of covariates k and any age between bage and fage 
                   1109:    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   1110:                        oldm=oldms;savm=savms;
1.227     brouard  1111: 
1.267     brouard  1112:    - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);
1.218     brouard  1113:      Computes the transition matrix starting at age 'age' over
                   1114:      'nhstepm*hstepm*stepm' months (i.e. until
                   1115:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
1.227     brouard  1116:      nhstepm*hstepm matrices. 
                   1117: 
                   1118:      Returns p3mat[i][j][h] after calling
                   1119:      p3mat[i][j][h]=matprod2(newm,
                   1120:      bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
                   1121:      dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
                   1122:      oldm);
1.226     brouard  1123: 
                   1124: Important routines
                   1125: 
                   1126: - func (or funcone), computes logit (pij) distinguishing
                   1127:   o fixed variables (single or product dummies or quantitative);
                   1128:   o varying variables by:
                   1129:    (1) wave (single, product dummies, quantitative), 
                   1130:    (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
                   1131:        % fixed dummy (treated) or quantitative (not done because time-consuming);
                   1132:        % varying dummy (not done) or quantitative (not done);
                   1133: - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
                   1134:   and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
                   1135: - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
1.325     brouard  1136:   o There are 2**cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
1.226     brouard  1137:     race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
1.218     brouard  1138: 
1.226     brouard  1139: 
                   1140:   
1.324     brouard  1141:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
                   1142:            Institut national d'études démographiques, Paris.
1.126     brouard  1143:   This software have been partly granted by Euro-REVES, a concerted action
                   1144:   from the European Union.
                   1145:   It is copyrighted identically to a GNU software product, ie programme and
                   1146:   software can be distributed freely for non commercial use. Latest version
                   1147:   can be accessed at http://euroreves.ined.fr/imach .
                   1148: 
                   1149:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
                   1150:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
                   1151:   
                   1152:   **********************************************************************/
                   1153: /*
                   1154:   main
                   1155:   read parameterfile
                   1156:   read datafile
                   1157:   concatwav
                   1158:   freqsummary
                   1159:   if (mle >= 1)
                   1160:     mlikeli
                   1161:   print results files
                   1162:   if mle==1 
                   1163:      computes hessian
                   1164:   read end of parameter file: agemin, agemax, bage, fage, estepm
                   1165:       begin-prev-date,...
                   1166:   open gnuplot file
                   1167:   open html file
1.145     brouard  1168:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
                   1169:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                   1170:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
                   1171:     freexexit2 possible for memory heap.
                   1172: 
                   1173:   h Pij x                         | pij_nom  ficrestpij
                   1174:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
                   1175:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
                   1176:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
                   1177: 
                   1178:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
                   1179:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
                   1180:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
                   1181:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
                   1182:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
                   1183: 
1.126     brouard  1184:   forecasting if prevfcast==1 prevforecast call prevalence()
                   1185:   health expectancies
                   1186:   Variance-covariance of DFLE
                   1187:   prevalence()
                   1188:    movingaverage()
                   1189:   varevsij() 
                   1190:   if popbased==1 varevsij(,popbased)
                   1191:   total life expectancies
                   1192:   Variance of period (stable) prevalence
                   1193:  end
                   1194: */
                   1195: 
1.187     brouard  1196: /* #define DEBUG */
                   1197: /* #define DEBUGBRENT */
1.203     brouard  1198: /* #define DEBUGLINMIN */
                   1199: /* #define DEBUGHESS */
                   1200: #define DEBUGHESSIJ
1.224     brouard  1201: /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
1.165     brouard  1202: #define POWELL /* Instead of NLOPT */
1.224     brouard  1203: #define POWELLNOF3INFF1TEST /* Skip test */
1.186     brouard  1204: /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
                   1205: /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
1.319     brouard  1206: /* #define FLATSUP  *//* Suppresses directions where likelihood is flat */
1.126     brouard  1207: 
                   1208: #include <math.h>
                   1209: #include <stdio.h>
                   1210: #include <stdlib.h>
                   1211: #include <string.h>
1.226     brouard  1212: #include <ctype.h>
1.159     brouard  1213: 
                   1214: #ifdef _WIN32
                   1215: #include <io.h>
1.172     brouard  1216: #include <windows.h>
                   1217: #include <tchar.h>
1.159     brouard  1218: #else
1.126     brouard  1219: #include <unistd.h>
1.159     brouard  1220: #endif
1.126     brouard  1221: 
                   1222: #include <limits.h>
                   1223: #include <sys/types.h>
1.171     brouard  1224: 
                   1225: #if defined(__GNUC__)
                   1226: #include <sys/utsname.h> /* Doesn't work on Windows */
                   1227: #endif
                   1228: 
1.126     brouard  1229: #include <sys/stat.h>
                   1230: #include <errno.h>
1.159     brouard  1231: /* extern int errno; */
1.126     brouard  1232: 
1.157     brouard  1233: /* #ifdef LINUX */
                   1234: /* #include <time.h> */
                   1235: /* #include "timeval.h" */
                   1236: /* #else */
                   1237: /* #include <sys/time.h> */
                   1238: /* #endif */
                   1239: 
1.126     brouard  1240: #include <time.h>
                   1241: 
1.136     brouard  1242: #ifdef GSL
                   1243: #include <gsl/gsl_errno.h>
                   1244: #include <gsl/gsl_multimin.h>
                   1245: #endif
                   1246: 
1.167     brouard  1247: 
1.162     brouard  1248: #ifdef NLOPT
                   1249: #include <nlopt.h>
                   1250: typedef struct {
                   1251:   double (* function)(double [] );
                   1252: } myfunc_data ;
                   1253: #endif
                   1254: 
1.126     brouard  1255: /* #include <libintl.h> */
                   1256: /* #define _(String) gettext (String) */
                   1257: 
1.251     brouard  1258: #define MAXLINE 2048 /* Was 256 and 1024. Overflow with 312 with 2 states and 4 covariates. Should be ok */
1.126     brouard  1259: 
                   1260: #define GNUPLOTPROGRAM "gnuplot"
                   1261: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
1.329     brouard  1262: #define FILENAMELENGTH 256
1.126     brouard  1263: 
                   1264: #define        GLOCK_ERROR_NOPATH              -1      /* empty path */
                   1265: #define        GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
                   1266: 
1.144     brouard  1267: #define MAXPARM 128 /**< Maximum number of parameters for the optimization */
                   1268: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
1.126     brouard  1269: 
                   1270: #define NINTERVMAX 8
1.144     brouard  1271: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
                   1272: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
1.325     brouard  1273: #define NCOVMAX 30  /**< Maximum number of covariates used in the model, including generated covariates V1*V2 or V1*age */
1.197     brouard  1274: #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
1.211     brouard  1275: /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
                   1276: #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
1.290     brouard  1277: /*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */
1.144     brouard  1278: #define YEARM 12. /**< Number of months per year */
1.218     brouard  1279: /* #define AGESUP 130 */
1.288     brouard  1280: /* #define AGESUP 150 */
                   1281: #define AGESUP 200
1.268     brouard  1282: #define AGEINF 0
1.218     brouard  1283: #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
1.126     brouard  1284: #define AGEBASE 40
1.194     brouard  1285: #define AGEOVERFLOW 1.e20
1.164     brouard  1286: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
1.157     brouard  1287: #ifdef _WIN32
                   1288: #define DIRSEPARATOR '\\'
                   1289: #define CHARSEPARATOR "\\"
                   1290: #define ODIRSEPARATOR '/'
                   1291: #else
1.126     brouard  1292: #define DIRSEPARATOR '/'
                   1293: #define CHARSEPARATOR "/"
                   1294: #define ODIRSEPARATOR '\\'
                   1295: #endif
                   1296: 
1.338   ! brouard  1297: /* $Id: imach.c,v 1.337 2022/09/02 14:26:02 brouard Exp $ */
1.126     brouard  1298: /* $State: Exp $ */
1.196     brouard  1299: #include "version.h"
                   1300: char version[]=__IMACH_VERSION__;
1.337     brouard  1301: char copyright[]="September 2022,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022";
1.338   ! brouard  1302: char fullversion[]="$Revision: 1.337 $ $Date: 2022/09/02 14:26:02 $"; 
1.126     brouard  1303: char strstart[80];
                   1304: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
1.130     brouard  1305: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
1.187     brouard  1306: int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
1.330     brouard  1307: /* Number of covariates model (1)=V2+V1+ V3*age+V2*V4 */
                   1308: /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
1.335     brouard  1309: int cptcovn=0; /**< cptcovn decodemodel: number of covariates k of the models excluding age*products =6 and age*age but including products */
1.330     brouard  1310: int cptcovt=0; /**< cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
1.335     brouard  1311: int cptcovs=0; /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
                   1312: int cptcovsnq=0; /**< cptcovsnq number of SIMPLE covariates in the model but non quantitative V2+V1 =2 */
1.145     brouard  1313: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
                   1314: int cptcovprodnoage=0; /**< Number of covariate products without age */   
1.335     brouard  1315: int cptcoveff=0; /* Total number of single dummy covariates (fixed or time varying) to vary for printing results (2**cptcoveff combinations of dummies)(computed in tricode as cptcov) */
1.233     brouard  1316: int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
                   1317: int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
1.232     brouard  1318: int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (dummy of quantitative) in the model */
1.234     brouard  1319: int nsd=0; /**< Total number of single dummy variables (output) */
                   1320: int nsq=0; /**< Total number of single quantitative variables (output) */
1.232     brouard  1321: int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
1.225     brouard  1322: int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
1.224     brouard  1323: int ntveff=0; /**< ntveff number of effective time varying variables */
                   1324: int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
1.145     brouard  1325: int cptcov=0; /* Working variable */
1.334     brouard  1326: int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs+1 declared globally ;*/
1.290     brouard  1327: int nobs=10;  /* Number of observations in the data lastobs-firstobs */
1.218     brouard  1328: int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
1.302     brouard  1329: int npar=NPARMAX; /* Number of parameters (nlstate+ndeath-1)*nlstate*ncovmodel; */
1.126     brouard  1330: int nlstate=2; /* Number of live states */
                   1331: int ndeath=1; /* Number of dead states */
1.130     brouard  1332: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
1.223     brouard  1333: int  nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable */ 
1.126     brouard  1334: int popbased=0;
                   1335: 
                   1336: int *wav; /* Number of waves for this individuual 0 is possible */
1.130     brouard  1337: int maxwav=0; /* Maxim number of waves */
                   1338: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
                   1339: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
                   1340: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
1.126     brouard  1341:                   to the likelihood and the sum of weights (done by funcone)*/
1.130     brouard  1342: int mle=1, weightopt=0;
1.126     brouard  1343: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
                   1344: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
                   1345: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                   1346:           * wave mi and wave mi+1 is not an exact multiple of stepm. */
1.162     brouard  1347: int countcallfunc=0;  /* Count the number of calls to func */
1.230     brouard  1348: int selected(int kvar); /* Is covariate kvar selected for printing results */
                   1349: 
1.130     brouard  1350: double jmean=1; /* Mean space between 2 waves */
1.145     brouard  1351: double **matprod2(); /* test */
1.126     brouard  1352: double **oldm, **newm, **savm; /* Working pointers to matrices */
                   1353: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
1.218     brouard  1354: double  **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
                   1355: 
1.136     brouard  1356: /*FILE *fic ; */ /* Used in readdata only */
1.217     brouard  1357: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
1.126     brouard  1358: FILE *ficlog, *ficrespow;
1.130     brouard  1359: int globpr=0; /* Global variable for printing or not */
1.126     brouard  1360: double fretone; /* Only one call to likelihood */
1.130     brouard  1361: long ipmx=0; /* Number of contributions */
1.126     brouard  1362: double sw; /* Sum of weights */
                   1363: char filerespow[FILENAMELENGTH];
                   1364: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
                   1365: FILE *ficresilk;
                   1366: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                   1367: FILE *ficresprobmorprev;
                   1368: FILE *fichtm, *fichtmcov; /* Html File */
                   1369: FILE *ficreseij;
                   1370: char filerese[FILENAMELENGTH];
                   1371: FILE *ficresstdeij;
                   1372: char fileresstde[FILENAMELENGTH];
                   1373: FILE *ficrescveij;
                   1374: char filerescve[FILENAMELENGTH];
                   1375: FILE  *ficresvij;
                   1376: char fileresv[FILENAMELENGTH];
1.269     brouard  1377: 
1.126     brouard  1378: char title[MAXLINE];
1.234     brouard  1379: char model[MAXLINE]; /**< The model line */
1.217     brouard  1380: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
1.126     brouard  1381: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
                   1382: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
                   1383: char command[FILENAMELENGTH];
                   1384: int  outcmd=0;
                   1385: 
1.217     brouard  1386: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
1.202     brouard  1387: char fileresu[FILENAMELENGTH]; /* fileres without r in front */
1.126     brouard  1388: char filelog[FILENAMELENGTH]; /* Log file */
                   1389: char filerest[FILENAMELENGTH];
                   1390: char fileregp[FILENAMELENGTH];
                   1391: char popfile[FILENAMELENGTH];
                   1392: 
                   1393: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
                   1394: 
1.157     brouard  1395: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
                   1396: /* struct timezone tzp; */
                   1397: /* extern int gettimeofday(); */
                   1398: struct tm tml, *gmtime(), *localtime();
                   1399: 
                   1400: extern time_t time();
                   1401: 
                   1402: struct tm start_time, end_time, curr_time, last_time, forecast_time;
                   1403: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
                   1404: struct tm tm;
                   1405: 
1.126     brouard  1406: char strcurr[80], strfor[80];
                   1407: 
                   1408: char *endptr;
                   1409: long lval;
                   1410: double dval;
                   1411: 
                   1412: #define NR_END 1
                   1413: #define FREE_ARG char*
                   1414: #define FTOL 1.0e-10
                   1415: 
                   1416: #define NRANSI 
1.240     brouard  1417: #define ITMAX 200
                   1418: #define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ 
1.126     brouard  1419: 
                   1420: #define TOL 2.0e-4 
                   1421: 
                   1422: #define CGOLD 0.3819660 
                   1423: #define ZEPS 1.0e-10 
                   1424: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                   1425: 
                   1426: #define GOLD 1.618034 
                   1427: #define GLIMIT 100.0 
                   1428: #define TINY 1.0e-20 
                   1429: 
                   1430: static double maxarg1,maxarg2;
                   1431: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
                   1432: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
                   1433:   
                   1434: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
                   1435: #define rint(a) floor(a+0.5)
1.166     brouard  1436: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
1.183     brouard  1437: #define mytinydouble 1.0e-16
1.166     brouard  1438: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
                   1439: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
                   1440: /* static double dsqrarg; */
                   1441: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
1.126     brouard  1442: static double sqrarg;
                   1443: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
                   1444: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
                   1445: int agegomp= AGEGOMP;
                   1446: 
                   1447: int imx; 
                   1448: int stepm=1;
                   1449: /* Stepm, step in month: minimum step interpolation*/
                   1450: 
                   1451: int estepm;
                   1452: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
                   1453: 
                   1454: int m,nb;
                   1455: long *num;
1.197     brouard  1456: int firstpass=0, lastpass=4,*cod, *cens;
1.192     brouard  1457: int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
                   1458:                   covariate for which somebody answered excluding 
                   1459:                   undefined. Usually 2: 0 and 1. */
                   1460: int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                   1461:                             covariate for which somebody answered including 
                   1462:                             undefined. Usually 3: -1, 0 and 1. */
1.126     brouard  1463: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
1.218     brouard  1464: double **pmmij, ***probs; /* Global pointer */
1.219     brouard  1465: double ***mobaverage, ***mobaverages; /* New global variable */
1.332     brouard  1466: double **precov; /* New global variable to store for each resultline, values of model covariates given by the resultlines (in order to speed up)  */
1.126     brouard  1467: double *ageexmed,*agecens;
                   1468: double dateintmean=0;
1.296     brouard  1469:   double anprojd, mprojd, jprojd; /* For eventual projections */
                   1470:   double anprojf, mprojf, jprojf;
1.126     brouard  1471: 
1.296     brouard  1472:   double anbackd, mbackd, jbackd; /* For eventual backprojections */
                   1473:   double anbackf, mbackf, jbackf;
                   1474:   double jintmean,mintmean,aintmean;  
1.126     brouard  1475: double *weight;
                   1476: int **s; /* Status */
1.141     brouard  1477: double *agedc;
1.145     brouard  1478: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
1.141     brouard  1479:                  * covar=matrix(0,NCOVMAX,1,n); 
1.187     brouard  1480:                  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
1.268     brouard  1481: double **coqvar; /* Fixed quantitative covariate nqv */
                   1482: double ***cotvar; /* Time varying covariate ntv */
1.225     brouard  1483: double ***cotqvar; /* Time varying quantitative covariate itqv */
1.141     brouard  1484: double  idx; 
                   1485: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
1.319     brouard  1486: /* Some documentation */
                   1487:       /*   Design original data
                   1488:        *  V1   V2   V3   V4  V5  V6  V7  V8  Weight ddb ddth d1st s1 V9 V10 V11 V12 s2 V9 V10 V11 V12 
                   1489:        *  <          ncovcol=6   >   nqv=2 (V7 V8)                   dv dv  dv  qtv    dv dv  dvv qtv
                   1490:        *                                                             ntv=3     nqtv=1
1.330     brouard  1491:        *  cptcovn number of covariates (not including constant and age or age*age) = number of plus sign + 1 = 10+1=11
1.319     brouard  1492:        * For time varying covariate, quanti or dummies
                   1493:        *       cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti
                   1494:        *       cotvar[wav][ntv+iv][i]= [3+(1 to nqtv)][i]=(V12) quanti
                   1495:        *       cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1
                   1496:        *       cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1
1.332     brouard  1497:        *       covar[Vk,i], value of the Vkth fixed covariate dummy or quanti for individual i:
1.319     brouard  1498:        *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
                   1499:        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 + V9 + V9*age + V10
                   1500:        *   k=  1    2      3       4     5       6      7        8   9     10       11 
                   1501:        */
                   1502: /* According to the model, more columns can be added to covar by the product of covariates */
1.318     brouard  1503: /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
                   1504:   # States 1=Coresidence, 2 Living alone, 3 Institution
                   1505:   # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
                   1506: */
1.319     brouard  1507: /*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1508: /*    k        1  2   3   4     5    6    7     8    9 */
                   1509: /*Typevar[k]=  0  0   0   2     1    0    2     1    0 *//*0 for simple covariate (dummy, quantitative,*/
                   1510:                                                          /* fixed or varying), 1 for age product, 2 for*/
                   1511:                                                          /* product */
                   1512: /*Dummy[k]=    1  0   0   1     3    1    1     2    0 *//*Dummy[k] 0=dummy (0 1), 1 quantitative */
                   1513:                                                          /*(single or product without age), 2 dummy*/
                   1514:                                                          /* with age product, 3 quant with age product*/
                   1515: /*Tvar[k]=     5  4   3   6     5    2    7     1    1 */
                   1516: /*    nsd         1   2                              3 */ /* Counting single dummies covar fixed or tv */
1.330     brouard  1517: /*TnsdVar[Tvar]   1   2                              3 */ 
1.337     brouard  1518: /*Tvaraff[nsd]     4   3                              1 */ /* ID of single dummy cova fixed or timevary*/
1.319     brouard  1519: /*TvarsD[nsd]     4   3                              1 */ /* ID of single dummy cova fixed or timevary*/
1.338   ! brouard  1520: /*TvarsDind[nsd]  2   3                              9 */ /* position K of single dummy cova */
1.319     brouard  1521: /*    nsq      1                     2                 */ /* Counting single quantit tv */
                   1522: /* TvarsQ[k]   5                     2                 */ /* Number of single quantitative cova */
                   1523: /* TvarsQind   1                     6                 */ /* position K of single quantitative cova */
                   1524: /* Tprod[i]=k             1               2            */ /* Position in model of the ith prod without age */
                   1525: /* cptcovage                    1               2      */ /* Counting cov*age in the model equation */
                   1526: /* Tage[cptcovage]=k            5               8      */ /* Position in the model of ith cov*age */
                   1527: /* Tvard[1][1]@4={4,3,1,2}    V4*V3 V1*V2              */ /* Position in model of the ith prod without age */
1.330     brouard  1528: /* Tvardk[4][1]=4;Tvardk[4][2]=3;Tvardk[7][1]=1;Tvardk[7][2]=2 */ /* Variables of a prod at position in the model equation*/
1.319     brouard  1529: /* TvarF TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
1.320     brouard  1530: /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
1.234     brouard  1531: /* Type                    */
                   1532: /* V         1  2  3  4  5 */
                   1533: /*           F  F  V  V  V */
                   1534: /*           D  Q  D  D  Q */
                   1535: /*                         */
                   1536: int *TvarsD;
1.330     brouard  1537: int *TnsdVar;
1.234     brouard  1538: int *TvarsDind;
                   1539: int *TvarsQ;
                   1540: int *TvarsQind;
                   1541: 
1.318     brouard  1542: #define MAXRESULTLINESPONE 10+1
1.235     brouard  1543: int nresult=0;
1.258     brouard  1544: int parameterline=0; /* # of the parameter (type) line */
1.334     brouard  1545: int TKresult[MAXRESULTLINESPONE]; /* TKresult[nres]=k for each resultline nres give the corresponding combination of dummies */
                   1546: int resultmodel[MAXRESULTLINESPONE][NCOVMAX];/* resultmodel[k1]=k3: k1th position in the model corresponds to the k3 position in the resultline */
                   1547: int modelresult[MAXRESULTLINESPONE][NCOVMAX];/* modelresult[k3]=k1: k1th position in the model corresponds to the k3 position in the resultline */
                   1548: int Tresult[MAXRESULTLINESPONE][NCOVMAX];/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */
1.332     brouard  1549: int Tinvresult[MAXRESULTLINESPONE][NCOVMAX];/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line  */
                   1550: double TinvDoQresult[MAXRESULTLINESPONE][NCOVMAX];/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */
1.334     brouard  1551: int Tvresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */
1.332     brouard  1552: double Tqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
1.318     brouard  1553: double Tqinvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */
1.332     brouard  1554: int Tvqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */
1.318     brouard  1555: 
                   1556: /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
                   1557:   # States 1=Coresidence, 2 Living alone, 3 Institution
                   1558:   # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
                   1559: */
1.234     brouard  1560: /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
1.232     brouard  1561: int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1562: int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1563: int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1564: int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1565: int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1566: int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.231     brouard  1567: int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1568: int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1569: int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1570: int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1571: int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1572: int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1573: int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   1574: int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   1575: 
1.230     brouard  1576: int *Tvarsel; /**< Selected covariates for output */
                   1577: double *Tvalsel; /**< Selected modality value of covariate for output */
1.226     brouard  1578: int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
1.227     brouard  1579: int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
                   1580: int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
1.238     brouard  1581: int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
                   1582: int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
1.197     brouard  1583: int *Tage;
1.227     brouard  1584: int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
1.228     brouard  1585: int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
1.230     brouard  1586: int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
                   1587: int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
1.145     brouard  1588: int *Ndum; /** Freq of modality (tricode */
1.200     brouard  1589: /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
1.227     brouard  1590: int **Tvard;
1.330     brouard  1591: int **Tvardk;
1.227     brouard  1592: int *Tprod;/**< Gives the k position of the k1 product */
1.238     brouard  1593: /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
1.227     brouard  1594: int *Tposprod; /**< Gives the k1 product from the k position */
1.238     brouard  1595:    /* if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2) */
                   1596:    /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
1.227     brouard  1597: int cptcovprod, *Tvaraff, *invalidvarcomb;
1.126     brouard  1598: double *lsurv, *lpop, *tpop;
                   1599: 
1.231     brouard  1600: #define FD 1; /* Fixed dummy covariate */
                   1601: #define FQ 2; /* Fixed quantitative covariate */
                   1602: #define FP 3; /* Fixed product covariate */
                   1603: #define FPDD 7; /* Fixed product dummy*dummy covariate */
                   1604: #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
                   1605: #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
                   1606: #define VD 10; /* Varying dummy covariate */
                   1607: #define VQ 11; /* Varying quantitative covariate */
                   1608: #define VP 12; /* Varying product covariate */
                   1609: #define VPDD 13; /* Varying product dummy*dummy covariate */
                   1610: #define VPDQ 14; /* Varying product dummy*quantitative covariate */
                   1611: #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
                   1612: #define APFD 16; /* Age product * fixed dummy covariate */
                   1613: #define APFQ 17; /* Age product * fixed quantitative covariate */
                   1614: #define APVD 18; /* Age product * varying dummy covariate */
                   1615: #define APVQ 19; /* Age product * varying quantitative covariate */
                   1616: 
                   1617: #define FTYPE 1; /* Fixed covariate */
                   1618: #define VTYPE 2; /* Varying covariate (loop in wave) */
                   1619: #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
                   1620: 
                   1621: struct kmodel{
                   1622:        int maintype; /* main type */
                   1623:        int subtype; /* subtype */
                   1624: };
                   1625: struct kmodel modell[NCOVMAX];
                   1626: 
1.143     brouard  1627: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
                   1628: double ftolhess; /**< Tolerance for computing hessian */
1.126     brouard  1629: 
                   1630: /**************** split *************************/
                   1631: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
                   1632: {
                   1633:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
                   1634:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
                   1635:   */ 
                   1636:   char *ss;                            /* pointer */
1.186     brouard  1637:   int  l1=0, l2=0;                             /* length counters */
1.126     brouard  1638: 
                   1639:   l1 = strlen(path );                  /* length of path */
                   1640:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
                   1641:   ss= strrchr( path, DIRSEPARATOR );           /* find last / */
                   1642:   if ( ss == NULL ) {                  /* no directory, so determine current directory */
                   1643:     strcpy( name, path );              /* we got the fullname name because no directory */
                   1644:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                   1645:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
                   1646:     /* get current working directory */
                   1647:     /*    extern  char* getcwd ( char *buf , int len);*/
1.184     brouard  1648: #ifdef WIN32
                   1649:     if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
                   1650: #else
                   1651:        if (getcwd(dirc, FILENAME_MAX) == NULL) {
                   1652: #endif
1.126     brouard  1653:       return( GLOCK_ERROR_GETCWD );
                   1654:     }
                   1655:     /* got dirc from getcwd*/
                   1656:     printf(" DIRC = %s \n",dirc);
1.205     brouard  1657:   } else {                             /* strip directory from path */
1.126     brouard  1658:     ss++;                              /* after this, the filename */
                   1659:     l2 = strlen( ss );                 /* length of filename */
                   1660:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
                   1661:     strcpy( name, ss );                /* save file name */
                   1662:     strncpy( dirc, path, l1 - l2 );    /* now the directory */
1.186     brouard  1663:     dirc[l1-l2] = '\0';                        /* add zero */
1.126     brouard  1664:     printf(" DIRC2 = %s \n",dirc);
                   1665:   }
                   1666:   /* We add a separator at the end of dirc if not exists */
                   1667:   l1 = strlen( dirc );                 /* length of directory */
                   1668:   if( dirc[l1-1] != DIRSEPARATOR ){
                   1669:     dirc[l1] =  DIRSEPARATOR;
                   1670:     dirc[l1+1] = 0; 
                   1671:     printf(" DIRC3 = %s \n",dirc);
                   1672:   }
                   1673:   ss = strrchr( name, '.' );           /* find last / */
                   1674:   if (ss >0){
                   1675:     ss++;
                   1676:     strcpy(ext,ss);                    /* save extension */
                   1677:     l1= strlen( name);
                   1678:     l2= strlen(ss)+1;
                   1679:     strncpy( finame, name, l1-l2);
                   1680:     finame[l1-l2]= 0;
                   1681:   }
                   1682: 
                   1683:   return( 0 );                         /* we're done */
                   1684: }
                   1685: 
                   1686: 
                   1687: /******************************************/
                   1688: 
                   1689: void replace_back_to_slash(char *s, char*t)
                   1690: {
                   1691:   int i;
                   1692:   int lg=0;
                   1693:   i=0;
                   1694:   lg=strlen(t);
                   1695:   for(i=0; i<= lg; i++) {
                   1696:     (s[i] = t[i]);
                   1697:     if (t[i]== '\\') s[i]='/';
                   1698:   }
                   1699: }
                   1700: 
1.132     brouard  1701: char *trimbb(char *out, char *in)
1.137     brouard  1702: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
1.132     brouard  1703:   char *s;
                   1704:   s=out;
                   1705:   while (*in != '\0'){
1.137     brouard  1706:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
1.132     brouard  1707:       in++;
                   1708:     }
                   1709:     *out++ = *in++;
                   1710:   }
                   1711:   *out='\0';
                   1712:   return s;
                   1713: }
                   1714: 
1.187     brouard  1715: /* char *substrchaine(char *out, char *in, char *chain) */
                   1716: /* { */
                   1717: /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
                   1718: /*   char *s, *t; */
                   1719: /*   t=in;s=out; */
                   1720: /*   while ((*in != *chain) && (*in != '\0')){ */
                   1721: /*     *out++ = *in++; */
                   1722: /*   } */
                   1723: 
                   1724: /*   /\* *in matches *chain *\/ */
                   1725: /*   while ((*in++ == *chain++) && (*in != '\0')){ */
                   1726: /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1727: /*   } */
                   1728: /*   in--; chain--; */
                   1729: /*   while ( (*in != '\0')){ */
                   1730: /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1731: /*     *out++ = *in++; */
                   1732: /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1733: /*   } */
                   1734: /*   *out='\0'; */
                   1735: /*   out=s; */
                   1736: /*   return out; */
                   1737: /* } */
                   1738: char *substrchaine(char *out, char *in, char *chain)
                   1739: {
                   1740:   /* Substract chain 'chain' from 'in', return and output 'out' */
                   1741:   /* in="V1+V1*age+age*age+V2", chain="age*age" */
                   1742: 
                   1743:   char *strloc;
                   1744: 
                   1745:   strcpy (out, in); 
                   1746:   strloc = strstr(out, chain); /* strloc points to out at age*age+V2 */
                   1747:   printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out);
                   1748:   if(strloc != NULL){ 
                   1749:     /* will affect out */ /* strloc+strlenc(chain)=+V2 */ /* Will also work in Unicode */
                   1750:     memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1);
                   1751:     /* strcpy (strloc, strloc +strlen(chain));*/
                   1752:   }
                   1753:   printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);
                   1754:   return out;
                   1755: }
                   1756: 
                   1757: 
1.145     brouard  1758: char *cutl(char *blocc, char *alocc, char *in, char occ)
                   1759: {
1.187     brouard  1760:   /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
1.145     brouard  1761:      and alocc starts after first occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
1.310     brouard  1762:      gives alocc="abcdef" and blocc="ghi2j".
1.145     brouard  1763:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
                   1764:   */
1.160     brouard  1765:   char *s, *t;
1.145     brouard  1766:   t=in;s=in;
                   1767:   while ((*in != occ) && (*in != '\0')){
                   1768:     *alocc++ = *in++;
                   1769:   }
                   1770:   if( *in == occ){
                   1771:     *(alocc)='\0';
                   1772:     s=++in;
                   1773:   }
                   1774:  
                   1775:   if (s == t) {/* occ not found */
                   1776:     *(alocc-(in-s))='\0';
                   1777:     in=s;
                   1778:   }
                   1779:   while ( *in != '\0'){
                   1780:     *blocc++ = *in++;
                   1781:   }
                   1782: 
                   1783:   *blocc='\0';
                   1784:   return t;
                   1785: }
1.137     brouard  1786: char *cutv(char *blocc, char *alocc, char *in, char occ)
                   1787: {
1.187     brouard  1788:   /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
1.137     brouard  1789:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
                   1790:      gives blocc="abcdef2ghi" and alocc="j".
                   1791:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
                   1792:   */
                   1793:   char *s, *t;
                   1794:   t=in;s=in;
                   1795:   while (*in != '\0'){
                   1796:     while( *in == occ){
                   1797:       *blocc++ = *in++;
                   1798:       s=in;
                   1799:     }
                   1800:     *blocc++ = *in++;
                   1801:   }
                   1802:   if (s == t) /* occ not found */
                   1803:     *(blocc-(in-s))='\0';
                   1804:   else
                   1805:     *(blocc-(in-s)-1)='\0';
                   1806:   in=s;
                   1807:   while ( *in != '\0'){
                   1808:     *alocc++ = *in++;
                   1809:   }
                   1810: 
                   1811:   *alocc='\0';
                   1812:   return s;
                   1813: }
                   1814: 
1.126     brouard  1815: int nbocc(char *s, char occ)
                   1816: {
                   1817:   int i,j=0;
                   1818:   int lg=20;
                   1819:   i=0;
                   1820:   lg=strlen(s);
                   1821:   for(i=0; i<= lg; i++) {
1.234     brouard  1822:     if  (s[i] == occ ) j++;
1.126     brouard  1823:   }
                   1824:   return j;
                   1825: }
                   1826: 
1.137     brouard  1827: /* void cutv(char *u,char *v, char*t, char occ) */
                   1828: /* { */
                   1829: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
                   1830: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
                   1831: /*      gives u="abcdef2ghi" and v="j" *\/ */
                   1832: /*   int i,lg,j,p=0; */
                   1833: /*   i=0; */
                   1834: /*   lg=strlen(t); */
                   1835: /*   for(j=0; j<=lg-1; j++) { */
                   1836: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
                   1837: /*   } */
1.126     brouard  1838: 
1.137     brouard  1839: /*   for(j=0; j<p; j++) { */
                   1840: /*     (u[j] = t[j]); */
                   1841: /*   } */
                   1842: /*      u[p]='\0'; */
1.126     brouard  1843: 
1.137     brouard  1844: /*    for(j=0; j<= lg; j++) { */
                   1845: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
                   1846: /*   } */
                   1847: /* } */
1.126     brouard  1848: 
1.160     brouard  1849: #ifdef _WIN32
                   1850: char * strsep(char **pp, const char *delim)
                   1851: {
                   1852:   char *p, *q;
                   1853:          
                   1854:   if ((p = *pp) == NULL)
                   1855:     return 0;
                   1856:   if ((q = strpbrk (p, delim)) != NULL)
                   1857:   {
                   1858:     *pp = q + 1;
                   1859:     *q = '\0';
                   1860:   }
                   1861:   else
                   1862:     *pp = 0;
                   1863:   return p;
                   1864: }
                   1865: #endif
                   1866: 
1.126     brouard  1867: /********************** nrerror ********************/
                   1868: 
                   1869: void nrerror(char error_text[])
                   1870: {
                   1871:   fprintf(stderr,"ERREUR ...\n");
                   1872:   fprintf(stderr,"%s\n",error_text);
                   1873:   exit(EXIT_FAILURE);
                   1874: }
                   1875: /*********************** vector *******************/
                   1876: double *vector(int nl, int nh)
                   1877: {
                   1878:   double *v;
                   1879:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
                   1880:   if (!v) nrerror("allocation failure in vector");
                   1881:   return v-nl+NR_END;
                   1882: }
                   1883: 
                   1884: /************************ free vector ******************/
                   1885: void free_vector(double*v, int nl, int nh)
                   1886: {
                   1887:   free((FREE_ARG)(v+nl-NR_END));
                   1888: }
                   1889: 
                   1890: /************************ivector *******************************/
                   1891: int *ivector(long nl,long nh)
                   1892: {
                   1893:   int *v;
                   1894:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                   1895:   if (!v) nrerror("allocation failure in ivector");
                   1896:   return v-nl+NR_END;
                   1897: }
                   1898: 
                   1899: /******************free ivector **************************/
                   1900: void free_ivector(int *v, long nl, long nh)
                   1901: {
                   1902:   free((FREE_ARG)(v+nl-NR_END));
                   1903: }
                   1904: 
                   1905: /************************lvector *******************************/
                   1906: long *lvector(long nl,long nh)
                   1907: {
                   1908:   long *v;
                   1909:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
                   1910:   if (!v) nrerror("allocation failure in ivector");
                   1911:   return v-nl+NR_END;
                   1912: }
                   1913: 
                   1914: /******************free lvector **************************/
                   1915: void free_lvector(long *v, long nl, long nh)
                   1916: {
                   1917:   free((FREE_ARG)(v+nl-NR_END));
                   1918: }
                   1919: 
                   1920: /******************* imatrix *******************************/
                   1921: int **imatrix(long nrl, long nrh, long ncl, long nch) 
                   1922:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
                   1923: { 
                   1924:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                   1925:   int **m; 
                   1926:   
                   1927:   /* allocate pointers to rows */ 
                   1928:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                   1929:   if (!m) nrerror("allocation failure 1 in matrix()"); 
                   1930:   m += NR_END; 
                   1931:   m -= nrl; 
                   1932:   
                   1933:   
                   1934:   /* allocate rows and set pointers to them */ 
                   1935:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
                   1936:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                   1937:   m[nrl] += NR_END; 
                   1938:   m[nrl] -= ncl; 
                   1939:   
                   1940:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                   1941:   
                   1942:   /* return pointer to array of pointers to rows */ 
                   1943:   return m; 
                   1944: } 
                   1945: 
                   1946: /****************** free_imatrix *************************/
                   1947: void free_imatrix(m,nrl,nrh,ncl,nch)
                   1948:       int **m;
                   1949:       long nch,ncl,nrh,nrl; 
                   1950:      /* free an int matrix allocated by imatrix() */ 
                   1951: { 
                   1952:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                   1953:   free((FREE_ARG) (m+nrl-NR_END)); 
                   1954: } 
                   1955: 
                   1956: /******************* matrix *******************************/
                   1957: double **matrix(long nrl, long nrh, long ncl, long nch)
                   1958: {
                   1959:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                   1960:   double **m;
                   1961: 
                   1962:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   1963:   if (!m) nrerror("allocation failure 1 in matrix()");
                   1964:   m += NR_END;
                   1965:   m -= nrl;
                   1966: 
                   1967:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   1968:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   1969:   m[nrl] += NR_END;
                   1970:   m[nrl] -= ncl;
                   1971: 
                   1972:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   1973:   return m;
1.145     brouard  1974:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
                   1975: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
                   1976: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
1.126     brouard  1977:    */
                   1978: }
                   1979: 
                   1980: /*************************free matrix ************************/
                   1981: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                   1982: {
                   1983:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   1984:   free((FREE_ARG)(m+nrl-NR_END));
                   1985: }
                   1986: 
                   1987: /******************* ma3x *******************************/
                   1988: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                   1989: {
                   1990:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                   1991:   double ***m;
                   1992: 
                   1993:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   1994:   if (!m) nrerror("allocation failure 1 in matrix()");
                   1995:   m += NR_END;
                   1996:   m -= nrl;
                   1997: 
                   1998:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   1999:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   2000:   m[nrl] += NR_END;
                   2001:   m[nrl] -= ncl;
                   2002: 
                   2003:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   2004: 
                   2005:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                   2006:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                   2007:   m[nrl][ncl] += NR_END;
                   2008:   m[nrl][ncl] -= nll;
                   2009:   for (j=ncl+1; j<=nch; j++) 
                   2010:     m[nrl][j]=m[nrl][j-1]+nlay;
                   2011:   
                   2012:   for (i=nrl+1; i<=nrh; i++) {
                   2013:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                   2014:     for (j=ncl+1; j<=nch; j++) 
                   2015:       m[i][j]=m[i][j-1]+nlay;
                   2016:   }
                   2017:   return m; 
                   2018:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                   2019:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                   2020:   */
                   2021: }
                   2022: 
                   2023: /*************************free ma3x ************************/
                   2024: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                   2025: {
                   2026:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                   2027:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   2028:   free((FREE_ARG)(m+nrl-NR_END));
                   2029: }
                   2030: 
                   2031: /*************** function subdirf ***********/
                   2032: char *subdirf(char fileres[])
                   2033: {
                   2034:   /* Caution optionfilefiname is hidden */
                   2035:   strcpy(tmpout,optionfilefiname);
                   2036:   strcat(tmpout,"/"); /* Add to the right */
                   2037:   strcat(tmpout,fileres);
                   2038:   return tmpout;
                   2039: }
                   2040: 
                   2041: /*************** function subdirf2 ***********/
                   2042: char *subdirf2(char fileres[], char *preop)
                   2043: {
1.314     brouard  2044:   /* Example subdirf2(optionfilefiname,"FB_") with optionfilefiname="texte", result="texte/FB_texte"
                   2045:  Errors in subdirf, 2, 3 while printing tmpout is
1.315     brouard  2046:  rewritten within the same printf. Workaround: many printfs */
1.126     brouard  2047:   /* Caution optionfilefiname is hidden */
                   2048:   strcpy(tmpout,optionfilefiname);
                   2049:   strcat(tmpout,"/");
                   2050:   strcat(tmpout,preop);
                   2051:   strcat(tmpout,fileres);
                   2052:   return tmpout;
                   2053: }
                   2054: 
                   2055: /*************** function subdirf3 ***********/
                   2056: char *subdirf3(char fileres[], char *preop, char *preop2)
                   2057: {
                   2058:   
                   2059:   /* Caution optionfilefiname is hidden */
                   2060:   strcpy(tmpout,optionfilefiname);
                   2061:   strcat(tmpout,"/");
                   2062:   strcat(tmpout,preop);
                   2063:   strcat(tmpout,preop2);
                   2064:   strcat(tmpout,fileres);
                   2065:   return tmpout;
                   2066: }
1.213     brouard  2067:  
                   2068: /*************** function subdirfext ***********/
                   2069: char *subdirfext(char fileres[], char *preop, char *postop)
                   2070: {
                   2071:   
                   2072:   strcpy(tmpout,preop);
                   2073:   strcat(tmpout,fileres);
                   2074:   strcat(tmpout,postop);
                   2075:   return tmpout;
                   2076: }
1.126     brouard  2077: 
1.213     brouard  2078: /*************** function subdirfext3 ***********/
                   2079: char *subdirfext3(char fileres[], char *preop, char *postop)
                   2080: {
                   2081:   
                   2082:   /* Caution optionfilefiname is hidden */
                   2083:   strcpy(tmpout,optionfilefiname);
                   2084:   strcat(tmpout,"/");
                   2085:   strcat(tmpout,preop);
                   2086:   strcat(tmpout,fileres);
                   2087:   strcat(tmpout,postop);
                   2088:   return tmpout;
                   2089: }
                   2090:  
1.162     brouard  2091: char *asc_diff_time(long time_sec, char ascdiff[])
                   2092: {
                   2093:   long sec_left, days, hours, minutes;
                   2094:   days = (time_sec) / (60*60*24);
                   2095:   sec_left = (time_sec) % (60*60*24);
                   2096:   hours = (sec_left) / (60*60) ;
                   2097:   sec_left = (sec_left) %(60*60);
                   2098:   minutes = (sec_left) /60;
                   2099:   sec_left = (sec_left) % (60);
                   2100:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
                   2101:   return ascdiff;
                   2102: }
                   2103: 
1.126     brouard  2104: /***************** f1dim *************************/
                   2105: extern int ncom; 
                   2106: extern double *pcom,*xicom;
                   2107: extern double (*nrfunc)(double []); 
                   2108:  
                   2109: double f1dim(double x) 
                   2110: { 
                   2111:   int j; 
                   2112:   double f;
                   2113:   double *xt; 
                   2114:  
                   2115:   xt=vector(1,ncom); 
                   2116:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                   2117:   f=(*nrfunc)(xt); 
                   2118:   free_vector(xt,1,ncom); 
                   2119:   return f; 
                   2120: } 
                   2121: 
                   2122: /*****************brent *************************/
                   2123: double brent(double ax, double bx, double cx, double (*f)(double), double tol,         double *xmin) 
1.187     brouard  2124: {
                   2125:   /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
                   2126:    * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
                   2127:    * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
                   2128:    * the minimum is returned as xmin, and the minimum function value is returned as brent , the
                   2129:    * returned function value. 
                   2130:   */
1.126     brouard  2131:   int iter; 
                   2132:   double a,b,d,etemp;
1.159     brouard  2133:   double fu=0,fv,fw,fx;
1.164     brouard  2134:   double ftemp=0.;
1.126     brouard  2135:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
                   2136:   double e=0.0; 
                   2137:  
                   2138:   a=(ax < cx ? ax : cx); 
                   2139:   b=(ax > cx ? ax : cx); 
                   2140:   x=w=v=bx; 
                   2141:   fw=fv=fx=(*f)(x); 
                   2142:   for (iter=1;iter<=ITMAX;iter++) { 
                   2143:     xm=0.5*(a+b); 
                   2144:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                   2145:     /*         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                   2146:     printf(".");fflush(stdout);
                   2147:     fprintf(ficlog,".");fflush(ficlog);
1.162     brouard  2148: #ifdef DEBUGBRENT
1.126     brouard  2149:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   2150:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   2151:     /*         if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                   2152: #endif
                   2153:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                   2154:       *xmin=x; 
                   2155:       return fx; 
                   2156:     } 
                   2157:     ftemp=fu;
                   2158:     if (fabs(e) > tol1) { 
                   2159:       r=(x-w)*(fx-fv); 
                   2160:       q=(x-v)*(fx-fw); 
                   2161:       p=(x-v)*q-(x-w)*r; 
                   2162:       q=2.0*(q-r); 
                   2163:       if (q > 0.0) p = -p; 
                   2164:       q=fabs(q); 
                   2165:       etemp=e; 
                   2166:       e=d; 
                   2167:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
1.224     brouard  2168:                                d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
1.126     brouard  2169:       else { 
1.224     brouard  2170:                                d=p/q; 
                   2171:                                u=x+d; 
                   2172:                                if (u-a < tol2 || b-u < tol2) 
                   2173:                                        d=SIGN(tol1,xm-x); 
1.126     brouard  2174:       } 
                   2175:     } else { 
                   2176:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                   2177:     } 
                   2178:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                   2179:     fu=(*f)(u); 
                   2180:     if (fu <= fx) { 
                   2181:       if (u >= x) a=x; else b=x; 
                   2182:       SHFT(v,w,x,u) 
1.183     brouard  2183:       SHFT(fv,fw,fx,fu) 
                   2184:     } else { 
                   2185:       if (u < x) a=u; else b=u; 
                   2186:       if (fu <= fw || w == x) { 
1.224     brouard  2187:                                v=w; 
                   2188:                                w=u; 
                   2189:                                fv=fw; 
                   2190:                                fw=fu; 
1.183     brouard  2191:       } else if (fu <= fv || v == x || v == w) { 
1.224     brouard  2192:                                v=u; 
                   2193:                                fv=fu; 
1.183     brouard  2194:       } 
                   2195:     } 
1.126     brouard  2196:   } 
                   2197:   nrerror("Too many iterations in brent"); 
                   2198:   *xmin=x; 
                   2199:   return fx; 
                   2200: } 
                   2201: 
                   2202: /****************** mnbrak ***********************/
                   2203: 
                   2204: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                   2205:            double (*func)(double)) 
1.183     brouard  2206: { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
                   2207: the downhill direction (defined by the function as evaluated at the initial points) and returns
                   2208: new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
                   2209: values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
                   2210:    */
1.126     brouard  2211:   double ulim,u,r,q, dum;
                   2212:   double fu; 
1.187     brouard  2213: 
                   2214:   double scale=10.;
                   2215:   int iterscale=0;
                   2216: 
                   2217:   *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
                   2218:   *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
                   2219: 
                   2220: 
                   2221:   /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
                   2222:   /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
                   2223:   /*   *bx = *ax - (*ax - *bx)/scale; */
                   2224:   /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
                   2225:   /* } */
                   2226: 
1.126     brouard  2227:   if (*fb > *fa) { 
                   2228:     SHFT(dum,*ax,*bx,dum) 
1.183     brouard  2229:     SHFT(dum,*fb,*fa,dum) 
                   2230:   } 
1.126     brouard  2231:   *cx=(*bx)+GOLD*(*bx-*ax); 
                   2232:   *fc=(*func)(*cx); 
1.183     brouard  2233: #ifdef DEBUG
1.224     brouard  2234:   printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
                   2235:   fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
1.183     brouard  2236: #endif
1.224     brouard  2237:   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
1.126     brouard  2238:     r=(*bx-*ax)*(*fb-*fc); 
1.224     brouard  2239:     q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
1.126     brouard  2240:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
1.183     brouard  2241:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
                   2242:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
                   2243:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
1.126     brouard  2244:       fu=(*func)(u); 
1.163     brouard  2245: #ifdef DEBUG
                   2246:       /* f(x)=A(x-u)**2+f(u) */
                   2247:       double A, fparabu; 
                   2248:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   2249:       fparabu= *fa - A*(*ax-u)*(*ax-u);
1.224     brouard  2250:       printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
                   2251:       fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
1.183     brouard  2252:       /* And thus,it can be that fu > *fc even if fparabu < *fc */
                   2253:       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
                   2254:         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
                   2255:       /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
1.163     brouard  2256: #endif 
1.184     brouard  2257: #ifdef MNBRAKORIGINAL
1.183     brouard  2258: #else
1.191     brouard  2259: /*       if (fu > *fc) { */
                   2260: /* #ifdef DEBUG */
                   2261: /*       printf("mnbrak4  fu > fc \n"); */
                   2262: /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
                   2263: /* #endif */
                   2264: /*     /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
                   2265: /*     /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
                   2266: /*     dum=u; /\* Shifting c and u *\/ */
                   2267: /*     u = *cx; */
                   2268: /*     *cx = dum; */
                   2269: /*     dum = fu; */
                   2270: /*     fu = *fc; */
                   2271: /*     *fc =dum; */
                   2272: /*       } else { /\* end *\/ */
                   2273: /* #ifdef DEBUG */
                   2274: /*       printf("mnbrak3  fu < fc \n"); */
                   2275: /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
                   2276: /* #endif */
                   2277: /*     dum=u; /\* Shifting c and u *\/ */
                   2278: /*     u = *cx; */
                   2279: /*     *cx = dum; */
                   2280: /*     dum = fu; */
                   2281: /*     fu = *fc; */
                   2282: /*     *fc =dum; */
                   2283: /*       } */
1.224     brouard  2284: #ifdef DEBUGMNBRAK
                   2285:                 double A, fparabu; 
                   2286:      A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   2287:      fparabu= *fa - A*(*ax-u)*(*ax-u);
                   2288:      printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
                   2289:      fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
1.183     brouard  2290: #endif
1.191     brouard  2291:       dum=u; /* Shifting c and u */
                   2292:       u = *cx;
                   2293:       *cx = dum;
                   2294:       dum = fu;
                   2295:       fu = *fc;
                   2296:       *fc =dum;
1.183     brouard  2297: #endif
1.162     brouard  2298:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
1.183     brouard  2299: #ifdef DEBUG
1.224     brouard  2300:       printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
                   2301:       fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
1.183     brouard  2302: #endif
1.126     brouard  2303:       fu=(*func)(u); 
                   2304:       if (fu < *fc) { 
1.183     brouard  2305: #ifdef DEBUG
1.224     brouard  2306:                                printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
                   2307:                          fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
                   2308: #endif
                   2309:                          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                   2310:                                SHFT(*fb,*fc,fu,(*func)(u)) 
                   2311: #ifdef DEBUG
                   2312:                                        printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
1.183     brouard  2313: #endif
                   2314:       } 
1.162     brouard  2315:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
1.183     brouard  2316: #ifdef DEBUG
1.224     brouard  2317:       printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
                   2318:       fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
1.183     brouard  2319: #endif
1.126     brouard  2320:       u=ulim; 
                   2321:       fu=(*func)(u); 
1.183     brouard  2322:     } else { /* u could be left to b (if r > q parabola has a maximum) */
                   2323: #ifdef DEBUG
1.224     brouard  2324:       printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
                   2325:       fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
1.183     brouard  2326: #endif
1.126     brouard  2327:       u=(*cx)+GOLD*(*cx-*bx); 
                   2328:       fu=(*func)(u); 
1.224     brouard  2329: #ifdef DEBUG
                   2330:       printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
                   2331:       fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
                   2332: #endif
1.183     brouard  2333:     } /* end tests */
1.126     brouard  2334:     SHFT(*ax,*bx,*cx,u) 
1.183     brouard  2335:     SHFT(*fa,*fb,*fc,fu) 
                   2336: #ifdef DEBUG
1.224     brouard  2337:       printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
                   2338:       fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
1.183     brouard  2339: #endif
                   2340:   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
1.126     brouard  2341: } 
                   2342: 
                   2343: /*************** linmin ************************/
1.162     brouard  2344: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
                   2345: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
                   2346: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
                   2347: the value of func at the returned location p . This is actually all accomplished by calling the
                   2348: routines mnbrak and brent .*/
1.126     brouard  2349: int ncom; 
                   2350: double *pcom,*xicom;
                   2351: double (*nrfunc)(double []); 
                   2352:  
1.224     brouard  2353: #ifdef LINMINORIGINAL
1.126     brouard  2354: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
1.224     brouard  2355: #else
                   2356: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
                   2357: #endif
1.126     brouard  2358: { 
                   2359:   double brent(double ax, double bx, double cx, 
                   2360:               double (*f)(double), double tol, double *xmin); 
                   2361:   double f1dim(double x); 
                   2362:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                   2363:              double *fc, double (*func)(double)); 
                   2364:   int j; 
                   2365:   double xx,xmin,bx,ax; 
                   2366:   double fx,fb,fa;
1.187     brouard  2367: 
1.203     brouard  2368: #ifdef LINMINORIGINAL
                   2369: #else
                   2370:   double scale=10., axs, xxs; /* Scale added for infinity */
                   2371: #endif
                   2372:   
1.126     brouard  2373:   ncom=n; 
                   2374:   pcom=vector(1,n); 
                   2375:   xicom=vector(1,n); 
                   2376:   nrfunc=func; 
                   2377:   for (j=1;j<=n;j++) { 
                   2378:     pcom[j]=p[j]; 
1.202     brouard  2379:     xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
1.126     brouard  2380:   } 
1.187     brouard  2381: 
1.203     brouard  2382: #ifdef LINMINORIGINAL
                   2383:   xx=1.;
                   2384: #else
                   2385:   axs=0.0;
                   2386:   xxs=1.;
                   2387:   do{
                   2388:     xx= xxs;
                   2389: #endif
1.187     brouard  2390:     ax=0.;
                   2391:     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
                   2392:     /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
                   2393:     /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
                   2394:     /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
                   2395:     /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
                   2396:     /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
                   2397:     /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
1.203     brouard  2398: #ifdef LINMINORIGINAL
                   2399: #else
                   2400:     if (fx != fx){
1.224     brouard  2401:                        xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
                   2402:                        printf("|");
                   2403:                        fprintf(ficlog,"|");
1.203     brouard  2404: #ifdef DEBUGLINMIN
1.224     brouard  2405:                        printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
1.203     brouard  2406: #endif
                   2407:     }
1.224     brouard  2408:   }while(fx != fx && xxs > 1.e-5);
1.203     brouard  2409: #endif
                   2410:   
1.191     brouard  2411: #ifdef DEBUGLINMIN
                   2412:   printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
1.202     brouard  2413:   fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
1.191     brouard  2414: #endif
1.224     brouard  2415: #ifdef LINMINORIGINAL
                   2416: #else
1.317     brouard  2417:   if(fb == fx){ /* Flat function in the direction */
                   2418:     xmin=xx;
1.224     brouard  2419:     *flat=1;
1.317     brouard  2420:   }else{
1.224     brouard  2421:     *flat=0;
                   2422: #endif
                   2423:                /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
1.187     brouard  2424:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
                   2425:   /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
                   2426:   /* fmin = f(p[j] + xmin * xi[j]) */
                   2427:   /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
                   2428:   /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
1.126     brouard  2429: #ifdef DEBUG
1.224     brouard  2430:   printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
                   2431:   fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
                   2432: #endif
                   2433: #ifdef LINMINORIGINAL
                   2434: #else
                   2435:                        }
1.126     brouard  2436: #endif
1.191     brouard  2437: #ifdef DEBUGLINMIN
                   2438:   printf("linmin end ");
1.202     brouard  2439:   fprintf(ficlog,"linmin end ");
1.191     brouard  2440: #endif
1.126     brouard  2441:   for (j=1;j<=n;j++) { 
1.203     brouard  2442: #ifdef LINMINORIGINAL
                   2443:     xi[j] *= xmin; 
                   2444: #else
                   2445: #ifdef DEBUGLINMIN
                   2446:     if(xxs <1.0)
                   2447:       printf(" before xi[%d]=%12.8f", j,xi[j]);
                   2448: #endif
                   2449:     xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
                   2450: #ifdef DEBUGLINMIN
                   2451:     if(xxs <1.0)
                   2452:       printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
                   2453: #endif
                   2454: #endif
1.187     brouard  2455:     p[j] += xi[j]; /* Parameters values are updated accordingly */
1.126     brouard  2456:   } 
1.191     brouard  2457: #ifdef DEBUGLINMIN
1.203     brouard  2458:   printf("\n");
1.191     brouard  2459:   printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
1.202     brouard  2460:   fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
1.191     brouard  2461:   for (j=1;j<=n;j++) { 
1.202     brouard  2462:     printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
                   2463:     fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
                   2464:     if(j % ncovmodel == 0){
1.191     brouard  2465:       printf("\n");
1.202     brouard  2466:       fprintf(ficlog,"\n");
                   2467:     }
1.191     brouard  2468:   }
1.203     brouard  2469: #else
1.191     brouard  2470: #endif
1.126     brouard  2471:   free_vector(xicom,1,n); 
                   2472:   free_vector(pcom,1,n); 
                   2473: } 
                   2474: 
                   2475: 
                   2476: /*************** powell ************************/
1.162     brouard  2477: /*
1.317     brouard  2478: Minimization of a function func of n variables. Input consists in an initial starting point
                   2479: p[1..n] ; an initial matrix xi[1..n][1..n]  whose columns contain the initial set of di-
                   2480: rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value
                   2481: such that failure to decrease by more than this amount in one iteration signals doneness. On
1.162     brouard  2482: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
                   2483: function value at p , and iter is the number of iterations taken. The routine linmin is used.
                   2484:  */
1.224     brouard  2485: #ifdef LINMINORIGINAL
                   2486: #else
                   2487:        int *flatdir; /* Function is vanishing in that direction */
1.225     brouard  2488:        int flat=0, flatd=0; /* Function is vanishing in that direction */
1.224     brouard  2489: #endif
1.126     brouard  2490: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                   2491:            double (*func)(double [])) 
                   2492: { 
1.224     brouard  2493: #ifdef LINMINORIGINAL
                   2494:  void linmin(double p[], double xi[], int n, double *fret, 
1.126     brouard  2495:              double (*func)(double [])); 
1.224     brouard  2496: #else 
1.241     brouard  2497:  void linmin(double p[], double xi[], int n, double *fret,
                   2498:             double (*func)(double []),int *flat); 
1.224     brouard  2499: #endif
1.239     brouard  2500:  int i,ibig,j,jk,k; 
1.126     brouard  2501:   double del,t,*pt,*ptt,*xit;
1.181     brouard  2502:   double directest;
1.126     brouard  2503:   double fp,fptt;
                   2504:   double *xits;
                   2505:   int niterf, itmp;
                   2506: 
                   2507:   pt=vector(1,n); 
                   2508:   ptt=vector(1,n); 
                   2509:   xit=vector(1,n); 
                   2510:   xits=vector(1,n); 
                   2511:   *fret=(*func)(p); 
                   2512:   for (j=1;j<=n;j++) pt[j]=p[j]; 
1.338   ! brouard  2513:   rcurr_time = time(NULL);
        !          2514:   fp=(*fret); /* Initialisation */
1.126     brouard  2515:   for (*iter=1;;++(*iter)) { 
                   2516:     ibig=0; 
                   2517:     del=0.0; 
1.157     brouard  2518:     rlast_time=rcurr_time;
                   2519:     /* (void) gettimeofday(&curr_time,&tzp); */
                   2520:     rcurr_time = time(NULL);  
                   2521:     curr_time = *localtime(&rcurr_time);
1.337     brouard  2522:     /* printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); */
                   2523:     /* fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); */
                   2524:     printf("\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
                   2525:     fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
1.157     brouard  2526: /*     fprintf(ficrespow,"%d %.12f %ld",*iter,*fret,curr_time.tm_sec-start_time.tm_sec); */
1.324     brouard  2527:     fp=(*fret); /* From former iteration or initial value */
1.192     brouard  2528:     for (i=1;i<=n;i++) {
1.126     brouard  2529:       fprintf(ficrespow," %.12lf", p[i]);
                   2530:     }
1.239     brouard  2531:     fprintf(ficrespow,"\n");fflush(ficrespow);
                   2532:     printf("\n#model=  1      +     age ");
                   2533:     fprintf(ficlog,"\n#model=  1      +     age ");
                   2534:     if(nagesqr==1){
1.241     brouard  2535:        printf("  + age*age  ");
                   2536:        fprintf(ficlog,"  + age*age  ");
1.239     brouard  2537:     }
                   2538:     for(j=1;j <=ncovmodel-2;j++){
                   2539:       if(Typevar[j]==0) {
                   2540:        printf("  +      V%d  ",Tvar[j]);
                   2541:        fprintf(ficlog,"  +      V%d  ",Tvar[j]);
                   2542:       }else if(Typevar[j]==1) {
                   2543:        printf("  +    V%d*age ",Tvar[j]);
                   2544:        fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
                   2545:       }else if(Typevar[j]==2) {
                   2546:        printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   2547:        fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   2548:       }
                   2549:     }
1.126     brouard  2550:     printf("\n");
1.239     brouard  2551: /*     printf("12   47.0114589    0.0154322   33.2424412    0.3279905    2.3731903  */
                   2552: /* 13  -21.5392400    0.1118147    1.2680506    1.2973408   -1.0663662  */
1.126     brouard  2553:     fprintf(ficlog,"\n");
1.239     brouard  2554:     for(i=1,jk=1; i <=nlstate; i++){
                   2555:       for(k=1; k <=(nlstate+ndeath); k++){
                   2556:        if (k != i) {
                   2557:          printf("%d%d ",i,k);
                   2558:          fprintf(ficlog,"%d%d ",i,k);
                   2559:          for(j=1; j <=ncovmodel; j++){
                   2560:            printf("%12.7f ",p[jk]);
                   2561:            fprintf(ficlog,"%12.7f ",p[jk]);
                   2562:            jk++; 
                   2563:          }
                   2564:          printf("\n");
                   2565:          fprintf(ficlog,"\n");
                   2566:        }
                   2567:       }
                   2568:     }
1.241     brouard  2569:     if(*iter <=3 && *iter >1){
1.157     brouard  2570:       tml = *localtime(&rcurr_time);
                   2571:       strcpy(strcurr,asctime(&tml));
                   2572:       rforecast_time=rcurr_time; 
1.126     brouard  2573:       itmp = strlen(strcurr);
                   2574:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
1.241     brouard  2575:        strcurr[itmp-1]='\0';
1.162     brouard  2576:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.157     brouard  2577:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.126     brouard  2578:       for(niterf=10;niterf<=30;niterf+=10){
1.241     brouard  2579:        rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
                   2580:        forecast_time = *localtime(&rforecast_time);
                   2581:        strcpy(strfor,asctime(&forecast_time));
                   2582:        itmp = strlen(strfor);
                   2583:        if(strfor[itmp-1]=='\n')
                   2584:          strfor[itmp-1]='\0';
                   2585:        printf("   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                   2586:        fprintf(ficlog,"   - if your program needs %d iterations to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
1.126     brouard  2587:       }
                   2588:     }
1.187     brouard  2589:     for (i=1;i<=n;i++) { /* For each direction i */
                   2590:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
1.126     brouard  2591:       fptt=(*fret); 
                   2592: #ifdef DEBUG
1.203     brouard  2593:       printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
                   2594:       fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
1.126     brouard  2595: #endif
1.203     brouard  2596:       printf("%d",i);fflush(stdout); /* print direction (parameter) i */
1.126     brouard  2597:       fprintf(ficlog,"%d",i);fflush(ficlog);
1.224     brouard  2598: #ifdef LINMINORIGINAL
1.188     brouard  2599:       linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
1.224     brouard  2600: #else
                   2601:       linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
                   2602:                        flatdir[i]=flat; /* Function is vanishing in that direction i */
                   2603: #endif
                   2604:                        /* Outputs are fret(new point p) p is updated and xit rescaled */
1.188     brouard  2605:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
1.224     brouard  2606:                                /* because that direction will be replaced unless the gain del is small */
                   2607:                                /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
                   2608:                                /* Unless the n directions are conjugate some gain in the determinant may be obtained */
                   2609:                                /* with the new direction. */
                   2610:                                del=fabs(fptt-(*fret)); 
                   2611:                                ibig=i; 
1.126     brouard  2612:       } 
                   2613: #ifdef DEBUG
                   2614:       printf("%d %.12e",i,(*fret));
                   2615:       fprintf(ficlog,"%d %.12e",i,(*fret));
                   2616:       for (j=1;j<=n;j++) {
1.224     brouard  2617:                                xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                   2618:                                printf(" x(%d)=%.12e",j,xit[j]);
                   2619:                                fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
1.126     brouard  2620:       }
                   2621:       for(j=1;j<=n;j++) {
1.225     brouard  2622:                                printf(" p(%d)=%.12e",j,p[j]);
                   2623:                                fprintf(ficlog," p(%d)=%.12e",j,p[j]);
1.126     brouard  2624:       }
                   2625:       printf("\n");
                   2626:       fprintf(ficlog,"\n");
                   2627: #endif
1.187     brouard  2628:     } /* end loop on each direction i */
                   2629:     /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
1.188     brouard  2630:     /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
1.187     brouard  2631:     /* New value of last point Pn is not computed, P(n-1) */
1.319     brouard  2632:     for(j=1;j<=n;j++) {
                   2633:       if(flatdir[j] >0){
                   2634:         printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                   2635:         fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
1.302     brouard  2636:       }
1.319     brouard  2637:       /* printf("\n"); */
                   2638:       /* fprintf(ficlog,"\n"); */
                   2639:     }
1.243     brouard  2640:     /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */
                   2641:     if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */
1.188     brouard  2642:       /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
                   2643:       /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
                   2644:       /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
                   2645:       /* decreased of more than 3.84  */
                   2646:       /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
                   2647:       /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
                   2648:       /* By adding 10 parameters more the gain should be 18.31 */
1.224     brouard  2649:                        
1.188     brouard  2650:       /* Starting the program with initial values given by a former maximization will simply change */
                   2651:       /* the scales of the directions and the directions, because the are reset to canonical directions */
                   2652:       /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
                   2653:       /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
1.126     brouard  2654: #ifdef DEBUG
                   2655:       int k[2],l;
                   2656:       k[0]=1;
                   2657:       k[1]=-1;
                   2658:       printf("Max: %.12e",(*func)(p));
                   2659:       fprintf(ficlog,"Max: %.12e",(*func)(p));
                   2660:       for (j=1;j<=n;j++) {
                   2661:        printf(" %.12e",p[j]);
                   2662:        fprintf(ficlog," %.12e",p[j]);
                   2663:       }
                   2664:       printf("\n");
                   2665:       fprintf(ficlog,"\n");
                   2666:       for(l=0;l<=1;l++) {
                   2667:        for (j=1;j<=n;j++) {
                   2668:          ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                   2669:          printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   2670:          fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   2671:        }
                   2672:        printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   2673:        fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   2674:       }
                   2675: #endif
                   2676: 
                   2677:       free_vector(xit,1,n); 
                   2678:       free_vector(xits,1,n); 
                   2679:       free_vector(ptt,1,n); 
                   2680:       free_vector(pt,1,n); 
                   2681:       return; 
1.192     brouard  2682:     } /* enough precision */ 
1.240     brouard  2683:     if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); 
1.181     brouard  2684:     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
1.126     brouard  2685:       ptt[j]=2.0*p[j]-pt[j]; 
                   2686:       xit[j]=p[j]-pt[j]; 
                   2687:       pt[j]=p[j]; 
                   2688:     } 
1.181     brouard  2689:     fptt=(*func)(ptt); /* f_3 */
1.224     brouard  2690: #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
                   2691:                if (*iter <=4) {
1.225     brouard  2692: #else
                   2693: #endif
1.224     brouard  2694: #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
1.192     brouard  2695: #else
1.161     brouard  2696:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
1.192     brouard  2697: #endif
1.162     brouard  2698:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
1.161     brouard  2699:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
1.162     brouard  2700:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
                   2701:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
                   2702:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
1.224     brouard  2703:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
                   2704:       /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
                   2705:       /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
1.161     brouard  2706:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
1.224     brouard  2707:       /*  Even if f3 <f1, directest can be negative and t >0 */
                   2708:       /* mu² and del² are equal when f3=f1 */
                   2709:                        /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
                   2710:                        /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
                   2711:                        /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
                   2712:                        /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
1.183     brouard  2713: #ifdef NRCORIGINAL
                   2714:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
                   2715: #else
                   2716:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
1.161     brouard  2717:       t= t- del*SQR(fp-fptt);
1.183     brouard  2718: #endif
1.202     brouard  2719:       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
1.161     brouard  2720: #ifdef DEBUG
1.181     brouard  2721:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
                   2722:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
1.161     brouard  2723:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   2724:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   2725:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   2726:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   2727:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   2728:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   2729: #endif
1.183     brouard  2730: #ifdef POWELLORIGINAL
                   2731:       if (t < 0.0) { /* Then we use it for new direction */
                   2732: #else
1.182     brouard  2733:       if (directest*t < 0.0) { /* Contradiction between both tests */
1.224     brouard  2734:                                printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
1.192     brouard  2735:         printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
1.224     brouard  2736:         fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
1.192     brouard  2737:         fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
                   2738:       } 
1.181     brouard  2739:       if (directest < 0.0) { /* Then we use it for new direction */
                   2740: #endif
1.191     brouard  2741: #ifdef DEBUGLINMIN
1.234     brouard  2742:        printf("Before linmin in direction P%d-P0\n",n);
                   2743:        for (j=1;j<=n;j++) {
                   2744:          printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2745:          fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2746:          if(j % ncovmodel == 0){
                   2747:            printf("\n");
                   2748:            fprintf(ficlog,"\n");
                   2749:          }
                   2750:        }
1.224     brouard  2751: #endif
                   2752: #ifdef LINMINORIGINAL
1.234     brouard  2753:        linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
1.224     brouard  2754: #else
1.234     brouard  2755:        linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
                   2756:        flatdir[i]=flat; /* Function is vanishing in that direction i */
1.191     brouard  2757: #endif
1.234     brouard  2758:        
1.191     brouard  2759: #ifdef DEBUGLINMIN
1.234     brouard  2760:        for (j=1;j<=n;j++) { 
                   2761:          printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2762:          fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2763:          if(j % ncovmodel == 0){
                   2764:            printf("\n");
                   2765:            fprintf(ficlog,"\n");
                   2766:          }
                   2767:        }
1.224     brouard  2768: #endif
1.234     brouard  2769:        for (j=1;j<=n;j++) { 
                   2770:          xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
                   2771:          xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
                   2772:        }
1.224     brouard  2773: #ifdef LINMINORIGINAL
                   2774: #else
1.234     brouard  2775:        for (j=1, flatd=0;j<=n;j++) {
                   2776:          if(flatdir[j]>0)
                   2777:            flatd++;
                   2778:        }
                   2779:        if(flatd >0){
1.255     brouard  2780:          printf("%d flat directions: ",flatd);
                   2781:          fprintf(ficlog,"%d flat directions :",flatd);
1.234     brouard  2782:          for (j=1;j<=n;j++) { 
                   2783:            if(flatdir[j]>0){
                   2784:              printf("%d ",j);
                   2785:              fprintf(ficlog,"%d ",j);
                   2786:            }
                   2787:          }
                   2788:          printf("\n");
                   2789:          fprintf(ficlog,"\n");
1.319     brouard  2790: #ifdef FLATSUP
                   2791:           free_vector(xit,1,n); 
                   2792:           free_vector(xits,1,n); 
                   2793:           free_vector(ptt,1,n); 
                   2794:           free_vector(pt,1,n); 
                   2795:           return;
                   2796: #endif
1.234     brouard  2797:        }
1.191     brouard  2798: #endif
1.234     brouard  2799:        printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   2800:        fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   2801:        
1.126     brouard  2802: #ifdef DEBUG
1.234     brouard  2803:        printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   2804:        fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   2805:        for(j=1;j<=n;j++){
                   2806:          printf(" %lf",xit[j]);
                   2807:          fprintf(ficlog," %lf",xit[j]);
                   2808:        }
                   2809:        printf("\n");
                   2810:        fprintf(ficlog,"\n");
1.126     brouard  2811: #endif
1.192     brouard  2812:       } /* end of t or directest negative */
1.224     brouard  2813: #ifdef POWELLNOF3INFF1TEST
1.192     brouard  2814: #else
1.234     brouard  2815:       } /* end if (fptt < fp)  */
1.192     brouard  2816: #endif
1.225     brouard  2817: #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
1.234     brouard  2818:     } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
1.225     brouard  2819: #else
1.224     brouard  2820: #endif
1.234     brouard  2821:                } /* loop iteration */ 
1.126     brouard  2822: } 
1.234     brouard  2823:   
1.126     brouard  2824: /**** Prevalence limit (stable or period prevalence)  ****************/
1.234     brouard  2825:   
1.235     brouard  2826:   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
1.234     brouard  2827:   {
1.338   ! brouard  2828:     /**< Computes the prevalence limit in each live state at age x and for covariate combination ij . Nicely done
1.279     brouard  2829:      *   (and selected quantitative values in nres)
                   2830:      *  by left multiplying the unit
                   2831:      *  matrix by transitions matrix until convergence is reached with precision ftolpl 
                   2832:      * Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I
                   2833:      * Wx is row vector: population in state 1, population in state 2, population dead
                   2834:      * or prevalence in state 1, prevalence in state 2, 0
                   2835:      * newm is the matrix after multiplications, its rows are identical at a factor.
                   2836:      * Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl.
                   2837:      * Output is prlim.
                   2838:      * Initial matrix pimij 
                   2839:      */
1.206     brouard  2840:   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
                   2841:   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
                   2842:   /*  0,                   0                  , 1} */
                   2843:   /*
                   2844:    * and after some iteration: */
                   2845:   /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
                   2846:   /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
                   2847:   /*  0,                   0                  , 1} */
                   2848:   /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
                   2849:   /* {0.51571254859325999, 0.4842874514067399, */
                   2850:   /*  0.51326036147820708, 0.48673963852179264} */
                   2851:   /* If we start from prlim again, prlim tends to a constant matrix */
1.234     brouard  2852:     
1.332     brouard  2853:     int i, ii,j,k, k1;
1.209     brouard  2854:   double *min, *max, *meandiff, maxmax,sumnew=0.;
1.145     brouard  2855:   /* double **matprod2(); */ /* test */
1.218     brouard  2856:   double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
1.126     brouard  2857:   double **newm;
1.209     brouard  2858:   double agefin, delaymax=200. ; /* 100 Max number of years to converge */
1.203     brouard  2859:   int ncvloop=0;
1.288     brouard  2860:   int first=0;
1.169     brouard  2861:   
1.209     brouard  2862:   min=vector(1,nlstate);
                   2863:   max=vector(1,nlstate);
                   2864:   meandiff=vector(1,nlstate);
                   2865: 
1.218     brouard  2866:        /* Starting with matrix unity */
1.126     brouard  2867:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   2868:     for (j=1;j<=nlstate+ndeath;j++){
                   2869:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   2870:     }
1.169     brouard  2871:   
                   2872:   cov[1]=1.;
                   2873:   
                   2874:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
1.202     brouard  2875:   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
1.126     brouard  2876:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
1.202     brouard  2877:     ncvloop++;
1.126     brouard  2878:     newm=savm;
                   2879:     /* Covariates have to be included here again */
1.138     brouard  2880:     cov[2]=agefin;
1.319     brouard  2881:      if(nagesqr==1){
                   2882:       cov[3]= agefin*agefin;
                   2883:      }
1.332     brouard  2884:      /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
                   2885:      /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
                   2886:      for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
                   2887:        if(Typevar[k1]==1){ /* A product with age */
                   2888:         cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
                   2889:        }else{
                   2890:         cov[2+nagesqr+k1]=precov[nres][k1];
                   2891:        }
                   2892:      }/* End of loop on model equation */
                   2893:      
                   2894: /* Start of old code (replaced by a loop on position in the model equation */
                   2895:     /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only of the model *\/ */
                   2896:     /*                         /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
                   2897:     /*   /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; *\/ */
                   2898:     /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])]; */
                   2899:     /*   /\* model = 1 +age + V1*V3 + age*V1 + V2 + V1 + age*V2 + V3 + V3*age + V1*V2  */
                   2900:     /*    * k                  1        2      3    4      5      6     7        8 */
                   2901:     /*    *cov[]   1    2      3        4      5    6      7      8     9       10 */
                   2902:     /*    *TypeVar[k]          2        1      0    0      1      0     1        2 */
                   2903:     /*    *Dummy[k]            0        2      0    0      2      0     2        0 */
                   2904:     /*    *Tvar[k]             4        1      2    1      2      3     3        5 */
                   2905:     /*    *nsd=3                              (1)  (2)           (3) */
                   2906:     /*    *TvarsD[nsd]                      [1]=2    1             3 */
                   2907:     /*    *TnsdVar                          [2]=2 [1]=1         [3]=3 */
                   2908:     /*    *TvarsDind[nsd](=k)               [1]=3 [2]=4         [3]=6 */
                   2909:     /*    *Tage[]                  [1]=1                  [2]=2      [3]=3 */
                   2910:     /*    *Tvard[]       [1][1]=1                                           [2][1]=1 */
                   2911:     /*    *                   [1][2]=3                                           [2][2]=2 */
                   2912:     /*    *Tprod[](=k)     [1]=1                                              [2]=8 */
                   2913:     /*    *TvarsDp(=Tvar)   [1]=1            [2]=2             [3]=3          [4]=5 */
                   2914:     /*    *TvarD (=k)       [1]=1            [2]=3 [3]=4       [3]=6          [4]=6 */
                   2915:     /*    *TvarsDpType */
                   2916:     /*    *si model= 1 + age + V3 + V2*age + V2 + V3*age */
                   2917:     /*    * nsd=1              (1)           (2) */
                   2918:     /*    *TvarsD[nsd]          3             2 */
                   2919:     /*    *TnsdVar           (3)=1          (2)=2 */
                   2920:     /*    *TvarsDind[nsd](=k)  [1]=1        [2]=3 */
                   2921:     /*    *Tage[]                  [1]=2           [2]= 3    */
                   2922:     /*    *\/ */
                   2923:     /*   /\* cov[++k1]=nbcode[TvarsD[k]][codtabm(ij,k)]; *\/ */
                   2924:     /*   /\* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
                   2925:     /* } */
                   2926:     /* for (k=1; k<=nsq;k++) { /\* For single quantitative varying covariates only of the model *\/ */
                   2927:     /*                         /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
                   2928:     /*   /\* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 *\/ */
                   2929:     /*   /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
                   2930:     /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][resultmodel[nres][k1]] */
                   2931:     /*   /\* cov[++k1]=Tqresult[nres][k];  *\/ */
                   2932:     /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
                   2933:     /* } */
                   2934:     /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
                   2935:     /*   if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
                   2936:     /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                   2937:     /*         /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
                   2938:     /*   } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
                   2939:     /*         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
                   2940:     /*         /\* cov[++k1]=Tqresult[nres][k];  *\/ */
                   2941:     /*   } */
                   2942:     /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   2943:     /* } */
                   2944:     /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
                   2945:     /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
                   2946:     /*   if(Dummy[Tvard[k][1]]==0){ */
                   2947:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   2948:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                   2949:     /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   2950:     /*         }else{ */
                   2951:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
                   2952:     /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
                   2953:     /*         } */
                   2954:     /*   }else{ */
                   2955:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   2956:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
                   2957:     /*           /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
                   2958:     /*         }else{ */
                   2959:     /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
                   2960:     /*           /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
                   2961:     /*         } */
                   2962:     /*   } */
                   2963:     /* } /\* End product without age *\/ */
                   2964: /* ENd of old code */
1.138     brouard  2965:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   2966:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   2967:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
1.145     brouard  2968:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   2969:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.319     brouard  2970:     /* age and covariate values of ij are in 'cov' */
1.142     brouard  2971:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
1.138     brouard  2972:     
1.126     brouard  2973:     savm=oldm;
                   2974:     oldm=newm;
1.209     brouard  2975: 
                   2976:     for(j=1; j<=nlstate; j++){
                   2977:       max[j]=0.;
                   2978:       min[j]=1.;
                   2979:     }
                   2980:     for(i=1;i<=nlstate;i++){
                   2981:       sumnew=0;
                   2982:       for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                   2983:       for(j=1; j<=nlstate; j++){ 
                   2984:        prlim[i][j]= newm[i][j]/(1-sumnew);
                   2985:        max[j]=FMAX(max[j],prlim[i][j]);
                   2986:        min[j]=FMIN(min[j],prlim[i][j]);
                   2987:       }
                   2988:     }
                   2989: 
1.126     brouard  2990:     maxmax=0.;
1.209     brouard  2991:     for(j=1; j<=nlstate; j++){
                   2992:       meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
                   2993:       maxmax=FMAX(maxmax,meandiff[j]);
                   2994:       /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
1.169     brouard  2995:     } /* j loop */
1.203     brouard  2996:     *ncvyear= (int)age- (int)agefin;
1.208     brouard  2997:     /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.126     brouard  2998:     if(maxmax < ftolpl){
1.209     brouard  2999:       /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
                   3000:       free_vector(min,1,nlstate);
                   3001:       free_vector(max,1,nlstate);
                   3002:       free_vector(meandiff,1,nlstate);
1.126     brouard  3003:       return prlim;
                   3004:     }
1.288     brouard  3005:   } /* agefin loop */
1.208     brouard  3006:     /* After some age loop it doesn't converge */
1.288     brouard  3007:   if(!first){
                   3008:     first=1;
                   3009:     printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
1.317     brouard  3010:     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
                   3011:   }else if (first >=1 && first <10){
                   3012:     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
                   3013:     first++;
                   3014:   }else if (first ==10){
                   3015:     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
                   3016:     printf("Warning: the stable prevalence dit not converge. This warning came too often, IMaCh will stop notifying, even in its log file. Look at the graphs to appreciate the non convergence.\n");
                   3017:     fprintf(ficlog,"Warning: the stable prevalence no convergence; too many cases, giving up noticing, even in log file\n");
                   3018:     first++;
1.288     brouard  3019:   }
                   3020: 
1.209     brouard  3021:   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
                   3022:   free_vector(min,1,nlstate);
                   3023:   free_vector(max,1,nlstate);
                   3024:   free_vector(meandiff,1,nlstate);
1.208     brouard  3025:   
1.169     brouard  3026:   return prlim; /* should not reach here */
1.126     brouard  3027: }
                   3028: 
1.217     brouard  3029: 
                   3030:  /**** Back Prevalence limit (stable or period prevalence)  ****************/
                   3031: 
1.218     brouard  3032:  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
                   3033:  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
1.242     brouard  3034:   double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres)
1.217     brouard  3035: {
1.264     brouard  3036:   /* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit
1.217     brouard  3037:      matrix by transitions matrix until convergence is reached with precision ftolpl */
                   3038:   /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
                   3039:   /* Wx is row vector: population in state 1, population in state 2, population dead */
                   3040:   /* or prevalence in state 1, prevalence in state 2, 0 */
                   3041:   /* newm is the matrix after multiplications, its rows are identical at a factor */
                   3042:   /* Initial matrix pimij */
                   3043:   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
                   3044:   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
                   3045:   /*  0,                   0                  , 1} */
                   3046:   /*
                   3047:    * and after some iteration: */
                   3048:   /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
                   3049:   /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
                   3050:   /*  0,                   0                  , 1} */
                   3051:   /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
                   3052:   /* {0.51571254859325999, 0.4842874514067399, */
                   3053:   /*  0.51326036147820708, 0.48673963852179264} */
                   3054:   /* If we start from prlim again, prlim tends to a constant matrix */
                   3055: 
1.332     brouard  3056:   int i, ii,j,k, k1;
1.247     brouard  3057:   int first=0;
1.217     brouard  3058:   double *min, *max, *meandiff, maxmax,sumnew=0.;
                   3059:   /* double **matprod2(); */ /* test */
                   3060:   double **out, cov[NCOVMAX+1], **bmij();
                   3061:   double **newm;
1.218     brouard  3062:   double        **dnewm, **doldm, **dsavm;  /* for use */
                   3063:   double        **oldm, **savm;  /* for use */
                   3064: 
1.217     brouard  3065:   double agefin, delaymax=200. ; /* 100 Max number of years to converge */
                   3066:   int ncvloop=0;
                   3067:   
                   3068:   min=vector(1,nlstate);
                   3069:   max=vector(1,nlstate);
                   3070:   meandiff=vector(1,nlstate);
                   3071: 
1.266     brouard  3072:   dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
                   3073:   oldm=oldms; savm=savms;
                   3074:   
                   3075:   /* Starting with matrix unity */
                   3076:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   3077:     for (j=1;j<=nlstate+ndeath;j++){
1.217     brouard  3078:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3079:     }
                   3080:   
                   3081:   cov[1]=1.;
                   3082:   
                   3083:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   3084:   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
1.218     brouard  3085:   /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
1.288     brouard  3086:   /* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
                   3087:   for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */
1.217     brouard  3088:     ncvloop++;
1.218     brouard  3089:     newm=savm; /* oldm should be kept from previous iteration or unity at start */
                   3090:                /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
1.217     brouard  3091:     /* Covariates have to be included here again */
                   3092:     cov[2]=agefin;
1.319     brouard  3093:     if(nagesqr==1){
1.217     brouard  3094:       cov[3]= agefin*agefin;;
1.319     brouard  3095:     }
1.332     brouard  3096:     for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
                   3097:       if(Typevar[k1]==1){ /* A product with age */
                   3098:        cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
1.242     brouard  3099:       }else{
1.332     brouard  3100:        cov[2+nagesqr+k1]=precov[nres][k1];
1.242     brouard  3101:       }
1.332     brouard  3102:     }/* End of loop on model equation */
                   3103: 
                   3104: /* Old code */ 
                   3105: 
                   3106:     /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
                   3107:     /*                         /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
                   3108:     /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; */
                   3109:     /*   /\* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
                   3110:     /* } */
                   3111:     /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
                   3112:     /* /\*   /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
                   3113:     /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
                   3114:     /* /\*   /\\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\\/ *\/ */
                   3115:     /* /\* } *\/ */
                   3116:     /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
                   3117:     /*                         /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
                   3118:     /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
                   3119:     /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
                   3120:     /* } */
                   3121:     /* /\* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; *\/ */
                   3122:     /* /\* for (k=1; k<=cptcovprod;k++) /\\* Useless *\\/ *\/ */
                   3123:     /* /\*   /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\\/ *\/ */
                   3124:     /* /\*   cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   3125:     /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
                   3126:     /*   /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age *\\/ ERROR ???*\/ */
                   3127:     /*   if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
                   3128:     /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                   3129:     /*   } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
                   3130:     /*         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
                   3131:     /*   } */
                   3132:     /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   3133:     /* } */
                   3134:     /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
                   3135:     /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
                   3136:     /*   if(Dummy[Tvard[k][1]]==0){ */
                   3137:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   3138:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                   3139:     /*         }else{ */
                   3140:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
                   3141:     /*         } */
                   3142:     /*   }else{ */
                   3143:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   3144:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
                   3145:     /*         }else{ */
                   3146:     /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
                   3147:     /*         } */
                   3148:     /*   } */
                   3149:     /* } */
1.217     brouard  3150:     
                   3151:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   3152:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   3153:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                   3154:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   3155:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.218     brouard  3156:                /* ij should be linked to the correct index of cov */
                   3157:                /* age and covariate values ij are in 'cov', but we need to pass
                   3158:                 * ij for the observed prevalence at age and status and covariate
                   3159:                 * number:  prevacurrent[(int)agefin][ii][ij]
                   3160:                 */
                   3161:     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
                   3162:     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
                   3163:     out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
1.268     brouard  3164:     /* if((int)age == 86 || (int)age == 87){ */
1.266     brouard  3165:     /*   printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */
                   3166:     /*   for(i=1; i<=nlstate+ndeath; i++) { */
                   3167:     /*         printf("%d newm= ",i); */
                   3168:     /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3169:     /*           printf("%f ",newm[i][j]); */
                   3170:     /*         } */
                   3171:     /*         printf("oldm * "); */
                   3172:     /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3173:     /*           printf("%f ",oldm[i][j]); */
                   3174:     /*         } */
1.268     brouard  3175:     /*         printf(" bmmij "); */
1.266     brouard  3176:     /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3177:     /*           printf("%f ",pmmij[i][j]); */
                   3178:     /*         } */
                   3179:     /*         printf("\n"); */
                   3180:     /*   } */
                   3181:     /* } */
1.217     brouard  3182:     savm=oldm;
                   3183:     oldm=newm;
1.266     brouard  3184: 
1.217     brouard  3185:     for(j=1; j<=nlstate; j++){
                   3186:       max[j]=0.;
                   3187:       min[j]=1.;
                   3188:     }
                   3189:     for(j=1; j<=nlstate; j++){ 
                   3190:       for(i=1;i<=nlstate;i++){
1.234     brouard  3191:        /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
                   3192:        bprlim[i][j]= newm[i][j];
                   3193:        max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
                   3194:        min[i]=FMIN(min[i],bprlim[i][j]);
1.217     brouard  3195:       }
                   3196:     }
1.218     brouard  3197:                
1.217     brouard  3198:     maxmax=0.;
                   3199:     for(i=1; i<=nlstate; i++){
1.318     brouard  3200:       meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column, could be nan! */
1.217     brouard  3201:       maxmax=FMAX(maxmax,meandiff[i]);
                   3202:       /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
1.268     brouard  3203:     } /* i loop */
1.217     brouard  3204:     *ncvyear= -( (int)age- (int)agefin);
1.268     brouard  3205:     /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.217     brouard  3206:     if(maxmax < ftolpl){
1.220     brouard  3207:       /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.217     brouard  3208:       free_vector(min,1,nlstate);
                   3209:       free_vector(max,1,nlstate);
                   3210:       free_vector(meandiff,1,nlstate);
                   3211:       return bprlim;
                   3212:     }
1.288     brouard  3213:   } /* agefin loop */
1.217     brouard  3214:     /* After some age loop it doesn't converge */
1.288     brouard  3215:   if(!first){
1.247     brouard  3216:     first=1;
                   3217:     printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\
                   3218: Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
                   3219:   }
                   3220:   fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
1.217     brouard  3221: Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
                   3222:   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
                   3223:   free_vector(min,1,nlstate);
                   3224:   free_vector(max,1,nlstate);
                   3225:   free_vector(meandiff,1,nlstate);
                   3226:   
                   3227:   return bprlim; /* should not reach here */
                   3228: }
                   3229: 
1.126     brouard  3230: /*************** transition probabilities ***************/ 
                   3231: 
                   3232: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                   3233: {
1.138     brouard  3234:   /* According to parameters values stored in x and the covariate's values stored in cov,
1.266     brouard  3235:      computes the probability to be observed in state j (after stepm years) being in state i by appying the
1.138     brouard  3236:      model to the ncovmodel covariates (including constant and age).
                   3237:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   3238:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   3239:      ncth covariate in the global vector x is given by the formula:
                   3240:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   3241:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   3242:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   3243:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
1.266     brouard  3244:      Outputs ps[i][j] or probability to be observed in j being in i according to
1.138     brouard  3245:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
1.266     brouard  3246:      Sum on j ps[i][j] should equal to 1.
1.138     brouard  3247:   */
                   3248:   double s1, lnpijopii;
1.126     brouard  3249:   /*double t34;*/
1.164     brouard  3250:   int i,j, nc, ii, jj;
1.126     brouard  3251: 
1.223     brouard  3252:   for(i=1; i<= nlstate; i++){
                   3253:     for(j=1; j<i;j++){
                   3254:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   3255:        /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   3256:        lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   3257:        /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   3258:       }
                   3259:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
1.330     brouard  3260:       /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
1.223     brouard  3261:     }
                   3262:     for(j=i+1; j<=nlstate+ndeath;j++){
                   3263:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   3264:        /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   3265:        lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   3266:        /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                   3267:       }
                   3268:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
1.330     brouard  3269:       /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
1.223     brouard  3270:     }
                   3271:   }
1.218     brouard  3272:   
1.223     brouard  3273:   for(i=1; i<= nlstate; i++){
                   3274:     s1=0;
                   3275:     for(j=1; j<i; j++){
                   3276:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
1.330     brouard  3277:       /* printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
1.223     brouard  3278:     }
                   3279:     for(j=i+1; j<=nlstate+ndeath; j++){
                   3280:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
1.330     brouard  3281:       /* printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
1.223     brouard  3282:     }
                   3283:     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   3284:     ps[i][i]=1./(s1+1.);
                   3285:     /* Computing other pijs */
                   3286:     for(j=1; j<i; j++)
1.325     brouard  3287:       ps[i][j]= exp(ps[i][j])*ps[i][i];/* Bug valgrind */
1.223     brouard  3288:     for(j=i+1; j<=nlstate+ndeath; j++)
                   3289:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   3290:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   3291:   } /* end i */
1.218     brouard  3292:   
1.223     brouard  3293:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   3294:     for(jj=1; jj<= nlstate+ndeath; jj++){
                   3295:       ps[ii][jj]=0;
                   3296:       ps[ii][ii]=1;
                   3297:     }
                   3298:   }
1.294     brouard  3299: 
                   3300: 
1.223     brouard  3301:   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   3302:   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   3303:   /*   printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   3304:   /*   } */
                   3305:   /*   printf("\n "); */
                   3306:   /* } */
                   3307:   /* printf("\n ");printf("%lf ",cov[2]);*/
                   3308:   /*
                   3309:     for(i=1; i<= npar; i++) printf("%f ",x[i]);
1.218     brouard  3310:                goto end;*/
1.266     brouard  3311:   return ps; /* Pointer is unchanged since its call */
1.126     brouard  3312: }
                   3313: 
1.218     brouard  3314: /*************** backward transition probabilities ***************/ 
                   3315: 
                   3316:  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   3317: /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   3318:  double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
                   3319: {
1.302     brouard  3320:   /* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too.
1.266     brouard  3321:    * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij.
1.222     brouard  3322:    */
1.218     brouard  3323:   int i, ii, j,k;
1.222     brouard  3324:   
                   3325:   double **out, **pmij();
                   3326:   double sumnew=0.;
1.218     brouard  3327:   double agefin;
1.292     brouard  3328:   double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */
1.222     brouard  3329:   double **dnewm, **dsavm, **doldm;
                   3330:   double **bbmij;
                   3331:   
1.218     brouard  3332:   doldm=ddoldms; /* global pointers */
1.222     brouard  3333:   dnewm=ddnewms;
                   3334:   dsavm=ddsavms;
1.318     brouard  3335: 
                   3336:   /* Debug */
                   3337:   /* printf("Bmij ij=%d, cov[2}=%f\n", ij, cov[2]); */
1.222     brouard  3338:   agefin=cov[2];
1.268     brouard  3339:   /* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */
1.222     brouard  3340:   /* bmij *//* age is cov[2], ij is included in cov, but we need for
1.266     brouard  3341:      the observed prevalence (with this covariate ij) at beginning of transition */
                   3342:   /* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
1.268     brouard  3343: 
                   3344:   /* P_x */
1.325     brouard  3345:   pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm *//* Bug valgrind */
1.268     brouard  3346:   /* outputs pmmij which is a stochastic matrix in row */
                   3347: 
                   3348:   /* Diag(w_x) */
1.292     brouard  3349:   /* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */
1.268     brouard  3350:   sumnew=0.;
1.269     brouard  3351:   /*for (ii=1;ii<=nlstate+ndeath;ii++){*/
1.268     brouard  3352:   for (ii=1;ii<=nlstate;ii++){ /* Only on live states */
1.297     brouard  3353:     /* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */
1.268     brouard  3354:     sumnew+=prevacurrent[(int)agefin][ii][ij];
                   3355:   }
                   3356:   if(sumnew >0.01){  /* At least some value in the prevalence */
                   3357:     for (ii=1;ii<=nlstate+ndeath;ii++){
                   3358:       for (j=1;j<=nlstate+ndeath;j++)
1.269     brouard  3359:        doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0);
1.268     brouard  3360:     }
                   3361:   }else{
                   3362:     for (ii=1;ii<=nlstate+ndeath;ii++){
                   3363:       for (j=1;j<=nlstate+ndeath;j++)
                   3364:       doldm[ii][j]=(ii==j ? 1./nlstate : 0.0);
                   3365:     }
                   3366:     /* if(sumnew <0.9){ */
                   3367:     /*   printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */
                   3368:     /* } */
                   3369:   }
                   3370:   k3=0.0;  /* We put the last diagonal to 0 */
                   3371:   for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){
                   3372:       doldm[ii][ii]= k3;
                   3373:   }
                   3374:   /* End doldm, At the end doldm is diag[(w_i)] */
                   3375:   
1.292     brouard  3376:   /* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */
                   3377:   bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */
1.268     brouard  3378: 
1.292     brouard  3379:   /* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */
1.268     brouard  3380:   /* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */
1.222     brouard  3381:   for (j=1;j<=nlstate+ndeath;j++){
1.268     brouard  3382:     sumnew=0.;
1.222     brouard  3383:     for (ii=1;ii<=nlstate;ii++){
1.266     brouard  3384:       /* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */
1.268     brouard  3385:       sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */
1.222     brouard  3386:     } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
1.268     brouard  3387:     for (ii=1;ii<=nlstate+ndeath;ii++){
1.222     brouard  3388:        /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
1.268     brouard  3389:        /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
1.222     brouard  3390:        /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
1.268     brouard  3391:        /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
1.222     brouard  3392:        /* }else */
1.268     brouard  3393:       dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0);
                   3394:     } /*End ii */
                   3395:   } /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */
                   3396: 
1.292     brouard  3397:   ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */
1.268     brouard  3398:   /* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
1.222     brouard  3399:   /* end bmij */
1.266     brouard  3400:   return ps; /*pointer is unchanged */
1.218     brouard  3401: }
1.217     brouard  3402: /*************** transition probabilities ***************/ 
                   3403: 
1.218     brouard  3404: double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
1.217     brouard  3405: {
                   3406:   /* According to parameters values stored in x and the covariate's values stored in cov,
                   3407:      computes the probability to be observed in state j being in state i by appying the
                   3408:      model to the ncovmodel covariates (including constant and age).
                   3409:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   3410:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   3411:      ncth covariate in the global vector x is given by the formula:
                   3412:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   3413:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   3414:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   3415:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
                   3416:      Outputs ps[i][j] the probability to be observed in j being in j according to
                   3417:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
                   3418:   */
                   3419:   double s1, lnpijopii;
                   3420:   /*double t34;*/
                   3421:   int i,j, nc, ii, jj;
                   3422: 
1.234     brouard  3423:   for(i=1; i<= nlstate; i++){
                   3424:     for(j=1; j<i;j++){
                   3425:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   3426:        /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   3427:        lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   3428:        /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   3429:       }
                   3430:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   3431:       /*       printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   3432:     }
                   3433:     for(j=i+1; j<=nlstate+ndeath;j++){
                   3434:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   3435:        /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   3436:        lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   3437:        /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                   3438:       }
                   3439:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   3440:     }
                   3441:   }
                   3442:   
                   3443:   for(i=1; i<= nlstate; i++){
                   3444:     s1=0;
                   3445:     for(j=1; j<i; j++){
                   3446:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   3447:       /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   3448:     }
                   3449:     for(j=i+1; j<=nlstate+ndeath; j++){
                   3450:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   3451:       /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   3452:     }
                   3453:     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   3454:     ps[i][i]=1./(s1+1.);
                   3455:     /* Computing other pijs */
                   3456:     for(j=1; j<i; j++)
                   3457:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   3458:     for(j=i+1; j<=nlstate+ndeath; j++)
                   3459:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   3460:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   3461:   } /* end i */
                   3462:   
                   3463:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   3464:     for(jj=1; jj<= nlstate+ndeath; jj++){
                   3465:       ps[ii][jj]=0;
                   3466:       ps[ii][ii]=1;
                   3467:     }
                   3468:   }
1.296     brouard  3469:   /* Added for prevbcast */ /* Transposed matrix too */
1.234     brouard  3470:   for(jj=1; jj<= nlstate+ndeath; jj++){
                   3471:     s1=0.;
                   3472:     for(ii=1; ii<= nlstate+ndeath; ii++){
                   3473:       s1+=ps[ii][jj];
                   3474:     }
                   3475:     for(ii=1; ii<= nlstate; ii++){
                   3476:       ps[ii][jj]=ps[ii][jj]/s1;
                   3477:     }
                   3478:   }
                   3479:   /* Transposition */
                   3480:   for(jj=1; jj<= nlstate+ndeath; jj++){
                   3481:     for(ii=jj; ii<= nlstate+ndeath; ii++){
                   3482:       s1=ps[ii][jj];
                   3483:       ps[ii][jj]=ps[jj][ii];
                   3484:       ps[jj][ii]=s1;
                   3485:     }
                   3486:   }
                   3487:   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   3488:   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   3489:   /*   printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   3490:   /*   } */
                   3491:   /*   printf("\n "); */
                   3492:   /* } */
                   3493:   /* printf("\n ");printf("%lf ",cov[2]);*/
                   3494:   /*
                   3495:     for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   3496:     goto end;*/
                   3497:   return ps;
1.217     brouard  3498: }
                   3499: 
                   3500: 
1.126     brouard  3501: /**************** Product of 2 matrices ******************/
                   3502: 
1.145     brouard  3503: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
1.126     brouard  3504: {
                   3505:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   3506:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                   3507:   /* in, b, out are matrice of pointers which should have been initialized 
                   3508:      before: only the contents of out is modified. The function returns
                   3509:      a pointer to pointers identical to out */
1.145     brouard  3510:   int i, j, k;
1.126     brouard  3511:   for(i=nrl; i<= nrh; i++)
1.145     brouard  3512:     for(k=ncolol; k<=ncoloh; k++){
                   3513:       out[i][k]=0.;
                   3514:       for(j=ncl; j<=nch; j++)
                   3515:        out[i][k] +=in[i][j]*b[j][k];
                   3516:     }
1.126     brouard  3517:   return out;
                   3518: }
                   3519: 
                   3520: 
                   3521: /************* Higher Matrix Product ***************/
                   3522: 
1.235     brouard  3523: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
1.126     brouard  3524: {
1.336     brouard  3525:   /* Already optimized with precov.
                   3526:      Computes the transition matrix starting at age 'age' and dummies values in each resultline (loop on ij to find the corresponding combination) to over 
1.126     brouard  3527:      'nhstepm*hstepm*stepm' months (i.e. until
                   3528:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                   3529:      nhstepm*hstepm matrices. 
                   3530:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
                   3531:      (typically every 2 years instead of every month which is too big 
                   3532:      for the memory).
                   3533:      Model is determined by parameters x and covariates have to be 
                   3534:      included manually here. 
                   3535: 
                   3536:      */
                   3537: 
1.330     brouard  3538:   int i, j, d, h, k, k1;
1.131     brouard  3539:   double **out, cov[NCOVMAX+1];
1.126     brouard  3540:   double **newm;
1.187     brouard  3541:   double agexact;
1.214     brouard  3542:   double agebegin, ageend;
1.126     brouard  3543: 
                   3544:   /* Hstepm could be zero and should return the unit matrix */
                   3545:   for (i=1;i<=nlstate+ndeath;i++)
                   3546:     for (j=1;j<=nlstate+ndeath;j++){
                   3547:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   3548:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   3549:     }
                   3550:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   3551:   for(h=1; h <=nhstepm; h++){
                   3552:     for(d=1; d <=hstepm; d++){
                   3553:       newm=savm;
                   3554:       /* Covariates have to be included here again */
                   3555:       cov[1]=1.;
1.214     brouard  3556:       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
1.187     brouard  3557:       cov[2]=agexact;
1.319     brouard  3558:       if(nagesqr==1){
1.227     brouard  3559:        cov[3]= agexact*agexact;
1.319     brouard  3560:       }
1.330     brouard  3561:       /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
                   3562:       /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
                   3563:       for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.332     brouard  3564:        if(Typevar[k1]==1){ /* A product with age */
                   3565:          cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
                   3566:        }else{
                   3567:          cov[2+nagesqr+k1]=precov[nres][k1];
                   3568:        }
                   3569:       }/* End of loop on model equation */
                   3570:        /* Old code */ 
                   3571: /*     if( Dummy[k1]==0 && Typevar[k1]==0 ){ /\* Single dummy  *\/ */
                   3572: /* /\*    V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) *\/ */
                   3573: /* /\*       for (k=1; k<=nsd;k++) { /\\* For single dummy covariates only *\\/ *\/ */
                   3574: /* /\* /\\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\\/ *\/ */
                   3575: /*     /\* codtabm(ij,k)  (1 & (ij-1) >> (k-1))+1 *\/ */
                   3576: /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
                   3577: /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
                   3578: /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
                   3579: /* /\*    nsd         1   2                              3 *\/ /\* Counting single dummies covar fixed or tv *\/ */
                   3580: /* /\*TvarsD[nsd]     4   3                              1 *\/ /\* ID of single dummy cova fixed or timevary*\/ */
                   3581: /* /\*TvarsDind[k]    2   3                              9 *\/ /\* position K of single dummy cova *\/ */
                   3582: /*       /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];or [codtabm(ij,TnsdVar[TvarsD[k]] *\/ */
                   3583: /*       cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */
                   3584: /*       /\* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,TnsdVar[TvarsD[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,TnsdVar[TvarsD[k]])); *\/ */
                   3585: /*       printf("hpxij Dummy combi=%d k1=%d Tvar[%d]=V%d cov[2+%d+%d]=%lf resultmodel[nres][%d]=%d nres/nresult=%d/%d \n",ij,k1,k1, Tvar[k1],nagesqr,k1,cov[2+nagesqr+k1],k1,resultmodel[nres][k1],nres,nresult); */
                   3586: /*       printf("hpxij new Dummy precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
                   3587: /*     }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /\* Single quantitative variables  *\/ */
                   3588: /*       /\* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline *\/ */
                   3589: /*       cov[2+nagesqr+k1]=Tqresult[nres][resultmodel[nres][k1]];  */
                   3590: /*       /\* for (k=1; k<=nsq;k++) { /\\* For single varying covariates only *\\/ *\/ */
                   3591: /*       /\*   /\\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\\/ *\/ */
                   3592: /*       /\*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
                   3593: /*       printf("hPxij Quantitative k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
                   3594: /*       printf("hpxij new Quanti precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
                   3595: /*     }else if( Dummy[k1]==2 ){ /\* For dummy with age product *\/ */
                   3596: /*       /\* Tvar[k1] Variable in the age product age*V1 is 1 *\/ */
                   3597: /*       /\* [Tinvresult[nres][V1] is its value in the resultline nres *\/ */
                   3598: /*       cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvar[k1]]*cov[2]; */
                   3599: /*       printf("DhPxij Dummy with age k1=%d Tvar[%d]=%d TinvDoQresult[nres=%d][%d]=%.f age=%.2f,cov[2+%d+%d]=%.3f\n",k1,k1,Tvar[k1],nres,TinvDoQresult[nres][Tvar[k1]],cov[2],nagesqr,k1,cov[2+nagesqr+k1]); */
                   3600: /*       printf("hpxij new Dummy with age product precov[nres=%d][k1=%d]=%.4f * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
                   3601: 
                   3602: /*       /\* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];    *\/ */
                   3603: /*       /\* for (k=1; k<=cptcovage;k++){ /\\* For product with age V1+V1*age +V4 +age*V3 *\\/ *\/ */
                   3604: /*       /\* 1+2 Tage[1]=2 TVar[2]=1 Dummy[2]=2, Tage[2]=4 TVar[4]=3 Dummy[4]=3 quant*\/ */
                   3605: /*       /\* *\/ */
1.330     brouard  3606: /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
                   3607: /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
                   3608: /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
1.332     brouard  3609: /* /\*cptcovage=2                   1               2      *\/ */
                   3610: /* /\*Tage[k]=                      5               8      *\/  */
                   3611: /*     }else if( Dummy[k1]==3 ){ /\* For quant with age product *\/ */
                   3612: /*       cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];        */
                   3613: /*       printf("QhPxij Quant with age k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
                   3614: /*       printf("hpxij new Quanti with age product precov[nres=%d][k1=%d] * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
                   3615: /*       /\* if(Dummy[Tage[k]]== 2){ /\\* dummy with age *\\/ *\/ */
                   3616: /*       /\* /\\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\\* dummy with age *\\\/ *\\/ *\/ */
                   3617: /*       /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\\/ *\/ */
                   3618: /*       /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\\/ *\/ */
                   3619: /*       /\*   cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\/ */
                   3620: /*       /\*   printf("hPxij Age combi=%d k=%d cptcovage=%d Tage[%d]=%d Tvar[Tage[%d]]=V%d nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]]])]=%d nres=%d\n",ij,k,cptcovage,k,Tage[k],k,Tvar[Tage[k]], nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]])],nres); *\/ */
                   3621: /*       /\* } else if(Dummy[Tage[k]]== 3){ /\\* quantitative with age *\\/ *\/ */
                   3622: /*       /\*   cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; *\/ */
                   3623: /*       /\* } *\/ */
                   3624: /*       /\* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   3625: /*     }else if(Typevar[k1]==2 ){ /\* For product (not with age) *\/ */
                   3626: /* /\*       for (k=1; k<=cptcovprod;k++){ /\\*  For product without age *\\/ *\/ */
                   3627: /* /\* /\\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\\/ *\/ */
                   3628: /* /\* /\\*    k        1  2   3   4     5    6    7     8    9 *\\/ *\/ */
                   3629: /* /\* /\\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\\/ *\/ */
                   3630: /* /\* /\\*cptcovprod=1            1               2            *\\/ *\/ */
                   3631: /* /\* /\\*Tprod[]=                4               7            *\\/ *\/ */
                   3632: /* /\* /\\*Tvard[][1]             4               1             *\\/ *\/ */
                   3633: /* /\* /\\*Tvard[][2]               3               2           *\\/ *\/ */
1.330     brouard  3634:          
1.332     brouard  3635: /*       /\* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]=%d nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]=%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2],nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])],nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]); *\/ */
                   3636: /*       /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   3637: /*       cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];     */
                   3638: /*       printf("hPxij Prod ij=%d k1=%d  cov[2+%d+%d]=%.5f Tvard[%d][1]=V%d * Tvard[%d][2]=V%d ; TinvDoQresult[nres][Tvardk[k1][1]]=%.4f * TinvDoQresult[nres][Tvardk[k1][1]]=%.4f\n",ij,k1,nagesqr,k1,cov[2+nagesqr+k1],k1,Tvardk[k1][1], k1,Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][1]], TinvDoQresult[nres][Tvardk[k1][2]]); */
                   3639: /*       printf("hpxij new Product no age product precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
                   3640: 
                   3641: /*       /\* if(Dummy[Tvardk[k1][1]]==0){ *\/ */
                   3642: /*       /\*   if(Dummy[Tvardk[k1][2]]==0){ /\\* Product of dummies *\\/ *\/ */
                   3643: /*           /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   3644: /*           /\* cov[2+nagesqr+k1]=Tinvresult[nres][Tvardk[k1][1]] * Tinvresult[nres][Tvardk[k1][2]];   *\/ */
                   3645: /*           /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])]; *\/ */
                   3646: /*         /\* }else{ /\\* Product of dummy by quantitative *\\/ *\/ */
                   3647: /*           /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * Tqresult[nres][k]; *\/ */
                   3648: /*           /\* cov[2+nagesqr+k1]=Tresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]; *\/ */
                   3649: /*       /\*   } *\/ */
                   3650: /*       /\* }else{ /\\* Product of quantitative by...*\\/ *\/ */
                   3651: /*       /\*   if(Dummy[Tvard[k][2]]==0){  /\\* quant by dummy *\\/ *\/ */
                   3652: /*       /\*     /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][Tvard[k][1]]; *\\/ *\/ */
                   3653: /*       /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
                   3654: /*       /\*   }else{ /\\* Product of two quant *\\/ *\/ */
                   3655: /*       /\*     /\\* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\\/ *\/ */
                   3656: /*       /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
                   3657: /*       /\*   } *\/ */
                   3658: /*       /\* }/\\*end of products quantitative *\\/ *\/ */
                   3659: /*     }/\*end of products *\/ */
                   3660:       /* } /\* End of loop on model equation *\/ */
1.235     brouard  3661:       /* for (k=1; k<=cptcovn;k++)  */
                   3662:       /*       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
                   3663:       /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
                   3664:       /*       cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
                   3665:       /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
                   3666:       /*       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
1.227     brouard  3667:       
                   3668:       
1.126     brouard  3669:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   3670:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
1.319     brouard  3671:       /* right multiplication of oldm by the current matrix */
1.126     brouard  3672:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                   3673:                   pmij(pmmij,cov,ncovmodel,x,nlstate));
1.217     brouard  3674:       /* if((int)age == 70){ */
                   3675:       /*       printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
                   3676:       /*       for(i=1; i<=nlstate+ndeath; i++) { */
                   3677:       /*         printf("%d pmmij ",i); */
                   3678:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3679:       /*           printf("%f ",pmmij[i][j]); */
                   3680:       /*         } */
                   3681:       /*         printf(" oldm "); */
                   3682:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3683:       /*           printf("%f ",oldm[i][j]); */
                   3684:       /*         } */
                   3685:       /*         printf("\n"); */
                   3686:       /*       } */
                   3687:       /* } */
1.126     brouard  3688:       savm=oldm;
                   3689:       oldm=newm;
                   3690:     }
                   3691:     for(i=1; i<=nlstate+ndeath; i++)
                   3692:       for(j=1;j<=nlstate+ndeath;j++) {
1.267     brouard  3693:        po[i][j][h]=newm[i][j];
                   3694:        /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
1.126     brouard  3695:       }
1.128     brouard  3696:     /*printf("h=%d ",h);*/
1.126     brouard  3697:   } /* end h */
1.267     brouard  3698:   /*     printf("\n H=%d \n",h); */
1.126     brouard  3699:   return po;
                   3700: }
                   3701: 
1.217     brouard  3702: /************* Higher Back Matrix Product ***************/
1.218     brouard  3703: /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
1.267     brouard  3704: double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres )
1.217     brouard  3705: {
1.332     brouard  3706:   /* For dummy covariates given in each resultline (for historical, computes the corresponding combination ij),
                   3707:      computes the transition matrix starting at age 'age' over
1.217     brouard  3708:      'nhstepm*hstepm*stepm' months (i.e. until
1.218     brouard  3709:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
                   3710:      nhstepm*hstepm matrices.
                   3711:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step
                   3712:      (typically every 2 years instead of every month which is too big
1.217     brouard  3713:      for the memory).
1.218     brouard  3714:      Model is determined by parameters x and covariates have to be
1.266     brouard  3715:      included manually here. Then we use a call to bmij(x and cov)
                   3716:      The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output
1.222     brouard  3717:   */
1.217     brouard  3718: 
1.332     brouard  3719:   int i, j, d, h, k, k1;
1.266     brouard  3720:   double **out, cov[NCOVMAX+1], **bmij();
                   3721:   double **newm, ***newmm;
1.217     brouard  3722:   double agexact;
                   3723:   double agebegin, ageend;
1.222     brouard  3724:   double **oldm, **savm;
1.217     brouard  3725: 
1.266     brouard  3726:   newmm=po; /* To be saved */
                   3727:   oldm=oldms;savm=savms; /* Global pointers */
1.217     brouard  3728:   /* Hstepm could be zero and should return the unit matrix */
                   3729:   for (i=1;i<=nlstate+ndeath;i++)
                   3730:     for (j=1;j<=nlstate+ndeath;j++){
                   3731:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   3732:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   3733:     }
                   3734:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   3735:   for(h=1; h <=nhstepm; h++){
                   3736:     for(d=1; d <=hstepm; d++){
                   3737:       newm=savm;
                   3738:       /* Covariates have to be included here again */
                   3739:       cov[1]=1.;
1.271     brouard  3740:       agexact=age-( (h-1)*hstepm + (d)  )*stepm/YEARM; /* age just before transition, d or d-1? */
1.217     brouard  3741:       /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
1.318     brouard  3742:         /* Debug */
                   3743:       /* printf("hBxij age=%lf, agexact=%lf\n", age, agexact); */
1.217     brouard  3744:       cov[2]=agexact;
1.332     brouard  3745:       if(nagesqr==1){
1.222     brouard  3746:        cov[3]= agexact*agexact;
1.332     brouard  3747:       }
                   3748:       /** New code */
                   3749:       for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
                   3750:        if(Typevar[k1]==1){ /* A product with age */
                   3751:          cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
1.325     brouard  3752:        }else{
1.332     brouard  3753:          cov[2+nagesqr+k1]=precov[nres][k1];
1.325     brouard  3754:        }
1.332     brouard  3755:       }/* End of loop on model equation */
                   3756:       /** End of new code */
                   3757:   /** This was old code */
                   3758:       /* for (k=1; k<=nsd;k++){ /\* For single dummy covariates only *\//\* cptcovn error *\/ */
                   3759:       /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
                   3760:       /* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
                   3761:       /*       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])];/\* Bug valgrind *\/ */
                   3762:       /*   /\* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
                   3763:       /* } */
                   3764:       /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
                   3765:       /*       /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
                   3766:       /*       cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
                   3767:       /*       /\* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
                   3768:       /* } */
                   3769:       /* for (k=1; k<=cptcovage;k++){ /\* Should start at cptcovn+1 *\//\* For product with age *\/ */
                   3770:       /*       /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age error!!!*\\/ *\/ */
                   3771:       /*       if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
                   3772:       /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                   3773:       /*       } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
                   3774:       /*         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];  */
                   3775:       /*       } */
                   3776:       /*       /\* printf("hBxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   3777:       /* } */
                   3778:       /* for (k=1; k<=cptcovprod;k++){ /\* Useless because included in cptcovn *\/ */
                   3779:       /*       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                   3780:       /*       if(Dummy[Tvard[k][1]]==0){ */
                   3781:       /*         if(Dummy[Tvard[k][2]]==0){ */
                   3782:       /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]; */
                   3783:       /*         }else{ */
                   3784:       /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
                   3785:       /*         } */
                   3786:       /*       }else{ */
                   3787:       /*         if(Dummy[Tvard[k][2]]==0){ */
                   3788:       /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
                   3789:       /*         }else{ */
                   3790:       /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
                   3791:       /*         } */
                   3792:       /*       } */
                   3793:       /* }                      */
                   3794:       /* /\*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*\/ */
                   3795:       /* /\*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*\/ */
                   3796: /** End of old code */
                   3797:       
1.218     brouard  3798:       /* Careful transposed matrix */
1.266     brouard  3799:       /* age is in cov[2], prevacurrent at beginning of transition. */
1.218     brouard  3800:       /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
1.222     brouard  3801:       /*                                                1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
1.218     brouard  3802:       out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
1.325     brouard  3803:                   1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);/* Bug valgrind */
1.217     brouard  3804:       /* if((int)age == 70){ */
                   3805:       /*       printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
                   3806:       /*       for(i=1; i<=nlstate+ndeath; i++) { */
                   3807:       /*         printf("%d pmmij ",i); */
                   3808:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3809:       /*           printf("%f ",pmmij[i][j]); */
                   3810:       /*         } */
                   3811:       /*         printf(" oldm "); */
                   3812:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3813:       /*           printf("%f ",oldm[i][j]); */
                   3814:       /*         } */
                   3815:       /*         printf("\n"); */
                   3816:       /*       } */
                   3817:       /* } */
                   3818:       savm=oldm;
                   3819:       oldm=newm;
                   3820:     }
                   3821:     for(i=1; i<=nlstate+ndeath; i++)
                   3822:       for(j=1;j<=nlstate+ndeath;j++) {
1.222     brouard  3823:        po[i][j][h]=newm[i][j];
1.268     brouard  3824:        /* if(h==nhstepm) */
                   3825:        /*   printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */
1.217     brouard  3826:       }
1.268     brouard  3827:     /* printf("h=%d %.1f ",h, agexact); */
1.217     brouard  3828:   } /* end h */
1.268     brouard  3829:   /* printf("\n H=%d nhs=%d \n",h, nhstepm); */
1.217     brouard  3830:   return po;
                   3831: }
                   3832: 
                   3833: 
1.162     brouard  3834: #ifdef NLOPT
                   3835:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
                   3836:   double fret;
                   3837:   double *xt;
                   3838:   int j;
                   3839:   myfunc_data *d2 = (myfunc_data *) pd;
                   3840: /* xt = (p1-1); */
                   3841:   xt=vector(1,n); 
                   3842:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
                   3843: 
                   3844:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
                   3845:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
                   3846:   printf("Function = %.12lf ",fret);
                   3847:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
                   3848:   printf("\n");
                   3849:  free_vector(xt,1,n);
                   3850:   return fret;
                   3851: }
                   3852: #endif
1.126     brouard  3853: 
                   3854: /*************** log-likelihood *************/
                   3855: double func( double *x)
                   3856: {
1.336     brouard  3857:   int i, ii, j, k, mi, d, kk, kf=0;
1.226     brouard  3858:   int ioffset=0;
                   3859:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
                   3860:   double **out;
                   3861:   double lli; /* Individual log likelihood */
                   3862:   int s1, s2;
1.228     brouard  3863:   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
1.336     brouard  3864: 
1.226     brouard  3865:   double bbh, survp;
                   3866:   double agexact;
1.336     brouard  3867:   double agebegin, ageend;
1.226     brouard  3868:   /*extern weight */
                   3869:   /* We are differentiating ll according to initial status */
                   3870:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   3871:   /*for(i=1;i<imx;i++) 
                   3872:     printf(" %d\n",s[4][i]);
                   3873:   */
1.162     brouard  3874: 
1.226     brouard  3875:   ++countcallfunc;
1.162     brouard  3876: 
1.226     brouard  3877:   cov[1]=1.;
1.126     brouard  3878: 
1.226     brouard  3879:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.224     brouard  3880:   ioffset=0;
1.226     brouard  3881:   if(mle==1){
                   3882:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   3883:       /* Computes the values of the ncovmodel covariates of the model
                   3884:         depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
                   3885:         Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   3886:         to be observed in j being in i according to the model.
                   3887:       */
1.243     brouard  3888:       ioffset=2+nagesqr ;
1.233     brouard  3889:    /* Fixed */
1.336     brouard  3890:       for (kf=1; kf<=ncovf;kf++){ /* For each fixed covariate dummu or quant or prod */
1.319     brouard  3891:        /* # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi */
                   3892:         /*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   3893:        /*  TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
1.320     brouard  3894:         /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
1.336     brouard  3895:        cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (TvarFind[1]=6)*/
1.319     brouard  3896:        /* V1*V2 (7)  TvarFind[2]=7, TvarFind[3]=9 */
1.234     brouard  3897:       }
1.226     brouard  3898:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
1.319     brouard  3899:         is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
1.226     brouard  3900:         has been calculated etc */
                   3901:       /* For an individual i, wav[i] gives the number of effective waves */
                   3902:       /* We compute the contribution to Likelihood of each effective transition
                   3903:         mw[mi][i] is real wave of the mi th effectve wave */
                   3904:       /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
                   3905:         s2=s[mw[mi+1][i]][i];
                   3906:         And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
                   3907:         But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
                   3908:         meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
                   3909:       */
1.336     brouard  3910:       for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
                   3911:       /* Wave varying (but not age varying) */
1.319     brouard  3912:        for(k=1; k <= ncovv ; k++){ /* Varying  covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3)  Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*/
                   3913:          /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? */
1.242     brouard  3914:          cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
1.234     brouard  3915:        }
                   3916:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   3917:          for (j=1;j<=nlstate+ndeath;j++){
                   3918:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3919:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3920:          }
1.336     brouard  3921: 
                   3922:        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
                   3923:        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
1.234     brouard  3924:        for(d=0; d<dh[mi][i]; d++){
                   3925:          newm=savm;
                   3926:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   3927:          cov[2]=agexact;
                   3928:          if(nagesqr==1)
                   3929:            cov[3]= agexact*agexact;  /* Should be changed here */
                   3930:          for (kk=1; kk<=cptcovage;kk++) {
1.318     brouard  3931:            if(!FixedV[Tvar[Tage[kk]]])
                   3932:              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
                   3933:            else
                   3934:              cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
1.234     brouard  3935:          }
                   3936:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   3937:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   3938:          savm=oldm;
                   3939:          oldm=newm;
                   3940:        } /* end mult */
                   3941:        
                   3942:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   3943:        /* But now since version 0.9 we anticipate for bias at large stepm.
                   3944:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   3945:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   3946:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   3947:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   3948:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   3949:         * probability in order to take into account the bias as a fraction of the way
1.231     brouard  3950:                                 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   3951:                                 * -stepm/2 to stepm/2 .
                   3952:                                 * For stepm=1 the results are the same as for previous versions of Imach.
                   3953:                                 * For stepm > 1 the results are less biased than in previous versions. 
                   3954:                                 */
1.234     brouard  3955:        s1=s[mw[mi][i]][i];
                   3956:        s2=s[mw[mi+1][i]][i];
                   3957:        bbh=(double)bh[mi][i]/(double)stepm; 
                   3958:        /* bias bh is positive if real duration
                   3959:         * is higher than the multiple of stepm and negative otherwise.
                   3960:         */
                   3961:        /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                   3962:        if( s2 > nlstate){ 
                   3963:          /* i.e. if s2 is a death state and if the date of death is known 
                   3964:             then the contribution to the likelihood is the probability to 
                   3965:             die between last step unit time and current  step unit time, 
                   3966:             which is also equal to probability to die before dh 
                   3967:             minus probability to die before dh-stepm . 
                   3968:             In version up to 0.92 likelihood was computed
                   3969:             as if date of death was unknown. Death was treated as any other
                   3970:             health state: the date of the interview describes the actual state
                   3971:             and not the date of a change in health state. The former idea was
                   3972:             to consider that at each interview the state was recorded
                   3973:             (healthy, disable or death) and IMaCh was corrected; but when we
                   3974:             introduced the exact date of death then we should have modified
                   3975:             the contribution of an exact death to the likelihood. This new
                   3976:             contribution is smaller and very dependent of the step unit
                   3977:             stepm. It is no more the probability to die between last interview
                   3978:             and month of death but the probability to survive from last
                   3979:             interview up to one month before death multiplied by the
                   3980:             probability to die within a month. Thanks to Chris
                   3981:             Jackson for correcting this bug.  Former versions increased
                   3982:             mortality artificially. The bad side is that we add another loop
                   3983:             which slows down the processing. The difference can be up to 10%
                   3984:             lower mortality.
                   3985:          */
                   3986:          /* If, at the beginning of the maximization mostly, the
                   3987:             cumulative probability or probability to be dead is
                   3988:             constant (ie = 1) over time d, the difference is equal to
                   3989:             0.  out[s1][3] = savm[s1][3]: probability, being at state
                   3990:             s1 at precedent wave, to be dead a month before current
                   3991:             wave is equal to probability, being at state s1 at
                   3992:             precedent wave, to be dead at mont of the current
                   3993:             wave. Then the observed probability (that this person died)
                   3994:             is null according to current estimated parameter. In fact,
                   3995:             it should be very low but not zero otherwise the log go to
                   3996:             infinity.
                   3997:          */
1.183     brouard  3998: /* #ifdef INFINITYORIGINAL */
                   3999: /*         lli=log(out[s1][s2] - savm[s1][s2]); */
                   4000: /* #else */
                   4001: /*       if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
                   4002: /*         lli=log(mytinydouble); */
                   4003: /*       else */
                   4004: /*         lli=log(out[s1][s2] - savm[s1][s2]); */
                   4005: /* #endif */
1.226     brouard  4006:          lli=log(out[s1][s2] - savm[s1][s2]);
1.216     brouard  4007:          
1.226     brouard  4008:        } else if  ( s2==-1 ) { /* alive */
                   4009:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   4010:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   4011:          /*survp += out[s1][j]; */
                   4012:          lli= log(survp);
                   4013:        }
1.336     brouard  4014:        /* else if  (s2==-4) {  */
                   4015:        /*   for (j=3,survp=0. ; j<=nlstate; j++)   */
                   4016:        /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
                   4017:        /*   lli= log(survp);  */
                   4018:        /* }  */
                   4019:        /* else if  (s2==-5) {  */
                   4020:        /*   for (j=1,survp=0. ; j<=2; j++)   */
                   4021:        /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
                   4022:        /*   lli= log(survp);  */
                   4023:        /* }  */
1.226     brouard  4024:        else{
                   4025:          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   4026:          /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   4027:        } 
                   4028:        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   4029:        /*if(lli ==000.0)*/
                   4030:        /*printf("bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
                   4031:        ipmx +=1;
                   4032:        sw += weight[i];
                   4033:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   4034:        /* if (lli < log(mytinydouble)){ */
                   4035:        /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
                   4036:        /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
                   4037:        /* } */
                   4038:       } /* end of wave */
                   4039:     } /* end of individual */
                   4040:   }  else if(mle==2){
                   4041:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.319     brouard  4042:       ioffset=2+nagesqr ;
                   4043:       for (k=1; k<=ncovf;k++)
                   4044:        cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];
1.226     brouard  4045:       for(mi=1; mi<= wav[i]-1; mi++){
1.319     brouard  4046:        for(k=1; k <= ncovv ; k++){
                   4047:          cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
                   4048:        }
1.226     brouard  4049:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   4050:          for (j=1;j<=nlstate+ndeath;j++){
                   4051:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4052:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4053:          }
                   4054:        for(d=0; d<=dh[mi][i]; d++){
                   4055:          newm=savm;
                   4056:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   4057:          cov[2]=agexact;
                   4058:          if(nagesqr==1)
                   4059:            cov[3]= agexact*agexact;
                   4060:          for (kk=1; kk<=cptcovage;kk++) {
                   4061:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   4062:          }
                   4063:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4064:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4065:          savm=oldm;
                   4066:          oldm=newm;
                   4067:        } /* end mult */
                   4068:       
                   4069:        s1=s[mw[mi][i]][i];
                   4070:        s2=s[mw[mi+1][i]][i];
                   4071:        bbh=(double)bh[mi][i]/(double)stepm; 
                   4072:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   4073:        ipmx +=1;
                   4074:        sw += weight[i];
                   4075:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   4076:       } /* end of wave */
                   4077:     } /* end of individual */
                   4078:   }  else if(mle==3){  /* exponential inter-extrapolation */
                   4079:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   4080:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   4081:       for(mi=1; mi<= wav[i]-1; mi++){
                   4082:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   4083:          for (j=1;j<=nlstate+ndeath;j++){
                   4084:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4085:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4086:          }
                   4087:        for(d=0; d<dh[mi][i]; d++){
                   4088:          newm=savm;
                   4089:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   4090:          cov[2]=agexact;
                   4091:          if(nagesqr==1)
                   4092:            cov[3]= agexact*agexact;
                   4093:          for (kk=1; kk<=cptcovage;kk++) {
                   4094:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   4095:          }
                   4096:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4097:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4098:          savm=oldm;
                   4099:          oldm=newm;
                   4100:        } /* end mult */
                   4101:       
                   4102:        s1=s[mw[mi][i]][i];
                   4103:        s2=s[mw[mi+1][i]][i];
                   4104:        bbh=(double)bh[mi][i]/(double)stepm; 
                   4105:        lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   4106:        ipmx +=1;
                   4107:        sw += weight[i];
                   4108:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   4109:       } /* end of wave */
                   4110:     } /* end of individual */
                   4111:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
                   4112:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   4113:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   4114:       for(mi=1; mi<= wav[i]-1; mi++){
                   4115:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   4116:          for (j=1;j<=nlstate+ndeath;j++){
                   4117:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4118:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4119:          }
                   4120:        for(d=0; d<dh[mi][i]; d++){
                   4121:          newm=savm;
                   4122:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   4123:          cov[2]=agexact;
                   4124:          if(nagesqr==1)
                   4125:            cov[3]= agexact*agexact;
                   4126:          for (kk=1; kk<=cptcovage;kk++) {
                   4127:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   4128:          }
1.126     brouard  4129:        
1.226     brouard  4130:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4131:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4132:          savm=oldm;
                   4133:          oldm=newm;
                   4134:        } /* end mult */
                   4135:       
                   4136:        s1=s[mw[mi][i]][i];
                   4137:        s2=s[mw[mi+1][i]][i];
                   4138:        if( s2 > nlstate){ 
                   4139:          lli=log(out[s1][s2] - savm[s1][s2]);
                   4140:        } else if  ( s2==-1 ) { /* alive */
                   4141:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   4142:            survp += out[s1][j];
                   4143:          lli= log(survp);
                   4144:        }else{
                   4145:          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   4146:        }
                   4147:        ipmx +=1;
                   4148:        sw += weight[i];
                   4149:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.126     brouard  4150: /*     printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]); */
1.226     brouard  4151:       } /* end of wave */
                   4152:     } /* end of individual */
                   4153:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   4154:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   4155:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   4156:       for(mi=1; mi<= wav[i]-1; mi++){
                   4157:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   4158:          for (j=1;j<=nlstate+ndeath;j++){
                   4159:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4160:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4161:          }
                   4162:        for(d=0; d<dh[mi][i]; d++){
                   4163:          newm=savm;
                   4164:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   4165:          cov[2]=agexact;
                   4166:          if(nagesqr==1)
                   4167:            cov[3]= agexact*agexact;
                   4168:          for (kk=1; kk<=cptcovage;kk++) {
                   4169:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   4170:          }
1.126     brouard  4171:        
1.226     brouard  4172:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4173:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4174:          savm=oldm;
                   4175:          oldm=newm;
                   4176:        } /* end mult */
                   4177:       
                   4178:        s1=s[mw[mi][i]][i];
                   4179:        s2=s[mw[mi+1][i]][i];
                   4180:        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   4181:        ipmx +=1;
                   4182:        sw += weight[i];
                   4183:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   4184:        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                   4185:       } /* end of wave */
                   4186:     } /* end of individual */
                   4187:   } /* End of if */
                   4188:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   4189:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   4190:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   4191:   return -l;
1.126     brouard  4192: }
                   4193: 
                   4194: /*************** log-likelihood *************/
                   4195: double funcone( double *x)
                   4196: {
1.228     brouard  4197:   /* Same as func but slower because of a lot of printf and if */
1.335     brouard  4198:   int i, ii, j, k, mi, d, kk, kf=0;
1.228     brouard  4199:   int ioffset=0;
1.131     brouard  4200:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
1.126     brouard  4201:   double **out;
                   4202:   double lli; /* Individual log likelihood */
                   4203:   double llt;
                   4204:   int s1, s2;
1.228     brouard  4205:   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
                   4206: 
1.126     brouard  4207:   double bbh, survp;
1.187     brouard  4208:   double agexact;
1.214     brouard  4209:   double agebegin, ageend;
1.126     brouard  4210:   /*extern weight */
                   4211:   /* We are differentiating ll according to initial status */
                   4212:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   4213:   /*for(i=1;i<imx;i++) 
                   4214:     printf(" %d\n",s[4][i]);
                   4215:   */
                   4216:   cov[1]=1.;
                   4217: 
                   4218:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.224     brouard  4219:   ioffset=0;
                   4220:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.336     brouard  4221:     /* Computes the values of the ncovmodel covariates of the model
                   4222:        depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
                   4223:        Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   4224:        to be observed in j being in i according to the model.
                   4225:     */
1.243     brouard  4226:     /* ioffset=2+nagesqr+cptcovage; */
                   4227:     ioffset=2+nagesqr;
1.232     brouard  4228:     /* Fixed */
1.224     brouard  4229:     /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
1.232     brouard  4230:     /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
1.335     brouard  4231:     for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */
                   4232:       cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
1.232     brouard  4233: /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
                   4234: /*    cov[2+6]=covar[Tvar[6]][i];  */
                   4235: /*    cov[2+6]=covar[2][i]; V2  */
                   4236: /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
                   4237: /*    cov[2+7]=covar[Tvar[7]][i];  */
                   4238: /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
                   4239: /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
                   4240: /*    cov[2+9]=covar[Tvar[9]][i];  */
                   4241: /*    cov[2+9]=covar[1][i]; V1  */
1.225     brouard  4242:     }
1.336     brouard  4243:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
                   4244:         is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
                   4245:         has been calculated etc */
                   4246:       /* For an individual i, wav[i] gives the number of effective waves */
                   4247:       /* We compute the contribution to Likelihood of each effective transition
                   4248:         mw[mi][i] is real wave of the mi th effectve wave */
                   4249:       /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
                   4250:         s2=s[mw[mi+1][i]][i];
                   4251:         And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i]
                   4252:         But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
                   4253:         meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
                   4254:       */
                   4255:     /* This part may be useless now because everythin should be in covar */
1.232     brouard  4256:     /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
                   4257:     /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
                   4258:     /* } */
1.231     brouard  4259:     /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
                   4260:     /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
                   4261:     /* } */
1.225     brouard  4262:     
1.233     brouard  4263: 
                   4264:     for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
1.232     brouard  4265:     /* Wave varying (but not age varying) */
                   4266:       for(k=1; k <= ncovv ; k++){ /* Varying  covariates (single and product but no age )*/
1.242     brouard  4267:        /* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; */
                   4268:        cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i];
                   4269:       }
1.232     brouard  4270:       /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates (single??)*\/ */
1.242     brouard  4271:       /* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; /\* Counting the # varying covariate from 1 to ntveff *\/ */
                   4272:       /* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; */
                   4273:       /* k=ioffset-2-nagesqr-cptcovage+itv; /\* position in simple model *\/ */
                   4274:       /* cov[ioffset+itv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; */
                   4275:       /* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][TmodelInvind[itv]][i]=%f\n", i, mi, itv, TmodelInvind[itv],cotvar[mw[mi][i]][TmodelInvind[itv]][i]); */
1.232     brouard  4276:       /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
1.242     brouard  4277:       /*       iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
                   4278:       /*       /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
                   4279:       /*       cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
1.232     brouard  4280:       /* } */
1.126     brouard  4281:       for (ii=1;ii<=nlstate+ndeath;ii++)
1.242     brouard  4282:        for (j=1;j<=nlstate+ndeath;j++){
                   4283:          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4284:          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4285:        }
1.214     brouard  4286:       
                   4287:       agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
                   4288:       ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
                   4289:       for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
1.247     brouard  4290:       /* for(d=0; d<=0; d++){  /\* Delay between two effective waves Only one matrix to speed up*\/ */
1.242     brouard  4291:        /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   4292:          and mw[mi+1][i]. dh depends on stepm.*/
                   4293:        newm=savm;
1.247     brouard  4294:        agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;  /* Here d is needed */
1.242     brouard  4295:        cov[2]=agexact;
                   4296:        if(nagesqr==1)
                   4297:          cov[3]= agexact*agexact;
                   4298:        for (kk=1; kk<=cptcovage;kk++) {
                   4299:          if(!FixedV[Tvar[Tage[kk]]])
                   4300:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   4301:          else
                   4302:            cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]-ncovcol-nqv][i]*agexact;
                   4303:        }
                   4304:        /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
                   4305:        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   4306:        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4307:                     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4308:        /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                   4309:        /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                   4310:        savm=oldm;
                   4311:        oldm=newm;
1.126     brouard  4312:       } /* end mult */
1.336     brouard  4313:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   4314:        /* But now since version 0.9 we anticipate for bias at large stepm.
                   4315:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   4316:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   4317:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   4318:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   4319:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   4320:         * probability in order to take into account the bias as a fraction of the way
                   4321:                                 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   4322:                                 * -stepm/2 to stepm/2 .
                   4323:                                 * For stepm=1 the results are the same as for previous versions of Imach.
                   4324:                                 * For stepm > 1 the results are less biased than in previous versions. 
                   4325:                                 */
1.126     brouard  4326:       s1=s[mw[mi][i]][i];
                   4327:       s2=s[mw[mi+1][i]][i];
1.217     brouard  4328:       /* if(s2==-1){ */
1.268     brouard  4329:       /*       printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */
1.217     brouard  4330:       /*       /\* exit(1); *\/ */
                   4331:       /* } */
1.126     brouard  4332:       bbh=(double)bh[mi][i]/(double)stepm; 
                   4333:       /* bias is positive if real duration
                   4334:        * is higher than the multiple of stepm and negative otherwise.
                   4335:        */
                   4336:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
1.242     brouard  4337:        lli=log(out[s1][s2] - savm[s1][s2]);
1.216     brouard  4338:       } else if  ( s2==-1 ) { /* alive */
1.242     brouard  4339:        for (j=1,survp=0. ; j<=nlstate; j++) 
                   4340:          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   4341:        lli= log(survp);
1.126     brouard  4342:       }else if (mle==1){
1.242     brouard  4343:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
1.126     brouard  4344:       } else if(mle==2){
1.242     brouard  4345:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
1.126     brouard  4346:       } else if(mle==3){  /* exponential inter-extrapolation */
1.242     brouard  4347:        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
1.126     brouard  4348:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
1.242     brouard  4349:        lli=log(out[s1][s2]); /* Original formula */
1.136     brouard  4350:       } else{  /* mle=0 back to 1 */
1.242     brouard  4351:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   4352:        /*lli=log(out[s1][s2]); */ /* Original formula */
1.126     brouard  4353:       } /* End of if */
                   4354:       ipmx +=1;
                   4355:       sw += weight[i];
                   4356:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.335     brouard  4357:       /* printf("Funcone i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
1.126     brouard  4358:       if(globpr){
1.246     brouard  4359:        fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
1.126     brouard  4360:  %11.6f %11.6f %11.6f ", \
1.242     brouard  4361:                num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
1.268     brouard  4362:                2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2]));
1.335     brouard  4363:  /*    printf("%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ */
                   4364:  /* %11.6f %11.6f %11.6f ", \ */
                   4365:  /*            num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, */
                   4366:  /*            2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
1.242     brouard  4367:        for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                   4368:          llt +=ll[k]*gipmx/gsw;
                   4369:          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
1.335     brouard  4370:          /* printf(" %10.6f",-ll[k]*gipmx/gsw); */
1.242     brouard  4371:        }
                   4372:        fprintf(ficresilk," %10.6f\n", -llt);
1.335     brouard  4373:        /* printf(" %10.6f\n", -llt); */
1.126     brouard  4374:       }
1.335     brouard  4375:     } /* end of wave */
                   4376:   } /* end of individual */
                   4377:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
1.232     brouard  4378: /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
1.335     brouard  4379:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   4380:   if(globpr==0){ /* First time we count the contributions and weights */
                   4381:     gipmx=ipmx;
                   4382:     gsw=sw;
                   4383:   }
1.232     brouard  4384: return -l;
1.126     brouard  4385: }
                   4386: 
                   4387: 
                   4388: /*************** function likelione ***********/
1.292     brouard  4389: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double []))
1.126     brouard  4390: {
                   4391:   /* This routine should help understanding what is done with 
                   4392:      the selection of individuals/waves and
                   4393:      to check the exact contribution to the likelihood.
                   4394:      Plotting could be done.
                   4395:    */
                   4396:   int k;
                   4397: 
                   4398:   if(*globpri !=0){ /* Just counts and sums, no printings */
1.201     brouard  4399:     strcpy(fileresilk,"ILK_"); 
1.202     brouard  4400:     strcat(fileresilk,fileresu);
1.126     brouard  4401:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   4402:       printf("Problem with resultfile: %s\n", fileresilk);
                   4403:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   4404:     }
1.214     brouard  4405:     fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                   4406:     fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
1.126     brouard  4407:     /*         i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   4408:     for(k=1; k<=nlstate; k++) 
                   4409:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
                   4410:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total)\n");
                   4411:   }
                   4412: 
1.292     brouard  4413:   *fretone=(*func)(p);
1.126     brouard  4414:   if(*globpri !=0){
                   4415:     fclose(ficresilk);
1.205     brouard  4416:     if (mle ==0)
                   4417:       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
                   4418:     else if(mle >=1)
                   4419:       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
                   4420:     fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
1.274     brouard  4421:     fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); 
1.208     brouard  4422:       
                   4423:     for (k=1; k<= nlstate ; k++) {
1.211     brouard  4424:       fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
1.208     brouard  4425: <img src=\"%s-p%dj.png\">",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
                   4426:     }
1.207     brouard  4427:     fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
1.204     brouard  4428: <img src=\"%s-ori.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
1.207     brouard  4429:     fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
1.204     brouard  4430: <img src=\"%s-dest.png\">",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
1.207     brouard  4431:     fflush(fichtm);
1.205     brouard  4432:   }
1.126     brouard  4433:   return;
                   4434: }
                   4435: 
                   4436: 
                   4437: /*********** Maximum Likelihood Estimation ***************/
                   4438: 
                   4439: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   4440: {
1.319     brouard  4441:   int i,j,k, jk, jkk=0, iter=0;
1.126     brouard  4442:   double **xi;
                   4443:   double fret;
                   4444:   double fretone; /* Only one call to likelihood */
                   4445:   /*  char filerespow[FILENAMELENGTH];*/
1.162     brouard  4446: 
                   4447: #ifdef NLOPT
                   4448:   int creturn;
                   4449:   nlopt_opt opt;
                   4450:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
                   4451:   double *lb;
                   4452:   double minf; /* the minimum objective value, upon return */
                   4453:   double * p1; /* Shifted parameters from 0 instead of 1 */
                   4454:   myfunc_data dinst, *d = &dinst;
                   4455: #endif
                   4456: 
                   4457: 
1.126     brouard  4458:   xi=matrix(1,npar,1,npar);
                   4459:   for (i=1;i<=npar;i++)
                   4460:     for (j=1;j<=npar;j++)
                   4461:       xi[i][j]=(i==j ? 1.0 : 0.0);
                   4462:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.201     brouard  4463:   strcpy(filerespow,"POW_"); 
1.126     brouard  4464:   strcat(filerespow,fileres);
                   4465:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   4466:     printf("Problem with resultfile: %s\n", filerespow);
                   4467:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   4468:   }
                   4469:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   4470:   for (i=1;i<=nlstate;i++)
                   4471:     for(j=1;j<=nlstate+ndeath;j++)
                   4472:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   4473:   fprintf(ficrespow,"\n");
1.162     brouard  4474: #ifdef POWELL
1.319     brouard  4475: #ifdef LINMINORIGINAL
                   4476: #else /* LINMINORIGINAL */
                   4477:   
                   4478:   flatdir=ivector(1,npar); 
                   4479:   for (j=1;j<=npar;j++) flatdir[j]=0; 
                   4480: #endif /*LINMINORIGINAL */
                   4481: 
                   4482: #ifdef FLATSUP
                   4483:   powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
                   4484:   /* reorganizing p by suppressing flat directions */
                   4485:   for(i=1, jk=1; i <=nlstate; i++){
                   4486:     for(k=1; k <=(nlstate+ndeath); k++){
                   4487:       if (k != i) {
                   4488:         printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
                   4489:         if(flatdir[jk]==1){
                   4490:           printf(" To be skipped %d%d flatdir[%d]=%d ",i,k,jk, flatdir[jk]);
                   4491:         }
                   4492:         for(j=1; j <=ncovmodel; j++){
                   4493:           printf("%12.7f ",p[jk]);
                   4494:           jk++; 
                   4495:         }
                   4496:         printf("\n");
                   4497:       }
                   4498:     }
                   4499:   }
                   4500: /* skipping */
                   4501:   /* for(i=1, jk=1, jkk=1;(flatdir[jk]==0)&& (i <=nlstate); i++){ */
                   4502:   for(i=1, jk=1, jkk=1;i <=nlstate; i++){
                   4503:     for(k=1; k <=(nlstate+ndeath); k++){
                   4504:       if (k != i) {
                   4505:         printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
                   4506:         if(flatdir[jk]==1){
                   4507:           printf(" To be skipped %d%d flatdir[%d]=%d jk=%d p[%d] ",i,k,jk, flatdir[jk],jk, jk);
                   4508:           for(j=1; j <=ncovmodel;  jk++,j++){
                   4509:             printf(" p[%d]=%12.7f",jk, p[jk]);
                   4510:             /*q[jjk]=p[jk];*/
                   4511:           }
                   4512:         }else{
                   4513:           printf(" To be kept %d%d flatdir[%d]=%d jk=%d q[%d]=p[%d] ",i,k,jk, flatdir[jk],jk, jkk, jk);
                   4514:           for(j=1; j <=ncovmodel;  jk++,jkk++,j++){
                   4515:             printf(" p[%d]=%12.7f=q[%d]",jk, p[jk],jkk);
                   4516:             /*q[jjk]=p[jk];*/
                   4517:           }
                   4518:         }
                   4519:         printf("\n");
                   4520:       }
                   4521:       fflush(stdout);
                   4522:     }
                   4523:   }
                   4524:   powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
                   4525: #else  /* FLATSUP */
1.126     brouard  4526:   powell(p,xi,npar,ftol,&iter,&fret,func);
1.319     brouard  4527: #endif  /* FLATSUP */
                   4528: 
                   4529: #ifdef LINMINORIGINAL
                   4530: #else
                   4531:       free_ivector(flatdir,1,npar); 
                   4532: #endif  /* LINMINORIGINAL*/
                   4533: #endif /* POWELL */
1.126     brouard  4534: 
1.162     brouard  4535: #ifdef NLOPT
                   4536: #ifdef NEWUOA
                   4537:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
                   4538: #else
                   4539:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
                   4540: #endif
                   4541:   lb=vector(0,npar-1);
                   4542:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                   4543:   nlopt_set_lower_bounds(opt, lb);
                   4544:   nlopt_set_initial_step1(opt, 0.1);
                   4545:   
                   4546:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                   4547:   d->function = func;
                   4548:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                   4549:   nlopt_set_min_objective(opt, myfunc, d);
                   4550:   nlopt_set_xtol_rel(opt, ftol);
                   4551:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                   4552:     printf("nlopt failed! %d\n",creturn); 
                   4553:   }
                   4554:   else {
                   4555:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   4556:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                   4557:     iter=1; /* not equal */
                   4558:   }
                   4559:   nlopt_destroy(opt);
                   4560: #endif
1.319     brouard  4561: #ifdef FLATSUP
                   4562:   /* npared = npar -flatd/ncovmodel; */
                   4563:   /* xired= matrix(1,npared,1,npared); */
                   4564:   /* paramred= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */
                   4565:   /* powell(pred,xired,npared,ftol,&iter,&fret,flatdir,func); */
                   4566:   /* free_matrix(xire,1,npared,1,npared); */
                   4567: #else  /* FLATSUP */
                   4568: #endif /* FLATSUP */
1.126     brouard  4569:   free_matrix(xi,1,npar,1,npar);
                   4570:   fclose(ficrespow);
1.203     brouard  4571:   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   4572:   fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.180     brouard  4573:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.126     brouard  4574: 
                   4575: }
                   4576: 
                   4577: /**** Computes Hessian and covariance matrix ***/
1.203     brouard  4578: void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
1.126     brouard  4579: {
                   4580:   double  **a,**y,*x,pd;
1.203     brouard  4581:   /* double **hess; */
1.164     brouard  4582:   int i, j;
1.126     brouard  4583:   int *indx;
                   4584: 
                   4585:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
1.203     brouard  4586:   double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
1.126     brouard  4587:   void lubksb(double **a, int npar, int *indx, double b[]) ;
                   4588:   void ludcmp(double **a, int npar, int *indx, double *d) ;
                   4589:   double gompertz(double p[]);
1.203     brouard  4590:   /* hess=matrix(1,npar,1,npar); */
1.126     brouard  4591: 
                   4592:   printf("\nCalculation of the hessian matrix. Wait...\n");
                   4593:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                   4594:   for (i=1;i<=npar;i++){
1.203     brouard  4595:     printf("%d-",i);fflush(stdout);
                   4596:     fprintf(ficlog,"%d-",i);fflush(ficlog);
1.126     brouard  4597:    
                   4598:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                   4599:     
                   4600:     /*  printf(" %f ",p[i]);
                   4601:        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
                   4602:   }
                   4603:   
                   4604:   for (i=1;i<=npar;i++) {
                   4605:     for (j=1;j<=npar;j++)  {
                   4606:       if (j>i) { 
1.203     brouard  4607:        printf(".%d-%d",i,j);fflush(stdout);
                   4608:        fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
                   4609:        hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
1.126     brouard  4610:        
                   4611:        hess[j][i]=hess[i][j];    
                   4612:        /*printf(" %lf ",hess[i][j]);*/
                   4613:       }
                   4614:     }
                   4615:   }
                   4616:   printf("\n");
                   4617:   fprintf(ficlog,"\n");
                   4618: 
                   4619:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   4620:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   4621:   
                   4622:   a=matrix(1,npar,1,npar);
                   4623:   y=matrix(1,npar,1,npar);
                   4624:   x=vector(1,npar);
                   4625:   indx=ivector(1,npar);
                   4626:   for (i=1;i<=npar;i++)
                   4627:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   4628:   ludcmp(a,npar,indx,&pd);
                   4629: 
                   4630:   for (j=1;j<=npar;j++) {
                   4631:     for (i=1;i<=npar;i++) x[i]=0;
                   4632:     x[j]=1;
                   4633:     lubksb(a,npar,indx,x);
                   4634:     for (i=1;i<=npar;i++){ 
                   4635:       matcov[i][j]=x[i];
                   4636:     }
                   4637:   }
                   4638: 
                   4639:   printf("\n#Hessian matrix#\n");
                   4640:   fprintf(ficlog,"\n#Hessian matrix#\n");
                   4641:   for (i=1;i<=npar;i++) { 
                   4642:     for (j=1;j<=npar;j++) { 
1.203     brouard  4643:       printf("%.6e ",hess[i][j]);
                   4644:       fprintf(ficlog,"%.6e ",hess[i][j]);
1.126     brouard  4645:     }
                   4646:     printf("\n");
                   4647:     fprintf(ficlog,"\n");
                   4648:   }
                   4649: 
1.203     brouard  4650:   /* printf("\n#Covariance matrix#\n"); */
                   4651:   /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
                   4652:   /* for (i=1;i<=npar;i++) {  */
                   4653:   /*   for (j=1;j<=npar;j++) {  */
                   4654:   /*     printf("%.6e ",matcov[i][j]); */
                   4655:   /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
                   4656:   /*   } */
                   4657:   /*   printf("\n"); */
                   4658:   /*   fprintf(ficlog,"\n"); */
                   4659:   /* } */
                   4660: 
1.126     brouard  4661:   /* Recompute Inverse */
1.203     brouard  4662:   /* for (i=1;i<=npar;i++) */
                   4663:   /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
                   4664:   /* ludcmp(a,npar,indx,&pd); */
                   4665: 
                   4666:   /*  printf("\n#Hessian matrix recomputed#\n"); */
                   4667: 
                   4668:   /* for (j=1;j<=npar;j++) { */
                   4669:   /*   for (i=1;i<=npar;i++) x[i]=0; */
                   4670:   /*   x[j]=1; */
                   4671:   /*   lubksb(a,npar,indx,x); */
                   4672:   /*   for (i=1;i<=npar;i++){  */
                   4673:   /*     y[i][j]=x[i]; */
                   4674:   /*     printf("%.3e ",y[i][j]); */
                   4675:   /*     fprintf(ficlog,"%.3e ",y[i][j]); */
                   4676:   /*   } */
                   4677:   /*   printf("\n"); */
                   4678:   /*   fprintf(ficlog,"\n"); */
                   4679:   /* } */
                   4680: 
                   4681:   /* Verifying the inverse matrix */
                   4682: #ifdef DEBUGHESS
                   4683:   y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
1.126     brouard  4684: 
1.203     brouard  4685:    printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
                   4686:    fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
1.126     brouard  4687: 
                   4688:   for (j=1;j<=npar;j++) {
                   4689:     for (i=1;i<=npar;i++){ 
1.203     brouard  4690:       printf("%.2f ",y[i][j]);
                   4691:       fprintf(ficlog,"%.2f ",y[i][j]);
1.126     brouard  4692:     }
                   4693:     printf("\n");
                   4694:     fprintf(ficlog,"\n");
                   4695:   }
1.203     brouard  4696: #endif
1.126     brouard  4697: 
                   4698:   free_matrix(a,1,npar,1,npar);
                   4699:   free_matrix(y,1,npar,1,npar);
                   4700:   free_vector(x,1,npar);
                   4701:   free_ivector(indx,1,npar);
1.203     brouard  4702:   /* free_matrix(hess,1,npar,1,npar); */
1.126     brouard  4703: 
                   4704: 
                   4705: }
                   4706: 
                   4707: /*************** hessian matrix ****************/
                   4708: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
1.203     brouard  4709: { /* Around values of x, computes the function func and returns the scales delti and hessian */
1.126     brouard  4710:   int i;
                   4711:   int l=1, lmax=20;
1.203     brouard  4712:   double k1,k2, res, fx;
1.132     brouard  4713:   double p2[MAXPARM+1]; /* identical to x */
1.126     brouard  4714:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                   4715:   int k=0,kmax=10;
                   4716:   double l1;
                   4717: 
                   4718:   fx=func(x);
                   4719:   for (i=1;i<=npar;i++) p2[i]=x[i];
1.145     brouard  4720:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
1.126     brouard  4721:     l1=pow(10,l);
                   4722:     delts=delt;
                   4723:     for(k=1 ; k <kmax; k=k+1){
                   4724:       delt = delta*(l1*k);
                   4725:       p2[theta]=x[theta] +delt;
1.145     brouard  4726:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
1.126     brouard  4727:       p2[theta]=x[theta]-delt;
                   4728:       k2=func(p2)-fx;
                   4729:       /*res= (k1-2.0*fx+k2)/delt/delt; */
1.203     brouard  4730:       res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
1.126     brouard  4731:       
1.203     brouard  4732: #ifdef DEBUGHESSII
1.126     brouard  4733:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   4734:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   4735: #endif
                   4736:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   4737:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   4738:        k=kmax;
                   4739:       }
                   4740:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
1.164     brouard  4741:        k=kmax; l=lmax*10;
1.126     brouard  4742:       }
                   4743:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   4744:        delts=delt;
                   4745:       }
1.203     brouard  4746:     } /* End loop k */
1.126     brouard  4747:   }
                   4748:   delti[theta]=delts;
                   4749:   return res; 
                   4750:   
                   4751: }
                   4752: 
1.203     brouard  4753: double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
1.126     brouard  4754: {
                   4755:   int i;
1.164     brouard  4756:   int l=1, lmax=20;
1.126     brouard  4757:   double k1,k2,k3,k4,res,fx;
1.132     brouard  4758:   double p2[MAXPARM+1];
1.203     brouard  4759:   int k, kmax=1;
                   4760:   double v1, v2, cv12, lc1, lc2;
1.208     brouard  4761: 
                   4762:   int firstime=0;
1.203     brouard  4763:   
1.126     brouard  4764:   fx=func(x);
1.203     brouard  4765:   for (k=1; k<=kmax; k=k+10) {
1.126     brouard  4766:     for (i=1;i<=npar;i++) p2[i]=x[i];
1.203     brouard  4767:     p2[thetai]=x[thetai]+delti[thetai]*k;
                   4768:     p2[thetaj]=x[thetaj]+delti[thetaj]*k;
1.126     brouard  4769:     k1=func(p2)-fx;
                   4770:   
1.203     brouard  4771:     p2[thetai]=x[thetai]+delti[thetai]*k;
                   4772:     p2[thetaj]=x[thetaj]-delti[thetaj]*k;
1.126     brouard  4773:     k2=func(p2)-fx;
                   4774:   
1.203     brouard  4775:     p2[thetai]=x[thetai]-delti[thetai]*k;
                   4776:     p2[thetaj]=x[thetaj]+delti[thetaj]*k;
1.126     brouard  4777:     k3=func(p2)-fx;
                   4778:   
1.203     brouard  4779:     p2[thetai]=x[thetai]-delti[thetai]*k;
                   4780:     p2[thetaj]=x[thetaj]-delti[thetaj]*k;
1.126     brouard  4781:     k4=func(p2)-fx;
1.203     brouard  4782:     res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
                   4783:     if(k1*k2*k3*k4 <0.){
1.208     brouard  4784:       firstime=1;
1.203     brouard  4785:       kmax=kmax+10;
1.208     brouard  4786:     }
                   4787:     if(kmax >=10 || firstime ==1){
1.246     brouard  4788:       printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
                   4789:       fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
1.203     brouard  4790:       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   4791:       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   4792:     }
                   4793: #ifdef DEBUGHESSIJ
                   4794:     v1=hess[thetai][thetai];
                   4795:     v2=hess[thetaj][thetaj];
                   4796:     cv12=res;
                   4797:     /* Computing eigen value of Hessian matrix */
                   4798:     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   4799:     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   4800:     if ((lc2 <0) || (lc1 <0) ){
                   4801:       printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                   4802:       fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                   4803:       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   4804:       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   4805:     }
1.126     brouard  4806: #endif
                   4807:   }
                   4808:   return res;
                   4809: }
                   4810: 
1.203     brouard  4811:     /* Not done yet: Was supposed to fix if not exactly at the maximum */
                   4812: /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
                   4813: /* { */
                   4814: /*   int i; */
                   4815: /*   int l=1, lmax=20; */
                   4816: /*   double k1,k2,k3,k4,res,fx; */
                   4817: /*   double p2[MAXPARM+1]; */
                   4818: /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
                   4819: /*   int k=0,kmax=10; */
                   4820: /*   double l1; */
                   4821:   
                   4822: /*   fx=func(x); */
                   4823: /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
                   4824: /*     l1=pow(10,l); */
                   4825: /*     delts=delt; */
                   4826: /*     for(k=1 ; k <kmax; k=k+1){ */
                   4827: /*       delt = delti*(l1*k); */
                   4828: /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
                   4829: /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
                   4830: /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
                   4831: /*       k1=func(p2)-fx; */
                   4832:       
                   4833: /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
                   4834: /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
                   4835: /*       k2=func(p2)-fx; */
                   4836:       
                   4837: /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
                   4838: /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
                   4839: /*       k3=func(p2)-fx; */
                   4840:       
                   4841: /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
                   4842: /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
                   4843: /*       k4=func(p2)-fx; */
                   4844: /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
                   4845: /* #ifdef DEBUGHESSIJ */
                   4846: /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
                   4847: /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
                   4848: /* #endif */
                   4849: /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
                   4850: /*     k=kmax; */
                   4851: /*       } */
                   4852: /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
                   4853: /*     k=kmax; l=lmax*10; */
                   4854: /*       } */
                   4855: /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
                   4856: /*     delts=delt; */
                   4857: /*       } */
                   4858: /*     } /\* End loop k *\/ */
                   4859: /*   } */
                   4860: /*   delti[theta]=delts; */
                   4861: /*   return res;  */
                   4862: /* } */
                   4863: 
                   4864: 
1.126     brouard  4865: /************** Inverse of matrix **************/
                   4866: void ludcmp(double **a, int n, int *indx, double *d) 
                   4867: { 
                   4868:   int i,imax,j,k; 
                   4869:   double big,dum,sum,temp; 
                   4870:   double *vv; 
                   4871:  
                   4872:   vv=vector(1,n); 
                   4873:   *d=1.0; 
                   4874:   for (i=1;i<=n;i++) { 
                   4875:     big=0.0; 
                   4876:     for (j=1;j<=n;j++) 
                   4877:       if ((temp=fabs(a[i][j])) > big) big=temp; 
1.256     brouard  4878:     if (big == 0.0){
                   4879:       printf(" Singular Hessian matrix at row %d:\n",i);
                   4880:       for (j=1;j<=n;j++) {
                   4881:        printf(" a[%d][%d]=%f,",i,j,a[i][j]);
                   4882:        fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]);
                   4883:       }
                   4884:       fflush(ficlog);
                   4885:       fclose(ficlog);
                   4886:       nrerror("Singular matrix in routine ludcmp"); 
                   4887:     }
1.126     brouard  4888:     vv[i]=1.0/big; 
                   4889:   } 
                   4890:   for (j=1;j<=n;j++) { 
                   4891:     for (i=1;i<j;i++) { 
                   4892:       sum=a[i][j]; 
                   4893:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   4894:       a[i][j]=sum; 
                   4895:     } 
                   4896:     big=0.0; 
                   4897:     for (i=j;i<=n;i++) { 
                   4898:       sum=a[i][j]; 
                   4899:       for (k=1;k<j;k++) 
                   4900:        sum -= a[i][k]*a[k][j]; 
                   4901:       a[i][j]=sum; 
                   4902:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   4903:        big=dum; 
                   4904:        imax=i; 
                   4905:       } 
                   4906:     } 
                   4907:     if (j != imax) { 
                   4908:       for (k=1;k<=n;k++) { 
                   4909:        dum=a[imax][k]; 
                   4910:        a[imax][k]=a[j][k]; 
                   4911:        a[j][k]=dum; 
                   4912:       } 
                   4913:       *d = -(*d); 
                   4914:       vv[imax]=vv[j]; 
                   4915:     } 
                   4916:     indx[j]=imax; 
                   4917:     if (a[j][j] == 0.0) a[j][j]=TINY; 
                   4918:     if (j != n) { 
                   4919:       dum=1.0/(a[j][j]); 
                   4920:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                   4921:     } 
                   4922:   } 
                   4923:   free_vector(vv,1,n);  /* Doesn't work */
                   4924: ;
                   4925: } 
                   4926: 
                   4927: void lubksb(double **a, int n, int *indx, double b[]) 
                   4928: { 
                   4929:   int i,ii=0,ip,j; 
                   4930:   double sum; 
                   4931:  
                   4932:   for (i=1;i<=n;i++) { 
                   4933:     ip=indx[i]; 
                   4934:     sum=b[ip]; 
                   4935:     b[ip]=b[i]; 
                   4936:     if (ii) 
                   4937:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   4938:     else if (sum) ii=i; 
                   4939:     b[i]=sum; 
                   4940:   } 
                   4941:   for (i=n;i>=1;i--) { 
                   4942:     sum=b[i]; 
                   4943:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                   4944:     b[i]=sum/a[i][i]; 
                   4945:   } 
                   4946: } 
                   4947: 
                   4948: void pstamp(FILE *fichier)
                   4949: {
1.196     brouard  4950:   fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
1.126     brouard  4951: }
                   4952: 
1.297     brouard  4953: void date2dmy(double date,double *day, double *month, double *year){
                   4954:   double yp=0., yp1=0., yp2=0.;
                   4955:   
                   4956:   yp1=modf(date,&yp);/* extracts integral of date in yp  and
                   4957:                        fractional in yp1 */
                   4958:   *year=yp;
                   4959:   yp2=modf((yp1*12),&yp);
                   4960:   *month=yp;
                   4961:   yp1=modf((yp2*30.5),&yp);
                   4962:   *day=yp;
                   4963:   if(*day==0) *day=1;
                   4964:   if(*month==0) *month=1;
                   4965: }
                   4966: 
1.253     brouard  4967: 
                   4968: 
1.126     brouard  4969: /************ Frequencies ********************/
1.251     brouard  4970: void  freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
1.226     brouard  4971:                  int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
                   4972:                  int firstpass,  int lastpass, int stepm, int weightopt, char model[])
1.250     brouard  4973: {  /* Some frequencies as well as proposing some starting values */
1.332     brouard  4974:   /* Frequencies of any combination of dummy covariate used in the model equation */ 
1.265     brouard  4975:   int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1;
1.226     brouard  4976:   int iind=0, iage=0;
                   4977:   int mi; /* Effective wave */
                   4978:   int first;
                   4979:   double ***freq; /* Frequencies */
1.268     brouard  4980:   double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */
                   4981:   int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb);
1.284     brouard  4982:   double *meanq, *stdq, *idq;
1.226     brouard  4983:   double **meanqt;
                   4984:   double *pp, **prop, *posprop, *pospropt;
                   4985:   double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
                   4986:   char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
                   4987:   double agebegin, ageend;
                   4988:     
                   4989:   pp=vector(1,nlstate);
1.251     brouard  4990:   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
1.226     brouard  4991:   posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
                   4992:   pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
                   4993:   /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
                   4994:   meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
1.284     brouard  4995:   stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
1.283     brouard  4996:   idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
1.226     brouard  4997:   meanqt=matrix(1,lastpass,1,nqtveff);
                   4998:   strcpy(fileresp,"P_");
                   4999:   strcat(fileresp,fileresu);
                   5000:   /*strcat(fileresphtm,fileresu);*/
                   5001:   if((ficresp=fopen(fileresp,"w"))==NULL) {
                   5002:     printf("Problem with prevalence resultfile: %s\n", fileresp);
                   5003:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   5004:     exit(0);
                   5005:   }
1.240     brouard  5006:   
1.226     brouard  5007:   strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
                   5008:   if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
                   5009:     printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                   5010:     fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                   5011:     fflush(ficlog);
                   5012:     exit(70); 
                   5013:   }
                   5014:   else{
                   5015:     fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
1.240     brouard  5016: <hr size=\"2\" color=\"#EC5E5E\"> \n                                   \
1.214     brouard  5017: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.226     brouard  5018:            fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   5019:   }
1.319     brouard  5020:   fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies (weight=%d) and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm, weightopt);
1.240     brouard  5021:   
1.226     brouard  5022:   strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
                   5023:   if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
                   5024:     printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                   5025:     fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                   5026:     fflush(ficlog);
                   5027:     exit(70); 
1.240     brouard  5028:   } else{
1.226     brouard  5029:     fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
1.319     brouard  5030: ,<hr size=\"2\" color=\"#EC5E5E\"> \n                                  \
1.214     brouard  5031: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.226     brouard  5032:            fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   5033:   }
1.319     brouard  5034:   fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>(weight=%d) frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr,weightopt);
1.240     brouard  5035:   
1.253     brouard  5036:   y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
                   5037:   x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
1.251     brouard  5038:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE);
1.226     brouard  5039:   j1=0;
1.126     brouard  5040:   
1.227     brouard  5041:   /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
1.335     brouard  5042:   j=cptcoveff;  /* Only simple dummy covariates used in the model */
1.330     brouard  5043:   /* j=cptcovn;  /\* Only dummy covariates of the model *\/ */
1.226     brouard  5044:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
1.240     brouard  5045:   
                   5046:   
1.226     brouard  5047:   /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
                   5048:      reference=low_education V1=0,V2=0
                   5049:      med_educ                V1=1 V2=0, 
                   5050:      high_educ               V1=0 V2=1
1.330     brouard  5051:      Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcovn 
1.226     brouard  5052:   */
1.249     brouard  5053:   dateintsum=0;
                   5054:   k2cpt=0;
                   5055: 
1.253     brouard  5056:   if(cptcoveff == 0 )
1.265     brouard  5057:     nl=1;  /* Constant and age model only */
1.253     brouard  5058:   else
                   5059:     nl=2;
1.265     brouard  5060: 
                   5061:   /* if a constant only model, one pass to compute frequency tables and to write it on ficresp */
                   5062:   /* Loop on nj=1 or 2 if dummy covariates j!=0
1.335     brouard  5063:    *   Loop on j1(1 to 2**cptcoveff) covariate combination
1.265     brouard  5064:    *     freq[s1][s2][iage] =0.
                   5065:    *     Loop on iind
                   5066:    *       ++freq[s1][s2][iage] weighted
                   5067:    *     end iind
                   5068:    *     if covariate and j!0
                   5069:    *       headers Variable on one line
                   5070:    *     endif cov j!=0
                   5071:    *     header of frequency table by age
                   5072:    *     Loop on age
                   5073:    *       pp[s1]+=freq[s1][s2][iage] weighted
                   5074:    *       pos+=freq[s1][s2][iage] weighted
                   5075:    *       Loop on s1 initial state
                   5076:    *         fprintf(ficresp
                   5077:    *       end s1
                   5078:    *     end age
                   5079:    *     if j!=0 computes starting values
                   5080:    *     end compute starting values
                   5081:    *   end j1
                   5082:    * end nl 
                   5083:    */
1.253     brouard  5084:   for (nj = 1; nj <= nl; nj++){   /* nj= 1 constant model, nl number of loops. */
                   5085:     if(nj==1)
                   5086:       j=0;  /* First pass for the constant */
1.265     brouard  5087:     else{
1.335     brouard  5088:       j=cptcoveff; /* Other passes for the covariate values number of simple covariates in the model V2+V1 =2 (simple dummy fixed or time varying) */
1.265     brouard  5089:     }
1.251     brouard  5090:     first=1;
1.332     brouard  5091:     for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all dummy covariates combination of the model, ie excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */
1.251     brouard  5092:       posproptt=0.;
1.330     brouard  5093:       /*printf("cptcovn=%d Tvaraff=%d", cptcovn,Tvaraff[1]);
1.251     brouard  5094:        scanf("%d", i);*/
                   5095:       for (i=-5; i<=nlstate+ndeath; i++)  
1.265     brouard  5096:        for (s2=-5; s2<=nlstate+ndeath; s2++)  
1.251     brouard  5097:          for(m=iagemin; m <= iagemax+3; m++)
1.265     brouard  5098:            freq[i][s2][m]=0;
1.251     brouard  5099:       
                   5100:       for (i=1; i<=nlstate; i++)  {
1.240     brouard  5101:        for(m=iagemin; m <= iagemax+3; m++)
1.251     brouard  5102:          prop[i][m]=0;
                   5103:        posprop[i]=0;
                   5104:        pospropt[i]=0;
                   5105:       }
1.283     brouard  5106:       for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */
1.284     brouard  5107:         idq[z1]=0.;
                   5108:         meanq[z1]=0.;
                   5109:         stdq[z1]=0.;
1.283     brouard  5110:       }
                   5111:       /* for (z1=1; z1<= nqtveff; z1++) { */
1.251     brouard  5112:       /*   for(m=1;m<=lastpass;m++){ */
1.283     brouard  5113:       /*         meanqt[m][z1]=0.; */
                   5114:       /*       } */
                   5115:       /* }       */
1.251     brouard  5116:       /* dateintsum=0; */
                   5117:       /* k2cpt=0; */
                   5118:       
1.265     brouard  5119:       /* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */
1.251     brouard  5120:       for (iind=1; iind<=imx; iind++) { /* For each individual iind */
                   5121:        bool=1;
                   5122:        if(j !=0){
                   5123:          if(anyvaryingduminmodel==0){ /* If All fixed covariates */
1.335     brouard  5124:            if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                   5125:              for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */
1.251     brouard  5126:                /* if(Tvaraff[z1] ==-20){ */
                   5127:                /*       /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
                   5128:                /* }else  if(Tvaraff[z1] ==-10){ */
                   5129:                /*       /\* sumnew+=coqvar[z1][iind]; *\/ */
1.330     brouard  5130:                /* }else  */ /* TODO TODO codtabm(j1,z1) or codtabm(j1,Tvaraff[z1]]z1)*/
1.335     brouard  5131:                /* if( iind >=imx-3) printf("Searching error iind=%d Tvaraff[z1]=%d covar[Tvaraff[z1]][iind]=%.f TnsdVar[Tvaraff[z1]]=%d, cptcoveff=%d, cptcovs=%d \n",iind, Tvaraff[z1], covar[Tvaraff[z1]][iind],TnsdVar[Tvaraff[z1]],cptcoveff, cptcovs); */
                   5132:                if(Tvaraff[z1]<1 || Tvaraff[z1]>=NCOVMAX)
1.338   ! brouard  5133:                  printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=1+age+%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model);
1.332     brouard  5134:                if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]){ /* for combination j1 of covariates */
1.265     brouard  5135:                  /* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */
1.251     brouard  5136:                  bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */
1.332     brouard  5137:                  /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", */
                   5138:                  /*   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),*/
                   5139:                   /*   j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
1.251     brouard  5140:                  /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
                   5141:                } /* Onlyf fixed */
                   5142:              } /* end z1 */
1.335     brouard  5143:            } /* cptcoveff > 0 */
1.251     brouard  5144:          } /* end any */
                   5145:        }/* end j==0 */
1.265     brouard  5146:        if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */
1.251     brouard  5147:          /* for(m=firstpass; m<=lastpass; m++){ */
1.284     brouard  5148:          for(mi=1; mi<wav[iind];mi++){ /* For each wave */
1.251     brouard  5149:            m=mw[mi][iind];
                   5150:            if(j!=0){
                   5151:              if(anyvaryingduminmodel==1){ /* Some are varying covariates */
1.335     brouard  5152:                for (z1=1; z1<=cptcoveff; z1++) {
1.251     brouard  5153:                  if( Fixed[Tmodelind[z1]]==1){
                   5154:                    iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
1.332     brouard  5155:                    if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality. If covariate's 
1.251     brouard  5156:                                                                                      value is -1, we don't select. It differs from the 
                   5157:                                                                                      constant and age model which counts them. */
                   5158:                      bool=0; /* not selected */
                   5159:                  }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
1.334     brouard  5160:                    /* i1=Tvaraff[z1]; */
                   5161:                    /* i2=TnsdVar[i1]; */
                   5162:                    /* i3=nbcode[i1][i2]; */
                   5163:                    /* i4=covar[i1][iind]; */
                   5164:                    /* if(i4 != i3){ */
                   5165:                    if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { /* Bug valgrind */
1.251     brouard  5166:                      bool=0;
                   5167:                    }
                   5168:                  }
                   5169:                }
                   5170:              }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
                   5171:            } /* end j==0 */
                   5172:            /* bool =0 we keep that guy which corresponds to the combination of dummy values */
1.284     brouard  5173:            if(bool==1){ /*Selected */
1.251     brouard  5174:              /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                   5175:                 and mw[mi+1][iind]. dh depends on stepm. */
                   5176:              agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
                   5177:              ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
                   5178:              if(m >=firstpass && m <=lastpass){
                   5179:                k2=anint[m][iind]+(mint[m][iind]/12.);
                   5180:                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   5181:                if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
                   5182:                if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                   5183:                if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
                   5184:                  prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
                   5185:                if (m<lastpass) {
                   5186:                  /* if(s[m][iind]==4 && s[m+1][iind]==4) */
                   5187:                  /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
                   5188:                  if(s[m][iind]==-1)
                   5189:                    printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
                   5190:                  freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
1.311     brouard  5191:                  for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean on known values only */
                   5192:                    if(!isnan(covar[ncovcol+z1][iind])){
1.332     brouard  5193:                      idq[z1]=idq[z1]+weight[iind];
                   5194:                      meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /* Computes mean of quantitative with selected filter */
                   5195:                      /* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; *//*error*/
                   5196:                      stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]; /* *weight[iind];*/  /* Computes mean of quantitative with selected filter */
1.311     brouard  5197:                    }
1.284     brouard  5198:                  }
1.251     brouard  5199:                  /* if((int)agev[m][iind] == 55) */
                   5200:                  /*   printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */
                   5201:                  /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
                   5202:                  freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
1.234     brouard  5203:                }
1.251     brouard  5204:              } /* end if between passes */  
                   5205:              if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) {
                   5206:                dateintsum=dateintsum+k2; /* on all covariates ?*/
                   5207:                k2cpt++;
                   5208:                /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
1.234     brouard  5209:              }
1.251     brouard  5210:            }else{
                   5211:              bool=1;
                   5212:            }/* end bool 2 */
                   5213:          } /* end m */
1.284     brouard  5214:          /* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */
                   5215:          /*   idq[z1]=idq[z1]+weight[iind]; */
                   5216:          /*   meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /\* Computes mean of quantitative with selected filter *\/ */
                   5217:          /*   stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/  /\* Computes mean of quantitative with selected filter *\/ */
                   5218:          /* } */
1.251     brouard  5219:        } /* end bool */
                   5220:       } /* end iind = 1 to imx */
1.319     brouard  5221:       /* prop[s][age] is fed for any initial and valid live state as well as
1.251     brouard  5222:         freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
                   5223:       
                   5224:       
                   5225:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
1.335     brouard  5226:       if(cptcoveff==0 && nj==1) /* no covariate and first pass */
1.265     brouard  5227:         pstamp(ficresp);
1.335     brouard  5228:       if  (cptcoveff>0 && j!=0){
1.265     brouard  5229:         pstamp(ficresp);
1.251     brouard  5230:        printf( "\n#********** Variable "); 
                   5231:        fprintf(ficresp, "\n#********** Variable "); 
                   5232:        fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
                   5233:        fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
                   5234:        fprintf(ficlog, "\n#********** Variable "); 
1.330     brouard  5235:        for (z1=1; z1<=cptcovs; z1++){
1.251     brouard  5236:          if(!FixedV[Tvaraff[z1]]){
1.330     brouard  5237:            printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5238:            fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5239:            fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5240:            fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5241:            fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
1.250     brouard  5242:          }else{
1.330     brouard  5243:            printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5244:            fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5245:            fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5246:            fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5247:            fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
1.251     brouard  5248:          }
                   5249:        }
                   5250:        printf( "**********\n#");
                   5251:        fprintf(ficresp, "**********\n#");
                   5252:        fprintf(ficresphtm, "**********</h3>\n");
                   5253:        fprintf(ficresphtmfr, "**********</h3>\n");
                   5254:        fprintf(ficlog, "**********\n");
                   5255:       }
1.284     brouard  5256:       /*
                   5257:        Printing means of quantitative variables if any
                   5258:       */
                   5259:       for (z1=1; z1<= nqfveff; z1++) {
1.311     brouard  5260:        fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.3g (weighted) individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]);
1.312     brouard  5261:        fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]);
1.284     brouard  5262:        if(weightopt==1){
                   5263:          printf(" Weighted mean and standard deviation of");
                   5264:          fprintf(ficlog," Weighted mean and standard deviation of");
                   5265:          fprintf(ficresphtmfr," Weighted mean and standard deviation of");
                   5266:        }
1.311     brouard  5267:        /* mu = \frac{w x}{\sum w}
                   5268:            var = \frac{\sum w (x-mu)^2}{\sum w} = \frac{w x^2}{\sum w} - mu^2 
                   5269:        */
                   5270:        printf(" fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
                   5271:        fprintf(ficlog," fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
                   5272:        fprintf(ficresphtmfr," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
1.284     brouard  5273:       }
                   5274:       /* for (z1=1; z1<= nqtveff; z1++) { */
                   5275:       /*       for(m=1;m<=lastpass;m++){ */
                   5276:       /*         fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */
                   5277:       /*   } */
                   5278:       /* } */
1.283     brouard  5279: 
1.251     brouard  5280:       fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
1.335     brouard  5281:       if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */
1.265     brouard  5282:         fprintf(ficresp, " Age");
1.335     brouard  5283:       if(nj==2) for (z1=1; z1<=cptcoveff; z1++) {
                   5284:          printf(" V%d=%d, z1=%d, Tvaraff[z1]=%d, j1=%d, TnsdVar[Tvaraff[%d]]=%d |",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])], z1, Tvaraff[z1], j1,z1,TnsdVar[Tvaraff[z1]]);
                   5285:          fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5286:        }
1.251     brouard  5287:       for(i=1; i<=nlstate;i++) {
1.335     brouard  5288:        if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d)  N(%d)  N  ",i,i);
1.251     brouard  5289:        fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
                   5290:       }
1.335     brouard  5291:       if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n");
1.251     brouard  5292:       fprintf(ficresphtm, "\n");
                   5293:       
                   5294:       /* Header of frequency table by age */
                   5295:       fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
                   5296:       fprintf(ficresphtmfr,"<th>Age</th> ");
1.265     brouard  5297:       for(s2=-1; s2 <=nlstate+ndeath; s2++){
1.251     brouard  5298:        for(m=-1; m <=nlstate+ndeath; m++){
1.265     brouard  5299:          if(s2!=0 && m!=0)
                   5300:            fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m);
1.240     brouard  5301:        }
1.226     brouard  5302:       }
1.251     brouard  5303:       fprintf(ficresphtmfr, "\n");
                   5304:     
                   5305:       /* For each age */
                   5306:       for(iage=iagemin; iage <= iagemax+3; iage++){
                   5307:        fprintf(ficresphtm,"<tr>");
                   5308:        if(iage==iagemax+1){
                   5309:          fprintf(ficlog,"1");
                   5310:          fprintf(ficresphtmfr,"<tr><th>0</th> ");
                   5311:        }else if(iage==iagemax+2){
                   5312:          fprintf(ficlog,"0");
                   5313:          fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
                   5314:        }else if(iage==iagemax+3){
                   5315:          fprintf(ficlog,"Total");
                   5316:          fprintf(ficresphtmfr,"<tr><th>Total</th> ");
                   5317:        }else{
1.240     brouard  5318:          if(first==1){
1.251     brouard  5319:            first=0;
                   5320:            printf("See log file for details...\n");
                   5321:          }
                   5322:          fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
                   5323:          fprintf(ficlog,"Age %d", iage);
                   5324:        }
1.265     brouard  5325:        for(s1=1; s1 <=nlstate ; s1++){
                   5326:          for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++)
                   5327:            pp[s1] += freq[s1][m][iage]; 
1.251     brouard  5328:        }
1.265     brouard  5329:        for(s1=1; s1 <=nlstate ; s1++){
1.251     brouard  5330:          for(m=-1, pos=0; m <=0 ; m++)
1.265     brouard  5331:            pos += freq[s1][m][iage];
                   5332:          if(pp[s1]>=1.e-10){
1.251     brouard  5333:            if(first==1){
1.265     brouard  5334:              printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
1.251     brouard  5335:            }
1.265     brouard  5336:            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
1.251     brouard  5337:          }else{
                   5338:            if(first==1)
1.265     brouard  5339:              printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
                   5340:            fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
1.240     brouard  5341:          }
                   5342:        }
                   5343:       
1.265     brouard  5344:        for(s1=1; s1 <=nlstate ; s1++){ 
                   5345:          /* posprop[s1]=0; */
                   5346:          for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
                   5347:            pp[s1] += freq[s1][m][iage];
                   5348:        }       /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */
                   5349:       
                   5350:        for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){
                   5351:          pos += pp[s1]; /* pos is the total number of transitions until this age */
                   5352:          posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state
                   5353:                                            from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
                   5354:          pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state
                   5355:                                          from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
                   5356:        }
                   5357:        
                   5358:        /* Writing ficresp */
1.335     brouard  5359:        if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
1.265     brouard  5360:           if( iage <= iagemax){
                   5361:            fprintf(ficresp," %d",iage);
                   5362:           }
                   5363:         }else if( nj==2){
                   5364:           if( iage <= iagemax){
                   5365:            fprintf(ficresp," %d",iage);
1.335     brouard  5366:             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
1.265     brouard  5367:           }
1.240     brouard  5368:        }
1.265     brouard  5369:        for(s1=1; s1 <=nlstate ; s1++){
1.240     brouard  5370:          if(pos>=1.e-5){
1.251     brouard  5371:            if(first==1)
1.265     brouard  5372:              printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
                   5373:            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
1.251     brouard  5374:          }else{
                   5375:            if(first==1)
1.265     brouard  5376:              printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
                   5377:            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
1.251     brouard  5378:          }
                   5379:          if( iage <= iagemax){
                   5380:            if(pos>=1.e-5){
1.335     brouard  5381:              if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
1.265     brouard  5382:                fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                   5383:               }else if( nj==2){
                   5384:                fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                   5385:               }
                   5386:              fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                   5387:              /*probs[iage][s1][j1]= pp[s1]/pos;*/
                   5388:              /*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/
                   5389:            } else{
1.335     brouard  5390:              if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta);
1.265     brouard  5391:              fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta);
1.251     brouard  5392:            }
1.240     brouard  5393:          }
1.265     brouard  5394:          pospropt[s1] +=posprop[s1];
                   5395:        } /* end loop s1 */
1.251     brouard  5396:        /* pospropt=0.; */
1.265     brouard  5397:        for(s1=-1; s1 <=nlstate+ndeath; s1++){
1.251     brouard  5398:          for(m=-1; m <=nlstate+ndeath; m++){
1.265     brouard  5399:            if(freq[s1][m][iage] !=0 ) { /* minimizing output */
1.251     brouard  5400:              if(first==1){
1.265     brouard  5401:                printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]);
1.251     brouard  5402:              }
1.265     brouard  5403:              /* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */
                   5404:              fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]);
1.251     brouard  5405:            }
1.265     brouard  5406:            if(s1!=0 && m!=0)
                   5407:              fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]);
1.240     brouard  5408:          }
1.265     brouard  5409:        } /* end loop s1 */
1.251     brouard  5410:        posproptt=0.; 
1.265     brouard  5411:        for(s1=1; s1 <=nlstate; s1++){
                   5412:          posproptt += pospropt[s1];
1.251     brouard  5413:        }
                   5414:        fprintf(ficresphtmfr,"</tr>\n ");
1.265     brouard  5415:        fprintf(ficresphtm,"</tr>\n");
1.335     brouard  5416:        if((cptcoveff==0 && nj==1)|| nj==2 ) {
1.265     brouard  5417:          if(iage <= iagemax)
                   5418:            fprintf(ficresp,"\n");
1.240     brouard  5419:        }
1.251     brouard  5420:        if(first==1)
                   5421:          printf("Others in log...\n");
                   5422:        fprintf(ficlog,"\n");
                   5423:       } /* end loop age iage */
1.265     brouard  5424:       
1.251     brouard  5425:       fprintf(ficresphtm,"<tr><th>Tot</th>");
1.265     brouard  5426:       for(s1=1; s1 <=nlstate ; s1++){
1.251     brouard  5427:        if(posproptt < 1.e-5){
1.265     brouard  5428:          fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); 
1.251     brouard  5429:        }else{
1.265     brouard  5430:          fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt);  
1.240     brouard  5431:        }
1.226     brouard  5432:       }
1.251     brouard  5433:       fprintf(ficresphtm,"</tr>\n");
                   5434:       fprintf(ficresphtm,"</table>\n");
                   5435:       fprintf(ficresphtmfr,"</table>\n");
1.226     brouard  5436:       if(posproptt < 1.e-5){
1.251     brouard  5437:        fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
                   5438:        fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
1.260     brouard  5439:        fprintf(ficlog,"#  This combination (%d) is not valid and no result will be produced\n",j1);
                   5440:        printf("#  This combination (%d) is not valid and no result will be produced\n",j1);
1.251     brouard  5441:        invalidvarcomb[j1]=1;
1.226     brouard  5442:       }else{
1.338   ! brouard  5443:        fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced (or no resultline).</p>",j1);
1.251     brouard  5444:        invalidvarcomb[j1]=0;
1.226     brouard  5445:       }
1.251     brouard  5446:       fprintf(ficresphtmfr,"</table>\n");
                   5447:       fprintf(ficlog,"\n");
                   5448:       if(j!=0){
                   5449:        printf("#Freqsummary: Starting values for combination j1=%d:\n", j1);
1.265     brouard  5450:        for(i=1,s1=1; i <=nlstate; i++){
1.251     brouard  5451:          for(k=1; k <=(nlstate+ndeath); k++){
                   5452:            if (k != i) {
1.265     brouard  5453:              for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */
1.253     brouard  5454:                if(jj==1){  /* Constant case (in fact cste + age) */
1.251     brouard  5455:                  if(j1==1){ /* All dummy covariates to zero */
                   5456:                    freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */
                   5457:                    freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */
1.252     brouard  5458:                    printf("%d%d ",i,k);
                   5459:                    fprintf(ficlog,"%d%d ",i,k);
1.265     brouard  5460:                    printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]));
                   5461:                    fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                   5462:                    pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
1.251     brouard  5463:                  }
1.253     brouard  5464:                }else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */
                   5465:                  for(iage=iagemin; iage <= iagemax+3; iage++){
                   5466:                    x[iage]= (double)iage;
                   5467:                    y[iage]= log(freq[i][k][iage]/freq[i][i][iage]);
1.265     brouard  5468:                    /* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */
1.253     brouard  5469:                  }
1.268     brouard  5470:                  /* Some are not finite, but linreg will ignore these ages */
                   5471:                  no=0;
1.253     brouard  5472:                  linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */
1.265     brouard  5473:                  pstart[s1]=b;
                   5474:                  pstart[s1-1]=a;
1.252     brouard  5475:                }else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj)  && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ 
                   5476:                  printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
                   5477:                  printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
1.265     brouard  5478:                  pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]));
1.252     brouard  5479:                  printf("%d%d ",i,k);
                   5480:                  fprintf(ficlog,"%d%d ",i,k);
1.265     brouard  5481:                  printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4]));
1.251     brouard  5482:                }else{ /* Other cases, like quantitative fixed or varying covariates */
                   5483:                  ;
                   5484:                }
                   5485:                /* printf("%12.7f )", param[i][jj][k]); */
                   5486:                /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
1.265     brouard  5487:                s1++; 
1.251     brouard  5488:              } /* end jj */
                   5489:            } /* end k!= i */
                   5490:          } /* end k */
1.265     brouard  5491:        } /* end i, s1 */
1.251     brouard  5492:       } /* end j !=0 */
                   5493:     } /* end selected combination of covariate j1 */
                   5494:     if(j==0){ /* We can estimate starting values from the occurences in each case */
                   5495:       printf("#Freqsummary: Starting values for the constants:\n");
                   5496:       fprintf(ficlog,"\n");
1.265     brouard  5497:       for(i=1,s1=1; i <=nlstate; i++){
1.251     brouard  5498:        for(k=1; k <=(nlstate+ndeath); k++){
                   5499:          if (k != i) {
                   5500:            printf("%d%d ",i,k);
                   5501:            fprintf(ficlog,"%d%d ",i,k);
                   5502:            for(jj=1; jj <=ncovmodel; jj++){
1.265     brouard  5503:              pstart[s1]=p[s1]; /* Setting pstart to p values by default */
1.253     brouard  5504:              if(jj==1){ /* Age has to be done */
1.265     brouard  5505:                pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
                   5506:                printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                   5507:                fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
1.251     brouard  5508:              }
                   5509:              /* printf("%12.7f )", param[i][jj][k]); */
                   5510:              /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
1.265     brouard  5511:              s1++; 
1.250     brouard  5512:            }
1.251     brouard  5513:            printf("\n");
                   5514:            fprintf(ficlog,"\n");
1.250     brouard  5515:          }
                   5516:        }
1.284     brouard  5517:       } /* end of state i */
1.251     brouard  5518:       printf("#Freqsummary\n");
                   5519:       fprintf(ficlog,"\n");
1.265     brouard  5520:       for(s1=-1; s1 <=nlstate+ndeath; s1++){
                   5521:        for(s2=-1; s2 <=nlstate+ndeath; s2++){
                   5522:          /* param[i]|j][k]= freq[s1][s2][iagemax+3] */
                   5523:          printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
                   5524:          fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
                   5525:          /* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */
                   5526:          /*   printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
                   5527:          /*   fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
1.251     brouard  5528:          /* } */
                   5529:        }
1.265     brouard  5530:       } /* end loop s1 */
1.251     brouard  5531:       
                   5532:       printf("\n");
                   5533:       fprintf(ficlog,"\n");
                   5534:     } /* end j=0 */
1.249     brouard  5535:   } /* end j */
1.252     brouard  5536: 
1.253     brouard  5537:   if(mle == -2){  /* We want to use these values as starting values */
1.252     brouard  5538:     for(i=1, jk=1; i <=nlstate; i++){
                   5539:       for(j=1; j <=nlstate+ndeath; j++){
                   5540:        if(j!=i){
                   5541:          /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   5542:          printf("%1d%1d",i,j);
                   5543:          fprintf(ficparo,"%1d%1d",i,j);
                   5544:          for(k=1; k<=ncovmodel;k++){
                   5545:            /*    printf(" %lf",param[i][j][k]); */
                   5546:            /*    fprintf(ficparo," %lf",param[i][j][k]); */
                   5547:            p[jk]=pstart[jk];
                   5548:            printf(" %f ",pstart[jk]);
                   5549:            fprintf(ficparo," %f ",pstart[jk]);
                   5550:            jk++;
                   5551:          }
                   5552:          printf("\n");
                   5553:          fprintf(ficparo,"\n");
                   5554:        }
                   5555:       }
                   5556:     }
                   5557:   } /* end mle=-2 */
1.226     brouard  5558:   dateintmean=dateintsum/k2cpt; 
1.296     brouard  5559:   date2dmy(dateintmean,&jintmean,&mintmean,&aintmean);
1.240     brouard  5560:   
1.226     brouard  5561:   fclose(ficresp);
                   5562:   fclose(ficresphtm);
                   5563:   fclose(ficresphtmfr);
1.283     brouard  5564:   free_vector(idq,1,nqfveff);
1.226     brouard  5565:   free_vector(meanq,1,nqfveff);
1.284     brouard  5566:   free_vector(stdq,1,nqfveff);
1.226     brouard  5567:   free_matrix(meanqt,1,lastpass,1,nqtveff);
1.253     brouard  5568:   free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
                   5569:   free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
1.251     brouard  5570:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
1.226     brouard  5571:   free_vector(pospropt,1,nlstate);
                   5572:   free_vector(posprop,1,nlstate);
1.251     brouard  5573:   free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE);
1.226     brouard  5574:   free_vector(pp,1,nlstate);
                   5575:   /* End of freqsummary */
                   5576: }
1.126     brouard  5577: 
1.268     brouard  5578: /* Simple linear regression */
                   5579: int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) {
                   5580: 
                   5581:   /* y=a+bx regression */
                   5582:   double   sumx = 0.0;                        /* sum of x                      */
                   5583:   double   sumx2 = 0.0;                       /* sum of x**2                   */
                   5584:   double   sumxy = 0.0;                       /* sum of x * y                  */
                   5585:   double   sumy = 0.0;                        /* sum of y                      */
                   5586:   double   sumy2 = 0.0;                       /* sum of y**2                   */
                   5587:   double   sume2 = 0.0;                       /* sum of square or residuals */
                   5588:   double yhat;
                   5589:   
                   5590:   double denom=0;
                   5591:   int i;
                   5592:   int ne=*no;
                   5593:   
                   5594:   for ( i=ifi, ne=0;i<=ila;i++) {
                   5595:     if(!isfinite(x[i]) || !isfinite(y[i])){
                   5596:       /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
                   5597:       continue;
                   5598:     }
                   5599:     ne=ne+1;
                   5600:     sumx  += x[i];       
                   5601:     sumx2 += x[i]*x[i];  
                   5602:     sumxy += x[i] * y[i];
                   5603:     sumy  += y[i];      
                   5604:     sumy2 += y[i]*y[i]; 
                   5605:     denom = (ne * sumx2 - sumx*sumx);
                   5606:     /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
                   5607:   } 
                   5608:   
                   5609:   denom = (ne * sumx2 - sumx*sumx);
                   5610:   if (denom == 0) {
                   5611:     // vertical, slope m is infinity
                   5612:     *b = INFINITY;
                   5613:     *a = 0;
                   5614:     if (r) *r = 0;
                   5615:     return 1;
                   5616:   }
                   5617:   
                   5618:   *b = (ne * sumxy  -  sumx * sumy) / denom;
                   5619:   *a = (sumy * sumx2  -  sumx * sumxy) / denom;
                   5620:   if (r!=NULL) {
                   5621:     *r = (sumxy - sumx * sumy / ne) /          /* compute correlation coeff     */
                   5622:       sqrt((sumx2 - sumx*sumx/ne) *
                   5623:           (sumy2 - sumy*sumy/ne));
                   5624:   }
                   5625:   *no=ne;
                   5626:   for ( i=ifi, ne=0;i<=ila;i++) {
                   5627:     if(!isfinite(x[i]) || !isfinite(y[i])){
                   5628:       /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
                   5629:       continue;
                   5630:     }
                   5631:     ne=ne+1;
                   5632:     yhat = y[i] - *a -*b* x[i];
                   5633:     sume2  += yhat * yhat ;       
                   5634:     
                   5635:     denom = (ne * sumx2 - sumx*sumx);
                   5636:     /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
                   5637:   } 
                   5638:   *sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne));
                   5639:   *sa= *sb * sqrt(sumx2/ne);
                   5640:   
                   5641:   return 0; 
                   5642: }
                   5643: 
1.126     brouard  5644: /************ Prevalence ********************/
1.227     brouard  5645: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   5646: {  
                   5647:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   5648:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   5649:      We still use firstpass and lastpass as another selection.
                   5650:   */
1.126     brouard  5651:  
1.227     brouard  5652:   int i, m, jk, j1, bool, z1,j, iv;
                   5653:   int mi; /* Effective wave */
                   5654:   int iage;
                   5655:   double agebegin, ageend;
                   5656: 
                   5657:   double **prop;
                   5658:   double posprop; 
                   5659:   double  y2; /* in fractional years */
                   5660:   int iagemin, iagemax;
                   5661:   int first; /** to stop verbosity which is redirected to log file */
                   5662: 
                   5663:   iagemin= (int) agemin;
                   5664:   iagemax= (int) agemax;
                   5665:   /*pp=vector(1,nlstate);*/
1.251     brouard  5666:   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
1.227     brouard  5667:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   5668:   j1=0;
1.222     brouard  5669:   
1.227     brouard  5670:   /*j=cptcoveff;*/
                   5671:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
1.222     brouard  5672:   
1.288     brouard  5673:   first=0;
1.335     brouard  5674:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of simple dummy covariates */
1.227     brouard  5675:     for (i=1; i<=nlstate; i++)  
1.251     brouard  5676:       for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++)
1.227     brouard  5677:        prop[i][iage]=0.0;
                   5678:     printf("Prevalence combination of varying and fixed dummies %d\n",j1);
                   5679:     /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
                   5680:     fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
                   5681:     
                   5682:     for (i=1; i<=imx; i++) { /* Each individual */
                   5683:       bool=1;
                   5684:       /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
                   5685:       for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
                   5686:        m=mw[mi][i];
                   5687:        /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
                   5688:        /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
                   5689:        for (z1=1; z1<=cptcoveff; z1++){
                   5690:          if( Fixed[Tmodelind[z1]]==1){
                   5691:            iv= Tvar[Tmodelind[z1]]-ncovcol-nqv;
1.332     brouard  5692:            if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality */
1.227     brouard  5693:              bool=0;
                   5694:          }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
1.332     brouard  5695:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) {
1.227     brouard  5696:              bool=0;
                   5697:            }
                   5698:        }
                   5699:        if(bool==1){ /* Otherwise we skip that wave/person */
                   5700:          agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
                   5701:          /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
                   5702:          if(m >=firstpass && m <=lastpass){
                   5703:            y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   5704:            if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                   5705:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   5706:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
1.251     brouard  5707:              if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){
1.227     brouard  5708:                printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
                   5709:                exit(1);
                   5710:              }
                   5711:              if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   5712:                /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   5713:                prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
                   5714:                prop[s[m][i]][iagemax+3] += weight[i]; 
                   5715:              } /* end valid statuses */ 
                   5716:            } /* end selection of dates */
                   5717:          } /* end selection of waves */
                   5718:        } /* end bool */
                   5719:       } /* end wave */
                   5720:     } /* end individual */
                   5721:     for(i=iagemin; i <= iagemax+3; i++){  
                   5722:       for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   5723:        posprop += prop[jk][i]; 
                   5724:       } 
                   5725:       
                   5726:       for(jk=1; jk <=nlstate ; jk++){      
                   5727:        if( i <=  iagemax){ 
                   5728:          if(posprop>=1.e-5){ 
                   5729:            probs[i][jk][j1]= prop[jk][i]/posprop;
                   5730:          } else{
1.288     brouard  5731:            if(!first){
                   5732:              first=1;
1.266     brouard  5733:              printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);
                   5734:            }else{
1.288     brouard  5735:              fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]);
1.227     brouard  5736:            }
                   5737:          }
                   5738:        } 
                   5739:       }/* end jk */ 
                   5740:     }/* end i */ 
1.222     brouard  5741:      /*} *//* end i1 */
1.227     brouard  5742:   } /* end j1 */
1.222     brouard  5743:   
1.227     brouard  5744:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   5745:   /*free_vector(pp,1,nlstate);*/
1.251     brouard  5746:   free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE);
1.227     brouard  5747: }  /* End of prevalence */
1.126     brouard  5748: 
                   5749: /************* Waves Concatenation ***************/
                   5750: 
                   5751: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   5752: {
1.298     brouard  5753:   /* Concatenates waves: wav[i] is the number of effective (useful waves in the sense that a non interview is useless) of individual i.
1.126     brouard  5754:      Death is a valid wave (if date is known).
                   5755:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   5756:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
1.298     brouard  5757:      and mw[mi+1][i]. dh depends on stepm. s[m][i] exists for any wave from firstpass to lastpass
1.227     brouard  5758:   */
1.126     brouard  5759: 
1.224     brouard  5760:   int i=0, mi=0, m=0, mli=0;
1.126     brouard  5761:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   5762:      double sum=0., jmean=0.;*/
1.224     brouard  5763:   int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
1.126     brouard  5764:   int j, k=0,jk, ju, jl;
                   5765:   double sum=0.;
                   5766:   first=0;
1.214     brouard  5767:   firstwo=0;
1.217     brouard  5768:   firsthree=0;
1.218     brouard  5769:   firstfour=0;
1.164     brouard  5770:   jmin=100000;
1.126     brouard  5771:   jmax=-1;
                   5772:   jmean=0.;
1.224     brouard  5773: 
                   5774: /* Treating live states */
1.214     brouard  5775:   for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
1.224     brouard  5776:     mi=0;  /* First valid wave */
1.227     brouard  5777:     mli=0; /* Last valid wave */
1.309     brouard  5778:     m=firstpass;  /* Loop on waves */
                   5779:     while(s[m][i] <= nlstate){  /* a live state or unknown state  */
1.227     brouard  5780:       if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
                   5781:        mli=m-1;/* mw[++mi][i]=m-1; */
                   5782:       }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
1.309     brouard  5783:        mw[++mi][i]=m; /* Valid wave: incrementing mi and updating mi; mw[mi] is the wave number of mi_th valid transition   */
1.227     brouard  5784:        mli=m;
1.224     brouard  5785:       } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
                   5786:       if(m < lastpass){ /* m < lastpass, standard case */
1.227     brouard  5787:        m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
1.216     brouard  5788:       }
1.309     brouard  5789:       else{ /* m = lastpass, eventual special issue with warning */
1.224     brouard  5790: #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
1.227     brouard  5791:        break;
1.224     brouard  5792: #else
1.317     brouard  5793:        if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ /* no death date and known date of interview, case -2 (vital status unknown is warned later */
1.227     brouard  5794:          if(firsthree == 0){
1.302     brouard  5795:            printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
1.227     brouard  5796:            firsthree=1;
1.317     brouard  5797:          }else if(firsthree >=1 && firsthree < 10){
                   5798:            fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
                   5799:            firsthree++;
                   5800:          }else if(firsthree == 10){
                   5801:            printf("Information, too many Information flags: no more reported to log either\n");
                   5802:            fprintf(ficlog,"Information, too many Information flags: no more reported to log either\n");
                   5803:            firsthree++;
                   5804:          }else{
                   5805:            firsthree++;
1.227     brouard  5806:          }
1.309     brouard  5807:          mw[++mi][i]=m; /* Valid transition with unknown status */
1.227     brouard  5808:          mli=m;
                   5809:        }
                   5810:        if(s[m][i]==-2){ /* Vital status is really unknown */
                   5811:          nbwarn++;
1.309     brouard  5812:          if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified?not a transition */
1.227     brouard  5813:            printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                   5814:            fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                   5815:          }
                   5816:          break;
                   5817:        }
                   5818:        break;
1.224     brouard  5819: #endif
1.227     brouard  5820:       }/* End m >= lastpass */
1.126     brouard  5821:     }/* end while */
1.224     brouard  5822: 
1.227     brouard  5823:     /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
1.216     brouard  5824:     /* After last pass */
1.224     brouard  5825: /* Treating death states */
1.214     brouard  5826:     if (s[m][i] > nlstate){  /* In a death state */
1.227     brouard  5827:       /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
                   5828:       /* } */
1.126     brouard  5829:       mi++;    /* Death is another wave */
                   5830:       /* if(mi==0)  never been interviewed correctly before death */
1.227     brouard  5831:       /* Only death is a correct wave */
1.126     brouard  5832:       mw[mi][i]=m;
1.257     brouard  5833:     } /* else not in a death state */
1.224     brouard  5834: #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
1.257     brouard  5835:     else if ((int) andc[i] != 9999) {  /* Date of death is known */
1.218     brouard  5836:       if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
1.309     brouard  5837:        if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* month of death occured before last wave month and status should have been death instead of -1 */
1.227     brouard  5838:          nbwarn++;
                   5839:          if(firstfiv==0){
1.309     brouard  5840:            printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  5841:            firstfiv=1;
                   5842:          }else{
1.309     brouard  5843:            fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  5844:          }
1.309     brouard  5845:            s[m][i]=nlstate+1; /* Fixing the status as death. Be careful if multiple death states */
                   5846:        }else{ /* Month of Death occured afer last wave month, potential bias */
1.227     brouard  5847:          nberr++;
                   5848:          if(firstwo==0){
1.309     brouard  5849:            printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  5850:            firstwo=1;
                   5851:          }
1.309     brouard  5852:          fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  5853:        }
1.257     brouard  5854:       }else{ /* if date of interview is unknown */
1.227     brouard  5855:        /* death is known but not confirmed by death status at any wave */
                   5856:        if(firstfour==0){
1.309     brouard  5857:          printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  5858:          firstfour=1;
                   5859:        }
1.309     brouard  5860:        fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d  with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.214     brouard  5861:       }
1.224     brouard  5862:     } /* end if date of death is known */
                   5863: #endif
1.309     brouard  5864:     wav[i]=mi; /* mi should be the last effective wave (or mli),  */
                   5865:     /* wav[i]=mw[mi][i];   */
1.126     brouard  5866:     if(mi==0){
                   5867:       nbwarn++;
                   5868:       if(first==0){
1.227     brouard  5869:        printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                   5870:        first=1;
1.126     brouard  5871:       }
                   5872:       if(first==1){
1.227     brouard  5873:        fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
1.126     brouard  5874:       }
                   5875:     } /* end mi==0 */
                   5876:   } /* End individuals */
1.214     brouard  5877:   /* wav and mw are no more changed */
1.223     brouard  5878:        
1.317     brouard  5879:   printf("Information, you have to check %d informations which haven't been logged!\n",firsthree);
                   5880:   fprintf(ficlog,"Information, you have to check %d informations which haven't been logged!\n",firsthree);
                   5881: 
                   5882: 
1.126     brouard  5883:   for(i=1; i<=imx; i++){
                   5884:     for(mi=1; mi<wav[i];mi++){
                   5885:       if (stepm <=0)
1.227     brouard  5886:        dh[mi][i]=1;
1.126     brouard  5887:       else{
1.260     brouard  5888:        if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */
1.227     brouard  5889:          if (agedc[i] < 2*AGESUP) {
                   5890:            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   5891:            if(j==0) j=1;  /* Survives at least one month after exam */
                   5892:            else if(j<0){
                   5893:              nberr++;
                   5894:              printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   5895:              j=1; /* Temporary Dangerous patch */
                   5896:              printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   5897:              fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   5898:              fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   5899:            }
                   5900:            k=k+1;
                   5901:            if (j >= jmax){
                   5902:              jmax=j;
                   5903:              ijmax=i;
                   5904:            }
                   5905:            if (j <= jmin){
                   5906:              jmin=j;
                   5907:              ijmin=i;
                   5908:            }
                   5909:            sum=sum+j;
                   5910:            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   5911:            /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   5912:          }
                   5913:        }
                   5914:        else{
                   5915:          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1.126     brouard  5916: /*       if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
1.223     brouard  5917:                                        
1.227     brouard  5918:          k=k+1;
                   5919:          if (j >= jmax) {
                   5920:            jmax=j;
                   5921:            ijmax=i;
                   5922:          }
                   5923:          else if (j <= jmin){
                   5924:            jmin=j;
                   5925:            ijmin=i;
                   5926:          }
                   5927:          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   5928:          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   5929:          if(j<0){
                   5930:            nberr++;
                   5931:            printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   5932:            fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   5933:          }
                   5934:          sum=sum+j;
                   5935:        }
                   5936:        jk= j/stepm;
                   5937:        jl= j -jk*stepm;
                   5938:        ju= j -(jk+1)*stepm;
                   5939:        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   5940:          if(jl==0){
                   5941:            dh[mi][i]=jk;
                   5942:            bh[mi][i]=0;
                   5943:          }else{ /* We want a negative bias in order to only have interpolation ie
                   5944:                  * to avoid the price of an extra matrix product in likelihood */
                   5945:            dh[mi][i]=jk+1;
                   5946:            bh[mi][i]=ju;
                   5947:          }
                   5948:        }else{
                   5949:          if(jl <= -ju){
                   5950:            dh[mi][i]=jk;
                   5951:            bh[mi][i]=jl;       /* bias is positive if real duration
                   5952:                                 * is higher than the multiple of stepm and negative otherwise.
                   5953:                                 */
                   5954:          }
                   5955:          else{
                   5956:            dh[mi][i]=jk+1;
                   5957:            bh[mi][i]=ju;
                   5958:          }
                   5959:          if(dh[mi][i]==0){
                   5960:            dh[mi][i]=1; /* At least one step */
                   5961:            bh[mi][i]=ju; /* At least one step */
                   5962:            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   5963:          }
                   5964:        } /* end if mle */
1.126     brouard  5965:       }
                   5966:     } /* end wave */
                   5967:   }
                   5968:   jmean=sum/k;
                   5969:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
1.141     brouard  5970:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
1.227     brouard  5971: }
1.126     brouard  5972: 
                   5973: /*********** Tricode ****************************/
1.220     brouard  5974:  void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
1.242     brouard  5975:  {
                   5976:    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                   5977:    /*    Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                   5978:     * Boring subroutine which should only output nbcode[Tvar[j]][k]
                   5979:     * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
                   5980:     * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
                   5981:     */
1.130     brouard  5982: 
1.242     brouard  5983:    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                   5984:    int modmaxcovj=0; /* Modality max of covariates j */
                   5985:    int cptcode=0; /* Modality max of covariates j */
                   5986:    int modmincovj=0; /* Modality min of covariates j */
1.145     brouard  5987: 
                   5988: 
1.242     brouard  5989:    /* cptcoveff=0;  */
                   5990:    /* *cptcov=0; */
1.126     brouard  5991:  
1.242     brouard  5992:    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
1.285     brouard  5993:    for (k=1; k <= maxncov; k++)
                   5994:      for(j=1; j<=2; j++)
                   5995:        nbcode[k][j]=0; /* Valgrind */
1.126     brouard  5996: 
1.242     brouard  5997:    /* Loop on covariates without age and products and no quantitative variable */
1.335     brouard  5998:    for (k=1; k<=cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
1.242     brouard  5999:      for (j=-1; (j < maxncov); j++) Ndum[j]=0;
                   6000:      if(Dummy[k]==0 && Typevar[k] !=1){ /* Dummy covariate and not age product */ 
                   6001:        switch(Fixed[k]) {
                   6002:        case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
1.311     brouard  6003:         modmaxcovj=0;
                   6004:         modmincovj=0;
1.242     brouard  6005:         for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
                   6006:           ij=(int)(covar[Tvar[k]][i]);
                   6007:           /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                   6008:            * If product of Vn*Vm, still boolean *:
                   6009:            * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                   6010:            * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                   6011:           /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                   6012:              modality of the nth covariate of individual i. */
                   6013:           if (ij > modmaxcovj)
                   6014:             modmaxcovj=ij; 
                   6015:           else if (ij < modmincovj) 
                   6016:             modmincovj=ij; 
1.287     brouard  6017:           if (ij <0 || ij >1 ){
1.311     brouard  6018:             printf("ERROR, IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
                   6019:             fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
                   6020:             fflush(ficlog);
                   6021:             exit(1);
1.287     brouard  6022:           }
                   6023:           if ((ij < -1) || (ij > NCOVMAX)){
1.242     brouard  6024:             printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                   6025:             exit(1);
                   6026:           }else
                   6027:             Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                   6028:           /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                   6029:           /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                   6030:           /* getting the maximum value of the modality of the covariate
                   6031:              (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                   6032:              female ies 1, then modmaxcovj=1.
                   6033:           */
                   6034:         } /* end for loop on individuals i */
                   6035:         printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                   6036:         fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                   6037:         cptcode=modmaxcovj;
                   6038:         /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                   6039:         /*for (i=0; i<=cptcode; i++) {*/
                   6040:         for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
                   6041:           printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                   6042:           fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                   6043:           if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
                   6044:             if( j != -1){
                   6045:               ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
                   6046:                                  covariate for which somebody answered excluding 
                   6047:                                  undefined. Usually 2: 0 and 1. */
                   6048:             }
                   6049:             ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
                   6050:                                     covariate for which somebody answered including 
                   6051:                                     undefined. Usually 3: -1, 0 and 1. */
                   6052:           }    /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
                   6053:                 * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                   6054:         } /* Ndum[-1] number of undefined modalities */
1.231     brouard  6055:                        
1.242     brouard  6056:         /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                   6057:         /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
                   6058:         /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
                   6059:         /* modmincovj=3; modmaxcovj = 7; */
                   6060:         /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
                   6061:         /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
                   6062:         /*              defining two dummy variables: variables V1_1 and V1_2.*/
                   6063:         /* nbcode[Tvar[j]][ij]=k; */
                   6064:         /* nbcode[Tvar[j]][1]=0; */
                   6065:         /* nbcode[Tvar[j]][2]=1; */
                   6066:         /* nbcode[Tvar[j]][3]=2; */
                   6067:         /* To be continued (not working yet). */
                   6068:         ij=0; /* ij is similar to i but can jump over null modalities */
1.287     brouard  6069: 
                   6070:         /* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
                   6071:         /* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */
                   6072:         /* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of
                   6073:          * nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */
                   6074:         /*, could be restored in the future */
                   6075:         for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
1.242     brouard  6076:           if (Ndum[i] == 0) { /* If nobody responded to this modality k */
                   6077:             break;
                   6078:           }
                   6079:           ij++;
1.287     brouard  6080:           nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/
1.242     brouard  6081:           cptcode = ij; /* New max modality for covar j */
                   6082:         } /* end of loop on modality i=-1 to 1 or more */
                   6083:         break;
                   6084:        case 1: /* Testing on varying covariate, could be simple and
                   6085:                * should look at waves or product of fixed *
                   6086:                * varying. No time to test -1, assuming 0 and 1 only */
                   6087:         ij=0;
                   6088:         for(i=0; i<=1;i++){
                   6089:           nbcode[Tvar[k]][++ij]=i;
                   6090:         }
                   6091:         break;
                   6092:        default:
                   6093:         break;
                   6094:        } /* end switch */
                   6095:      } /* end dummy test */
1.334     brouard  6096:      if(Dummy[k]==1 && Typevar[k] !=1){ /* Quantitative covariate and not age product */ 
1.311     brouard  6097:        for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
1.335     brouard  6098:         if(Tvar[k]<=0 || Tvar[k]>=NCOVMAX){
                   6099:           printf("Error k=%d \n",k);
                   6100:           exit(1);
                   6101:         }
1.311     brouard  6102:         if(isnan(covar[Tvar[k]][i])){
                   6103:           printf("ERROR, IMaCh doesn't treat fixed quantitative covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
                   6104:           fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
                   6105:           fflush(ficlog);
                   6106:           exit(1);
                   6107:          }
                   6108:        }
1.335     brouard  6109:      } /* end Quanti */
1.287     brouard  6110:    } /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/  
1.242     brouard  6111:   
                   6112:    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
                   6113:    /* Look at fixed dummy (single or product) covariates to check empty modalities */
                   6114:    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
                   6115:      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
                   6116:      ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
                   6117:      Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
                   6118:      /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
                   6119:    } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
                   6120:   
                   6121:    ij=0;
                   6122:    /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
1.335     brouard  6123:    for (k=1; k<=  cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
                   6124:      /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
1.242     brouard  6125:      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
                   6126:      /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
1.335     brouard  6127:      if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy simple and non empty in the model */
                   6128:        /* Typevar[k] =0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */
                   6129:        /* Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product*/
1.242     brouard  6130:        /* If product not in single variable we don't print results */
                   6131:        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
1.335     brouard  6132:        ++ij;/*    V5 + V4 + V3 + V4*V3 + V5*age + V2 +  V1*V2 + V1*age + V1, *//* V5 quanti, V2 quanti, V4, V3, V1 dummies */
                   6133:        /* k=       1    2   3     4       5       6      7       8        9  */
                   6134:        /* Tvar[k]= 5    4    3    6       5       2      7       1        1  */
                   6135:        /* ij            1    2                                            3  */  
                   6136:        /* Tvaraff[ij]=  4    3                                            1  */
                   6137:        /* Tmodelind[ij]=2    3                                            9  */
                   6138:        /* TmodelInvind[ij]=2 1                                            1  */
1.242     brouard  6139:        Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
                   6140:        Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
                   6141:        TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
                   6142:        if(Fixed[k]!=0)
                   6143:         anyvaryingduminmodel=1;
                   6144:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
                   6145:        /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
                   6146:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
                   6147:        /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
                   6148:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
                   6149:        /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
                   6150:      } 
                   6151:    } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
                   6152:    /* ij--; */
                   6153:    /* cptcoveff=ij; /\*Number of total covariates*\/ */
1.335     brouard  6154:    *cptcov=ij; /* cptcov= Number of total real effective simple dummies (fixed or time  arying) effective (used as cptcoveff in other functions)
1.242     brouard  6155:                * because they can be excluded from the model and real
                   6156:                * if in the model but excluded because missing values, but how to get k from ij?*/
                   6157:    for(j=ij+1; j<= cptcovt; j++){
                   6158:      Tvaraff[j]=0;
                   6159:      Tmodelind[j]=0;
                   6160:    }
                   6161:    for(j=ntveff+1; j<= cptcovt; j++){
                   6162:      TmodelInvind[j]=0;
                   6163:    }
                   6164:    /* To be sorted */
                   6165:    ;
                   6166:  }
1.126     brouard  6167: 
1.145     brouard  6168: 
1.126     brouard  6169: /*********** Health Expectancies ****************/
                   6170: 
1.235     brouard  6171:  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
1.126     brouard  6172: 
                   6173: {
                   6174:   /* Health expectancies, no variances */
1.329     brouard  6175:   /* cij is the combination in the list of combination of dummy covariates */
                   6176:   /* strstart is a string of time at start of computing */
1.164     brouard  6177:   int i, j, nhstepm, hstepm, h, nstepm;
1.126     brouard  6178:   int nhstepma, nstepma; /* Decreasing with age */
                   6179:   double age, agelim, hf;
                   6180:   double ***p3mat;
                   6181:   double eip;
                   6182: 
1.238     brouard  6183:   /* pstamp(ficreseij); */
1.126     brouard  6184:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   6185:   fprintf(ficreseij,"# Age");
                   6186:   for(i=1; i<=nlstate;i++){
                   6187:     for(j=1; j<=nlstate;j++){
                   6188:       fprintf(ficreseij," e%1d%1d ",i,j);
                   6189:     }
                   6190:     fprintf(ficreseij," e%1d. ",i);
                   6191:   }
                   6192:   fprintf(ficreseij,"\n");
                   6193: 
                   6194:   
                   6195:   if(estepm < stepm){
                   6196:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   6197:   }
                   6198:   else  hstepm=estepm;   
                   6199:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   6200:    * This is mainly to measure the difference between two models: for example
                   6201:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   6202:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   6203:    * progression in between and thus overestimating or underestimating according
                   6204:    * to the curvature of the survival function. If, for the same date, we 
                   6205:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   6206:    * to compare the new estimate of Life expectancy with the same linear 
                   6207:    * hypothesis. A more precise result, taking into account a more precise
                   6208:    * curvature will be obtained if estepm is as small as stepm. */
                   6209: 
                   6210:   /* For example we decided to compute the life expectancy with the smallest unit */
                   6211:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   6212:      nhstepm is the number of hstepm from age to agelim 
                   6213:      nstepm is the number of stepm from age to agelin. 
1.270     brouard  6214:      Look at hpijx to understand the reason which relies in memory size consideration
1.126     brouard  6215:      and note for a fixed period like estepm months */
                   6216:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   6217:      survival function given by stepm (the optimization length). Unfortunately it
                   6218:      means that if the survival funtion is printed only each two years of age and if
                   6219:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   6220:      results. So we changed our mind and took the option of the best precision.
                   6221:   */
                   6222:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   6223: 
                   6224:   agelim=AGESUP;
                   6225:   /* If stepm=6 months */
                   6226:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   6227:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   6228:     
                   6229: /* nhstepm age range expressed in number of stepm */
                   6230:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   6231:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   6232:   /* if (stepm >= YEARM) hstepm=1;*/
                   6233:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   6234:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6235: 
                   6236:   for (age=bage; age<=fage; age ++){ 
                   6237:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   6238:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   6239:     /* if (stepm >= YEARM) hstepm=1;*/
                   6240:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   6241: 
                   6242:     /* If stepm=6 months */
                   6243:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   6244:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
1.330     brouard  6245:     /* printf("HELLO evsij Entering hpxij age=%d cij=%d hstepm=%d x[1]=%f nres=%d\n",(int) age, cij, hstepm, x[1], nres); */
1.235     brouard  6246:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
1.126     brouard  6247:     
                   6248:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   6249:     
                   6250:     printf("%d|",(int)age);fflush(stdout);
                   6251:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   6252:     
                   6253:     /* Computing expectancies */
                   6254:     for(i=1; i<=nlstate;i++)
                   6255:       for(j=1; j<=nlstate;j++)
                   6256:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   6257:          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   6258:          
                   6259:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   6260: 
                   6261:        }
                   6262: 
                   6263:     fprintf(ficreseij,"%3.0f",age );
                   6264:     for(i=1; i<=nlstate;i++){
                   6265:       eip=0;
                   6266:       for(j=1; j<=nlstate;j++){
                   6267:        eip +=eij[i][j][(int)age];
                   6268:        fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                   6269:       }
                   6270:       fprintf(ficreseij,"%9.4f", eip );
                   6271:     }
                   6272:     fprintf(ficreseij,"\n");
                   6273:     
                   6274:   }
                   6275:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6276:   printf("\n");
                   6277:   fprintf(ficlog,"\n");
                   6278:   
                   6279: }
                   6280: 
1.235     brouard  6281:  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
1.126     brouard  6282: 
                   6283: {
                   6284:   /* Covariances of health expectancies eij and of total life expectancies according
1.222     brouard  6285:      to initial status i, ei. .
1.126     brouard  6286:   */
1.336     brouard  6287:   /* Very time consuming function, but already optimized with precov */
1.126     brouard  6288:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                   6289:   int nhstepma, nstepma; /* Decreasing with age */
                   6290:   double age, agelim, hf;
                   6291:   double ***p3matp, ***p3matm, ***varhe;
                   6292:   double **dnewm,**doldm;
                   6293:   double *xp, *xm;
                   6294:   double **gp, **gm;
                   6295:   double ***gradg, ***trgradg;
                   6296:   int theta;
                   6297: 
                   6298:   double eip, vip;
                   6299: 
                   6300:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                   6301:   xp=vector(1,npar);
                   6302:   xm=vector(1,npar);
                   6303:   dnewm=matrix(1,nlstate*nlstate,1,npar);
                   6304:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   6305:   
                   6306:   pstamp(ficresstdeij);
                   6307:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                   6308:   fprintf(ficresstdeij,"# Age");
                   6309:   for(i=1; i<=nlstate;i++){
                   6310:     for(j=1; j<=nlstate;j++)
                   6311:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   6312:     fprintf(ficresstdeij," e%1d. ",i);
                   6313:   }
                   6314:   fprintf(ficresstdeij,"\n");
                   6315: 
                   6316:   pstamp(ficrescveij);
                   6317:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                   6318:   fprintf(ficrescveij,"# Age");
                   6319:   for(i=1; i<=nlstate;i++)
                   6320:     for(j=1; j<=nlstate;j++){
                   6321:       cptj= (j-1)*nlstate+i;
                   6322:       for(i2=1; i2<=nlstate;i2++)
                   6323:        for(j2=1; j2<=nlstate;j2++){
                   6324:          cptj2= (j2-1)*nlstate+i2;
                   6325:          if(cptj2 <= cptj)
                   6326:            fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                   6327:        }
                   6328:     }
                   6329:   fprintf(ficrescveij,"\n");
                   6330:   
                   6331:   if(estepm < stepm){
                   6332:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   6333:   }
                   6334:   else  hstepm=estepm;   
                   6335:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   6336:    * This is mainly to measure the difference between two models: for example
                   6337:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   6338:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   6339:    * progression in between and thus overestimating or underestimating according
                   6340:    * to the curvature of the survival function. If, for the same date, we 
                   6341:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   6342:    * to compare the new estimate of Life expectancy with the same linear 
                   6343:    * hypothesis. A more precise result, taking into account a more precise
                   6344:    * curvature will be obtained if estepm is as small as stepm. */
                   6345: 
                   6346:   /* For example we decided to compute the life expectancy with the smallest unit */
                   6347:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   6348:      nhstepm is the number of hstepm from age to agelim 
                   6349:      nstepm is the number of stepm from age to agelin. 
                   6350:      Look at hpijx to understand the reason of that which relies in memory size
                   6351:      and note for a fixed period like estepm months */
                   6352:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   6353:      survival function given by stepm (the optimization length). Unfortunately it
                   6354:      means that if the survival funtion is printed only each two years of age and if
                   6355:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   6356:      results. So we changed our mind and took the option of the best precision.
                   6357:   */
                   6358:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   6359: 
                   6360:   /* If stepm=6 months */
                   6361:   /* nhstepm age range expressed in number of stepm */
                   6362:   agelim=AGESUP;
                   6363:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
                   6364:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   6365:   /* if (stepm >= YEARM) hstepm=1;*/
                   6366:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   6367:   
                   6368:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6369:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6370:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   6371:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                   6372:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   6373:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
                   6374: 
                   6375:   for (age=bage; age<=fage; age ++){ 
                   6376:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   6377:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   6378:     /* if (stepm >= YEARM) hstepm=1;*/
                   6379:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
1.218     brouard  6380:                
1.126     brouard  6381:     /* If stepm=6 months */
                   6382:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   6383:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   6384:     
                   6385:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
1.218     brouard  6386:                
1.126     brouard  6387:     /* Computing  Variances of health expectancies */
                   6388:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                   6389:        decrease memory allocation */
                   6390:     for(theta=1; theta <=npar; theta++){
                   6391:       for(i=1; i<=npar; i++){ 
1.222     brouard  6392:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   6393:        xm[i] = x[i] - (i==theta ?delti[theta]:0);
1.126     brouard  6394:       }
1.235     brouard  6395:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
                   6396:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
1.218     brouard  6397:                        
1.126     brouard  6398:       for(j=1; j<= nlstate; j++){
1.222     brouard  6399:        for(i=1; i<=nlstate; i++){
                   6400:          for(h=0; h<=nhstepm-1; h++){
                   6401:            gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                   6402:            gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                   6403:          }
                   6404:        }
1.126     brouard  6405:       }
1.218     brouard  6406:                        
1.126     brouard  6407:       for(ij=1; ij<= nlstate*nlstate; ij++)
1.222     brouard  6408:        for(h=0; h<=nhstepm-1; h++){
                   6409:          gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                   6410:        }
1.126     brouard  6411:     }/* End theta */
                   6412:     
                   6413:     
                   6414:     for(h=0; h<=nhstepm-1; h++)
                   6415:       for(j=1; j<=nlstate*nlstate;j++)
1.222     brouard  6416:        for(theta=1; theta <=npar; theta++)
                   6417:          trgradg[h][j][theta]=gradg[h][theta][j];
1.126     brouard  6418:     
1.218     brouard  6419:                
1.222     brouard  6420:     for(ij=1;ij<=nlstate*nlstate;ij++)
1.126     brouard  6421:       for(ji=1;ji<=nlstate*nlstate;ji++)
1.222     brouard  6422:        varhe[ij][ji][(int)age] =0.;
1.218     brouard  6423:                
1.222     brouard  6424:     printf("%d|",(int)age);fflush(stdout);
                   6425:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   6426:     for(h=0;h<=nhstepm-1;h++){
1.126     brouard  6427:       for(k=0;k<=nhstepm-1;k++){
1.222     brouard  6428:        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   6429:        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   6430:        for(ij=1;ij<=nlstate*nlstate;ij++)
                   6431:          for(ji=1;ji<=nlstate*nlstate;ji++)
                   6432:            varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
1.126     brouard  6433:       }
                   6434:     }
1.320     brouard  6435:     /* if((int)age ==50){ */
                   6436:     /*   printf(" age=%d cij=%d nres=%d varhe[%d][%d]=%f ",(int)age, cij, nres, 1,2,varhe[1][2]); */
                   6437:     /* } */
1.126     brouard  6438:     /* Computing expectancies */
1.235     brouard  6439:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
1.126     brouard  6440:     for(i=1; i<=nlstate;i++)
                   6441:       for(j=1; j<=nlstate;j++)
1.222     brouard  6442:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   6443:          eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
1.218     brouard  6444:                                        
1.222     brouard  6445:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
1.218     brouard  6446:                                        
1.222     brouard  6447:        }
1.269     brouard  6448: 
                   6449:     /* Standard deviation of expectancies ij */                
1.126     brouard  6450:     fprintf(ficresstdeij,"%3.0f",age );
                   6451:     for(i=1; i<=nlstate;i++){
                   6452:       eip=0.;
                   6453:       vip=0.;
                   6454:       for(j=1; j<=nlstate;j++){
1.222     brouard  6455:        eip += eij[i][j][(int)age];
                   6456:        for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                   6457:          vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                   6458:        fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
1.126     brouard  6459:       }
                   6460:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   6461:     }
                   6462:     fprintf(ficresstdeij,"\n");
1.218     brouard  6463:                
1.269     brouard  6464:     /* Variance of expectancies ij */          
1.126     brouard  6465:     fprintf(ficrescveij,"%3.0f",age );
                   6466:     for(i=1; i<=nlstate;i++)
                   6467:       for(j=1; j<=nlstate;j++){
1.222     brouard  6468:        cptj= (j-1)*nlstate+i;
                   6469:        for(i2=1; i2<=nlstate;i2++)
                   6470:          for(j2=1; j2<=nlstate;j2++){
                   6471:            cptj2= (j2-1)*nlstate+i2;
                   6472:            if(cptj2 <= cptj)
                   6473:              fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                   6474:          }
1.126     brouard  6475:       }
                   6476:     fprintf(ficrescveij,"\n");
1.218     brouard  6477:                
1.126     brouard  6478:   }
                   6479:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   6480:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   6481:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   6482:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                   6483:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6484:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6485:   printf("\n");
                   6486:   fprintf(ficlog,"\n");
1.218     brouard  6487:        
1.126     brouard  6488:   free_vector(xm,1,npar);
                   6489:   free_vector(xp,1,npar);
                   6490:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   6491:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   6492:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   6493: }
1.218     brouard  6494:  
1.126     brouard  6495: /************ Variance ******************/
1.235     brouard  6496:  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
1.218     brouard  6497:  {
1.279     brouard  6498:    /** Variance of health expectancies 
                   6499:     *  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);
                   6500:     * double **newm;
                   6501:     * int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) 
                   6502:     */
1.218     brouard  6503:   
                   6504:    /* int movingaverage(); */
                   6505:    double **dnewm,**doldm;
                   6506:    double **dnewmp,**doldmp;
                   6507:    int i, j, nhstepm, hstepm, h, nstepm ;
1.288     brouard  6508:    int first=0;
1.218     brouard  6509:    int k;
                   6510:    double *xp;
1.279     brouard  6511:    double **gp, **gm;  /**< for var eij */
                   6512:    double ***gradg, ***trgradg; /**< for var eij */
                   6513:    double **gradgp, **trgradgp; /**< for var p point j */
                   6514:    double *gpp, *gmp; /**< for var p point j */
                   6515:    double **varppt; /**< for var p point j nlstate to nlstate+ndeath */
1.218     brouard  6516:    double ***p3mat;
                   6517:    double age,agelim, hf;
                   6518:    /* double ***mobaverage; */
                   6519:    int theta;
                   6520:    char digit[4];
                   6521:    char digitp[25];
                   6522: 
                   6523:    char fileresprobmorprev[FILENAMELENGTH];
                   6524: 
                   6525:    if(popbased==1){
                   6526:      if(mobilav!=0)
                   6527:        strcpy(digitp,"-POPULBASED-MOBILAV_");
                   6528:      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
                   6529:    }
                   6530:    else 
                   6531:      strcpy(digitp,"-STABLBASED_");
1.126     brouard  6532: 
1.218     brouard  6533:    /* if (mobilav!=0) { */
                   6534:    /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   6535:    /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
                   6536:    /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
                   6537:    /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
                   6538:    /*   } */
                   6539:    /* } */
                   6540: 
                   6541:    strcpy(fileresprobmorprev,"PRMORPREV-"); 
                   6542:    sprintf(digit,"%-d",ij);
                   6543:    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   6544:    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   6545:    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   6546:    strcat(fileresprobmorprev,fileresu);
                   6547:    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   6548:      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   6549:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   6550:    }
                   6551:    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   6552:    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   6553:    pstamp(ficresprobmorprev);
                   6554:    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
1.238     brouard  6555:    fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
1.337     brouard  6556: 
                   6557:    /* We use TinvDoQresult[nres][resultmodel[nres][j] we sort according to the equation model and the resultline: it is a choice */
                   6558:    /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ /\* To be done*\/ */
                   6559:    /*   fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   6560:    /* } */
                   6561:    for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ /* To be done*/
                   6562:      fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  6563:    }
1.337     brouard  6564:    /* for(j=1;j<=cptcoveff;j++)  */
                   6565:    /*   fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); */
1.238     brouard  6566:    fprintf(ficresprobmorprev,"\n");
                   6567: 
1.218     brouard  6568:    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   6569:    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   6570:      fprintf(ficresprobmorprev," p.%-d SE",j);
                   6571:      for(i=1; i<=nlstate;i++)
                   6572:        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   6573:    }  
                   6574:    fprintf(ficresprobmorprev,"\n");
                   6575:   
                   6576:    fprintf(ficgp,"\n# Routine varevsij");
                   6577:    fprintf(ficgp,"\nunset title \n");
                   6578:    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
                   6579:    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   6580:    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
1.279     brouard  6581: 
1.218     brouard  6582:    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   6583:    pstamp(ficresvij);
                   6584:    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
                   6585:    if(popbased==1)
                   6586:      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
                   6587:    else
                   6588:      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
                   6589:    fprintf(ficresvij,"# Age");
                   6590:    for(i=1; i<=nlstate;i++)
                   6591:      for(j=1; j<=nlstate;j++)
                   6592:        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
                   6593:    fprintf(ficresvij,"\n");
                   6594: 
                   6595:    xp=vector(1,npar);
                   6596:    dnewm=matrix(1,nlstate,1,npar);
                   6597:    doldm=matrix(1,nlstate,1,nlstate);
                   6598:    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   6599:    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   6600: 
                   6601:    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   6602:    gpp=vector(nlstate+1,nlstate+ndeath);
                   6603:    gmp=vector(nlstate+1,nlstate+ndeath);
                   6604:    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
1.126     brouard  6605:   
1.218     brouard  6606:    if(estepm < stepm){
                   6607:      printf ("Problem %d lower than %d\n",estepm, stepm);
                   6608:    }
                   6609:    else  hstepm=estepm;   
                   6610:    /* For example we decided to compute the life expectancy with the smallest unit */
                   6611:    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   6612:       nhstepm is the number of hstepm from age to agelim 
                   6613:       nstepm is the number of stepm from age to agelim. 
                   6614:       Look at function hpijx to understand why because of memory size limitations, 
                   6615:       we decided (b) to get a life expectancy respecting the most precise curvature of the
                   6616:       survival function given by stepm (the optimization length). Unfortunately it
                   6617:       means that if the survival funtion is printed every two years of age and if
                   6618:       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   6619:       results. So we changed our mind and took the option of the best precision.
                   6620:    */
                   6621:    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   6622:    agelim = AGESUP;
                   6623:    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   6624:      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   6625:      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   6626:      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6627:      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   6628:      gp=matrix(0,nhstepm,1,nlstate);
                   6629:      gm=matrix(0,nhstepm,1,nlstate);
                   6630:                
                   6631:                
                   6632:      for(theta=1; theta <=npar; theta++){
                   6633:        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                   6634:         xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   6635:        }
1.279     brouard  6636:        /**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and 
                   6637:        * returns into prlim .
1.288     brouard  6638:        */
1.242     brouard  6639:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
1.279     brouard  6640: 
                   6641:        /* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */
1.218     brouard  6642:        if (popbased==1) {
                   6643:         if(mobilav ==0){
                   6644:           for(i=1; i<=nlstate;i++)
                   6645:             prlim[i][i]=probs[(int)age][i][ij];
                   6646:         }else{ /* mobilav */ 
                   6647:           for(i=1; i<=nlstate;i++)
                   6648:             prlim[i][i]=mobaverage[(int)age][i][ij];
                   6649:         }
                   6650:        }
1.295     brouard  6651:        /**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h.
1.279     brouard  6652:        */                      
                   6653:        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=0 to nhstepm */
1.292     brouard  6654:        /**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability
1.279     brouard  6655:        * at horizon h in state j including mortality.
                   6656:        */
1.218     brouard  6657:        for(j=1; j<= nlstate; j++){
                   6658:         for(h=0; h<=nhstepm; h++){
                   6659:           for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   6660:             gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   6661:         }
                   6662:        }
1.279     brouard  6663:        /* Next for computing shifted+ probability of death (h=1 means
1.218     brouard  6664:          computed over hstepm matrices product = hstepm*stepm months) 
1.279     brouard  6665:          as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 .
1.218     brouard  6666:        */
                   6667:        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   6668:         for(i=1,gpp[j]=0.; i<= nlstate; i++)
                   6669:           gpp[j] += prlim[i][i]*p3mat[i][j][1];
1.279     brouard  6670:        }
                   6671:        
                   6672:        /* Again with minus shift */
1.218     brouard  6673:                        
                   6674:        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   6675:         xp[i] = x[i] - (i==theta ?delti[theta]:0);
1.288     brouard  6676: 
1.242     brouard  6677:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);
1.218     brouard  6678:                        
                   6679:        if (popbased==1) {
                   6680:         if(mobilav ==0){
                   6681:           for(i=1; i<=nlstate;i++)
                   6682:             prlim[i][i]=probs[(int)age][i][ij];
                   6683:         }else{ /* mobilav */ 
                   6684:           for(i=1; i<=nlstate;i++)
                   6685:             prlim[i][i]=mobaverage[(int)age][i][ij];
                   6686:         }
                   6687:        }
                   6688:                        
1.235     brouard  6689:        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
1.218     brouard  6690:                        
                   6691:        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
                   6692:         for(h=0; h<=nhstepm; h++){
                   6693:           for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   6694:             gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   6695:         }
                   6696:        }
                   6697:        /* This for computing probability of death (h=1 means
                   6698:          computed over hstepm matrices product = hstepm*stepm months) 
                   6699:          as a weighted average of prlim.
                   6700:        */
                   6701:        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   6702:         for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   6703:           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   6704:        }    
1.279     brouard  6705:        /* end shifting computations */
                   6706: 
                   6707:        /**< Computing gradient matrix at horizon h 
                   6708:        */
1.218     brouard  6709:        for(j=1; j<= nlstate; j++) /* vareij */
                   6710:         for(h=0; h<=nhstepm; h++){
                   6711:           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   6712:         }
1.279     brouard  6713:        /**< Gradient of overall mortality p.3 (or p.j) 
                   6714:        */
                   6715:        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */
1.218     brouard  6716:         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   6717:        }
                   6718:                        
                   6719:      } /* End theta */
1.279     brouard  6720:      
                   6721:      /* We got the gradient matrix for each theta and state j */               
1.218     brouard  6722:      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   6723:                
                   6724:      for(h=0; h<=nhstepm; h++) /* veij */
                   6725:        for(j=1; j<=nlstate;j++)
                   6726:         for(theta=1; theta <=npar; theta++)
                   6727:           trgradg[h][j][theta]=gradg[h][theta][j];
                   6728:                
                   6729:      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   6730:        for(theta=1; theta <=npar; theta++)
                   6731:         trgradgp[j][theta]=gradgp[theta][j];
1.279     brouard  6732:      /**< as well as its transposed matrix 
                   6733:       */               
1.218     brouard  6734:                
                   6735:      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   6736:      for(i=1;i<=nlstate;i++)
                   6737:        for(j=1;j<=nlstate;j++)
                   6738:         vareij[i][j][(int)age] =0.;
1.279     brouard  6739: 
                   6740:      /* Computing trgradg by matcov by gradg at age and summing over h
                   6741:       * and k (nhstepm) formula 15 of article
                   6742:       * Lievre-Brouard-Heathcote
                   6743:       */
                   6744:      
1.218     brouard  6745:      for(h=0;h<=nhstepm;h++){
                   6746:        for(k=0;k<=nhstepm;k++){
                   6747:         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   6748:         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   6749:         for(i=1;i<=nlstate;i++)
                   6750:           for(j=1;j<=nlstate;j++)
                   6751:             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   6752:        }
                   6753:      }
                   6754:                
1.279     brouard  6755:      /* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of
                   6756:       * p.j overall mortality formula 49 but computed directly because
                   6757:       * we compute the grad (wix pijx) instead of grad (pijx),even if
                   6758:       * wix is independent of theta.
                   6759:       */
1.218     brouard  6760:      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   6761:      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                   6762:      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   6763:        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                   6764:         varppt[j][i]=doldmp[j][i];
                   6765:      /* end ppptj */
                   6766:      /*  x centered again */
                   6767:                
1.242     brouard  6768:      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
1.218     brouard  6769:                
                   6770:      if (popbased==1) {
                   6771:        if(mobilav ==0){
                   6772:         for(i=1; i<=nlstate;i++)
                   6773:           prlim[i][i]=probs[(int)age][i][ij];
                   6774:        }else{ /* mobilav */ 
                   6775:         for(i=1; i<=nlstate;i++)
                   6776:           prlim[i][i]=mobaverage[(int)age][i][ij];
                   6777:        }
                   6778:      }
                   6779:                
                   6780:      /* This for computing probability of death (h=1 means
                   6781:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   6782:        as a weighted average of prlim.
                   6783:      */
1.235     brouard  6784:      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
1.218     brouard  6785:      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   6786:        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                   6787:         gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   6788:      }    
                   6789:      /* end probability of death */
                   6790:                
                   6791:      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   6792:      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   6793:        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   6794:        for(i=1; i<=nlstate;i++){
                   6795:         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   6796:        }
                   6797:      } 
                   6798:      fprintf(ficresprobmorprev,"\n");
                   6799:                
                   6800:      fprintf(ficresvij,"%.0f ",age );
                   6801:      for(i=1; i<=nlstate;i++)
                   6802:        for(j=1; j<=nlstate;j++){
                   6803:         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   6804:        }
                   6805:      fprintf(ficresvij,"\n");
                   6806:      free_matrix(gp,0,nhstepm,1,nlstate);
                   6807:      free_matrix(gm,0,nhstepm,1,nlstate);
                   6808:      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   6809:      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   6810:      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6811:    } /* End age */
                   6812:    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   6813:    free_vector(gmp,nlstate+1,nlstate+ndeath);
                   6814:    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   6815:    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   6816:    /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
                   6817:    fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
                   6818:    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   6819:    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                   6820:    fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                   6821:    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   6822:    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   6823:    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   6824:    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
                   6825:    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
                   6826:    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
                   6827:    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   6828:    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                   6829:    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
1.126     brouard  6830:     */
1.218     brouard  6831:    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
                   6832:    fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
1.126     brouard  6833: 
1.218     brouard  6834:    free_vector(xp,1,npar);
                   6835:    free_matrix(doldm,1,nlstate,1,nlstate);
                   6836:    free_matrix(dnewm,1,nlstate,1,npar);
                   6837:    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   6838:    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   6839:    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   6840:    /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   6841:    fclose(ficresprobmorprev);
                   6842:    fflush(ficgp);
                   6843:    fflush(fichtm); 
                   6844:  }  /* end varevsij */
1.126     brouard  6845: 
                   6846: /************ Variance of prevlim ******************/
1.269     brouard  6847:  void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
1.126     brouard  6848: {
1.205     brouard  6849:   /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
1.126     brouard  6850:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
1.164     brouard  6851: 
1.268     brouard  6852:   double **dnewmpar,**doldm;
1.126     brouard  6853:   int i, j, nhstepm, hstepm;
                   6854:   double *xp;
                   6855:   double *gp, *gm;
                   6856:   double **gradg, **trgradg;
1.208     brouard  6857:   double **mgm, **mgp;
1.126     brouard  6858:   double age,agelim;
                   6859:   int theta;
                   6860:   
                   6861:   pstamp(ficresvpl);
1.288     brouard  6862:   fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n");
1.241     brouard  6863:   fprintf(ficresvpl,"# Age ");
                   6864:   if(nresult >=1)
                   6865:     fprintf(ficresvpl," Result# ");
1.126     brouard  6866:   for(i=1; i<=nlstate;i++)
                   6867:       fprintf(ficresvpl," %1d-%1d",i,i);
                   6868:   fprintf(ficresvpl,"\n");
                   6869: 
                   6870:   xp=vector(1,npar);
1.268     brouard  6871:   dnewmpar=matrix(1,nlstate,1,npar);
1.126     brouard  6872:   doldm=matrix(1,nlstate,1,nlstate);
                   6873:   
                   6874:   hstepm=1*YEARM; /* Every year of age */
                   6875:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   6876:   agelim = AGESUP;
                   6877:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   6878:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   6879:     if (stepm >= YEARM) hstepm=1;
                   6880:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   6881:     gradg=matrix(1,npar,1,nlstate);
1.208     brouard  6882:     mgp=matrix(1,npar,1,nlstate);
                   6883:     mgm=matrix(1,npar,1,nlstate);
1.126     brouard  6884:     gp=vector(1,nlstate);
                   6885:     gm=vector(1,nlstate);
                   6886: 
                   6887:     for(theta=1; theta <=npar; theta++){
                   6888:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   6889:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   6890:       }
1.288     brouard  6891:       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
                   6892:       /*       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
                   6893:       /* else */
                   6894:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.208     brouard  6895:       for(i=1;i<=nlstate;i++){
1.126     brouard  6896:        gp[i] = prlim[i][i];
1.208     brouard  6897:        mgp[theta][i] = prlim[i][i];
                   6898:       }
1.126     brouard  6899:       for(i=1; i<=npar; i++) /* Computes gradient */
                   6900:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
1.288     brouard  6901:       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
                   6902:       /*       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
                   6903:       /* else */
                   6904:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.208     brouard  6905:       for(i=1;i<=nlstate;i++){
1.126     brouard  6906:        gm[i] = prlim[i][i];
1.208     brouard  6907:        mgm[theta][i] = prlim[i][i];
                   6908:       }
1.126     brouard  6909:       for(i=1;i<=nlstate;i++)
                   6910:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
1.209     brouard  6911:       /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
1.126     brouard  6912:     } /* End theta */
                   6913: 
                   6914:     trgradg =matrix(1,nlstate,1,npar);
                   6915: 
                   6916:     for(j=1; j<=nlstate;j++)
                   6917:       for(theta=1; theta <=npar; theta++)
                   6918:        trgradg[j][theta]=gradg[theta][j];
1.209     brouard  6919:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   6920:     /*   printf("\nmgm mgp %d ",(int)age); */
                   6921:     /*   for(j=1; j<=nlstate;j++){ */
                   6922:     /*         printf(" %d ",j); */
                   6923:     /*         for(theta=1; theta <=npar; theta++) */
                   6924:     /*           printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
                   6925:     /*         printf("\n "); */
                   6926:     /*   } */
                   6927:     /* } */
                   6928:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   6929:     /*   printf("\n gradg %d ",(int)age); */
                   6930:     /*   for(j=1; j<=nlstate;j++){ */
                   6931:     /*         printf("%d ",j); */
                   6932:     /*         for(theta=1; theta <=npar; theta++) */
                   6933:     /*           printf("%d %lf ",theta,gradg[theta][j]); */
                   6934:     /*         printf("\n "); */
                   6935:     /*   } */
                   6936:     /* } */
1.126     brouard  6937: 
                   6938:     for(i=1;i<=nlstate;i++)
                   6939:       varpl[i][(int)age] =0.;
1.209     brouard  6940:     if((int)age==79 ||(int)age== 80  ||(int)age== 81){
1.268     brouard  6941:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   6942:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
1.205     brouard  6943:     }else{
1.268     brouard  6944:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   6945:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
1.205     brouard  6946:     }
1.126     brouard  6947:     for(i=1;i<=nlstate;i++)
                   6948:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   6949: 
                   6950:     fprintf(ficresvpl,"%.0f ",age );
1.241     brouard  6951:     if(nresult >=1)
                   6952:       fprintf(ficresvpl,"%d ",nres );
1.288     brouard  6953:     for(i=1; i<=nlstate;i++){
1.126     brouard  6954:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
1.288     brouard  6955:       /* for(j=1;j<=nlstate;j++) */
                   6956:       /*       fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */
                   6957:     }
1.126     brouard  6958:     fprintf(ficresvpl,"\n");
                   6959:     free_vector(gp,1,nlstate);
                   6960:     free_vector(gm,1,nlstate);
1.208     brouard  6961:     free_matrix(mgm,1,npar,1,nlstate);
                   6962:     free_matrix(mgp,1,npar,1,nlstate);
1.126     brouard  6963:     free_matrix(gradg,1,npar,1,nlstate);
                   6964:     free_matrix(trgradg,1,nlstate,1,npar);
                   6965:   } /* End age */
                   6966: 
                   6967:   free_vector(xp,1,npar);
                   6968:   free_matrix(doldm,1,nlstate,1,npar);
1.268     brouard  6969:   free_matrix(dnewmpar,1,nlstate,1,nlstate);
                   6970: 
                   6971: }
                   6972: 
                   6973: 
                   6974: /************ Variance of backprevalence limit ******************/
1.269     brouard  6975:  void varbrevlim(char fileresvbl[], FILE  *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres)
1.268     brouard  6976: {
                   6977:   /* Variance of backward prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
                   6978:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                   6979: 
                   6980:   double **dnewmpar,**doldm;
                   6981:   int i, j, nhstepm, hstepm;
                   6982:   double *xp;
                   6983:   double *gp, *gm;
                   6984:   double **gradg, **trgradg;
                   6985:   double **mgm, **mgp;
                   6986:   double age,agelim;
                   6987:   int theta;
                   6988:   
                   6989:   pstamp(ficresvbl);
                   6990:   fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n");
                   6991:   fprintf(ficresvbl,"# Age ");
                   6992:   if(nresult >=1)
                   6993:     fprintf(ficresvbl," Result# ");
                   6994:   for(i=1; i<=nlstate;i++)
                   6995:       fprintf(ficresvbl," %1d-%1d",i,i);
                   6996:   fprintf(ficresvbl,"\n");
                   6997: 
                   6998:   xp=vector(1,npar);
                   6999:   dnewmpar=matrix(1,nlstate,1,npar);
                   7000:   doldm=matrix(1,nlstate,1,nlstate);
                   7001:   
                   7002:   hstepm=1*YEARM; /* Every year of age */
                   7003:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   7004:   agelim = AGEINF;
                   7005:   for (age=fage; age>=bage; age --){ /* If stepm=6 months */
                   7006:     nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   7007:     if (stepm >= YEARM) hstepm=1;
                   7008:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   7009:     gradg=matrix(1,npar,1,nlstate);
                   7010:     mgp=matrix(1,npar,1,nlstate);
                   7011:     mgm=matrix(1,npar,1,nlstate);
                   7012:     gp=vector(1,nlstate);
                   7013:     gm=vector(1,nlstate);
                   7014: 
                   7015:     for(theta=1; theta <=npar; theta++){
                   7016:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   7017:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   7018:       }
                   7019:       if(mobilavproj > 0 )
                   7020:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   7021:       else
                   7022:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   7023:       for(i=1;i<=nlstate;i++){
                   7024:        gp[i] = bprlim[i][i];
                   7025:        mgp[theta][i] = bprlim[i][i];
                   7026:       }
                   7027:      for(i=1; i<=npar; i++) /* Computes gradient */
                   7028:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   7029:        if(mobilavproj > 0 )
                   7030:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   7031:        else
                   7032:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   7033:       for(i=1;i<=nlstate;i++){
                   7034:        gm[i] = bprlim[i][i];
                   7035:        mgm[theta][i] = bprlim[i][i];
                   7036:       }
                   7037:       for(i=1;i<=nlstate;i++)
                   7038:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   7039:       /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
                   7040:     } /* End theta */
                   7041: 
                   7042:     trgradg =matrix(1,nlstate,1,npar);
                   7043: 
                   7044:     for(j=1; j<=nlstate;j++)
                   7045:       for(theta=1; theta <=npar; theta++)
                   7046:        trgradg[j][theta]=gradg[theta][j];
                   7047:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   7048:     /*   printf("\nmgm mgp %d ",(int)age); */
                   7049:     /*   for(j=1; j<=nlstate;j++){ */
                   7050:     /*         printf(" %d ",j); */
                   7051:     /*         for(theta=1; theta <=npar; theta++) */
                   7052:     /*           printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
                   7053:     /*         printf("\n "); */
                   7054:     /*   } */
                   7055:     /* } */
                   7056:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   7057:     /*   printf("\n gradg %d ",(int)age); */
                   7058:     /*   for(j=1; j<=nlstate;j++){ */
                   7059:     /*         printf("%d ",j); */
                   7060:     /*         for(theta=1; theta <=npar; theta++) */
                   7061:     /*           printf("%d %lf ",theta,gradg[theta][j]); */
                   7062:     /*         printf("\n "); */
                   7063:     /*   } */
                   7064:     /* } */
                   7065: 
                   7066:     for(i=1;i<=nlstate;i++)
                   7067:       varbpl[i][(int)age] =0.;
                   7068:     if((int)age==79 ||(int)age== 80  ||(int)age== 81){
                   7069:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   7070:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
                   7071:     }else{
                   7072:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   7073:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
                   7074:     }
                   7075:     for(i=1;i<=nlstate;i++)
                   7076:       varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   7077: 
                   7078:     fprintf(ficresvbl,"%.0f ",age );
                   7079:     if(nresult >=1)
                   7080:       fprintf(ficresvbl,"%d ",nres );
                   7081:     for(i=1; i<=nlstate;i++)
                   7082:       fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age]));
                   7083:     fprintf(ficresvbl,"\n");
                   7084:     free_vector(gp,1,nlstate);
                   7085:     free_vector(gm,1,nlstate);
                   7086:     free_matrix(mgm,1,npar,1,nlstate);
                   7087:     free_matrix(mgp,1,npar,1,nlstate);
                   7088:     free_matrix(gradg,1,npar,1,nlstate);
                   7089:     free_matrix(trgradg,1,nlstate,1,npar);
                   7090:   } /* End age */
                   7091: 
                   7092:   free_vector(xp,1,npar);
                   7093:   free_matrix(doldm,1,nlstate,1,npar);
                   7094:   free_matrix(dnewmpar,1,nlstate,1,nlstate);
1.126     brouard  7095: 
                   7096: }
                   7097: 
                   7098: /************ Variance of one-step probabilities  ******************/
                   7099: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
1.222     brouard  7100:  {
                   7101:    int i, j=0,  k1, l1, tj;
                   7102:    int k2, l2, j1,  z1;
                   7103:    int k=0, l;
                   7104:    int first=1, first1, first2;
1.326     brouard  7105:    int nres=0; /* New */
1.222     brouard  7106:    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   7107:    double **dnewm,**doldm;
                   7108:    double *xp;
                   7109:    double *gp, *gm;
                   7110:    double **gradg, **trgradg;
                   7111:    double **mu;
                   7112:    double age, cov[NCOVMAX+1];
                   7113:    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   7114:    int theta;
                   7115:    char fileresprob[FILENAMELENGTH];
                   7116:    char fileresprobcov[FILENAMELENGTH];
                   7117:    char fileresprobcor[FILENAMELENGTH];
                   7118:    double ***varpij;
                   7119: 
                   7120:    strcpy(fileresprob,"PROB_"); 
                   7121:    strcat(fileresprob,fileres);
                   7122:    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   7123:      printf("Problem with resultfile: %s\n", fileresprob);
                   7124:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   7125:    }
                   7126:    strcpy(fileresprobcov,"PROBCOV_"); 
                   7127:    strcat(fileresprobcov,fileresu);
                   7128:    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   7129:      printf("Problem with resultfile: %s\n", fileresprobcov);
                   7130:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   7131:    }
                   7132:    strcpy(fileresprobcor,"PROBCOR_"); 
                   7133:    strcat(fileresprobcor,fileresu);
                   7134:    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   7135:      printf("Problem with resultfile: %s\n", fileresprobcor);
                   7136:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   7137:    }
                   7138:    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   7139:    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   7140:    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   7141:    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   7142:    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   7143:    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   7144:    pstamp(ficresprob);
                   7145:    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   7146:    fprintf(ficresprob,"# Age");
                   7147:    pstamp(ficresprobcov);
                   7148:    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   7149:    fprintf(ficresprobcov,"# Age");
                   7150:    pstamp(ficresprobcor);
                   7151:    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   7152:    fprintf(ficresprobcor,"# Age");
1.126     brouard  7153: 
                   7154: 
1.222     brouard  7155:    for(i=1; i<=nlstate;i++)
                   7156:      for(j=1; j<=(nlstate+ndeath);j++){
                   7157:        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   7158:        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   7159:        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   7160:      }  
                   7161:    /* fprintf(ficresprob,"\n");
                   7162:       fprintf(ficresprobcov,"\n");
                   7163:       fprintf(ficresprobcor,"\n");
                   7164:    */
                   7165:    xp=vector(1,npar);
                   7166:    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   7167:    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   7168:    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   7169:    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   7170:    first=1;
                   7171:    fprintf(ficgp,"\n# Routine varprob");
                   7172:    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   7173:    fprintf(fichtm,"\n");
                   7174: 
1.288     brouard  7175:    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov);
1.222     brouard  7176:    fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
                   7177:    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
1.126     brouard  7178: and drawn. It helps understanding how is the covariance between two incidences.\
                   7179:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
1.222     brouard  7180:    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
1.126     brouard  7181: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   7182: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   7183: standard deviations wide on each axis. <br>\
                   7184:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   7185:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   7186: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                   7187: 
1.222     brouard  7188:    cov[1]=1;
                   7189:    /* tj=cptcoveff; */
1.225     brouard  7190:    tj = (int) pow(2,cptcoveff);
1.222     brouard  7191:    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   7192:    j1=0;
1.332     brouard  7193: 
                   7194:    for(nres=1;nres <=nresult; nres++){ /* For each resultline */
                   7195:    for(j1=1; j1<=tj;j1++){ /* For any combination of dummy covariates, fixed and varying */
1.334     brouard  7196:      printf("Varprob  TKresult[nres]=%d j1=%d, nres=%d, cptcovn=%d, cptcoveff=%d tj=%d cptcovs=%d\n",  TKresult[nres], j1, nres, cptcovn, cptcoveff, tj, cptcovs);
1.332     brouard  7197:      if(tj != 1 && TKresult[nres]!= j1)
                   7198:        continue;
                   7199: 
                   7200:    /* for(j1=1; j1<=tj;j1++){  /\* For each valid combination of covariates or only once*\/ */
                   7201:      /* for(nres=1;nres <=1; nres++){ /\* For each resultline *\/ */
                   7202:      /* /\* for(nres=1;nres <=nresult; nres++){ /\\* For each resultline *\\/ *\/ */
1.222     brouard  7203:      if  (cptcovn>0) {
1.334     brouard  7204:        fprintf(ficresprob, "\n#********** Variable ");
                   7205:        fprintf(ficresprobcov, "\n#********** Variable "); 
                   7206:        fprintf(ficgp, "\n#********** Variable ");
                   7207:        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                   7208:        fprintf(ficresprobcor, "\n#********** Variable ");    
                   7209: 
                   7210:        /* Including quantitative variables of the resultline to be done */
                   7211:        for (z1=1; z1<=cptcovs; z1++){ /* Loop on each variable of this resultline  */
1.338   ! brouard  7212:         printf("Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model);
        !          7213:         fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model);
        !          7214:         /* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */
1.334     brouard  7215:         if(Dummy[modelresult[nres][z1]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to z1 in resultline  */
                   7216:           if(Fixed[modelresult[nres][z1]]==0){ /* Fixed referenced to model equation */
                   7217:             fprintf(ficresprob,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7218:             fprintf(ficresprobcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7219:             fprintf(ficgp,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7220:             fprintf(fichtmcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7221:             fprintf(ficresprobcor,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7222:             fprintf(ficresprob,"fixed ");
                   7223:             fprintf(ficresprobcov,"fixed ");
                   7224:             fprintf(ficgp,"fixed ");
                   7225:             fprintf(fichtmcov,"fixed ");
                   7226:             fprintf(ficresprobcor,"fixed ");
                   7227:           }else{
                   7228:             fprintf(ficresprob,"varyi ");
                   7229:             fprintf(ficresprobcov,"varyi ");
                   7230:             fprintf(ficgp,"varyi ");
                   7231:             fprintf(fichtmcov,"varyi ");
                   7232:             fprintf(ficresprobcor,"varyi ");
                   7233:           }
                   7234:         }else if(Dummy[modelresult[nres][z1]]==1){ /* Quanti variable */
                   7235:           /* For each selected (single) quantitative value */
1.337     brouard  7236:           fprintf(ficresprob," V%d=%lg ",Tvqresult[nres][z1],Tqresult[nres][z1]);
1.334     brouard  7237:           if(Fixed[modelresult[nres][z1]]==0){ /* Fixed */
                   7238:             fprintf(ficresprob,"fixed ");
                   7239:             fprintf(ficresprobcov,"fixed ");
                   7240:             fprintf(ficgp,"fixed ");
                   7241:             fprintf(fichtmcov,"fixed ");
                   7242:             fprintf(ficresprobcor,"fixed ");
                   7243:           }else{
                   7244:             fprintf(ficresprob,"varyi ");
                   7245:             fprintf(ficresprobcov,"varyi ");
                   7246:             fprintf(ficgp,"varyi ");
                   7247:             fprintf(fichtmcov,"varyi ");
                   7248:             fprintf(ficresprobcor,"varyi ");
                   7249:           }
                   7250:         }else{
                   7251:           printf("Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   7252:           fprintf(ficlog,"Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   7253:           exit(1);
                   7254:         }
                   7255:        } /* End loop on variable of this resultline */
                   7256:        /* for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); */
1.222     brouard  7257:        fprintf(ficresprob, "**********\n#\n");
                   7258:        fprintf(ficresprobcov, "**********\n#\n");
                   7259:        fprintf(ficgp, "**********\n#\n");
                   7260:        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                   7261:        fprintf(ficresprobcor, "**********\n#");    
                   7262:        if(invalidvarcomb[j1]){
                   7263:         fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
                   7264:         fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
                   7265:         continue;
                   7266:        }
                   7267:      }
                   7268:      gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   7269:      trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   7270:      gp=vector(1,(nlstate)*(nlstate+ndeath));
                   7271:      gm=vector(1,(nlstate)*(nlstate+ndeath));
1.334     brouard  7272:      for (age=bage; age<=fage; age ++){ /* Fo each age we feed the model equation with covariates, using precov as in hpxij() ? */
1.222     brouard  7273:        cov[2]=age;
                   7274:        if(nagesqr==1)
                   7275:         cov[3]= age*age;
1.334     brouard  7276:        /* New code end of combination but for each resultline */
                   7277:        for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
                   7278:         if(Typevar[k1]==1){ /* A product with age */
                   7279:           cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
1.326     brouard  7280:         }else{
1.334     brouard  7281:           cov[2+nagesqr+k1]=precov[nres][k1];
1.326     brouard  7282:         }
1.334     brouard  7283:        }/* End of loop on model equation */
                   7284: /* Old code */
                   7285:        /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
                   7286:        /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; *\/ */
                   7287:        /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
                   7288:        /*       /\* Here comes the value of the covariate 'j1' after renumbering k with single dummy covariates *\/ */
                   7289:        /*       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(j1,TnsdVar[TvarsD[k]])]; */
                   7290:        /*       /\*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*\//\* j1 1 2 3 4 */
                   7291:        /*                                                                  * 1  1 1 1 1 */
                   7292:        /*                                                                  * 2  2 1 1 1 */
                   7293:        /*                                                                  * 3  1 2 1 1 */
                   7294:        /*                                                                  *\/ */
                   7295:        /*       /\* nbcode[1][1]=0 nbcode[1][2]=1;*\/ */
                   7296:        /* } */
                   7297:        /* /\* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */
                   7298:        /* /\* ) p nbcode[Tvar[Tage[k]]][(1 & (ij-1) >> (k-1))+1] *\/ */
                   7299:        /* /\*for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; *\/ */
                   7300:        /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
                   7301:        /*       if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
                   7302:        /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(j1,TnsdVar[Tvar[Tage[k]]])]*cov[2]; */
                   7303:        /*         /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
                   7304:        /*       } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
                   7305:        /*         printf("Internal IMaCh error, don't know which value for quantitative covariate with age, Tage[k]%d, k=%d, Tvar[Tage[k]]=V%d, age=%d\n",Tage[k],k ,Tvar[Tage[k]], (int)cov[2]); */
                   7306:        /*         /\* cov[2+nagesqr+Tage[k]]=meanq[k]/idq[k]*cov[2];/\\* Using the mean of quantitative variable Tvar[Tage[k]] /\\* Tqresult[nres][k]; *\\/ *\/ */
                   7307:        /*         /\* exit(1); *\/ */
                   7308:        /*         /\* cov[++k1]=Tqresult[nres][k];  *\/ */
                   7309:        /*       } */
                   7310:        /*       /\* cov[2+Tage[k]+nagesqr]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
                   7311:        /* } */
                   7312:        /* for (k=1; k<=cptcovprod;k++){/\* For product without age *\/ */
                   7313:        /*       if(Dummy[Tvard[k][1]]==0){ */
                   7314:        /*         if(Dummy[Tvard[k][2]]==0){ */
                   7315:        /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])]; */
                   7316:        /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   7317:        /*         }else{ /\* Should we use the mean of the quantitative variables? *\/ */
                   7318:        /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * Tqresult[nres][resultmodel[nres][k]]; */
                   7319:        /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
                   7320:        /*         } */
                   7321:        /*       }else{ */
                   7322:        /*         if(Dummy[Tvard[k][2]]==0){ */
                   7323:        /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][TnsdVar[Tvard[k][1]]]; */
                   7324:        /*           /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
                   7325:        /*         }else{ */
                   7326:        /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][TnsdVar[Tvard[k][1]]]*  Tqinvresult[nres][TnsdVar[Tvard[k][2]]]; */
                   7327:        /*           /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
                   7328:        /*         } */
                   7329:        /*       } */
                   7330:        /*       /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   7331:        /* } */                 
1.326     brouard  7332: /* For each age and combination of dummy covariates we slightly move the parameters of delti in order to get the gradient*/                    
1.222     brouard  7333:        for(theta=1; theta <=npar; theta++){
                   7334:         for(i=1; i<=npar; i++)
                   7335:           xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
1.220     brouard  7336:                                
1.222     brouard  7337:         pmij(pmmij,cov,ncovmodel,xp,nlstate);
1.220     brouard  7338:                                
1.222     brouard  7339:         k=0;
                   7340:         for(i=1; i<= (nlstate); i++){
                   7341:           for(j=1; j<=(nlstate+ndeath);j++){
                   7342:             k=k+1;
                   7343:             gp[k]=pmmij[i][j];
                   7344:           }
                   7345:         }
1.220     brouard  7346:                                
1.222     brouard  7347:         for(i=1; i<=npar; i++)
                   7348:           xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
1.220     brouard  7349:                                
1.222     brouard  7350:         pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   7351:         k=0;
                   7352:         for(i=1; i<=(nlstate); i++){
                   7353:           for(j=1; j<=(nlstate+ndeath);j++){
                   7354:             k=k+1;
                   7355:             gm[k]=pmmij[i][j];
                   7356:           }
                   7357:         }
1.220     brouard  7358:                                
1.222     brouard  7359:         for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                   7360:           gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                   7361:        }
1.126     brouard  7362: 
1.222     brouard  7363:        for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   7364:         for(theta=1; theta <=npar; theta++)
                   7365:           trgradg[j][theta]=gradg[theta][j];
1.220     brouard  7366:                        
1.222     brouard  7367:        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   7368:        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
1.220     brouard  7369:                        
1.222     brouard  7370:        pmij(pmmij,cov,ncovmodel,x,nlstate);
1.220     brouard  7371:                        
1.222     brouard  7372:        k=0;
                   7373:        for(i=1; i<=(nlstate); i++){
                   7374:         for(j=1; j<=(nlstate+ndeath);j++){
                   7375:           k=k+1;
                   7376:           mu[k][(int) age]=pmmij[i][j];
                   7377:         }
                   7378:        }
                   7379:        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   7380:         for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   7381:           varpij[i][j][(int)age] = doldm[i][j];
1.220     brouard  7382:                        
1.222     brouard  7383:        /*printf("\n%d ",(int)age);
                   7384:         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   7385:         printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   7386:         fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   7387:         }*/
1.220     brouard  7388:                        
1.222     brouard  7389:        fprintf(ficresprob,"\n%d ",(int)age);
                   7390:        fprintf(ficresprobcov,"\n%d ",(int)age);
                   7391:        fprintf(ficresprobcor,"\n%d ",(int)age);
1.220     brouard  7392:                        
1.222     brouard  7393:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   7394:         fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   7395:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   7396:         fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   7397:         fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   7398:        }
                   7399:        i=0;
                   7400:        for (k=1; k<=(nlstate);k++){
                   7401:         for (l=1; l<=(nlstate+ndeath);l++){ 
                   7402:           i++;
                   7403:           fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   7404:           fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   7405:           for (j=1; j<=i;j++){
                   7406:             /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                   7407:             fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   7408:             fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   7409:           }
                   7410:         }
                   7411:        }/* end of loop for state */
                   7412:      } /* end of loop for age */
                   7413:      free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   7414:      free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   7415:      free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   7416:      free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   7417:     
                   7418:      /* Confidence intervalle of pij  */
                   7419:      /*
                   7420:        fprintf(ficgp,"\nunset parametric;unset label");
                   7421:        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   7422:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   7423:        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   7424:        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   7425:        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   7426:        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   7427:      */
                   7428:                
                   7429:      /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   7430:      first1=1;first2=2;
                   7431:      for (k2=1; k2<=(nlstate);k2++){
                   7432:        for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   7433:         if(l2==k2) continue;
                   7434:         j=(k2-1)*(nlstate+ndeath)+l2;
                   7435:         for (k1=1; k1<=(nlstate);k1++){
                   7436:           for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   7437:             if(l1==k1) continue;
                   7438:             i=(k1-1)*(nlstate+ndeath)+l1;
                   7439:             if(i<=j) continue;
                   7440:             for (age=bage; age<=fage; age ++){ 
                   7441:               if ((int)age %5==0){
                   7442:                 v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   7443:                 v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   7444:                 cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   7445:                 mu1=mu[i][(int) age]/stepm*YEARM ;
                   7446:                 mu2=mu[j][(int) age]/stepm*YEARM;
                   7447:                 c12=cv12/sqrt(v1*v2);
                   7448:                 /* Computing eigen value of matrix of covariance */
                   7449:                 lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   7450:                 lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   7451:                 if ((lc2 <0) || (lc1 <0) ){
                   7452:                   if(first2==1){
                   7453:                     first1=0;
                   7454:                     printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                   7455:                   }
                   7456:                   fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                   7457:                   /* lc1=fabs(lc1); */ /* If we want to have them positive */
                   7458:                   /* lc2=fabs(lc2); */
                   7459:                 }
1.220     brouard  7460:                                                                
1.222     brouard  7461:                 /* Eigen vectors */
1.280     brouard  7462:                 if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){
                   7463:                   printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                   7464:                   fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                   7465:                   v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12)));
                   7466:                 }else
                   7467:                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
1.222     brouard  7468:                 /*v21=sqrt(1.-v11*v11); *//* error */
                   7469:                 v21=(lc1-v1)/cv12*v11;
                   7470:                 v12=-v21;
                   7471:                 v22=v11;
                   7472:                 tnalp=v21/v11;
                   7473:                 if(first1==1){
                   7474:                   first1=0;
                   7475:                   printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   7476:                 }
                   7477:                 fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   7478:                 /*printf(fignu*/
                   7479:                 /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   7480:                 /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   7481:                 if(first==1){
                   7482:                   first=0;
                   7483:                   fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                   7484:                   fprintf(ficgp,"\nset parametric;unset label");
                   7485:                   fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                   7486:                   fprintf(ficgp,"\nset ter svg size 640, 480");
1.266     brouard  7487:                   fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
1.220     brouard  7488:  :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                          \
1.201     brouard  7489: %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
1.222     brouard  7490:                           subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
                   7491:                           subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   7492:                   fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   7493:                   fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                   7494:                   fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   7495:                   fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   7496:                   fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   7497:                   fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
1.280     brouard  7498:                           mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \
                   7499:                           mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */
1.222     brouard  7500:                 }else{
                   7501:                   first=0;
                   7502:                   fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                   7503:                   fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   7504:                   fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   7505:                   fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
1.266     brouard  7506:                           mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)),   \
                   7507:                           mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2)));
1.222     brouard  7508:                 }/* if first */
                   7509:               } /* age mod 5 */
                   7510:             } /* end loop age */
                   7511:             fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   7512:             first=1;
                   7513:           } /*l12 */
                   7514:         } /* k12 */
                   7515:        } /*l1 */
                   7516:      }/* k1 */
1.332     brouard  7517:    }  /* loop on combination of covariates j1 */
1.326     brouard  7518:    } /* loop on nres */
1.222     brouard  7519:    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   7520:    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                   7521:    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   7522:    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
                   7523:    free_vector(xp,1,npar);
                   7524:    fclose(ficresprob);
                   7525:    fclose(ficresprobcov);
                   7526:    fclose(ficresprobcor);
                   7527:    fflush(ficgp);
                   7528:    fflush(fichtmcov);
                   7529:  }
1.126     brouard  7530: 
                   7531: 
                   7532: /******************* Printing html file ***********/
1.201     brouard  7533: void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
1.126     brouard  7534:                  int lastpass, int stepm, int weightopt, char model[],\
                   7535:                  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
1.296     brouard  7536:                  int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \
                   7537:                  double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \
                   7538:                  double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){
1.237     brouard  7539:   int jj1, k1, i1, cpt, k4, nres;
1.319     brouard  7540:   /* In fact some results are already printed in fichtm which is open */
1.126     brouard  7541:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                   7542:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                   7543: </ul>");
1.319     brouard  7544: /*    fprintf(fichtm,"<ul><li> model=1+age+%s\n \ */
                   7545: /* </ul>", model); */
1.214     brouard  7546:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
                   7547:    fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
                   7548:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
1.332     brouard  7549:    fprintf(fichtm,"<li> - Observed prevalence (cross-sectional prevalence) in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
1.213     brouard  7550:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
                   7551:    fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
1.126     brouard  7552:    fprintf(fichtm,"\
                   7553:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
1.201     brouard  7554:           stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
1.126     brouard  7555:    fprintf(fichtm,"\
1.217     brouard  7556:  - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   7557:           stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
                   7558:    fprintf(fichtm,"\
1.288     brouard  7559:  - Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
1.201     brouard  7560:           subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
1.126     brouard  7561:    fprintf(fichtm,"\
1.288     brouard  7562:  - Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
1.217     brouard  7563:           subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
                   7564:    fprintf(fichtm,"\
1.211     brouard  7565:  - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
1.126     brouard  7566:    <a href=\"%s\">%s</a> <br>\n",
1.201     brouard  7567:           estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
1.211     brouard  7568:    if(prevfcast==1){
                   7569:      fprintf(fichtm,"\
                   7570:  - Prevalence projections by age and states:                           \
1.201     brouard  7571:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
1.211     brouard  7572:    }
1.126     brouard  7573: 
                   7574: 
1.225     brouard  7575:    m=pow(2,cptcoveff);
1.222     brouard  7576:    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
1.126     brouard  7577: 
1.317     brouard  7578:    fprintf(fichtm," \n<ul><li><b>Graphs (first order)</b></li><p>");
1.264     brouard  7579: 
                   7580:    jj1=0;
                   7581: 
                   7582:    fprintf(fichtm," \n<ul>");
1.337     brouard  7583:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   7584:      /* k1=nres; */
1.338   ! brouard  7585:      k1=TKresult[nres];
        !          7586:      if(TKresult[nres]==0)k1=1; /* To be checked for no result */
1.337     brouard  7587:    /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
                   7588:    /*   if(m != 1 && TKresult[nres]!= k1) */
                   7589:    /*     continue; */
1.264     brouard  7590:      jj1++;
                   7591:      if (cptcovn > 0) {
                   7592:        fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescov");
1.337     brouard  7593:        for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
                   7594:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.264     brouard  7595:        }
1.337     brouard  7596:        /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
                   7597:        /*       fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
                   7598:        /* } */
                   7599:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   7600:        /*       fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   7601:        /* } */
1.264     brouard  7602:        fprintf(fichtm,"\">");
                   7603:        
                   7604:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
                   7605:        fprintf(fichtm,"************ Results for covariates");
1.337     brouard  7606:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   7607:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.264     brouard  7608:        }
1.337     brouard  7609:        /* fprintf(fichtm,"************ Results for covariates"); */
                   7610:        /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
                   7611:        /*       fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
                   7612:        /* } */
                   7613:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   7614:        /*       fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   7615:        /* } */
1.264     brouard  7616:        if(invalidvarcomb[k1]){
                   7617:         fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
                   7618:         continue;
                   7619:        }
                   7620:        fprintf(fichtm,"</a></li>");
                   7621:      } /* cptcovn >0 */
                   7622:    }
1.317     brouard  7623:    fprintf(fichtm," \n</ul>");
1.264     brouard  7624: 
1.222     brouard  7625:    jj1=0;
1.237     brouard  7626: 
1.337     brouard  7627:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   7628:      /* k1=nres; */
1.338   ! brouard  7629:      k1=TKresult[nres];
        !          7630:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  7631:    /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
                   7632:    /*   if(m != 1 && TKresult[nres]!= k1) */
                   7633:    /*     continue; */
1.220     brouard  7634: 
1.222     brouard  7635:      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
                   7636:      jj1++;
                   7637:      if (cptcovn > 0) {
1.264     brouard  7638:        fprintf(fichtm,"\n<p><a name=\"rescov");
1.337     brouard  7639:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   7640:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.264     brouard  7641:        }
1.337     brouard  7642:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   7643:        /*       fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   7644:        /* } */
1.264     brouard  7645:        fprintf(fichtm,"\"</a>");
                   7646:  
1.222     brouard  7647:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
1.337     brouard  7648:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   7649:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
                   7650:         printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.237     brouard  7651:         /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
                   7652:         /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
1.222     brouard  7653:        }
1.230     brouard  7654:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
1.338   ! brouard  7655:        fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
1.222     brouard  7656:        if(invalidvarcomb[k1]){
                   7657:         fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
                   7658:         printf("\nCombination (%d) ignored because no cases \n",k1); 
                   7659:         continue;
                   7660:        }
                   7661:      }
                   7662:      /* aij, bij */
1.259     brouard  7663:      fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \
1.241     brouard  7664: <img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
1.222     brouard  7665:      /* Pij */
1.241     brouard  7666:      fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \
                   7667: <img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);     
1.222     brouard  7668:      /* Quasi-incidences */
                   7669:      fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
1.220     brouard  7670:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
1.211     brouard  7671:  incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
1.241     brouard  7672: divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \
                   7673: <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); 
1.222     brouard  7674:      /* Survival functions (period) in state j */
                   7675:      for(cpt=1; cpt<=nlstate;cpt++){
1.329     brouard  7676:        fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
                   7677:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
                   7678:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
1.222     brouard  7679:      }
                   7680:      /* State specific survival functions (period) */
                   7681:      for(cpt=1; cpt<=nlstate;cpt++){
1.292     brouard  7682:        fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\
                   7683:  And probability to be observed in various states (up to %d) being in state %d at different ages.      \
1.329     brouard  7684:  <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> ", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
                   7685:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
                   7686:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
1.222     brouard  7687:      }
1.288     brouard  7688:      /* Period (forward stable) prevalence in each health state */
1.222     brouard  7689:      for(cpt=1; cpt<=nlstate;cpt++){
1.329     brouard  7690:        fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.338   ! brouard  7691:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
1.329     brouard  7692:       fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.222     brouard  7693:      }
1.296     brouard  7694:      if(prevbcast==1){
1.288     brouard  7695:        /* Backward prevalence in each health state */
1.222     brouard  7696:        for(cpt=1; cpt<=nlstate;cpt++){
1.338   ! brouard  7697:         fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
        !          7698:         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJB_"),subdirf2(optionfilefiname,"PIJB_"));
        !          7699:         fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
1.222     brouard  7700:        }
1.217     brouard  7701:      }
1.222     brouard  7702:      if(prevfcast==1){
1.288     brouard  7703:        /* Projection of prevalence up to period (forward stable) prevalence in each health state */
1.222     brouard  7704:        for(cpt=1; cpt<=nlstate;cpt++){
1.314     brouard  7705:         fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
                   7706:         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"F_"),subdirf2(optionfilefiname,"F_"));
                   7707:         fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",
                   7708:                 subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
1.222     brouard  7709:        }
                   7710:      }
1.296     brouard  7711:      if(prevbcast==1){
1.268     brouard  7712:       /* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */
                   7713:        for(cpt=1; cpt<=nlstate;cpt++){
1.273     brouard  7714:         fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \
                   7715:  from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \
                   7716:  account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \
1.314     brouard  7717: with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
                   7718:         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"FB_"),subdirf2(optionfilefiname,"FB_"));
                   7719:         fprintf(fichtm," <img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
1.268     brouard  7720:        }
                   7721:      }
1.220     brouard  7722:         
1.222     brouard  7723:      for(cpt=1; cpt<=nlstate;cpt++) {
1.314     brouard  7724:        fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
                   7725:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\"> %s.txt</a>)\n<br>",subdirf2(optionfilefiname,"E_"),subdirf2(optionfilefiname,"E_"));
                   7726:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres );
1.222     brouard  7727:      }
                   7728:      /* } /\* end i1 *\/ */
1.337     brouard  7729:    }/* End k1=nres */
1.222     brouard  7730:    fprintf(fichtm,"</ul>");
1.126     brouard  7731: 
1.222     brouard  7732:    fprintf(fichtm,"\
1.126     brouard  7733: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
1.193     brouard  7734:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
1.203     brouard  7735:  - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
1.197     brouard  7736: But because parameters are usually highly correlated (a higher incidence of disability \
                   7737: and a higher incidence of recovery can give very close observed transition) it might \
                   7738: be very useful to look not only at linear confidence intervals estimated from the \
                   7739: variances but at the covariance matrix. And instead of looking at the estimated coefficients \
                   7740: (parameters) of the logistic regression, it might be more meaningful to visualize the \
                   7741: covariance matrix of the one-step probabilities. \
                   7742: See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
1.126     brouard  7743: 
1.222     brouard  7744:    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   7745:           subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
                   7746:    fprintf(fichtm,"\
1.126     brouard  7747:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  7748:           subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
1.126     brouard  7749: 
1.222     brouard  7750:    fprintf(fichtm,"\
1.126     brouard  7751:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  7752:           subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
                   7753:    fprintf(fichtm,"\
1.126     brouard  7754:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                   7755:    <a href=\"%s\">%s</a> <br>\n</li>",
1.201     brouard  7756:           estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
1.222     brouard  7757:    fprintf(fichtm,"\
1.126     brouard  7758:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                   7759:    <a href=\"%s\">%s</a> <br>\n</li>",
1.201     brouard  7760:           estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
1.222     brouard  7761:    fprintf(fichtm,"\
1.288     brouard  7762:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
1.222     brouard  7763:           estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
                   7764:    fprintf(fichtm,"\
1.128     brouard  7765:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  7766:           estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
                   7767:    fprintf(fichtm,"\
1.288     brouard  7768:  - Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\
1.222     brouard  7769:           subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
1.126     brouard  7770: 
                   7771: /*  if(popforecast==1) fprintf(fichtm,"\n */
                   7772: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                   7773: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                   7774: /*     <br>",fileres,fileres,fileres,fileres); */
                   7775: /*  else  */
1.338   ! brouard  7776: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=1+age+%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
1.222     brouard  7777:    fflush(fichtm);
1.126     brouard  7778: 
1.225     brouard  7779:    m=pow(2,cptcoveff);
1.222     brouard  7780:    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
1.126     brouard  7781: 
1.317     brouard  7782:    fprintf(fichtm," <ul><li><b>Graphs (second order)</b></li><p>");
                   7783: 
                   7784:   jj1=0;
                   7785: 
                   7786:    fprintf(fichtm," \n<ul>");
1.337     brouard  7787:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   7788:      /* k1=nres; */
1.338   ! brouard  7789:      k1=TKresult[nres];
1.337     brouard  7790:      /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
                   7791:      /* if(m != 1 && TKresult[nres]!= k1) */
                   7792:      /*   continue; */
1.317     brouard  7793:      jj1++;
                   7794:      if (cptcovn > 0) {
                   7795:        fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescovsecond");
1.337     brouard  7796:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   7797:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.317     brouard  7798:        }
                   7799:        fprintf(fichtm,"\">");
                   7800:        
                   7801:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
                   7802:        fprintf(fichtm,"************ Results for covariates");
1.337     brouard  7803:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   7804:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.317     brouard  7805:        }
                   7806:        if(invalidvarcomb[k1]){
                   7807:         fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
                   7808:         continue;
                   7809:        }
                   7810:        fprintf(fichtm,"</a></li>");
                   7811:      } /* cptcovn >0 */
1.337     brouard  7812:    } /* End nres */
1.317     brouard  7813:    fprintf(fichtm," \n</ul>");
                   7814: 
1.222     brouard  7815:    jj1=0;
1.237     brouard  7816: 
1.241     brouard  7817:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  7818:      /* k1=nres; */
1.338   ! brouard  7819:      k1=TKresult[nres];
        !          7820:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  7821:      /* for(k1=1; k1<=m;k1++){ */
                   7822:      /* if(m != 1 && TKresult[nres]!= k1) */
                   7823:      /*   continue; */
1.222     brouard  7824:      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
                   7825:      jj1++;
1.126     brouard  7826:      if (cptcovn > 0) {
1.317     brouard  7827:        fprintf(fichtm,"\n<p><a name=\"rescovsecond");
1.337     brouard  7828:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   7829:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.317     brouard  7830:        }
                   7831:        fprintf(fichtm,"\"</a>");
                   7832:        
1.126     brouard  7833:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
1.337     brouard  7834:        for (cpt=1; cpt<=cptcovs;cpt++){  /**< cptcoveff number of variables */
                   7835:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
                   7836:         printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.237     brouard  7837:         /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
1.317     brouard  7838:        }
1.237     brouard  7839: 
1.338   ! brouard  7840:        fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
1.220     brouard  7841: 
1.222     brouard  7842:        if(invalidvarcomb[k1]){
                   7843:         fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
                   7844:         continue;
                   7845:        }
1.337     brouard  7846:      } /* If cptcovn >0 */
1.126     brouard  7847:      for(cpt=1; cpt<=nlstate;cpt++) {
1.258     brouard  7848:        fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \
1.314     brouard  7849: prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
                   7850:        fprintf(fichtm," (data from text file  <a href=\"%s\">%s</a>)\n <br>",subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
                   7851:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"V_"), cpt,k1,nres);
1.126     brouard  7852:      }
                   7853:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
1.314     brouard  7854: health expectancies in each live states (1 to %d). If popbased=1 the smooth (due to the model) \
1.128     brouard  7855: true period expectancies (those weighted with period prevalences are also\
                   7856:  drawn in addition to the population based expectancies computed using\
1.314     brouard  7857:  observed and cahotic prevalences:  <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>",nlstate, subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);
                   7858:      fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>) \n<br>",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_"));
                   7859:      fprintf(fichtm,"<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres);
1.222     brouard  7860:      /* } /\* end i1 *\/ */
1.241     brouard  7861:   }/* End nres */
1.222     brouard  7862:    fprintf(fichtm,"</ul>");
                   7863:    fflush(fichtm);
1.126     brouard  7864: }
                   7865: 
                   7866: /******************* Gnuplot file **************/
1.296     brouard  7867: void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){
1.126     brouard  7868: 
                   7869:   char dirfileres[132],optfileres[132];
1.264     brouard  7870:   char gplotcondition[132], gplotlabel[132];
1.237     brouard  7871:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,ij=0, ijp=0, l=0;
1.211     brouard  7872:   int lv=0, vlv=0, kl=0;
1.130     brouard  7873:   int ng=0;
1.201     brouard  7874:   int vpopbased;
1.223     brouard  7875:   int ioffset; /* variable offset for columns */
1.270     brouard  7876:   int iyearc=1; /* variable column for year of projection  */
                   7877:   int iagec=1; /* variable column for age of projection  */
1.235     brouard  7878:   int nres=0; /* Index of resultline */
1.266     brouard  7879:   int istart=1; /* For starting graphs in projections */
1.219     brouard  7880: 
1.126     brouard  7881: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                   7882: /*     printf("Problem with file %s",optionfilegnuplot); */
                   7883: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   7884: /*   } */
                   7885: 
                   7886:   /*#ifdef windows */
                   7887:   fprintf(ficgp,"cd \"%s\" \n",pathc);
1.223     brouard  7888:   /*#endif */
1.225     brouard  7889:   m=pow(2,cptcoveff);
1.126     brouard  7890: 
1.274     brouard  7891:   /* diagram of the model */
                   7892:   fprintf(ficgp,"\n#Diagram of the model \n");
                   7893:   fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n");
                   7894:   fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate);
                   7895:   fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
                   7896: 
                   7897:   fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0)  ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
                   7898:   fprintf(ficgp,"\n#show arrow\nunset label\n");
                   7899:   fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
                   7900:   fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0.  font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate);
                   7901:   fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n");
                   7902:   fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_"));
                   7903:   fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n");
                   7904: 
1.202     brouard  7905:   /* Contribution to likelihood */
                   7906:   /* Plot the probability implied in the likelihood */
1.223     brouard  7907:   fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
                   7908:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
                   7909:   /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
                   7910:   fprintf(ficgp,"\nset ter pngcairo size 640, 480");
1.204     brouard  7911: /* nice for mle=4 plot by number of matrix products.
1.202     brouard  7912:    replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
                   7913: /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
1.223     brouard  7914:   /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
                   7915:   fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
                   7916:   fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
                   7917:   fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
                   7918:   fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
                   7919:   for (i=1; i<= nlstate ; i ++) {
                   7920:     fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
                   7921:     fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
                   7922:     fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
                   7923:     for (j=2; j<= nlstate+ndeath ; j ++) {
                   7924:       fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
                   7925:     }
                   7926:     fprintf(ficgp,";\nset out; unset ylabel;\n"); 
                   7927:   }
                   7928:   /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */               
                   7929:   /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
                   7930:   /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
                   7931:   fprintf(ficgp,"\nset out;unset log\n");
                   7932:   /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
1.202     brouard  7933: 
1.126     brouard  7934:   strcpy(dirfileres,optionfilefiname);
                   7935:   strcpy(optfileres,"vpl");
1.223     brouard  7936:   /* 1eme*/
1.238     brouard  7937:   for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
1.337     brouard  7938:     /* for (k1=1; k1<= m ; k1 ++){ /\* For each valid combination of covariate *\/ */
1.236     brouard  7939:       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  7940:        k1=TKresult[nres];
1.338   ! brouard  7941:        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.238     brouard  7942:        /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
1.337     brouard  7943:        /* if(m != 1 && TKresult[nres]!= k1) */
                   7944:        /*   continue; */
1.238     brouard  7945:        /* We are interested in selected combination by the resultline */
1.246     brouard  7946:        /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */
1.288     brouard  7947:        fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
1.264     brouard  7948:        strcpy(gplotlabel,"(");
1.337     brouard  7949:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   7950:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   7951:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   7952: 
                   7953:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate k get corresponding value lv for combination k1 *\/ */
                   7954:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the value of the covariate corresponding to k1 combination *\\/ *\/ */
                   7955:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   7956:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   7957:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   7958:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   7959:        /*   vlv= nbcode[Tvaraff[k]][lv]; /\* vlv is the value of the covariate lv, 0 or 1 *\/ */
                   7960:        /*   /\* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv *\/ */
                   7961:        /*   /\* printf(" V%d=%d ",Tvaraff[k],vlv); *\/ */
                   7962:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   7963:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   7964:        /* } */
                   7965:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   7966:        /*   /\* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); *\/ */
                   7967:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   7968:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
1.264     brouard  7969:        }
                   7970:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.246     brouard  7971:        /* printf("\n#\n"); */
1.238     brouard  7972:        fprintf(ficgp,"\n#\n");
                   7973:        if(invalidvarcomb[k1]){
1.260     brouard  7974:           /*k1=k1-1;*/ /* To be checked */
1.238     brouard  7975:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   7976:          continue;
                   7977:        }
1.235     brouard  7978:       
1.241     brouard  7979:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
                   7980:        fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);
1.276     brouard  7981:        /* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */
1.338   ! brouard  7982:        fprintf(ficgp,"set title \"Alive state %d %s model=1+age+%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model);
1.260     brouard  7983:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
                   7984:        /* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */
                   7985:       /* k1-1 error should be nres-1*/
1.238     brouard  7986:        for (i=1; i<= nlstate ; i ++) {
                   7987:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   7988:          else        fprintf(ficgp," %%*lf (%%*lf)");
                   7989:        }
1.288     brouard  7990:        fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
1.238     brouard  7991:        for (i=1; i<= nlstate ; i ++) {
                   7992:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   7993:          else fprintf(ficgp," %%*lf (%%*lf)");
                   7994:        } 
1.260     brouard  7995:        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); 
1.238     brouard  7996:        for (i=1; i<= nlstate ; i ++) {
                   7997:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   7998:          else fprintf(ficgp," %%*lf (%%*lf)");
                   7999:        }  
1.265     brouard  8000:        /* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */
                   8001:        
                   8002:        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_"));
                   8003:         if(cptcoveff ==0){
1.271     brouard  8004:          fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3",      2+3*(cpt-1),  cpt );
1.265     brouard  8005:        }else{
                   8006:          kl=0;
                   8007:          for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
1.332     brouard  8008:            /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
                   8009:            lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
1.265     brouard  8010:            /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   8011:            /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   8012:            /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   8013:            vlv= nbcode[Tvaraff[k]][lv];
                   8014:            kl++;
                   8015:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   8016:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   8017:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   8018:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   8019:            if(k==cptcoveff){
                   8020:              fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                   8021:                      2+cptcoveff*2+3*(cpt-1),  cpt );  /* 4 or 6 ?*/
                   8022:            }else{
                   8023:              fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                   8024:              kl++;
                   8025:            }
                   8026:          } /* end covariate */
                   8027:        } /* end if no covariate */
                   8028: 
1.296     brouard  8029:        if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
1.238     brouard  8030:          /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
1.242     brouard  8031:          fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */
1.238     brouard  8032:          if(cptcoveff ==0){
1.245     brouard  8033:            fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3",    2+(cpt-1),  cpt );
1.238     brouard  8034:          }else{
                   8035:            kl=0;
                   8036:            for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
1.332     brouard  8037:              /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
                   8038:              lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
1.238     brouard  8039:              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   8040:              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   8041:              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
1.332     brouard  8042:              /* vlv= nbcode[Tvaraff[k]][lv]; */
                   8043:              vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])];
1.223     brouard  8044:              kl++;
1.238     brouard  8045:              /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   8046:              /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   8047:              /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   8048:              /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   8049:              if(k==cptcoveff){
1.245     brouard  8050:                fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
1.242     brouard  8051:                        2+cptcoveff*2+(cpt-1),  cpt );  /* 4 or 6 ?*/
1.238     brouard  8052:              }else{
1.332     brouard  8053:                fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]);
1.238     brouard  8054:                kl++;
                   8055:              }
                   8056:            } /* end covariate */
                   8057:          } /* end if no covariate */
1.296     brouard  8058:          if(prevbcast == 1){
1.268     brouard  8059:            fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
                   8060:            /* k1-1 error should be nres-1*/
                   8061:            for (i=1; i<= nlstate ; i ++) {
                   8062:              if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   8063:              else        fprintf(ficgp," %%*lf (%%*lf)");
                   8064:            }
1.271     brouard  8065:            fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
1.268     brouard  8066:            for (i=1; i<= nlstate ; i ++) {
                   8067:              if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   8068:              else fprintf(ficgp," %%*lf (%%*lf)");
                   8069:            } 
1.276     brouard  8070:            fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); 
1.268     brouard  8071:            for (i=1; i<= nlstate ; i ++) {
                   8072:              if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   8073:              else fprintf(ficgp," %%*lf (%%*lf)");
                   8074:            } 
1.274     brouard  8075:            fprintf(ficgp,"\" t\"\" w l lt 4");
1.268     brouard  8076:          } /* end if backprojcast */
1.296     brouard  8077:        } /* end if prevbcast */
1.276     brouard  8078:        /* fprintf(ficgp,"\nset out ;unset label;\n"); */
                   8079:        fprintf(ficgp,"\nset out ;unset title;\n");
1.238     brouard  8080:       } /* nres */
1.337     brouard  8081:     /* } /\* k1 *\/ */
1.201     brouard  8082:   } /* cpt */
1.235     brouard  8083: 
                   8084:   
1.126     brouard  8085:   /*2 eme*/
1.337     brouard  8086:   /* for (k1=1; k1<= m ; k1 ++){   */
1.238     brouard  8087:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8088:       k1=TKresult[nres];
1.338   ! brouard  8089:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8090:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8091:       /*       continue; */
1.238     brouard  8092:       fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
1.264     brouard  8093:       strcpy(gplotlabel,"(");
1.337     brouard  8094:       for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8095:        fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8096:        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8097:       /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8098:       /*       /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8099:       /*       lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8100:       /*       /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8101:       /*       /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8102:       /*       /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8103:       /*       /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8104:       /*       vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8105:       /*       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8106:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8107:       /* } */
                   8108:       /* /\* for(k=1; k <= ncovds; k++){ *\/ */
                   8109:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8110:       /*       printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   8111:       /*       fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   8112:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
1.238     brouard  8113:       }
1.264     brouard  8114:       strcpy(gplotlabel+strlen(gplotlabel),")");
1.211     brouard  8115:       fprintf(ficgp,"\n#\n");
1.223     brouard  8116:       if(invalidvarcomb[k1]){
                   8117:        fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8118:        continue;
                   8119:       }
1.219     brouard  8120:                        
1.241     brouard  8121:       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres);
1.238     brouard  8122:       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
1.264     brouard  8123:        fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel);
                   8124:        if(vpopbased==0){
1.238     brouard  8125:          fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
1.264     brouard  8126:        }else
1.238     brouard  8127:          fprintf(ficgp,"\nreplot ");
                   8128:        for (i=1; i<= nlstate+1 ; i ++) {
                   8129:          k=2*i;
1.261     brouard  8130:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased);
1.238     brouard  8131:          for (j=1; j<= nlstate+1 ; j ++) {
                   8132:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   8133:            else fprintf(ficgp," %%*lf (%%*lf)");
                   8134:          }   
                   8135:          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
                   8136:          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
1.261     brouard  8137:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
1.238     brouard  8138:          for (j=1; j<= nlstate+1 ; j ++) {
                   8139:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   8140:            else fprintf(ficgp," %%*lf (%%*lf)");
                   8141:          }   
                   8142:          fprintf(ficgp,"\" t\"\" w l lt 0,");
1.261     brouard  8143:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
1.238     brouard  8144:          for (j=1; j<= nlstate+1 ; j ++) {
                   8145:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   8146:            else fprintf(ficgp," %%*lf (%%*lf)");
                   8147:          }   
                   8148:          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
                   8149:          else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
                   8150:        } /* state */
                   8151:       } /* vpopbased */
1.264     brouard  8152:       fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */
1.238     brouard  8153:     } /* end nres */
1.337     brouard  8154:   /* } /\* k1 end 2 eme*\/ */
1.238     brouard  8155:        
                   8156:        
                   8157:   /*3eme*/
1.337     brouard  8158:   /* for (k1=1; k1<= m ; k1 ++){ */
1.238     brouard  8159:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8160:       k1=TKresult[nres];
1.338   ! brouard  8161:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8162:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8163:       /*       continue; */
1.238     brouard  8164: 
1.332     brouard  8165:       for (cpt=1; cpt<= nlstate ; cpt ++) { /* Fragile no verification of covariate values */
1.261     brouard  8166:        fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
1.264     brouard  8167:        strcpy(gplotlabel,"(");
1.337     brouard  8168:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8169:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8170:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8171:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8172:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8173:        /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   8174:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8175:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8176:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8177:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8178:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8179:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8180:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8181:        /* } */
                   8182:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8183:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
                   8184:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
                   8185:        }
1.264     brouard  8186:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.238     brouard  8187:        fprintf(ficgp,"\n#\n");
                   8188:        if(invalidvarcomb[k1]){
                   8189:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8190:          continue;
                   8191:        }
                   8192:                        
                   8193:        /*       k=2+nlstate*(2*cpt-2); */
                   8194:        k=2+(nlstate+1)*(cpt-1);
1.241     brouard  8195:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
1.264     brouard  8196:        fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel);
1.238     brouard  8197:        fprintf(ficgp,"set ter svg size 640, 480\n\
1.261     brouard  8198: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt);
1.238     brouard  8199:        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   8200:          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   8201:          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   8202:          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   8203:          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   8204:          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
1.219     brouard  8205:                                
1.238     brouard  8206:        */
                   8207:        for (i=1; i< nlstate ; i ++) {
1.261     brouard  8208:          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1);
1.238     brouard  8209:          /*    fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
1.219     brouard  8210:                                
1.238     brouard  8211:        } 
1.261     brouard  8212:        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt);
1.238     brouard  8213:       }
1.264     brouard  8214:       fprintf(ficgp,"\nunset label;\n");
1.238     brouard  8215:     } /* end nres */
1.337     brouard  8216:   /* } /\* end kl 3eme *\/ */
1.126     brouard  8217:   
1.223     brouard  8218:   /* 4eme */
1.201     brouard  8219:   /* Survival functions (period) from state i in state j by initial state i */
1.337     brouard  8220:   /* for (k1=1; k1<=m; k1++){    /\* For each covariate and each value *\/ */
1.238     brouard  8221:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8222:       k1=TKresult[nres];
1.338   ! brouard  8223:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8224:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8225:       /*       continue; */
1.238     brouard  8226:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
1.264     brouard  8227:        strcpy(gplotlabel,"(");
1.337     brouard  8228:        fprintf(ficgp,"\n#\n#\n# Survival functions in state %d : 'LIJ_' files, cov=%d state=%d", cpt, k1, cpt);
                   8229:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8230:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8231:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8232:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8233:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8234:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8235:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8236:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8237:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8238:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8239:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8240:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8241:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8242:        /* } */
                   8243:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8244:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8245:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.238     brouard  8246:        }       
1.264     brouard  8247:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.238     brouard  8248:        fprintf(ficgp,"\n#\n");
                   8249:        if(invalidvarcomb[k1]){
                   8250:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8251:          continue;
1.223     brouard  8252:        }
1.238     brouard  8253:       
1.241     brouard  8254:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
1.264     brouard  8255:        fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.238     brouard  8256:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
                   8257: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   8258:        k=3;
                   8259:        for (i=1; i<= nlstate ; i ++){
                   8260:          if(i==1){
                   8261:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   8262:          }else{
                   8263:            fprintf(ficgp,", '' ");
                   8264:          }
                   8265:          l=(nlstate+ndeath)*(i-1)+1;
                   8266:          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
                   8267:          for (j=2; j<= nlstate+ndeath ; j ++)
                   8268:            fprintf(ficgp,"+$%d",k+l+j-1);
                   8269:          fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
                   8270:        } /* nlstate */
1.264     brouard  8271:        fprintf(ficgp,"\nset out; unset label;\n");
1.238     brouard  8272:       } /* end cpt state*/ 
                   8273:     } /* end nres */
1.337     brouard  8274:   /* } /\* end covariate k1 *\/   */
1.238     brouard  8275: 
1.220     brouard  8276: /* 5eme */
1.201     brouard  8277:   /* Survival functions (period) from state i in state j by final state j */
1.337     brouard  8278:   /* for (k1=1; k1<= m ; k1++){ /\* For each covariate combination if any *\/ */
1.238     brouard  8279:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8280:       k1=TKresult[nres];
1.338   ! brouard  8281:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8282:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8283:       /*       continue; */
1.238     brouard  8284:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
1.264     brouard  8285:        strcpy(gplotlabel,"(");
1.238     brouard  8286:        fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
1.337     brouard  8287:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8288:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8289:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8290:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8291:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8292:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8293:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8294:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8295:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8296:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8297:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8298:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8299:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8300:        /* } */
                   8301:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8302:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8303:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.238     brouard  8304:        }       
1.264     brouard  8305:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.238     brouard  8306:        fprintf(ficgp,"\n#\n");
                   8307:        if(invalidvarcomb[k1]){
                   8308:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8309:          continue;
                   8310:        }
1.227     brouard  8311:       
1.241     brouard  8312:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
1.264     brouard  8313:        fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.238     brouard  8314:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
                   8315: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   8316:        k=3;
                   8317:        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
                   8318:          if(j==1)
                   8319:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   8320:          else
                   8321:            fprintf(ficgp,", '' ");
                   8322:          l=(nlstate+ndeath)*(cpt-1) +j;
                   8323:          fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
                   8324:          /* for (i=2; i<= nlstate+ndeath ; i ++) */
                   8325:          /*   fprintf(ficgp,"+$%d",k+l+i-1); */
                   8326:          fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
                   8327:        } /* nlstate */
                   8328:        fprintf(ficgp,", '' ");
                   8329:        fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
                   8330:        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
                   8331:          l=(nlstate+ndeath)*(cpt-1) +j;
                   8332:          if(j < nlstate)
                   8333:            fprintf(ficgp,"$%d +",k+l);
                   8334:          else
                   8335:            fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
                   8336:        }
1.264     brouard  8337:        fprintf(ficgp,"\nset out; unset label;\n");
1.238     brouard  8338:       } /* end cpt state*/ 
1.337     brouard  8339:     /* } /\* end covariate *\/   */
1.238     brouard  8340:   } /* end nres */
1.227     brouard  8341:   
1.220     brouard  8342: /* 6eme */
1.202     brouard  8343:   /* CV preval stable (period) for each covariate */
1.337     brouard  8344:   /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.237     brouard  8345:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8346:      k1=TKresult[nres];
1.338   ! brouard  8347:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8348:      /* if(m != 1 && TKresult[nres]!= k1) */
                   8349:      /*  continue; */
1.255     brouard  8350:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */
1.264     brouard  8351:       strcpy(gplotlabel,"(");      
1.288     brouard  8352:       fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
1.337     brouard  8353:       for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8354:        fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8355:        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8356:       /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8357:       /*       /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8358:       /*       lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8359:       /*       /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8360:       /*       /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8361:       /*       /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8362:       /*       /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8363:       /*       vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8364:       /*       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8365:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8366:       /* } */
                   8367:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8368:       /*       fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8369:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.237     brouard  8370:       }        
1.264     brouard  8371:       strcpy(gplotlabel+strlen(gplotlabel),")");
1.211     brouard  8372:       fprintf(ficgp,"\n#\n");
1.223     brouard  8373:       if(invalidvarcomb[k1]){
1.227     brouard  8374:        fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8375:        continue;
1.223     brouard  8376:       }
1.227     brouard  8377:       
1.241     brouard  8378:       fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.264     brouard  8379:       fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.126     brouard  8380:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.238     brouard  8381: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.211     brouard  8382:       k=3; /* Offset */
1.255     brouard  8383:       for (i=1; i<= nlstate ; i ++){ /* State of origin */
1.227     brouard  8384:        if(i==1)
                   8385:          fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   8386:        else
                   8387:          fprintf(ficgp,", '' ");
1.255     brouard  8388:        l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
1.227     brouard  8389:        fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
                   8390:        for (j=2; j<= nlstate ; j ++)
                   8391:          fprintf(ficgp,"+$%d",k+l+j-1);
                   8392:        fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
1.153     brouard  8393:       } /* nlstate */
1.264     brouard  8394:       fprintf(ficgp,"\nset out; unset label;\n");
1.153     brouard  8395:     } /* end cpt state*/ 
                   8396:   } /* end covariate */  
1.227     brouard  8397:   
                   8398:   
1.220     brouard  8399: /* 7eme */
1.296     brouard  8400:   if(prevbcast == 1){
1.288     brouard  8401:     /* CV backward prevalence  for each covariate */
1.337     brouard  8402:     /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.237     brouard  8403:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8404:       k1=TKresult[nres];
1.338   ! brouard  8405:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8406:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8407:       /*       continue; */
1.268     brouard  8408:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */
1.264     brouard  8409:        strcpy(gplotlabel,"(");      
1.288     brouard  8410:        fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt);
1.337     brouard  8411:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8412:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8413:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8414:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8415:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8416:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8417:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8418:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8419:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8420:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8421:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8422:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8423:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8424:        /* } */
                   8425:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8426:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8427:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.237     brouard  8428:        }       
1.264     brouard  8429:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.227     brouard  8430:        fprintf(ficgp,"\n#\n");
                   8431:        if(invalidvarcomb[k1]){
                   8432:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8433:          continue;
                   8434:        }
                   8435:        
1.241     brouard  8436:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
1.268     brouard  8437:        fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.227     brouard  8438:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.238     brouard  8439: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.227     brouard  8440:        k=3; /* Offset */
1.268     brouard  8441:        for (i=1; i<= nlstate ; i ++){ /* State of arrival */
1.227     brouard  8442:          if(i==1)
                   8443:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
                   8444:          else
                   8445:            fprintf(ficgp,", '' ");
                   8446:          /* l=(nlstate+ndeath)*(i-1)+1; */
1.255     brouard  8447:          l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
1.324     brouard  8448:          /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
                   8449:          /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
1.255     brouard  8450:          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */
1.227     brouard  8451:          /* for (j=2; j<= nlstate ; j ++) */
                   8452:          /*    fprintf(ficgp,"+$%d",k+l+j-1); */
                   8453:          /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
1.268     brouard  8454:          fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i);
1.227     brouard  8455:        } /* nlstate */
1.264     brouard  8456:        fprintf(ficgp,"\nset out; unset label;\n");
1.218     brouard  8457:       } /* end cpt state*/ 
                   8458:     } /* end covariate */  
1.296     brouard  8459:   } /* End if prevbcast */
1.218     brouard  8460:   
1.223     brouard  8461:   /* 8eme */
1.218     brouard  8462:   if(prevfcast==1){
1.288     brouard  8463:     /* Projection from cross-sectional to forward stable (period) prevalence for each covariate */
1.218     brouard  8464:     
1.337     brouard  8465:     /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.237     brouard  8466:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8467:       k1=TKresult[nres];
1.338   ! brouard  8468:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8469:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8470:       /*       continue; */
1.211     brouard  8471:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
1.264     brouard  8472:        strcpy(gplotlabel,"(");      
1.288     brouard  8473:        fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
1.337     brouard  8474:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8475:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8476:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8477:        /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
                   8478:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
                   8479:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8480:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8481:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8482:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8483:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8484:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8485:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8486:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8487:        /* } */
                   8488:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8489:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8490:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.237     brouard  8491:        }       
1.264     brouard  8492:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.227     brouard  8493:        fprintf(ficgp,"\n#\n");
                   8494:        if(invalidvarcomb[k1]){
                   8495:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8496:          continue;
                   8497:        }
                   8498:        
                   8499:        fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
1.241     brouard  8500:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
1.264     brouard  8501:        fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.227     brouard  8502:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
1.238     brouard  8503: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.266     brouard  8504: 
                   8505:        /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
                   8506:        istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
                   8507:        /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
                   8508:        for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
1.227     brouard  8509:          /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   8510:          /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   8511:          /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   8512:          /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
1.266     brouard  8513:          if(i==istart){
1.227     brouard  8514:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
                   8515:          }else{
                   8516:            fprintf(ficgp,",\\\n '' ");
                   8517:          }
                   8518:          if(cptcoveff ==0){ /* No covariate */
                   8519:            ioffset=2; /* Age is in 2 */
                   8520:            /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   8521:            /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   8522:            /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   8523:            /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   8524:            fprintf(ficgp," u %d:(", ioffset); 
1.266     brouard  8525:            if(i==nlstate+1){
1.270     brouard  8526:              fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ",        \
1.266     brouard  8527:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   8528:              fprintf(ficgp,",\\\n '' ");
                   8529:              fprintf(ficgp," u %d:(",ioffset); 
1.270     brouard  8530:              fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \
1.266     brouard  8531:                     offyear,                           \
1.268     brouard  8532:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate );
1.266     brouard  8533:            }else
1.227     brouard  8534:              fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                   8535:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                   8536:          }else{ /* more than 2 covariates */
1.270     brouard  8537:            ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
                   8538:            /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   8539:            /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
                   8540:            iyearc=ioffset-1;
                   8541:            iagec=ioffset;
1.227     brouard  8542:            fprintf(ficgp," u %d:(",ioffset); 
                   8543:            kl=0;
                   8544:            strcpy(gplotcondition,"(");
                   8545:            for (k=1; k<=cptcoveff; k++){    /* For each covariate writing the chain of conditions */
1.332     brouard  8546:              /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   8547:              lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
1.227     brouard  8548:              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   8549:              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   8550:              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
1.332     brouard  8551:              /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
                   8552:              vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])];
1.227     brouard  8553:              kl++;
                   8554:              sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]);
                   8555:              kl++;
                   8556:              if(k <cptcoveff && cptcoveff>1)
                   8557:                sprintf(gplotcondition+strlen(gplotcondition)," && ");
                   8558:            }
                   8559:            strcpy(gplotcondition+strlen(gplotcondition),")");
                   8560:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   8561:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   8562:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   8563:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   8564:            if(i==nlstate+1){
1.270     brouard  8565:              fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \
                   8566:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt );
1.266     brouard  8567:              fprintf(ficgp,",\\\n '' ");
1.270     brouard  8568:              fprintf(ficgp," u %d:(",iagec); 
                   8569:              fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \
                   8570:                      iyearc, iagec, offyear,                           \
                   8571:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc );
1.266     brouard  8572: /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
1.227     brouard  8573:            }else{
                   8574:              fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                   8575:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                   8576:            }
                   8577:          } /* end if covariate */
                   8578:        } /* nlstate */
1.264     brouard  8579:        fprintf(ficgp,"\nset out; unset label;\n");
1.223     brouard  8580:       } /* end cpt state*/
                   8581:     } /* end covariate */
                   8582:   } /* End if prevfcast */
1.227     brouard  8583:   
1.296     brouard  8584:   if(prevbcast==1){
1.268     brouard  8585:     /* Back projection from cross-sectional to stable (mixed) for each covariate */
                   8586:     
1.337     brouard  8587:     /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.268     brouard  8588:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8589:      k1=TKresult[nres];
1.338   ! brouard  8590:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8591:        /* if(m != 1 && TKresult[nres]!= k1) */
                   8592:        /*      continue; */
1.268     brouard  8593:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
                   8594:        strcpy(gplotlabel,"(");      
                   8595:        fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt);
1.337     brouard  8596:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8597:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8598:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8599:        /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
                   8600:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
                   8601:        /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   8602:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8603:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8604:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8605:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8606:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8607:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8608:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8609:        /* } */
                   8610:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8611:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8612:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.268     brouard  8613:        }       
                   8614:        strcpy(gplotlabel+strlen(gplotlabel),")");
                   8615:        fprintf(ficgp,"\n#\n");
                   8616:        if(invalidvarcomb[k1]){
                   8617:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8618:          continue;
                   8619:        }
                   8620:        
                   8621:        fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n ");
                   8622:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
                   8623:        fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
                   8624:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
                   8625: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   8626: 
                   8627:        /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
                   8628:        istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
                   8629:        /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
                   8630:        for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
                   8631:          /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   8632:          /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   8633:          /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   8634:          /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   8635:          if(i==istart){
                   8636:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_"));
                   8637:          }else{
                   8638:            fprintf(ficgp,",\\\n '' ");
                   8639:          }
                   8640:          if(cptcoveff ==0){ /* No covariate */
                   8641:            ioffset=2; /* Age is in 2 */
                   8642:            /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   8643:            /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   8644:            /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   8645:            /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   8646:            fprintf(ficgp," u %d:(", ioffset); 
                   8647:            if(i==nlstate+1){
1.270     brouard  8648:              fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \
1.268     brouard  8649:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   8650:              fprintf(ficgp,",\\\n '' ");
                   8651:              fprintf(ficgp," u %d:(",ioffset); 
1.270     brouard  8652:              fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \
1.268     brouard  8653:                     offbyear,                          \
                   8654:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1) );
                   8655:            }else
                   8656:              fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ",      \
                   8657:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i );
                   8658:          }else{ /* more than 2 covariates */
1.270     brouard  8659:            ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
                   8660:            /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   8661:            /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
                   8662:            iyearc=ioffset-1;
                   8663:            iagec=ioffset;
1.268     brouard  8664:            fprintf(ficgp," u %d:(",ioffset); 
                   8665:            kl=0;
                   8666:            strcpy(gplotcondition,"(");
1.337     brouard  8667:            for (k=1; k<=cptcovs; k++){    /* For each covariate k of the resultline, get corresponding value lv for combination k1 */
1.338   ! brouard  8668:              if(Dummy[modelresult[nres][k]]==0){  /* To be verified */
1.337     brouard  8669:                /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate writing the chain of conditions *\/ */
                   8670:                /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   8671:                /* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   8672:                lv=Tvresult[nres][k];
                   8673:                vlv=TinvDoQresult[nres][Tvresult[nres][k]];
                   8674:                /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   8675:                /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   8676:                /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   8677:                /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
                   8678:                /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8679:                kl++;
                   8680:                /* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */
                   8681:                sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,Tvresult[nres][k], kl+1,TinvDoQresult[nres][Tvresult[nres][k]]);
                   8682:                kl++;
1.338   ! brouard  8683:                if(k <cptcovs && cptcovs>1)
1.337     brouard  8684:                  sprintf(gplotcondition+strlen(gplotcondition)," && ");
                   8685:              }
1.268     brouard  8686:            }
                   8687:            strcpy(gplotcondition+strlen(gplotcondition),")");
                   8688:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   8689:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   8690:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   8691:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   8692:            if(i==nlstate+1){
1.270     brouard  8693:              fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \
                   8694:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt );
1.268     brouard  8695:              fprintf(ficgp,",\\\n '' ");
1.270     brouard  8696:              fprintf(ficgp," u %d:(",iagec); 
1.268     brouard  8697:              /* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */
1.270     brouard  8698:              fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \
                   8699:                      iyearc,iagec,offbyear,                            \
                   8700:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc );
1.268     brouard  8701: /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
                   8702:            }else{
                   8703:              /* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */
                   8704:              fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \
                   8705:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i );
                   8706:            }
                   8707:          } /* end if covariate */
                   8708:        } /* nlstate */
                   8709:        fprintf(ficgp,"\nset out; unset label;\n");
                   8710:       } /* end cpt state*/
                   8711:     } /* end covariate */
1.296     brouard  8712:   } /* End if prevbcast */
1.268     brouard  8713:   
1.227     brouard  8714:   
1.238     brouard  8715:   /* 9eme writing MLE parameters */
                   8716:   fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n");
1.126     brouard  8717:   for(i=1,jk=1; i <=nlstate; i++){
1.187     brouard  8718:     fprintf(ficgp,"# initial state %d\n",i);
1.126     brouard  8719:     for(k=1; k <=(nlstate+ndeath); k++){
                   8720:       if (k != i) {
1.227     brouard  8721:        fprintf(ficgp,"#   current state %d\n",k);
                   8722:        for(j=1; j <=ncovmodel; j++){
                   8723:          fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
                   8724:          jk++; 
                   8725:        }
                   8726:        fprintf(ficgp,"\n");
1.126     brouard  8727:       }
                   8728:     }
1.223     brouard  8729:   }
1.187     brouard  8730:   fprintf(ficgp,"##############\n#\n");
1.227     brouard  8731:   
1.145     brouard  8732:   /*goto avoid;*/
1.238     brouard  8733:   /* 10eme Graphics of probabilities or incidences using written MLE parameters */
                   8734:   fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n");
1.187     brouard  8735:   fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
                   8736:   fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
                   8737:   fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
                   8738:   fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
                   8739:   fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   8740:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
                   8741:   fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   8742:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
                   8743:   fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
                   8744:   fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   8745:   fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
                   8746:   fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
                   8747:   fprintf(ficgp,"#\n");
1.223     brouard  8748:   for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
1.238     brouard  8749:     fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
1.338   ! brouard  8750:     fprintf(ficgp,"#model=1+age+%s \n",model);
1.238     brouard  8751:     fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
1.264     brouard  8752:     fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcoveff,m);/* to be checked */
1.337     brouard  8753:     /* for(k1=1; k1 <=m; k1++)  /\* For each combination of covariate *\/ */
1.237     brouard  8754:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8755:      /* k1=nres; */
1.338   ! brouard  8756:       k1=TKresult[nres];
        !          8757:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8758:       fprintf(ficgp,"\n\n# Resultline k1=%d ",k1);
1.264     brouard  8759:       strcpy(gplotlabel,"(");
1.276     brouard  8760:       /*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/
1.337     brouard  8761:       for (k=1; k<=cptcovs; k++){  /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
                   8762:        /* for each resultline nres, and position k, Tvresult[nres][k] gives the name of the variable and
                   8763:           TinvDoQresult[nres][Tvresult[nres][k]] gives its value double or integer) */
                   8764:        fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8765:        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8766:       }
                   8767:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8768:       /*       continue; */
                   8769:       /* fprintf(ficgp,"\n\n# Combination of dummy  k1=%d which is ",k1); */
                   8770:       /* strcpy(gplotlabel,"("); */
                   8771:       /* /\*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*\/ */
                   8772:       /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
                   8773:       /*       /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
                   8774:       /*       lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   8775:       /*       /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8776:       /*       /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8777:       /*       /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8778:       /*       /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8779:       /*       vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8780:       /*       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8781:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8782:       /* } */
                   8783:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8784:       /*       fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8785:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8786:       /* }      */
1.264     brouard  8787:       strcpy(gplotlabel+strlen(gplotlabel),")");
1.237     brouard  8788:       fprintf(ficgp,"\n#\n");
1.264     brouard  8789:       fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres);
1.276     brouard  8790:       fprintf(ficgp,"\nset key outside ");
                   8791:       /* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */
                   8792:       fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel);
1.223     brouard  8793:       fprintf(ficgp,"\nset ter svg size 640, 480 ");
                   8794:       if (ng==1){
                   8795:        fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
                   8796:        fprintf(ficgp,"\nunset log y");
                   8797:       }else if (ng==2){
                   8798:        fprintf(ficgp,"\nset ylabel \"Probability\"\n");
                   8799:        fprintf(ficgp,"\nset log y");
                   8800:       }else if (ng==3){
                   8801:        fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                   8802:        fprintf(ficgp,"\nset log y");
                   8803:       }else
                   8804:        fprintf(ficgp,"\nunset title ");
                   8805:       fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                   8806:       i=1;
                   8807:       for(k2=1; k2<=nlstate; k2++) {
                   8808:        k3=i;
                   8809:        for(k=1; k<=(nlstate+ndeath); k++) {
                   8810:          if (k != k2){
                   8811:            switch( ng) {
                   8812:            case 1:
                   8813:              if(nagesqr==0)
                   8814:                fprintf(ficgp," p%d+p%d*x",i,i+1);
                   8815:              else /* nagesqr =1 */
                   8816:                fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                   8817:              break;
                   8818:            case 2: /* ng=2 */
                   8819:              if(nagesqr==0)
                   8820:                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                   8821:              else /* nagesqr =1 */
                   8822:                fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                   8823:              break;
                   8824:            case 3:
                   8825:              if(nagesqr==0)
                   8826:                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   8827:              else /* nagesqr =1 */
                   8828:                fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                   8829:              break;
                   8830:            }
                   8831:            ij=1;/* To be checked else nbcode[0][0] wrong */
1.237     brouard  8832:            ijp=1; /* product no age */
                   8833:            /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
                   8834:            for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
1.223     brouard  8835:              /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
1.329     brouard  8836:              switch(Typevar[j]){
                   8837:              case 1:
                   8838:                if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                   8839:                  if(j==Tage[ij]) { /* Product by age  To be looked at!!*//* Bug valgrind */
                   8840:                    if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                   8841:                      if(DummyV[j]==0){/* Bug valgrind */
                   8842:                        fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                   8843:                      }else{ /* quantitative */
                   8844:                        fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                   8845:                        /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   8846:                      }
                   8847:                      ij++;
1.268     brouard  8848:                    }
1.237     brouard  8849:                  }
1.329     brouard  8850:                }
                   8851:                break;
                   8852:              case 2:
                   8853:                if(cptcovprod >0){
                   8854:                  if(j==Tprod[ijp]) { /* */ 
                   8855:                    /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   8856:                    if(ijp <=cptcovprod) { /* Product */
                   8857:                      if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                   8858:                        if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                   8859:                          /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                   8860:                          fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                   8861:                        }else{ /* Vn is dummy and Vm is quanti */
                   8862:                          /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                   8863:                          fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   8864:                        }
                   8865:                      }else{ /* Vn*Vm Vn is quanti */
                   8866:                        if(DummyV[Tvard[ijp][2]]==0){
                   8867:                          fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                   8868:                        }else{ /* Both quanti */
                   8869:                          fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   8870:                        }
1.268     brouard  8871:                      }
1.329     brouard  8872:                      ijp++;
1.237     brouard  8873:                    }
1.329     brouard  8874:                  } /* end Tprod */
                   8875:                }
                   8876:                break;
                   8877:              case 0:
                   8878:                /* simple covariate */
1.264     brouard  8879:                /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
1.237     brouard  8880:                if(Dummy[j]==0){
                   8881:                  fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
                   8882:                }else{ /* quantitative */
                   8883:                  fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
1.264     brouard  8884:                  /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
1.223     brouard  8885:                }
1.329     brouard  8886:               /* end simple */
                   8887:                break;
                   8888:              default:
                   8889:                break;
                   8890:              } /* end switch */
1.237     brouard  8891:            } /* end j */
1.329     brouard  8892:          }else{ /* k=k2 */
                   8893:            if(ng !=1 ){ /* For logit formula of log p11 is more difficult to get */
                   8894:              fprintf(ficgp," (1.");i=i-ncovmodel;
                   8895:            }else
                   8896:              i=i-ncovmodel;
1.223     brouard  8897:          }
1.227     brouard  8898:          
1.223     brouard  8899:          if(ng != 1){
                   8900:            fprintf(ficgp,")/(1");
1.227     brouard  8901:            
1.264     brouard  8902:            for(cpt=1; cpt <=nlstate; cpt++){ 
1.223     brouard  8903:              if(nagesqr==0)
1.264     brouard  8904:                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1);
1.223     brouard  8905:              else /* nagesqr =1 */
1.264     brouard  8906:                fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr);
1.217     brouard  8907:               
1.223     brouard  8908:              ij=1;
1.329     brouard  8909:              ijp=1;
                   8910:              /* for(j=3; j <=ncovmodel-nagesqr; j++){ */
                   8911:              for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
                   8912:                switch(Typevar[j]){
                   8913:                case 1:
                   8914:                  if(cptcovage >0){ 
                   8915:                    if(j==Tage[ij]) { /* Bug valgrind */
                   8916:                      if(ij <=cptcovage) { /* Bug valgrind */
                   8917:                        if(DummyV[j]==0){/* Bug valgrind */
                   8918:                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); */
                   8919:                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,nbcode[Tvar[j]][codtabm(k1,j)]); */
                   8920:                          fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]);
                   8921:                          /* fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; */
                   8922:                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   8923:                        }else{ /* quantitative */
                   8924:                          /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                   8925:                          fprintf(ficgp,"+p%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                   8926:                          /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                   8927:                          /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   8928:                        }
                   8929:                        ij++;
                   8930:                      }
                   8931:                    }
                   8932:                  }
                   8933:                  break;
                   8934:                case 2:
                   8935:                  if(cptcovprod >0){
                   8936:                    if(j==Tprod[ijp]) { /* */ 
                   8937:                      /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   8938:                      if(ijp <=cptcovprod) { /* Product */
                   8939:                        if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                   8940:                          if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                   8941:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                   8942:                            fprintf(ficgp,"+p%d*%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                   8943:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */
                   8944:                          }else{ /* Vn is dummy and Vm is quanti */
                   8945:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                   8946:                            fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   8947:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   8948:                          }
                   8949:                        }else{ /* Vn*Vm Vn is quanti */
                   8950:                          if(DummyV[Tvard[ijp][2]]==0){
                   8951:                            fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                   8952:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */
                   8953:                          }else{ /* Both quanti */
                   8954:                            fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   8955:                            /* fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   8956:                          } 
                   8957:                        }
                   8958:                        ijp++;
                   8959:                      }
                   8960:                    } /* end Tprod */
                   8961:                  } /* end if */
                   8962:                  break;
                   8963:                case 0: 
                   8964:                  /* simple covariate */
                   8965:                  /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
                   8966:                  if(Dummy[j]==0){
                   8967:                    /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                   8968:                    fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); /*  */
                   8969:                    /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                   8970:                  }else{ /* quantitative */
                   8971:                    fprintf(ficgp,"+p%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* */
                   8972:                    /* fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* *\/ */
                   8973:                    /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   8974:                  }
                   8975:                  /* end simple */
                   8976:                  /* fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/\* Valgrind bug nbcode *\/ */
                   8977:                  break;
                   8978:                default:
                   8979:                  break;
                   8980:                } /* end switch */
1.223     brouard  8981:              }
                   8982:              fprintf(ficgp,")");
                   8983:            }
                   8984:            fprintf(ficgp,")");
                   8985:            if(ng ==2)
1.276     brouard  8986:              fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
1.223     brouard  8987:            else /* ng= 3 */
1.276     brouard  8988:              fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
1.329     brouard  8989:           }else{ /* end ng <> 1 */
1.223     brouard  8990:            if( k !=k2) /* logit p11 is hard to draw */
1.276     brouard  8991:              fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
1.223     brouard  8992:          }
                   8993:          if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
                   8994:            fprintf(ficgp,",");
                   8995:          if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
                   8996:            fprintf(ficgp,",");
                   8997:          i=i+ncovmodel;
                   8998:        } /* end k */
                   8999:       } /* end k2 */
1.276     brouard  9000:       /* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */
                   9001:       fprintf(ficgp,"\n set out; unset title;set key default;\n");
1.337     brouard  9002:     } /* end resultline */
1.223     brouard  9003:   } /* end ng */
                   9004:   /* avoid: */
                   9005:   fflush(ficgp); 
1.126     brouard  9006: }  /* end gnuplot */
                   9007: 
                   9008: 
                   9009: /*************** Moving average **************/
1.219     brouard  9010: /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
1.222     brouard  9011:  int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
1.218     brouard  9012:    
1.222     brouard  9013:    int i, cpt, cptcod;
                   9014:    int modcovmax =1;
                   9015:    int mobilavrange, mob;
                   9016:    int iage=0;
1.288     brouard  9017:    int firstA1=0, firstA2=0;
1.222     brouard  9018: 
1.266     brouard  9019:    double sum=0., sumr=0.;
1.222     brouard  9020:    double age;
1.266     brouard  9021:    double *sumnewp, *sumnewm, *sumnewmr;
                   9022:    double *agemingood, *agemaxgood; 
                   9023:    double *agemingoodr, *agemaxgoodr; 
1.222     brouard  9024:   
                   9025:   
1.278     brouard  9026:    /* modcovmax=2*cptcoveff;  Max number of modalities. We suppose  */
                   9027:    /*             a covariate has 2 modalities, should be equal to ncovcombmax   */
1.222     brouard  9028: 
                   9029:    sumnewp = vector(1,ncovcombmax);
                   9030:    sumnewm = vector(1,ncovcombmax);
1.266     brouard  9031:    sumnewmr = vector(1,ncovcombmax);
1.222     brouard  9032:    agemingood = vector(1,ncovcombmax); 
1.266     brouard  9033:    agemingoodr = vector(1,ncovcombmax);        
1.222     brouard  9034:    agemaxgood = vector(1,ncovcombmax);
1.266     brouard  9035:    agemaxgoodr = vector(1,ncovcombmax);
1.222     brouard  9036: 
                   9037:    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
1.266     brouard  9038:      sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.;
1.222     brouard  9039:      sumnewp[cptcod]=0.;
1.266     brouard  9040:      agemingood[cptcod]=0, agemingoodr[cptcod]=0;
                   9041:      agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0;
1.222     brouard  9042:    }
                   9043:    if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
                   9044:   
1.266     brouard  9045:    if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                   9046:      if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */
1.222     brouard  9047:      else mobilavrange=mobilav;
                   9048:      for (age=bage; age<=fage; age++)
                   9049:        for (i=1; i<=nlstate;i++)
                   9050:         for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
                   9051:           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   9052:      /* We keep the original values on the extreme ages bage, fage and for 
                   9053:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                   9054:        we use a 5 terms etc. until the borders are no more concerned. 
                   9055:      */ 
                   9056:      for (mob=3;mob <=mobilavrange;mob=mob+2){
                   9057:        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
1.266     brouard  9058:         for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                   9059:           sumnewm[cptcod]=0.;
                   9060:           for (i=1; i<=nlstate;i++){
1.222     brouard  9061:             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   9062:             for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   9063:               mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   9064:               mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   9065:             }
                   9066:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
1.266     brouard  9067:             sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   9068:           } /* end i */
                   9069:           if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */
                   9070:         } /* end cptcod */
1.222     brouard  9071:        }/* end age */
                   9072:      }/* end mob */
1.266     brouard  9073:    }else{
                   9074:      printf("Error internal in movingaverage, mobilav=%d.\n",mobilav);
1.222     brouard  9075:      return -1;
1.266     brouard  9076:    }
                   9077: 
                   9078:    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */
1.222     brouard  9079:      /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
                   9080:      if(invalidvarcomb[cptcod]){
                   9081:        printf("\nCombination (%d) ignored because no cases \n",cptcod); 
                   9082:        continue;
                   9083:      }
1.219     brouard  9084: 
1.266     brouard  9085:      for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */
                   9086:        sumnewm[cptcod]=0.;
                   9087:        sumnewmr[cptcod]=0.;
                   9088:        for (i=1; i<=nlstate;i++){
                   9089:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   9090:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   9091:        }
                   9092:        if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
                   9093:         agemingoodr[cptcod]=age;
                   9094:        }
                   9095:        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   9096:           agemingood[cptcod]=age;
                   9097:        }
                   9098:      } /* age */
                   9099:      for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */
1.222     brouard  9100:        sumnewm[cptcod]=0.;
1.266     brouard  9101:        sumnewmr[cptcod]=0.;
1.222     brouard  9102:        for (i=1; i<=nlstate;i++){
                   9103:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
1.266     brouard  9104:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   9105:        }
                   9106:        if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
                   9107:         agemaxgoodr[cptcod]=age;
1.222     brouard  9108:        }
                   9109:        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
1.266     brouard  9110:         agemaxgood[cptcod]=age;
                   9111:        }
                   9112:      } /* age */
                   9113:      /* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */
                   9114:      /* but they will change */
1.288     brouard  9115:      firstA1=0;firstA2=0;
1.266     brouard  9116:      for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */
                   9117:        sumnewm[cptcod]=0.;
                   9118:        sumnewmr[cptcod]=0.;
                   9119:        for (i=1; i<=nlstate;i++){
                   9120:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   9121:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   9122:        }
                   9123:        if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
                   9124:         if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
                   9125:           agemaxgoodr[cptcod]=age;  /* age min */
                   9126:           for (i=1; i<=nlstate;i++)
                   9127:             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   9128:         }else{ /* bad we change the value with the values of good ages */
                   9129:           for (i=1; i<=nlstate;i++){
                   9130:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod];
                   9131:           } /* i */
                   9132:         } /* end bad */
                   9133:        }else{
                   9134:         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   9135:           agemaxgood[cptcod]=age;
                   9136:         }else{ /* bad we change the value with the values of good ages */
                   9137:           for (i=1; i<=nlstate;i++){
                   9138:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
                   9139:           } /* i */
                   9140:         } /* end bad */
                   9141:        }/* end else */
                   9142:        sum=0.;sumr=0.;
                   9143:        for (i=1; i<=nlstate;i++){
                   9144:         sum+=mobaverage[(int)age][i][cptcod];
                   9145:         sumr+=probs[(int)age][i][cptcod];
                   9146:        }
                   9147:        if(fabs(sum - 1.) > 1.e-3) { /* bad */
1.288     brouard  9148:         if(!firstA1){
                   9149:           firstA1=1;
                   9150:           printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
                   9151:         }
                   9152:         fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
1.266     brouard  9153:        } /* end bad */
                   9154:        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
                   9155:        if(fabs(sumr - 1.) > 1.e-3) { /* bad */
1.288     brouard  9156:         if(!firstA2){
                   9157:           firstA2=1;
                   9158:           printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
                   9159:         }
                   9160:         fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
1.222     brouard  9161:        } /* end bad */
                   9162:      }/* age */
1.266     brouard  9163: 
                   9164:      for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */
1.222     brouard  9165:        sumnewm[cptcod]=0.;
1.266     brouard  9166:        sumnewmr[cptcod]=0.;
1.222     brouard  9167:        for (i=1; i<=nlstate;i++){
                   9168:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
1.266     brouard  9169:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   9170:        } 
                   9171:        if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
                   9172:         if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */
                   9173:           agemingoodr[cptcod]=age;
                   9174:           for (i=1; i<=nlstate;i++)
                   9175:             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   9176:         }else{ /* bad we change the value with the values of good ages */
                   9177:           for (i=1; i<=nlstate;i++){
                   9178:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod];
                   9179:           } /* i */
                   9180:         } /* end bad */
                   9181:        }else{
                   9182:         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   9183:           agemingood[cptcod]=age;
                   9184:         }else{ /* bad */
                   9185:           for (i=1; i<=nlstate;i++){
                   9186:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
                   9187:           } /* i */
                   9188:         } /* end bad */
                   9189:        }/* end else */
                   9190:        sum=0.;sumr=0.;
                   9191:        for (i=1; i<=nlstate;i++){
                   9192:         sum+=mobaverage[(int)age][i][cptcod];
                   9193:         sumr+=mobaverage[(int)age][i][cptcod];
1.222     brouard  9194:        }
1.266     brouard  9195:        if(fabs(sum - 1.) > 1.e-3) { /* bad */
1.268     brouard  9196:         printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage);
1.266     brouard  9197:        } /* end bad */
                   9198:        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
                   9199:        if(fabs(sumr - 1.) > 1.e-3) { /* bad */
1.268     brouard  9200:         printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage);
1.222     brouard  9201:        } /* end bad */
                   9202:      }/* age */
1.266     brouard  9203: 
1.222     brouard  9204:                
                   9205:      for (age=bage; age<=fage; age++){
1.235     brouard  9206:        /* printf("%d %d ", cptcod, (int)age); */
1.222     brouard  9207:        sumnewp[cptcod]=0.;
                   9208:        sumnewm[cptcod]=0.;
                   9209:        for (i=1; i<=nlstate;i++){
                   9210:         sumnewp[cptcod]+=probs[(int)age][i][cptcod];
                   9211:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   9212:         /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
                   9213:        }
                   9214:        /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
                   9215:      }
                   9216:      /* printf("\n"); */
                   9217:      /* } */
1.266     brouard  9218: 
1.222     brouard  9219:      /* brutal averaging */
1.266     brouard  9220:      /* for (i=1; i<=nlstate;i++){ */
                   9221:      /*   for (age=1; age<=bage; age++){ */
                   9222:      /*         mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
                   9223:      /*         /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
                   9224:      /*   }     */
                   9225:      /*   for (age=fage; age<=AGESUP; age++){ */
                   9226:      /*         mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */
                   9227:      /*         /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
                   9228:      /*   } */
                   9229:      /* } /\* end i status *\/ */
                   9230:      /* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */
                   9231:      /*   for (age=1; age<=AGESUP; age++){ */
                   9232:      /*         /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */
                   9233:      /*         mobaverage[(int)age][i][cptcod]=0.; */
                   9234:      /*   } */
                   9235:      /* } */
1.222     brouard  9236:    }/* end cptcod */
1.266     brouard  9237:    free_vector(agemaxgoodr,1, ncovcombmax);
                   9238:    free_vector(agemaxgood,1, ncovcombmax);
                   9239:    free_vector(agemingood,1, ncovcombmax);
                   9240:    free_vector(agemingoodr,1, ncovcombmax);
                   9241:    free_vector(sumnewmr,1, ncovcombmax);
1.222     brouard  9242:    free_vector(sumnewm,1, ncovcombmax);
                   9243:    free_vector(sumnewp,1, ncovcombmax);
                   9244:    return 0;
                   9245:  }/* End movingaverage */
1.218     brouard  9246:  
1.126     brouard  9247: 
1.296     brouard  9248:  
1.126     brouard  9249: /************** Forecasting ******************/
1.296     brouard  9250: /* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/
                   9251: void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
                   9252:   /* dateintemean, mean date of interviews
                   9253:      dateprojd, year, month, day of starting projection 
                   9254:      dateprojf date of end of projection;year of end of projection (same day and month as proj1).
1.126     brouard  9255:      agemin, agemax range of age
                   9256:      dateprev1 dateprev2 range of dates during which prevalence is computed
                   9257:   */
1.296     brouard  9258:   /* double anprojd, mprojd, jprojd; */
                   9259:   /* double anprojf, mprojf, jprojf; */
1.267     brouard  9260:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
1.126     brouard  9261:   double agec; /* generic age */
1.296     brouard  9262:   double agelim, ppij, yp,yp1,yp2;
1.126     brouard  9263:   double *popeffectif,*popcount;
                   9264:   double ***p3mat;
1.218     brouard  9265:   /* double ***mobaverage; */
1.126     brouard  9266:   char fileresf[FILENAMELENGTH];
                   9267: 
                   9268:   agelim=AGESUP;
1.211     brouard  9269:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   9270:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   9271:      We still use firstpass and lastpass as another selection.
                   9272:   */
1.214     brouard  9273:   /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
                   9274:   /*         firstpass, lastpass,  stepm,  weightopt, model); */
1.126     brouard  9275:  
1.201     brouard  9276:   strcpy(fileresf,"F_"); 
                   9277:   strcat(fileresf,fileresu);
1.126     brouard  9278:   if((ficresf=fopen(fileresf,"w"))==NULL) {
                   9279:     printf("Problem with forecast resultfile: %s\n", fileresf);
                   9280:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                   9281:   }
1.235     brouard  9282:   printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
                   9283:   fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
1.126     brouard  9284: 
1.225     brouard  9285:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
1.126     brouard  9286: 
                   9287: 
                   9288:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   9289:   if (stepm<=12) stepsize=1;
                   9290:   if(estepm < stepm){
                   9291:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   9292:   }
1.270     brouard  9293:   else{
                   9294:     hstepm=estepm;   
                   9295:   }
                   9296:   if(estepm > stepm){ /* Yes every two year */
                   9297:     stepsize=2;
                   9298:   }
1.296     brouard  9299:   hstepm=hstepm/stepm;
1.126     brouard  9300: 
1.296     brouard  9301:   
                   9302:   /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                   9303:   /*                              fractional in yp1 *\/ */
                   9304:   /* aintmean=yp; */
                   9305:   /* yp2=modf((yp1*12),&yp); */
                   9306:   /* mintmean=yp; */
                   9307:   /* yp1=modf((yp2*30.5),&yp); */
                   9308:   /* jintmean=yp; */
                   9309:   /* if(jintmean==0) jintmean=1; */
                   9310:   /* if(mintmean==0) mintmean=1; */
1.126     brouard  9311: 
1.296     brouard  9312: 
                   9313:   /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */
                   9314:   /* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */
                   9315:   /* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */
1.227     brouard  9316:   i1=pow(2,cptcoveff);
1.126     brouard  9317:   if (cptcovn < 1){i1=1;}
                   9318:   
1.296     brouard  9319:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); 
1.126     brouard  9320:   
                   9321:   fprintf(ficresf,"#****** Routine prevforecast **\n");
1.227     brouard  9322:   
1.126     brouard  9323: /*           if (h==(int)(YEARM*yearp)){ */
1.235     brouard  9324:   for(nres=1; nres <= nresult; nres++) /* For each resultline */
1.332     brouard  9325:     for(k=1; k<=i1;k++){ /* We want to find the combination k corresponding to the values of the dummies given in this resut line (to be cleaned one day) */
1.253     brouard  9326:     if(i1 != 1 && TKresult[nres]!= k)
1.235     brouard  9327:       continue;
1.227     brouard  9328:     if(invalidvarcomb[k]){
                   9329:       printf("\nCombination (%d) projection ignored because no cases \n",k); 
                   9330:       continue;
                   9331:     }
                   9332:     fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
                   9333:     for(j=1;j<=cptcoveff;j++) {
1.332     brouard  9334:       /* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); */
                   9335:       fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
1.227     brouard  9336:     }
1.235     brouard  9337:     for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
1.238     brouard  9338:       fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
1.235     brouard  9339:     }
1.227     brouard  9340:     fprintf(ficresf," yearproj age");
                   9341:     for(j=1; j<=nlstate+ndeath;j++){ 
                   9342:       for(i=1; i<=nlstate;i++)               
                   9343:        fprintf(ficresf," p%d%d",i,j);
                   9344:       fprintf(ficresf," wp.%d",j);
                   9345:     }
1.296     brouard  9346:     for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) {
1.227     brouard  9347:       fprintf(ficresf,"\n");
1.296     brouard  9348:       fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp);   
1.270     brouard  9349:       /* for (agec=fage; agec>=(ageminpar-1); agec--){  */
                   9350:       for (agec=fage; agec>=(bage); agec--){ 
1.227     brouard  9351:        nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                   9352:        nhstepm = nhstepm/hstepm; 
                   9353:        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   9354:        oldm=oldms;savm=savms;
1.268     brouard  9355:        /* We compute pii at age agec over nhstepm);*/
1.235     brouard  9356:        hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
1.268     brouard  9357:        /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
1.227     brouard  9358:        for (h=0; h<=nhstepm; h++){
                   9359:          if (h*hstepm/YEARM*stepm ==yearp) {
1.268     brouard  9360:            break;
                   9361:          }
                   9362:        }
                   9363:        fprintf(ficresf,"\n");
                   9364:        for(j=1;j<=cptcoveff;j++) 
1.332     brouard  9365:          /* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Tvaraff not correct *\/ */
                   9366:          fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /* TnsdVar[Tvaraff]  correct */
1.296     brouard  9367:        fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm);
1.268     brouard  9368:        
                   9369:        for(j=1; j<=nlstate+ndeath;j++) {
                   9370:          ppij=0.;
                   9371:          for(i=1; i<=nlstate;i++) {
1.278     brouard  9372:            if (mobilav>=1)
                   9373:             ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k];
                   9374:            else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */
                   9375:                ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
                   9376:            }
1.268     brouard  9377:            fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   9378:          } /* end i */
                   9379:          fprintf(ficresf," %.3f", ppij);
                   9380:        }/* end j */
1.227     brouard  9381:        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   9382:       } /* end agec */
1.266     brouard  9383:       /* diffyear=(int) anproj1+yearp-ageminpar-1; */
                   9384:       /*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/
1.227     brouard  9385:     } /* end yearp */
                   9386:   } /* end  k */
1.219     brouard  9387:        
1.126     brouard  9388:   fclose(ficresf);
1.215     brouard  9389:   printf("End of Computing forecasting \n");
                   9390:   fprintf(ficlog,"End of Computing forecasting\n");
                   9391: 
1.126     brouard  9392: }
                   9393: 
1.269     brouard  9394: /************** Back Forecasting ******************/
1.296     brouard  9395:  /* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
                   9396:  void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
                   9397:   /* back1, year, month, day of starting backprojection
1.267     brouard  9398:      agemin, agemax range of age
                   9399:      dateprev1 dateprev2 range of dates during which prevalence is computed
1.269     brouard  9400:      anback2 year of end of backprojection (same day and month as back1).
                   9401:      prevacurrent and prev are prevalences.
1.267     brouard  9402:   */
                   9403:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
                   9404:   double agec; /* generic age */
1.302     brouard  9405:   double agelim, ppij, ppi, yp,yp1,yp2; /* ,jintmean,mintmean,aintmean;*/
1.267     brouard  9406:   double *popeffectif,*popcount;
                   9407:   double ***p3mat;
                   9408:   /* double ***mobaverage; */
                   9409:   char fileresfb[FILENAMELENGTH];
                   9410:  
1.268     brouard  9411:   agelim=AGEINF;
1.267     brouard  9412:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   9413:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   9414:      We still use firstpass and lastpass as another selection.
                   9415:   */
                   9416:   /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
                   9417:   /*         firstpass, lastpass,  stepm,  weightopt, model); */
                   9418: 
                   9419:   /*Do we need to compute prevalence again?*/
                   9420: 
                   9421:   /* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
                   9422:   
                   9423:   strcpy(fileresfb,"FB_");
                   9424:   strcat(fileresfb,fileresu);
                   9425:   if((ficresfb=fopen(fileresfb,"w"))==NULL) {
                   9426:     printf("Problem with back forecast resultfile: %s\n", fileresfb);
                   9427:     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb);
                   9428:   }
                   9429:   printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
                   9430:   fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
                   9431:   
                   9432:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   9433:   
                   9434:    
                   9435:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   9436:   if (stepm<=12) stepsize=1;
                   9437:   if(estepm < stepm){
                   9438:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   9439:   }
1.270     brouard  9440:   else{
                   9441:     hstepm=estepm;   
                   9442:   }
                   9443:   if(estepm >= stepm){ /* Yes every two year */
                   9444:     stepsize=2;
                   9445:   }
1.267     brouard  9446:   
                   9447:   hstepm=hstepm/stepm;
1.296     brouard  9448:   /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                   9449:   /*                              fractional in yp1 *\/ */
                   9450:   /* aintmean=yp; */
                   9451:   /* yp2=modf((yp1*12),&yp); */
                   9452:   /* mintmean=yp; */
                   9453:   /* yp1=modf((yp2*30.5),&yp); */
                   9454:   /* jintmean=yp; */
                   9455:   /* if(jintmean==0) jintmean=1; */
                   9456:   /* if(mintmean==0) jintmean=1; */
1.267     brouard  9457:   
                   9458:   i1=pow(2,cptcoveff);
                   9459:   if (cptcovn < 1){i1=1;}
                   9460:   
1.296     brouard  9461:   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
                   9462:   printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
1.267     brouard  9463:   
                   9464:   fprintf(ficresfb,"#****** Routine prevbackforecast **\n");
                   9465:   
                   9466:   for(nres=1; nres <= nresult; nres++) /* For each resultline */
                   9467:   for(k=1; k<=i1;k++){
                   9468:     if(i1 != 1 && TKresult[nres]!= k)
                   9469:       continue;
                   9470:     if(invalidvarcomb[k]){
                   9471:       printf("\nCombination (%d) projection ignored because no cases \n",k); 
                   9472:       continue;
                   9473:     }
1.268     brouard  9474:     fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#");
1.267     brouard  9475:     for(j=1;j<=cptcoveff;j++) {
1.332     brouard  9476:       fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
1.267     brouard  9477:     }
                   9478:     for (k4=1; k4<= nsq; k4++){ /* For each selected (single) quantitative value */
                   9479:       fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]);
                   9480:     }
                   9481:     fprintf(ficresfb," yearbproj age");
                   9482:     for(j=1; j<=nlstate+ndeath;j++){
                   9483:       for(i=1; i<=nlstate;i++)
1.268     brouard  9484:        fprintf(ficresfb," b%d%d",i,j);
                   9485:       fprintf(ficresfb," b.%d",j);
1.267     brouard  9486:     }
1.296     brouard  9487:     for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) {
1.267     brouard  9488:       /* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  */
                   9489:       fprintf(ficresfb,"\n");
1.296     brouard  9490:       fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp);
1.273     brouard  9491:       /* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */
1.270     brouard  9492:       /* for (agec=bage; agec<=agemax-1; agec++){  /\* testing *\/ */
                   9493:       for (agec=bage; agec<=fage; agec++){  /* testing */
1.268     brouard  9494:        /* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/
1.271     brouard  9495:        nhstepm=(int) (agec-agelim) *YEARM/stepm;/*     nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/
1.267     brouard  9496:        nhstepm = nhstepm/hstepm;
                   9497:        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   9498:        oldm=oldms;savm=savms;
1.268     brouard  9499:        /* computes hbxij at age agec over 1 to nhstepm */
1.271     brouard  9500:        /* printf("####prevbackforecast debug  agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */
1.267     brouard  9501:        hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres);
1.268     brouard  9502:        /* hpxij(p3mat,nhstepm,agec,hstepm,p,             nlstate,stepm,oldm,savm, k,nres); */
                   9503:        /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
                   9504:        /* printf(" agec=%.2f\n",agec);fflush(stdout); */
1.267     brouard  9505:        for (h=0; h<=nhstepm; h++){
1.268     brouard  9506:          if (h*hstepm/YEARM*stepm ==-yearp) {
                   9507:            break;
                   9508:          }
                   9509:        }
                   9510:        fprintf(ficresfb,"\n");
                   9511:        for(j=1;j<=cptcoveff;j++)
1.332     brouard  9512:          fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
1.296     brouard  9513:        fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm);
1.268     brouard  9514:        for(i=1; i<=nlstate+ndeath;i++) {
                   9515:          ppij=0.;ppi=0.;
                   9516:          for(j=1; j<=nlstate;j++) {
                   9517:            /* if (mobilav==1) */
1.269     brouard  9518:            ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k];
                   9519:            ppi=ppi+prevacurrent[(int)agec][j][k];
                   9520:            /* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */
                   9521:            /* ppi=ppi+mobaverage[(int)agec][j][k]; */
1.267     brouard  9522:              /* else { */
                   9523:              /*        ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */
                   9524:              /* } */
1.268     brouard  9525:            fprintf(ficresfb," %.3f", p3mat[i][j][h]);
                   9526:          } /* end j */
                   9527:          if(ppi <0.99){
                   9528:            printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
                   9529:            fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
                   9530:          }
                   9531:          fprintf(ficresfb," %.3f", ppij);
                   9532:        }/* end j */
1.267     brouard  9533:        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   9534:       } /* end agec */
                   9535:     } /* end yearp */
                   9536:   } /* end k */
1.217     brouard  9537:   
1.267     brouard  9538:   /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
1.217     brouard  9539:   
1.267     brouard  9540:   fclose(ficresfb);
                   9541:   printf("End of Computing Back forecasting \n");
                   9542:   fprintf(ficlog,"End of Computing Back forecasting\n");
1.218     brouard  9543:        
1.267     brouard  9544: }
1.217     brouard  9545: 
1.269     brouard  9546: /* Variance of prevalence limit: varprlim */
                   9547:  void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
1.288     brouard  9548:     /*------- Variance of forward period (stable) prevalence------*/   
1.269     brouard  9549:  
                   9550:    char fileresvpl[FILENAMELENGTH];  
                   9551:    FILE *ficresvpl;
                   9552:    double **oldm, **savm;
                   9553:    double **varpl; /* Variances of prevalence limits by age */   
                   9554:    int i1, k, nres, j ;
                   9555:    
                   9556:     strcpy(fileresvpl,"VPL_");
                   9557:     strcat(fileresvpl,fileresu);
                   9558:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
1.288     brouard  9559:       printf("Problem with variance of forward period (stable) prevalence  resultfile: %s\n", fileresvpl);
1.269     brouard  9560:       exit(0);
                   9561:     }
1.288     brouard  9562:     printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
                   9563:     fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
1.269     brouard  9564:     
                   9565:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   9566:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   9567:     
                   9568:     i1=pow(2,cptcoveff);
                   9569:     if (cptcovn < 1){i1=1;}
                   9570: 
1.337     brouard  9571:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   9572:        k=TKresult[nres];
1.338   ! brouard  9573:        if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  9574:      /* for(k=1; k<=i1;k++){ /\* We find the combination equivalent to result line values of dummies *\/ */
1.269     brouard  9575:       if(i1 != 1 && TKresult[nres]!= k)
                   9576:        continue;
                   9577:       fprintf(ficresvpl,"\n#****** ");
                   9578:       printf("\n#****** ");
                   9579:       fprintf(ficlog,"\n#****** ");
1.337     brouard  9580:       for(j=1;j<=cptcovs;j++) {
                   9581:        fprintf(ficresvpl,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   9582:        fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   9583:        printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   9584:        /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   9585:        /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
1.269     brouard  9586:       }
1.337     brouard  9587:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   9588:       /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   9589:       /*       fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   9590:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   9591:       /* }      */
1.269     brouard  9592:       fprintf(ficresvpl,"******\n");
                   9593:       printf("******\n");
                   9594:       fprintf(ficlog,"******\n");
                   9595:       
                   9596:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
                   9597:       oldm=oldms;savm=savms;
                   9598:       varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres);
                   9599:       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
                   9600:       /*}*/
                   9601:     }
                   9602:     
                   9603:     fclose(ficresvpl);
1.288     brouard  9604:     printf("done variance-covariance of forward period prevalence\n");fflush(stdout);
                   9605:     fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog);
1.269     brouard  9606: 
                   9607:  }
                   9608: /* Variance of back prevalence: varbprlim */
                   9609:  void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
                   9610:       /*------- Variance of back (stable) prevalence------*/
                   9611: 
                   9612:    char fileresvbl[FILENAMELENGTH];  
                   9613:    FILE  *ficresvbl;
                   9614: 
                   9615:    double **oldm, **savm;
                   9616:    double **varbpl; /* Variances of back prevalence limits by age */   
                   9617:    int i1, k, nres, j ;
                   9618: 
                   9619:    strcpy(fileresvbl,"VBL_");
                   9620:    strcat(fileresvbl,fileresu);
                   9621:    if((ficresvbl=fopen(fileresvbl,"w"))==NULL) {
                   9622:      printf("Problem with variance of back (stable) prevalence  resultfile: %s\n", fileresvbl);
                   9623:      exit(0);
                   9624:    }
                   9625:    printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout);
                   9626:    fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog);
                   9627:    
                   9628:    
                   9629:    i1=pow(2,cptcoveff);
                   9630:    if (cptcovn < 1){i1=1;}
                   9631:    
1.337     brouard  9632:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   9633:      k=TKresult[nres];
1.338   ! brouard  9634:      if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  9635:     /* for(k=1; k<=i1;k++){ */
                   9636:     /*    if(i1 != 1 && TKresult[nres]!= k) */
                   9637:     /*          continue; */
1.269     brouard  9638:        fprintf(ficresvbl,"\n#****** ");
                   9639:        printf("\n#****** ");
                   9640:        fprintf(ficlog,"\n#****** ");
1.337     brouard  9641:        for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */
1.338   ! brouard  9642:         printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
        !          9643:         fprintf(ficresvbl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
        !          9644:         fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
1.337     brouard  9645:        /* for(j=1;j<=cptcoveff;j++) { */
                   9646:        /*       fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   9647:        /*       fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   9648:        /*       printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   9649:        /* } */
                   9650:        /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   9651:        /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   9652:        /*       fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   9653:        /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
1.269     brouard  9654:        }
                   9655:        fprintf(ficresvbl,"******\n");
                   9656:        printf("******\n");
                   9657:        fprintf(ficlog,"******\n");
                   9658:        
                   9659:        varbpl=matrix(1,nlstate,(int) bage, (int) fage);
                   9660:        oldm=oldms;savm=savms;
                   9661:        
                   9662:        varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres);
                   9663:        free_matrix(varbpl,1,nlstate,(int) bage, (int)fage);
                   9664:        /*}*/
                   9665:      }
                   9666:    
                   9667:    fclose(ficresvbl);
                   9668:    printf("done variance-covariance of back prevalence\n");fflush(stdout);
                   9669:    fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog);
                   9670: 
                   9671:  } /* End of varbprlim */
                   9672: 
1.126     brouard  9673: /************** Forecasting *****not tested NB*************/
1.227     brouard  9674: /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
1.126     brouard  9675:   
1.227     brouard  9676: /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
                   9677: /*   int *popage; */
                   9678: /*   double calagedatem, agelim, kk1, kk2; */
                   9679: /*   double *popeffectif,*popcount; */
                   9680: /*   double ***p3mat,***tabpop,***tabpopprev; */
                   9681: /*   /\* double ***mobaverage; *\/ */
                   9682: /*   char filerespop[FILENAMELENGTH]; */
1.126     brouard  9683: 
1.227     brouard  9684: /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   9685: /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   9686: /*   agelim=AGESUP; */
                   9687: /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
1.126     brouard  9688:   
1.227     brouard  9689: /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
1.126     brouard  9690:   
                   9691:   
1.227     brouard  9692: /*   strcpy(filerespop,"POP_");  */
                   9693: /*   strcat(filerespop,fileresu); */
                   9694: /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
                   9695: /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
                   9696: /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
                   9697: /*   } */
                   9698: /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
                   9699: /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
1.126     brouard  9700: 
1.227     brouard  9701: /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
1.126     brouard  9702: 
1.227     brouard  9703: /*   /\* if (mobilav!=0) { *\/ */
                   9704: /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
                   9705: /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
                   9706: /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   9707: /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   9708: /*   /\*   } *\/ */
                   9709: /*   /\* } *\/ */
1.126     brouard  9710: 
1.227     brouard  9711: /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
                   9712: /*   if (stepm<=12) stepsize=1; */
1.126     brouard  9713:   
1.227     brouard  9714: /*   agelim=AGESUP; */
1.126     brouard  9715:   
1.227     brouard  9716: /*   hstepm=1; */
                   9717: /*   hstepm=hstepm/stepm;  */
1.218     brouard  9718:        
1.227     brouard  9719: /*   if (popforecast==1) { */
                   9720: /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
                   9721: /*       printf("Problem with population file : %s\n",popfile);exit(0); */
                   9722: /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
                   9723: /*     }  */
                   9724: /*     popage=ivector(0,AGESUP); */
                   9725: /*     popeffectif=vector(0,AGESUP); */
                   9726: /*     popcount=vector(0,AGESUP); */
1.126     brouard  9727:     
1.227     brouard  9728: /*     i=1;    */
                   9729: /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
1.218     brouard  9730:     
1.227     brouard  9731: /*     imx=i; */
                   9732: /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
                   9733: /*   } */
1.218     brouard  9734:   
1.227     brouard  9735: /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
                   9736: /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
                   9737: /*       k=k+1; */
                   9738: /*       fprintf(ficrespop,"\n#******"); */
                   9739: /*       for(j=1;j<=cptcoveff;j++) { */
                   9740: /*     fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
                   9741: /*       } */
                   9742: /*       fprintf(ficrespop,"******\n"); */
                   9743: /*       fprintf(ficrespop,"# Age"); */
                   9744: /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
                   9745: /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
1.126     brouard  9746:       
1.227     brouard  9747: /*       for (cpt=0; cpt<=0;cpt++) {  */
                   9748: /*     fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
1.126     brouard  9749:        
1.227     brouard  9750: /*     for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
                   9751: /*       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
                   9752: /*       nhstepm = nhstepm/hstepm;  */
1.126     brouard  9753:          
1.227     brouard  9754: /*       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   9755: /*       oldm=oldms;savm=savms; */
                   9756: /*       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
1.218     brouard  9757:          
1.227     brouard  9758: /*       for (h=0; h<=nhstepm; h++){ */
                   9759: /*         if (h==(int) (calagedatem+YEARM*cpt)) { */
                   9760: /*           fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
                   9761: /*         }  */
                   9762: /*         for(j=1; j<=nlstate+ndeath;j++) { */
                   9763: /*           kk1=0.;kk2=0; */
                   9764: /*           for(i=1; i<=nlstate;i++) {               */
                   9765: /*             if (mobilav==1)  */
                   9766: /*               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
                   9767: /*             else { */
                   9768: /*               kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
                   9769: /*             } */
                   9770: /*           } */
                   9771: /*           if (h==(int)(calagedatem+12*cpt)){ */
                   9772: /*             tabpop[(int)(agedeb)][j][cptcod]=kk1; */
                   9773: /*             /\*fprintf(ficrespop," %.3f", kk1); */
                   9774: /*               if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
                   9775: /*           } */
                   9776: /*         } */
                   9777: /*         for(i=1; i<=nlstate;i++){ */
                   9778: /*           kk1=0.; */
                   9779: /*           for(j=1; j<=nlstate;j++){ */
                   9780: /*             kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
                   9781: /*           } */
                   9782: /*           tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
                   9783: /*         } */
1.218     brouard  9784:            
1.227     brouard  9785: /*         if (h==(int)(calagedatem+12*cpt)) */
                   9786: /*           for(j=1; j<=nlstate;j++)  */
                   9787: /*             fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
                   9788: /*       } */
                   9789: /*       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   9790: /*     } */
                   9791: /*       } */
1.218     brouard  9792:       
1.227     brouard  9793: /*       /\******\/ */
1.218     brouard  9794:       
1.227     brouard  9795: /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
                   9796: /*     fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
                   9797: /*     for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
                   9798: /*       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
                   9799: /*       nhstepm = nhstepm/hstepm;  */
1.126     brouard  9800:          
1.227     brouard  9801: /*       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   9802: /*       oldm=oldms;savm=savms; */
                   9803: /*       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
                   9804: /*       for (h=0; h<=nhstepm; h++){ */
                   9805: /*         if (h==(int) (calagedatem+YEARM*cpt)) { */
                   9806: /*           fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
                   9807: /*         }  */
                   9808: /*         for(j=1; j<=nlstate+ndeath;j++) { */
                   9809: /*           kk1=0.;kk2=0; */
                   9810: /*           for(i=1; i<=nlstate;i++) {               */
                   9811: /*             kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
                   9812: /*           } */
                   9813: /*           if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
                   9814: /*         } */
                   9815: /*       } */
                   9816: /*       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   9817: /*     } */
                   9818: /*       } */
                   9819: /*     }  */
                   9820: /*   } */
1.218     brouard  9821:   
1.227     brouard  9822: /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
1.218     brouard  9823:   
1.227     brouard  9824: /*   if (popforecast==1) { */
                   9825: /*     free_ivector(popage,0,AGESUP); */
                   9826: /*     free_vector(popeffectif,0,AGESUP); */
                   9827: /*     free_vector(popcount,0,AGESUP); */
                   9828: /*   } */
                   9829: /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   9830: /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   9831: /*   fclose(ficrespop); */
                   9832: /* } /\* End of popforecast *\/ */
1.218     brouard  9833:  
1.126     brouard  9834: int fileappend(FILE *fichier, char *optionfich)
                   9835: {
                   9836:   if((fichier=fopen(optionfich,"a"))==NULL) {
                   9837:     printf("Problem with file: %s\n", optionfich);
                   9838:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
                   9839:     return (0);
                   9840:   }
                   9841:   fflush(fichier);
                   9842:   return (1);
                   9843: }
                   9844: 
                   9845: 
                   9846: /**************** function prwizard **********************/
                   9847: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
                   9848: {
                   9849: 
                   9850:   /* Wizard to print covariance matrix template */
                   9851: 
1.164     brouard  9852:   char ca[32], cb[32];
                   9853:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
1.126     brouard  9854:   int numlinepar;
                   9855: 
                   9856:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   9857:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   9858:   for(i=1; i <=nlstate; i++){
                   9859:     jj=0;
                   9860:     for(j=1; j <=nlstate+ndeath; j++){
                   9861:       if(j==i) continue;
                   9862:       jj++;
                   9863:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   9864:       printf("%1d%1d",i,j);
                   9865:       fprintf(ficparo,"%1d%1d",i,j);
                   9866:       for(k=1; k<=ncovmodel;k++){
                   9867:        /*        printf(" %lf",param[i][j][k]); */
                   9868:        /*        fprintf(ficparo," %lf",param[i][j][k]); */
                   9869:        printf(" 0.");
                   9870:        fprintf(ficparo," 0.");
                   9871:       }
                   9872:       printf("\n");
                   9873:       fprintf(ficparo,"\n");
                   9874:     }
                   9875:   }
                   9876:   printf("# Scales (for hessian or gradient estimation)\n");
                   9877:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   9878:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
                   9879:   for(i=1; i <=nlstate; i++){
                   9880:     jj=0;
                   9881:     for(j=1; j <=nlstate+ndeath; j++){
                   9882:       if(j==i) continue;
                   9883:       jj++;
                   9884:       fprintf(ficparo,"%1d%1d",i,j);
                   9885:       printf("%1d%1d",i,j);
                   9886:       fflush(stdout);
                   9887:       for(k=1; k<=ncovmodel;k++){
                   9888:        /*      printf(" %le",delti3[i][j][k]); */
                   9889:        /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   9890:        printf(" 0.");
                   9891:        fprintf(ficparo," 0.");
                   9892:       }
                   9893:       numlinepar++;
                   9894:       printf("\n");
                   9895:       fprintf(ficparo,"\n");
                   9896:     }
                   9897:   }
                   9898:   printf("# Covariance matrix\n");
                   9899: /* # 121 Var(a12)\n\ */
                   9900: /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   9901: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   9902: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   9903: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   9904: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   9905: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   9906: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   9907:   fflush(stdout);
                   9908:   fprintf(ficparo,"# Covariance matrix\n");
                   9909:   /* # 121 Var(a12)\n\ */
                   9910:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   9911:   /* #   ...\n\ */
                   9912:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   9913:   
                   9914:   for(itimes=1;itimes<=2;itimes++){
                   9915:     jj=0;
                   9916:     for(i=1; i <=nlstate; i++){
                   9917:       for(j=1; j <=nlstate+ndeath; j++){
                   9918:        if(j==i) continue;
                   9919:        for(k=1; k<=ncovmodel;k++){
                   9920:          jj++;
                   9921:          ca[0]= k+'a'-1;ca[1]='\0';
                   9922:          if(itimes==1){
                   9923:            printf("#%1d%1d%d",i,j,k);
                   9924:            fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   9925:          }else{
                   9926:            printf("%1d%1d%d",i,j,k);
                   9927:            fprintf(ficparo,"%1d%1d%d",i,j,k);
                   9928:            /*  printf(" %.5le",matcov[i][j]); */
                   9929:          }
                   9930:          ll=0;
                   9931:          for(li=1;li <=nlstate; li++){
                   9932:            for(lj=1;lj <=nlstate+ndeath; lj++){
                   9933:              if(lj==li) continue;
                   9934:              for(lk=1;lk<=ncovmodel;lk++){
                   9935:                ll++;
                   9936:                if(ll<=jj){
                   9937:                  cb[0]= lk +'a'-1;cb[1]='\0';
                   9938:                  if(ll<jj){
                   9939:                    if(itimes==1){
                   9940:                      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   9941:                      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   9942:                    }else{
                   9943:                      printf(" 0.");
                   9944:                      fprintf(ficparo," 0.");
                   9945:                    }
                   9946:                  }else{
                   9947:                    if(itimes==1){
                   9948:                      printf(" Var(%s%1d%1d)",ca,i,j);
                   9949:                      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                   9950:                    }else{
                   9951:                      printf(" 0.");
                   9952:                      fprintf(ficparo," 0.");
                   9953:                    }
                   9954:                  }
                   9955:                }
                   9956:              } /* end lk */
                   9957:            } /* end lj */
                   9958:          } /* end li */
                   9959:          printf("\n");
                   9960:          fprintf(ficparo,"\n");
                   9961:          numlinepar++;
                   9962:        } /* end k*/
                   9963:       } /*end j */
                   9964:     } /* end i */
                   9965:   } /* end itimes */
                   9966: 
                   9967: } /* end of prwizard */
                   9968: /******************* Gompertz Likelihood ******************************/
                   9969: double gompertz(double x[])
                   9970: { 
1.302     brouard  9971:   double A=0.0,B=0.,L=0.0,sump=0.,num=0.;
1.126     brouard  9972:   int i,n=0; /* n is the size of the sample */
                   9973: 
1.220     brouard  9974:   for (i=1;i<=imx ; i++) {
1.126     brouard  9975:     sump=sump+weight[i];
                   9976:     /*    sump=sump+1;*/
                   9977:     num=num+1;
                   9978:   }
1.302     brouard  9979:   L=0.0;
                   9980:   /* agegomp=AGEGOMP; */
1.126     brouard  9981:   /* for (i=0; i<=imx; i++) 
                   9982:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   9983: 
1.302     brouard  9984:   for (i=1;i<=imx ; i++) {
                   9985:     /* mu(a)=mu(agecomp)*exp(teta*(age-agegomp))
                   9986:        mu(a)=x[1]*exp(x[2]*(age-agegomp)); x[1] and x[2] are per year.
                   9987:      * L= Product mu(agedeces)exp(-\int_ageexam^agedc mu(u) du ) for a death between agedc (in month) 
                   9988:      *   and agedc +1 month, cens[i]=0: log(x[1]/YEARM)
                   9989:      * +
                   9990:      * exp(-\int_ageexam^agecens mu(u) du ) when censored, cens[i]=1
                   9991:      */
                   9992:      if (wav[i] > 1 || agedc[i] < AGESUP) {
                   9993:        if (cens[i] == 1){
                   9994:         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
                   9995:        } else if (cens[i] == 0){
1.126     brouard  9996:        A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
1.302     brouard  9997:          +log(x[1]/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM);
                   9998:       } else
                   9999:         printf("Gompertz cens[%d] neither 1 nor 0\n",i);
1.126     brouard  10000:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
1.302     brouard  10001:        L=L+A*weight[i];
1.126     brouard  10002:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
1.302     brouard  10003:      }
                   10004:   }
1.126     brouard  10005: 
1.302     brouard  10006:   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
1.126     brouard  10007:  
                   10008:   return -2*L*num/sump;
                   10009: }
                   10010: 
1.136     brouard  10011: #ifdef GSL
                   10012: /******************* Gompertz_f Likelihood ******************************/
                   10013: double gompertz_f(const gsl_vector *v, void *params)
                   10014: { 
1.302     brouard  10015:   double A=0.,B=0.,LL=0.0,sump=0.,num=0.;
1.136     brouard  10016:   double *x= (double *) v->data;
                   10017:   int i,n=0; /* n is the size of the sample */
                   10018: 
                   10019:   for (i=0;i<=imx-1 ; i++) {
                   10020:     sump=sump+weight[i];
                   10021:     /*    sump=sump+1;*/
                   10022:     num=num+1;
                   10023:   }
                   10024:  
                   10025:  
                   10026:   /* for (i=0; i<=imx; i++) 
                   10027:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   10028:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
                   10029:   for (i=1;i<=imx ; i++)
                   10030:     {
                   10031:       if (cens[i] == 1 && wav[i]>1)
                   10032:        A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
                   10033:       
                   10034:       if (cens[i] == 0 && wav[i]>1)
                   10035:        A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                   10036:             +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
                   10037:       
                   10038:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   10039:       if (wav[i] > 1 ) { /* ??? */
                   10040:        LL=LL+A*weight[i];
                   10041:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   10042:       }
                   10043:     }
                   10044: 
                   10045:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   10046:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
                   10047:  
                   10048:   return -2*LL*num/sump;
                   10049: }
                   10050: #endif
                   10051: 
1.126     brouard  10052: /******************* Printing html file ***********/
1.201     brouard  10053: void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
1.126     brouard  10054:                  int lastpass, int stepm, int weightopt, char model[],\
                   10055:                  int imx,  double p[],double **matcov,double agemortsup){
                   10056:   int i,k;
                   10057: 
                   10058:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
                   10059:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
                   10060:   for (i=1;i<=2;i++) 
                   10061:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
1.199     brouard  10062:   fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
1.126     brouard  10063:   fprintf(fichtm,"</ul>");
                   10064: 
                   10065: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
                   10066: 
                   10067:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
                   10068: 
                   10069:  for (k=agegomp;k<(agemortsup-2);k++) 
                   10070:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   10071: 
                   10072:  
                   10073:   fflush(fichtm);
                   10074: }
                   10075: 
                   10076: /******************* Gnuplot file **************/
1.201     brouard  10077: void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
1.126     brouard  10078: 
                   10079:   char dirfileres[132],optfileres[132];
1.164     brouard  10080: 
1.126     brouard  10081:   int ng;
                   10082: 
                   10083: 
                   10084:   /*#ifdef windows */
                   10085:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   10086:     /*#endif */
                   10087: 
                   10088: 
                   10089:   strcpy(dirfileres,optionfilefiname);
                   10090:   strcpy(optfileres,"vpl");
1.199     brouard  10091:   fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
1.126     brouard  10092:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
1.199     brouard  10093:   fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
1.145     brouard  10094:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
1.126     brouard  10095:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
                   10096: 
                   10097: } 
                   10098: 
1.136     brouard  10099: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
                   10100: {
1.126     brouard  10101: 
1.136     brouard  10102:   /*-------- data file ----------*/
                   10103:   FILE *fic;
                   10104:   char dummy[]="                         ";
1.240     brouard  10105:   int i=0, j=0, n=0, iv=0, v;
1.223     brouard  10106:   int lstra;
1.136     brouard  10107:   int linei, month, year,iout;
1.302     brouard  10108:   int noffset=0; /* This is the offset if BOM data file */
1.136     brouard  10109:   char line[MAXLINE], linetmp[MAXLINE];
1.164     brouard  10110:   char stra[MAXLINE], strb[MAXLINE];
1.136     brouard  10111:   char *stratrunc;
1.223     brouard  10112: 
1.240     brouard  10113:   DummyV=ivector(1,NCOVMAX); /* 1 to 3 */
                   10114:   FixedV=ivector(1,NCOVMAX); /* 1 to 3 */
1.328     brouard  10115:   for(v=1;v<NCOVMAX;v++){
                   10116:     DummyV[v]=0;
                   10117:     FixedV[v]=0;
                   10118:   }
1.126     brouard  10119: 
1.240     brouard  10120:   for(v=1; v <=ncovcol;v++){
                   10121:     DummyV[v]=0;
                   10122:     FixedV[v]=0;
                   10123:   }
                   10124:   for(v=ncovcol+1; v <=ncovcol+nqv;v++){
                   10125:     DummyV[v]=1;
                   10126:     FixedV[v]=0;
                   10127:   }
                   10128:   for(v=ncovcol+nqv+1; v <=ncovcol+nqv+ntv;v++){
                   10129:     DummyV[v]=0;
                   10130:     FixedV[v]=1;
                   10131:   }
                   10132:   for(v=ncovcol+nqv+ntv+1; v <=ncovcol+nqv+ntv+nqtv;v++){
                   10133:     DummyV[v]=1;
                   10134:     FixedV[v]=1;
                   10135:   }
                   10136:   for(v=1; v <=ncovcol+nqv+ntv+nqtv;v++){
                   10137:     printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
                   10138:     fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",v,v,DummyV[v],v,FixedV[v]);
                   10139:   }
1.126     brouard  10140: 
1.136     brouard  10141:   if((fic=fopen(datafile,"r"))==NULL)    {
1.218     brouard  10142:     printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
                   10143:     fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
1.136     brouard  10144:   }
1.126     brouard  10145: 
1.302     brouard  10146:     /* Is it a BOM UTF-8 Windows file? */
                   10147:   /* First data line */
                   10148:   linei=0;
                   10149:   while(fgets(line, MAXLINE, fic)) {
                   10150:     noffset=0;
                   10151:     if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
                   10152:     {
                   10153:       noffset=noffset+3;
                   10154:       printf("# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);fflush(stdout);
                   10155:       fprintf(ficlog,"# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);
                   10156:       fflush(ficlog); return 1;
                   10157:     }
                   10158:     /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
                   10159:     else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
                   10160:     {
                   10161:       noffset=noffset+2;
1.304     brouard  10162:       printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
                   10163:       fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
1.302     brouard  10164:       fflush(ficlog); return 1;
                   10165:     }
                   10166:     else if( line[0] == 0 && line[1] == 0)
                   10167:     {
                   10168:       if( line[2] == (char)0xFE && line[3] == (char)0xFF){
                   10169:        noffset=noffset+4;
1.304     brouard  10170:        printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
                   10171:        fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
1.302     brouard  10172:        fflush(ficlog); return 1;
                   10173:       }
                   10174:     } else{
                   10175:       ;/*printf(" Not a BOM file\n");*/
                   10176:     }
                   10177:         /* If line starts with a # it is a comment */
                   10178:     if (line[noffset] == '#') {
                   10179:       linei=linei+1;
                   10180:       break;
                   10181:     }else{
                   10182:       break;
                   10183:     }
                   10184:   }
                   10185:   fclose(fic);
                   10186:   if((fic=fopen(datafile,"r"))==NULL)    {
                   10187:     printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
                   10188:     fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
                   10189:   }
                   10190:   /* Not a Bom file */
                   10191:   
1.136     brouard  10192:   i=1;
                   10193:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
                   10194:     linei=linei+1;
                   10195:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
                   10196:       if(line[j] == '\t')
                   10197:        line[j] = ' ';
                   10198:     }
                   10199:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
                   10200:       ;
                   10201:     };
                   10202:     line[j+1]=0;  /* Trims blanks at end of line */
                   10203:     if(line[0]=='#'){
                   10204:       fprintf(ficlog,"Comment line\n%s\n",line);
                   10205:       printf("Comment line\n%s\n",line);
                   10206:       continue;
                   10207:     }
                   10208:     trimbb(linetmp,line); /* Trims multiple blanks in line */
1.164     brouard  10209:     strcpy(line, linetmp);
1.223     brouard  10210:     
                   10211:     /* Loops on waves */
                   10212:     for (j=maxwav;j>=1;j--){
                   10213:       for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
1.238     brouard  10214:        cutv(stra, strb, line, ' '); 
                   10215:        if(strb[0]=='.') { /* Missing value */
                   10216:          lval=-1;
                   10217:          cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
                   10218:          cotvar[j][ntv+iv][i]=-1; /* For performance reasons */
                   10219:          if(isalpha(strb[1])) { /* .m or .d Really Missing value */
                   10220:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
                   10221:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
                   10222:            return 1;
                   10223:          }
                   10224:        }else{
                   10225:          errno=0;
                   10226:          /* what_kind_of_number(strb); */
                   10227:          dval=strtod(strb,&endptr); 
                   10228:          /* if( strb[0]=='\0' || (*endptr != '\0')){ */
                   10229:          /* if(strb != endptr && *endptr == '\0') */
                   10230:          /*    dval=dlval; */
                   10231:          /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                   10232:          if( strb[0]=='\0' || (*endptr != '\0')){
                   10233:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
                   10234:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
                   10235:            return 1;
                   10236:          }
                   10237:          cotqvar[j][iv][i]=dval; 
                   10238:          cotvar[j][ntv+iv][i]=dval; 
                   10239:        }
                   10240:        strcpy(line,stra);
1.223     brouard  10241:       }/* end loop ntqv */
1.225     brouard  10242:       
1.223     brouard  10243:       for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
1.238     brouard  10244:        cutv(stra, strb, line, ' '); 
                   10245:        if(strb[0]=='.') { /* Missing value */
                   10246:          lval=-1;
                   10247:        }else{
                   10248:          errno=0;
                   10249:          lval=strtol(strb,&endptr,10); 
                   10250:          /*    if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                   10251:          if( strb[0]=='\0' || (*endptr != '\0')){
                   10252:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
                   10253:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
                   10254:            return 1;
                   10255:          }
                   10256:        }
                   10257:        if(lval <-1 || lval >1){
                   10258:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.319     brouard  10259:  Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
1.223     brouard  10260:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.238     brouard  10261:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   10262:  build V1=0 V2=0 for the reference value (1),\n                                \
                   10263:         V1=1 V2=0 for (2) \n                                           \
1.223     brouard  10264:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.238     brouard  10265:  output of IMaCh is often meaningless.\n                               \
1.319     brouard  10266:  Exiting.\n",lval,linei, i,line,iv,j);
1.238     brouard  10267:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.319     brouard  10268:  Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
1.223     brouard  10269:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.238     brouard  10270:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   10271:  build V1=0 V2=0 for the reference value (1),\n                                \
                   10272:         V1=1 V2=0 for (2) \n                                           \
1.223     brouard  10273:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.238     brouard  10274:  output of IMaCh is often meaningless.\n                               \
1.319     brouard  10275:  Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog);
1.238     brouard  10276:          return 1;
                   10277:        }
                   10278:        cotvar[j][iv][i]=(double)(lval);
                   10279:        strcpy(line,stra);
1.223     brouard  10280:       }/* end loop ntv */
1.225     brouard  10281:       
1.223     brouard  10282:       /* Statuses  at wave */
1.137     brouard  10283:       cutv(stra, strb, line, ' '); 
1.223     brouard  10284:       if(strb[0]=='.') { /* Missing value */
1.238     brouard  10285:        lval=-1;
1.136     brouard  10286:       }else{
1.238     brouard  10287:        errno=0;
                   10288:        lval=strtol(strb,&endptr,10); 
                   10289:        /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                   10290:        if( strb[0]=='\0' || (*endptr != '\0')){
                   10291:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);
                   10292:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
                   10293:          return 1;
                   10294:        }
1.136     brouard  10295:       }
1.225     brouard  10296:       
1.136     brouard  10297:       s[j][i]=lval;
1.225     brouard  10298:       
1.223     brouard  10299:       /* Date of Interview */
1.136     brouard  10300:       strcpy(line,stra);
                   10301:       cutv(stra, strb,line,' ');
1.169     brouard  10302:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  10303:       }
1.169     brouard  10304:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
1.225     brouard  10305:        month=99;
                   10306:        year=9999;
1.136     brouard  10307:       }else{
1.225     brouard  10308:        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
                   10309:        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
                   10310:        return 1;
1.136     brouard  10311:       }
                   10312:       anint[j][i]= (double) year; 
1.302     brouard  10313:       mint[j][i]= (double)month;
                   10314:       /* if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ */
                   10315:       /*       printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
                   10316:       /*       fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
                   10317:       /* } */
1.136     brouard  10318:       strcpy(line,stra);
1.223     brouard  10319:     } /* End loop on waves */
1.225     brouard  10320:     
1.223     brouard  10321:     /* Date of death */
1.136     brouard  10322:     cutv(stra, strb,line,' '); 
1.169     brouard  10323:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  10324:     }
1.169     brouard  10325:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
1.136     brouard  10326:       month=99;
                   10327:       year=9999;
                   10328:     }else{
1.141     brouard  10329:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
1.225     brouard  10330:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
                   10331:       return 1;
1.136     brouard  10332:     }
                   10333:     andc[i]=(double) year; 
                   10334:     moisdc[i]=(double) month; 
                   10335:     strcpy(line,stra);
                   10336:     
1.223     brouard  10337:     /* Date of birth */
1.136     brouard  10338:     cutv(stra, strb,line,' '); 
1.169     brouard  10339:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  10340:     }
1.169     brouard  10341:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
1.136     brouard  10342:       month=99;
                   10343:       year=9999;
                   10344:     }else{
1.141     brouard  10345:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
                   10346:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.225     brouard  10347:       return 1;
1.136     brouard  10348:     }
                   10349:     if (year==9999) {
1.141     brouard  10350:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
                   10351:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.225     brouard  10352:       return 1;
                   10353:       
1.136     brouard  10354:     }
                   10355:     annais[i]=(double)(year);
1.302     brouard  10356:     moisnais[i]=(double)(month);
                   10357:     for (j=1;j<=maxwav;j++){
                   10358:       if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){
                   10359:        printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j,(int)moisnais[i],(int)annais[i]);
                   10360:        fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j, (int)moisnais[i],(int)annais[i]);
                   10361:       }
                   10362:     }
                   10363: 
1.136     brouard  10364:     strcpy(line,stra);
1.225     brouard  10365:     
1.223     brouard  10366:     /* Sample weight */
1.136     brouard  10367:     cutv(stra, strb,line,' '); 
                   10368:     errno=0;
                   10369:     dval=strtod(strb,&endptr); 
                   10370:     if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  10371:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
                   10372:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
1.136     brouard  10373:       fflush(ficlog);
                   10374:       return 1;
                   10375:     }
                   10376:     weight[i]=dval; 
                   10377:     strcpy(line,stra);
1.225     brouard  10378:     
1.223     brouard  10379:     for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
                   10380:       cutv(stra, strb, line, ' '); 
                   10381:       if(strb[0]=='.') { /* Missing value */
1.225     brouard  10382:        lval=-1;
1.311     brouard  10383:        coqvar[iv][i]=NAN; 
                   10384:        covar[ncovcol+iv][i]=NAN; /* including qvar in standard covar for performance reasons */ 
1.223     brouard  10385:       }else{
1.225     brouard  10386:        errno=0;
                   10387:        /* what_kind_of_number(strb); */
                   10388:        dval=strtod(strb,&endptr);
                   10389:        /* if(strb != endptr && *endptr == '\0') */
                   10390:        /*   dval=dlval; */
                   10391:        /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                   10392:        if( strb[0]=='\0' || (*endptr != '\0')){
                   10393:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
                   10394:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
                   10395:          return 1;
                   10396:        }
                   10397:        coqvar[iv][i]=dval; 
1.226     brouard  10398:        covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
1.223     brouard  10399:       }
                   10400:       strcpy(line,stra);
                   10401:     }/* end loop nqv */
1.136     brouard  10402:     
1.223     brouard  10403:     /* Covariate values */
1.136     brouard  10404:     for (j=ncovcol;j>=1;j--){
                   10405:       cutv(stra, strb,line,' '); 
1.223     brouard  10406:       if(strb[0]=='.') { /* Missing covariate value */
1.225     brouard  10407:        lval=-1;
1.136     brouard  10408:       }else{
1.225     brouard  10409:        errno=0;
                   10410:        lval=strtol(strb,&endptr,10); 
                   10411:        if( strb[0]=='\0' || (*endptr != '\0')){
                   10412:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
                   10413:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
                   10414:          return 1;
                   10415:        }
1.136     brouard  10416:       }
                   10417:       if(lval <-1 || lval >1){
1.225     brouard  10418:        printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  10419:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   10420:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.225     brouard  10421:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   10422:  build V1=0 V2=0 for the reference value (1),\n                                \
                   10423:         V1=1 V2=0 for (2) \n                                           \
1.136     brouard  10424:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.225     brouard  10425:  output of IMaCh is often meaningless.\n                               \
1.136     brouard  10426:  Exiting.\n",lval,linei, i,line,j);
1.225     brouard  10427:        fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  10428:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   10429:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.225     brouard  10430:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   10431:  build V1=0 V2=0 for the reference value (1),\n                                \
                   10432:         V1=1 V2=0 for (2) \n                                           \
1.136     brouard  10433:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.225     brouard  10434:  output of IMaCh is often meaningless.\n                               \
1.136     brouard  10435:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
1.225     brouard  10436:        return 1;
1.136     brouard  10437:       }
                   10438:       covar[j][i]=(double)(lval);
                   10439:       strcpy(line,stra);
                   10440:     }  
                   10441:     lstra=strlen(stra);
1.225     brouard  10442:     
1.136     brouard  10443:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                   10444:       stratrunc = &(stra[lstra-9]);
                   10445:       num[i]=atol(stratrunc);
                   10446:     }
                   10447:     else
                   10448:       num[i]=atol(stra);
                   10449:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
                   10450:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
                   10451:     
                   10452:     i=i+1;
                   10453:   } /* End loop reading  data */
1.225     brouard  10454:   
1.136     brouard  10455:   *imax=i-1; /* Number of individuals */
                   10456:   fclose(fic);
1.225     brouard  10457:   
1.136     brouard  10458:   return (0);
1.164     brouard  10459:   /* endread: */
1.225     brouard  10460:   printf("Exiting readdata: ");
                   10461:   fclose(fic);
                   10462:   return (1);
1.223     brouard  10463: }
1.126     brouard  10464: 
1.234     brouard  10465: void removefirstspace(char **stri){/*, char stro[]) {*/
1.230     brouard  10466:   char *p1 = *stri, *p2 = *stri;
1.235     brouard  10467:   while (*p2 == ' ')
1.234     brouard  10468:     p2++; 
                   10469:   /* while ((*p1++ = *p2++) !=0) */
                   10470:   /*   ; */
                   10471:   /* do */
                   10472:   /*   while (*p2 == ' ') */
                   10473:   /*     p2++; */
                   10474:   /* while (*p1++ == *p2++); */
                   10475:   *stri=p2; 
1.145     brouard  10476: }
                   10477: 
1.330     brouard  10478: int decoderesult( char resultline[], int nres)
1.230     brouard  10479: /**< This routine decode one result line and returns the combination # of dummy covariates only **/
                   10480: {
1.235     brouard  10481:   int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
1.230     brouard  10482:   char resultsav[MAXLINE];
1.330     brouard  10483:   /* int resultmodel[MAXLINE]; */
1.334     brouard  10484:   /* int modelresult[MAXLINE]; */
1.230     brouard  10485:   char stra[80], strb[80], strc[80], strd[80],stre[80];
                   10486: 
1.234     brouard  10487:   removefirstspace(&resultline);
1.332     brouard  10488:   printf("decoderesult:%s\n",resultline);
1.230     brouard  10489: 
1.332     brouard  10490:   strcpy(resultsav,resultline);
                   10491:   printf("Decoderesult resultsav=\"%s\" resultline=\"%s\"\n", resultsav, resultline);
1.230     brouard  10492:   if (strlen(resultsav) >1){
1.334     brouard  10493:     j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' in this resultline */
1.230     brouard  10494:   }
1.253     brouard  10495:   if(j == 0){ /* Resultline but no = */
                   10496:     TKresult[nres]=0; /* Combination for the nresult and the model */
                   10497:     return (0);
                   10498:   }
1.234     brouard  10499:   if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
1.334     brouard  10500:     printf("ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, %s.\n",j, cptcovs, model);
                   10501:     fprintf(ficlog,"ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, %s.\n",j, cptcovs, model);
1.332     brouard  10502:     /* return 1;*/
1.234     brouard  10503:   }
1.334     brouard  10504:   for(k=1; k<=j;k++){ /* Loop on any covariate of the RESULT LINE */
1.234     brouard  10505:     if(nbocc(resultsav,'=') >1){
1.318     brouard  10506:       cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' (stra is the rest of the resultline to be analyzed in the next loop *//*     resultsav= "V4=1 V5=25.1 V3=0" stra= "V5=25.1 V3=0" strb= "V4=1" */
1.332     brouard  10507:       /* If resultsav= "V4= 1 V5=25.1 V3=0" with a blank then strb="V4=" and stra="1 V5=25.1 V3=0" */
1.318     brouard  10508:       cutl(strc,strd,strb,'=');  /* strb:"V4=1" strc="1" strd="V4" */
1.332     brouard  10509:       /* If a blank, then strc="V4=" and strd='\0' */
                   10510:       if(strc[0]=='\0'){
                   10511:       printf("Error in resultline, probably a blank after the \"%s\", \"result:%s\", stra=\"%s\" resultsav=\"%s\"\n",strb,resultline, stra, resultsav);
                   10512:        fprintf(ficlog,"Error in resultline, probably a blank after the \"V%s=\", resultline=%s\n",strb,resultline);
                   10513:        return 1;
                   10514:       }
1.234     brouard  10515:     }else
                   10516:       cutl(strc,strd,resultsav,'=');
1.318     brouard  10517:     Tvalsel[k]=atof(strc); /* 1 */ /* Tvalsel of k is the float value of the kth covariate appearing in this result line */
1.234     brouard  10518:     
1.230     brouard  10519:     cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
1.318     brouard  10520:     Tvarsel[k]=atoi(strc);  /* 4 */ /* Tvarsel is the id of the kth covariate in the result line Tvarsel[1] in "V4=1.." is 4.*/
1.230     brouard  10521:     /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
                   10522:     /* cptcovsel++;     */
                   10523:     if (nbocc(stra,'=') >0)
                   10524:       strcpy(resultsav,stra); /* and analyzes it */
                   10525:   }
1.235     brouard  10526:   /* Checking for missing or useless values in comparison of current model needs */
1.332     brouard  10527:   /* Feeds resultmodel[nres][k1]=k2 for k1th product covariate with age in the model equation fed by the index k2 of the resutline*/
1.334     brouard  10528:   for(k1=1; k1<= cptcovt ;k1++){ /* Loop on MODEL LINE V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.332     brouard  10529:     if(Typevar[k1]==0){ /* Single covariate in model */
                   10530:       /* 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
1.234     brouard  10531:       match=0;
1.318     brouard  10532:       for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   10533:        if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
1.334     brouard  10534:          modelresult[nres][k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
1.318     brouard  10535:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
1.234     brouard  10536:          break;
                   10537:        }
                   10538:       }
                   10539:       if(match == 0){
1.338   ! brouard  10540:        printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]);
        !          10541:        fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s\n",Tvar[k1], resultline, model);
1.310     brouard  10542:        return 1;
1.234     brouard  10543:       }
1.332     brouard  10544:     }else if(Typevar[k1]==1){ /* Product with age We want to get the position k2 in the resultline of the product k1 in the model line*/
                   10545:       /* We feed resultmodel[k1]=k2; */
                   10546:       match=0;
                   10547:       for(k2=1; k2 <=j;k2++){/* Loop on resultline.  jth occurence of = signs in the result line. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   10548:        if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
1.334     brouard  10549:          modelresult[nres][k2]=k1;/* we found a Vn=1 corrresponding to Vn*age in the model modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
1.332     brouard  10550:          resultmodel[nres][k1]=k2; /* Added here */
                   10551:          printf("Decoderesult first modelresult[k2=%d]=%d (k1) V%d*AGE\n",k2,k1,Tvar[k1]);
                   10552:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
                   10553:          break;
                   10554:        }
                   10555:       }
                   10556:       if(match == 0){
1.338   ! brouard  10557:        printf("Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
        !          10558:        fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
1.332     brouard  10559:       return 1;
                   10560:       }
                   10561:     }else if(Typevar[k1]==2){ /* Product No age We want to get the position in the resultline of the product in the model line*/
                   10562:       /* resultmodel[nres][of such a Vn * Vm product k1] is not unique, so can't exist, we feed Tvard[k1][1] and [2] */ 
                   10563:       match=0;
                   10564:       printf("Decoderesult very first Product Tvardk[k1=%d][1]=%d Tvardk[k1=%d][2]=%d V%d * V%d\n",k1,Tvardk[k1][1],k1,Tvardk[k1][2],Tvardk[k1][1],Tvardk[k1][2]);
                   10565:       for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   10566:        if(Tvardk[k1][1]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
                   10567:          /* modelresult[k2]=k1; */
                   10568:          printf("Decoderesult first Product modelresult[k2=%d]=%d (k1) V%d * \n",k2,k1,Tvarsel[k2]);
                   10569:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
                   10570:        }
                   10571:       }
                   10572:       if(match == 0){
1.338   ! brouard  10573:        printf("Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
        !          10574:        fprintf(ficlog,"Error in result line (Product without age first variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
1.332     brouard  10575:        return 1;
                   10576:       }
                   10577:       match=0;
                   10578:       for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   10579:        if(Tvardk[k1][2]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
                   10580:          /* modelresult[k2]=k1;*/
                   10581:          printf("Decoderesult second Product modelresult[k2=%d]=%d (k1) * V%d \n ",k2,k1,Tvarsel[k2]);
                   10582:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
                   10583:          break;
                   10584:        }
                   10585:       }
                   10586:       if(match == 0){
1.338   ! brouard  10587:        printf("Error in result line (Product without age second variable): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
        !          10588:        fprintf(ficlog,"Error in result line (Product without age second variable): V%d is missing in result : %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
1.332     brouard  10589:        return 1;
                   10590:       }
                   10591:     }/* End of testing */
1.333     brouard  10592:   }/* End loop cptcovt */
1.235     brouard  10593:   /* Checking for missing or useless values in comparison of current model needs */
1.332     brouard  10594:   /* Feeds resultmodel[nres][k1]=k2 for single covariate (k1) in the model equation */
1.334     brouard  10595:   for(k2=1; k2 <=j;k2++){ /* j or cptcovs is the number of single covariates used either in the model line as well as in the result line (dummy or quantitative)
                   10596:                           * Loop on resultline variables: result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
1.234     brouard  10597:     match=0;
1.318     brouard  10598:     for(k1=1; k1<= cptcovt ;k1++){ /* loop on model: model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.332     brouard  10599:       if(Typevar[k1]==0){ /* Single only */
1.237     brouard  10600:        if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4   */
1.330     brouard  10601:          resultmodel[nres][k1]=k2;  /* k1th position in the model equation corresponds to k2th position in the result line. resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
1.334     brouard  10602:          modelresult[nres][k2]=k1; /* k1th position in the model equation corresponds to k2th position in the result line. modelresult[1]=2 modelresult[2]=1  modelresult[3]=3  remodelresult[4]=6 modelresult[5]=9 */
1.234     brouard  10603:          ++match;
                   10604:        }
                   10605:       }
                   10606:     }
                   10607:     if(match == 0){
1.338   ! brouard  10608:       printf("Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
        !          10609:       fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
1.310     brouard  10610:       return 1;
1.234     brouard  10611:     }else if(match > 1){
1.338   ! brouard  10612:       printf("Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
        !          10613:       fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
1.310     brouard  10614:       return 1;
1.234     brouard  10615:     }
                   10616:   }
1.334     brouard  10617:   /* cptcovres=j /\* Number of variables in the resultline is equal to cptcovs and thus useless *\/     */
1.234     brouard  10618:   /* We need to deduce which combination number is chosen and save quantitative values */
1.235     brouard  10619:   /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.330     brouard  10620:   /* nres=1st result line: V4=1 V5=25.1 V3=0  V2=8 V1=1 */
                   10621:   /* should correspond to the combination 6 of dummy: V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 1*1 + 0*2 + 1*4 = 5 + (1offset) = 6*/
                   10622:   /* nres=2nd result line: V4=1 V5=24.1 V3=1  V2=8 V1=0 */
1.235     brouard  10623:   /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
                   10624:   /*    1 0 0 0 */
                   10625:   /*    2 1 0 0 */
                   10626:   /*    3 0 1 0 */ 
1.330     brouard  10627:   /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 (nres=2)*/
1.235     brouard  10628:   /*    5 0 0 1 */
1.330     brouard  10629:   /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 (nres=1)*/
1.235     brouard  10630:   /*    7 0 1 1 */
                   10631:   /*    8 1 1 1 */
1.237     brouard  10632:   /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
                   10633:   /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
                   10634:   /* V5*age V5 known which value for nres?  */
                   10635:   /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
1.334     brouard  10636:   for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* cptcovt number of covariates (excluding 1 and age or age*age) in the MODEL equation.
                   10637:                                                   * loop on position k1 in the MODEL LINE */
1.331     brouard  10638:     /* k counting number of combination of single dummies in the equation model */
                   10639:     /* k4 counting single dummies in the equation model */
                   10640:     /* k4q counting single quantitatives in the equation model */
1.334     brouard  10641:     if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Dummy and Single, k1 is sorting according to MODEL, but k3 to resultline */
                   10642:        /* k4+1= (not always if quant in model) position in the resultline V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) */
1.332     brouard  10643:       /* modelresult[k3]=k1: k3th position in the result line corresponds to the k1 position in the model line (doesn't work with products)*/
1.330     brouard  10644:       /* Value in the (current nres) resultline of the variable at the k1th position in the model equation resultmodel[nres][k1]= k3 */
1.332     brouard  10645:       /* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline                        */
                   10646:       /*      k3 is the position in the nres result line of the k1th variable of the model equation                                  */
                   10647:       /* Tvarsel[k3]: Name of the variable at the k3th position in the result line.                                                  */
                   10648:       /* Tvalsel[k3]: Value of the variable at the k3th position in the result line.                                                 */
                   10649:       /* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline                   */
1.334     brouard  10650:       /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline                     */
1.332     brouard  10651:       /* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line                                        */
1.330     brouard  10652:       /* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line                                                      */
1.332     brouard  10653:       k3= resultmodel[nres][k1]; /* From position k1 in model get position k3 in result line */
                   10654:       /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
                   10655:       k2=(int)Tvarsel[k3]; /* from position k3 in resultline get name k2: nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
1.330     brouard  10656:       k+=Tvalsel[k3]*pow(2,k4);  /* nres=1 k1=2 Tvalsel[1]=1 (V4=1); k1=3 k3=2 Tvalsel[2]=0 (V3=0) */
1.334     brouard  10657:       TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][Name]=Value; stores the value into the name of the variable. */
1.332     brouard  10658:       /* Tinvresult[nres][4]=1 */
1.334     brouard  10659:       /* Tresult[nres][k4+1]=Tvalsel[k3];/\* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) *\/ */
                   10660:       Tresult[nres][k3]=Tvalsel[k3];/* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) */
                   10661:       /* Tvresult[nres][k4+1]=(int)Tvarsel[k3];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
                   10662:       Tvresult[nres][k3]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
1.237     brouard  10663:       Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
1.334     brouard  10664:       precov[nres][k1]=Tvalsel[k3]; /* Value from resultline of the variable at the k1 position in the model */
1.332     brouard  10665:       printf("Decoderesult Dummy k=%d, k1=%d precov[nres=%d][k1=%d]=%.f V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k1, nres, k1,precov[nres][k1], k2, k3, (int)Tvalsel[k3], k4);
1.235     brouard  10666:       k4++;;
1.331     brouard  10667:     }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Quantitative and single */
1.330     brouard  10668:       /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 */
1.332     brouard  10669:       /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline                                 */
1.330     brouard  10670:       /* Tqinvresult[nres][Name of a quantitative variable]= value of the variable in the result line                                                      */
1.332     brouard  10671:       k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 5 =k3q */
                   10672:       k2q=(int)Tvarsel[k3q]; /*  Name of variable at k3q th position in the resultline */
                   10673:       /* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
1.334     brouard  10674:       /* Tqresult[nres][k4q+1]=Tvalsel[k3q]; /\* Tqresult[nres][1]=25.1 *\/ */
                   10675:       /* Tvresult[nres][k4q+1]=(int)Tvarsel[k3q];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
                   10676:       /* Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /\* Tvqresult[nres][1]=5 *\/ */
                   10677:       Tqresult[nres][k3q]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
                   10678:       Tvresult[nres][k3q]=(int)Tvarsel[k3q];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
                   10679:       Tvqresult[nres][k3q]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
1.237     brouard  10680:       Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
1.330     brouard  10681:       TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
1.332     brouard  10682:       precov[nres][k1]=Tvalsel[k3q];
                   10683:       printf("Decoderesult Quantitative nres=%d,precov[nres=%d][k1=%d]=%.f V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, nres, k1,precov[nres][k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
1.235     brouard  10684:       k4q++;;
1.331     brouard  10685:     }else if( Dummy[k1]==2 ){ /* For dummy with age product */
                   10686:       /* Tvar[k1]; */ /* Age variable */
1.332     brouard  10687:       /* Wrong we want the value of variable name Tvar[k1] */
                   10688:       
                   10689:       k3= resultmodel[nres][k1]; /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
1.331     brouard  10690:       k2=(int)Tvarsel[k3]; /* nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
1.334     brouard  10691:       TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][4]=1 */
1.332     brouard  10692:       precov[nres][k1]=Tvalsel[k3];
                   10693:       printf("Decoderesult Dummy with age k=%d, k1=%d precov[nres=%d][k1=%d]=%.f Tvar[%d]=V%d k2=Tvarsel[%d]=%d Tvalsel[%d]=%d\n",k, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k3,(int)Tvarsel[k3], k3, (int)Tvalsel[k3]);
1.331     brouard  10694:     }else if( Dummy[k1]==3 ){ /* For quant with age product */
1.332     brouard  10695:       k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 25.1=k3q */
1.331     brouard  10696:       k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
1.334     brouard  10697:       TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* TinvDoQresult[nres][5]=25.1 */
1.332     brouard  10698:       precov[nres][k1]=Tvalsel[k3q];
1.334     brouard  10699:       printf("Decoderesult Quantitative with age nres=%d, k1=%d, precov[nres=%d][k1=%d]=%f Tvar[%d]=V%d V(k2q=%d)= Tvarsel[%d]=%d, Tvalsel[%d]=%f\n",nres, k1, nres, k1,precov[nres][k1], k1,  Tvar[k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]);
1.331     brouard  10700:     }else if(Typevar[k1]==2 ){ /* For product quant or dummy (not with age) */
1.332     brouard  10701:       precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];      
                   10702:       printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]);
1.330     brouard  10703:     }else{
1.332     brouard  10704:       printf("Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
                   10705:       fprintf(ficlog,"Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
1.235     brouard  10706:     }
                   10707:   }
1.234     brouard  10708:   
1.334     brouard  10709:   TKresult[nres]=++k; /* Number of combinations of dummies for the nresult and the model =Tvalsel[k3]*pow(2,k4) + 1*/
1.230     brouard  10710:   return (0);
                   10711: }
1.235     brouard  10712: 
1.230     brouard  10713: int decodemodel( char model[], int lastobs)
                   10714:  /**< This routine decodes the model and returns:
1.224     brouard  10715:        * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
                   10716:        * - nagesqr = 1 if age*age in the model, otherwise 0.
                   10717:        * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
                   10718:        * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
                   10719:        * - cptcovage number of covariates with age*products =2
                   10720:        * - cptcovs number of simple covariates
                   10721:        * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
                   10722:        *     which is a new column after the 9 (ncovcol) variables. 
1.319     brouard  10723:        * - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual
1.224     brouard  10724:        * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
                   10725:        *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
                   10726:        * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
                   10727:        */
1.319     brouard  10728: /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */
1.136     brouard  10729: {
1.238     brouard  10730:   int i, j, k, ks, v;
1.227     brouard  10731:   int  j1, k1, k2, k3, k4;
1.136     brouard  10732:   char modelsav[80];
1.145     brouard  10733:   char stra[80], strb[80], strc[80], strd[80],stre[80];
1.187     brouard  10734:   char *strpt;
1.136     brouard  10735: 
1.145     brouard  10736:   /*removespace(model);*/
1.136     brouard  10737:   if (strlen(model) >1){ /* If there is at least 1 covariate */
1.145     brouard  10738:     j=0, j1=0, k1=0, k2=-1, ks=0, cptcovn=0;
1.137     brouard  10739:     if (strstr(model,"AGE") !=0){
1.192     brouard  10740:       printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
                   10741:       fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
1.136     brouard  10742:       return 1;
                   10743:     }
1.141     brouard  10744:     if (strstr(model,"v") !=0){
1.338   ! brouard  10745:       printf("Error. 'v' must be in upper case 'V' model=1+age+%s ",model);
        !          10746:       fprintf(ficlog,"Error. 'v' must be in upper case model=1+age+%s ",model);fflush(ficlog);
1.141     brouard  10747:       return 1;
                   10748:     }
1.187     brouard  10749:     strcpy(modelsav,model); 
                   10750:     if ((strpt=strstr(model,"age*age")) !=0){
1.338   ! brouard  10751:       printf(" strpt=%s, model=1+age+%s\n",strpt, model);
1.187     brouard  10752:       if(strpt != model){
1.338   ! brouard  10753:        printf("Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
1.192     brouard  10754:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
1.187     brouard  10755:  corresponding column of parameters.\n",model);
1.338   ! brouard  10756:        fprintf(ficlog,"Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
1.192     brouard  10757:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
1.187     brouard  10758:  corresponding column of parameters.\n",model); fflush(ficlog);
1.234     brouard  10759:        return 1;
1.225     brouard  10760:       }
1.187     brouard  10761:       nagesqr=1;
                   10762:       if (strstr(model,"+age*age") !=0)
1.234     brouard  10763:        substrchaine(modelsav, model, "+age*age");
1.187     brouard  10764:       else if (strstr(model,"age*age+") !=0)
1.234     brouard  10765:        substrchaine(modelsav, model, "age*age+");
1.187     brouard  10766:       else 
1.234     brouard  10767:        substrchaine(modelsav, model, "age*age");
1.187     brouard  10768:     }else
                   10769:       nagesqr=0;
                   10770:     if (strlen(modelsav) >1){
                   10771:       j=nbocc(modelsav,'+'); /**< j=Number of '+' */
                   10772:       j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
1.224     brouard  10773:       cptcovs=j+1-j1; /**<  Number of simple covariates V1+V1*age+V3 +V3*V4+age*age=> V1 + V3 =5-3=2  */
1.187     brouard  10774:       cptcovt= j+1; /* Number of total covariates in the model, not including
1.225     brouard  10775:                     * cst, age and age*age 
                   10776:                     * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
                   10777:       /* including age products which are counted in cptcovage.
                   10778:        * but the covariates which are products must be treated 
                   10779:        * separately: ncovn=4- 2=2 (V1+V3). */
1.187     brouard  10780:       cptcovprod=j1; /**< Number of products  V1*V2 +v3*age = 2 */
                   10781:       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
1.225     brouard  10782:       
                   10783:       
1.187     brouard  10784:       /*   Design
                   10785:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
                   10786:        *  <          ncovcol=8                >
                   10787:        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
                   10788:        *   k=  1    2      3       4     5       6      7        8
                   10789:        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
                   10790:        *  covar[k,i], value of kth covariate if not including age for individual i:
1.224     brouard  10791:        *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
                   10792:        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
1.187     brouard  10793:        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
                   10794:        *  Tage[++cptcovage]=k
                   10795:        *       if products, new covar are created after ncovcol with k1
                   10796:        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
                   10797:        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
                   10798:        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
                   10799:        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
                   10800:        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
                   10801:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
                   10802:        *  <          ncovcol=8                >
                   10803:        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
                   10804:        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
                   10805:        *     Tvar[k]= 2    1      3       3    10      11      8        8    5    6    7   8
1.319     brouard  10806:        * p Tvar[1]@12={2,   1,     3,      3,  11,     10,     8,       8,   7,   8,   5,  6}
1.187     brouard  10807:        * p Tprod[1]@2={                         6, 5}
                   10808:        *p Tvard[1][1]@4= {7, 8, 5, 6}
                   10809:        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
                   10810:        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
1.319     brouard  10811:        *How to reorganize? Tvars(orted)
1.187     brouard  10812:        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
                   10813:        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
                   10814:        *       {2,   1,     4,      8,    5,      6,     3,       7}
                   10815:        * Struct []
                   10816:        */
1.225     brouard  10817:       
1.187     brouard  10818:       /* This loop fills the array Tvar from the string 'model'.*/
                   10819:       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
                   10820:       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
                   10821:       /*       k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
                   10822:       /*       k=3 V4 Tvar[k=3]= 4 (from V4) */
                   10823:       /*       k=2 V1 Tvar[k=2]= 1 (from V1) */
                   10824:       /*       k=1 Tvar[1]=2 (from V2) */
                   10825:       /*       k=5 Tvar[5] */
                   10826:       /* for (k=1; k<=cptcovn;k++) { */
1.198     brouard  10827:       /*       cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
1.187     brouard  10828:       /*       } */
1.198     brouard  10829:       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
1.187     brouard  10830:       /*
                   10831:        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
1.227     brouard  10832:       for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
                   10833:         Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
                   10834:       }
1.187     brouard  10835:       cptcovage=0;
1.319     brouard  10836:       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model line */
                   10837:        cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' cutl from left to right
                   10838:                                         modelsav==V2+V1+V5*age+V4+V3*age strb=V3*age stra=V2+V1V5*age+V4 */    /* <model> "V5+V4+V3+V4*V3+V5*age+V1*age+V1" strb="V5" stra="V4+V3+V4*V3+V5*age+V1*age+V1" */
                   10839:        if (nbocc(modelsav,'+')==0)
                   10840:          strcpy(strb,modelsav); /* and analyzes it */
1.234     brouard  10841:        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
                   10842:        /*scanf("%d",i);*/
1.319     brouard  10843:        if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V5*age+ V4+V3*age strb=V3*age */
                   10844:          cutl(strc,strd,strb,'*'); /**< k=1 strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 */
1.234     brouard  10845:          if (strcmp(strc,"age")==0) { /**< Model includes age: Vn*age */
                   10846:            /* covar is not filled and then is empty */
                   10847:            cptcovprod--;
                   10848:            cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
1.319     brouard  10849:            Tvar[k]=atoi(stre);  /* V2+V1+V5*age+V4+V3*age Tvar[5]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
1.234     brouard  10850:            Typevar[k]=1;  /* 1 for age product */
1.319     brouard  10851:            cptcovage++; /* Counts the number of covariates which include age as a product */
                   10852:            Tage[cptcovage]=k;  /*  V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
1.234     brouard  10853:            /*printf("stre=%s ", stre);*/
                   10854:          } else if (strcmp(strd,"age")==0) { /* or age*Vn */
                   10855:            cptcovprod--;
                   10856:            cutl(stre,strb,strc,'V');
                   10857:            Tvar[k]=atoi(stre);
                   10858:            Typevar[k]=1;  /* 1 for age product */
                   10859:            cptcovage++;
                   10860:            Tage[cptcovage]=k;
                   10861:          } else {  /* Age is not in the model product V2+V1+V1*V4+V3*age+V3*V2  strb=V3*V2*/
                   10862:            /* loops on k1=1 (V3*V2) and k1=2 V4*V3 */
                   10863:            cptcovn++;
                   10864:            cptcovprodnoage++;k1++;
                   10865:            cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
                   10866:            Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* For model-covariate k tells which data-covariate to use but
                   10867:                                                because this model-covariate is a construction we invent a new column
                   10868:                                                which is after existing variables ncovcol+nqv+ntv+nqtv + k1
1.335     brouard  10869:                                                If already ncovcol=4 and model= V2 + V1 + V1*V4 + age*V3 + V3*V2
1.319     brouard  10870:                                                thus after V4 we invent V5 and V6 because age*V3 will be computed in 4
                   10871:                                                Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=4 etc */
1.335     brouard  10872:            /* Please remark that the new variables are model dependent */
                   10873:            /* If we have 4 variable but the model uses only 3, like in
                   10874:             * model= V1 + age*V1 + V2 + V3 + age*V2 + age*V3 + V1*V2 + V1*V3
                   10875:             *  k=     1     2       3   4     5        6        7       8
                   10876:             * Tvar[k]=1     1       2   3     2        3       (5       6) (and not 4 5 because of V4 missing)
                   10877:             * Tage[kk]    [1]= 2           [2]=5      [3]=6                  kk=1 to cptcovage=3
                   10878:             * Tvar[Tage[kk]][1]=2          [2]=2      [3]=3
                   10879:             */
1.234     brouard  10880:            Typevar[k]=2;  /* 2 for double fixed dummy covariates */
                   10881:            cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
                   10882:            Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2  */
1.319     brouard  10883:            Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */
1.234     brouard  10884:            Tvard[k1][1] =atoi(strc); /* m 1 for V1*/
1.330     brouard  10885:            Tvardk[k][1] =atoi(strc); /* m 1 for V1*/
1.234     brouard  10886:            Tvard[k1][2] =atoi(stre); /* n 4 for V4*/
1.330     brouard  10887:            Tvardk[k][2] =atoi(stre); /* n 4 for V4*/
1.234     brouard  10888:            k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
                   10889:            /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
                   10890:            /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
1.225     brouard  10891:             /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
1.234     brouard  10892:            /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
                   10893:            for (i=1; i<=lastobs;i++){
                   10894:              /* Computes the new covariate which is a product of
                   10895:                 covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                   10896:              covar[ncovcol+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
                   10897:            }
                   10898:          } /* End age is not in the model */
                   10899:        } /* End if model includes a product */
1.319     brouard  10900:        else { /* not a product */
1.234     brouard  10901:          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                   10902:          /*  scanf("%d",i);*/
                   10903:          cutl(strd,strc,strb,'V');
                   10904:          ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
                   10905:          cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
                   10906:          Tvar[k]=atoi(strd);
                   10907:          Typevar[k]=0;  /* 0 for simple covariates */
                   10908:        }
                   10909:        strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
1.223     brouard  10910:                                /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
1.225     brouard  10911:                                  scanf("%d",i);*/
1.187     brouard  10912:       } /* end of loop + on total covariates */
                   10913:     } /* end if strlen(modelsave == 0) age*age might exist */
                   10914:   } /* end if strlen(model == 0) */
1.136     brouard  10915:   
                   10916:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                   10917:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
1.225     brouard  10918:   
1.136     brouard  10919:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
1.225     brouard  10920:      printf("cptcovprod=%d ", cptcovprod);
                   10921:      fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
                   10922:      scanf("%d ",i);*/
                   10923: 
                   10924: 
1.230     brouard  10925: /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
                   10926:    of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
1.226     brouard  10927: /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
                   10928:    model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
                   10929:    k =           1    2   3     4       5       6      7      8        9
                   10930:    Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
1.319     brouard  10931:    Typevar[k]=   0    0   0     2       1       0      2      1        0
1.227     brouard  10932:    Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
                   10933:    Dummy[k]      1    0   0     0       3       1      1      2        3
                   10934:          Tmodelind[combination of covar]=k;
1.225     brouard  10935: */  
                   10936: /* Dispatching between quantitative and time varying covariates */
1.226     brouard  10937:   /* If Tvar[k] >ncovcol it is a product */
1.225     brouard  10938:   /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
1.226     brouard  10939:        /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
1.318     brouard  10940:   printf("Model=1+age+%s\n\
1.227     brouard  10941: Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
                   10942: Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
                   10943: Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
1.318     brouard  10944:   fprintf(ficlog,"Model=1+age+%s\n\
1.227     brouard  10945: Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product \n\
                   10946: Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
                   10947: Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
1.285     brouard  10948:   for(k=-1;k<=cptcovt; k++){ Fixed[k]=0; Dummy[k]=0;}
1.234     brouard  10949:   for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0;k<=cptcovt; k++){ /* or cptocvt */
                   10950:     if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
1.227     brouard  10951:       Fixed[k]= 0;
                   10952:       Dummy[k]= 0;
1.225     brouard  10953:       ncoveff++;
1.232     brouard  10954:       ncovf++;
1.234     brouard  10955:       nsd++;
                   10956:       modell[k].maintype= FTYPE;
                   10957:       TvarsD[nsd]=Tvar[k];
                   10958:       TvarsDind[nsd]=k;
1.330     brouard  10959:       TnsdVar[Tvar[k]]=nsd;
1.234     brouard  10960:       TvarF[ncovf]=Tvar[k];
                   10961:       TvarFind[ncovf]=k;
                   10962:       TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   10963:       TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   10964:     }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /* Product of fixed dummy (<=ncovcol) covariates */
                   10965:       Fixed[k]= 0;
                   10966:       Dummy[k]= 0;
                   10967:       ncoveff++;
                   10968:       ncovf++;
                   10969:       modell[k].maintype= FTYPE;
                   10970:       TvarF[ncovf]=Tvar[k];
1.330     brouard  10971:       /* TnsdVar[Tvar[k]]=nsd; */ /* To be done */
1.234     brouard  10972:       TvarFind[ncovf]=k;
1.230     brouard  10973:       TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.231     brouard  10974:       TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.240     brouard  10975:     }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
1.227     brouard  10976:       Fixed[k]= 0;
                   10977:       Dummy[k]= 1;
1.230     brouard  10978:       nqfveff++;
1.234     brouard  10979:       modell[k].maintype= FTYPE;
                   10980:       modell[k].subtype= FQ;
                   10981:       nsq++;
1.334     brouard  10982:       TvarsQ[nsq]=Tvar[k]; /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary see below */
                   10983:       TvarsQind[nsq]=k;    /* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
1.232     brouard  10984:       ncovf++;
1.234     brouard  10985:       TvarF[ncovf]=Tvar[k];
                   10986:       TvarFind[ncovf]=k;
1.231     brouard  10987:       TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
1.230     brouard  10988:       TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
1.242     brouard  10989:     }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */
1.227     brouard  10990:       Fixed[k]= 1;
                   10991:       Dummy[k]= 0;
1.225     brouard  10992:       ntveff++; /* Only simple time varying dummy variable */
1.234     brouard  10993:       modell[k].maintype= VTYPE;
                   10994:       modell[k].subtype= VD;
                   10995:       nsd++;
                   10996:       TvarsD[nsd]=Tvar[k];
                   10997:       TvarsDind[nsd]=k;
1.330     brouard  10998:       TnsdVar[Tvar[k]]=nsd; /* To be verified */
1.234     brouard  10999:       ncovv++; /* Only simple time varying variables */
                   11000:       TvarV[ncovv]=Tvar[k];
1.242     brouard  11001:       TvarVind[ncovv]=k; /* TvarVind[2]=2  TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
1.231     brouard  11002:       TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
                   11003:       TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
1.228     brouard  11004:       printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
                   11005:       printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
1.231     brouard  11006:     }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
1.234     brouard  11007:       Fixed[k]= 1;
                   11008:       Dummy[k]= 1;
                   11009:       nqtveff++;
                   11010:       modell[k].maintype= VTYPE;
                   11011:       modell[k].subtype= VQ;
                   11012:       ncovv++; /* Only simple time varying variables */
                   11013:       nsq++;
1.334     brouard  11014:       TvarsQ[nsq]=Tvar[k]; /* k=1 Tvar=5 nsq=1 TvarsQ[1]=5 */ /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary here) */
                   11015:       TvarsQind[nsq]=k; /* For single quantitative covariate gives the model position of each single quantitative covariate *//* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
1.234     brouard  11016:       TvarV[ncovv]=Tvar[k];
1.242     brouard  11017:       TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
1.231     brouard  11018:       TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   11019:       TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
1.234     brouard  11020:       TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
                   11021:       /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
                   11022:       printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%d,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv);
1.228     brouard  11023:       printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv);
1.227     brouard  11024:     }else if (Typevar[k] == 1) {  /* product with age */
1.234     brouard  11025:       ncova++;
                   11026:       TvarA[ncova]=Tvar[k];
                   11027:       TvarAind[ncova]=k;
1.231     brouard  11028:       if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
1.240     brouard  11029:        Fixed[k]= 2;
                   11030:        Dummy[k]= 2;
                   11031:        modell[k].maintype= ATYPE;
                   11032:        modell[k].subtype= APFD;
                   11033:        /* ncoveff++; */
1.227     brouard  11034:       }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
1.240     brouard  11035:        Fixed[k]= 2;
                   11036:        Dummy[k]= 3;
                   11037:        modell[k].maintype= ATYPE;
                   11038:        modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
                   11039:        /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
1.227     brouard  11040:       }else if( Tvar[k] <=ncovcol+nqv+ntv ){
1.240     brouard  11041:        Fixed[k]= 3;
                   11042:        Dummy[k]= 2;
                   11043:        modell[k].maintype= ATYPE;
                   11044:        modell[k].subtype= APVD;                /*      Product age * varying dummy */
                   11045:        /* ntveff++; /\* Only simple time varying dummy variable *\/ */
1.227     brouard  11046:       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
1.240     brouard  11047:        Fixed[k]= 3;
                   11048:        Dummy[k]= 3;
                   11049:        modell[k].maintype= ATYPE;
                   11050:        modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
                   11051:        /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
1.227     brouard  11052:       }
                   11053:     }else if (Typevar[k] == 2) {  /* product without age */
                   11054:       k1=Tposprod[k];
                   11055:       if(Tvard[k1][1] <=ncovcol){
1.240     brouard  11056:        if(Tvard[k1][2] <=ncovcol){
                   11057:          Fixed[k]= 1;
                   11058:          Dummy[k]= 0;
                   11059:          modell[k].maintype= FTYPE;
                   11060:          modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
                   11061:          ncovf++; /* Fixed variables without age */
                   11062:          TvarF[ncovf]=Tvar[k];
                   11063:          TvarFind[ncovf]=k;
                   11064:        }else if(Tvard[k1][2] <=ncovcol+nqv){
                   11065:          Fixed[k]= 0;  /* or 2 ?*/
                   11066:          Dummy[k]= 1;
                   11067:          modell[k].maintype= FTYPE;
                   11068:          modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
                   11069:          ncovf++; /* Varying variables without age */
                   11070:          TvarF[ncovf]=Tvar[k];
                   11071:          TvarFind[ncovf]=k;
                   11072:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   11073:          Fixed[k]= 1;
                   11074:          Dummy[k]= 0;
                   11075:          modell[k].maintype= VTYPE;
                   11076:          modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
                   11077:          ncovv++; /* Varying variables without age */
                   11078:          TvarV[ncovv]=Tvar[k];
                   11079:          TvarVind[ncovv]=k;
                   11080:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   11081:          Fixed[k]= 1;
                   11082:          Dummy[k]= 1;
                   11083:          modell[k].maintype= VTYPE;
                   11084:          modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
                   11085:          ncovv++; /* Varying variables without age */
                   11086:          TvarV[ncovv]=Tvar[k];
                   11087:          TvarVind[ncovv]=k;
                   11088:        }
1.227     brouard  11089:       }else if(Tvard[k1][1] <=ncovcol+nqv){
1.240     brouard  11090:        if(Tvard[k1][2] <=ncovcol){
                   11091:          Fixed[k]= 0;  /* or 2 ?*/
                   11092:          Dummy[k]= 1;
                   11093:          modell[k].maintype= FTYPE;
                   11094:          modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
                   11095:          ncovf++; /* Fixed variables without age */
                   11096:          TvarF[ncovf]=Tvar[k];
                   11097:          TvarFind[ncovf]=k;
                   11098:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   11099:          Fixed[k]= 1;
                   11100:          Dummy[k]= 1;
                   11101:          modell[k].maintype= VTYPE;
                   11102:          modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
                   11103:          ncovv++; /* Varying variables without age */
                   11104:          TvarV[ncovv]=Tvar[k];
                   11105:          TvarVind[ncovv]=k;
                   11106:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   11107:          Fixed[k]= 1;
                   11108:          Dummy[k]= 1;
                   11109:          modell[k].maintype= VTYPE;
                   11110:          modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
                   11111:          ncovv++; /* Varying variables without age */
                   11112:          TvarV[ncovv]=Tvar[k];
                   11113:          TvarVind[ncovv]=k;
                   11114:          ncovv++; /* Varying variables without age */
                   11115:          TvarV[ncovv]=Tvar[k];
                   11116:          TvarVind[ncovv]=k;
                   11117:        }
1.227     brouard  11118:       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){
1.240     brouard  11119:        if(Tvard[k1][2] <=ncovcol){
                   11120:          Fixed[k]= 1;
                   11121:          Dummy[k]= 1;
                   11122:          modell[k].maintype= VTYPE;
                   11123:          modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
                   11124:          ncovv++; /* Varying variables without age */
                   11125:          TvarV[ncovv]=Tvar[k];
                   11126:          TvarVind[ncovv]=k;
                   11127:        }else if(Tvard[k1][2] <=ncovcol+nqv){
                   11128:          Fixed[k]= 1;
                   11129:          Dummy[k]= 1;
                   11130:          modell[k].maintype= VTYPE;
                   11131:          modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
                   11132:          ncovv++; /* Varying variables without age */
                   11133:          TvarV[ncovv]=Tvar[k];
                   11134:          TvarVind[ncovv]=k;
                   11135:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   11136:          Fixed[k]= 1;
                   11137:          Dummy[k]= 0;
                   11138:          modell[k].maintype= VTYPE;
                   11139:          modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
                   11140:          ncovv++; /* Varying variables without age */
                   11141:          TvarV[ncovv]=Tvar[k];
                   11142:          TvarVind[ncovv]=k;
                   11143:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   11144:          Fixed[k]= 1;
                   11145:          Dummy[k]= 1;
                   11146:          modell[k].maintype= VTYPE;
                   11147:          modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
                   11148:          ncovv++; /* Varying variables without age */
                   11149:          TvarV[ncovv]=Tvar[k];
                   11150:          TvarVind[ncovv]=k;
                   11151:        }
1.227     brouard  11152:       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){
1.240     brouard  11153:        if(Tvard[k1][2] <=ncovcol){
                   11154:          Fixed[k]= 1;
                   11155:          Dummy[k]= 1;
                   11156:          modell[k].maintype= VTYPE;
                   11157:          modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
                   11158:          ncovv++; /* Varying variables without age */
                   11159:          TvarV[ncovv]=Tvar[k];
                   11160:          TvarVind[ncovv]=k;
                   11161:        }else if(Tvard[k1][2] <=ncovcol+nqv){
                   11162:          Fixed[k]= 1;
                   11163:          Dummy[k]= 1;
                   11164:          modell[k].maintype= VTYPE;
                   11165:          modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
                   11166:          ncovv++; /* Varying variables without age */
                   11167:          TvarV[ncovv]=Tvar[k];
                   11168:          TvarVind[ncovv]=k;
                   11169:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   11170:          Fixed[k]= 1;
                   11171:          Dummy[k]= 1;
                   11172:          modell[k].maintype= VTYPE;
                   11173:          modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
                   11174:          ncovv++; /* Varying variables without age */
                   11175:          TvarV[ncovv]=Tvar[k];
                   11176:          TvarVind[ncovv]=k;
                   11177:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   11178:          Fixed[k]= 1;
                   11179:          Dummy[k]= 1;
                   11180:          modell[k].maintype= VTYPE;
                   11181:          modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
                   11182:          ncovv++; /* Varying variables without age */
                   11183:          TvarV[ncovv]=Tvar[k];
                   11184:          TvarVind[ncovv]=k;
                   11185:        }
1.227     brouard  11186:       }else{
1.240     brouard  11187:        printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   11188:        fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   11189:       } /*end k1*/
1.225     brouard  11190:     }else{
1.226     brouard  11191:       printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
                   11192:       fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
1.225     brouard  11193:     }
1.227     brouard  11194:     printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
1.231     brouard  11195:     printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype);
1.227     brouard  11196:     fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
                   11197:   }
                   11198:   /* Searching for doublons in the model */
                   11199:   for(k1=1; k1<= cptcovt;k1++){
                   11200:     for(k2=1; k2 <k1;k2++){
1.285     brouard  11201:       /* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */
                   11202:       if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){
1.234     brouard  11203:        if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
                   11204:          if(Tvar[k1]==Tvar[k2]){
1.338   ! brouard  11205:            printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]);
        !          11206:            fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog);
1.234     brouard  11207:            return(1);
                   11208:          }
                   11209:        }else if (Typevar[k1] ==2){
                   11210:          k3=Tposprod[k1];
                   11211:          k4=Tposprod[k2];
                   11212:          if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
1.338   ! brouard  11213:            printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
        !          11214:            fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
1.234     brouard  11215:            return(1);
                   11216:          }
                   11217:        }
1.227     brouard  11218:       }
                   11219:     }
1.225     brouard  11220:   }
                   11221:   printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
                   11222:   fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
1.234     brouard  11223:   printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
                   11224:   fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
1.137     brouard  11225:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
1.164     brouard  11226:   /*endread:*/
1.225     brouard  11227:   printf("Exiting decodemodel: ");
                   11228:   return (1);
1.136     brouard  11229: }
                   11230: 
1.169     brouard  11231: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
1.248     brouard  11232: {/* Check ages at death */
1.136     brouard  11233:   int i, m;
1.218     brouard  11234:   int firstone=0;
                   11235:   
1.136     brouard  11236:   for (i=1; i<=imx; i++) {
                   11237:     for(m=2; (m<= maxwav); m++) {
                   11238:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
                   11239:        anint[m][i]=9999;
1.216     brouard  11240:        if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
                   11241:          s[m][i]=-1;
1.136     brouard  11242:       }
                   11243:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
1.260     brouard  11244:        *nberr = *nberr + 1;
1.218     brouard  11245:        if(firstone == 0){
                   11246:          firstone=1;
1.260     brouard  11247:        printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
1.218     brouard  11248:        }
1.262     brouard  11249:        fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
1.260     brouard  11250:        s[m][i]=-1;  /* Droping the death status */
1.136     brouard  11251:       }
                   11252:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
1.169     brouard  11253:        (*nberr)++;
1.259     brouard  11254:        printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
1.262     brouard  11255:        fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
1.259     brouard  11256:        s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */
1.136     brouard  11257:       }
                   11258:     }
                   11259:   }
                   11260: 
                   11261:   for (i=1; i<=imx; i++)  {
                   11262:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
                   11263:     for(m=firstpass; (m<= lastpass); m++){
1.214     brouard  11264:       if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
1.136     brouard  11265:        if (s[m][i] >= nlstate+1) {
1.169     brouard  11266:          if(agedc[i]>0){
                   11267:            if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
1.136     brouard  11268:              agev[m][i]=agedc[i];
1.214     brouard  11269:              /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
1.169     brouard  11270:            }else {
1.136     brouard  11271:              if ((int)andc[i]!=9999){
                   11272:                nbwarn++;
                   11273:                printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   11274:                fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   11275:                agev[m][i]=-1;
                   11276:              }
                   11277:            }
1.169     brouard  11278:          } /* agedc > 0 */
1.214     brouard  11279:        } /* end if */
1.136     brouard  11280:        else if(s[m][i] !=9){ /* Standard case, age in fractional
                   11281:                                 years but with the precision of a month */
                   11282:          agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                   11283:          if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
                   11284:            agev[m][i]=1;
                   11285:          else if(agev[m][i] < *agemin){ 
                   11286:            *agemin=agev[m][i];
                   11287:            printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
                   11288:          }
                   11289:          else if(agev[m][i] >*agemax){
                   11290:            *agemax=agev[m][i];
1.156     brouard  11291:            /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
1.136     brouard  11292:          }
                   11293:          /*agev[m][i]=anint[m][i]-annais[i];*/
                   11294:          /*     agev[m][i] = age[i]+2*m;*/
1.214     brouard  11295:        } /* en if 9*/
1.136     brouard  11296:        else { /* =9 */
1.214     brouard  11297:          /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
1.136     brouard  11298:          agev[m][i]=1;
                   11299:          s[m][i]=-1;
                   11300:        }
                   11301:       }
1.214     brouard  11302:       else if(s[m][i]==0) /*= 0 Unknown */
1.136     brouard  11303:        agev[m][i]=1;
1.214     brouard  11304:       else{
                   11305:        printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
                   11306:        fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
                   11307:        agev[m][i]=0;
                   11308:       }
                   11309:     } /* End for lastpass */
                   11310:   }
1.136     brouard  11311:     
                   11312:   for (i=1; i<=imx; i++)  {
                   11313:     for(m=firstpass; (m<=lastpass); m++){
                   11314:       if (s[m][i] > (nlstate+ndeath)) {
1.169     brouard  11315:        (*nberr)++;
1.136     brouard  11316:        printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   11317:        fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   11318:        return 1;
                   11319:       }
                   11320:     }
                   11321:   }
                   11322: 
                   11323:   /*for (i=1; i<=imx; i++){
                   11324:   for (m=firstpass; (m<lastpass); m++){
                   11325:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
                   11326: }
                   11327: 
                   11328: }*/
                   11329: 
                   11330: 
1.139     brouard  11331:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
                   11332:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
1.136     brouard  11333: 
                   11334:   return (0);
1.164     brouard  11335:  /* endread:*/
1.136     brouard  11336:     printf("Exiting calandcheckages: ");
                   11337:     return (1);
                   11338: }
                   11339: 
1.172     brouard  11340: #if defined(_MSC_VER)
                   11341: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
                   11342: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
                   11343: //#include "stdafx.h"
                   11344: //#include <stdio.h>
                   11345: //#include <tchar.h>
                   11346: //#include <windows.h>
                   11347: //#include <iostream>
                   11348: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
                   11349: 
                   11350: LPFN_ISWOW64PROCESS fnIsWow64Process;
                   11351: 
                   11352: BOOL IsWow64()
                   11353: {
                   11354:        BOOL bIsWow64 = FALSE;
                   11355: 
                   11356:        //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
                   11357:        //  (HANDLE, PBOOL);
                   11358: 
                   11359:        //LPFN_ISWOW64PROCESS fnIsWow64Process;
                   11360: 
                   11361:        HMODULE module = GetModuleHandle(_T("kernel32"));
                   11362:        const char funcName[] = "IsWow64Process";
                   11363:        fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   11364:                GetProcAddress(module, funcName);
                   11365: 
                   11366:        if (NULL != fnIsWow64Process)
                   11367:        {
                   11368:                if (!fnIsWow64Process(GetCurrentProcess(),
                   11369:                        &bIsWow64))
                   11370:                        //throw std::exception("Unknown error");
                   11371:                        printf("Unknown error\n");
                   11372:        }
                   11373:        return bIsWow64 != FALSE;
                   11374: }
                   11375: #endif
1.177     brouard  11376: 
1.191     brouard  11377: void syscompilerinfo(int logged)
1.292     brouard  11378: {
                   11379: #include <stdint.h>
                   11380: 
                   11381:   /* #include "syscompilerinfo.h"*/
1.185     brouard  11382:    /* command line Intel compiler 32bit windows, XP compatible:*/
                   11383:    /* /GS /W3 /Gy
                   11384:       /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
                   11385:       "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
                   11386:       "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
1.186     brouard  11387:       /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
                   11388:    */ 
                   11389:    /* 64 bits */
1.185     brouard  11390:    /*
                   11391:      /GS /W3 /Gy
                   11392:      /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
                   11393:      /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
                   11394:      /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
                   11395:      "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
                   11396:    /* Optimization are useless and O3 is slower than O2 */
                   11397:    /*
                   11398:      /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
                   11399:      /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
                   11400:      /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
                   11401:      /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
                   11402:    */
1.186     brouard  11403:    /* Link is */ /* /OUT:"visual studio
1.185     brouard  11404:       2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
                   11405:       /PDB:"visual studio
                   11406:       2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
                   11407:       "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
                   11408:       "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
                   11409:       "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
                   11410:       /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
                   11411:       /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
                   11412:       uiAccess='false'"
                   11413:       /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
                   11414:       /NOLOGO /TLBID:1
                   11415:    */
1.292     brouard  11416: 
                   11417: 
1.177     brouard  11418: #if defined __INTEL_COMPILER
1.178     brouard  11419: #if defined(__GNUC__)
                   11420:        struct utsname sysInfo;  /* For Intel on Linux and OS/X */
                   11421: #endif
1.177     brouard  11422: #elif defined(__GNUC__) 
1.179     brouard  11423: #ifndef  __APPLE__
1.174     brouard  11424: #include <gnu/libc-version.h>  /* Only on gnu */
1.179     brouard  11425: #endif
1.177     brouard  11426:    struct utsname sysInfo;
1.178     brouard  11427:    int cross = CROSS;
                   11428:    if (cross){
                   11429:           printf("Cross-");
1.191     brouard  11430:           if(logged) fprintf(ficlog, "Cross-");
1.178     brouard  11431:    }
1.174     brouard  11432: #endif
                   11433: 
1.191     brouard  11434:    printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
1.169     brouard  11435: #if defined(__clang__)
1.191     brouard  11436:    printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");      /* Clang/LLVM. ---------------------------------------------- */
1.169     brouard  11437: #endif
                   11438: #if defined(__ICC) || defined(__INTEL_COMPILER)
1.191     brouard  11439:    printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
1.169     brouard  11440: #endif
                   11441: #if defined(__GNUC__) || defined(__GNUG__)
1.191     brouard  11442:    printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
1.169     brouard  11443: #endif
                   11444: #if defined(__HP_cc) || defined(__HP_aCC)
1.191     brouard  11445:    printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
1.169     brouard  11446: #endif
                   11447: #if defined(__IBMC__) || defined(__IBMCPP__)
1.191     brouard  11448:    printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
1.169     brouard  11449: #endif
                   11450: #if defined(_MSC_VER)
1.191     brouard  11451:    printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
1.169     brouard  11452: #endif
                   11453: #if defined(__PGI)
1.191     brouard  11454:    printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
1.169     brouard  11455: #endif
                   11456: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
1.191     brouard  11457:    printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
1.167     brouard  11458: #endif
1.191     brouard  11459:    printf(" for "); if (logged) fprintf(ficlog, " for ");
1.169     brouard  11460:    
1.167     brouard  11461: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
                   11462: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
                   11463:     // Windows (x64 and x86)
1.191     brouard  11464:    printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
1.167     brouard  11465: #elif __unix__ // all unices, not all compilers
                   11466:     // Unix
1.191     brouard  11467:    printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
1.167     brouard  11468: #elif __linux__
                   11469:     // linux
1.191     brouard  11470:    printf("linux ");if(logged) fprintf(ficlog,"linux ");
1.167     brouard  11471: #elif __APPLE__
1.174     brouard  11472:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
1.191     brouard  11473:    printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
1.167     brouard  11474: #endif
                   11475: 
                   11476: /*  __MINGW32__          */
                   11477: /*  __CYGWIN__  */
                   11478: /* __MINGW64__  */
                   11479: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
                   11480: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
                   11481: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
                   11482: /* _WIN64  // Defined for applications for Win64. */
                   11483: /* _M_X64 // Defined for compilations that target x64 processors. */
                   11484: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
1.171     brouard  11485: 
1.167     brouard  11486: #if UINTPTR_MAX == 0xffffffff
1.191     brouard  11487:    printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
1.167     brouard  11488: #elif UINTPTR_MAX == 0xffffffffffffffff
1.191     brouard  11489:    printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
1.167     brouard  11490: #else
1.191     brouard  11491:    printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
1.167     brouard  11492: #endif
                   11493: 
1.169     brouard  11494: #if defined(__GNUC__)
                   11495: # if defined(__GNUC_PATCHLEVEL__)
                   11496: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   11497:                             + __GNUC_MINOR__ * 100 \
                   11498:                             + __GNUC_PATCHLEVEL__)
                   11499: # else
                   11500: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   11501:                             + __GNUC_MINOR__ * 100)
                   11502: # endif
1.174     brouard  11503:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
1.191     brouard  11504:    if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
1.176     brouard  11505: 
                   11506:    if (uname(&sysInfo) != -1) {
                   11507:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
1.191     brouard  11508:         if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
1.176     brouard  11509:    }
                   11510:    else
                   11511:       perror("uname() error");
1.179     brouard  11512:    //#ifndef __INTEL_COMPILER 
                   11513: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
1.174     brouard  11514:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
1.191     brouard  11515:    if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
1.177     brouard  11516: #endif
1.169     brouard  11517: #endif
1.172     brouard  11518: 
1.286     brouard  11519:    //   void main ()
1.172     brouard  11520:    //   {
1.169     brouard  11521: #if defined(_MSC_VER)
1.174     brouard  11522:    if (IsWow64()){
1.191     brouard  11523:           printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
                   11524:           if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
1.174     brouard  11525:    }
                   11526:    else{
1.191     brouard  11527:           printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
                   11528:           if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
1.174     brouard  11529:    }
1.172     brouard  11530:    //     printf("\nPress Enter to continue...");
                   11531:    //     getchar();
                   11532:    //   }
                   11533: 
1.169     brouard  11534: #endif
                   11535:    
1.167     brouard  11536: 
1.219     brouard  11537: }
1.136     brouard  11538: 
1.219     brouard  11539: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
1.288     brouard  11540:   /*--------------- Prevalence limit  (forward period or forward stable prevalence) --------------*/
1.332     brouard  11541:   /* Computes the prevalence limit for each combination of the dummy covariates */
1.235     brouard  11542:   int i, j, k, i1, k4=0, nres=0 ;
1.202     brouard  11543:   /* double ftolpl = 1.e-10; */
1.180     brouard  11544:   double age, agebase, agelim;
1.203     brouard  11545:   double tot;
1.180     brouard  11546: 
1.202     brouard  11547:   strcpy(filerespl,"PL_");
                   11548:   strcat(filerespl,fileresu);
                   11549:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
1.288     brouard  11550:     printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
                   11551:     fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
1.202     brouard  11552:   }
1.288     brouard  11553:   printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
                   11554:   fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
1.202     brouard  11555:   pstamp(ficrespl);
1.288     brouard  11556:   fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
1.202     brouard  11557:   fprintf(ficrespl,"#Age ");
                   11558:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
                   11559:   fprintf(ficrespl,"\n");
1.180     brouard  11560:   
1.219     brouard  11561:   /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
1.180     brouard  11562: 
1.219     brouard  11563:   agebase=ageminpar;
                   11564:   agelim=agemaxpar;
1.180     brouard  11565: 
1.227     brouard  11566:   /* i1=pow(2,ncoveff); */
1.234     brouard  11567:   i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
1.219     brouard  11568:   if (cptcovn < 1){i1=1;}
1.180     brouard  11569: 
1.337     brouard  11570:   /* for(k=1; k<=i1;k++){ /\* For each combination k of dummy covariates in the model *\/ */
1.238     brouard  11571:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  11572:       k=TKresult[nres];
1.338   ! brouard  11573:       if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  11574:       /* if(i1 != 1 && TKresult[nres]!= k) /\* We found the combination k corresponding to the resultline value of dummies *\/ */
                   11575:       /*       continue; */
1.235     brouard  11576: 
1.238     brouard  11577:       /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   11578:       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
                   11579:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   11580:       /* k=k+1; */
                   11581:       /* to clean */
1.332     brouard  11582:       /*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*/
1.238     brouard  11583:       fprintf(ficrespl,"#******");
                   11584:       printf("#******");
                   11585:       fprintf(ficlog,"#******");
1.337     brouard  11586:       for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
1.332     brouard  11587:        /* fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Here problem for varying dummy*\/ */
1.337     brouard  11588:        /* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11589:        /* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11590:        fprintf(ficrespl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   11591:        printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   11592:        fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   11593:       }
                   11594:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   11595:       /*       printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   11596:       /*       fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   11597:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   11598:       /* } */
1.238     brouard  11599:       fprintf(ficrespl,"******\n");
                   11600:       printf("******\n");
                   11601:       fprintf(ficlog,"******\n");
                   11602:       if(invalidvarcomb[k]){
                   11603:        printf("\nCombination (%d) ignored because no case \n",k); 
                   11604:        fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
                   11605:        fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
                   11606:        continue;
                   11607:       }
1.219     brouard  11608: 
1.238     brouard  11609:       fprintf(ficrespl,"#Age ");
1.337     brouard  11610:       /* for(j=1;j<=cptcoveff;j++) { */
                   11611:       /*       fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11612:       /* } */
                   11613:       for(j=1;j<=cptcovs;j++) { /* New the quanti variable is added */
                   11614:        fprintf(ficrespl,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  11615:       }
                   11616:       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
                   11617:       fprintf(ficrespl,"Total Years_to_converge\n");
1.227     brouard  11618:     
1.238     brouard  11619:       for (age=agebase; age<=agelim; age++){
                   11620:        /* for (age=agebase; age<=agebase; age++){ */
1.337     brouard  11621:        /**< Computes the prevalence limit in each live state at age x and for covariate combination (k and) nres */
                   11622:        prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); /* Nicely done */
1.238     brouard  11623:        fprintf(ficrespl,"%.0f ",age );
1.337     brouard  11624:        /* for(j=1;j<=cptcoveff;j++) */
                   11625:        /*   fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11626:        for(j=1;j<=cptcovs;j++)
                   11627:          fprintf(ficrespl,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  11628:        tot=0.;
                   11629:        for(i=1; i<=nlstate;i++){
                   11630:          tot +=  prlim[i][i];
                   11631:          fprintf(ficrespl," %.5f", prlim[i][i]);
                   11632:        }
                   11633:        fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
                   11634:       } /* Age */
                   11635:       /* was end of cptcod */
1.337     brouard  11636:     } /* nres */
                   11637:   /* } /\* for each combination *\/ */
1.219     brouard  11638:   return 0;
1.180     brouard  11639: }
                   11640: 
1.218     brouard  11641: int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
1.288     brouard  11642:        /*--------------- Back Prevalence limit  (backward stable prevalence) --------------*/
1.218     brouard  11643:        
                   11644:        /* Computes the back prevalence limit  for any combination      of covariate values 
                   11645:    * at any age between ageminpar and agemaxpar
                   11646:         */
1.235     brouard  11647:   int i, j, k, i1, nres=0 ;
1.217     brouard  11648:   /* double ftolpl = 1.e-10; */
                   11649:   double age, agebase, agelim;
                   11650:   double tot;
1.218     brouard  11651:   /* double ***mobaverage; */
                   11652:   /* double     **dnewm, **doldm, **dsavm;  /\* for use *\/ */
1.217     brouard  11653: 
                   11654:   strcpy(fileresplb,"PLB_");
                   11655:   strcat(fileresplb,fileresu);
                   11656:   if((ficresplb=fopen(fileresplb,"w"))==NULL) {
1.288     brouard  11657:     printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
                   11658:     fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
1.217     brouard  11659:   }
1.288     brouard  11660:   printf("Computing backward prevalence: result on file '%s' \n", fileresplb);
                   11661:   fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb);
1.217     brouard  11662:   pstamp(ficresplb);
1.288     brouard  11663:   fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl);
1.217     brouard  11664:   fprintf(ficresplb,"#Age ");
                   11665:   for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
                   11666:   fprintf(ficresplb,"\n");
                   11667:   
1.218     brouard  11668:   
                   11669:   /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
                   11670:   
                   11671:   agebase=ageminpar;
                   11672:   agelim=agemaxpar;
                   11673:   
                   11674:   
1.227     brouard  11675:   i1=pow(2,cptcoveff);
1.218     brouard  11676:   if (cptcovn < 1){i1=1;}
1.227     brouard  11677:   
1.238     brouard  11678:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.338   ! brouard  11679:     /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
        !          11680:       k=TKresult[nres];
        !          11681:       if(TKresult[nres]==0) k=1; /* To be checked for noresult */
        !          11682:      /* if(i1 != 1 && TKresult[nres]!= k) */
        !          11683:      /*        continue; */
        !          11684:      /* /\*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*\/ */
1.238     brouard  11685:       fprintf(ficresplb,"#******");
                   11686:       printf("#******");
                   11687:       fprintf(ficlog,"#******");
1.338   ! brouard  11688:       for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
        !          11689:        printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
        !          11690:        fprintf(ficresplb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
        !          11691:        fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  11692:       }
1.338   ! brouard  11693:       /* for(j=1;j<=cptcoveff ;j++) {/\* all covariates *\/ */
        !          11694:       /*       fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
        !          11695:       /*       printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
        !          11696:       /*       fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
        !          11697:       /* } */
        !          11698:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
        !          11699:       /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
        !          11700:       /*       fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
        !          11701:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
        !          11702:       /* } */
1.238     brouard  11703:       fprintf(ficresplb,"******\n");
                   11704:       printf("******\n");
                   11705:       fprintf(ficlog,"******\n");
                   11706:       if(invalidvarcomb[k]){
                   11707:        printf("\nCombination (%d) ignored because no cases \n",k); 
                   11708:        fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
                   11709:        fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
                   11710:        continue;
                   11711:       }
1.218     brouard  11712:     
1.238     brouard  11713:       fprintf(ficresplb,"#Age ");
1.338   ! brouard  11714:       for(j=1;j<=cptcovs;j++) {
        !          11715:        fprintf(ficresplb,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  11716:       }
                   11717:       for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
                   11718:       fprintf(ficresplb,"Total Years_to_converge\n");
1.218     brouard  11719:     
                   11720:     
1.238     brouard  11721:       for (age=agebase; age<=agelim; age++){
                   11722:        /* for (age=agebase; age<=agebase; age++){ */
                   11723:        if(mobilavproj > 0){
                   11724:          /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
                   11725:          /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
1.242     brouard  11726:          bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres);
1.238     brouard  11727:        }else if (mobilavproj == 0){
                   11728:          printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
                   11729:          fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
                   11730:          exit(1);
                   11731:        }else{
                   11732:          /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
1.242     brouard  11733:          bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres);
1.266     brouard  11734:          /* printf("TOTOT\n"); */
                   11735:           /* exit(1); */
1.238     brouard  11736:        }
                   11737:        fprintf(ficresplb,"%.0f ",age );
1.338   ! brouard  11738:        for(j=1;j<=cptcovs;j++)
        !          11739:          fprintf(ficresplb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  11740:        tot=0.;
                   11741:        for(i=1; i<=nlstate;i++){
                   11742:          tot +=  bprlim[i][i];
                   11743:          fprintf(ficresplb," %.5f", bprlim[i][i]);
                   11744:        }
                   11745:        fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
                   11746:       } /* Age */
                   11747:       /* was end of cptcod */
1.255     brouard  11748:       /*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */
1.338   ! brouard  11749:     /* } /\* end of any combination *\/ */
1.238     brouard  11750:   } /* end of nres */  
1.218     brouard  11751:   /* hBijx(p, bage, fage); */
                   11752:   /* fclose(ficrespijb); */
                   11753:   
                   11754:   return 0;
1.217     brouard  11755: }
1.218     brouard  11756:  
1.180     brouard  11757: int hPijx(double *p, int bage, int fage){
                   11758:     /*------------- h Pij x at various ages ------------*/
1.336     brouard  11759:   /* to be optimized with precov */
1.180     brouard  11760:   int stepsize;
                   11761:   int agelim;
                   11762:   int hstepm;
                   11763:   int nhstepm;
1.235     brouard  11764:   int h, i, i1, j, k, k4, nres=0;
1.180     brouard  11765: 
                   11766:   double agedeb;
                   11767:   double ***p3mat;
                   11768: 
1.337     brouard  11769:   strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
                   11770:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
                   11771:     printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
                   11772:     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
                   11773:   }
                   11774:   printf("Computing pij: result on file '%s' \n", filerespij);
                   11775:   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
                   11776:   
                   11777:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   11778:   /*if (stepm<=24) stepsize=2;*/
                   11779:   
                   11780:   agelim=AGESUP;
                   11781:   hstepm=stepsize*YEARM; /* Every year of age */
                   11782:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   11783:   
                   11784:   /* hstepm=1;   aff par mois*/
                   11785:   pstamp(ficrespij);
                   11786:   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
                   11787:   i1= pow(2,cptcoveff);
                   11788:   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   11789:   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   11790:   /*   k=k+1;  */
                   11791:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   11792:     k=TKresult[nres];
1.338   ! brouard  11793:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  11794:     /* for(k=1; k<=i1;k++){ */
                   11795:     /* if(i1 != 1 && TKresult[nres]!= k) */
                   11796:     /*         continue; */
                   11797:     fprintf(ficrespij,"\n#****** ");
                   11798:     for(j=1;j<=cptcovs;j++){
                   11799:       fprintf(ficrespij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   11800:       /* fprintf(ficrespij,"@wV%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11801:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   11802:       /*       printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   11803:       /*       fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   11804:     }
                   11805:     fprintf(ficrespij,"******\n");
                   11806:     
                   11807:     for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
                   11808:       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   11809:       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   11810:       
                   11811:       /*         nhstepm=nhstepm*YEARM; aff par mois*/
                   11812:       
                   11813:       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   11814:       oldm=oldms;savm=savms;
                   11815:       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
                   11816:       fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
                   11817:       for(i=1; i<=nlstate;i++)
                   11818:        for(j=1; j<=nlstate+ndeath;j++)
                   11819:          fprintf(ficrespij," %1d-%1d",i,j);
                   11820:       fprintf(ficrespij,"\n");
                   11821:       for (h=0; h<=nhstepm; h++){
                   11822:        /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
                   11823:        fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
1.183     brouard  11824:        for(i=1; i<=nlstate;i++)
                   11825:          for(j=1; j<=nlstate+ndeath;j++)
1.337     brouard  11826:            fprintf(ficrespij," %.5f", p3mat[i][j][h]);
1.183     brouard  11827:        fprintf(ficrespij,"\n");
                   11828:       }
1.337     brouard  11829:       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   11830:       fprintf(ficrespij,"\n");
1.180     brouard  11831:     }
1.337     brouard  11832:   }
                   11833:   /*}*/
                   11834:   return 0;
1.180     brouard  11835: }
1.218     brouard  11836:  
                   11837:  int hBijx(double *p, int bage, int fage, double ***prevacurrent){
1.217     brouard  11838:     /*------------- h Bij x at various ages ------------*/
1.336     brouard  11839:     /* To be optimized with precov */
1.217     brouard  11840:   int stepsize;
1.218     brouard  11841:   /* int agelim; */
                   11842:        int ageminl;
1.217     brouard  11843:   int hstepm;
                   11844:   int nhstepm;
1.238     brouard  11845:   int h, i, i1, j, k, nres;
1.218     brouard  11846:        
1.217     brouard  11847:   double agedeb;
                   11848:   double ***p3mat;
1.218     brouard  11849:        
                   11850:   strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
                   11851:   if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
                   11852:     printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
                   11853:     fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
                   11854:   }
                   11855:   printf("Computing pij back: result on file '%s' \n", filerespijb);
                   11856:   fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
                   11857:   
                   11858:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   11859:   /*if (stepm<=24) stepsize=2;*/
1.217     brouard  11860:   
1.218     brouard  11861:   /* agelim=AGESUP; */
1.289     brouard  11862:   ageminl=AGEINF; /* was 30 */
1.218     brouard  11863:   hstepm=stepsize*YEARM; /* Every year of age */
                   11864:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
                   11865:   
                   11866:   /* hstepm=1;   aff par mois*/
                   11867:   pstamp(ficrespijb);
1.255     brouard  11868:   fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 ");
1.227     brouard  11869:   i1= pow(2,cptcoveff);
1.218     brouard  11870:   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   11871:   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   11872:   /*   k=k+1;  */
1.238     brouard  11873:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  11874:     k=TKresult[nres];
1.338   ! brouard  11875:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  11876:     /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
                   11877:     /*    if(i1 != 1 && TKresult[nres]!= k) */
                   11878:     /*         continue; */
                   11879:     fprintf(ficrespijb,"\n#****** ");
                   11880:     for(j=1;j<=cptcovs;j++){
1.338   ! brouard  11881:       fprintf(ficrespijb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.337     brouard  11882:       /* for(j=1;j<=cptcoveff;j++) */
                   11883:       /*       fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11884:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   11885:       /*       fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   11886:     }
                   11887:     fprintf(ficrespijb,"******\n");
                   11888:     if(invalidvarcomb[k]){  /* Is it necessary here? */
                   11889:       fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
                   11890:       continue;
                   11891:     }
                   11892:     
                   11893:     /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
                   11894:     for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
                   11895:       /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
                   11896:       nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */
                   11897:       nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/
                   11898:       
                   11899:       /*         nhstepm=nhstepm*YEARM; aff par mois*/
                   11900:       
                   11901:       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */
                   11902:       /* and memory limitations if stepm is small */
                   11903:       
                   11904:       /* oldm=oldms;savm=savms; */
                   11905:       /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
                   11906:       hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */
                   11907:       /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
                   11908:       fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j=");
                   11909:       for(i=1; i<=nlstate;i++)
                   11910:        for(j=1; j<=nlstate+ndeath;j++)
                   11911:          fprintf(ficrespijb," %1d-%1d",i,j);
                   11912:       fprintf(ficrespijb,"\n");
                   11913:       for (h=0; h<=nhstepm; h++){
                   11914:        /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
                   11915:        fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
                   11916:        /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
1.217     brouard  11917:        for(i=1; i<=nlstate;i++)
                   11918:          for(j=1; j<=nlstate+ndeath;j++)
1.337     brouard  11919:            fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */
1.217     brouard  11920:        fprintf(ficrespijb,"\n");
1.337     brouard  11921:       }
                   11922:       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   11923:       fprintf(ficrespijb,"\n");
                   11924:     } /* end age deb */
                   11925:     /* } /\* end combination *\/ */
1.238     brouard  11926:   } /* end nres */
1.218     brouard  11927:   return 0;
                   11928:  } /*  hBijx */
1.217     brouard  11929: 
1.180     brouard  11930: 
1.136     brouard  11931: /***********************************************/
                   11932: /**************** Main Program *****************/
                   11933: /***********************************************/
                   11934: 
                   11935: int main(int argc, char *argv[])
                   11936: {
                   11937: #ifdef GSL
                   11938:   const gsl_multimin_fminimizer_type *T;
                   11939:   size_t iteri = 0, it;
                   11940:   int rval = GSL_CONTINUE;
                   11941:   int status = GSL_SUCCESS;
                   11942:   double ssval;
                   11943: #endif
                   11944:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
1.290     brouard  11945:   int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */
                   11946:   /* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */
1.209     brouard  11947:   int ncvyear=0; /* Number of years needed for the period prevalence to converge */
1.164     brouard  11948:   int jj, ll, li, lj, lk;
1.136     brouard  11949:   int numlinepar=0; /* Current linenumber of parameter file */
1.197     brouard  11950:   int num_filled;
1.136     brouard  11951:   int itimes;
                   11952:   int NDIM=2;
                   11953:   int vpopbased=0;
1.235     brouard  11954:   int nres=0;
1.258     brouard  11955:   int endishere=0;
1.277     brouard  11956:   int noffset=0;
1.274     brouard  11957:   int ncurrv=0; /* Temporary variable */
                   11958:   
1.164     brouard  11959:   char ca[32], cb[32];
1.136     brouard  11960:   /*  FILE *fichtm; *//* Html File */
                   11961:   /* FILE *ficgp;*/ /*Gnuplot File */
                   11962:   struct stat info;
1.191     brouard  11963:   double agedeb=0.;
1.194     brouard  11964: 
                   11965:   double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
1.219     brouard  11966:   double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
1.136     brouard  11967: 
1.165     brouard  11968:   double fret;
1.191     brouard  11969:   double dum=0.; /* Dummy variable */
1.136     brouard  11970:   double ***p3mat;
1.218     brouard  11971:   /* double ***mobaverage; */
1.319     brouard  11972:   double wald;
1.164     brouard  11973: 
                   11974:   char line[MAXLINE];
1.197     brouard  11975:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
                   11976: 
1.234     brouard  11977:   char  modeltemp[MAXLINE];
1.332     brouard  11978:   char resultline[MAXLINE], resultlineori[MAXLINE];
1.230     brouard  11979:   
1.136     brouard  11980:   char pathr[MAXLINE], pathimach[MAXLINE]; 
1.164     brouard  11981:   char *tok, *val; /* pathtot */
1.334     brouard  11982:   /* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */
1.195     brouard  11983:   int c,  h , cpt, c2;
1.191     brouard  11984:   int jl=0;
                   11985:   int i1, j1, jk, stepsize=0;
1.194     brouard  11986:   int count=0;
                   11987: 
1.164     brouard  11988:   int *tab; 
1.136     brouard  11989:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
1.296     brouard  11990:   /* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */
                   11991:   /* double anprojf, mprojf, jprojf; */
                   11992:   /* double jintmean,mintmean,aintmean;   */
                   11993:   int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
                   11994:   int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
                   11995:   double yrfproj= 10.0; /* Number of years of forward projections */
                   11996:   double yrbproj= 10.0; /* Number of years of backward projections */
                   11997:   int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */
1.136     brouard  11998:   int mobilav=0,popforecast=0;
1.191     brouard  11999:   int hstepm=0, nhstepm=0;
1.136     brouard  12000:   int agemortsup;
                   12001:   float  sumlpop=0.;
                   12002:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
                   12003:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
                   12004: 
1.191     brouard  12005:   double bage=0, fage=110., age, agelim=0., agebase=0.;
1.136     brouard  12006:   double ftolpl=FTOL;
                   12007:   double **prlim;
1.217     brouard  12008:   double **bprlim;
1.317     brouard  12009:   double ***param; /* Matrix of parameters, param[i][j][k] param=ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel) 
                   12010:                     state of origin, state of destination including death, for each covariate: constante, age, and V1 V2 etc. */
1.251     brouard  12011:   double ***paramstart; /* Matrix of starting parameter values */
                   12012:   double  *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */
1.136     brouard  12013:   double **matcov; /* Matrix of covariance */
1.203     brouard  12014:   double **hess; /* Hessian matrix */
1.136     brouard  12015:   double ***delti3; /* Scale */
                   12016:   double *delti; /* Scale */
                   12017:   double ***eij, ***vareij;
                   12018:   double **varpl; /* Variances of prevalence limits by age */
1.269     brouard  12019: 
1.136     brouard  12020:   double *epj, vepp;
1.164     brouard  12021: 
1.273     brouard  12022:   double dateprev1, dateprev2;
1.296     brouard  12023:   double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0;
                   12024:   double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0;
                   12025: 
1.217     brouard  12026: 
1.136     brouard  12027:   double **ximort;
1.145     brouard  12028:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
1.136     brouard  12029:   int *dcwave;
                   12030: 
1.164     brouard  12031:   char z[1]="c";
1.136     brouard  12032: 
                   12033:   /*char  *strt;*/
                   12034:   char strtend[80];
1.126     brouard  12035: 
1.164     brouard  12036: 
1.126     brouard  12037: /*   setlocale (LC_ALL, ""); */
                   12038: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                   12039: /*   textdomain (PACKAGE); */
                   12040: /*   setlocale (LC_CTYPE, ""); */
                   12041: /*   setlocale (LC_MESSAGES, ""); */
                   12042: 
                   12043:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
1.157     brouard  12044:   rstart_time = time(NULL);  
                   12045:   /*  (void) gettimeofday(&start_time,&tzp);*/
                   12046:   start_time = *localtime(&rstart_time);
1.126     brouard  12047:   curr_time=start_time;
1.157     brouard  12048:   /*tml = *localtime(&start_time.tm_sec);*/
                   12049:   /* strcpy(strstart,asctime(&tml)); */
                   12050:   strcpy(strstart,asctime(&start_time));
1.126     brouard  12051: 
                   12052: /*  printf("Localtime (at start)=%s",strstart); */
1.157     brouard  12053: /*  tp.tm_sec = tp.tm_sec +86400; */
                   12054: /*  tm = *localtime(&start_time.tm_sec); */
1.126     brouard  12055: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                   12056: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                   12057: /*   tmg.tm_hour=tmg.tm_hour + 1; */
1.157     brouard  12058: /*   tp.tm_sec = mktime(&tmg); */
1.126     brouard  12059: /*   strt=asctime(&tmg); */
                   12060: /*   printf("Time(after) =%s",strstart);  */
                   12061: /*  (void) time (&time_value);
                   12062: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
                   12063: *  tm = *localtime(&time_value);
                   12064: *  strstart=asctime(&tm);
                   12065: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
                   12066: */
                   12067: 
                   12068:   nberr=0; /* Number of errors and warnings */
                   12069:   nbwarn=0;
1.184     brouard  12070: #ifdef WIN32
                   12071:   _getcwd(pathcd, size);
                   12072: #else
1.126     brouard  12073:   getcwd(pathcd, size);
1.184     brouard  12074: #endif
1.191     brouard  12075:   syscompilerinfo(0);
1.196     brouard  12076:   printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
1.126     brouard  12077:   if(argc <=1){
                   12078:     printf("\nEnter the parameter file name: ");
1.205     brouard  12079:     if(!fgets(pathr,FILENAMELENGTH,stdin)){
                   12080:       printf("ERROR Empty parameter file name\n");
                   12081:       goto end;
                   12082:     }
1.126     brouard  12083:     i=strlen(pathr);
                   12084:     if(pathr[i-1]=='\n')
                   12085:       pathr[i-1]='\0';
1.156     brouard  12086:     i=strlen(pathr);
1.205     brouard  12087:     if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
1.156     brouard  12088:       pathr[i-1]='\0';
1.205     brouard  12089:     }
                   12090:     i=strlen(pathr);
                   12091:     if( i==0 ){
                   12092:       printf("ERROR Empty parameter file name\n");
                   12093:       goto end;
                   12094:     }
                   12095:     for (tok = pathr; tok != NULL; ){
1.126     brouard  12096:       printf("Pathr |%s|\n",pathr);
                   12097:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
                   12098:       printf("val= |%s| pathr=%s\n",val,pathr);
                   12099:       strcpy (pathtot, val);
                   12100:       if(pathr[0] == '\0') break; /* Dirty */
                   12101:     }
                   12102:   }
1.281     brouard  12103:   else if (argc<=2){
                   12104:     strcpy(pathtot,argv[1]);
                   12105:   }
1.126     brouard  12106:   else{
                   12107:     strcpy(pathtot,argv[1]);
1.281     brouard  12108:     strcpy(z,argv[2]);
                   12109:     printf("\nargv[2]=%s z=%c\n",argv[2],z[0]);
1.126     brouard  12110:   }
                   12111:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
                   12112:   /*cygwin_split_path(pathtot,path,optionfile);
                   12113:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
                   12114:   /* cutv(path,optionfile,pathtot,'\\');*/
                   12115: 
                   12116:   /* Split argv[0], imach program to get pathimach */
                   12117:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
                   12118:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   12119:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   12120:  /*   strcpy(pathimach,argv[0]); */
                   12121:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
                   12122:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
                   12123:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
1.184     brouard  12124: #ifdef WIN32
                   12125:   _chdir(path); /* Can be a relative path */
                   12126:   if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
                   12127: #else
1.126     brouard  12128:   chdir(path); /* Can be a relative path */
1.184     brouard  12129:   if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
                   12130: #endif
                   12131:   printf("Current directory %s!\n",pathcd);
1.126     brouard  12132:   strcpy(command,"mkdir ");
                   12133:   strcat(command,optionfilefiname);
                   12134:   if((outcmd=system(command)) != 0){
1.169     brouard  12135:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
1.126     brouard  12136:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   12137:     /* fclose(ficlog); */
                   12138: /*     exit(1); */
                   12139:   }
                   12140: /*   if((imk=mkdir(optionfilefiname))<0){ */
                   12141: /*     perror("mkdir"); */
                   12142: /*   } */
                   12143: 
                   12144:   /*-------- arguments in the command line --------*/
                   12145: 
1.186     brouard  12146:   /* Main Log file */
1.126     brouard  12147:   strcat(filelog, optionfilefiname);
                   12148:   strcat(filelog,".log");    /* */
                   12149:   if((ficlog=fopen(filelog,"w"))==NULL)    {
                   12150:     printf("Problem with logfile %s\n",filelog);
                   12151:     goto end;
                   12152:   }
                   12153:   fprintf(ficlog,"Log filename:%s\n",filelog);
1.197     brouard  12154:   fprintf(ficlog,"Version %s %s",version,fullversion);
1.126     brouard  12155:   fprintf(ficlog,"\nEnter the parameter file name: \n");
                   12156:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
                   12157:  path=%s \n\
                   12158:  optionfile=%s\n\
                   12159:  optionfilext=%s\n\
1.156     brouard  12160:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.126     brouard  12161: 
1.197     brouard  12162:   syscompilerinfo(1);
1.167     brouard  12163: 
1.126     brouard  12164:   printf("Local time (at start):%s",strstart);
                   12165:   fprintf(ficlog,"Local time (at start): %s",strstart);
                   12166:   fflush(ficlog);
                   12167: /*   (void) gettimeofday(&curr_time,&tzp); */
1.157     brouard  12168: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
1.126     brouard  12169: 
                   12170:   /* */
                   12171:   strcpy(fileres,"r");
                   12172:   strcat(fileres, optionfilefiname);
1.201     brouard  12173:   strcat(fileresu, optionfilefiname); /* Without r in front */
1.126     brouard  12174:   strcat(fileres,".txt");    /* Other files have txt extension */
1.201     brouard  12175:   strcat(fileresu,".txt");    /* Other files have txt extension */
1.126     brouard  12176: 
1.186     brouard  12177:   /* Main ---------arguments file --------*/
1.126     brouard  12178: 
                   12179:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
1.155     brouard  12180:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
                   12181:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
1.126     brouard  12182:     fflush(ficlog);
1.149     brouard  12183:     /* goto end; */
                   12184:     exit(70); 
1.126     brouard  12185:   }
                   12186: 
                   12187:   strcpy(filereso,"o");
1.201     brouard  12188:   strcat(filereso,fileresu);
1.126     brouard  12189:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
                   12190:     printf("Problem with Output resultfile: %s\n", filereso);
                   12191:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
                   12192:     fflush(ficlog);
                   12193:     goto end;
                   12194:   }
1.278     brouard  12195:       /*-------- Rewriting parameter file ----------*/
                   12196:   strcpy(rfileres,"r");    /* "Rparameterfile */
                   12197:   strcat(rfileres,optionfilefiname);    /* Parameter file first name */
                   12198:   strcat(rfileres,".");    /* */
                   12199:   strcat(rfileres,optionfilext);    /* Other files have txt extension */
                   12200:   if((ficres =fopen(rfileres,"w"))==NULL) {
                   12201:     printf("Problem writing new parameter file: %s\n", rfileres);goto end;
                   12202:     fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
                   12203:     fflush(ficlog);
                   12204:     goto end;
                   12205:   }
                   12206:   fprintf(ficres,"#IMaCh %s\n",version);
1.126     brouard  12207: 
1.278     brouard  12208:                                      
1.126     brouard  12209:   /* Reads comments: lines beginning with '#' */
                   12210:   numlinepar=0;
1.277     brouard  12211:   /* Is it a BOM UTF-8 Windows file? */
                   12212:   /* First parameter line */
1.197     brouard  12213:   while(fgets(line, MAXLINE, ficpar)) {
1.277     brouard  12214:     noffset=0;
                   12215:     if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
                   12216:     {
                   12217:       noffset=noffset+3;
                   12218:       printf("# File is an UTF8 Bom.\n"); // 0xBF
                   12219:     }
1.302     brouard  12220: /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
                   12221:     else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
1.277     brouard  12222:     {
                   12223:       noffset=noffset+2;
                   12224:       printf("# File is an UTF16BE BOM file\n");
                   12225:     }
                   12226:     else if( line[0] == 0 && line[1] == 0)
                   12227:     {
                   12228:       if( line[2] == (char)0xFE && line[3] == (char)0xFF){
                   12229:        noffset=noffset+4;
                   12230:        printf("# File is an UTF16BE BOM file\n");
                   12231:       }
                   12232:     } else{
                   12233:       ;/*printf(" Not a BOM file\n");*/
                   12234:     }
                   12235:   
1.197     brouard  12236:     /* If line starts with a # it is a comment */
1.277     brouard  12237:     if (line[noffset] == '#') {
1.197     brouard  12238:       numlinepar++;
                   12239:       fputs(line,stdout);
                   12240:       fputs(line,ficparo);
1.278     brouard  12241:       fputs(line,ficres);
1.197     brouard  12242:       fputs(line,ficlog);
                   12243:       continue;
                   12244:     }else
                   12245:       break;
                   12246:   }
                   12247:   if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                   12248:                        title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
                   12249:     if (num_filled != 5) {
                   12250:       printf("Should be 5 parameters\n");
1.283     brouard  12251:       fprintf(ficlog,"Should be 5 parameters\n");
1.197     brouard  12252:     }
1.126     brouard  12253:     numlinepar++;
1.197     brouard  12254:     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
1.283     brouard  12255:     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
                   12256:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
                   12257:     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
1.197     brouard  12258:   }
                   12259:   /* Second parameter line */
                   12260:   while(fgets(line, MAXLINE, ficpar)) {
1.283     brouard  12261:     /* while(fscanf(ficpar,"%[^\n]", line)) { */
                   12262:     /* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */
1.197     brouard  12263:     if (line[0] == '#') {
                   12264:       numlinepar++;
1.283     brouard  12265:       printf("%s",line);
                   12266:       fprintf(ficres,"%s",line);
                   12267:       fprintf(ficparo,"%s",line);
                   12268:       fprintf(ficlog,"%s",line);
1.197     brouard  12269:       continue;
                   12270:     }else
                   12271:       break;
                   12272:   }
1.223     brouard  12273:   if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                   12274:                        &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
                   12275:     if (num_filled != 11) {
                   12276:       printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
1.209     brouard  12277:       printf("but line=%s\n",line);
1.283     brouard  12278:       fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
                   12279:       fprintf(ficlog,"but line=%s\n",line);
1.197     brouard  12280:     }
1.286     brouard  12281:     if( lastpass > maxwav){
                   12282:       printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
                   12283:       fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
                   12284:       fflush(ficlog);
                   12285:       goto end;
                   12286:     }
                   12287:       printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.283     brouard  12288:     fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.286     brouard  12289:     fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt);
1.283     brouard  12290:     fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.126     brouard  12291:   }
1.203     brouard  12292:   /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
1.209     brouard  12293:   /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
1.197     brouard  12294:   /* Third parameter line */
                   12295:   while(fgets(line, MAXLINE, ficpar)) {
                   12296:     /* If line starts with a # it is a comment */
                   12297:     if (line[0] == '#') {
                   12298:       numlinepar++;
1.283     brouard  12299:       printf("%s",line);
                   12300:       fprintf(ficres,"%s",line);
                   12301:       fprintf(ficparo,"%s",line);
                   12302:       fprintf(ficlog,"%s",line);
1.197     brouard  12303:       continue;
                   12304:     }else
                   12305:       break;
                   12306:   }
1.201     brouard  12307:   if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){
1.279     brouard  12308:     if (num_filled != 1){
1.302     brouard  12309:       printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
                   12310:       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
1.197     brouard  12311:       model[0]='\0';
                   12312:       goto end;
                   12313:     }
                   12314:     else{
                   12315:       if (model[0]=='+'){
                   12316:        for(i=1; i<=strlen(model);i++)
                   12317:          modeltemp[i-1]=model[i];
1.201     brouard  12318:        strcpy(model,modeltemp); 
1.197     brouard  12319:       }
                   12320:     }
1.338   ! brouard  12321:     /* printf(" model=1+age%s modeltemp= %s, model=1+age+%s\n",model, modeltemp, model);fflush(stdout); */
1.203     brouard  12322:     printf("model=1+age+%s\n",model);fflush(stdout);
1.283     brouard  12323:     fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout);
                   12324:     fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout);
                   12325:     fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout);
1.197     brouard  12326:   }
                   12327:   /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
                   12328:   /* numlinepar=numlinepar+3; /\* In general *\/ */
                   12329:   /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
1.283     brouard  12330:   /* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
                   12331:   /* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
1.126     brouard  12332:   fflush(ficlog);
1.190     brouard  12333:   /* if(model[0]=='#'|| model[0]== '\0'){ */
                   12334:   if(model[0]=='#'){
1.279     brouard  12335:     printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \
                   12336:  'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \
                   12337:  'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n");           \
1.187     brouard  12338:     if(mle != -1){
1.279     brouard  12339:       printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n");
1.187     brouard  12340:       exit(1);
                   12341:     }
                   12342:   }
1.126     brouard  12343:   while((c=getc(ficpar))=='#' && c!= EOF){
                   12344:     ungetc(c,ficpar);
                   12345:     fgets(line, MAXLINE, ficpar);
                   12346:     numlinepar++;
1.195     brouard  12347:     if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
                   12348:       z[0]=line[1];
                   12349:     }
                   12350:     /* printf("****line [1] = %c \n",line[1]); */
1.141     brouard  12351:     fputs(line, stdout);
                   12352:     //puts(line);
1.126     brouard  12353:     fputs(line,ficparo);
                   12354:     fputs(line,ficlog);
                   12355:   }
                   12356:   ungetc(c,ficpar);
                   12357: 
                   12358:    
1.290     brouard  12359:   covar=matrix(0,NCOVMAX,firstobs,lastobs);  /**< used in readdata */
                   12360:   if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs);  /**< Fixed quantitative covariate */
                   12361:   if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs);  /**< Time varying quantitative covariate */
                   12362:   if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs);  /**< Time varying covariate (dummy and quantitative)*/
1.136     brouard  12363:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
                   12364:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
                   12365:      v1+v2*age+v2*v3 makes cptcovn = 3
                   12366:   */
                   12367:   if (strlen(model)>1) 
1.187     brouard  12368:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
1.145     brouard  12369:   else
1.187     brouard  12370:     ncovmodel=2; /* Constant and age */
1.133     brouard  12371:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
                   12372:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
1.131     brouard  12373:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
                   12374:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   12375:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   12376:     fflush(stdout);
                   12377:     fclose (ficlog);
                   12378:     goto end;
                   12379:   }
1.126     brouard  12380:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   12381:   delti=delti3[1][1];
                   12382:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
                   12383:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
1.247     brouard  12384: /* We could also provide initial parameters values giving by simple logistic regression 
                   12385:  * only one way, that is without matrix product. We will have nlstate maximizations */
                   12386:       /* for(i=1;i<nlstate;i++){ */
                   12387:       /*       /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
                   12388:       /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
                   12389:       /* } */
1.126     brouard  12390:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
1.191     brouard  12391:     printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   12392:     fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
1.126     brouard  12393:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   12394:     fclose (ficparo);
                   12395:     fclose (ficlog);
                   12396:     goto end;
                   12397:     exit(0);
1.220     brouard  12398:   }  else if(mle==-5) { /* Main Wizard */
1.126     brouard  12399:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
1.192     brouard  12400:     printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   12401:     fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
1.126     brouard  12402:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   12403:     matcov=matrix(1,npar,1,npar);
1.203     brouard  12404:     hess=matrix(1,npar,1,npar);
1.220     brouard  12405:   }  else{ /* Begin of mle != -1 or -5 */
1.145     brouard  12406:     /* Read guessed parameters */
1.126     brouard  12407:     /* Reads comments: lines beginning with '#' */
                   12408:     while((c=getc(ficpar))=='#' && c!= EOF){
                   12409:       ungetc(c,ficpar);
                   12410:       fgets(line, MAXLINE, ficpar);
                   12411:       numlinepar++;
1.141     brouard  12412:       fputs(line,stdout);
1.126     brouard  12413:       fputs(line,ficparo);
                   12414:       fputs(line,ficlog);
                   12415:     }
                   12416:     ungetc(c,ficpar);
                   12417:     
                   12418:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
1.251     brouard  12419:     paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
1.126     brouard  12420:     for(i=1; i <=nlstate; i++){
1.234     brouard  12421:       j=0;
1.126     brouard  12422:       for(jj=1; jj <=nlstate+ndeath; jj++){
1.234     brouard  12423:        if(jj==i) continue;
                   12424:        j++;
1.292     brouard  12425:        while((c=getc(ficpar))=='#' && c!= EOF){
                   12426:          ungetc(c,ficpar);
                   12427:          fgets(line, MAXLINE, ficpar);
                   12428:          numlinepar++;
                   12429:          fputs(line,stdout);
                   12430:          fputs(line,ficparo);
                   12431:          fputs(line,ficlog);
                   12432:        }
                   12433:        ungetc(c,ficpar);
1.234     brouard  12434:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   12435:        if ((i1 != i) || (j1 != jj)){
                   12436:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
1.126     brouard  12437: It might be a problem of design; if ncovcol and the model are correct\n \
                   12438: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
1.234     brouard  12439:          exit(1);
                   12440:        }
                   12441:        fprintf(ficparo,"%1d%1d",i1,j1);
                   12442:        if(mle==1)
                   12443:          printf("%1d%1d",i,jj);
                   12444:        fprintf(ficlog,"%1d%1d",i,jj);
                   12445:        for(k=1; k<=ncovmodel;k++){
                   12446:          fscanf(ficpar," %lf",&param[i][j][k]);
                   12447:          if(mle==1){
                   12448:            printf(" %lf",param[i][j][k]);
                   12449:            fprintf(ficlog," %lf",param[i][j][k]);
                   12450:          }
                   12451:          else
                   12452:            fprintf(ficlog," %lf",param[i][j][k]);
                   12453:          fprintf(ficparo," %lf",param[i][j][k]);
                   12454:        }
                   12455:        fscanf(ficpar,"\n");
                   12456:        numlinepar++;
                   12457:        if(mle==1)
                   12458:          printf("\n");
                   12459:        fprintf(ficlog,"\n");
                   12460:        fprintf(ficparo,"\n");
1.126     brouard  12461:       }
                   12462:     }  
                   12463:     fflush(ficlog);
1.234     brouard  12464:     
1.251     brouard  12465:     /* Reads parameters values */
1.126     brouard  12466:     p=param[1][1];
1.251     brouard  12467:     pstart=paramstart[1][1];
1.126     brouard  12468:     
                   12469:     /* Reads comments: lines beginning with '#' */
                   12470:     while((c=getc(ficpar))=='#' && c!= EOF){
                   12471:       ungetc(c,ficpar);
                   12472:       fgets(line, MAXLINE, ficpar);
                   12473:       numlinepar++;
1.141     brouard  12474:       fputs(line,stdout);
1.126     brouard  12475:       fputs(line,ficparo);
                   12476:       fputs(line,ficlog);
                   12477:     }
                   12478:     ungetc(c,ficpar);
                   12479: 
                   12480:     for(i=1; i <=nlstate; i++){
                   12481:       for(j=1; j <=nlstate+ndeath-1; j++){
1.234     brouard  12482:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   12483:        if ( (i1-i) * (j1-j) != 0){
                   12484:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   12485:          exit(1);
                   12486:        }
                   12487:        printf("%1d%1d",i,j);
                   12488:        fprintf(ficparo,"%1d%1d",i1,j1);
                   12489:        fprintf(ficlog,"%1d%1d",i1,j1);
                   12490:        for(k=1; k<=ncovmodel;k++){
                   12491:          fscanf(ficpar,"%le",&delti3[i][j][k]);
                   12492:          printf(" %le",delti3[i][j][k]);
                   12493:          fprintf(ficparo," %le",delti3[i][j][k]);
                   12494:          fprintf(ficlog," %le",delti3[i][j][k]);
                   12495:        }
                   12496:        fscanf(ficpar,"\n");
                   12497:        numlinepar++;
                   12498:        printf("\n");
                   12499:        fprintf(ficparo,"\n");
                   12500:        fprintf(ficlog,"\n");
1.126     brouard  12501:       }
                   12502:     }
                   12503:     fflush(ficlog);
1.234     brouard  12504:     
1.145     brouard  12505:     /* Reads covariance matrix */
1.126     brouard  12506:     delti=delti3[1][1];
1.220     brouard  12507:                
                   12508:                
1.126     brouard  12509:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
1.220     brouard  12510:                
1.126     brouard  12511:     /* Reads comments: lines beginning with '#' */
                   12512:     while((c=getc(ficpar))=='#' && c!= EOF){
                   12513:       ungetc(c,ficpar);
                   12514:       fgets(line, MAXLINE, ficpar);
                   12515:       numlinepar++;
1.141     brouard  12516:       fputs(line,stdout);
1.126     brouard  12517:       fputs(line,ficparo);
                   12518:       fputs(line,ficlog);
                   12519:     }
                   12520:     ungetc(c,ficpar);
1.220     brouard  12521:                
1.126     brouard  12522:     matcov=matrix(1,npar,1,npar);
1.203     brouard  12523:     hess=matrix(1,npar,1,npar);
1.131     brouard  12524:     for(i=1; i <=npar; i++)
                   12525:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
1.220     brouard  12526:                
1.194     brouard  12527:     /* Scans npar lines */
1.126     brouard  12528:     for(i=1; i <=npar; i++){
1.226     brouard  12529:       count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
1.194     brouard  12530:       if(count != 3){
1.226     brouard  12531:        printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
1.194     brouard  12532: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
                   12533: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
1.226     brouard  12534:        fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
1.194     brouard  12535: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
                   12536: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
1.226     brouard  12537:        exit(1);
1.220     brouard  12538:       }else{
1.226     brouard  12539:        if(mle==1)
                   12540:          printf("%1d%1d%d",i1,j1,jk);
                   12541:       }
                   12542:       fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
                   12543:       fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
1.126     brouard  12544:       for(j=1; j <=i; j++){
1.226     brouard  12545:        fscanf(ficpar," %le",&matcov[i][j]);
                   12546:        if(mle==1){
                   12547:          printf(" %.5le",matcov[i][j]);
                   12548:        }
                   12549:        fprintf(ficlog," %.5le",matcov[i][j]);
                   12550:        fprintf(ficparo," %.5le",matcov[i][j]);
1.126     brouard  12551:       }
                   12552:       fscanf(ficpar,"\n");
                   12553:       numlinepar++;
                   12554:       if(mle==1)
1.220     brouard  12555:                                printf("\n");
1.126     brouard  12556:       fprintf(ficlog,"\n");
                   12557:       fprintf(ficparo,"\n");
                   12558:     }
1.194     brouard  12559:     /* End of read covariance matrix npar lines */
1.126     brouard  12560:     for(i=1; i <=npar; i++)
                   12561:       for(j=i+1;j<=npar;j++)
1.226     brouard  12562:        matcov[i][j]=matcov[j][i];
1.126     brouard  12563:     
                   12564:     if(mle==1)
                   12565:       printf("\n");
                   12566:     fprintf(ficlog,"\n");
                   12567:     
                   12568:     fflush(ficlog);
                   12569:     
                   12570:   }    /* End of mle != -3 */
1.218     brouard  12571:   
1.186     brouard  12572:   /*  Main data
                   12573:    */
1.290     brouard  12574:   nobs=lastobs-firstobs+1; /* was = lastobs;*/
                   12575:   /* num=lvector(1,n); */
                   12576:   /* moisnais=vector(1,n); */
                   12577:   /* annais=vector(1,n); */
                   12578:   /* moisdc=vector(1,n); */
                   12579:   /* andc=vector(1,n); */
                   12580:   /* weight=vector(1,n); */
                   12581:   /* agedc=vector(1,n); */
                   12582:   /* cod=ivector(1,n); */
                   12583:   /* for(i=1;i<=n;i++){ */
                   12584:   num=lvector(firstobs,lastobs);
                   12585:   moisnais=vector(firstobs,lastobs);
                   12586:   annais=vector(firstobs,lastobs);
                   12587:   moisdc=vector(firstobs,lastobs);
                   12588:   andc=vector(firstobs,lastobs);
                   12589:   weight=vector(firstobs,lastobs);
                   12590:   agedc=vector(firstobs,lastobs);
                   12591:   cod=ivector(firstobs,lastobs);
                   12592:   for(i=firstobs;i<=lastobs;i++){
1.234     brouard  12593:     num[i]=0;
                   12594:     moisnais[i]=0;
                   12595:     annais[i]=0;
                   12596:     moisdc[i]=0;
                   12597:     andc[i]=0;
                   12598:     agedc[i]=0;
                   12599:     cod[i]=0;
                   12600:     weight[i]=1.0; /* Equal weights, 1 by default */
                   12601:   }
1.290     brouard  12602:   mint=matrix(1,maxwav,firstobs,lastobs);
                   12603:   anint=matrix(1,maxwav,firstobs,lastobs);
1.325     brouard  12604:   s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */
1.336     brouard  12605:   /* printf("BUG ncovmodel=%d NCOVMAX=%d 2**ncovmodel=%f BUG\n",ncovmodel,NCOVMAX,pow(2,ncovmodel)); */
1.126     brouard  12606:   tab=ivector(1,NCOVMAX);
1.144     brouard  12607:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.192     brouard  12608:   ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.126     brouard  12609: 
1.136     brouard  12610:   /* Reads data from file datafile */
                   12611:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
                   12612:     goto end;
                   12613: 
                   12614:   /* Calculation of the number of parameters from char model */
1.234     brouard  12615:   /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
1.137     brouard  12616:        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
                   12617:        k=3 V4 Tvar[k=3]= 4 (from V4)
                   12618:        k=2 V1 Tvar[k=2]= 1 (from V1)
                   12619:        k=1 Tvar[1]=2 (from V2)
1.234     brouard  12620:   */
                   12621:   
                   12622:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
                   12623:   TvarsDind=ivector(1,NCOVMAX); /*  */
1.330     brouard  12624:   TnsdVar=ivector(1,NCOVMAX); /*  */
1.335     brouard  12625:     /* for(i=1; i<=NCOVMAX;i++) TnsdVar[i]=3; */
1.234     brouard  12626:   TvarsD=ivector(1,NCOVMAX); /*  */
                   12627:   TvarsQind=ivector(1,NCOVMAX); /*  */
                   12628:   TvarsQ=ivector(1,NCOVMAX); /*  */
1.232     brouard  12629:   TvarF=ivector(1,NCOVMAX); /*  */
                   12630:   TvarFind=ivector(1,NCOVMAX); /*  */
                   12631:   TvarV=ivector(1,NCOVMAX); /*  */
                   12632:   TvarVind=ivector(1,NCOVMAX); /*  */
                   12633:   TvarA=ivector(1,NCOVMAX); /*  */
                   12634:   TvarAind=ivector(1,NCOVMAX); /*  */
1.231     brouard  12635:   TvarFD=ivector(1,NCOVMAX); /*  */
                   12636:   TvarFDind=ivector(1,NCOVMAX); /*  */
                   12637:   TvarFQ=ivector(1,NCOVMAX); /*  */
                   12638:   TvarFQind=ivector(1,NCOVMAX); /*  */
                   12639:   TvarVD=ivector(1,NCOVMAX); /*  */
                   12640:   TvarVDind=ivector(1,NCOVMAX); /*  */
                   12641:   TvarVQ=ivector(1,NCOVMAX); /*  */
                   12642:   TvarVQind=ivector(1,NCOVMAX); /*  */
                   12643: 
1.230     brouard  12644:   Tvalsel=vector(1,NCOVMAX); /*  */
1.233     brouard  12645:   Tvarsel=ivector(1,NCOVMAX); /*  */
1.226     brouard  12646:   Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
                   12647:   Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
                   12648:   Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
1.137     brouard  12649:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
                   12650:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
                   12651:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
                   12652:   */
                   12653:   /* For model-covariate k tells which data-covariate to use but
                   12654:     because this model-covariate is a construction we invent a new column
                   12655:     ncovcol + k1
                   12656:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
                   12657:     Tvar[3=V1*V4]=4+1 etc */
1.227     brouard  12658:   Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
                   12659:   Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
1.137     brouard  12660:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
                   12661:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
1.227     brouard  12662:      Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
1.137     brouard  12663:   */
1.145     brouard  12664:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
                   12665:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
1.141     brouard  12666:                            * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                   12667:                            * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
1.330     brouard  12668:   Tvardk=imatrix(1,NCOVMAX,1,2);
1.145     brouard  12669:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
1.137     brouard  12670:                         4 covariates (3 plus signs)
                   12671:                         Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
1.328     brouard  12672:                           */  
                   12673:   for(i=1;i<NCOVMAX;i++)
                   12674:     Tage[i]=0;
1.230     brouard  12675:   Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
1.227     brouard  12676:                                * individual dummy, fixed or varying:
                   12677:                                * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                   12678:                                * 3, 1, 0, 0, 0, 0, 0, 0},
1.230     brouard  12679:                                * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                   12680:                                * V1 df, V2 qf, V3 & V4 dv, V5 qv
                   12681:                                * Tmodelind[1]@9={9,0,3,2,}*/
                   12682:   TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
                   12683:   TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
1.228     brouard  12684:                                * individual quantitative, fixed or varying:
                   12685:                                * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                   12686:                                * 3, 1, 0, 0, 0, 0, 0, 0},
                   12687:                                * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
1.186     brouard  12688: /* Main decodemodel */
                   12689: 
1.187     brouard  12690: 
1.223     brouard  12691:   if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
1.136     brouard  12692:     goto end;
                   12693: 
1.137     brouard  12694:   if((double)(lastobs-imx)/(double)imx > 1.10){
                   12695:     nbwarn++;
                   12696:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   12697:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   12698:   }
1.136     brouard  12699:     /*  if(mle==1){*/
1.137     brouard  12700:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
                   12701:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
1.136     brouard  12702:   }
                   12703: 
                   12704:     /*-calculation of age at interview from date of interview and age at death -*/
                   12705:   agev=matrix(1,maxwav,1,imx);
                   12706: 
                   12707:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
                   12708:     goto end;
                   12709: 
1.126     brouard  12710: 
1.136     brouard  12711:   agegomp=(int)agemin;
1.290     brouard  12712:   free_vector(moisnais,firstobs,lastobs);
                   12713:   free_vector(annais,firstobs,lastobs);
1.126     brouard  12714:   /* free_matrix(mint,1,maxwav,1,n);
                   12715:      free_matrix(anint,1,maxwav,1,n);*/
1.215     brouard  12716:   /* free_vector(moisdc,1,n); */
                   12717:   /* free_vector(andc,1,n); */
1.145     brouard  12718:   /* */
                   12719:   
1.126     brouard  12720:   wav=ivector(1,imx);
1.214     brouard  12721:   /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
                   12722:   /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
                   12723:   /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
                   12724:   dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
                   12725:   bh=imatrix(1,lastpass-firstpass+2,1,imx);
                   12726:   mw=imatrix(1,lastpass-firstpass+2,1,imx);
1.126     brouard  12727:    
                   12728:   /* Concatenates waves */
1.214     brouard  12729:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   12730:      Death is a valid wave (if date is known).
                   12731:      mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
                   12732:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   12733:      and mw[mi+1][i]. dh depends on stepm.
                   12734:   */
                   12735: 
1.126     brouard  12736:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
1.248     brouard  12737:   /* Concatenates waves */
1.145     brouard  12738:  
1.290     brouard  12739:   free_vector(moisdc,firstobs,lastobs);
                   12740:   free_vector(andc,firstobs,lastobs);
1.215     brouard  12741: 
1.126     brouard  12742:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
                   12743:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
                   12744:   ncodemax[1]=1;
1.145     brouard  12745:   Ndum =ivector(-1,NCOVMAX);  
1.225     brouard  12746:   cptcoveff=0;
1.220     brouard  12747:   if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
1.335     brouard  12748:     tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; as well as calculate cptcoveff or number of total effective dummy covariates*/
1.227     brouard  12749:   }
                   12750:   
                   12751:   ncovcombmax=pow(2,cptcoveff);
1.338   ! brouard  12752:   invalidvarcomb=ivector(0, ncovcombmax); 
        !          12753:   for(i=0;i<ncovcombmax;i++)
1.227     brouard  12754:     invalidvarcomb[i]=0;
                   12755:   
1.211     brouard  12756:   /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
1.186     brouard  12757:      V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
1.211     brouard  12758:   /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
1.227     brouard  12759:   
1.200     brouard  12760:   /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
1.198     brouard  12761:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
1.186     brouard  12762:   /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
1.211     brouard  12763:   /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
                   12764:    * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
                   12765:    * (currently 0 or 1) in the data.
                   12766:    * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
                   12767:    * corresponding modality (h,j).
                   12768:    */
                   12769: 
1.145     brouard  12770:   h=0;
                   12771:   /*if (cptcovn > 0) */
1.126     brouard  12772:   m=pow(2,cptcoveff);
                   12773:  
1.144     brouard  12774:          /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
1.211     brouard  12775:           * For k=4 covariates, h goes from 1 to m=2**k
                   12776:           * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
                   12777:            * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
1.329     brouard  12778:           *     h\k   1     2     3     4   *  h-1\k-1  4  3  2  1          
                   12779:           *______________________________   *______________________
                   12780:           *     1 i=1 1 i=1 1 i=1 1 i=1 1   *     0     0  0  0  0 
                   12781:           *     2     2     1     1     1   *     1     0  0  0  1 
                   12782:           *     3 i=2 1     2     1     1   *     2     0  0  1  0 
                   12783:           *     4     2     2     1     1   *     3     0  0  1  1 
                   12784:           *     5 i=3 1 i=2 1     2     1   *     4     0  1  0  0 
                   12785:           *     6     2     1     2     1   *     5     0  1  0  1 
                   12786:           *     7 i=4 1     2     2     1   *     6     0  1  1  0 
                   12787:           *     8     2     2     2     1   *     7     0  1  1  1 
                   12788:           *     9 i=5 1 i=3 1 i=2 1     2   *     8     1  0  0  0 
                   12789:           *    10     2     1     1     2   *     9     1  0  0  1 
                   12790:           *    11 i=6 1     2     1     2   *    10     1  0  1  0 
                   12791:           *    12     2     2     1     2   *    11     1  0  1  1 
                   12792:           *    13 i=7 1 i=4 1     2     2   *    12     1  1  0  0  
                   12793:           *    14     2     1     2     2   *    13     1  1  0  1 
                   12794:           *    15 i=8 1     2     2     2   *    14     1  1  1  0 
                   12795:           *    16     2     2     2     2   *    15     1  1  1  1          
                   12796:           */                                     
1.212     brouard  12797:   /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
1.211     brouard  12798:      /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
                   12799:      * and the value of each covariate?
                   12800:      * V1=1, V2=1, V3=2, V4=1 ?
                   12801:      * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
                   12802:      * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
                   12803:      * In order to get the real value in the data, we use nbcode
                   12804:      * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
                   12805:      * We are keeping this crazy system in order to be able (in the future?) 
                   12806:      * to have more than 2 values (0 or 1) for a covariate.
                   12807:      * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
                   12808:      * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
                   12809:      *              bbbbbbbb
                   12810:      *              76543210     
                   12811:      *   h-1        00000101 (6-1=5)
1.219     brouard  12812:      *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
1.211     brouard  12813:      *           &
                   12814:      *     1        00000001 (1)
1.219     brouard  12815:      *              00000000        = 1 & ((h-1) >> (k-1))
                   12816:      *          +1= 00000001 =1 
1.211     brouard  12817:      *
                   12818:      * h=14, k=3 => h'=h-1=13, k'=k-1=2
                   12819:      *          h'      1101 =2^3+2^2+0x2^1+2^0
                   12820:      *    >>k'            11
                   12821:      *          &   00000001
                   12822:      *            = 00000001
                   12823:      *      +1    = 00000010=2    =  codtabm(14,3)   
                   12824:      * Reverse h=6 and m=16?
                   12825:      * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
                   12826:      * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
                   12827:      * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
                   12828:      * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
                   12829:      * V3=decodtabm(14,3,2**4)=2
                   12830:      *          h'=13   1101 =2^3+2^2+0x2^1+2^0
                   12831:      *(h-1) >> (j-1)    0011 =13 >> 2
                   12832:      *          &1 000000001
                   12833:      *           = 000000001
                   12834:      *         +1= 000000010 =2
                   12835:      *                  2211
                   12836:      *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
                   12837:      *                  V3=2
1.220     brouard  12838:                 * codtabm and decodtabm are identical
1.211     brouard  12839:      */
                   12840: 
1.145     brouard  12841: 
                   12842:  free_ivector(Ndum,-1,NCOVMAX);
                   12843: 
                   12844: 
1.126     brouard  12845:     
1.186     brouard  12846:   /* Initialisation of ----------- gnuplot -------------*/
1.126     brouard  12847:   strcpy(optionfilegnuplot,optionfilefiname);
                   12848:   if(mle==-3)
1.201     brouard  12849:     strcat(optionfilegnuplot,"-MORT_");
1.126     brouard  12850:   strcat(optionfilegnuplot,".gp");
                   12851: 
                   12852:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
                   12853:     printf("Problem with file %s",optionfilegnuplot);
                   12854:   }
                   12855:   else{
1.204     brouard  12856:     fprintf(ficgp,"\n# IMaCh-%s\n", version); 
1.126     brouard  12857:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
1.141     brouard  12858:     //fprintf(ficgp,"set missing 'NaNq'\n");
                   12859:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
1.126     brouard  12860:   }
                   12861:   /*  fclose(ficgp);*/
1.186     brouard  12862: 
                   12863: 
                   12864:   /* Initialisation of --------- index.htm --------*/
1.126     brouard  12865: 
                   12866:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
                   12867:   if(mle==-3)
1.201     brouard  12868:     strcat(optionfilehtm,"-MORT_");
1.126     brouard  12869:   strcat(optionfilehtm,".htm");
                   12870:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
1.131     brouard  12871:     printf("Problem with %s \n",optionfilehtm);
                   12872:     exit(0);
1.126     brouard  12873:   }
                   12874: 
                   12875:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   12876:   strcat(optionfilehtmcov,"-cov.htm");
                   12877:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                   12878:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
                   12879:   }
                   12880:   else{
                   12881:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                   12882: <hr size=\"2\" color=\"#EC5E5E\"> \n\
1.204     brouard  12883: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.126     brouard  12884:          optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   12885:   }
                   12886: 
1.335     brouard  12887:   fprintf(fichtm,"<html><head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n\
                   12888: <title>IMaCh %s</title></head>\n\
                   12889:  <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n\
                   12890: <font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>\
                   12891: -EUROREVES-Institut de longévité-2013-2022-Japan Society for the Promotion of Sciences 日本学術振興会 \
                   12892: (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - \
                   12893: <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \n", optionfilehtm);
                   12894:   
                   12895:   fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\"> \n\
1.204     brouard  12896: <font size=\"2\">IMaCh-%s <br> %s</font> \
1.126     brouard  12897: <hr size=\"2\" color=\"#EC5E5E\"> \n\
1.337     brouard  12898: This file: <a href=\"%s\">%s</a></br>Title=%s <br>Datafile=<a href=\"%s\">%s</a> Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
1.126     brouard  12899: \n\
                   12900: <hr  size=\"2\" color=\"#EC5E5E\">\
                   12901:  <ul><li><h4>Parameter files</h4>\n\
                   12902:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                   12903:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                   12904:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                   12905:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                   12906:  - Date and time at start: %s</ul>\n",\
1.335     brouard  12907:          version,fullversion,optionfilehtm,optionfilehtm,title,datafile,datafile,firstpass,lastpass,stepm, weightopt, model, \
1.126     brouard  12908:          optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                   12909:          fileres,fileres,\
                   12910:          filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                   12911:   fflush(fichtm);
                   12912: 
                   12913:   strcpy(pathr,path);
                   12914:   strcat(pathr,optionfilefiname);
1.184     brouard  12915: #ifdef WIN32
                   12916:   _chdir(optionfilefiname); /* Move to directory named optionfile */
                   12917: #else
1.126     brouard  12918:   chdir(optionfilefiname); /* Move to directory named optionfile */
1.184     brouard  12919: #endif
                   12920:          
1.126     brouard  12921:   
1.220     brouard  12922:   /* Calculates basic frequencies. Computes observed prevalence at single age 
                   12923:                 and for any valid combination of covariates
1.126     brouard  12924:      and prints on file fileres'p'. */
1.251     brouard  12925:   freqsummary(fileres, p, pstart, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
1.227     brouard  12926:              firstpass, lastpass,  stepm,  weightopt, model);
1.126     brouard  12927: 
                   12928:   fprintf(fichtm,"\n");
1.286     brouard  12929:   fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\
1.274     brouard  12930:          ftol, stepm);
                   12931:   fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol);
                   12932:   ncurrv=1;
                   12933:   for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i);
                   12934:   fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); 
                   12935:   ncurrv=i;
                   12936:   for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i);
1.290     brouard  12937:   fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv);
1.274     brouard  12938:   ncurrv=i;
                   12939:   for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i);
1.290     brouard  12940:   fprintf(fichtm,"\n<li>Number of time varying  quantitative covariates: nqtv=%d ", nqtv);
1.274     brouard  12941:   ncurrv=i;
                   12942:   for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i);
                   12943:   fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \
                   12944:           nlstate, ndeath, maxwav, mle, weightopt);
                   12945: 
                   12946:   fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\
                   12947: <img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"));
                   12948: 
                   12949:   
1.317     brouard  12950:   fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Number of (used) observations=%d <br>\n\
1.126     brouard  12951: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   12952: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
1.274     brouard  12953:   imx,agemin,agemax,jmin,jmax,jmean);
1.126     brouard  12954:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
1.268     brouard  12955:   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   12956:   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   12957:   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   12958:   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
1.218     brouard  12959: 
1.126     brouard  12960:   /* For Powell, parameters are in a vector p[] starting at p[1]
                   12961:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                   12962:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
                   12963: 
                   12964:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
1.186     brouard  12965:   /* For mortality only */
1.126     brouard  12966:   if (mle==-3){
1.136     brouard  12967:     ximort=matrix(1,NDIM,1,NDIM); 
1.248     brouard  12968:     for(i=1;i<=NDIM;i++)
                   12969:       for(j=1;j<=NDIM;j++)
                   12970:        ximort[i][j]=0.;
1.186     brouard  12971:     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
1.290     brouard  12972:     cens=ivector(firstobs,lastobs);
                   12973:     ageexmed=vector(firstobs,lastobs);
                   12974:     agecens=vector(firstobs,lastobs);
                   12975:     dcwave=ivector(firstobs,lastobs);
1.223     brouard  12976:                
1.126     brouard  12977:     for (i=1; i<=imx; i++){
                   12978:       dcwave[i]=-1;
                   12979:       for (m=firstpass; m<=lastpass; m++)
1.226     brouard  12980:        if (s[m][i]>nlstate) {
                   12981:          dcwave[i]=m;
                   12982:          /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                   12983:          break;
                   12984:        }
1.126     brouard  12985:     }
1.226     brouard  12986:     
1.126     brouard  12987:     for (i=1; i<=imx; i++) {
                   12988:       if (wav[i]>0){
1.226     brouard  12989:        ageexmed[i]=agev[mw[1][i]][i];
                   12990:        j=wav[i];
                   12991:        agecens[i]=1.; 
                   12992:        
                   12993:        if (ageexmed[i]> 1 && wav[i] > 0){
                   12994:          agecens[i]=agev[mw[j][i]][i];
                   12995:          cens[i]= 1;
                   12996:        }else if (ageexmed[i]< 1) 
                   12997:          cens[i]= -1;
                   12998:        if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                   12999:          cens[i]=0 ;
1.126     brouard  13000:       }
                   13001:       else cens[i]=-1;
                   13002:     }
                   13003:     
                   13004:     for (i=1;i<=NDIM;i++) {
                   13005:       for (j=1;j<=NDIM;j++)
1.226     brouard  13006:        ximort[i][j]=(i == j ? 1.0 : 0.0);
1.126     brouard  13007:     }
                   13008:     
1.302     brouard  13009:     p[1]=0.0268; p[NDIM]=0.083;
                   13010:     /* printf("%lf %lf", p[1], p[2]); */
1.126     brouard  13011:     
                   13012:     
1.136     brouard  13013: #ifdef GSL
                   13014:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
1.162     brouard  13015: #else
1.126     brouard  13016:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.136     brouard  13017: #endif
1.201     brouard  13018:     strcpy(filerespow,"POW-MORT_"); 
                   13019:     strcat(filerespow,fileresu);
1.126     brouard  13020:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   13021:       printf("Problem with resultfile: %s\n", filerespow);
                   13022:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   13023:     }
1.136     brouard  13024: #ifdef GSL
                   13025:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
1.162     brouard  13026: #else
1.126     brouard  13027:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
1.136     brouard  13028: #endif
1.126     brouard  13029:     /*  for (i=1;i<=nlstate;i++)
                   13030:        for(j=1;j<=nlstate+ndeath;j++)
                   13031:        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   13032:     */
                   13033:     fprintf(ficrespow,"\n");
1.136     brouard  13034: #ifdef GSL
                   13035:     /* gsl starts here */ 
                   13036:     T = gsl_multimin_fminimizer_nmsimplex;
                   13037:     gsl_multimin_fminimizer *sfm = NULL;
                   13038:     gsl_vector *ss, *x;
                   13039:     gsl_multimin_function minex_func;
                   13040: 
                   13041:     /* Initial vertex size vector */
                   13042:     ss = gsl_vector_alloc (NDIM);
                   13043:     
                   13044:     if (ss == NULL){
                   13045:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
                   13046:     }
                   13047:     /* Set all step sizes to 1 */
                   13048:     gsl_vector_set_all (ss, 0.001);
                   13049: 
                   13050:     /* Starting point */
1.126     brouard  13051:     
1.136     brouard  13052:     x = gsl_vector_alloc (NDIM);
                   13053:     
                   13054:     if (x == NULL){
                   13055:       gsl_vector_free(ss);
                   13056:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
                   13057:     }
                   13058:   
                   13059:     /* Initialize method and iterate */
                   13060:     /*     p[1]=0.0268; p[NDIM]=0.083; */
1.186     brouard  13061:     /*     gsl_vector_set(x, 0, 0.0268); */
                   13062:     /*     gsl_vector_set(x, 1, 0.083); */
1.136     brouard  13063:     gsl_vector_set(x, 0, p[1]);
                   13064:     gsl_vector_set(x, 1, p[2]);
                   13065: 
                   13066:     minex_func.f = &gompertz_f;
                   13067:     minex_func.n = NDIM;
                   13068:     minex_func.params = (void *)&p; /* ??? */
                   13069:     
                   13070:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
                   13071:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
                   13072:     
                   13073:     printf("Iterations beginning .....\n\n");
                   13074:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
                   13075: 
                   13076:     iteri=0;
                   13077:     while (rval == GSL_CONTINUE){
                   13078:       iteri++;
                   13079:       status = gsl_multimin_fminimizer_iterate(sfm);
                   13080:       
                   13081:       if (status) printf("error: %s\n", gsl_strerror (status));
                   13082:       fflush(0);
                   13083:       
                   13084:       if (status) 
                   13085:         break;
                   13086:       
                   13087:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
                   13088:       ssval = gsl_multimin_fminimizer_size (sfm);
                   13089:       
                   13090:       if (rval == GSL_SUCCESS)
                   13091:         printf ("converged to a local maximum at\n");
                   13092:       
                   13093:       printf("%5d ", iteri);
                   13094:       for (it = 0; it < NDIM; it++){
                   13095:        printf ("%10.5f ", gsl_vector_get (sfm->x, it));
                   13096:       }
                   13097:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
                   13098:     }
                   13099:     
                   13100:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
                   13101:     
                   13102:     gsl_vector_free(x); /* initial values */
                   13103:     gsl_vector_free(ss); /* inital step size */
                   13104:     for (it=0; it<NDIM; it++){
                   13105:       p[it+1]=gsl_vector_get(sfm->x,it);
                   13106:       fprintf(ficrespow," %.12lf", p[it]);
                   13107:     }
                   13108:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
                   13109: #endif
                   13110: #ifdef POWELL
                   13111:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
                   13112: #endif  
1.126     brouard  13113:     fclose(ficrespow);
                   13114:     
1.203     brouard  13115:     hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
1.126     brouard  13116: 
                   13117:     for(i=1; i <=NDIM; i++)
                   13118:       for(j=i+1;j<=NDIM;j++)
1.220     brouard  13119:                                matcov[i][j]=matcov[j][i];
1.126     brouard  13120:     
                   13121:     printf("\nCovariance matrix\n ");
1.203     brouard  13122:     fprintf(ficlog,"\nCovariance matrix\n ");
1.126     brouard  13123:     for(i=1; i <=NDIM; i++) {
                   13124:       for(j=1;j<=NDIM;j++){ 
1.220     brouard  13125:                                printf("%f ",matcov[i][j]);
                   13126:                                fprintf(ficlog,"%f ",matcov[i][j]);
1.126     brouard  13127:       }
1.203     brouard  13128:       printf("\n ");  fprintf(ficlog,"\n ");
1.126     brouard  13129:     }
                   13130:     
                   13131:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
1.193     brouard  13132:     for (i=1;i<=NDIM;i++) {
1.126     brouard  13133:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
1.193     brouard  13134:       fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   13135:     }
1.302     brouard  13136:     lsurv=vector(agegomp,AGESUP);
                   13137:     lpop=vector(agegomp,AGESUP);
                   13138:     tpop=vector(agegomp,AGESUP);
1.126     brouard  13139:     lsurv[agegomp]=100000;
                   13140:     
                   13141:     for (k=agegomp;k<=AGESUP;k++) {
                   13142:       agemortsup=k;
                   13143:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
                   13144:     }
                   13145:     
                   13146:     for (k=agegomp;k<agemortsup;k++)
                   13147:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
                   13148:     
                   13149:     for (k=agegomp;k<agemortsup;k++){
                   13150:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
                   13151:       sumlpop=sumlpop+lpop[k];
                   13152:     }
                   13153:     
                   13154:     tpop[agegomp]=sumlpop;
                   13155:     for (k=agegomp;k<(agemortsup-3);k++){
                   13156:       /*  tpop[k+1]=2;*/
                   13157:       tpop[k+1]=tpop[k]-lpop[k];
                   13158:     }
                   13159:     
                   13160:     
                   13161:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
                   13162:     for (k=agegomp;k<(agemortsup-2);k++) 
                   13163:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   13164:     
                   13165:     
                   13166:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
1.220     brouard  13167:                ageminpar=50;
                   13168:                agemaxpar=100;
1.194     brouard  13169:     if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
                   13170:        printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
                   13171: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   13172: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
                   13173:        fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
                   13174: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   13175: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.220     brouard  13176:     }else{
                   13177:                        printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                   13178:                        fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
1.201     brouard  13179:       printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
1.220     brouard  13180:                }
1.201     brouard  13181:     printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
1.126     brouard  13182:                     stepm, weightopt,\
                   13183:                     model,imx,p,matcov,agemortsup);
                   13184:     
1.302     brouard  13185:     free_vector(lsurv,agegomp,AGESUP);
                   13186:     free_vector(lpop,agegomp,AGESUP);
                   13187:     free_vector(tpop,agegomp,AGESUP);
1.220     brouard  13188:     free_matrix(ximort,1,NDIM,1,NDIM);
1.290     brouard  13189:     free_ivector(dcwave,firstobs,lastobs);
                   13190:     free_vector(agecens,firstobs,lastobs);
                   13191:     free_vector(ageexmed,firstobs,lastobs);
                   13192:     free_ivector(cens,firstobs,lastobs);
1.220     brouard  13193: #ifdef GSL
1.136     brouard  13194: #endif
1.186     brouard  13195:   } /* Endof if mle==-3 mortality only */
1.205     brouard  13196:   /* Standard  */
                   13197:   else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
                   13198:     globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
                   13199:     /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
1.132     brouard  13200:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
1.126     brouard  13201:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   13202:     for (k=1; k<=npar;k++)
                   13203:       printf(" %d %8.5f",k,p[k]);
                   13204:     printf("\n");
1.205     brouard  13205:     if(mle>=1){ /* Could be 1 or 2, Real Maximization */
                   13206:       /* mlikeli uses func not funcone */
1.247     brouard  13207:       /* for(i=1;i<nlstate;i++){ */
                   13208:       /*       /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
                   13209:       /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
                   13210:       /* } */
1.205     brouard  13211:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
                   13212:     }
                   13213:     if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
                   13214:       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
                   13215:       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
                   13216:       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   13217:     }
                   13218:     globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
1.126     brouard  13219:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   13220:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
1.335     brouard  13221:           /* exit(0); */
1.126     brouard  13222:     for (k=1; k<=npar;k++)
                   13223:       printf(" %d %8.5f",k,p[k]);
                   13224:     printf("\n");
                   13225:     
                   13226:     /*--------- results files --------------*/
1.283     brouard  13227:     /* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */
1.126     brouard  13228:     
                   13229:     
                   13230:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
1.319     brouard  13231:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); /* Printing model equation */
1.126     brouard  13232:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
1.319     brouard  13233: 
                   13234:     printf("#model=  1      +     age ");
                   13235:     fprintf(ficres,"#model=  1      +     age ");
                   13236:     fprintf(ficlog,"#model=  1      +     age ");
                   13237:     fprintf(fichtm,"\n<ul><li> model=1+age+%s\n \
                   13238: </ul>", model);
                   13239: 
                   13240:     fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">\n");
                   13241:     fprintf(fichtm, "<tr><th>Model=</th><th>1</th><th>+ age</th>");
                   13242:     if(nagesqr==1){
                   13243:       printf("  + age*age  ");
                   13244:       fprintf(ficres,"  + age*age  ");
                   13245:       fprintf(ficlog,"  + age*age  ");
                   13246:       fprintf(fichtm, "<th>+ age*age</th>");
                   13247:     }
                   13248:     for(j=1;j <=ncovmodel-2;j++){
                   13249:       if(Typevar[j]==0) {
                   13250:        printf("  +      V%d  ",Tvar[j]);
                   13251:        fprintf(ficres,"  +      V%d  ",Tvar[j]);
                   13252:        fprintf(ficlog,"  +      V%d  ",Tvar[j]);
                   13253:        fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
                   13254:       }else if(Typevar[j]==1) {
                   13255:        printf("  +    V%d*age ",Tvar[j]);
                   13256:        fprintf(ficres,"  +    V%d*age ",Tvar[j]);
                   13257:        fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
                   13258:        fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
                   13259:       }else if(Typevar[j]==2) {
                   13260:        printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   13261:        fprintf(ficres,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   13262:        fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   13263:        fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   13264:       }
                   13265:     }
                   13266:     printf("\n");
                   13267:     fprintf(ficres,"\n");
                   13268:     fprintf(ficlog,"\n");
                   13269:     fprintf(fichtm, "</tr>");
                   13270:     fprintf(fichtm, "\n");
                   13271:     
                   13272:     
1.126     brouard  13273:     for(i=1,jk=1; i <=nlstate; i++){
                   13274:       for(k=1; k <=(nlstate+ndeath); k++){
1.225     brouard  13275:        if (k != i) {
1.319     brouard  13276:          fprintf(fichtm, "<tr>");
1.225     brouard  13277:          printf("%d%d ",i,k);
                   13278:          fprintf(ficlog,"%d%d ",i,k);
                   13279:          fprintf(ficres,"%1d%1d ",i,k);
1.319     brouard  13280:          fprintf(fichtm, "<td>%1d%1d</td>",i,k);
1.225     brouard  13281:          for(j=1; j <=ncovmodel; j++){
                   13282:            printf("%12.7f ",p[jk]);
                   13283:            fprintf(ficlog,"%12.7f ",p[jk]);
                   13284:            fprintf(ficres,"%12.7f ",p[jk]);
1.319     brouard  13285:            fprintf(fichtm, "<td>%12.7f</td>",p[jk]);
1.225     brouard  13286:            jk++; 
                   13287:          }
                   13288:          printf("\n");
                   13289:          fprintf(ficlog,"\n");
                   13290:          fprintf(ficres,"\n");
1.319     brouard  13291:          fprintf(fichtm, "</tr>\n");
1.225     brouard  13292:        }
1.126     brouard  13293:       }
                   13294:     }
1.319     brouard  13295:     /* fprintf(fichtm,"</tr>\n"); */
                   13296:     fprintf(fichtm,"</table>\n");
                   13297:     fprintf(fichtm, "\n");
                   13298: 
1.203     brouard  13299:     if(mle != 0){
                   13300:       /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
1.126     brouard  13301:       ftolhess=ftol; /* Usually correct */
1.203     brouard  13302:       hesscov(matcov, hess, p, npar, delti, ftolhess, func);
                   13303:       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
                   13304:       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
1.322     brouard  13305:       fprintf(fichtm, "\n<p>The Wald test results are output only if the maximimzation of the Likelihood is performed (mle=1)\n</br>Parameters, Wald tests and Wald-based confidence intervals\n</br> W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n</br> And Wald-based confidence intervals plus and minus 1.96 * W \n </br> It might be better to visualize the covariance matrix. See the page '<a href=\"%s\">Matrix of variance-covariance of one-step probabilities and its graphs</a>'.\n</br>",optionfilehtmcov);
1.319     brouard  13306:       fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">");
                   13307:       fprintf(fichtm, "\n<tr><th>Model=</th><th>1</th><th>+ age</th>");
                   13308:       if(nagesqr==1){
                   13309:        printf("  + age*age  ");
                   13310:        fprintf(ficres,"  + age*age  ");
                   13311:        fprintf(ficlog,"  + age*age  ");
                   13312:        fprintf(fichtm, "<th>+ age*age</th>");
                   13313:       }
                   13314:       for(j=1;j <=ncovmodel-2;j++){
                   13315:        if(Typevar[j]==0) {
                   13316:          printf("  +      V%d  ",Tvar[j]);
                   13317:          fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
                   13318:        }else if(Typevar[j]==1) {
                   13319:          printf("  +    V%d*age ",Tvar[j]);
                   13320:          fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
                   13321:        }else if(Typevar[j]==2) {
                   13322:          fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   13323:        }
                   13324:       }
                   13325:       fprintf(fichtm, "</tr>\n");
                   13326:  
1.203     brouard  13327:       for(i=1,jk=1; i <=nlstate; i++){
1.225     brouard  13328:        for(k=1; k <=(nlstate+ndeath); k++){
                   13329:          if (k != i) {
1.319     brouard  13330:            fprintf(fichtm, "<tr valign=top>");
1.225     brouard  13331:            printf("%d%d ",i,k);
                   13332:            fprintf(ficlog,"%d%d ",i,k);
1.319     brouard  13333:            fprintf(fichtm, "<td>%1d%1d</td>",i,k);
1.225     brouard  13334:            for(j=1; j <=ncovmodel; j++){
1.319     brouard  13335:              wald=p[jk]/sqrt(matcov[jk][jk]);
1.324     brouard  13336:              printf("%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                   13337:              fprintf(ficlog,"%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
1.319     brouard  13338:              if(fabs(wald) > 1.96){
1.321     brouard  13339:                fprintf(fichtm, "<td><b>%12.7f</b></br> (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
1.319     brouard  13340:              }else{
                   13341:                fprintf(fichtm, "<td>%12.7f (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
                   13342:              }
1.324     brouard  13343:              fprintf(fichtm,"W=%8.3f</br>",wald);
1.319     brouard  13344:              fprintf(fichtm,"[%12.7f;%12.7f]</br></td>", p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
1.225     brouard  13345:              jk++; 
                   13346:            }
                   13347:            printf("\n");
                   13348:            fprintf(ficlog,"\n");
1.319     brouard  13349:            fprintf(fichtm, "</tr>\n");
1.225     brouard  13350:          }
                   13351:        }
1.193     brouard  13352:       }
1.203     brouard  13353:     } /* end of hesscov and Wald tests */
1.319     brouard  13354:     fprintf(fichtm,"</table>\n");
1.225     brouard  13355:     
1.203     brouard  13356:     /*  */
1.126     brouard  13357:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   13358:     printf("# Scales (for hessian or gradient estimation)\n");
                   13359:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                   13360:     for(i=1,jk=1; i <=nlstate; i++){
                   13361:       for(j=1; j <=nlstate+ndeath; j++){
1.225     brouard  13362:        if (j!=i) {
                   13363:          fprintf(ficres,"%1d%1d",i,j);
                   13364:          printf("%1d%1d",i,j);
                   13365:          fprintf(ficlog,"%1d%1d",i,j);
                   13366:          for(k=1; k<=ncovmodel;k++){
                   13367:            printf(" %.5e",delti[jk]);
                   13368:            fprintf(ficlog," %.5e",delti[jk]);
                   13369:            fprintf(ficres," %.5e",delti[jk]);
                   13370:            jk++;
                   13371:          }
                   13372:          printf("\n");
                   13373:          fprintf(ficlog,"\n");
                   13374:          fprintf(ficres,"\n");
                   13375:        }
1.126     brouard  13376:       }
                   13377:     }
                   13378:     
                   13379:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
1.203     brouard  13380:     if(mle >= 1) /* To big for the screen */
1.126     brouard  13381:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   13382:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   13383:     /* # 121 Var(a12)\n\ */
                   13384:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   13385:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   13386:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   13387:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   13388:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   13389:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   13390:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   13391:     
                   13392:     
                   13393:     /* Just to have a covariance matrix which will be more understandable
                   13394:        even is we still don't want to manage dictionary of variables
                   13395:     */
                   13396:     for(itimes=1;itimes<=2;itimes++){
                   13397:       jj=0;
                   13398:       for(i=1; i <=nlstate; i++){
1.225     brouard  13399:        for(j=1; j <=nlstate+ndeath; j++){
                   13400:          if(j==i) continue;
                   13401:          for(k=1; k<=ncovmodel;k++){
                   13402:            jj++;
                   13403:            ca[0]= k+'a'-1;ca[1]='\0';
                   13404:            if(itimes==1){
                   13405:              if(mle>=1)
                   13406:                printf("#%1d%1d%d",i,j,k);
                   13407:              fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   13408:              fprintf(ficres,"#%1d%1d%d",i,j,k);
                   13409:            }else{
                   13410:              if(mle>=1)
                   13411:                printf("%1d%1d%d",i,j,k);
                   13412:              fprintf(ficlog,"%1d%1d%d",i,j,k);
                   13413:              fprintf(ficres,"%1d%1d%d",i,j,k);
                   13414:            }
                   13415:            ll=0;
                   13416:            for(li=1;li <=nlstate; li++){
                   13417:              for(lj=1;lj <=nlstate+ndeath; lj++){
                   13418:                if(lj==li) continue;
                   13419:                for(lk=1;lk<=ncovmodel;lk++){
                   13420:                  ll++;
                   13421:                  if(ll<=jj){
                   13422:                    cb[0]= lk +'a'-1;cb[1]='\0';
                   13423:                    if(ll<jj){
                   13424:                      if(itimes==1){
                   13425:                        if(mle>=1)
                   13426:                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   13427:                        fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   13428:                        fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   13429:                      }else{
                   13430:                        if(mle>=1)
                   13431:                          printf(" %.5e",matcov[jj][ll]); 
                   13432:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   13433:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   13434:                      }
                   13435:                    }else{
                   13436:                      if(itimes==1){
                   13437:                        if(mle>=1)
                   13438:                          printf(" Var(%s%1d%1d)",ca,i,j);
                   13439:                        fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                   13440:                        fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                   13441:                      }else{
                   13442:                        if(mle>=1)
                   13443:                          printf(" %.7e",matcov[jj][ll]); 
                   13444:                        fprintf(ficlog," %.7e",matcov[jj][ll]); 
                   13445:                        fprintf(ficres," %.7e",matcov[jj][ll]); 
                   13446:                      }
                   13447:                    }
                   13448:                  }
                   13449:                } /* end lk */
                   13450:              } /* end lj */
                   13451:            } /* end li */
                   13452:            if(mle>=1)
                   13453:              printf("\n");
                   13454:            fprintf(ficlog,"\n");
                   13455:            fprintf(ficres,"\n");
                   13456:            numlinepar++;
                   13457:          } /* end k*/
                   13458:        } /*end j */
1.126     brouard  13459:       } /* end i */
                   13460:     } /* end itimes */
                   13461:     
                   13462:     fflush(ficlog);
                   13463:     fflush(ficres);
1.225     brouard  13464:     while(fgets(line, MAXLINE, ficpar)) {
                   13465:       /* If line starts with a # it is a comment */
                   13466:       if (line[0] == '#') {
                   13467:        numlinepar++;
                   13468:        fputs(line,stdout);
                   13469:        fputs(line,ficparo);
                   13470:        fputs(line,ficlog);
1.299     brouard  13471:        fputs(line,ficres);
1.225     brouard  13472:        continue;
                   13473:       }else
                   13474:        break;
                   13475:     }
                   13476:     
1.209     brouard  13477:     /* while((c=getc(ficpar))=='#' && c!= EOF){ */
                   13478:     /*   ungetc(c,ficpar); */
                   13479:     /*   fgets(line, MAXLINE, ficpar); */
                   13480:     /*   fputs(line,stdout); */
                   13481:     /*   fputs(line,ficparo); */
                   13482:     /* } */
                   13483:     /* ungetc(c,ficpar); */
1.126     brouard  13484:     
                   13485:     estepm=0;
1.209     brouard  13486:     if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
1.225     brouard  13487:       
                   13488:       if (num_filled != 6) {
                   13489:        printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                   13490:        fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                   13491:        goto end;
                   13492:       }
                   13493:       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
                   13494:     }
                   13495:     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
                   13496:     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
                   13497:     
1.209     brouard  13498:     /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
1.126     brouard  13499:     if (estepm==0 || estepm < stepm) estepm=stepm;
                   13500:     if (fage <= 2) {
                   13501:       bage = ageminpar;
                   13502:       fage = agemaxpar;
                   13503:     }
                   13504:     
                   13505:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
1.211     brouard  13506:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   13507:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
1.220     brouard  13508:                
1.186     brouard  13509:     /* Other stuffs, more or less useful */    
1.254     brouard  13510:     while(fgets(line, MAXLINE, ficpar)) {
                   13511:       /* If line starts with a # it is a comment */
                   13512:       if (line[0] == '#') {
                   13513:        numlinepar++;
                   13514:        fputs(line,stdout);
                   13515:        fputs(line,ficparo);
                   13516:        fputs(line,ficlog);
1.299     brouard  13517:        fputs(line,ficres);
1.254     brouard  13518:        continue;
                   13519:       }else
                   13520:        break;
                   13521:     }
                   13522: 
                   13523:     if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){
                   13524:       
                   13525:       if (num_filled != 7) {
                   13526:        printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   13527:        fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   13528:        goto end;
                   13529:       }
                   13530:       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   13531:       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   13532:       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   13533:       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
1.126     brouard  13534:     }
1.254     brouard  13535: 
                   13536:     while(fgets(line, MAXLINE, ficpar)) {
                   13537:       /* If line starts with a # it is a comment */
                   13538:       if (line[0] == '#') {
                   13539:        numlinepar++;
                   13540:        fputs(line,stdout);
                   13541:        fputs(line,ficparo);
                   13542:        fputs(line,ficlog);
1.299     brouard  13543:        fputs(line,ficres);
1.254     brouard  13544:        continue;
                   13545:       }else
                   13546:        break;
1.126     brouard  13547:     }
                   13548:     
                   13549:     
                   13550:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                   13551:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
                   13552:     
1.254     brouard  13553:     if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){
                   13554:       if (num_filled != 1) {
                   13555:        printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   13556:        fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   13557:        goto end;
                   13558:       }
                   13559:       printf("pop_based=%d\n",popbased);
                   13560:       fprintf(ficlog,"pop_based=%d\n",popbased);
                   13561:       fprintf(ficparo,"pop_based=%d\n",popbased);   
                   13562:       fprintf(ficres,"pop_based=%d\n",popbased);   
                   13563:     }
                   13564:      
1.258     brouard  13565:     /* Results */
1.332     brouard  13566:     /* Value of covariate in each resultine will be compututed (if product) and sorted according to model rank */
                   13567:     /* It is precov[] because we need the varying age in order to compute the real cov[] of the model equation */  
                   13568:     precov=matrix(1,MAXRESULTLINESPONE,1,NCOVMAX+1);
1.307     brouard  13569:     endishere=0;
1.258     brouard  13570:     nresult=0;
1.308     brouard  13571:     parameterline=0;
1.258     brouard  13572:     do{
                   13573:       if(!fgets(line, MAXLINE, ficpar)){
                   13574:        endishere=1;
1.308     brouard  13575:        parameterline=15;
1.258     brouard  13576:       }else if (line[0] == '#') {
                   13577:        /* If line starts with a # it is a comment */
1.254     brouard  13578:        numlinepar++;
                   13579:        fputs(line,stdout);
                   13580:        fputs(line,ficparo);
                   13581:        fputs(line,ficlog);
1.299     brouard  13582:        fputs(line,ficres);
1.254     brouard  13583:        continue;
1.258     brouard  13584:       }else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp))
                   13585:        parameterline=11;
1.296     brouard  13586:       else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp))
1.258     brouard  13587:        parameterline=12;
1.307     brouard  13588:       else if(sscanf(line,"result:%[^\n]\n",modeltemp)){
1.258     brouard  13589:        parameterline=13;
1.307     brouard  13590:       }
1.258     brouard  13591:       else{
                   13592:        parameterline=14;
1.254     brouard  13593:       }
1.308     brouard  13594:       switch (parameterline){ /* =0 only if only comments */
1.258     brouard  13595:       case 11:
1.296     brouard  13596:        if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){
                   13597:                  fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
1.258     brouard  13598:          printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   13599:          fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   13600:          fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   13601:          /* day and month of proj2 are not used but only year anproj2.*/
1.273     brouard  13602:          dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.;
                   13603:          dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.;
1.296     brouard  13604:           prvforecast = 1;
                   13605:        } 
                   13606:        else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/
1.313     brouard  13607:          printf("prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
                   13608:          fprintf(ficlog,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
                   13609:          fprintf(ficres,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
1.296     brouard  13610:           prvforecast = 2;
                   13611:        }
                   13612:        else {
                   13613:          printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   13614:          fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   13615:          goto end;
1.258     brouard  13616:        }
1.254     brouard  13617:        break;
1.258     brouard  13618:       case 12:
1.296     brouard  13619:        if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){
                   13620:           fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   13621:          printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   13622:          fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   13623:          fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   13624:          /* day and month of back2 are not used but only year anback2.*/
1.273     brouard  13625:          dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.;
                   13626:          dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.;
1.296     brouard  13627:           prvbackcast = 1;
                   13628:        } 
                   13629:        else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/
1.313     brouard  13630:          printf("prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
                   13631:          fprintf(ficlog,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
                   13632:          fprintf(ficres,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
1.296     brouard  13633:           prvbackcast = 2;
                   13634:        }
                   13635:        else {
                   13636:          printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   13637:          fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   13638:          goto end;
1.258     brouard  13639:        }
1.230     brouard  13640:        break;
1.258     brouard  13641:       case 13:
1.332     brouard  13642:        num_filled=sscanf(line,"result:%[^\n]\n",resultlineori);
1.307     brouard  13643:        nresult++; /* Sum of resultlines */
1.332     brouard  13644:        printf("Result %d: result:%s\n",nresult, resultlineori);
                   13645:        /* removefirstspace(&resultlineori); */
                   13646:        
                   13647:        if(strstr(resultlineori,"v") !=0){
                   13648:          printf("Error. 'v' must be in upper case 'V' result: %s ",resultlineori);
                   13649:          fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultlineori);fflush(ficlog);
                   13650:          return 1;
                   13651:        }
                   13652:        trimbb(resultline, resultlineori); /* Suppressing double blank in the resultline */
                   13653:        printf("Decoderesult resultline=\"%s\" resultlineori=\"%s\"\n", resultline, resultlineori);
1.318     brouard  13654:        if(nresult > MAXRESULTLINESPONE-1){
                   13655:          printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
                   13656:          fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
1.307     brouard  13657:          goto end;
                   13658:        }
1.332     brouard  13659:        
1.310     brouard  13660:        if(!decoderesult(resultline, nresult)){ /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
1.314     brouard  13661:          fprintf(ficparo,"result: %s\n",resultline);
                   13662:          fprintf(ficres,"result: %s\n",resultline);
                   13663:          fprintf(ficlog,"result: %s\n",resultline);
1.310     brouard  13664:        } else
                   13665:          goto end;
1.307     brouard  13666:        break;
                   13667:       case 14:
                   13668:        printf("Error: Unknown command '%s'\n",line);
                   13669:        fprintf(ficlog,"Error: Unknown command '%s'\n",line);
1.314     brouard  13670:        if(line[0] == ' ' || line[0] == '\n'){
                   13671:          printf("It should not be an empty line '%s'\n",line);
                   13672:          fprintf(ficlog,"It should not be an empty line '%s'\n",line);
                   13673:        }         
1.307     brouard  13674:        if(ncovmodel >=2 && nresult==0 ){
                   13675:          printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
                   13676:          fprintf(ficlog,"ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
1.258     brouard  13677:        }
1.307     brouard  13678:        /* goto end; */
                   13679:        break;
1.308     brouard  13680:       case 15:
                   13681:        printf("End of resultlines.\n");
                   13682:        fprintf(ficlog,"End of resultlines.\n");
                   13683:        break;
                   13684:       default: /* parameterline =0 */
1.307     brouard  13685:        nresult=1;
                   13686:        decoderesult(".",nresult ); /* No covariate */
1.258     brouard  13687:       } /* End switch parameterline */
                   13688:     }while(endishere==0); /* End do */
1.126     brouard  13689:     
1.230     brouard  13690:     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
1.145     brouard  13691:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
1.126     brouard  13692:     
                   13693:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
1.194     brouard  13694:     if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
1.230     brouard  13695:       printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
1.194     brouard  13696: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   13697: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.230     brouard  13698:       fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
1.194     brouard  13699: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   13700: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.220     brouard  13701:     }else{
1.270     brouard  13702:       /* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */
1.296     brouard  13703:       /* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */
                   13704:       /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */
                   13705:       if(prvforecast==1){
                   13706:         dateprojd=(jproj1+12*mproj1+365*anproj1)/365;
                   13707:         jprojd=jproj1;
                   13708:         mprojd=mproj1;
                   13709:         anprojd=anproj1;
                   13710:         dateprojf=(jproj2+12*mproj2+365*anproj2)/365;
                   13711:         jprojf=jproj2;
                   13712:         mprojf=mproj2;
                   13713:         anprojf=anproj2;
                   13714:       } else if(prvforecast == 2){
                   13715:         dateprojd=dateintmean;
                   13716:         date2dmy(dateprojd,&jprojd, &mprojd, &anprojd);
                   13717:         dateprojf=dateintmean+yrfproj;
                   13718:         date2dmy(dateprojf,&jprojf, &mprojf, &anprojf);
                   13719:       }
                   13720:       if(prvbackcast==1){
                   13721:         datebackd=(jback1+12*mback1+365*anback1)/365;
                   13722:         jbackd=jback1;
                   13723:         mbackd=mback1;
                   13724:         anbackd=anback1;
                   13725:         datebackf=(jback2+12*mback2+365*anback2)/365;
                   13726:         jbackf=jback2;
                   13727:         mbackf=mback2;
                   13728:         anbackf=anback2;
                   13729:       } else if(prvbackcast == 2){
                   13730:         datebackd=dateintmean;
                   13731:         date2dmy(datebackd,&jbackd, &mbackd, &anbackd);
                   13732:         datebackf=dateintmean-yrbproj;
                   13733:         date2dmy(datebackf,&jbackf, &mbackf, &anbackf);
                   13734:       }
                   13735:       
                   13736:       printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage);
1.220     brouard  13737:     }
                   13738:     printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
1.296     brouard  13739:                 model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \
                   13740:                 jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf);
1.220     brouard  13741:                
1.225     brouard  13742:     /*------------ free_vector  -------------*/
                   13743:     /*  chdir(path); */
1.220     brouard  13744:                
1.215     brouard  13745:     /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
                   13746:     /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
                   13747:     /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
                   13748:     /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
1.290     brouard  13749:     free_lvector(num,firstobs,lastobs);
                   13750:     free_vector(agedc,firstobs,lastobs);
1.126     brouard  13751:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
                   13752:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
                   13753:     fclose(ficparo);
                   13754:     fclose(ficres);
1.220     brouard  13755:                
                   13756:                
1.186     brouard  13757:     /* Other results (useful)*/
1.220     brouard  13758:                
                   13759:                
1.126     brouard  13760:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
1.180     brouard  13761:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
                   13762:     prlim=matrix(1,nlstate,1,nlstate);
1.332     brouard  13763:     /* Computes the prevalence limit for each combination k of the dummy covariates by calling prevalim(k) */
1.209     brouard  13764:     prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
1.126     brouard  13765:     fclose(ficrespl);
                   13766: 
                   13767:     /*------------- h Pij x at various ages ------------*/
1.180     brouard  13768:     /*#include "hpijx.h"*/
1.332     brouard  13769:     /** h Pij x Probability to be in state j at age x+h being in i at x, for each combination k of dummies in the model line or to nres?*/
                   13770:     /* calls hpxij with combination k */
1.180     brouard  13771:     hPijx(p, bage, fage);
1.145     brouard  13772:     fclose(ficrespij);
1.227     brouard  13773:     
1.220     brouard  13774:     /* ncovcombmax=  pow(2,cptcoveff); */
1.332     brouard  13775:     /*-------------- Variance of one-step probabilities for a combination ij or for nres ?---*/
1.145     brouard  13776:     k=1;
1.126     brouard  13777:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
1.227     brouard  13778:     
1.269     brouard  13779:     /* Prevalence for each covariate combination in probs[age][status][cov] */
                   13780:     probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
                   13781:     for(i=AGEINF;i<=AGESUP;i++)
1.219     brouard  13782:       for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
1.225     brouard  13783:        for(k=1;k<=ncovcombmax;k++)
                   13784:          probs[i][j][k]=0.;
1.269     brouard  13785:     prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, 
                   13786:               ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
1.219     brouard  13787:     if (mobilav!=0 ||mobilavproj !=0 ) {
1.269     brouard  13788:       mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
                   13789:       for(i=AGEINF;i<=AGESUP;i++)
1.268     brouard  13790:        for(j=1;j<=nlstate+ndeath;j++)
1.227     brouard  13791:          for(k=1;k<=ncovcombmax;k++)
                   13792:            mobaverages[i][j][k]=0.;
1.219     brouard  13793:       mobaverage=mobaverages;
                   13794:       if (mobilav!=0) {
1.235     brouard  13795:        printf("Movingaveraging observed prevalence\n");
1.258     brouard  13796:        fprintf(ficlog,"Movingaveraging observed prevalence\n");
1.227     brouard  13797:        if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
                   13798:          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   13799:          printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   13800:        }
1.269     brouard  13801:       } else if (mobilavproj !=0) {
1.235     brouard  13802:        printf("Movingaveraging projected observed prevalence\n");
1.258     brouard  13803:        fprintf(ficlog,"Movingaveraging projected observed prevalence\n");
1.227     brouard  13804:        if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
                   13805:          fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
                   13806:          printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
                   13807:        }
1.269     brouard  13808:       }else{
                   13809:        printf("Internal error moving average\n");
                   13810:        fflush(stdout);
                   13811:        exit(1);
1.219     brouard  13812:       }
                   13813:     }/* end if moving average */
1.227     brouard  13814:     
1.126     brouard  13815:     /*---------- Forecasting ------------------*/
1.296     brouard  13816:     if(prevfcast==1){ 
                   13817:       /*   /\*    if(stepm ==1){*\/ */
                   13818:       /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
                   13819:       /*This done previously after freqsummary.*/
                   13820:       /*   dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */
                   13821:       /*   dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */
                   13822:       
                   13823:       /* } else if (prvforecast==2){ */
                   13824:       /*   /\*    if(stepm ==1){*\/ */
                   13825:       /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
                   13826:       /* } */
                   13827:       /*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/
                   13828:       prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff);
1.126     brouard  13829:     }
1.269     brouard  13830: 
1.296     brouard  13831:     /* Prevbcasting */
                   13832:     if(prevbcast==1){
1.219     brouard  13833:       ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);       
                   13834:       ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);       
                   13835:       ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
                   13836: 
                   13837:       /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
                   13838: 
                   13839:       bprlim=matrix(1,nlstate,1,nlstate);
1.269     brouard  13840: 
1.219     brouard  13841:       back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
                   13842:       fclose(ficresplb);
                   13843: 
1.222     brouard  13844:       hBijx(p, bage, fage, mobaverage);
                   13845:       fclose(ficrespijb);
1.219     brouard  13846: 
1.296     brouard  13847:       /* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */
                   13848:       /* /\*                  mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */
                   13849:       /* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */
                   13850:       /*                      mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
                   13851:       prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2,
                   13852:                       mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff);
                   13853: 
                   13854:       
1.269     brouard  13855:       varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
1.268     brouard  13856: 
                   13857:       
1.269     brouard  13858:       free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
1.219     brouard  13859:       free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   13860:       free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   13861:       free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
1.296     brouard  13862:     }    /* end  Prevbcasting */
1.268     brouard  13863:  
1.186     brouard  13864:  
                   13865:     /* ------ Other prevalence ratios------------ */
1.126     brouard  13866: 
1.215     brouard  13867:     free_ivector(wav,1,imx);
                   13868:     free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
                   13869:     free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
                   13870:     free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
1.218     brouard  13871:                
                   13872:                
1.127     brouard  13873:     /*---------- Health expectancies, no variances ------------*/
1.218     brouard  13874:                
1.201     brouard  13875:     strcpy(filerese,"E_");
                   13876:     strcat(filerese,fileresu);
1.126     brouard  13877:     if((ficreseij=fopen(filerese,"w"))==NULL) {
                   13878:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   13879:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   13880:     }
1.208     brouard  13881:     printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
                   13882:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
1.238     brouard  13883: 
                   13884:     pstamp(ficreseij);
1.219     brouard  13885:                
1.235     brouard  13886:     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
                   13887:     if (cptcovn < 1){i1=1;}
                   13888:     
                   13889:     for(nres=1; nres <= nresult; nres++) /* For each resultline */
                   13890:     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying */
1.253     brouard  13891:       if(i1 != 1 && TKresult[nres]!= k)
1.235     brouard  13892:        continue;
1.219     brouard  13893:       fprintf(ficreseij,"\n#****** ");
1.235     brouard  13894:       printf("\n#****** ");
1.225     brouard  13895:       for(j=1;j<=cptcoveff;j++) {
1.332     brouard  13896:        fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
                   13897:        printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]);
1.235     brouard  13898:       }
                   13899:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
1.337     brouard  13900:        printf(" V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */
                   13901:        fprintf(ficreseij,"V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]);
1.219     brouard  13902:       }
                   13903:       fprintf(ficreseij,"******\n");
1.235     brouard  13904:       printf("******\n");
1.219     brouard  13905:       
                   13906:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   13907:       oldm=oldms;savm=savms;
1.330     brouard  13908:       /* printf("HELLO Entering evsij bage=%d fage=%d k=%d estepm=%d nres=%d\n",(int) bage, (int)fage, k, estepm, nres); */
1.235     brouard  13909:       evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
1.127     brouard  13910:       
1.219     brouard  13911:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
1.127     brouard  13912:     }
                   13913:     fclose(ficreseij);
1.208     brouard  13914:     printf("done evsij\n");fflush(stdout);
                   13915:     fprintf(ficlog,"done evsij\n");fflush(ficlog);
1.269     brouard  13916: 
1.218     brouard  13917:                
1.227     brouard  13918:     /*---------- State-specific expectancies and variances ------------*/
1.336     brouard  13919:     /* Should be moved in a function */                
1.201     brouard  13920:     strcpy(filerest,"T_");
                   13921:     strcat(filerest,fileresu);
1.127     brouard  13922:     if((ficrest=fopen(filerest,"w"))==NULL) {
                   13923:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                   13924:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
                   13925:     }
1.208     brouard  13926:     printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
                   13927:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
1.201     brouard  13928:     strcpy(fileresstde,"STDE_");
                   13929:     strcat(fileresstde,fileresu);
1.126     brouard  13930:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
1.227     brouard  13931:       printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
                   13932:       fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
1.126     brouard  13933:     }
1.227     brouard  13934:     printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
                   13935:     fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
1.126     brouard  13936: 
1.201     brouard  13937:     strcpy(filerescve,"CVE_");
                   13938:     strcat(filerescve,fileresu);
1.126     brouard  13939:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
1.227     brouard  13940:       printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
                   13941:       fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
1.126     brouard  13942:     }
1.227     brouard  13943:     printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
                   13944:     fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
1.126     brouard  13945: 
1.201     brouard  13946:     strcpy(fileresv,"V_");
                   13947:     strcat(fileresv,fileresu);
1.126     brouard  13948:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
                   13949:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
                   13950:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
                   13951:     }
1.227     brouard  13952:     printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
                   13953:     fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
1.126     brouard  13954: 
1.235     brouard  13955:     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
                   13956:     if (cptcovn < 1){i1=1;}
                   13957:     
1.334     brouard  13958:     for(nres=1; nres <= nresult; nres++) /* For each resultline, find the combination and output results according to the values of dummies and then quanti.  */
                   13959:     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying. For each nres and each value at position k
                   13960:                          * we know Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline
                   13961:                          * Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline 
                   13962:                          * and Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
                   13963:       /* */
                   13964:       if(i1 != 1 && TKresult[nres]!= k) /* TKresult[nres] is the combination of this nres resultline. All the i1 combinations are not output */
1.235     brouard  13965:        continue;
1.321     brouard  13966:       printf("\n# model %s \n#****** Result for:", model);
                   13967:       fprintf(ficrest,"\n# model %s \n#****** Result for:", model);
                   13968:       fprintf(ficlog,"\n# model %s \n#****** Result for:", model);
1.334     brouard  13969:       /* It might not be a good idea to mix dummies and quantitative */
                   13970:       /* for(j=1;j<=cptcoveff;j++){ /\* j=resultpos. Could be a loop on cptcovs: number of single dummy covariate in the result line as well as in the model *\/ */
                   13971:       for(j=1;j<=cptcovs;j++){ /* j=resultpos. Could be a loop on cptcovs: number of single covariate (dummy or quantitative) in the result line as well as in the model */
                   13972:        /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* Output by variables in the resultline *\/ */
                   13973:        /* Tvaraff[j] is the name of the dummy variable in position j in the equation model:
                   13974:         * Tvaraff[1]@9={4, 3, 0, 0, 0, 0, 0, 0, 0}, in model=V5+V4+V3+V4*V3+V5*age
                   13975:         * (V5 is quanti) V4 and V3 are dummies
                   13976:         * TnsdVar[4] is the position 1 and TnsdVar[3]=2 in codtabm(k,l)(V4  V3)=V4  V3
                   13977:         *                                                              l=1 l=2
                   13978:         *                                                           k=1  1   1   0   0
                   13979:         *                                                           k=2  2   1   1   0
                   13980:         *                                                           k=3 [1] [2]  0   1
                   13981:         *                                                           k=4  2   2   1   1
                   13982:         * If nres=1 result: V3=1 V4=0 then k=3 and outputs
                   13983:         * If nres=2 result: V4=1 V3=0 then k=2 and outputs
                   13984:         * nres=1 =>k=3 j=1 V4= nbcode[4][codtabm(3,1)=1)=0; j=2  V3= nbcode[3][codtabm(3,2)=2]=1
                   13985:         * nres=2 =>k=2 j=1 V4= nbcode[4][codtabm(2,1)=2)=1; j=2  V3= nbcode[3][codtabm(2,2)=1]=0
                   13986:         */
                   13987:        /* Tvresult[nres][j] Name of the variable at position j in this resultline */
                   13988:        /* Tresult[nres][j] Value of this variable at position j could be a float if quantitative  */
                   13989: /* We give up with the combinations!! */
                   13990:        printf("\n j=%d In computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d Fixed[modelresult[nres][j]]=%d\n", j, nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff,Fixed[modelresult[nres][j]]);  /* end if dummy  or quanti */
                   13991: 
                   13992:        if(Dummy[modelresult[nres][j]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to j in resultline  */
1.337     brouard  13993:          printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   13994:          fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   13995:          fprintf(ficrest,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
1.334     brouard  13996:          if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
                   13997:            printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
                   13998:          }else{
                   13999:            printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
                   14000:          }
                   14001:          /* fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14002:          /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14003:        }else if(Dummy[modelresult[nres][j]]==1){ /* Quanti variable */
                   14004:          /* For each selected (single) quantitative value */
1.337     brouard  14005:          printf(" V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
                   14006:          fprintf(ficlog," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
                   14007:          fprintf(ficrest," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
1.334     brouard  14008:          if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
                   14009:            printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
                   14010:          }else{
                   14011:            printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
                   14012:          }
                   14013:        }else{
                   14014:          printf("Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   14015:          fprintf(ficlog,"Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   14016:          exit(1);
                   14017:        }
1.335     brouard  14018:       } /* End loop for each variable in the resultline */
1.334     brouard  14019:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   14020:       /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /\* Wrong j is not in the equation model *\/ */
                   14021:       /*       fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   14022:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   14023:       /* }      */
1.208     brouard  14024:       fprintf(ficrest,"******\n");
1.227     brouard  14025:       fprintf(ficlog,"******\n");
                   14026:       printf("******\n");
1.208     brouard  14027:       
                   14028:       fprintf(ficresstdeij,"\n#****** ");
                   14029:       fprintf(ficrescveij,"\n#****** ");
1.337     brouard  14030:       /* It could have been: for(j=1;j<=cptcoveff;j++) {printf("V=%d=%lg",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);} */
                   14031:       /* But it won't be sorted and depends on how the resultline is ordered */
1.225     brouard  14032:       for(j=1;j<=cptcoveff;j++) {
1.334     brouard  14033:        fprintf(ficresstdeij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
                   14034:        /* fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14035:        /* fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14036:       }
                   14037:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value, TvarsQind gives the position of a quantitative in model equation  */
1.337     brouard  14038:        fprintf(ficresstdeij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
                   14039:        fprintf(ficrescveij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
1.235     brouard  14040:       }        
1.208     brouard  14041:       fprintf(ficresstdeij,"******\n");
                   14042:       fprintf(ficrescveij,"******\n");
                   14043:       
                   14044:       fprintf(ficresvij,"\n#****** ");
1.238     brouard  14045:       /* pstamp(ficresvij); */
1.225     brouard  14046:       for(j=1;j<=cptcoveff;j++) 
1.335     brouard  14047:        fprintf(ficresvij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
                   14048:        /* fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[TnsdVar[Tvaraff[j]]])]); */
1.235     brouard  14049:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
1.332     brouard  14050:        /* fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); /\* To solve *\/ */
1.337     brouard  14051:        fprintf(ficresvij," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */
1.235     brouard  14052:       }        
1.208     brouard  14053:       fprintf(ficresvij,"******\n");
                   14054:       
                   14055:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   14056:       oldm=oldms;savm=savms;
1.235     brouard  14057:       printf(" cvevsij ");
                   14058:       fprintf(ficlog, " cvevsij ");
                   14059:       cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
1.208     brouard  14060:       printf(" end cvevsij \n ");
                   14061:       fprintf(ficlog, " end cvevsij \n ");
                   14062:       
                   14063:       /*
                   14064:        */
                   14065:       /* goto endfree; */
                   14066:       
                   14067:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   14068:       pstamp(ficrest);
                   14069:       
1.269     brouard  14070:       epj=vector(1,nlstate+1);
1.208     brouard  14071:       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
1.227     brouard  14072:        oldm=oldms;savm=savms; /* ZZ Segmentation fault */
                   14073:        cptcod= 0; /* To be deleted */
                   14074:        printf("varevsij vpopbased=%d \n",vpopbased);
                   14075:        fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
1.235     brouard  14076:        varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
1.227     brouard  14077:        fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
                   14078:        if(vpopbased==1)
                   14079:          fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
                   14080:        else
1.288     brouard  14081:          fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n");
1.335     brouard  14082:        fprintf(ficrest,"# Age popbased mobilav e.. (std) "); /* Adding covariate values? */
1.227     brouard  14083:        for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                   14084:        fprintf(ficrest,"\n");
                   14085:        /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
1.288     brouard  14086:        printf("Computing age specific forward period (stable) prevalences in each health state \n");
                   14087:        fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n");
1.227     brouard  14088:        for(age=bage; age <=fage ;age++){
1.235     brouard  14089:          prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
1.227     brouard  14090:          if (vpopbased==1) {
                   14091:            if(mobilav ==0){
                   14092:              for(i=1; i<=nlstate;i++)
                   14093:                prlim[i][i]=probs[(int)age][i][k];
                   14094:            }else{ /* mobilav */ 
                   14095:              for(i=1; i<=nlstate;i++)
                   14096:                prlim[i][i]=mobaverage[(int)age][i][k];
                   14097:            }
                   14098:          }
1.219     brouard  14099:          
1.227     brouard  14100:          fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
                   14101:          /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
                   14102:          /* printf(" age %4.0f ",age); */
                   14103:          for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                   14104:            for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   14105:              epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   14106:              /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   14107:              /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                   14108:            }
                   14109:            epj[nlstate+1] +=epj[j];
                   14110:          }
                   14111:          /* printf(" age %4.0f \n",age); */
1.219     brouard  14112:          
1.227     brouard  14113:          for(i=1, vepp=0.;i <=nlstate;i++)
                   14114:            for(j=1;j <=nlstate;j++)
                   14115:              vepp += vareij[i][j][(int)age];
                   14116:          fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                   14117:          for(j=1;j <=nlstate;j++){
                   14118:            fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                   14119:          }
                   14120:          fprintf(ficrest,"\n");
                   14121:        }
1.208     brouard  14122:       } /* End vpopbased */
1.269     brouard  14123:       free_vector(epj,1,nlstate+1);
1.208     brouard  14124:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   14125:       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
1.235     brouard  14126:       printf("done selection\n");fflush(stdout);
                   14127:       fprintf(ficlog,"done selection\n");fflush(ficlog);
1.208     brouard  14128:       
1.335     brouard  14129:     } /* End k selection or end covariate selection for nres */
1.227     brouard  14130: 
                   14131:     printf("done State-specific expectancies\n");fflush(stdout);
                   14132:     fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
                   14133: 
1.335     brouard  14134:     /* variance-covariance of forward period prevalence */
1.269     brouard  14135:     varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
1.268     brouard  14136: 
1.227     brouard  14137:     
1.290     brouard  14138:     free_vector(weight,firstobs,lastobs);
1.330     brouard  14139:     free_imatrix(Tvardk,1,NCOVMAX,1,2);
1.227     brouard  14140:     free_imatrix(Tvard,1,NCOVMAX,1,2);
1.290     brouard  14141:     free_imatrix(s,1,maxwav+1,firstobs,lastobs);
                   14142:     free_matrix(anint,1,maxwav,firstobs,lastobs); 
                   14143:     free_matrix(mint,1,maxwav,firstobs,lastobs);
                   14144:     free_ivector(cod,firstobs,lastobs);
1.227     brouard  14145:     free_ivector(tab,1,NCOVMAX);
                   14146:     fclose(ficresstdeij);
                   14147:     fclose(ficrescveij);
                   14148:     fclose(ficresvij);
                   14149:     fclose(ficrest);
                   14150:     fclose(ficpar);
                   14151:     
                   14152:     
1.126     brouard  14153:     /*---------- End : free ----------------*/
1.219     brouard  14154:     if (mobilav!=0 ||mobilavproj !=0)
1.269     brouard  14155:       free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
                   14156:     free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
1.220     brouard  14157:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
                   14158:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
1.126     brouard  14159:   }  /* mle==-3 arrives here for freeing */
1.227     brouard  14160:   /* endfree:*/
                   14161:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   14162:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   14163:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
1.290     brouard  14164:   if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs);
                   14165:   if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs);
                   14166:   if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs);
                   14167:   free_matrix(covar,0,NCOVMAX,firstobs,lastobs);
1.227     brouard  14168:   free_matrix(matcov,1,npar,1,npar);
                   14169:   free_matrix(hess,1,npar,1,npar);
                   14170:   /*free_vector(delti,1,npar);*/
                   14171:   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   14172:   free_matrix(agev,1,maxwav,1,imx);
1.269     brouard  14173:   free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
1.227     brouard  14174:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
                   14175:   
                   14176:   free_ivector(ncodemax,1,NCOVMAX);
                   14177:   free_ivector(ncodemaxwundef,1,NCOVMAX);
                   14178:   free_ivector(Dummy,-1,NCOVMAX);
                   14179:   free_ivector(Fixed,-1,NCOVMAX);
1.238     brouard  14180:   free_ivector(DummyV,1,NCOVMAX);
                   14181:   free_ivector(FixedV,1,NCOVMAX);
1.227     brouard  14182:   free_ivector(Typevar,-1,NCOVMAX);
                   14183:   free_ivector(Tvar,1,NCOVMAX);
1.234     brouard  14184:   free_ivector(TvarsQ,1,NCOVMAX);
                   14185:   free_ivector(TvarsQind,1,NCOVMAX);
                   14186:   free_ivector(TvarsD,1,NCOVMAX);
1.330     brouard  14187:   free_ivector(TnsdVar,1,NCOVMAX);
1.234     brouard  14188:   free_ivector(TvarsDind,1,NCOVMAX);
1.231     brouard  14189:   free_ivector(TvarFD,1,NCOVMAX);
                   14190:   free_ivector(TvarFDind,1,NCOVMAX);
1.232     brouard  14191:   free_ivector(TvarF,1,NCOVMAX);
                   14192:   free_ivector(TvarFind,1,NCOVMAX);
                   14193:   free_ivector(TvarV,1,NCOVMAX);
                   14194:   free_ivector(TvarVind,1,NCOVMAX);
                   14195:   free_ivector(TvarA,1,NCOVMAX);
                   14196:   free_ivector(TvarAind,1,NCOVMAX);
1.231     brouard  14197:   free_ivector(TvarFQ,1,NCOVMAX);
                   14198:   free_ivector(TvarFQind,1,NCOVMAX);
                   14199:   free_ivector(TvarVD,1,NCOVMAX);
                   14200:   free_ivector(TvarVDind,1,NCOVMAX);
                   14201:   free_ivector(TvarVQ,1,NCOVMAX);
                   14202:   free_ivector(TvarVQind,1,NCOVMAX);
1.230     brouard  14203:   free_ivector(Tvarsel,1,NCOVMAX);
                   14204:   free_vector(Tvalsel,1,NCOVMAX);
1.227     brouard  14205:   free_ivector(Tposprod,1,NCOVMAX);
                   14206:   free_ivector(Tprod,1,NCOVMAX);
                   14207:   free_ivector(Tvaraff,1,NCOVMAX);
1.338   ! brouard  14208:   free_ivector(invalidvarcomb,0,ncovcombmax);
1.227     brouard  14209:   free_ivector(Tage,1,NCOVMAX);
                   14210:   free_ivector(Tmodelind,1,NCOVMAX);
1.228     brouard  14211:   free_ivector(TmodelInvind,1,NCOVMAX);
                   14212:   free_ivector(TmodelInvQind,1,NCOVMAX);
1.332     brouard  14213: 
                   14214:   free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /* Could be elsewhere ?*/
                   14215: 
1.227     brouard  14216:   free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
                   14217:   /* free_imatrix(codtab,1,100,1,10); */
1.126     brouard  14218:   fflush(fichtm);
                   14219:   fflush(ficgp);
                   14220:   
1.227     brouard  14221:   
1.126     brouard  14222:   if((nberr >0) || (nbwarn>0)){
1.216     brouard  14223:     printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
                   14224:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
1.126     brouard  14225:   }else{
                   14226:     printf("End of Imach\n");
                   14227:     fprintf(ficlog,"End of Imach\n");
                   14228:   }
                   14229:   printf("See log file on %s\n",filelog);
                   14230:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
1.157     brouard  14231:   /*(void) gettimeofday(&end_time,&tzp);*/
                   14232:   rend_time = time(NULL);  
                   14233:   end_time = *localtime(&rend_time);
                   14234:   /* tml = *localtime(&end_time.tm_sec); */
                   14235:   strcpy(strtend,asctime(&end_time));
1.126     brouard  14236:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
                   14237:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
1.157     brouard  14238:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
1.227     brouard  14239:   
1.157     brouard  14240:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
                   14241:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
                   14242:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
1.126     brouard  14243:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
                   14244: /*   if(fileappend(fichtm,optionfilehtm)){ */
                   14245:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   14246:   fclose(fichtm);
                   14247:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   14248:   fclose(fichtmcov);
                   14249:   fclose(ficgp);
                   14250:   fclose(ficlog);
                   14251:   /*------ End -----------*/
1.227     brouard  14252:   
1.281     brouard  14253: 
                   14254: /* Executes gnuplot */
1.227     brouard  14255:   
                   14256:   printf("Before Current directory %s!\n",pathcd);
1.184     brouard  14257: #ifdef WIN32
1.227     brouard  14258:   if (_chdir(pathcd) != 0)
                   14259:     printf("Can't move to directory %s!\n",path);
                   14260:   if(_getcwd(pathcd,MAXLINE) > 0)
1.184     brouard  14261: #else
1.227     brouard  14262:     if(chdir(pathcd) != 0)
                   14263:       printf("Can't move to directory %s!\n", path);
                   14264:   if (getcwd(pathcd, MAXLINE) > 0)
1.184     brouard  14265: #endif 
1.126     brouard  14266:     printf("Current directory %s!\n",pathcd);
                   14267:   /*strcat(plotcmd,CHARSEPARATOR);*/
                   14268:   sprintf(plotcmd,"gnuplot");
1.157     brouard  14269: #ifdef _WIN32
1.126     brouard  14270:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
                   14271: #endif
                   14272:   if(!stat(plotcmd,&info)){
1.158     brouard  14273:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  14274:     if(!stat(getenv("GNUPLOTBIN"),&info)){
1.158     brouard  14275:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
1.126     brouard  14276:     }else
                   14277:       strcpy(pplotcmd,plotcmd);
1.157     brouard  14278: #ifdef __unix
1.126     brouard  14279:     strcpy(plotcmd,GNUPLOTPROGRAM);
                   14280:     if(!stat(plotcmd,&info)){
1.158     brouard  14281:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  14282:     }else
                   14283:       strcpy(pplotcmd,plotcmd);
                   14284: #endif
                   14285:   }else
                   14286:     strcpy(pplotcmd,plotcmd);
                   14287:   
                   14288:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
1.158     brouard  14289:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
1.292     brouard  14290:   strcpy(pplotcmd,plotcmd);
1.227     brouard  14291:   
1.126     brouard  14292:   if((outcmd=system(plotcmd)) != 0){
1.292     brouard  14293:     printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
1.154     brouard  14294:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
1.152     brouard  14295:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
1.292     brouard  14296:     if((outcmd=system(plotcmd)) != 0){
1.153     brouard  14297:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
1.292     brouard  14298:       strcpy(plotcmd,pplotcmd);
                   14299:     }
1.126     brouard  14300:   }
1.158     brouard  14301:   printf(" Successful, please wait...");
1.126     brouard  14302:   while (z[0] != 'q') {
                   14303:     /* chdir(path); */
1.154     brouard  14304:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
1.126     brouard  14305:     scanf("%s",z);
                   14306: /*     if (z[0] == 'c') system("./imach"); */
                   14307:     if (z[0] == 'e') {
1.158     brouard  14308: #ifdef __APPLE__
1.152     brouard  14309:       sprintf(pplotcmd, "open %s", optionfilehtm);
1.157     brouard  14310: #elif __linux
                   14311:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
1.153     brouard  14312: #else
1.152     brouard  14313:       sprintf(pplotcmd, "%s", optionfilehtm);
1.153     brouard  14314: #endif
                   14315:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
                   14316:       system(pplotcmd);
1.126     brouard  14317:     }
                   14318:     else if (z[0] == 'g') system(plotcmd);
                   14319:     else if (z[0] == 'q') exit(0);
                   14320:   }
1.227     brouard  14321: end:
1.126     brouard  14322:   while (z[0] != 'q') {
1.195     brouard  14323:     printf("\nType  q for exiting: "); fflush(stdout);
1.126     brouard  14324:     scanf("%s",z);
                   14325:   }
1.283     brouard  14326:   printf("End\n");
1.282     brouard  14327:   exit(0);
1.126     brouard  14328: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>