Annotation of imach/src/imach.c, revision 1.356

1.356   ! brouard     1: /* $Id: imach.c,v 1.355 2023/05/22 17:03:18 brouard Exp $
1.126     brouard     2:   $State: Exp $
1.163     brouard     3:   $Log: imach.c,v $
1.356   ! brouard     4:   Revision 1.355  2023/05/22 17:03:18  brouard
        !             5:   Summary: 0.99r46
        !             6: 
        !             7:   * imach.c (Module): In the ILK....txt file, the number of columns
        !             8:   before the covariates values is dependent of the number of states (16+nlstate): 0.99r46
        !             9: 
1.355     brouard    10:   Revision 1.354  2023/05/21 05:05:17  brouard
                     11:   Summary: Temporary change for imachprax
                     12: 
1.354     brouard    13:   Revision 1.353  2023/05/08 18:48:22  brouard
                     14:   *** empty log message ***
                     15: 
1.353     brouard    16:   Revision 1.352  2023/04/29 10:46:21  brouard
                     17:   *** empty log message ***
                     18: 
1.352     brouard    19:   Revision 1.351  2023/04/29 10:43:47  brouard
                     20:   Summary: 099r45
                     21: 
1.351     brouard    22:   Revision 1.350  2023/04/24 11:38:06  brouard
                     23:   *** empty log message ***
                     24: 
1.350     brouard    25:   Revision 1.349  2023/01/31 09:19:37  brouard
                     26:   Summary: Improvements in models with age*Vn*Vm
                     27: 
1.348     brouard    28:   Revision 1.347  2022/09/18 14:36:44  brouard
                     29:   Summary: version 0.99r42
                     30: 
1.347     brouard    31:   Revision 1.346  2022/09/16 13:52:36  brouard
                     32:   * src/imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you  Feinuo
                     33: 
1.346     brouard    34:   Revision 1.345  2022/09/16 13:40:11  brouard
                     35:   Summary: Version 0.99r41
                     36: 
                     37:   * imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you  Feinuo
                     38: 
1.345     brouard    39:   Revision 1.344  2022/09/14 19:33:30  brouard
                     40:   Summary: version 0.99r40
                     41: 
                     42:   * imach.c (Module): Fixing names of variables in T_ (thanks to Feinuo)
                     43: 
1.344     brouard    44:   Revision 1.343  2022/09/14 14:22:16  brouard
                     45:   Summary: version 0.99r39
                     46: 
                     47:   * imach.c (Module): Version 0.99r39 with colored dummy covariates
                     48:   (fixed or time varying), using new last columns of
                     49:   ILK_parameter.txt file.
                     50: 
1.343     brouard    51:   Revision 1.342  2022/09/11 19:54:09  brouard
                     52:   Summary: 0.99r38
                     53: 
                     54:   * imach.c (Module): Adding timevarying products of any kinds,
                     55:   should work before shifting cotvar from ncovcol+nqv columns in
                     56:   order to have a correspondance between the column of cotvar and
                     57:   the id of column.
                     58:   (Module): Some cleaning and adding covariates in ILK.txt
                     59: 
1.342     brouard    60:   Revision 1.341  2022/09/11 07:58:42  brouard
                     61:   Summary: Version 0.99r38
                     62: 
                     63:   After adding change in cotvar.
                     64: 
1.341     brouard    65:   Revision 1.340  2022/09/11 07:53:11  brouard
                     66:   Summary: Version imach 0.99r37
                     67: 
                     68:   * imach.c (Module): Adding timevarying products of any kinds,
                     69:   should work before shifting cotvar from ncovcol+nqv columns in
                     70:   order to have a correspondance between the column of cotvar and
                     71:   the id of column.
                     72: 
1.340     brouard    73:   Revision 1.339  2022/09/09 17:55:22  brouard
                     74:   Summary: version 0.99r37
                     75: 
                     76:   * imach.c (Module): Many improvements for fixing products of fixed
                     77:   timevarying as well as fixed * fixed, and test with quantitative
                     78:   covariate.
                     79: 
1.339     brouard    80:   Revision 1.338  2022/09/04 17:40:33  brouard
                     81:   Summary: 0.99r36
                     82: 
                     83:   * imach.c (Module): Now the easy runs i.e. without result or
                     84:   model=1+age only did not work. The defautl combination should be 1
                     85:   and not 0 because everything hasn't been tranformed yet.
                     86: 
1.338     brouard    87:   Revision 1.337  2022/09/02 14:26:02  brouard
                     88:   Summary: version 0.99r35
                     89: 
                     90:   * src/imach.c: Version 0.99r35 because it outputs same results with
                     91:   1+age+V1+V1*age for females and 1+age for females only
                     92:   (education=1 noweight)
                     93: 
1.337     brouard    94:   Revision 1.336  2022/08/31 09:52:36  brouard
                     95:   *** empty log message ***
                     96: 
1.336     brouard    97:   Revision 1.335  2022/08/31 08:23:16  brouard
                     98:   Summary: improvements...
                     99: 
1.335     brouard   100:   Revision 1.334  2022/08/25 09:08:41  brouard
                    101:   Summary: In progress for quantitative
                    102: 
1.334     brouard   103:   Revision 1.333  2022/08/21 09:10:30  brouard
                    104:   * src/imach.c (Module): Version 0.99r33 A lot of changes in
                    105:   reassigning covariates: my first idea was that people will always
                    106:   use the first covariate V1 into the model but in fact they are
                    107:   producing data with many covariates and can use an equation model
                    108:   with some of the covariate; it means that in a model V2+V3 instead
                    109:   of codtabm(k,Tvaraff[j]) which calculates for combination k, for
                    110:   three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
                    111:   the equation model is restricted to two variables only (V2, V3)
                    112:   and the combination for V2 should be codtabm(k,1) instead of
                    113:   (codtabm(k,2), and the code should be
                    114:   codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
                    115:   made. All of these should be simplified once a day like we did in
                    116:   hpxij() for example by using precov[nres] which is computed in
                    117:   decoderesult for each nres of each resultline. Loop should be done
                    118:   on the equation model globally by distinguishing only product with
                    119:   age (which are changing with age) and no more on type of
                    120:   covariates, single dummies, single covariates.
                    121: 
1.333     brouard   122:   Revision 1.332  2022/08/21 09:06:25  brouard
                    123:   Summary: Version 0.99r33
                    124: 
                    125:   * src/imach.c (Module): Version 0.99r33 A lot of changes in
                    126:   reassigning covariates: my first idea was that people will always
                    127:   use the first covariate V1 into the model but in fact they are
                    128:   producing data with many covariates and can use an equation model
                    129:   with some of the covariate; it means that in a model V2+V3 instead
                    130:   of codtabm(k,Tvaraff[j]) which calculates for combination k, for
                    131:   three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
                    132:   the equation model is restricted to two variables only (V2, V3)
                    133:   and the combination for V2 should be codtabm(k,1) instead of
                    134:   (codtabm(k,2), and the code should be
                    135:   codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
                    136:   made. All of these should be simplified once a day like we did in
                    137:   hpxij() for example by using precov[nres] which is computed in
                    138:   decoderesult for each nres of each resultline. Loop should be done
                    139:   on the equation model globally by distinguishing only product with
                    140:   age (which are changing with age) and no more on type of
                    141:   covariates, single dummies, single covariates.
                    142: 
1.332     brouard   143:   Revision 1.331  2022/08/07 05:40:09  brouard
                    144:   *** empty log message ***
                    145: 
1.331     brouard   146:   Revision 1.330  2022/08/06 07:18:25  brouard
                    147:   Summary: last 0.99r31
                    148: 
                    149:   *  imach.c (Module): Version of imach using partly decoderesult to rebuild xpxij function
                    150: 
1.330     brouard   151:   Revision 1.329  2022/08/03 17:29:54  brouard
                    152:   *  imach.c (Module): Many errors in graphs fixed with Vn*age covariates.
                    153: 
1.329     brouard   154:   Revision 1.328  2022/07/27 17:40:48  brouard
                    155:   Summary: valgrind bug fixed by initializing to zero DummyV as well as Tage
                    156: 
1.328     brouard   157:   Revision 1.327  2022/07/27 14:47:35  brouard
                    158:   Summary: Still a problem for one-step probabilities in case of quantitative variables
                    159: 
1.327     brouard   160:   Revision 1.326  2022/07/26 17:33:55  brouard
                    161:   Summary: some test with nres=1
                    162: 
1.326     brouard   163:   Revision 1.325  2022/07/25 14:27:23  brouard
                    164:   Summary: r30
                    165: 
                    166:   * imach.c (Module): Error cptcovn instead of nsd in bmij (was
                    167:   coredumped, revealed by Feiuno, thank you.
                    168: 
1.325     brouard   169:   Revision 1.324  2022/07/23 17:44:26  brouard
                    170:   *** empty log message ***
                    171: 
1.324     brouard   172:   Revision 1.323  2022/07/22 12:30:08  brouard
                    173:   *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
                    174: 
1.323     brouard   175:   Revision 1.322  2022/07/22 12:27:48  brouard
                    176:   *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
                    177: 
1.322     brouard   178:   Revision 1.321  2022/07/22 12:04:24  brouard
                    179:   Summary: r28
                    180: 
                    181:   *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
                    182: 
1.321     brouard   183:   Revision 1.320  2022/06/02 05:10:11  brouard
                    184:   *** empty log message ***
                    185: 
1.320     brouard   186:   Revision 1.319  2022/06/02 04:45:11  brouard
                    187:   * imach.c (Module): Adding the Wald tests from the log to the main
                    188:   htm for better display of the maximum likelihood estimators.
                    189: 
1.319     brouard   190:   Revision 1.318  2022/05/24 08:10:59  brouard
                    191:   * imach.c (Module): Some attempts to find a bug of wrong estimates
                    192:   of confidencce intervals with product in the equation modelC
                    193: 
1.318     brouard   194:   Revision 1.317  2022/05/15 15:06:23  brouard
                    195:   * imach.c (Module):  Some minor improvements
                    196: 
1.317     brouard   197:   Revision 1.316  2022/05/11 15:11:31  brouard
                    198:   Summary: r27
                    199: 
1.316     brouard   200:   Revision 1.315  2022/05/11 15:06:32  brouard
                    201:   *** empty log message ***
                    202: 
1.315     brouard   203:   Revision 1.314  2022/04/13 17:43:09  brouard
                    204:   * imach.c (Module): Adding link to text data files
                    205: 
1.314     brouard   206:   Revision 1.313  2022/04/11 15:57:42  brouard
                    207:   * imach.c (Module): Error in rewriting the 'r' file with yearsfproj or yearsbproj fixed
                    208: 
1.313     brouard   209:   Revision 1.312  2022/04/05 21:24:39  brouard
                    210:   *** empty log message ***
                    211: 
1.312     brouard   212:   Revision 1.311  2022/04/05 21:03:51  brouard
                    213:   Summary: Fixed quantitative covariates
                    214: 
                    215:          Fixed covariates (dummy or quantitative)
                    216:        with missing values have never been allowed but are ERRORS and
                    217:        program quits. Standard deviations of fixed covariates were
                    218:        wrongly computed. Mean and standard deviations of time varying
                    219:        covariates are still not computed.
                    220: 
1.311     brouard   221:   Revision 1.310  2022/03/17 08:45:53  brouard
                    222:   Summary: 99r25
                    223: 
                    224:   Improving detection of errors: result lines should be compatible with
                    225:   the model.
                    226: 
1.310     brouard   227:   Revision 1.309  2021/05/20 12:39:14  brouard
                    228:   Summary: Version 0.99r24
                    229: 
1.309     brouard   230:   Revision 1.308  2021/03/31 13:11:57  brouard
                    231:   Summary: Version 0.99r23
                    232: 
                    233: 
                    234:   * imach.c (Module): Still bugs in the result loop. Thank to Holly Benett
                    235: 
1.308     brouard   236:   Revision 1.307  2021/03/08 18:11:32  brouard
                    237:   Summary: 0.99r22 fixed bug on result:
                    238: 
1.307     brouard   239:   Revision 1.306  2021/02/20 15:44:02  brouard
                    240:   Summary: Version 0.99r21
                    241: 
                    242:   * imach.c (Module): Fix bug on quitting after result lines!
                    243:   (Module): Version 0.99r21
                    244: 
1.306     brouard   245:   Revision 1.305  2021/02/20 15:28:30  brouard
                    246:   * imach.c (Module): Fix bug on quitting after result lines!
                    247: 
1.305     brouard   248:   Revision 1.304  2021/02/12 11:34:20  brouard
                    249:   * imach.c (Module): The use of a Windows BOM (huge) file is now an error
                    250: 
1.304     brouard   251:   Revision 1.303  2021/02/11 19:50:15  brouard
                    252:   *  (Module): imach.c Someone entered 'results:' instead of 'result:'. Now it is an error which is printed.
                    253: 
1.303     brouard   254:   Revision 1.302  2020/02/22 21:00:05  brouard
                    255:   *  (Module): imach.c Update mle=-3 (for computing Life expectancy
                    256:   and life table from the data without any state)
                    257: 
1.302     brouard   258:   Revision 1.301  2019/06/04 13:51:20  brouard
                    259:   Summary: Error in 'r'parameter file backcast yearsbproj instead of yearsfproj
                    260: 
1.301     brouard   261:   Revision 1.300  2019/05/22 19:09:45  brouard
                    262:   Summary: version 0.99r19 of May 2019
                    263: 
1.300     brouard   264:   Revision 1.299  2019/05/22 18:37:08  brouard
                    265:   Summary: Cleaned 0.99r19
                    266: 
1.299     brouard   267:   Revision 1.298  2019/05/22 18:19:56  brouard
                    268:   *** empty log message ***
                    269: 
1.298     brouard   270:   Revision 1.297  2019/05/22 17:56:10  brouard
                    271:   Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1
                    272: 
1.297     brouard   273:   Revision 1.296  2019/05/20 13:03:18  brouard
                    274:   Summary: Projection syntax simplified
                    275: 
                    276: 
                    277:   We can now start projections, forward or backward, from the mean date
                    278:   of inteviews up to or down to a number of years of projection:
                    279:   prevforecast=1 yearsfproj=15.3 mobil_average=0
                    280:   or
                    281:   prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0
                    282:   or
                    283:   prevbackcast=1 yearsbproj=12.3 mobil_average=1
                    284:   or
                    285:   prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1
                    286: 
1.296     brouard   287:   Revision 1.295  2019/05/18 09:52:50  brouard
                    288:   Summary: doxygen tex bug
                    289: 
1.295     brouard   290:   Revision 1.294  2019/05/16 14:54:33  brouard
                    291:   Summary: There was some wrong lines added
                    292: 
1.294     brouard   293:   Revision 1.293  2019/05/09 15:17:34  brouard
                    294:   *** empty log message ***
                    295: 
1.293     brouard   296:   Revision 1.292  2019/05/09 14:17:20  brouard
                    297:   Summary: Some updates
                    298: 
1.292     brouard   299:   Revision 1.291  2019/05/09 13:44:18  brouard
                    300:   Summary: Before ncovmax
                    301: 
1.291     brouard   302:   Revision 1.290  2019/05/09 13:39:37  brouard
                    303:   Summary: 0.99r18 unlimited number of individuals
                    304: 
                    305:   The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur.
                    306: 
1.290     brouard   307:   Revision 1.289  2018/12/13 09:16:26  brouard
                    308:   Summary: Bug for young ages (<-30) will be in r17
                    309: 
1.289     brouard   310:   Revision 1.288  2018/05/02 20:58:27  brouard
                    311:   Summary: Some bugs fixed
                    312: 
1.288     brouard   313:   Revision 1.287  2018/05/01 17:57:25  brouard
                    314:   Summary: Bug fixed by providing frequencies only for non missing covariates
                    315: 
1.287     brouard   316:   Revision 1.286  2018/04/27 14:27:04  brouard
                    317:   Summary: some minor bugs
                    318: 
1.286     brouard   319:   Revision 1.285  2018/04/21 21:02:16  brouard
                    320:   Summary: Some bugs fixed, valgrind tested
                    321: 
1.285     brouard   322:   Revision 1.284  2018/04/20 05:22:13  brouard
                    323:   Summary: Computing mean and stdeviation of fixed quantitative variables
                    324: 
1.284     brouard   325:   Revision 1.283  2018/04/19 14:49:16  brouard
                    326:   Summary: Some minor bugs fixed
                    327: 
1.283     brouard   328:   Revision 1.282  2018/02/27 22:50:02  brouard
                    329:   *** empty log message ***
                    330: 
1.282     brouard   331:   Revision 1.281  2018/02/27 19:25:23  brouard
                    332:   Summary: Adding second argument for quitting
                    333: 
1.281     brouard   334:   Revision 1.280  2018/02/21 07:58:13  brouard
                    335:   Summary: 0.99r15
                    336: 
                    337:   New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c
                    338: 
1.280     brouard   339:   Revision 1.279  2017/07/20 13:35:01  brouard
                    340:   Summary: temporary working
                    341: 
1.279     brouard   342:   Revision 1.278  2017/07/19 14:09:02  brouard
                    343:   Summary: Bug for mobil_average=0 and prevforecast fixed(?)
                    344: 
1.278     brouard   345:   Revision 1.277  2017/07/17 08:53:49  brouard
                    346:   Summary: BOM files can be read now
                    347: 
1.277     brouard   348:   Revision 1.276  2017/06/30 15:48:31  brouard
                    349:   Summary: Graphs improvements
                    350: 
1.276     brouard   351:   Revision 1.275  2017/06/30 13:39:33  brouard
                    352:   Summary: Saito's color
                    353: 
1.275     brouard   354:   Revision 1.274  2017/06/29 09:47:08  brouard
                    355:   Summary: Version 0.99r14
                    356: 
1.274     brouard   357:   Revision 1.273  2017/06/27 11:06:02  brouard
                    358:   Summary: More documentation on projections
                    359: 
1.273     brouard   360:   Revision 1.272  2017/06/27 10:22:40  brouard
                    361:   Summary: Color of backprojection changed from 6 to 5(yellow)
                    362: 
1.272     brouard   363:   Revision 1.271  2017/06/27 10:17:50  brouard
                    364:   Summary: Some bug with rint
                    365: 
1.271     brouard   366:   Revision 1.270  2017/05/24 05:45:29  brouard
                    367:   *** empty log message ***
                    368: 
1.270     brouard   369:   Revision 1.269  2017/05/23 08:39:25  brouard
                    370:   Summary: Code into subroutine, cleanings
                    371: 
1.269     brouard   372:   Revision 1.268  2017/05/18 20:09:32  brouard
                    373:   Summary: backprojection and confidence intervals of backprevalence
                    374: 
1.268     brouard   375:   Revision 1.267  2017/05/13 10:25:05  brouard
                    376:   Summary: temporary save for backprojection
                    377: 
1.267     brouard   378:   Revision 1.266  2017/05/13 07:26:12  brouard
                    379:   Summary: Version 0.99r13 (improvements and bugs fixed)
                    380: 
1.266     brouard   381:   Revision 1.265  2017/04/26 16:22:11  brouard
                    382:   Summary: imach 0.99r13 Some bugs fixed
                    383: 
1.265     brouard   384:   Revision 1.264  2017/04/26 06:01:29  brouard
                    385:   Summary: Labels in graphs
                    386: 
1.264     brouard   387:   Revision 1.263  2017/04/24 15:23:15  brouard
                    388:   Summary: to save
                    389: 
1.263     brouard   390:   Revision 1.262  2017/04/18 16:48:12  brouard
                    391:   *** empty log message ***
                    392: 
1.262     brouard   393:   Revision 1.261  2017/04/05 10:14:09  brouard
                    394:   Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1
                    395: 
1.261     brouard   396:   Revision 1.260  2017/04/04 17:46:59  brouard
                    397:   Summary: Gnuplot indexations fixed (humm)
                    398: 
1.260     brouard   399:   Revision 1.259  2017/04/04 13:01:16  brouard
                    400:   Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3
                    401: 
1.259     brouard   402:   Revision 1.258  2017/04/03 10:17:47  brouard
                    403:   Summary: Version 0.99r12
                    404: 
                    405:   Some cleanings, conformed with updated documentation.
                    406: 
1.258     brouard   407:   Revision 1.257  2017/03/29 16:53:30  brouard
                    408:   Summary: Temp
                    409: 
1.257     brouard   410:   Revision 1.256  2017/03/27 05:50:23  brouard
                    411:   Summary: Temporary
                    412: 
1.256     brouard   413:   Revision 1.255  2017/03/08 16:02:28  brouard
                    414:   Summary: IMaCh version 0.99r10 bugs in gnuplot fixed
                    415: 
1.255     brouard   416:   Revision 1.254  2017/03/08 07:13:00  brouard
                    417:   Summary: Fixing data parameter line
                    418: 
1.254     brouard   419:   Revision 1.253  2016/12/15 11:59:41  brouard
                    420:   Summary: 0.99 in progress
                    421: 
1.253     brouard   422:   Revision 1.252  2016/09/15 21:15:37  brouard
                    423:   *** empty log message ***
                    424: 
1.252     brouard   425:   Revision 1.251  2016/09/15 15:01:13  brouard
                    426:   Summary: not working
                    427: 
1.251     brouard   428:   Revision 1.250  2016/09/08 16:07:27  brouard
                    429:   Summary: continue
                    430: 
1.250     brouard   431:   Revision 1.249  2016/09/07 17:14:18  brouard
                    432:   Summary: Starting values from frequencies
                    433: 
1.249     brouard   434:   Revision 1.248  2016/09/07 14:10:18  brouard
                    435:   *** empty log message ***
                    436: 
1.248     brouard   437:   Revision 1.247  2016/09/02 11:11:21  brouard
                    438:   *** empty log message ***
                    439: 
1.247     brouard   440:   Revision 1.246  2016/09/02 08:49:22  brouard
                    441:   *** empty log message ***
                    442: 
1.246     brouard   443:   Revision 1.245  2016/09/02 07:25:01  brouard
                    444:   *** empty log message ***
                    445: 
1.245     brouard   446:   Revision 1.244  2016/09/02 07:17:34  brouard
                    447:   *** empty log message ***
                    448: 
1.244     brouard   449:   Revision 1.243  2016/09/02 06:45:35  brouard
                    450:   *** empty log message ***
                    451: 
1.243     brouard   452:   Revision 1.242  2016/08/30 15:01:20  brouard
                    453:   Summary: Fixing a lots
                    454: 
1.242     brouard   455:   Revision 1.241  2016/08/29 17:17:25  brouard
                    456:   Summary: gnuplot problem in Back projection to fix
                    457: 
1.241     brouard   458:   Revision 1.240  2016/08/29 07:53:18  brouard
                    459:   Summary: Better
                    460: 
1.240     brouard   461:   Revision 1.239  2016/08/26 15:51:03  brouard
                    462:   Summary: Improvement in Powell output in order to copy and paste
                    463: 
                    464:   Author:
                    465: 
1.239     brouard   466:   Revision 1.238  2016/08/26 14:23:35  brouard
                    467:   Summary: Starting tests of 0.99
                    468: 
1.238     brouard   469:   Revision 1.237  2016/08/26 09:20:19  brouard
                    470:   Summary: to valgrind
                    471: 
1.237     brouard   472:   Revision 1.236  2016/08/25 10:50:18  brouard
                    473:   *** empty log message ***
                    474: 
1.236     brouard   475:   Revision 1.235  2016/08/25 06:59:23  brouard
                    476:   *** empty log message ***
                    477: 
1.235     brouard   478:   Revision 1.234  2016/08/23 16:51:20  brouard
                    479:   *** empty log message ***
                    480: 
1.234     brouard   481:   Revision 1.233  2016/08/23 07:40:50  brouard
                    482:   Summary: not working
                    483: 
1.233     brouard   484:   Revision 1.232  2016/08/22 14:20:21  brouard
                    485:   Summary: not working
                    486: 
1.232     brouard   487:   Revision 1.231  2016/08/22 07:17:15  brouard
                    488:   Summary: not working
                    489: 
1.231     brouard   490:   Revision 1.230  2016/08/22 06:55:53  brouard
                    491:   Summary: Not working
                    492: 
1.230     brouard   493:   Revision 1.229  2016/07/23 09:45:53  brouard
                    494:   Summary: Completing for func too
                    495: 
1.229     brouard   496:   Revision 1.228  2016/07/22 17:45:30  brouard
                    497:   Summary: Fixing some arrays, still debugging
                    498: 
1.227     brouard   499:   Revision 1.226  2016/07/12 18:42:34  brouard
                    500:   Summary: temp
                    501: 
1.226     brouard   502:   Revision 1.225  2016/07/12 08:40:03  brouard
                    503:   Summary: saving but not running
                    504: 
1.225     brouard   505:   Revision 1.224  2016/07/01 13:16:01  brouard
                    506:   Summary: Fixes
                    507: 
1.224     brouard   508:   Revision 1.223  2016/02/19 09:23:35  brouard
                    509:   Summary: temporary
                    510: 
1.223     brouard   511:   Revision 1.222  2016/02/17 08:14:50  brouard
                    512:   Summary: Probably last 0.98 stable version 0.98r6
                    513: 
1.222     brouard   514:   Revision 1.221  2016/02/15 23:35:36  brouard
                    515:   Summary: minor bug
                    516: 
1.220     brouard   517:   Revision 1.219  2016/02/15 00:48:12  brouard
                    518:   *** empty log message ***
                    519: 
1.219     brouard   520:   Revision 1.218  2016/02/12 11:29:23  brouard
                    521:   Summary: 0.99 Back projections
                    522: 
1.218     brouard   523:   Revision 1.217  2015/12/23 17:18:31  brouard
                    524:   Summary: Experimental backcast
                    525: 
1.217     brouard   526:   Revision 1.216  2015/12/18 17:32:11  brouard
                    527:   Summary: 0.98r4 Warning and status=-2
                    528: 
                    529:   Version 0.98r4 is now:
                    530:    - displaying an error when status is -1, date of interview unknown and date of death known;
                    531:    - permitting a status -2 when the vital status is unknown at a known date of right truncation.
                    532:   Older changes concerning s=-2, dating from 2005 have been supersed.
                    533: 
1.216     brouard   534:   Revision 1.215  2015/12/16 08:52:24  brouard
                    535:   Summary: 0.98r4 working
                    536: 
1.215     brouard   537:   Revision 1.214  2015/12/16 06:57:54  brouard
                    538:   Summary: temporary not working
                    539: 
1.214     brouard   540:   Revision 1.213  2015/12/11 18:22:17  brouard
                    541:   Summary: 0.98r4
                    542: 
1.213     brouard   543:   Revision 1.212  2015/11/21 12:47:24  brouard
                    544:   Summary: minor typo
                    545: 
1.212     brouard   546:   Revision 1.211  2015/11/21 12:41:11  brouard
                    547:   Summary: 0.98r3 with some graph of projected cross-sectional
                    548: 
                    549:   Author: Nicolas Brouard
                    550: 
1.211     brouard   551:   Revision 1.210  2015/11/18 17:41:20  brouard
1.252     brouard   552:   Summary: Start working on projected prevalences  Revision 1.209  2015/11/17 22:12:03  brouard
1.210     brouard   553:   Summary: Adding ftolpl parameter
                    554:   Author: N Brouard
                    555: 
                    556:   We had difficulties to get smoothed confidence intervals. It was due
                    557:   to the period prevalence which wasn't computed accurately. The inner
                    558:   parameter ftolpl is now an outer parameter of the .imach parameter
                    559:   file after estepm. If ftolpl is small 1.e-4 and estepm too,
                    560:   computation are long.
                    561: 
1.209     brouard   562:   Revision 1.208  2015/11/17 14:31:57  brouard
                    563:   Summary: temporary
                    564: 
1.208     brouard   565:   Revision 1.207  2015/10/27 17:36:57  brouard
                    566:   *** empty log message ***
                    567: 
1.207     brouard   568:   Revision 1.206  2015/10/24 07:14:11  brouard
                    569:   *** empty log message ***
                    570: 
1.206     brouard   571:   Revision 1.205  2015/10/23 15:50:53  brouard
                    572:   Summary: 0.98r3 some clarification for graphs on likelihood contributions
                    573: 
1.205     brouard   574:   Revision 1.204  2015/10/01 16:20:26  brouard
                    575:   Summary: Some new graphs of contribution to likelihood
                    576: 
1.204     brouard   577:   Revision 1.203  2015/09/30 17:45:14  brouard
                    578:   Summary: looking at better estimation of the hessian
                    579: 
                    580:   Also a better criteria for convergence to the period prevalence And
                    581:   therefore adding the number of years needed to converge. (The
                    582:   prevalence in any alive state shold sum to one
                    583: 
1.203     brouard   584:   Revision 1.202  2015/09/22 19:45:16  brouard
                    585:   Summary: Adding some overall graph on contribution to likelihood. Might change
                    586: 
1.202     brouard   587:   Revision 1.201  2015/09/15 17:34:58  brouard
                    588:   Summary: 0.98r0
                    589: 
                    590:   - Some new graphs like suvival functions
                    591:   - Some bugs fixed like model=1+age+V2.
                    592: 
1.201     brouard   593:   Revision 1.200  2015/09/09 16:53:55  brouard
                    594:   Summary: Big bug thanks to Flavia
                    595: 
                    596:   Even model=1+age+V2. did not work anymore
                    597: 
1.200     brouard   598:   Revision 1.199  2015/09/07 14:09:23  brouard
                    599:   Summary: 0.98q6 changing default small png format for graph to vectorized svg.
                    600: 
1.199     brouard   601:   Revision 1.198  2015/09/03 07:14:39  brouard
                    602:   Summary: 0.98q5 Flavia
                    603: 
1.198     brouard   604:   Revision 1.197  2015/09/01 18:24:39  brouard
                    605:   *** empty log message ***
                    606: 
1.197     brouard   607:   Revision 1.196  2015/08/18 23:17:52  brouard
                    608:   Summary: 0.98q5
                    609: 
1.196     brouard   610:   Revision 1.195  2015/08/18 16:28:39  brouard
                    611:   Summary: Adding a hack for testing purpose
                    612: 
                    613:   After reading the title, ftol and model lines, if the comment line has
                    614:   a q, starting with #q, the answer at the end of the run is quit. It
                    615:   permits to run test files in batch with ctest. The former workaround was
                    616:   $ echo q | imach foo.imach
                    617: 
1.195     brouard   618:   Revision 1.194  2015/08/18 13:32:00  brouard
                    619:   Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
                    620: 
1.194     brouard   621:   Revision 1.193  2015/08/04 07:17:42  brouard
                    622:   Summary: 0.98q4
                    623: 
1.193     brouard   624:   Revision 1.192  2015/07/16 16:49:02  brouard
                    625:   Summary: Fixing some outputs
                    626: 
1.192     brouard   627:   Revision 1.191  2015/07/14 10:00:33  brouard
                    628:   Summary: Some fixes
                    629: 
1.191     brouard   630:   Revision 1.190  2015/05/05 08:51:13  brouard
                    631:   Summary: Adding digits in output parameters (7 digits instead of 6)
                    632: 
                    633:   Fix 1+age+.
                    634: 
1.190     brouard   635:   Revision 1.189  2015/04/30 14:45:16  brouard
                    636:   Summary: 0.98q2
                    637: 
1.189     brouard   638:   Revision 1.188  2015/04/30 08:27:53  brouard
                    639:   *** empty log message ***
                    640: 
1.188     brouard   641:   Revision 1.187  2015/04/29 09:11:15  brouard
                    642:   *** empty log message ***
                    643: 
1.187     brouard   644:   Revision 1.186  2015/04/23 12:01:52  brouard
                    645:   Summary: V1*age is working now, version 0.98q1
                    646: 
                    647:   Some codes had been disabled in order to simplify and Vn*age was
                    648:   working in the optimization phase, ie, giving correct MLE parameters,
                    649:   but, as usual, outputs were not correct and program core dumped.
                    650: 
1.186     brouard   651:   Revision 1.185  2015/03/11 13:26:42  brouard
                    652:   Summary: Inclusion of compile and links command line for Intel Compiler
                    653: 
1.185     brouard   654:   Revision 1.184  2015/03/11 11:52:39  brouard
                    655:   Summary: Back from Windows 8. Intel Compiler
                    656: 
1.184     brouard   657:   Revision 1.183  2015/03/10 20:34:32  brouard
                    658:   Summary: 0.98q0, trying with directest, mnbrak fixed
                    659: 
                    660:   We use directest instead of original Powell test; probably no
                    661:   incidence on the results, but better justifications;
                    662:   We fixed Numerical Recipes mnbrak routine which was wrong and gave
                    663:   wrong results.
                    664: 
1.183     brouard   665:   Revision 1.182  2015/02/12 08:19:57  brouard
                    666:   Summary: Trying to keep directest which seems simpler and more general
                    667:   Author: Nicolas Brouard
                    668: 
1.182     brouard   669:   Revision 1.181  2015/02/11 23:22:24  brouard
                    670:   Summary: Comments on Powell added
                    671: 
                    672:   Author:
                    673: 
1.181     brouard   674:   Revision 1.180  2015/02/11 17:33:45  brouard
                    675:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
                    676: 
1.180     brouard   677:   Revision 1.179  2015/01/04 09:57:06  brouard
                    678:   Summary: back to OS/X
                    679: 
1.179     brouard   680:   Revision 1.178  2015/01/04 09:35:48  brouard
                    681:   *** empty log message ***
                    682: 
1.178     brouard   683:   Revision 1.177  2015/01/03 18:40:56  brouard
                    684:   Summary: Still testing ilc32 on OSX
                    685: 
1.177     brouard   686:   Revision 1.176  2015/01/03 16:45:04  brouard
                    687:   *** empty log message ***
                    688: 
1.176     brouard   689:   Revision 1.175  2015/01/03 16:33:42  brouard
                    690:   *** empty log message ***
                    691: 
1.175     brouard   692:   Revision 1.174  2015/01/03 16:15:49  brouard
                    693:   Summary: Still in cross-compilation
                    694: 
1.174     brouard   695:   Revision 1.173  2015/01/03 12:06:26  brouard
                    696:   Summary: trying to detect cross-compilation
                    697: 
1.173     brouard   698:   Revision 1.172  2014/12/27 12:07:47  brouard
                    699:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
                    700: 
1.172     brouard   701:   Revision 1.171  2014/12/23 13:26:59  brouard
                    702:   Summary: Back from Visual C
                    703: 
                    704:   Still problem with utsname.h on Windows
                    705: 
1.171     brouard   706:   Revision 1.170  2014/12/23 11:17:12  brouard
                    707:   Summary: Cleaning some \%% back to %%
                    708: 
                    709:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
                    710: 
1.170     brouard   711:   Revision 1.169  2014/12/22 23:08:31  brouard
                    712:   Summary: 0.98p
                    713: 
                    714:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
                    715: 
1.169     brouard   716:   Revision 1.168  2014/12/22 15:17:42  brouard
1.170     brouard   717:   Summary: update
1.169     brouard   718: 
1.168     brouard   719:   Revision 1.167  2014/12/22 13:50:56  brouard
                    720:   Summary: Testing uname and compiler version and if compiled 32 or 64
                    721: 
                    722:   Testing on Linux 64
                    723: 
1.167     brouard   724:   Revision 1.166  2014/12/22 11:40:47  brouard
                    725:   *** empty log message ***
                    726: 
1.166     brouard   727:   Revision 1.165  2014/12/16 11:20:36  brouard
                    728:   Summary: After compiling on Visual C
                    729: 
                    730:   * imach.c (Module): Merging 1.61 to 1.162
                    731: 
1.165     brouard   732:   Revision 1.164  2014/12/16 10:52:11  brouard
                    733:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
                    734: 
                    735:   * imach.c (Module): Merging 1.61 to 1.162
                    736: 
1.164     brouard   737:   Revision 1.163  2014/12/16 10:30:11  brouard
                    738:   * imach.c (Module): Merging 1.61 to 1.162
                    739: 
1.163     brouard   740:   Revision 1.162  2014/09/25 11:43:39  brouard
                    741:   Summary: temporary backup 0.99!
                    742: 
1.162     brouard   743:   Revision 1.1  2014/09/16 11:06:58  brouard
                    744:   Summary: With some code (wrong) for nlopt
                    745: 
                    746:   Author:
                    747: 
                    748:   Revision 1.161  2014/09/15 20:41:41  brouard
                    749:   Summary: Problem with macro SQR on Intel compiler
                    750: 
1.161     brouard   751:   Revision 1.160  2014/09/02 09:24:05  brouard
                    752:   *** empty log message ***
                    753: 
1.160     brouard   754:   Revision 1.159  2014/09/01 10:34:10  brouard
                    755:   Summary: WIN32
                    756:   Author: Brouard
                    757: 
1.159     brouard   758:   Revision 1.158  2014/08/27 17:11:51  brouard
                    759:   *** empty log message ***
                    760: 
1.158     brouard   761:   Revision 1.157  2014/08/27 16:26:55  brouard
                    762:   Summary: Preparing windows Visual studio version
                    763:   Author: Brouard
                    764: 
                    765:   In order to compile on Visual studio, time.h is now correct and time_t
                    766:   and tm struct should be used. difftime should be used but sometimes I
                    767:   just make the differences in raw time format (time(&now).
                    768:   Trying to suppress #ifdef LINUX
                    769:   Add xdg-open for __linux in order to open default browser.
                    770: 
1.157     brouard   771:   Revision 1.156  2014/08/25 20:10:10  brouard
                    772:   *** empty log message ***
                    773: 
1.156     brouard   774:   Revision 1.155  2014/08/25 18:32:34  brouard
                    775:   Summary: New compile, minor changes
                    776:   Author: Brouard
                    777: 
1.155     brouard   778:   Revision 1.154  2014/06/20 17:32:08  brouard
                    779:   Summary: Outputs now all graphs of convergence to period prevalence
                    780: 
1.154     brouard   781:   Revision 1.153  2014/06/20 16:45:46  brouard
                    782:   Summary: If 3 live state, convergence to period prevalence on same graph
                    783:   Author: Brouard
                    784: 
1.153     brouard   785:   Revision 1.152  2014/06/18 17:54:09  brouard
                    786:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
                    787: 
1.152     brouard   788:   Revision 1.151  2014/06/18 16:43:30  brouard
                    789:   *** empty log message ***
                    790: 
1.151     brouard   791:   Revision 1.150  2014/06/18 16:42:35  brouard
                    792:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
                    793:   Author: brouard
                    794: 
1.150     brouard   795:   Revision 1.149  2014/06/18 15:51:14  brouard
                    796:   Summary: Some fixes in parameter files errors
                    797:   Author: Nicolas Brouard
                    798: 
1.149     brouard   799:   Revision 1.148  2014/06/17 17:38:48  brouard
                    800:   Summary: Nothing new
                    801:   Author: Brouard
                    802: 
                    803:   Just a new packaging for OS/X version 0.98nS
                    804: 
1.148     brouard   805:   Revision 1.147  2014/06/16 10:33:11  brouard
                    806:   *** empty log message ***
                    807: 
1.147     brouard   808:   Revision 1.146  2014/06/16 10:20:28  brouard
                    809:   Summary: Merge
                    810:   Author: Brouard
                    811: 
                    812:   Merge, before building revised version.
                    813: 
1.146     brouard   814:   Revision 1.145  2014/06/10 21:23:15  brouard
                    815:   Summary: Debugging with valgrind
                    816:   Author: Nicolas Brouard
                    817: 
                    818:   Lot of changes in order to output the results with some covariates
                    819:   After the Edimburgh REVES conference 2014, it seems mandatory to
                    820:   improve the code.
                    821:   No more memory valgrind error but a lot has to be done in order to
                    822:   continue the work of splitting the code into subroutines.
                    823:   Also, decodemodel has been improved. Tricode is still not
                    824:   optimal. nbcode should be improved. Documentation has been added in
                    825:   the source code.
                    826: 
1.144     brouard   827:   Revision 1.143  2014/01/26 09:45:38  brouard
                    828:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
                    829: 
                    830:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    831:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
                    832: 
1.143     brouard   833:   Revision 1.142  2014/01/26 03:57:36  brouard
                    834:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
                    835: 
                    836:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    837: 
1.142     brouard   838:   Revision 1.141  2014/01/26 02:42:01  brouard
                    839:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    840: 
1.141     brouard   841:   Revision 1.140  2011/09/02 10:37:54  brouard
                    842:   Summary: times.h is ok with mingw32 now.
                    843: 
1.140     brouard   844:   Revision 1.139  2010/06/14 07:50:17  brouard
                    845:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
                    846:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
                    847: 
1.139     brouard   848:   Revision 1.138  2010/04/30 18:19:40  brouard
                    849:   *** empty log message ***
                    850: 
1.138     brouard   851:   Revision 1.137  2010/04/29 18:11:38  brouard
                    852:   (Module): Checking covariates for more complex models
                    853:   than V1+V2. A lot of change to be done. Unstable.
                    854: 
1.137     brouard   855:   Revision 1.136  2010/04/26 20:30:53  brouard
                    856:   (Module): merging some libgsl code. Fixing computation
                    857:   of likelione (using inter/intrapolation if mle = 0) in order to
                    858:   get same likelihood as if mle=1.
                    859:   Some cleaning of code and comments added.
                    860: 
1.136     brouard   861:   Revision 1.135  2009/10/29 15:33:14  brouard
                    862:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    863: 
1.135     brouard   864:   Revision 1.134  2009/10/29 13:18:53  brouard
                    865:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    866: 
1.134     brouard   867:   Revision 1.133  2009/07/06 10:21:25  brouard
                    868:   just nforces
                    869: 
1.133     brouard   870:   Revision 1.132  2009/07/06 08:22:05  brouard
                    871:   Many tings
                    872: 
1.132     brouard   873:   Revision 1.131  2009/06/20 16:22:47  brouard
                    874:   Some dimensions resccaled
                    875: 
1.131     brouard   876:   Revision 1.130  2009/05/26 06:44:34  brouard
                    877:   (Module): Max Covariate is now set to 20 instead of 8. A
                    878:   lot of cleaning with variables initialized to 0. Trying to make
                    879:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
                    880: 
1.130     brouard   881:   Revision 1.129  2007/08/31 13:49:27  lievre
                    882:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
                    883: 
1.129     lievre    884:   Revision 1.128  2006/06/30 13:02:05  brouard
                    885:   (Module): Clarifications on computing e.j
                    886: 
1.128     brouard   887:   Revision 1.127  2006/04/28 18:11:50  brouard
                    888:   (Module): Yes the sum of survivors was wrong since
                    889:   imach-114 because nhstepm was no more computed in the age
                    890:   loop. Now we define nhstepma in the age loop.
                    891:   (Module): In order to speed up (in case of numerous covariates) we
                    892:   compute health expectancies (without variances) in a first step
                    893:   and then all the health expectancies with variances or standard
                    894:   deviation (needs data from the Hessian matrices) which slows the
                    895:   computation.
                    896:   In the future we should be able to stop the program is only health
                    897:   expectancies and graph are needed without standard deviations.
                    898: 
1.127     brouard   899:   Revision 1.126  2006/04/28 17:23:28  brouard
                    900:   (Module): Yes the sum of survivors was wrong since
                    901:   imach-114 because nhstepm was no more computed in the age
                    902:   loop. Now we define nhstepma in the age loop.
                    903:   Version 0.98h
                    904: 
1.126     brouard   905:   Revision 1.125  2006/04/04 15:20:31  lievre
                    906:   Errors in calculation of health expectancies. Age was not initialized.
                    907:   Forecasting file added.
                    908: 
                    909:   Revision 1.124  2006/03/22 17:13:53  lievre
                    910:   Parameters are printed with %lf instead of %f (more numbers after the comma).
                    911:   The log-likelihood is printed in the log file
                    912: 
                    913:   Revision 1.123  2006/03/20 10:52:43  brouard
                    914:   * imach.c (Module): <title> changed, corresponds to .htm file
                    915:   name. <head> headers where missing.
                    916: 
                    917:   * imach.c (Module): Weights can have a decimal point as for
                    918:   English (a comma might work with a correct LC_NUMERIC environment,
                    919:   otherwise the weight is truncated).
                    920:   Modification of warning when the covariates values are not 0 or
                    921:   1.
                    922:   Version 0.98g
                    923: 
                    924:   Revision 1.122  2006/03/20 09:45:41  brouard
                    925:   (Module): Weights can have a decimal point as for
                    926:   English (a comma might work with a correct LC_NUMERIC environment,
                    927:   otherwise the weight is truncated).
                    928:   Modification of warning when the covariates values are not 0 or
                    929:   1.
                    930:   Version 0.98g
                    931: 
                    932:   Revision 1.121  2006/03/16 17:45:01  lievre
                    933:   * imach.c (Module): Comments concerning covariates added
                    934: 
                    935:   * imach.c (Module): refinements in the computation of lli if
                    936:   status=-2 in order to have more reliable computation if stepm is
                    937:   not 1 month. Version 0.98f
                    938: 
                    939:   Revision 1.120  2006/03/16 15:10:38  lievre
                    940:   (Module): refinements in the computation of lli if
                    941:   status=-2 in order to have more reliable computation if stepm is
                    942:   not 1 month. Version 0.98f
                    943: 
                    944:   Revision 1.119  2006/03/15 17:42:26  brouard
                    945:   (Module): Bug if status = -2, the loglikelihood was
                    946:   computed as likelihood omitting the logarithm. Version O.98e
                    947: 
                    948:   Revision 1.118  2006/03/14 18:20:07  brouard
                    949:   (Module): varevsij Comments added explaining the second
                    950:   table of variances if popbased=1 .
                    951:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    952:   (Module): Function pstamp added
                    953:   (Module): Version 0.98d
                    954: 
                    955:   Revision 1.117  2006/03/14 17:16:22  brouard
                    956:   (Module): varevsij Comments added explaining the second
                    957:   table of variances if popbased=1 .
                    958:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    959:   (Module): Function pstamp added
                    960:   (Module): Version 0.98d
                    961: 
                    962:   Revision 1.116  2006/03/06 10:29:27  brouard
                    963:   (Module): Variance-covariance wrong links and
                    964:   varian-covariance of ej. is needed (Saito).
                    965: 
                    966:   Revision 1.115  2006/02/27 12:17:45  brouard
                    967:   (Module): One freematrix added in mlikeli! 0.98c
                    968: 
                    969:   Revision 1.114  2006/02/26 12:57:58  brouard
                    970:   (Module): Some improvements in processing parameter
                    971:   filename with strsep.
                    972: 
                    973:   Revision 1.113  2006/02/24 14:20:24  brouard
                    974:   (Module): Memory leaks checks with valgrind and:
                    975:   datafile was not closed, some imatrix were not freed and on matrix
                    976:   allocation too.
                    977: 
                    978:   Revision 1.112  2006/01/30 09:55:26  brouard
                    979:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
                    980: 
                    981:   Revision 1.111  2006/01/25 20:38:18  brouard
                    982:   (Module): Lots of cleaning and bugs added (Gompertz)
                    983:   (Module): Comments can be added in data file. Missing date values
                    984:   can be a simple dot '.'.
                    985: 
                    986:   Revision 1.110  2006/01/25 00:51:50  brouard
                    987:   (Module): Lots of cleaning and bugs added (Gompertz)
                    988: 
                    989:   Revision 1.109  2006/01/24 19:37:15  brouard
                    990:   (Module): Comments (lines starting with a #) are allowed in data.
                    991: 
                    992:   Revision 1.108  2006/01/19 18:05:42  lievre
                    993:   Gnuplot problem appeared...
                    994:   To be fixed
                    995: 
                    996:   Revision 1.107  2006/01/19 16:20:37  brouard
                    997:   Test existence of gnuplot in imach path
                    998: 
                    999:   Revision 1.106  2006/01/19 13:24:36  brouard
                   1000:   Some cleaning and links added in html output
                   1001: 
                   1002:   Revision 1.105  2006/01/05 20:23:19  lievre
                   1003:   *** empty log message ***
                   1004: 
                   1005:   Revision 1.104  2005/09/30 16:11:43  lievre
                   1006:   (Module): sump fixed, loop imx fixed, and simplifications.
                   1007:   (Module): If the status is missing at the last wave but we know
                   1008:   that the person is alive, then we can code his/her status as -2
                   1009:   (instead of missing=-1 in earlier versions) and his/her
                   1010:   contributions to the likelihood is 1 - Prob of dying from last
                   1011:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
                   1012:   the healthy state at last known wave). Version is 0.98
                   1013: 
                   1014:   Revision 1.103  2005/09/30 15:54:49  lievre
                   1015:   (Module): sump fixed, loop imx fixed, and simplifications.
                   1016: 
                   1017:   Revision 1.102  2004/09/15 17:31:30  brouard
                   1018:   Add the possibility to read data file including tab characters.
                   1019: 
                   1020:   Revision 1.101  2004/09/15 10:38:38  brouard
                   1021:   Fix on curr_time
                   1022: 
                   1023:   Revision 1.100  2004/07/12 18:29:06  brouard
                   1024:   Add version for Mac OS X. Just define UNIX in Makefile
                   1025: 
                   1026:   Revision 1.99  2004/06/05 08:57:40  brouard
                   1027:   *** empty log message ***
                   1028: 
                   1029:   Revision 1.98  2004/05/16 15:05:56  brouard
                   1030:   New version 0.97 . First attempt to estimate force of mortality
                   1031:   directly from the data i.e. without the need of knowing the health
                   1032:   state at each age, but using a Gompertz model: log u =a + b*age .
                   1033:   This is the basic analysis of mortality and should be done before any
                   1034:   other analysis, in order to test if the mortality estimated from the
                   1035:   cross-longitudinal survey is different from the mortality estimated
                   1036:   from other sources like vital statistic data.
                   1037: 
                   1038:   The same imach parameter file can be used but the option for mle should be -3.
                   1039: 
1.324     brouard  1040:   Agnès, who wrote this part of the code, tried to keep most of the
1.126     brouard  1041:   former routines in order to include the new code within the former code.
                   1042: 
                   1043:   The output is very simple: only an estimate of the intercept and of
                   1044:   the slope with 95% confident intervals.
                   1045: 
                   1046:   Current limitations:
                   1047:   A) Even if you enter covariates, i.e. with the
                   1048:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
                   1049:   B) There is no computation of Life Expectancy nor Life Table.
                   1050: 
                   1051:   Revision 1.97  2004/02/20 13:25:42  lievre
                   1052:   Version 0.96d. Population forecasting command line is (temporarily)
                   1053:   suppressed.
                   1054: 
                   1055:   Revision 1.96  2003/07/15 15:38:55  brouard
                   1056:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
                   1057:   rewritten within the same printf. Workaround: many printfs.
                   1058: 
                   1059:   Revision 1.95  2003/07/08 07:54:34  brouard
                   1060:   * imach.c (Repository):
                   1061:   (Repository): Using imachwizard code to output a more meaningful covariance
                   1062:   matrix (cov(a12,c31) instead of numbers.
                   1063: 
                   1064:   Revision 1.94  2003/06/27 13:00:02  brouard
                   1065:   Just cleaning
                   1066: 
                   1067:   Revision 1.93  2003/06/25 16:33:55  brouard
                   1068:   (Module): On windows (cygwin) function asctime_r doesn't
                   1069:   exist so I changed back to asctime which exists.
                   1070:   (Module): Version 0.96b
                   1071: 
                   1072:   Revision 1.92  2003/06/25 16:30:45  brouard
                   1073:   (Module): On windows (cygwin) function asctime_r doesn't
                   1074:   exist so I changed back to asctime which exists.
                   1075: 
                   1076:   Revision 1.91  2003/06/25 15:30:29  brouard
                   1077:   * imach.c (Repository): Duplicated warning errors corrected.
                   1078:   (Repository): Elapsed time after each iteration is now output. It
                   1079:   helps to forecast when convergence will be reached. Elapsed time
                   1080:   is stamped in powell.  We created a new html file for the graphs
                   1081:   concerning matrix of covariance. It has extension -cov.htm.
                   1082: 
                   1083:   Revision 1.90  2003/06/24 12:34:15  brouard
                   1084:   (Module): Some bugs corrected for windows. Also, when
                   1085:   mle=-1 a template is output in file "or"mypar.txt with the design
                   1086:   of the covariance matrix to be input.
                   1087: 
                   1088:   Revision 1.89  2003/06/24 12:30:52  brouard
                   1089:   (Module): Some bugs corrected for windows. Also, when
                   1090:   mle=-1 a template is output in file "or"mypar.txt with the design
                   1091:   of the covariance matrix to be input.
                   1092: 
                   1093:   Revision 1.88  2003/06/23 17:54:56  brouard
                   1094:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
                   1095: 
                   1096:   Revision 1.87  2003/06/18 12:26:01  brouard
                   1097:   Version 0.96
                   1098: 
                   1099:   Revision 1.86  2003/06/17 20:04:08  brouard
                   1100:   (Module): Change position of html and gnuplot routines and added
                   1101:   routine fileappend.
                   1102: 
                   1103:   Revision 1.85  2003/06/17 13:12:43  brouard
                   1104:   * imach.c (Repository): Check when date of death was earlier that
                   1105:   current date of interview. It may happen when the death was just
                   1106:   prior to the death. In this case, dh was negative and likelihood
                   1107:   was wrong (infinity). We still send an "Error" but patch by
                   1108:   assuming that the date of death was just one stepm after the
                   1109:   interview.
                   1110:   (Repository): Because some people have very long ID (first column)
                   1111:   we changed int to long in num[] and we added a new lvector for
                   1112:   memory allocation. But we also truncated to 8 characters (left
                   1113:   truncation)
                   1114:   (Repository): No more line truncation errors.
                   1115: 
                   1116:   Revision 1.84  2003/06/13 21:44:43  brouard
                   1117:   * imach.c (Repository): Replace "freqsummary" at a correct
                   1118:   place. It differs from routine "prevalence" which may be called
                   1119:   many times. Probs is memory consuming and must be used with
                   1120:   parcimony.
                   1121:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
                   1122: 
                   1123:   Revision 1.83  2003/06/10 13:39:11  lievre
                   1124:   *** empty log message ***
                   1125: 
                   1126:   Revision 1.82  2003/06/05 15:57:20  brouard
                   1127:   Add log in  imach.c and  fullversion number is now printed.
                   1128: 
                   1129: */
                   1130: /*
                   1131:    Interpolated Markov Chain
                   1132: 
                   1133:   Short summary of the programme:
                   1134:   
1.227     brouard  1135:   This program computes Healthy Life Expectancies or State-specific
                   1136:   (if states aren't health statuses) Expectancies from
                   1137:   cross-longitudinal data. Cross-longitudinal data consist in: 
                   1138: 
                   1139:   -1- a first survey ("cross") where individuals from different ages
                   1140:   are interviewed on their health status or degree of disability (in
                   1141:   the case of a health survey which is our main interest)
                   1142: 
                   1143:   -2- at least a second wave of interviews ("longitudinal") which
                   1144:   measure each change (if any) in individual health status.  Health
                   1145:   expectancies are computed from the time spent in each health state
                   1146:   according to a model. More health states you consider, more time is
                   1147:   necessary to reach the Maximum Likelihood of the parameters involved
                   1148:   in the model.  The simplest model is the multinomial logistic model
                   1149:   where pij is the probability to be observed in state j at the second
                   1150:   wave conditional to be observed in state i at the first
                   1151:   wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
                   1152:   etc , where 'age' is age and 'sex' is a covariate. If you want to
                   1153:   have a more complex model than "constant and age", you should modify
                   1154:   the program where the markup *Covariates have to be included here
                   1155:   again* invites you to do it.  More covariates you add, slower the
1.126     brouard  1156:   convergence.
                   1157: 
                   1158:   The advantage of this computer programme, compared to a simple
                   1159:   multinomial logistic model, is clear when the delay between waves is not
                   1160:   identical for each individual. Also, if a individual missed an
                   1161:   intermediate interview, the information is lost, but taken into
                   1162:   account using an interpolation or extrapolation.  
                   1163: 
                   1164:   hPijx is the probability to be observed in state i at age x+h
                   1165:   conditional to the observed state i at age x. The delay 'h' can be
                   1166:   split into an exact number (nh*stepm) of unobserved intermediate
                   1167:   states. This elementary transition (by month, quarter,
                   1168:   semester or year) is modelled as a multinomial logistic.  The hPx
                   1169:   matrix is simply the matrix product of nh*stepm elementary matrices
                   1170:   and the contribution of each individual to the likelihood is simply
                   1171:   hPijx.
                   1172: 
                   1173:   Also this programme outputs the covariance matrix of the parameters but also
1.218     brouard  1174:   of the life expectancies. It also computes the period (stable) prevalence.
                   1175: 
                   1176: Back prevalence and projections:
1.227     brouard  1177: 
                   1178:  - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
                   1179:    double agemaxpar, double ftolpl, int *ncvyearp, double
                   1180:    dateprev1,double dateprev2, int firstpass, int lastpass, int
                   1181:    mobilavproj)
                   1182: 
                   1183:     Computes the back prevalence limit for any combination of
                   1184:     covariate values k at any age between ageminpar and agemaxpar and
                   1185:     returns it in **bprlim. In the loops,
                   1186: 
                   1187:    - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
                   1188:        **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
                   1189: 
                   1190:    - hBijx Back Probability to be in state i at age x-h being in j at x
1.218     brouard  1191:    Computes for any combination of covariates k and any age between bage and fage 
                   1192:    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   1193:                        oldm=oldms;savm=savms;
1.227     brouard  1194: 
1.267     brouard  1195:    - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);
1.218     brouard  1196:      Computes the transition matrix starting at age 'age' over
                   1197:      'nhstepm*hstepm*stepm' months (i.e. until
                   1198:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
1.227     brouard  1199:      nhstepm*hstepm matrices. 
                   1200: 
                   1201:      Returns p3mat[i][j][h] after calling
                   1202:      p3mat[i][j][h]=matprod2(newm,
                   1203:      bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
                   1204:      dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
                   1205:      oldm);
1.226     brouard  1206: 
                   1207: Important routines
                   1208: 
                   1209: - func (or funcone), computes logit (pij) distinguishing
                   1210:   o fixed variables (single or product dummies or quantitative);
                   1211:   o varying variables by:
                   1212:    (1) wave (single, product dummies, quantitative), 
                   1213:    (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
                   1214:        % fixed dummy (treated) or quantitative (not done because time-consuming);
                   1215:        % varying dummy (not done) or quantitative (not done);
                   1216: - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
                   1217:   and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
                   1218: - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
1.325     brouard  1219:   o There are 2**cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
1.226     brouard  1220:     race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
1.218     brouard  1221: 
1.226     brouard  1222: 
                   1223:   
1.324     brouard  1224:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
                   1225:            Institut national d'études démographiques, Paris.
1.126     brouard  1226:   This software have been partly granted by Euro-REVES, a concerted action
                   1227:   from the European Union.
                   1228:   It is copyrighted identically to a GNU software product, ie programme and
                   1229:   software can be distributed freely for non commercial use. Latest version
                   1230:   can be accessed at http://euroreves.ined.fr/imach .
                   1231: 
                   1232:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
                   1233:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
                   1234:   
                   1235:   **********************************************************************/
                   1236: /*
                   1237:   main
                   1238:   read parameterfile
                   1239:   read datafile
                   1240:   concatwav
                   1241:   freqsummary
                   1242:   if (mle >= 1)
                   1243:     mlikeli
                   1244:   print results files
                   1245:   if mle==1 
                   1246:      computes hessian
                   1247:   read end of parameter file: agemin, agemax, bage, fage, estepm
                   1248:       begin-prev-date,...
                   1249:   open gnuplot file
                   1250:   open html file
1.145     brouard  1251:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
                   1252:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                   1253:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
                   1254:     freexexit2 possible for memory heap.
                   1255: 
                   1256:   h Pij x                         | pij_nom  ficrestpij
                   1257:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
                   1258:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
                   1259:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
                   1260: 
                   1261:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
                   1262:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
                   1263:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
                   1264:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
                   1265:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
                   1266: 
1.126     brouard  1267:   forecasting if prevfcast==1 prevforecast call prevalence()
                   1268:   health expectancies
                   1269:   Variance-covariance of DFLE
                   1270:   prevalence()
                   1271:    movingaverage()
                   1272:   varevsij() 
                   1273:   if popbased==1 varevsij(,popbased)
                   1274:   total life expectancies
                   1275:   Variance of period (stable) prevalence
                   1276:  end
                   1277: */
                   1278: 
1.187     brouard  1279: /* #define DEBUG */
                   1280: /* #define DEBUGBRENT */
1.203     brouard  1281: /* #define DEBUGLINMIN */
                   1282: /* #define DEBUGHESS */
                   1283: #define DEBUGHESSIJ
1.224     brouard  1284: /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
1.165     brouard  1285: #define POWELL /* Instead of NLOPT */
1.224     brouard  1286: #define POWELLNOF3INFF1TEST /* Skip test */
1.186     brouard  1287: /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
                   1288: /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
1.319     brouard  1289: /* #define FLATSUP  *//* Suppresses directions where likelihood is flat */
1.126     brouard  1290: 
                   1291: #include <math.h>
                   1292: #include <stdio.h>
                   1293: #include <stdlib.h>
                   1294: #include <string.h>
1.226     brouard  1295: #include <ctype.h>
1.159     brouard  1296: 
                   1297: #ifdef _WIN32
                   1298: #include <io.h>
1.172     brouard  1299: #include <windows.h>
                   1300: #include <tchar.h>
1.159     brouard  1301: #else
1.126     brouard  1302: #include <unistd.h>
1.159     brouard  1303: #endif
1.126     brouard  1304: 
                   1305: #include <limits.h>
                   1306: #include <sys/types.h>
1.171     brouard  1307: 
                   1308: #if defined(__GNUC__)
                   1309: #include <sys/utsname.h> /* Doesn't work on Windows */
                   1310: #endif
                   1311: 
1.126     brouard  1312: #include <sys/stat.h>
                   1313: #include <errno.h>
1.159     brouard  1314: /* extern int errno; */
1.126     brouard  1315: 
1.157     brouard  1316: /* #ifdef LINUX */
                   1317: /* #include <time.h> */
                   1318: /* #include "timeval.h" */
                   1319: /* #else */
                   1320: /* #include <sys/time.h> */
                   1321: /* #endif */
                   1322: 
1.126     brouard  1323: #include <time.h>
                   1324: 
1.136     brouard  1325: #ifdef GSL
                   1326: #include <gsl/gsl_errno.h>
                   1327: #include <gsl/gsl_multimin.h>
                   1328: #endif
                   1329: 
1.167     brouard  1330: 
1.162     brouard  1331: #ifdef NLOPT
                   1332: #include <nlopt.h>
                   1333: typedef struct {
                   1334:   double (* function)(double [] );
                   1335: } myfunc_data ;
                   1336: #endif
                   1337: 
1.126     brouard  1338: /* #include <libintl.h> */
                   1339: /* #define _(String) gettext (String) */
                   1340: 
1.349     brouard  1341: #define MAXLINE 16384 /* Was 256 and 1024 and 2048. Overflow with 312 with 2 states and 4 covariates. Should be ok */
1.126     brouard  1342: 
                   1343: #define GNUPLOTPROGRAM "gnuplot"
1.343     brouard  1344: #define GNUPLOTVERSION 5.1
                   1345: double gnuplotversion=GNUPLOTVERSION;
1.126     brouard  1346: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
1.329     brouard  1347: #define FILENAMELENGTH 256
1.126     brouard  1348: 
                   1349: #define        GLOCK_ERROR_NOPATH              -1      /* empty path */
                   1350: #define        GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
                   1351: 
1.349     brouard  1352: #define MAXPARM 216 /**< Maximum number of parameters for the optimization was 128 */
1.144     brouard  1353: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
1.126     brouard  1354: 
                   1355: #define NINTERVMAX 8
1.144     brouard  1356: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
                   1357: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
1.325     brouard  1358: #define NCOVMAX 30  /**< Maximum number of covariates used in the model, including generated covariates V1*V2 or V1*age */
1.197     brouard  1359: #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
1.211     brouard  1360: /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
                   1361: #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
1.290     brouard  1362: /*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */
1.144     brouard  1363: #define YEARM 12. /**< Number of months per year */
1.218     brouard  1364: /* #define AGESUP 130 */
1.288     brouard  1365: /* #define AGESUP 150 */
                   1366: #define AGESUP 200
1.268     brouard  1367: #define AGEINF 0
1.218     brouard  1368: #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
1.126     brouard  1369: #define AGEBASE 40
1.194     brouard  1370: #define AGEOVERFLOW 1.e20
1.164     brouard  1371: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
1.157     brouard  1372: #ifdef _WIN32
                   1373: #define DIRSEPARATOR '\\'
                   1374: #define CHARSEPARATOR "\\"
                   1375: #define ODIRSEPARATOR '/'
                   1376: #else
1.126     brouard  1377: #define DIRSEPARATOR '/'
                   1378: #define CHARSEPARATOR "/"
                   1379: #define ODIRSEPARATOR '\\'
                   1380: #endif
                   1381: 
1.356   ! brouard  1382: /* $Id: imach.c,v 1.355 2023/05/22 17:03:18 brouard Exp $ */
1.126     brouard  1383: /* $State: Exp $ */
1.196     brouard  1384: #include "version.h"
                   1385: char version[]=__IMACH_VERSION__;
1.352     brouard  1386: char copyright[]="April 2023,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022";
1.356   ! brouard  1387: char fullversion[]="$Revision: 1.355 $ $Date: 2023/05/22 17:03:18 $"; 
1.126     brouard  1388: char strstart[80];
                   1389: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
1.130     brouard  1390: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
1.342     brouard  1391: int debugILK=0; /* debugILK is set by a #d in a comment line */
1.187     brouard  1392: int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
1.330     brouard  1393: /* Number of covariates model (1)=V2+V1+ V3*age+V2*V4 */
                   1394: /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
1.335     brouard  1395: int cptcovn=0; /**< cptcovn decodemodel: number of covariates k of the models excluding age*products =6 and age*age but including products */
1.330     brouard  1396: int cptcovt=0; /**< cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
1.335     brouard  1397: int cptcovs=0; /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
                   1398: int cptcovsnq=0; /**< cptcovsnq number of SIMPLE covariates in the model but non quantitative V2+V1 =2 */
1.145     brouard  1399: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
1.349     brouard  1400: int cptcovprodage=0; /**< Number of fixed covariates with age: V3*age or V2*V3*age 1 */
                   1401: int cptcovprodvage=0; /**< Number of varying covariates with age: V7*age or V7*V6*age */
                   1402: int cptcovdageprod=0; /**< Number of doubleproducts with age, since 0.99r44 only: age*Vn*Vm for gnuplot printing*/
1.145     brouard  1403: int cptcovprodnoage=0; /**< Number of covariate products without age */   
1.335     brouard  1404: int cptcoveff=0; /* Total number of single dummy covariates (fixed or time varying) to vary for printing results (2**cptcoveff combinations of dummies)(computed in tricode as cptcov) */
1.233     brouard  1405: int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
                   1406: int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
1.339     brouard  1407: int ncovvt=0; /* Total number of effective (wave) varying covariates (dummy or quantitative or products [without age]) in the model */
1.349     brouard  1408: int ncovvta=0; /*  +age*V6 + age*V7+ age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of expandend products [with age]) in the model */
                   1409: int ncovta=0; /*age*V3*V2 +age*V2+agev3+ageV4  +age*V6 + age*V7+ age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of expandend products [with age]) in the model */
                   1410: int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (single or product, dummy or quantitative) in the model */
                   1411: int ncovva=0; /* +age*V6 + age*V7+ge*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of effective (wave and stepm) varying with age covariates (single or product, dummy or quantitative) in the model */
1.234     brouard  1412: int nsd=0; /**< Total number of single dummy variables (output) */
                   1413: int nsq=0; /**< Total number of single quantitative variables (output) */
1.232     brouard  1414: int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
1.225     brouard  1415: int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
1.224     brouard  1416: int ntveff=0; /**< ntveff number of effective time varying variables */
                   1417: int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
1.145     brouard  1418: int cptcov=0; /* Working variable */
1.334     brouard  1419: int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs+1 declared globally ;*/
1.290     brouard  1420: int nobs=10;  /* Number of observations in the data lastobs-firstobs */
1.218     brouard  1421: int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
1.302     brouard  1422: int npar=NPARMAX; /* Number of parameters (nlstate+ndeath-1)*nlstate*ncovmodel; */
1.126     brouard  1423: int nlstate=2; /* Number of live states */
                   1424: int ndeath=1; /* Number of dead states */
1.130     brouard  1425: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
1.339     brouard  1426: int nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable*/
                   1427: int ncovcolt=0; /* ncovcolt=ncovcol+nqv+ntv+nqtv; total of covariates in the data, not in the model equation*/ 
1.126     brouard  1428: int popbased=0;
                   1429: 
                   1430: int *wav; /* Number of waves for this individuual 0 is possible */
1.130     brouard  1431: int maxwav=0; /* Maxim number of waves */
                   1432: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
                   1433: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
                   1434: int gipmx=0, gsw=0; /* Global variables on the number of contributions 
1.126     brouard  1435:                   to the likelihood and the sum of weights (done by funcone)*/
1.130     brouard  1436: int mle=1, weightopt=0;
1.126     brouard  1437: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
                   1438: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
                   1439: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                   1440:           * wave mi and wave mi+1 is not an exact multiple of stepm. */
1.162     brouard  1441: int countcallfunc=0;  /* Count the number of calls to func */
1.230     brouard  1442: int selected(int kvar); /* Is covariate kvar selected for printing results */
                   1443: 
1.130     brouard  1444: double jmean=1; /* Mean space between 2 waves */
1.145     brouard  1445: double **matprod2(); /* test */
1.126     brouard  1446: double **oldm, **newm, **savm; /* Working pointers to matrices */
                   1447: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
1.218     brouard  1448: double  **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
                   1449: 
1.136     brouard  1450: /*FILE *fic ; */ /* Used in readdata only */
1.217     brouard  1451: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
1.126     brouard  1452: FILE *ficlog, *ficrespow;
1.130     brouard  1453: int globpr=0; /* Global variable for printing or not */
1.126     brouard  1454: double fretone; /* Only one call to likelihood */
1.130     brouard  1455: long ipmx=0; /* Number of contributions */
1.126     brouard  1456: double sw; /* Sum of weights */
                   1457: char filerespow[FILENAMELENGTH];
                   1458: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
                   1459: FILE *ficresilk;
                   1460: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                   1461: FILE *ficresprobmorprev;
                   1462: FILE *fichtm, *fichtmcov; /* Html File */
                   1463: FILE *ficreseij;
                   1464: char filerese[FILENAMELENGTH];
                   1465: FILE *ficresstdeij;
                   1466: char fileresstde[FILENAMELENGTH];
                   1467: FILE *ficrescveij;
                   1468: char filerescve[FILENAMELENGTH];
                   1469: FILE  *ficresvij;
                   1470: char fileresv[FILENAMELENGTH];
1.269     brouard  1471: 
1.126     brouard  1472: char title[MAXLINE];
1.234     brouard  1473: char model[MAXLINE]; /**< The model line */
1.217     brouard  1474: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
1.126     brouard  1475: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
                   1476: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
                   1477: char command[FILENAMELENGTH];
                   1478: int  outcmd=0;
                   1479: 
1.217     brouard  1480: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
1.202     brouard  1481: char fileresu[FILENAMELENGTH]; /* fileres without r in front */
1.126     brouard  1482: char filelog[FILENAMELENGTH]; /* Log file */
                   1483: char filerest[FILENAMELENGTH];
                   1484: char fileregp[FILENAMELENGTH];
                   1485: char popfile[FILENAMELENGTH];
                   1486: 
                   1487: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
                   1488: 
1.157     brouard  1489: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
                   1490: /* struct timezone tzp; */
                   1491: /* extern int gettimeofday(); */
                   1492: struct tm tml, *gmtime(), *localtime();
                   1493: 
                   1494: extern time_t time();
                   1495: 
                   1496: struct tm start_time, end_time, curr_time, last_time, forecast_time;
                   1497: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
1.349     brouard  1498: time_t   rlast_btime; /* raw time */
1.157     brouard  1499: struct tm tm;
                   1500: 
1.126     brouard  1501: char strcurr[80], strfor[80];
                   1502: 
                   1503: char *endptr;
                   1504: long lval;
                   1505: double dval;
                   1506: 
                   1507: #define NR_END 1
                   1508: #define FREE_ARG char*
                   1509: #define FTOL 1.0e-10
                   1510: 
                   1511: #define NRANSI 
1.240     brouard  1512: #define ITMAX 200
                   1513: #define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ 
1.126     brouard  1514: 
                   1515: #define TOL 2.0e-4 
                   1516: 
                   1517: #define CGOLD 0.3819660 
                   1518: #define ZEPS 1.0e-10 
                   1519: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                   1520: 
                   1521: #define GOLD 1.618034 
                   1522: #define GLIMIT 100.0 
                   1523: #define TINY 1.0e-20 
                   1524: 
                   1525: static double maxarg1,maxarg2;
                   1526: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
                   1527: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
                   1528:   
                   1529: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
                   1530: #define rint(a) floor(a+0.5)
1.166     brouard  1531: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
1.183     brouard  1532: #define mytinydouble 1.0e-16
1.166     brouard  1533: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
                   1534: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
                   1535: /* static double dsqrarg; */
                   1536: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
1.126     brouard  1537: static double sqrarg;
                   1538: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
                   1539: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
                   1540: int agegomp= AGEGOMP;
                   1541: 
                   1542: int imx; 
                   1543: int stepm=1;
                   1544: /* Stepm, step in month: minimum step interpolation*/
                   1545: 
                   1546: int estepm;
                   1547: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
                   1548: 
                   1549: int m,nb;
                   1550: long *num;
1.197     brouard  1551: int firstpass=0, lastpass=4,*cod, *cens;
1.192     brouard  1552: int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
                   1553:                   covariate for which somebody answered excluding 
                   1554:                   undefined. Usually 2: 0 and 1. */
                   1555: int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                   1556:                             covariate for which somebody answered including 
                   1557:                             undefined. Usually 3: -1, 0 and 1. */
1.126     brouard  1558: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
1.218     brouard  1559: double **pmmij, ***probs; /* Global pointer */
1.219     brouard  1560: double ***mobaverage, ***mobaverages; /* New global variable */
1.332     brouard  1561: double **precov; /* New global variable to store for each resultline, values of model covariates given by the resultlines (in order to speed up)  */
1.126     brouard  1562: double *ageexmed,*agecens;
                   1563: double dateintmean=0;
1.296     brouard  1564:   double anprojd, mprojd, jprojd; /* For eventual projections */
                   1565:   double anprojf, mprojf, jprojf;
1.126     brouard  1566: 
1.296     brouard  1567:   double anbackd, mbackd, jbackd; /* For eventual backprojections */
                   1568:   double anbackf, mbackf, jbackf;
                   1569:   double jintmean,mintmean,aintmean;  
1.126     brouard  1570: double *weight;
                   1571: int **s; /* Status */
1.141     brouard  1572: double *agedc;
1.145     brouard  1573: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
1.141     brouard  1574:                  * covar=matrix(0,NCOVMAX,1,n); 
1.187     brouard  1575:                  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
1.268     brouard  1576: double **coqvar; /* Fixed quantitative covariate nqv */
1.341     brouard  1577: double ***cotvar; /* Time varying covariate start at ncovcol + nqv + (1 to ntv) */
1.225     brouard  1578: double ***cotqvar; /* Time varying quantitative covariate itqv */
1.141     brouard  1579: double  idx; 
                   1580: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
1.319     brouard  1581: /* Some documentation */
                   1582:       /*   Design original data
                   1583:        *  V1   V2   V3   V4  V5  V6  V7  V8  Weight ddb ddth d1st s1 V9 V10 V11 V12 s2 V9 V10 V11 V12 
                   1584:        *  <          ncovcol=6   >   nqv=2 (V7 V8)                   dv dv  dv  qtv    dv dv  dvv qtv
                   1585:        *                                                             ntv=3     nqtv=1
1.330     brouard  1586:        *  cptcovn number of covariates (not including constant and age or age*age) = number of plus sign + 1 = 10+1=11
1.319     brouard  1587:        * For time varying covariate, quanti or dummies
                   1588:        *       cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti
1.341     brouard  1589:        *       cotvar[wav][ncovcol+nqv+ iv(1 to nqtv)][i]= [(1 to nqtv)][i]=(V12) quanti
1.319     brouard  1590:        *       cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1
                   1591:        *       cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1
1.332     brouard  1592:        *       covar[Vk,i], value of the Vkth fixed covariate dummy or quanti for individual i:
1.319     brouard  1593:        *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
                   1594:        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 + V9 + V9*age + V10
                   1595:        *   k=  1    2      3       4     5       6      7        8   9     10       11 
                   1596:        */
                   1597: /* According to the model, more columns can be added to covar by the product of covariates */
1.318     brouard  1598: /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
                   1599:   # States 1=Coresidence, 2 Living alone, 3 Institution
                   1600:   # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
                   1601: */
1.349     brouard  1602: /*           V5+V4+ V3+V4*V3 +V5*age+V2 +V1*V2+V1*age+V1+V4*V3*age */
                   1603: /*    kmodel  1  2   3    4     5     6    7     8     9    10 */
                   1604: /*Typevar[k]=  0  0   0   2     1    0    2     1     0    3 *//*0 for simple covariate (dummy, quantitative,*/
                   1605:                                                                /* fixed or varying), 1 for age product, 2 for*/
                   1606:                                                                /* product without age, 3 for age and double product   */
                   1607: /*Dummy[k]=    1  0   0   1     3    1    1     2     0     3  *//*Dummy[k] 0=dummy (0 1), 1 quantitative */
                   1608:                                                                 /*(single or product without age), 2 dummy*/
                   1609:                                                                /* with age product, 3 quant with age product*/
                   1610: /*Tvar[k]=     5  4   3   6     5    2    7     1     1     6 */
                   1611: /*    nsd         1   2                               3 */ /* Counting single dummies covar fixed or tv */
                   1612: /*TnsdVar[Tvar]   1   2                               3 */ 
                   1613: /*Tvaraff[nsd]    4   3                               1 */ /* ID of single dummy cova fixed or timevary*/
                   1614: /*TvarsD[nsd]     4   3                               1 */ /* ID of single dummy cova fixed or timevary*/
                   1615: /*TvarsDind[nsd]  2   3                               9 */ /* position K of single dummy cova */
                   1616: /*    nsq      1                     2                  */ /* Counting single quantit tv */
                   1617: /* TvarsQ[k]   5                     2                  */ /* Number of single quantitative cova */
                   1618: /* TvarsQind   1                     6                  */ /* position K of single quantitative cova */
                   1619: /* Tprod[i]=k             1               2             */ /* Position in model of the ith prod without age */
                   1620: /* cptcovage                    1               2         3 */ /* Counting cov*age in the model equation */
                   1621: /* Tage[cptcovage]=k            5               8         10 */ /* Position in the model of ith cov*age */
1.350     brouard  1622: /* model="V2+V3+V4+V6+V7+V6*V2+V7*V2+V6*V3+V7*V3+V6*V4+V7*V4+age*V2+age*V3+age*V4+age*V6+age*V7+age*V6*V2+age*V6*V3+age*V7*V3+age*V6*V4+age*V7*V4\r"*/
                   1623: /*  p Tvard[1][1]@21 = {6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0}*/
1.354     brouard  1624: /*  p Tvard[2][1]@21 = {7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0 <repeats 11 times>} */
1.350     brouard  1625: /* p Tvardk[1][1]@24 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0}*/
                   1626: /* p Tvardk[1][1]@22 = {0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0} */
1.349     brouard  1627: /* Tvard[1][1]@4={4,3,1,2}    V4*V3 V1*V2               */ /* Position in model of the ith prod without age */
1.330     brouard  1628: /* Tvardk[4][1]=4;Tvardk[4][2]=3;Tvardk[7][1]=1;Tvardk[7][2]=2 */ /* Variables of a prod at position in the model equation*/
1.319     brouard  1629: /* TvarF TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
1.320     brouard  1630: /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
1.234     brouard  1631: /* Type                    */
                   1632: /* V         1  2  3  4  5 */
                   1633: /*           F  F  V  V  V */
                   1634: /*           D  Q  D  D  Q */
                   1635: /*                         */
                   1636: int *TvarsD;
1.330     brouard  1637: int *TnsdVar;
1.234     brouard  1638: int *TvarsDind;
                   1639: int *TvarsQ;
                   1640: int *TvarsQind;
                   1641: 
1.318     brouard  1642: #define MAXRESULTLINESPONE 10+1
1.235     brouard  1643: int nresult=0;
1.258     brouard  1644: int parameterline=0; /* # of the parameter (type) line */
1.334     brouard  1645: int TKresult[MAXRESULTLINESPONE]; /* TKresult[nres]=k for each resultline nres give the corresponding combination of dummies */
                   1646: int resultmodel[MAXRESULTLINESPONE][NCOVMAX];/* resultmodel[k1]=k3: k1th position in the model corresponds to the k3 position in the resultline */
                   1647: int modelresult[MAXRESULTLINESPONE][NCOVMAX];/* modelresult[k3]=k1: k1th position in the model corresponds to the k3 position in the resultline */
                   1648: int Tresult[MAXRESULTLINESPONE][NCOVMAX];/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */
1.332     brouard  1649: int Tinvresult[MAXRESULTLINESPONE][NCOVMAX];/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line  */
                   1650: double TinvDoQresult[MAXRESULTLINESPONE][NCOVMAX];/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */
1.334     brouard  1651: int Tvresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */
1.332     brouard  1652: double Tqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
1.318     brouard  1653: double Tqinvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */
1.332     brouard  1654: int Tvqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */
1.318     brouard  1655: 
                   1656: /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
                   1657:   # States 1=Coresidence, 2 Living alone, 3 Institution
                   1658:   # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
                   1659: */
1.234     brouard  1660: /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
1.232     brouard  1661: int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1662: int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1663: int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1664: int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1665: int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1666: int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.231     brouard  1667: int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1668: int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1669: int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1670: int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1671: int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1672: int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1673: int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   1674: int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
1.339     brouard  1675: int *TvarVV; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */
                   1676: int *TvarVVind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */
1.349     brouard  1677: int *TvarVVA; /* We count ncovvt time varying covariates (single or products with age) and put their name into TvarVVA */
                   1678: int *TvarVVAind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */
                   1679: int *TvarAVVA; /* We count ALL ncovta time varying covariates (single or products with age) and put their name into TvarVVA */
                   1680: int *TvarAVVAind; /* We count ALL ncovta time varying covariates (single or products without age) and put their name into TvarVV */
1.339     brouard  1681:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
1.349     brouard  1682:       /* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age */
                   1683:       /*  Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   1684:       /* TvarVV={3,1,3,1,3}, for V3 and then the product V1*V3 is decomposed into V1 and V3 */        
                   1685:       /* TvarVVind={2,5,5,6,6}, for V3 and then the product V1*V3 is decomposed into V1 and V3 and V1*V3*age into 6,6 */              
1.230     brouard  1686: int *Tvarsel; /**< Selected covariates for output */
                   1687: double *Tvalsel; /**< Selected modality value of covariate for output */
1.349     brouard  1688: int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product, 3 age*Vn*Vm */
1.227     brouard  1689: int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
                   1690: int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
1.238     brouard  1691: int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
                   1692: int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
1.197     brouard  1693: int *Tage;
1.227     brouard  1694: int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
1.228     brouard  1695: int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
1.230     brouard  1696: int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
                   1697: int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
1.145     brouard  1698: int *Ndum; /** Freq of modality (tricode */
1.200     brouard  1699: /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
1.227     brouard  1700: int **Tvard;
1.330     brouard  1701: int **Tvardk;
1.227     brouard  1702: int *Tprod;/**< Gives the k position of the k1 product */
1.238     brouard  1703: /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
1.227     brouard  1704: int *Tposprod; /**< Gives the k1 product from the k position */
1.238     brouard  1705:    /* if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2) */
                   1706:    /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
1.227     brouard  1707: int cptcovprod, *Tvaraff, *invalidvarcomb;
1.126     brouard  1708: double *lsurv, *lpop, *tpop;
                   1709: 
1.231     brouard  1710: #define FD 1; /* Fixed dummy covariate */
                   1711: #define FQ 2; /* Fixed quantitative covariate */
                   1712: #define FP 3; /* Fixed product covariate */
                   1713: #define FPDD 7; /* Fixed product dummy*dummy covariate */
                   1714: #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
                   1715: #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
                   1716: #define VD 10; /* Varying dummy covariate */
                   1717: #define VQ 11; /* Varying quantitative covariate */
                   1718: #define VP 12; /* Varying product covariate */
                   1719: #define VPDD 13; /* Varying product dummy*dummy covariate */
                   1720: #define VPDQ 14; /* Varying product dummy*quantitative covariate */
                   1721: #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
                   1722: #define APFD 16; /* Age product * fixed dummy covariate */
                   1723: #define APFQ 17; /* Age product * fixed quantitative covariate */
                   1724: #define APVD 18; /* Age product * varying dummy covariate */
                   1725: #define APVQ 19; /* Age product * varying quantitative covariate */
                   1726: 
                   1727: #define FTYPE 1; /* Fixed covariate */
                   1728: #define VTYPE 2; /* Varying covariate (loop in wave) */
                   1729: #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
                   1730: 
                   1731: struct kmodel{
                   1732:        int maintype; /* main type */
                   1733:        int subtype; /* subtype */
                   1734: };
                   1735: struct kmodel modell[NCOVMAX];
                   1736: 
1.143     brouard  1737: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
                   1738: double ftolhess; /**< Tolerance for computing hessian */
1.126     brouard  1739: 
                   1740: /**************** split *************************/
                   1741: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
                   1742: {
                   1743:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
                   1744:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
                   1745:   */ 
                   1746:   char *ss;                            /* pointer */
1.186     brouard  1747:   int  l1=0, l2=0;                             /* length counters */
1.126     brouard  1748: 
                   1749:   l1 = strlen(path );                  /* length of path */
                   1750:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
                   1751:   ss= strrchr( path, DIRSEPARATOR );           /* find last / */
                   1752:   if ( ss == NULL ) {                  /* no directory, so determine current directory */
                   1753:     strcpy( name, path );              /* we got the fullname name because no directory */
                   1754:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                   1755:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
                   1756:     /* get current working directory */
                   1757:     /*    extern  char* getcwd ( char *buf , int len);*/
1.184     brouard  1758: #ifdef WIN32
                   1759:     if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
                   1760: #else
                   1761:        if (getcwd(dirc, FILENAME_MAX) == NULL) {
                   1762: #endif
1.126     brouard  1763:       return( GLOCK_ERROR_GETCWD );
                   1764:     }
                   1765:     /* got dirc from getcwd*/
                   1766:     printf(" DIRC = %s \n",dirc);
1.205     brouard  1767:   } else {                             /* strip directory from path */
1.126     brouard  1768:     ss++;                              /* after this, the filename */
                   1769:     l2 = strlen( ss );                 /* length of filename */
                   1770:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
                   1771:     strcpy( name, ss );                /* save file name */
                   1772:     strncpy( dirc, path, l1 - l2 );    /* now the directory */
1.186     brouard  1773:     dirc[l1-l2] = '\0';                        /* add zero */
1.126     brouard  1774:     printf(" DIRC2 = %s \n",dirc);
                   1775:   }
                   1776:   /* We add a separator at the end of dirc if not exists */
                   1777:   l1 = strlen( dirc );                 /* length of directory */
                   1778:   if( dirc[l1-1] != DIRSEPARATOR ){
                   1779:     dirc[l1] =  DIRSEPARATOR;
                   1780:     dirc[l1+1] = 0; 
                   1781:     printf(" DIRC3 = %s \n",dirc);
                   1782:   }
                   1783:   ss = strrchr( name, '.' );           /* find last / */
                   1784:   if (ss >0){
                   1785:     ss++;
                   1786:     strcpy(ext,ss);                    /* save extension */
                   1787:     l1= strlen( name);
                   1788:     l2= strlen(ss)+1;
                   1789:     strncpy( finame, name, l1-l2);
                   1790:     finame[l1-l2]= 0;
                   1791:   }
                   1792: 
                   1793:   return( 0 );                         /* we're done */
                   1794: }
                   1795: 
                   1796: 
                   1797: /******************************************/
                   1798: 
                   1799: void replace_back_to_slash(char *s, char*t)
                   1800: {
                   1801:   int i;
                   1802:   int lg=0;
                   1803:   i=0;
                   1804:   lg=strlen(t);
                   1805:   for(i=0; i<= lg; i++) {
                   1806:     (s[i] = t[i]);
                   1807:     if (t[i]== '\\') s[i]='/';
                   1808:   }
                   1809: }
                   1810: 
1.132     brouard  1811: char *trimbb(char *out, char *in)
1.137     brouard  1812: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
1.132     brouard  1813:   char *s;
                   1814:   s=out;
                   1815:   while (*in != '\0'){
1.137     brouard  1816:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
1.132     brouard  1817:       in++;
                   1818:     }
                   1819:     *out++ = *in++;
                   1820:   }
                   1821:   *out='\0';
                   1822:   return s;
                   1823: }
                   1824: 
1.351     brouard  1825: char *trimbtab(char *out, char *in)
                   1826: { /* Trim  blanks or tabs in line but keeps first blanks if line starts with blanks */
                   1827:   char *s;
                   1828:   s=out;
                   1829:   while (*in != '\0'){
                   1830:     while( (*in == ' ' || *in == '\t')){ /* && *(in+1) != '\0'){*/
                   1831:       in++;
                   1832:     }
                   1833:     *out++ = *in++;
                   1834:   }
                   1835:   *out='\0';
                   1836:   return s;
                   1837: }
                   1838: 
1.187     brouard  1839: /* char *substrchaine(char *out, char *in, char *chain) */
                   1840: /* { */
                   1841: /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
                   1842: /*   char *s, *t; */
                   1843: /*   t=in;s=out; */
                   1844: /*   while ((*in != *chain) && (*in != '\0')){ */
                   1845: /*     *out++ = *in++; */
                   1846: /*   } */
                   1847: 
                   1848: /*   /\* *in matches *chain *\/ */
                   1849: /*   while ((*in++ == *chain++) && (*in != '\0')){ */
                   1850: /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1851: /*   } */
                   1852: /*   in--; chain--; */
                   1853: /*   while ( (*in != '\0')){ */
                   1854: /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1855: /*     *out++ = *in++; */
                   1856: /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1857: /*   } */
                   1858: /*   *out='\0'; */
                   1859: /*   out=s; */
                   1860: /*   return out; */
                   1861: /* } */
                   1862: char *substrchaine(char *out, char *in, char *chain)
                   1863: {
                   1864:   /* Substract chain 'chain' from 'in', return and output 'out' */
1.349     brouard  1865:   /* in="V1+V1*age+age*age+V2", chain="+age*age" out="V1+V1*age+V2" */
1.187     brouard  1866: 
                   1867:   char *strloc;
                   1868: 
1.349     brouard  1869:   strcpy (out, in);                   /* out="V1+V1*age+age*age+V2" */
                   1870:   strloc = strstr(out, chain); /* strloc points to out at "+age*age+V2"  */
                   1871:   printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out); /* strloc=+age*age+V2 chain="+age*age", out="V1+V1*age+age*age+V2" */
1.187     brouard  1872:   if(strloc != NULL){ 
1.349     brouard  1873:     /* will affect out */ /* strloc+strlen(chain)=|+V2 = "V1+V1*age+age*age|+V2" */ /* Will also work in Unicodek */
                   1874:     memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1); /* move number of bytes corresponding to the length of "+V2" which is 3, plus one is 4 (including the null)*/
                   1875:     /* equivalent to strcpy (strloc, strloc +strlen(chain)) if no overlap; Copies from "+V2" to V1+V1*age+ */
1.187     brouard  1876:   }
1.349     brouard  1877:   printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);  /* strloc=+V2 chain="+age*age", in="V1+V1*age+age*age+V2", out="V1+V1*age+V2" */
1.187     brouard  1878:   return out;
                   1879: }
                   1880: 
                   1881: 
1.145     brouard  1882: char *cutl(char *blocc, char *alocc, char *in, char occ)
                   1883: {
1.187     brouard  1884:   /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
1.349     brouard  1885:      and alocc starts after first occurence of char 'occ' : ex cutl(blocc,alocc,"abcdef2ghi2j",'2')
1.310     brouard  1886:      gives alocc="abcdef" and blocc="ghi2j".
1.145     brouard  1887:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
                   1888:   */
1.160     brouard  1889:   char *s, *t;
1.145     brouard  1890:   t=in;s=in;
                   1891:   while ((*in != occ) && (*in != '\0')){
                   1892:     *alocc++ = *in++;
                   1893:   }
                   1894:   if( *in == occ){
                   1895:     *(alocc)='\0';
                   1896:     s=++in;
                   1897:   }
                   1898:  
                   1899:   if (s == t) {/* occ not found */
                   1900:     *(alocc-(in-s))='\0';
                   1901:     in=s;
                   1902:   }
                   1903:   while ( *in != '\0'){
                   1904:     *blocc++ = *in++;
                   1905:   }
                   1906: 
                   1907:   *blocc='\0';
                   1908:   return t;
                   1909: }
1.137     brouard  1910: char *cutv(char *blocc, char *alocc, char *in, char occ)
                   1911: {
1.187     brouard  1912:   /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
1.137     brouard  1913:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
                   1914:      gives blocc="abcdef2ghi" and alocc="j".
                   1915:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
                   1916:   */
                   1917:   char *s, *t;
                   1918:   t=in;s=in;
                   1919:   while (*in != '\0'){
                   1920:     while( *in == occ){
                   1921:       *blocc++ = *in++;
                   1922:       s=in;
                   1923:     }
                   1924:     *blocc++ = *in++;
                   1925:   }
                   1926:   if (s == t) /* occ not found */
                   1927:     *(blocc-(in-s))='\0';
                   1928:   else
                   1929:     *(blocc-(in-s)-1)='\0';
                   1930:   in=s;
                   1931:   while ( *in != '\0'){
                   1932:     *alocc++ = *in++;
                   1933:   }
                   1934: 
                   1935:   *alocc='\0';
                   1936:   return s;
                   1937: }
                   1938: 
1.126     brouard  1939: int nbocc(char *s, char occ)
                   1940: {
                   1941:   int i,j=0;
                   1942:   int lg=20;
                   1943:   i=0;
                   1944:   lg=strlen(s);
                   1945:   for(i=0; i<= lg; i++) {
1.234     brouard  1946:     if  (s[i] == occ ) j++;
1.126     brouard  1947:   }
                   1948:   return j;
                   1949: }
                   1950: 
1.349     brouard  1951: int nboccstr(char *textin, char *chain)
                   1952: {
                   1953:   /* Counts the number of occurence of "chain"  in string textin */
                   1954:   /*  in="+V7*V4+age*V2+age*V3+age*V4"  chain="age" */
                   1955:   char *strloc;
                   1956:   
                   1957:   int i,j=0;
                   1958: 
                   1959:   i=0;
                   1960: 
                   1961:   strloc=textin; /* strloc points to "^+V7*V4+age+..." in textin */
                   1962:   for(;;) {
                   1963:     strloc= strstr(strloc,chain); /* strloc points to first character of chain in textin if found. Example strloc points^ to "+V7*V4+^age" in textin  */
                   1964:     if(strloc != NULL){
                   1965:       strloc = strloc+strlen(chain); /* strloc points to "+V7*V4+age^" in textin */
                   1966:       j++;
                   1967:     }else
                   1968:       break;
                   1969:   }
                   1970:   return j;
                   1971:   
                   1972: }
1.137     brouard  1973: /* void cutv(char *u,char *v, char*t, char occ) */
                   1974: /* { */
                   1975: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
                   1976: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
                   1977: /*      gives u="abcdef2ghi" and v="j" *\/ */
                   1978: /*   int i,lg,j,p=0; */
                   1979: /*   i=0; */
                   1980: /*   lg=strlen(t); */
                   1981: /*   for(j=0; j<=lg-1; j++) { */
                   1982: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
                   1983: /*   } */
1.126     brouard  1984: 
1.137     brouard  1985: /*   for(j=0; j<p; j++) { */
                   1986: /*     (u[j] = t[j]); */
                   1987: /*   } */
                   1988: /*      u[p]='\0'; */
1.126     brouard  1989: 
1.137     brouard  1990: /*    for(j=0; j<= lg; j++) { */
                   1991: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
                   1992: /*   } */
                   1993: /* } */
1.126     brouard  1994: 
1.160     brouard  1995: #ifdef _WIN32
                   1996: char * strsep(char **pp, const char *delim)
                   1997: {
                   1998:   char *p, *q;
                   1999:          
                   2000:   if ((p = *pp) == NULL)
                   2001:     return 0;
                   2002:   if ((q = strpbrk (p, delim)) != NULL)
                   2003:   {
                   2004:     *pp = q + 1;
                   2005:     *q = '\0';
                   2006:   }
                   2007:   else
                   2008:     *pp = 0;
                   2009:   return p;
                   2010: }
                   2011: #endif
                   2012: 
1.126     brouard  2013: /********************** nrerror ********************/
                   2014: 
                   2015: void nrerror(char error_text[])
                   2016: {
                   2017:   fprintf(stderr,"ERREUR ...\n");
                   2018:   fprintf(stderr,"%s\n",error_text);
                   2019:   exit(EXIT_FAILURE);
                   2020: }
                   2021: /*********************** vector *******************/
                   2022: double *vector(int nl, int nh)
                   2023: {
                   2024:   double *v;
                   2025:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
                   2026:   if (!v) nrerror("allocation failure in vector");
                   2027:   return v-nl+NR_END;
                   2028: }
                   2029: 
                   2030: /************************ free vector ******************/
                   2031: void free_vector(double*v, int nl, int nh)
                   2032: {
                   2033:   free((FREE_ARG)(v+nl-NR_END));
                   2034: }
                   2035: 
                   2036: /************************ivector *******************************/
                   2037: int *ivector(long nl,long nh)
                   2038: {
                   2039:   int *v;
                   2040:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                   2041:   if (!v) nrerror("allocation failure in ivector");
                   2042:   return v-nl+NR_END;
                   2043: }
                   2044: 
                   2045: /******************free ivector **************************/
                   2046: void free_ivector(int *v, long nl, long nh)
                   2047: {
                   2048:   free((FREE_ARG)(v+nl-NR_END));
                   2049: }
                   2050: 
                   2051: /************************lvector *******************************/
                   2052: long *lvector(long nl,long nh)
                   2053: {
                   2054:   long *v;
                   2055:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
                   2056:   if (!v) nrerror("allocation failure in ivector");
                   2057:   return v-nl+NR_END;
                   2058: }
                   2059: 
                   2060: /******************free lvector **************************/
                   2061: void free_lvector(long *v, long nl, long nh)
                   2062: {
                   2063:   free((FREE_ARG)(v+nl-NR_END));
                   2064: }
                   2065: 
                   2066: /******************* imatrix *******************************/
                   2067: int **imatrix(long nrl, long nrh, long ncl, long nch) 
                   2068:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
                   2069: { 
                   2070:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                   2071:   int **m; 
                   2072:   
                   2073:   /* allocate pointers to rows */ 
                   2074:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                   2075:   if (!m) nrerror("allocation failure 1 in matrix()"); 
                   2076:   m += NR_END; 
                   2077:   m -= nrl; 
                   2078:   
                   2079:   
                   2080:   /* allocate rows and set pointers to them */ 
                   2081:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
                   2082:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                   2083:   m[nrl] += NR_END; 
                   2084:   m[nrl] -= ncl; 
                   2085:   
                   2086:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                   2087:   
                   2088:   /* return pointer to array of pointers to rows */ 
                   2089:   return m; 
                   2090: } 
                   2091: 
                   2092: /****************** free_imatrix *************************/
                   2093: void free_imatrix(m,nrl,nrh,ncl,nch)
                   2094:       int **m;
                   2095:       long nch,ncl,nrh,nrl; 
                   2096:      /* free an int matrix allocated by imatrix() */ 
                   2097: { 
                   2098:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                   2099:   free((FREE_ARG) (m+nrl-NR_END)); 
                   2100: } 
                   2101: 
                   2102: /******************* matrix *******************************/
                   2103: double **matrix(long nrl, long nrh, long ncl, long nch)
                   2104: {
                   2105:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                   2106:   double **m;
                   2107: 
                   2108:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   2109:   if (!m) nrerror("allocation failure 1 in matrix()");
                   2110:   m += NR_END;
                   2111:   m -= nrl;
                   2112: 
                   2113:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   2114:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   2115:   m[nrl] += NR_END;
                   2116:   m[nrl] -= ncl;
                   2117: 
                   2118:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   2119:   return m;
1.145     brouard  2120:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
                   2121: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
                   2122: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
1.126     brouard  2123:    */
                   2124: }
                   2125: 
                   2126: /*************************free matrix ************************/
                   2127: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                   2128: {
                   2129:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   2130:   free((FREE_ARG)(m+nrl-NR_END));
                   2131: }
                   2132: 
                   2133: /******************* ma3x *******************************/
                   2134: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                   2135: {
                   2136:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                   2137:   double ***m;
                   2138: 
                   2139:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   2140:   if (!m) nrerror("allocation failure 1 in matrix()");
                   2141:   m += NR_END;
                   2142:   m -= nrl;
                   2143: 
                   2144:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   2145:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   2146:   m[nrl] += NR_END;
                   2147:   m[nrl] -= ncl;
                   2148: 
                   2149:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   2150: 
                   2151:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                   2152:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                   2153:   m[nrl][ncl] += NR_END;
                   2154:   m[nrl][ncl] -= nll;
                   2155:   for (j=ncl+1; j<=nch; j++) 
                   2156:     m[nrl][j]=m[nrl][j-1]+nlay;
                   2157:   
                   2158:   for (i=nrl+1; i<=nrh; i++) {
                   2159:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                   2160:     for (j=ncl+1; j<=nch; j++) 
                   2161:       m[i][j]=m[i][j-1]+nlay;
                   2162:   }
                   2163:   return m; 
                   2164:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                   2165:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                   2166:   */
                   2167: }
                   2168: 
                   2169: /*************************free ma3x ************************/
                   2170: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                   2171: {
                   2172:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                   2173:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   2174:   free((FREE_ARG)(m+nrl-NR_END));
                   2175: }
                   2176: 
                   2177: /*************** function subdirf ***********/
                   2178: char *subdirf(char fileres[])
                   2179: {
                   2180:   /* Caution optionfilefiname is hidden */
                   2181:   strcpy(tmpout,optionfilefiname);
                   2182:   strcat(tmpout,"/"); /* Add to the right */
                   2183:   strcat(tmpout,fileres);
                   2184:   return tmpout;
                   2185: }
                   2186: 
                   2187: /*************** function subdirf2 ***********/
                   2188: char *subdirf2(char fileres[], char *preop)
                   2189: {
1.314     brouard  2190:   /* Example subdirf2(optionfilefiname,"FB_") with optionfilefiname="texte", result="texte/FB_texte"
                   2191:  Errors in subdirf, 2, 3 while printing tmpout is
1.315     brouard  2192:  rewritten within the same printf. Workaround: many printfs */
1.126     brouard  2193:   /* Caution optionfilefiname is hidden */
                   2194:   strcpy(tmpout,optionfilefiname);
                   2195:   strcat(tmpout,"/");
                   2196:   strcat(tmpout,preop);
                   2197:   strcat(tmpout,fileres);
                   2198:   return tmpout;
                   2199: }
                   2200: 
                   2201: /*************** function subdirf3 ***********/
                   2202: char *subdirf3(char fileres[], char *preop, char *preop2)
                   2203: {
                   2204:   
                   2205:   /* Caution optionfilefiname is hidden */
                   2206:   strcpy(tmpout,optionfilefiname);
                   2207:   strcat(tmpout,"/");
                   2208:   strcat(tmpout,preop);
                   2209:   strcat(tmpout,preop2);
                   2210:   strcat(tmpout,fileres);
                   2211:   return tmpout;
                   2212: }
1.213     brouard  2213:  
                   2214: /*************** function subdirfext ***********/
                   2215: char *subdirfext(char fileres[], char *preop, char *postop)
                   2216: {
                   2217:   
                   2218:   strcpy(tmpout,preop);
                   2219:   strcat(tmpout,fileres);
                   2220:   strcat(tmpout,postop);
                   2221:   return tmpout;
                   2222: }
1.126     brouard  2223: 
1.213     brouard  2224: /*************** function subdirfext3 ***********/
                   2225: char *subdirfext3(char fileres[], char *preop, char *postop)
                   2226: {
                   2227:   
                   2228:   /* Caution optionfilefiname is hidden */
                   2229:   strcpy(tmpout,optionfilefiname);
                   2230:   strcat(tmpout,"/");
                   2231:   strcat(tmpout,preop);
                   2232:   strcat(tmpout,fileres);
                   2233:   strcat(tmpout,postop);
                   2234:   return tmpout;
                   2235: }
                   2236:  
1.162     brouard  2237: char *asc_diff_time(long time_sec, char ascdiff[])
                   2238: {
                   2239:   long sec_left, days, hours, minutes;
                   2240:   days = (time_sec) / (60*60*24);
                   2241:   sec_left = (time_sec) % (60*60*24);
                   2242:   hours = (sec_left) / (60*60) ;
                   2243:   sec_left = (sec_left) %(60*60);
                   2244:   minutes = (sec_left) /60;
                   2245:   sec_left = (sec_left) % (60);
                   2246:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
                   2247:   return ascdiff;
                   2248: }
                   2249: 
1.126     brouard  2250: /***************** f1dim *************************/
                   2251: extern int ncom; 
                   2252: extern double *pcom,*xicom;
                   2253: extern double (*nrfunc)(double []); 
                   2254:  
                   2255: double f1dim(double x) 
                   2256: { 
                   2257:   int j; 
                   2258:   double f;
                   2259:   double *xt; 
                   2260:  
                   2261:   xt=vector(1,ncom); 
                   2262:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                   2263:   f=(*nrfunc)(xt); 
                   2264:   free_vector(xt,1,ncom); 
                   2265:   return f; 
                   2266: } 
                   2267: 
                   2268: /*****************brent *************************/
                   2269: double brent(double ax, double bx, double cx, double (*f)(double), double tol,         double *xmin) 
1.187     brouard  2270: {
                   2271:   /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
                   2272:    * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
                   2273:    * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
                   2274:    * the minimum is returned as xmin, and the minimum function value is returned as brent , the
                   2275:    * returned function value. 
                   2276:   */
1.126     brouard  2277:   int iter; 
                   2278:   double a,b,d,etemp;
1.159     brouard  2279:   double fu=0,fv,fw,fx;
1.164     brouard  2280:   double ftemp=0.;
1.126     brouard  2281:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
                   2282:   double e=0.0; 
                   2283:  
                   2284:   a=(ax < cx ? ax : cx); 
                   2285:   b=(ax > cx ? ax : cx); 
                   2286:   x=w=v=bx; 
                   2287:   fw=fv=fx=(*f)(x); 
                   2288:   for (iter=1;iter<=ITMAX;iter++) { 
                   2289:     xm=0.5*(a+b); 
                   2290:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                   2291:     /*         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                   2292:     printf(".");fflush(stdout);
                   2293:     fprintf(ficlog,".");fflush(ficlog);
1.162     brouard  2294: #ifdef DEBUGBRENT
1.126     brouard  2295:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   2296:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   2297:     /*         if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                   2298: #endif
                   2299:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                   2300:       *xmin=x; 
                   2301:       return fx; 
                   2302:     } 
                   2303:     ftemp=fu;
                   2304:     if (fabs(e) > tol1) { 
                   2305:       r=(x-w)*(fx-fv); 
                   2306:       q=(x-v)*(fx-fw); 
                   2307:       p=(x-v)*q-(x-w)*r; 
                   2308:       q=2.0*(q-r); 
                   2309:       if (q > 0.0) p = -p; 
                   2310:       q=fabs(q); 
                   2311:       etemp=e; 
                   2312:       e=d; 
                   2313:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
1.224     brouard  2314:                                d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
1.126     brouard  2315:       else { 
1.224     brouard  2316:                                d=p/q; 
                   2317:                                u=x+d; 
                   2318:                                if (u-a < tol2 || b-u < tol2) 
                   2319:                                        d=SIGN(tol1,xm-x); 
1.126     brouard  2320:       } 
                   2321:     } else { 
                   2322:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                   2323:     } 
                   2324:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                   2325:     fu=(*f)(u); 
                   2326:     if (fu <= fx) { 
                   2327:       if (u >= x) a=x; else b=x; 
                   2328:       SHFT(v,w,x,u) 
1.183     brouard  2329:       SHFT(fv,fw,fx,fu) 
                   2330:     } else { 
                   2331:       if (u < x) a=u; else b=u; 
                   2332:       if (fu <= fw || w == x) { 
1.224     brouard  2333:                                v=w; 
                   2334:                                w=u; 
                   2335:                                fv=fw; 
                   2336:                                fw=fu; 
1.183     brouard  2337:       } else if (fu <= fv || v == x || v == w) { 
1.224     brouard  2338:                                v=u; 
                   2339:                                fv=fu; 
1.183     brouard  2340:       } 
                   2341:     } 
1.126     brouard  2342:   } 
                   2343:   nrerror("Too many iterations in brent"); 
                   2344:   *xmin=x; 
                   2345:   return fx; 
                   2346: } 
                   2347: 
                   2348: /****************** mnbrak ***********************/
                   2349: 
                   2350: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                   2351:            double (*func)(double)) 
1.183     brouard  2352: { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
                   2353: the downhill direction (defined by the function as evaluated at the initial points) and returns
                   2354: new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
                   2355: values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
                   2356:    */
1.126     brouard  2357:   double ulim,u,r,q, dum;
                   2358:   double fu; 
1.187     brouard  2359: 
                   2360:   double scale=10.;
                   2361:   int iterscale=0;
                   2362: 
                   2363:   *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
                   2364:   *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
                   2365: 
                   2366: 
                   2367:   /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
                   2368:   /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
                   2369:   /*   *bx = *ax - (*ax - *bx)/scale; */
                   2370:   /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
                   2371:   /* } */
                   2372: 
1.126     brouard  2373:   if (*fb > *fa) { 
                   2374:     SHFT(dum,*ax,*bx,dum) 
1.183     brouard  2375:     SHFT(dum,*fb,*fa,dum) 
                   2376:   } 
1.126     brouard  2377:   *cx=(*bx)+GOLD*(*bx-*ax); 
                   2378:   *fc=(*func)(*cx); 
1.183     brouard  2379: #ifdef DEBUG
1.224     brouard  2380:   printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
                   2381:   fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
1.183     brouard  2382: #endif
1.224     brouard  2383:   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
1.126     brouard  2384:     r=(*bx-*ax)*(*fb-*fc); 
1.224     brouard  2385:     q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
1.126     brouard  2386:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
1.183     brouard  2387:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
                   2388:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
                   2389:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
1.126     brouard  2390:       fu=(*func)(u); 
1.163     brouard  2391: #ifdef DEBUG
                   2392:       /* f(x)=A(x-u)**2+f(u) */
                   2393:       double A, fparabu; 
                   2394:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   2395:       fparabu= *fa - A*(*ax-u)*(*ax-u);
1.224     brouard  2396:       printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
                   2397:       fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
1.183     brouard  2398:       /* And thus,it can be that fu > *fc even if fparabu < *fc */
                   2399:       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
                   2400:         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
                   2401:       /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
1.163     brouard  2402: #endif 
1.184     brouard  2403: #ifdef MNBRAKORIGINAL
1.183     brouard  2404: #else
1.191     brouard  2405: /*       if (fu > *fc) { */
                   2406: /* #ifdef DEBUG */
                   2407: /*       printf("mnbrak4  fu > fc \n"); */
                   2408: /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
                   2409: /* #endif */
                   2410: /*     /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
                   2411: /*     /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
                   2412: /*     dum=u; /\* Shifting c and u *\/ */
                   2413: /*     u = *cx; */
                   2414: /*     *cx = dum; */
                   2415: /*     dum = fu; */
                   2416: /*     fu = *fc; */
                   2417: /*     *fc =dum; */
                   2418: /*       } else { /\* end *\/ */
                   2419: /* #ifdef DEBUG */
                   2420: /*       printf("mnbrak3  fu < fc \n"); */
                   2421: /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
                   2422: /* #endif */
                   2423: /*     dum=u; /\* Shifting c and u *\/ */
                   2424: /*     u = *cx; */
                   2425: /*     *cx = dum; */
                   2426: /*     dum = fu; */
                   2427: /*     fu = *fc; */
                   2428: /*     *fc =dum; */
                   2429: /*       } */
1.224     brouard  2430: #ifdef DEBUGMNBRAK
                   2431:                 double A, fparabu; 
                   2432:      A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   2433:      fparabu= *fa - A*(*ax-u)*(*ax-u);
                   2434:      printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
                   2435:      fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
1.183     brouard  2436: #endif
1.191     brouard  2437:       dum=u; /* Shifting c and u */
                   2438:       u = *cx;
                   2439:       *cx = dum;
                   2440:       dum = fu;
                   2441:       fu = *fc;
                   2442:       *fc =dum;
1.183     brouard  2443: #endif
1.162     brouard  2444:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
1.183     brouard  2445: #ifdef DEBUG
1.224     brouard  2446:       printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
                   2447:       fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
1.183     brouard  2448: #endif
1.126     brouard  2449:       fu=(*func)(u); 
                   2450:       if (fu < *fc) { 
1.183     brouard  2451: #ifdef DEBUG
1.224     brouard  2452:                                printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
                   2453:                          fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
                   2454: #endif
                   2455:                          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                   2456:                                SHFT(*fb,*fc,fu,(*func)(u)) 
                   2457: #ifdef DEBUG
                   2458:                                        printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
1.183     brouard  2459: #endif
                   2460:       } 
1.162     brouard  2461:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
1.183     brouard  2462: #ifdef DEBUG
1.224     brouard  2463:       printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
                   2464:       fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
1.183     brouard  2465: #endif
1.126     brouard  2466:       u=ulim; 
                   2467:       fu=(*func)(u); 
1.183     brouard  2468:     } else { /* u could be left to b (if r > q parabola has a maximum) */
                   2469: #ifdef DEBUG
1.224     brouard  2470:       printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
                   2471:       fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
1.183     brouard  2472: #endif
1.126     brouard  2473:       u=(*cx)+GOLD*(*cx-*bx); 
                   2474:       fu=(*func)(u); 
1.224     brouard  2475: #ifdef DEBUG
                   2476:       printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
                   2477:       fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
                   2478: #endif
1.183     brouard  2479:     } /* end tests */
1.126     brouard  2480:     SHFT(*ax,*bx,*cx,u) 
1.183     brouard  2481:     SHFT(*fa,*fb,*fc,fu) 
                   2482: #ifdef DEBUG
1.224     brouard  2483:       printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
                   2484:       fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
1.183     brouard  2485: #endif
                   2486:   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
1.126     brouard  2487: } 
                   2488: 
                   2489: /*************** linmin ************************/
1.162     brouard  2490: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
                   2491: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
                   2492: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
                   2493: the value of func at the returned location p . This is actually all accomplished by calling the
                   2494: routines mnbrak and brent .*/
1.126     brouard  2495: int ncom; 
                   2496: double *pcom,*xicom;
                   2497: double (*nrfunc)(double []); 
                   2498:  
1.224     brouard  2499: #ifdef LINMINORIGINAL
1.126     brouard  2500: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
1.224     brouard  2501: #else
                   2502: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
                   2503: #endif
1.126     brouard  2504: { 
                   2505:   double brent(double ax, double bx, double cx, 
                   2506:               double (*f)(double), double tol, double *xmin); 
                   2507:   double f1dim(double x); 
                   2508:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                   2509:              double *fc, double (*func)(double)); 
                   2510:   int j; 
                   2511:   double xx,xmin,bx,ax; 
                   2512:   double fx,fb,fa;
1.187     brouard  2513: 
1.203     brouard  2514: #ifdef LINMINORIGINAL
                   2515: #else
                   2516:   double scale=10., axs, xxs; /* Scale added for infinity */
                   2517: #endif
                   2518:   
1.126     brouard  2519:   ncom=n; 
                   2520:   pcom=vector(1,n); 
                   2521:   xicom=vector(1,n); 
                   2522:   nrfunc=func; 
                   2523:   for (j=1;j<=n;j++) { 
                   2524:     pcom[j]=p[j]; 
1.202     brouard  2525:     xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
1.126     brouard  2526:   } 
1.187     brouard  2527: 
1.203     brouard  2528: #ifdef LINMINORIGINAL
                   2529:   xx=1.;
                   2530: #else
                   2531:   axs=0.0;
                   2532:   xxs=1.;
                   2533:   do{
                   2534:     xx= xxs;
                   2535: #endif
1.187     brouard  2536:     ax=0.;
                   2537:     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
                   2538:     /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
                   2539:     /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
                   2540:     /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
                   2541:     /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
                   2542:     /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
                   2543:     /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
1.203     brouard  2544: #ifdef LINMINORIGINAL
                   2545: #else
                   2546:     if (fx != fx){
1.224     brouard  2547:                        xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
                   2548:                        printf("|");
                   2549:                        fprintf(ficlog,"|");
1.203     brouard  2550: #ifdef DEBUGLINMIN
1.224     brouard  2551:                        printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
1.203     brouard  2552: #endif
                   2553:     }
1.224     brouard  2554:   }while(fx != fx && xxs > 1.e-5);
1.203     brouard  2555: #endif
                   2556:   
1.191     brouard  2557: #ifdef DEBUGLINMIN
                   2558:   printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
1.202     brouard  2559:   fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
1.191     brouard  2560: #endif
1.224     brouard  2561: #ifdef LINMINORIGINAL
                   2562: #else
1.317     brouard  2563:   if(fb == fx){ /* Flat function in the direction */
                   2564:     xmin=xx;
1.224     brouard  2565:     *flat=1;
1.317     brouard  2566:   }else{
1.224     brouard  2567:     *flat=0;
                   2568: #endif
                   2569:                /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
1.187     brouard  2570:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
                   2571:   /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
                   2572:   /* fmin = f(p[j] + xmin * xi[j]) */
                   2573:   /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
                   2574:   /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
1.126     brouard  2575: #ifdef DEBUG
1.224     brouard  2576:   printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
                   2577:   fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
                   2578: #endif
                   2579: #ifdef LINMINORIGINAL
                   2580: #else
                   2581:                        }
1.126     brouard  2582: #endif
1.191     brouard  2583: #ifdef DEBUGLINMIN
                   2584:   printf("linmin end ");
1.202     brouard  2585:   fprintf(ficlog,"linmin end ");
1.191     brouard  2586: #endif
1.126     brouard  2587:   for (j=1;j<=n;j++) { 
1.203     brouard  2588: #ifdef LINMINORIGINAL
                   2589:     xi[j] *= xmin; 
                   2590: #else
                   2591: #ifdef DEBUGLINMIN
                   2592:     if(xxs <1.0)
                   2593:       printf(" before xi[%d]=%12.8f", j,xi[j]);
                   2594: #endif
                   2595:     xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
                   2596: #ifdef DEBUGLINMIN
                   2597:     if(xxs <1.0)
                   2598:       printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
                   2599: #endif
                   2600: #endif
1.187     brouard  2601:     p[j] += xi[j]; /* Parameters values are updated accordingly */
1.126     brouard  2602:   } 
1.191     brouard  2603: #ifdef DEBUGLINMIN
1.203     brouard  2604:   printf("\n");
1.191     brouard  2605:   printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
1.202     brouard  2606:   fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
1.191     brouard  2607:   for (j=1;j<=n;j++) { 
1.202     brouard  2608:     printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
                   2609:     fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
                   2610:     if(j % ncovmodel == 0){
1.191     brouard  2611:       printf("\n");
1.202     brouard  2612:       fprintf(ficlog,"\n");
                   2613:     }
1.191     brouard  2614:   }
1.203     brouard  2615: #else
1.191     brouard  2616: #endif
1.126     brouard  2617:   free_vector(xicom,1,n); 
                   2618:   free_vector(pcom,1,n); 
                   2619: } 
                   2620: 
                   2621: 
                   2622: /*************** powell ************************/
1.162     brouard  2623: /*
1.317     brouard  2624: Minimization of a function func of n variables. Input consists in an initial starting point
                   2625: p[1..n] ; an initial matrix xi[1..n][1..n]  whose columns contain the initial set of di-
                   2626: rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value
                   2627: such that failure to decrease by more than this amount in one iteration signals doneness. On
1.162     brouard  2628: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
                   2629: function value at p , and iter is the number of iterations taken. The routine linmin is used.
                   2630:  */
1.224     brouard  2631: #ifdef LINMINORIGINAL
                   2632: #else
                   2633:        int *flatdir; /* Function is vanishing in that direction */
1.225     brouard  2634:        int flat=0, flatd=0; /* Function is vanishing in that direction */
1.224     brouard  2635: #endif
1.126     brouard  2636: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                   2637:            double (*func)(double [])) 
                   2638: { 
1.224     brouard  2639: #ifdef LINMINORIGINAL
                   2640:  void linmin(double p[], double xi[], int n, double *fret, 
1.126     brouard  2641:              double (*func)(double [])); 
1.224     brouard  2642: #else 
1.241     brouard  2643:  void linmin(double p[], double xi[], int n, double *fret,
                   2644:             double (*func)(double []),int *flat); 
1.224     brouard  2645: #endif
1.239     brouard  2646:  int i,ibig,j,jk,k; 
1.126     brouard  2647:   double del,t,*pt,*ptt,*xit;
1.181     brouard  2648:   double directest;
1.126     brouard  2649:   double fp,fptt;
                   2650:   double *xits;
                   2651:   int niterf, itmp;
1.349     brouard  2652:   int Bigter=0, nBigterf=1;
                   2653:   
1.126     brouard  2654:   pt=vector(1,n); 
                   2655:   ptt=vector(1,n); 
                   2656:   xit=vector(1,n); 
                   2657:   xits=vector(1,n); 
                   2658:   *fret=(*func)(p); 
                   2659:   for (j=1;j<=n;j++) pt[j]=p[j]; 
1.338     brouard  2660:   rcurr_time = time(NULL);
                   2661:   fp=(*fret); /* Initialisation */
1.126     brouard  2662:   for (*iter=1;;++(*iter)) { 
                   2663:     ibig=0; 
                   2664:     del=0.0; 
1.157     brouard  2665:     rlast_time=rcurr_time;
1.349     brouard  2666:     rlast_btime=rcurr_time;
1.157     brouard  2667:     /* (void) gettimeofday(&curr_time,&tzp); */
                   2668:     rcurr_time = time(NULL);  
                   2669:     curr_time = *localtime(&rcurr_time);
1.337     brouard  2670:     /* printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); */
                   2671:     /* fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); */
1.349     brouard  2672:     Bigter=(*iter - *iter % ncovmodel)/ncovmodel +1; /* Big iteration, i.e on ncovmodel cycle */
                   2673:     printf("\nPowell iter=%d Big Iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,Bigter,*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
                   2674:     fprintf(ficlog,"\nPowell iter=%d Big Iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,Bigter,*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
                   2675:     fprintf(ficrespow,"%d %d %.12f %d",*iter,Bigter, *fret,curr_time.tm_sec-start_time.tm_sec);
1.324     brouard  2676:     fp=(*fret); /* From former iteration or initial value */
1.192     brouard  2677:     for (i=1;i<=n;i++) {
1.126     brouard  2678:       fprintf(ficrespow," %.12lf", p[i]);
                   2679:     }
1.239     brouard  2680:     fprintf(ficrespow,"\n");fflush(ficrespow);
                   2681:     printf("\n#model=  1      +     age ");
                   2682:     fprintf(ficlog,"\n#model=  1      +     age ");
                   2683:     if(nagesqr==1){
1.241     brouard  2684:        printf("  + age*age  ");
                   2685:        fprintf(ficlog,"  + age*age  ");
1.239     brouard  2686:     }
                   2687:     for(j=1;j <=ncovmodel-2;j++){
                   2688:       if(Typevar[j]==0) {
                   2689:        printf("  +      V%d  ",Tvar[j]);
                   2690:        fprintf(ficlog,"  +      V%d  ",Tvar[j]);
                   2691:       }else if(Typevar[j]==1) {
                   2692:        printf("  +    V%d*age ",Tvar[j]);
                   2693:        fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
                   2694:       }else if(Typevar[j]==2) {
                   2695:        printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   2696:        fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.349     brouard  2697:       }else if(Typevar[j]==3) {
                   2698:        printf("  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   2699:        fprintf(ficlog,"  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.239     brouard  2700:       }
                   2701:     }
1.126     brouard  2702:     printf("\n");
1.239     brouard  2703: /*     printf("12   47.0114589    0.0154322   33.2424412    0.3279905    2.3731903  */
                   2704: /* 13  -21.5392400    0.1118147    1.2680506    1.2973408   -1.0663662  */
1.126     brouard  2705:     fprintf(ficlog,"\n");
1.239     brouard  2706:     for(i=1,jk=1; i <=nlstate; i++){
                   2707:       for(k=1; k <=(nlstate+ndeath); k++){
                   2708:        if (k != i) {
                   2709:          printf("%d%d ",i,k);
                   2710:          fprintf(ficlog,"%d%d ",i,k);
                   2711:          for(j=1; j <=ncovmodel; j++){
                   2712:            printf("%12.7f ",p[jk]);
                   2713:            fprintf(ficlog,"%12.7f ",p[jk]);
                   2714:            jk++; 
                   2715:          }
                   2716:          printf("\n");
                   2717:          fprintf(ficlog,"\n");
                   2718:        }
                   2719:       }
                   2720:     }
1.241     brouard  2721:     if(*iter <=3 && *iter >1){
1.157     brouard  2722:       tml = *localtime(&rcurr_time);
                   2723:       strcpy(strcurr,asctime(&tml));
                   2724:       rforecast_time=rcurr_time; 
1.126     brouard  2725:       itmp = strlen(strcurr);
                   2726:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
1.241     brouard  2727:        strcurr[itmp-1]='\0';
1.162     brouard  2728:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.157     brouard  2729:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.349     brouard  2730:       for(nBigterf=1;nBigterf<=31;nBigterf+=10){
                   2731:        niterf=nBigterf*ncovmodel;
                   2732:        /* rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); */
1.241     brouard  2733:        rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
                   2734:        forecast_time = *localtime(&rforecast_time);
                   2735:        strcpy(strfor,asctime(&forecast_time));
                   2736:        itmp = strlen(strfor);
                   2737:        if(strfor[itmp-1]=='\n')
                   2738:          strfor[itmp-1]='\0';
1.349     brouard  2739:        printf("   - if your program needs %d BIG iterations (%d iterations) to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",nBigterf, niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                   2740:        fprintf(ficlog,"   - if your program needs %d BIG iterations  (%d iterations) to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",nBigterf, niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
1.126     brouard  2741:       }
                   2742:     }
1.187     brouard  2743:     for (i=1;i<=n;i++) { /* For each direction i */
                   2744:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales */
1.126     brouard  2745:       fptt=(*fret); 
                   2746: #ifdef DEBUG
1.203     brouard  2747:       printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
                   2748:       fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
1.126     brouard  2749: #endif
1.203     brouard  2750:       printf("%d",i);fflush(stdout); /* print direction (parameter) i */
1.126     brouard  2751:       fprintf(ficlog,"%d",i);fflush(ficlog);
1.224     brouard  2752: #ifdef LINMINORIGINAL
1.188     brouard  2753:       linmin(p,xit,n,fret,func); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
1.224     brouard  2754: #else
                   2755:       linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
                   2756:                        flatdir[i]=flat; /* Function is vanishing in that direction i */
                   2757: #endif
                   2758:                        /* Outputs are fret(new point p) p is updated and xit rescaled */
1.188     brouard  2759:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
1.224     brouard  2760:                                /* because that direction will be replaced unless the gain del is small */
                   2761:                                /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
                   2762:                                /* Unless the n directions are conjugate some gain in the determinant may be obtained */
                   2763:                                /* with the new direction. */
                   2764:                                del=fabs(fptt-(*fret)); 
                   2765:                                ibig=i; 
1.126     brouard  2766:       } 
                   2767: #ifdef DEBUG
                   2768:       printf("%d %.12e",i,(*fret));
                   2769:       fprintf(ficlog,"%d %.12e",i,(*fret));
                   2770:       for (j=1;j<=n;j++) {
1.224     brouard  2771:                                xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
                   2772:                                printf(" x(%d)=%.12e",j,xit[j]);
                   2773:                                fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
1.126     brouard  2774:       }
                   2775:       for(j=1;j<=n;j++) {
1.225     brouard  2776:                                printf(" p(%d)=%.12e",j,p[j]);
                   2777:                                fprintf(ficlog," p(%d)=%.12e",j,p[j]);
1.126     brouard  2778:       }
                   2779:       printf("\n");
                   2780:       fprintf(ficlog,"\n");
                   2781: #endif
1.187     brouard  2782:     } /* end loop on each direction i */
                   2783:     /* Convergence test will use last linmin estimation (fret) and compare former iteration (fp) */ 
1.188     brouard  2784:     /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
1.187     brouard  2785:     /* New value of last point Pn is not computed, P(n-1) */
1.319     brouard  2786:     for(j=1;j<=n;j++) {
                   2787:       if(flatdir[j] >0){
                   2788:         printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                   2789:         fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
1.302     brouard  2790:       }
1.319     brouard  2791:       /* printf("\n"); */
                   2792:       /* fprintf(ficlog,"\n"); */
                   2793:     }
1.243     brouard  2794:     /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */
                   2795:     if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */
1.188     brouard  2796:       /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
                   2797:       /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
                   2798:       /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
                   2799:       /* decreased of more than 3.84  */
                   2800:       /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
                   2801:       /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
                   2802:       /* By adding 10 parameters more the gain should be 18.31 */
1.224     brouard  2803:                        
1.188     brouard  2804:       /* Starting the program with initial values given by a former maximization will simply change */
                   2805:       /* the scales of the directions and the directions, because the are reset to canonical directions */
                   2806:       /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
                   2807:       /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
1.126     brouard  2808: #ifdef DEBUG
                   2809:       int k[2],l;
                   2810:       k[0]=1;
                   2811:       k[1]=-1;
                   2812:       printf("Max: %.12e",(*func)(p));
                   2813:       fprintf(ficlog,"Max: %.12e",(*func)(p));
                   2814:       for (j=1;j<=n;j++) {
                   2815:        printf(" %.12e",p[j]);
                   2816:        fprintf(ficlog," %.12e",p[j]);
                   2817:       }
                   2818:       printf("\n");
                   2819:       fprintf(ficlog,"\n");
                   2820:       for(l=0;l<=1;l++) {
                   2821:        for (j=1;j<=n;j++) {
                   2822:          ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                   2823:          printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   2824:          fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   2825:        }
                   2826:        printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   2827:        fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   2828:       }
                   2829: #endif
                   2830: 
                   2831:       free_vector(xit,1,n); 
                   2832:       free_vector(xits,1,n); 
                   2833:       free_vector(ptt,1,n); 
                   2834:       free_vector(pt,1,n); 
                   2835:       return; 
1.192     brouard  2836:     } /* enough precision */ 
1.240     brouard  2837:     if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); 
1.181     brouard  2838:     for (j=1;j<=n;j++) { /* Computes the extrapolated point P_0 + 2 (P_n-P_0) */
1.126     brouard  2839:       ptt[j]=2.0*p[j]-pt[j]; 
                   2840:       xit[j]=p[j]-pt[j]; 
                   2841:       pt[j]=p[j]; 
                   2842:     } 
1.181     brouard  2843:     fptt=(*func)(ptt); /* f_3 */
1.224     brouard  2844: #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
                   2845:                if (*iter <=4) {
1.225     brouard  2846: #else
                   2847: #endif
1.224     brouard  2848: #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
1.192     brouard  2849: #else
1.161     brouard  2850:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
1.192     brouard  2851: #endif
1.162     brouard  2852:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
1.161     brouard  2853:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
1.162     brouard  2854:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
                   2855:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
                   2856:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
1.224     brouard  2857:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
                   2858:       /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
                   2859:       /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
1.161     brouard  2860:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
1.224     brouard  2861:       /*  Even if f3 <f1, directest can be negative and t >0 */
                   2862:       /* mu² and del² are equal when f3=f1 */
                   2863:                        /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
                   2864:                        /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
                   2865:                        /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
                   2866:                        /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
1.183     brouard  2867: #ifdef NRCORIGINAL
                   2868:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
                   2869: #else
                   2870:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
1.161     brouard  2871:       t= t- del*SQR(fp-fptt);
1.183     brouard  2872: #endif
1.202     brouard  2873:       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
1.161     brouard  2874: #ifdef DEBUG
1.181     brouard  2875:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
                   2876:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
1.161     brouard  2877:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   2878:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   2879:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   2880:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   2881:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   2882:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   2883: #endif
1.183     brouard  2884: #ifdef POWELLORIGINAL
                   2885:       if (t < 0.0) { /* Then we use it for new direction */
                   2886: #else
1.182     brouard  2887:       if (directest*t < 0.0) { /* Contradiction between both tests */
1.224     brouard  2888:                                printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
1.192     brouard  2889:         printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
1.224     brouard  2890:         fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
1.192     brouard  2891:         fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
                   2892:       } 
1.181     brouard  2893:       if (directest < 0.0) { /* Then we use it for new direction */
                   2894: #endif
1.191     brouard  2895: #ifdef DEBUGLINMIN
1.234     brouard  2896:        printf("Before linmin in direction P%d-P0\n",n);
                   2897:        for (j=1;j<=n;j++) {
                   2898:          printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2899:          fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2900:          if(j % ncovmodel == 0){
                   2901:            printf("\n");
                   2902:            fprintf(ficlog,"\n");
                   2903:          }
                   2904:        }
1.224     brouard  2905: #endif
                   2906: #ifdef LINMINORIGINAL
1.234     brouard  2907:        linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
1.224     brouard  2908: #else
1.234     brouard  2909:        linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
                   2910:        flatdir[i]=flat; /* Function is vanishing in that direction i */
1.191     brouard  2911: #endif
1.234     brouard  2912:        
1.191     brouard  2913: #ifdef DEBUGLINMIN
1.234     brouard  2914:        for (j=1;j<=n;j++) { 
                   2915:          printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2916:          fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   2917:          if(j % ncovmodel == 0){
                   2918:            printf("\n");
                   2919:            fprintf(ficlog,"\n");
                   2920:          }
                   2921:        }
1.224     brouard  2922: #endif
1.234     brouard  2923:        for (j=1;j<=n;j++) { 
                   2924:          xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
                   2925:          xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
                   2926:        }
1.224     brouard  2927: #ifdef LINMINORIGINAL
                   2928: #else
1.234     brouard  2929:        for (j=1, flatd=0;j<=n;j++) {
                   2930:          if(flatdir[j]>0)
                   2931:            flatd++;
                   2932:        }
                   2933:        if(flatd >0){
1.255     brouard  2934:          printf("%d flat directions: ",flatd);
                   2935:          fprintf(ficlog,"%d flat directions :",flatd);
1.234     brouard  2936:          for (j=1;j<=n;j++) { 
                   2937:            if(flatdir[j]>0){
                   2938:              printf("%d ",j);
                   2939:              fprintf(ficlog,"%d ",j);
                   2940:            }
                   2941:          }
                   2942:          printf("\n");
                   2943:          fprintf(ficlog,"\n");
1.319     brouard  2944: #ifdef FLATSUP
                   2945:           free_vector(xit,1,n); 
                   2946:           free_vector(xits,1,n); 
                   2947:           free_vector(ptt,1,n); 
                   2948:           free_vector(pt,1,n); 
                   2949:           return;
                   2950: #endif
1.234     brouard  2951:        }
1.191     brouard  2952: #endif
1.234     brouard  2953:        printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   2954:        fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   2955:        
1.126     brouard  2956: #ifdef DEBUG
1.234     brouard  2957:        printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   2958:        fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   2959:        for(j=1;j<=n;j++){
                   2960:          printf(" %lf",xit[j]);
                   2961:          fprintf(ficlog," %lf",xit[j]);
                   2962:        }
                   2963:        printf("\n");
                   2964:        fprintf(ficlog,"\n");
1.126     brouard  2965: #endif
1.192     brouard  2966:       } /* end of t or directest negative */
1.224     brouard  2967: #ifdef POWELLNOF3INFF1TEST
1.192     brouard  2968: #else
1.234     brouard  2969:       } /* end if (fptt < fp)  */
1.192     brouard  2970: #endif
1.225     brouard  2971: #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
1.234     brouard  2972:     } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
1.225     brouard  2973: #else
1.224     brouard  2974: #endif
1.234     brouard  2975:                } /* loop iteration */ 
1.126     brouard  2976: } 
1.234     brouard  2977:   
1.126     brouard  2978: /**** Prevalence limit (stable or period prevalence)  ****************/
1.234     brouard  2979:   
1.235     brouard  2980:   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
1.234     brouard  2981:   {
1.338     brouard  2982:     /**< Computes the prevalence limit in each live state at age x and for covariate combination ij . Nicely done
1.279     brouard  2983:      *   (and selected quantitative values in nres)
                   2984:      *  by left multiplying the unit
                   2985:      *  matrix by transitions matrix until convergence is reached with precision ftolpl 
                   2986:      * Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I
                   2987:      * Wx is row vector: population in state 1, population in state 2, population dead
                   2988:      * or prevalence in state 1, prevalence in state 2, 0
                   2989:      * newm is the matrix after multiplications, its rows are identical at a factor.
                   2990:      * Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl.
                   2991:      * Output is prlim.
                   2992:      * Initial matrix pimij 
                   2993:      */
1.206     brouard  2994:   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
                   2995:   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
                   2996:   /*  0,                   0                  , 1} */
                   2997:   /*
                   2998:    * and after some iteration: */
                   2999:   /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
                   3000:   /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
                   3001:   /*  0,                   0                  , 1} */
                   3002:   /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
                   3003:   /* {0.51571254859325999, 0.4842874514067399, */
                   3004:   /*  0.51326036147820708, 0.48673963852179264} */
                   3005:   /* If we start from prlim again, prlim tends to a constant matrix */
1.234     brouard  3006:     
1.332     brouard  3007:     int i, ii,j,k, k1;
1.209     brouard  3008:   double *min, *max, *meandiff, maxmax,sumnew=0.;
1.145     brouard  3009:   /* double **matprod2(); */ /* test */
1.218     brouard  3010:   double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
1.126     brouard  3011:   double **newm;
1.209     brouard  3012:   double agefin, delaymax=200. ; /* 100 Max number of years to converge */
1.203     brouard  3013:   int ncvloop=0;
1.288     brouard  3014:   int first=0;
1.169     brouard  3015:   
1.209     brouard  3016:   min=vector(1,nlstate);
                   3017:   max=vector(1,nlstate);
                   3018:   meandiff=vector(1,nlstate);
                   3019: 
1.218     brouard  3020:        /* Starting with matrix unity */
1.126     brouard  3021:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   3022:     for (j=1;j<=nlstate+ndeath;j++){
                   3023:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3024:     }
1.169     brouard  3025:   
                   3026:   cov[1]=1.;
                   3027:   
                   3028:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
1.202     brouard  3029:   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
1.126     brouard  3030:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
1.202     brouard  3031:     ncvloop++;
1.126     brouard  3032:     newm=savm;
                   3033:     /* Covariates have to be included here again */
1.138     brouard  3034:     cov[2]=agefin;
1.319     brouard  3035:      if(nagesqr==1){
                   3036:       cov[3]= agefin*agefin;
                   3037:      }
1.332     brouard  3038:      /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
                   3039:      /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
                   3040:      for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  3041:        if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */
1.332     brouard  3042:         cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
                   3043:        }else{
                   3044:         cov[2+nagesqr+k1]=precov[nres][k1];
                   3045:        }
                   3046:      }/* End of loop on model equation */
                   3047:      
                   3048: /* Start of old code (replaced by a loop on position in the model equation */
                   3049:     /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only of the model *\/ */
                   3050:     /*                         /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
                   3051:     /*   /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; *\/ */
                   3052:     /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])]; */
                   3053:     /*   /\* model = 1 +age + V1*V3 + age*V1 + V2 + V1 + age*V2 + V3 + V3*age + V1*V2  */
                   3054:     /*    * k                  1        2      3    4      5      6     7        8 */
                   3055:     /*    *cov[]   1    2      3        4      5    6      7      8     9       10 */
                   3056:     /*    *TypeVar[k]          2        1      0    0      1      0     1        2 */
                   3057:     /*    *Dummy[k]            0        2      0    0      2      0     2        0 */
                   3058:     /*    *Tvar[k]             4        1      2    1      2      3     3        5 */
                   3059:     /*    *nsd=3                              (1)  (2)           (3) */
                   3060:     /*    *TvarsD[nsd]                      [1]=2    1             3 */
                   3061:     /*    *TnsdVar                          [2]=2 [1]=1         [3]=3 */
                   3062:     /*    *TvarsDind[nsd](=k)               [1]=3 [2]=4         [3]=6 */
                   3063:     /*    *Tage[]                  [1]=1                  [2]=2      [3]=3 */
                   3064:     /*    *Tvard[]       [1][1]=1                                           [2][1]=1 */
                   3065:     /*    *                   [1][2]=3                                           [2][2]=2 */
                   3066:     /*    *Tprod[](=k)     [1]=1                                              [2]=8 */
                   3067:     /*    *TvarsDp(=Tvar)   [1]=1            [2]=2             [3]=3          [4]=5 */
                   3068:     /*    *TvarD (=k)       [1]=1            [2]=3 [3]=4       [3]=6          [4]=6 */
                   3069:     /*    *TvarsDpType */
                   3070:     /*    *si model= 1 + age + V3 + V2*age + V2 + V3*age */
                   3071:     /*    * nsd=1              (1)           (2) */
                   3072:     /*    *TvarsD[nsd]          3             2 */
                   3073:     /*    *TnsdVar           (3)=1          (2)=2 */
                   3074:     /*    *TvarsDind[nsd](=k)  [1]=1        [2]=3 */
                   3075:     /*    *Tage[]                  [1]=2           [2]= 3    */
                   3076:     /*    *\/ */
                   3077:     /*   /\* cov[++k1]=nbcode[TvarsD[k]][codtabm(ij,k)]; *\/ */
                   3078:     /*   /\* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
                   3079:     /* } */
                   3080:     /* for (k=1; k<=nsq;k++) { /\* For single quantitative varying covariates only of the model *\/ */
                   3081:     /*                         /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
                   3082:     /*   /\* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 *\/ */
                   3083:     /*   /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
                   3084:     /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][resultmodel[nres][k1]] */
                   3085:     /*   /\* cov[++k1]=Tqresult[nres][k];  *\/ */
                   3086:     /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
                   3087:     /* } */
                   3088:     /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
                   3089:     /*   if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
                   3090:     /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                   3091:     /*         /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
                   3092:     /*   } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
                   3093:     /*         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
                   3094:     /*         /\* cov[++k1]=Tqresult[nres][k];  *\/ */
                   3095:     /*   } */
                   3096:     /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   3097:     /* } */
                   3098:     /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
                   3099:     /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
                   3100:     /*   if(Dummy[Tvard[k][1]]==0){ */
                   3101:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   3102:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                   3103:     /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   3104:     /*         }else{ */
                   3105:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
                   3106:     /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
                   3107:     /*         } */
                   3108:     /*   }else{ */
                   3109:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   3110:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
                   3111:     /*           /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
                   3112:     /*         }else{ */
                   3113:     /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
                   3114:     /*           /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
                   3115:     /*         } */
                   3116:     /*   } */
                   3117:     /* } /\* End product without age *\/ */
                   3118: /* ENd of old code */
1.138     brouard  3119:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   3120:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   3121:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
1.145     brouard  3122:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   3123:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.319     brouard  3124:     /* age and covariate values of ij are in 'cov' */
1.142     brouard  3125:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
1.138     brouard  3126:     
1.126     brouard  3127:     savm=oldm;
                   3128:     oldm=newm;
1.209     brouard  3129: 
                   3130:     for(j=1; j<=nlstate; j++){
                   3131:       max[j]=0.;
                   3132:       min[j]=1.;
                   3133:     }
                   3134:     for(i=1;i<=nlstate;i++){
                   3135:       sumnew=0;
                   3136:       for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                   3137:       for(j=1; j<=nlstate; j++){ 
                   3138:        prlim[i][j]= newm[i][j]/(1-sumnew);
                   3139:        max[j]=FMAX(max[j],prlim[i][j]);
                   3140:        min[j]=FMIN(min[j],prlim[i][j]);
                   3141:       }
                   3142:     }
                   3143: 
1.126     brouard  3144:     maxmax=0.;
1.209     brouard  3145:     for(j=1; j<=nlstate; j++){
                   3146:       meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
                   3147:       maxmax=FMAX(maxmax,meandiff[j]);
                   3148:       /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
1.169     brouard  3149:     } /* j loop */
1.203     brouard  3150:     *ncvyear= (int)age- (int)agefin;
1.208     brouard  3151:     /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.126     brouard  3152:     if(maxmax < ftolpl){
1.209     brouard  3153:       /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
                   3154:       free_vector(min,1,nlstate);
                   3155:       free_vector(max,1,nlstate);
                   3156:       free_vector(meandiff,1,nlstate);
1.126     brouard  3157:       return prlim;
                   3158:     }
1.288     brouard  3159:   } /* agefin loop */
1.208     brouard  3160:     /* After some age loop it doesn't converge */
1.288     brouard  3161:   if(!first){
                   3162:     first=1;
                   3163:     printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
1.317     brouard  3164:     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
                   3165:   }else if (first >=1 && first <10){
                   3166:     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
                   3167:     first++;
                   3168:   }else if (first ==10){
                   3169:     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
                   3170:     printf("Warning: the stable prevalence dit not converge. This warning came too often, IMaCh will stop notifying, even in its log file. Look at the graphs to appreciate the non convergence.\n");
                   3171:     fprintf(ficlog,"Warning: the stable prevalence no convergence; too many cases, giving up noticing, even in log file\n");
                   3172:     first++;
1.288     brouard  3173:   }
                   3174: 
1.209     brouard  3175:   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
                   3176:   free_vector(min,1,nlstate);
                   3177:   free_vector(max,1,nlstate);
                   3178:   free_vector(meandiff,1,nlstate);
1.208     brouard  3179:   
1.169     brouard  3180:   return prlim; /* should not reach here */
1.126     brouard  3181: }
                   3182: 
1.217     brouard  3183: 
                   3184:  /**** Back Prevalence limit (stable or period prevalence)  ****************/
                   3185: 
1.218     brouard  3186:  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
                   3187:  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
1.242     brouard  3188:   double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres)
1.217     brouard  3189: {
1.264     brouard  3190:   /* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit
1.217     brouard  3191:      matrix by transitions matrix until convergence is reached with precision ftolpl */
                   3192:   /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
                   3193:   /* Wx is row vector: population in state 1, population in state 2, population dead */
                   3194:   /* or prevalence in state 1, prevalence in state 2, 0 */
                   3195:   /* newm is the matrix after multiplications, its rows are identical at a factor */
                   3196:   /* Initial matrix pimij */
                   3197:   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
                   3198:   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
                   3199:   /*  0,                   0                  , 1} */
                   3200:   /*
                   3201:    * and after some iteration: */
                   3202:   /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
                   3203:   /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
                   3204:   /*  0,                   0                  , 1} */
                   3205:   /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
                   3206:   /* {0.51571254859325999, 0.4842874514067399, */
                   3207:   /*  0.51326036147820708, 0.48673963852179264} */
                   3208:   /* If we start from prlim again, prlim tends to a constant matrix */
                   3209: 
1.332     brouard  3210:   int i, ii,j,k, k1;
1.247     brouard  3211:   int first=0;
1.217     brouard  3212:   double *min, *max, *meandiff, maxmax,sumnew=0.;
                   3213:   /* double **matprod2(); */ /* test */
                   3214:   double **out, cov[NCOVMAX+1], **bmij();
                   3215:   double **newm;
1.218     brouard  3216:   double        **dnewm, **doldm, **dsavm;  /* for use */
                   3217:   double        **oldm, **savm;  /* for use */
                   3218: 
1.217     brouard  3219:   double agefin, delaymax=200. ; /* 100 Max number of years to converge */
                   3220:   int ncvloop=0;
                   3221:   
                   3222:   min=vector(1,nlstate);
                   3223:   max=vector(1,nlstate);
                   3224:   meandiff=vector(1,nlstate);
                   3225: 
1.266     brouard  3226:   dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
                   3227:   oldm=oldms; savm=savms;
                   3228:   
                   3229:   /* Starting with matrix unity */
                   3230:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   3231:     for (j=1;j<=nlstate+ndeath;j++){
1.217     brouard  3232:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   3233:     }
                   3234:   
                   3235:   cov[1]=1.;
                   3236:   
                   3237:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   3238:   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
1.218     brouard  3239:   /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
1.288     brouard  3240:   /* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
                   3241:   for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */
1.217     brouard  3242:     ncvloop++;
1.218     brouard  3243:     newm=savm; /* oldm should be kept from previous iteration or unity at start */
                   3244:                /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
1.217     brouard  3245:     /* Covariates have to be included here again */
                   3246:     cov[2]=agefin;
1.319     brouard  3247:     if(nagesqr==1){
1.217     brouard  3248:       cov[3]= agefin*agefin;;
1.319     brouard  3249:     }
1.332     brouard  3250:     for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  3251:       if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */
1.332     brouard  3252:        cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
1.242     brouard  3253:       }else{
1.332     brouard  3254:        cov[2+nagesqr+k1]=precov[nres][k1];
1.242     brouard  3255:       }
1.332     brouard  3256:     }/* End of loop on model equation */
                   3257: 
                   3258: /* Old code */ 
                   3259: 
                   3260:     /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
                   3261:     /*                         /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
                   3262:     /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; */
                   3263:     /*   /\* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
                   3264:     /* } */
                   3265:     /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
                   3266:     /* /\*   /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
                   3267:     /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
                   3268:     /* /\*   /\\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\\/ *\/ */
                   3269:     /* /\* } *\/ */
                   3270:     /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
                   3271:     /*                         /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
                   3272:     /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
                   3273:     /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
                   3274:     /* } */
                   3275:     /* /\* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; *\/ */
                   3276:     /* /\* for (k=1; k<=cptcovprod;k++) /\\* Useless *\\/ *\/ */
                   3277:     /* /\*   /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\\/ *\/ */
                   3278:     /* /\*   cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   3279:     /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
                   3280:     /*   /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age *\\/ ERROR ???*\/ */
                   3281:     /*   if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
                   3282:     /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                   3283:     /*   } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
                   3284:     /*         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
                   3285:     /*   } */
                   3286:     /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   3287:     /* } */
                   3288:     /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
                   3289:     /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
                   3290:     /*   if(Dummy[Tvard[k][1]]==0){ */
                   3291:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   3292:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                   3293:     /*         }else{ */
                   3294:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
                   3295:     /*         } */
                   3296:     /*   }else{ */
                   3297:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   3298:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
                   3299:     /*         }else{ */
                   3300:     /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
                   3301:     /*         } */
                   3302:     /*   } */
                   3303:     /* } */
1.217     brouard  3304:     
                   3305:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   3306:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   3307:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                   3308:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   3309:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.218     brouard  3310:                /* ij should be linked to the correct index of cov */
                   3311:                /* age and covariate values ij are in 'cov', but we need to pass
                   3312:                 * ij for the observed prevalence at age and status and covariate
                   3313:                 * number:  prevacurrent[(int)agefin][ii][ij]
                   3314:                 */
                   3315:     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
                   3316:     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
                   3317:     out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
1.268     brouard  3318:     /* if((int)age == 86 || (int)age == 87){ */
1.266     brouard  3319:     /*   printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */
                   3320:     /*   for(i=1; i<=nlstate+ndeath; i++) { */
                   3321:     /*         printf("%d newm= ",i); */
                   3322:     /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3323:     /*           printf("%f ",newm[i][j]); */
                   3324:     /*         } */
                   3325:     /*         printf("oldm * "); */
                   3326:     /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3327:     /*           printf("%f ",oldm[i][j]); */
                   3328:     /*         } */
1.268     brouard  3329:     /*         printf(" bmmij "); */
1.266     brouard  3330:     /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3331:     /*           printf("%f ",pmmij[i][j]); */
                   3332:     /*         } */
                   3333:     /*         printf("\n"); */
                   3334:     /*   } */
                   3335:     /* } */
1.217     brouard  3336:     savm=oldm;
                   3337:     oldm=newm;
1.266     brouard  3338: 
1.217     brouard  3339:     for(j=1; j<=nlstate; j++){
                   3340:       max[j]=0.;
                   3341:       min[j]=1.;
                   3342:     }
                   3343:     for(j=1; j<=nlstate; j++){ 
                   3344:       for(i=1;i<=nlstate;i++){
1.234     brouard  3345:        /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
                   3346:        bprlim[i][j]= newm[i][j];
                   3347:        max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
                   3348:        min[i]=FMIN(min[i],bprlim[i][j]);
1.217     brouard  3349:       }
                   3350:     }
1.218     brouard  3351:                
1.217     brouard  3352:     maxmax=0.;
                   3353:     for(i=1; i<=nlstate; i++){
1.318     brouard  3354:       meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column, could be nan! */
1.217     brouard  3355:       maxmax=FMAX(maxmax,meandiff[i]);
                   3356:       /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
1.268     brouard  3357:     } /* i loop */
1.217     brouard  3358:     *ncvyear= -( (int)age- (int)agefin);
1.268     brouard  3359:     /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.217     brouard  3360:     if(maxmax < ftolpl){
1.220     brouard  3361:       /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.217     brouard  3362:       free_vector(min,1,nlstate);
                   3363:       free_vector(max,1,nlstate);
                   3364:       free_vector(meandiff,1,nlstate);
                   3365:       return bprlim;
                   3366:     }
1.288     brouard  3367:   } /* agefin loop */
1.217     brouard  3368:     /* After some age loop it doesn't converge */
1.288     brouard  3369:   if(!first){
1.247     brouard  3370:     first=1;
                   3371:     printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\
                   3372: Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
                   3373:   }
                   3374:   fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
1.217     brouard  3375: Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
                   3376:   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
                   3377:   free_vector(min,1,nlstate);
                   3378:   free_vector(max,1,nlstate);
                   3379:   free_vector(meandiff,1,nlstate);
                   3380:   
                   3381:   return bprlim; /* should not reach here */
                   3382: }
                   3383: 
1.126     brouard  3384: /*************** transition probabilities ***************/ 
                   3385: 
                   3386: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                   3387: {
1.138     brouard  3388:   /* According to parameters values stored in x and the covariate's values stored in cov,
1.266     brouard  3389:      computes the probability to be observed in state j (after stepm years) being in state i by appying the
1.138     brouard  3390:      model to the ncovmodel covariates (including constant and age).
                   3391:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   3392:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   3393:      ncth covariate in the global vector x is given by the formula:
                   3394:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   3395:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   3396:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   3397:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
1.266     brouard  3398:      Outputs ps[i][j] or probability to be observed in j being in i according to
1.138     brouard  3399:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
1.266     brouard  3400:      Sum on j ps[i][j] should equal to 1.
1.138     brouard  3401:   */
                   3402:   double s1, lnpijopii;
1.126     brouard  3403:   /*double t34;*/
1.164     brouard  3404:   int i,j, nc, ii, jj;
1.126     brouard  3405: 
1.223     brouard  3406:   for(i=1; i<= nlstate; i++){
                   3407:     for(j=1; j<i;j++){
                   3408:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   3409:        /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   3410:        lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   3411:        /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   3412:       }
                   3413:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
1.330     brouard  3414:       /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
1.223     brouard  3415:     }
                   3416:     for(j=i+1; j<=nlstate+ndeath;j++){
                   3417:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   3418:        /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   3419:        lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   3420:        /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                   3421:       }
                   3422:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
1.330     brouard  3423:       /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
1.223     brouard  3424:     }
                   3425:   }
1.218     brouard  3426:   
1.223     brouard  3427:   for(i=1; i<= nlstate; i++){
                   3428:     s1=0;
                   3429:     for(j=1; j<i; j++){
1.339     brouard  3430:       /* printf("debug1 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */
1.223     brouard  3431:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   3432:     }
                   3433:     for(j=i+1; j<=nlstate+ndeath; j++){
1.339     brouard  3434:       /* printf("debug2 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */
1.223     brouard  3435:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   3436:     }
                   3437:     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   3438:     ps[i][i]=1./(s1+1.);
                   3439:     /* Computing other pijs */
                   3440:     for(j=1; j<i; j++)
1.325     brouard  3441:       ps[i][j]= exp(ps[i][j])*ps[i][i];/* Bug valgrind */
1.223     brouard  3442:     for(j=i+1; j<=nlstate+ndeath; j++)
                   3443:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   3444:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   3445:   } /* end i */
1.218     brouard  3446:   
1.223     brouard  3447:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   3448:     for(jj=1; jj<= nlstate+ndeath; jj++){
                   3449:       ps[ii][jj]=0;
                   3450:       ps[ii][ii]=1;
                   3451:     }
                   3452:   }
1.294     brouard  3453: 
                   3454: 
1.223     brouard  3455:   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   3456:   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   3457:   /*   printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   3458:   /*   } */
                   3459:   /*   printf("\n "); */
                   3460:   /* } */
                   3461:   /* printf("\n ");printf("%lf ",cov[2]);*/
                   3462:   /*
                   3463:     for(i=1; i<= npar; i++) printf("%f ",x[i]);
1.218     brouard  3464:                goto end;*/
1.266     brouard  3465:   return ps; /* Pointer is unchanged since its call */
1.126     brouard  3466: }
                   3467: 
1.218     brouard  3468: /*************** backward transition probabilities ***************/ 
                   3469: 
                   3470:  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   3471: /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   3472:  double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
                   3473: {
1.302     brouard  3474:   /* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too.
1.266     brouard  3475:    * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij.
1.222     brouard  3476:    */
1.218     brouard  3477:   int i, ii, j,k;
1.222     brouard  3478:   
                   3479:   double **out, **pmij();
                   3480:   double sumnew=0.;
1.218     brouard  3481:   double agefin;
1.292     brouard  3482:   double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */
1.222     brouard  3483:   double **dnewm, **dsavm, **doldm;
                   3484:   double **bbmij;
                   3485:   
1.218     brouard  3486:   doldm=ddoldms; /* global pointers */
1.222     brouard  3487:   dnewm=ddnewms;
                   3488:   dsavm=ddsavms;
1.318     brouard  3489: 
                   3490:   /* Debug */
                   3491:   /* printf("Bmij ij=%d, cov[2}=%f\n", ij, cov[2]); */
1.222     brouard  3492:   agefin=cov[2];
1.268     brouard  3493:   /* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */
1.222     brouard  3494:   /* bmij *//* age is cov[2], ij is included in cov, but we need for
1.266     brouard  3495:      the observed prevalence (with this covariate ij) at beginning of transition */
                   3496:   /* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
1.268     brouard  3497: 
                   3498:   /* P_x */
1.325     brouard  3499:   pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm *//* Bug valgrind */
1.268     brouard  3500:   /* outputs pmmij which is a stochastic matrix in row */
                   3501: 
                   3502:   /* Diag(w_x) */
1.292     brouard  3503:   /* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */
1.268     brouard  3504:   sumnew=0.;
1.269     brouard  3505:   /*for (ii=1;ii<=nlstate+ndeath;ii++){*/
1.268     brouard  3506:   for (ii=1;ii<=nlstate;ii++){ /* Only on live states */
1.297     brouard  3507:     /* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */
1.268     brouard  3508:     sumnew+=prevacurrent[(int)agefin][ii][ij];
                   3509:   }
                   3510:   if(sumnew >0.01){  /* At least some value in the prevalence */
                   3511:     for (ii=1;ii<=nlstate+ndeath;ii++){
                   3512:       for (j=1;j<=nlstate+ndeath;j++)
1.269     brouard  3513:        doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0);
1.268     brouard  3514:     }
                   3515:   }else{
                   3516:     for (ii=1;ii<=nlstate+ndeath;ii++){
                   3517:       for (j=1;j<=nlstate+ndeath;j++)
                   3518:       doldm[ii][j]=(ii==j ? 1./nlstate : 0.0);
                   3519:     }
                   3520:     /* if(sumnew <0.9){ */
                   3521:     /*   printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */
                   3522:     /* } */
                   3523:   }
                   3524:   k3=0.0;  /* We put the last diagonal to 0 */
                   3525:   for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){
                   3526:       doldm[ii][ii]= k3;
                   3527:   }
                   3528:   /* End doldm, At the end doldm is diag[(w_i)] */
                   3529:   
1.292     brouard  3530:   /* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */
                   3531:   bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */
1.268     brouard  3532: 
1.292     brouard  3533:   /* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */
1.268     brouard  3534:   /* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */
1.222     brouard  3535:   for (j=1;j<=nlstate+ndeath;j++){
1.268     brouard  3536:     sumnew=0.;
1.222     brouard  3537:     for (ii=1;ii<=nlstate;ii++){
1.266     brouard  3538:       /* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */
1.268     brouard  3539:       sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */
1.222     brouard  3540:     } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
1.268     brouard  3541:     for (ii=1;ii<=nlstate+ndeath;ii++){
1.222     brouard  3542:        /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
1.268     brouard  3543:        /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
1.222     brouard  3544:        /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
1.268     brouard  3545:        /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
1.222     brouard  3546:        /* }else */
1.268     brouard  3547:       dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0);
                   3548:     } /*End ii */
                   3549:   } /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */
                   3550: 
1.292     brouard  3551:   ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */
1.268     brouard  3552:   /* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
1.222     brouard  3553:   /* end bmij */
1.266     brouard  3554:   return ps; /*pointer is unchanged */
1.218     brouard  3555: }
1.217     brouard  3556: /*************** transition probabilities ***************/ 
                   3557: 
1.218     brouard  3558: double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
1.217     brouard  3559: {
                   3560:   /* According to parameters values stored in x and the covariate's values stored in cov,
                   3561:      computes the probability to be observed in state j being in state i by appying the
                   3562:      model to the ncovmodel covariates (including constant and age).
                   3563:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   3564:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   3565:      ncth covariate in the global vector x is given by the formula:
                   3566:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   3567:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   3568:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   3569:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
                   3570:      Outputs ps[i][j] the probability to be observed in j being in j according to
                   3571:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
                   3572:   */
                   3573:   double s1, lnpijopii;
                   3574:   /*double t34;*/
                   3575:   int i,j, nc, ii, jj;
                   3576: 
1.234     brouard  3577:   for(i=1; i<= nlstate; i++){
                   3578:     for(j=1; j<i;j++){
                   3579:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   3580:        /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   3581:        lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   3582:        /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   3583:       }
                   3584:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   3585:       /*       printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   3586:     }
                   3587:     for(j=i+1; j<=nlstate+ndeath;j++){
                   3588:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   3589:        /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   3590:        lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   3591:        /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                   3592:       }
                   3593:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   3594:     }
                   3595:   }
                   3596:   
                   3597:   for(i=1; i<= nlstate; i++){
                   3598:     s1=0;
                   3599:     for(j=1; j<i; j++){
                   3600:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   3601:       /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   3602:     }
                   3603:     for(j=i+1; j<=nlstate+ndeath; j++){
                   3604:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   3605:       /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   3606:     }
                   3607:     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   3608:     ps[i][i]=1./(s1+1.);
                   3609:     /* Computing other pijs */
                   3610:     for(j=1; j<i; j++)
                   3611:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   3612:     for(j=i+1; j<=nlstate+ndeath; j++)
                   3613:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   3614:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   3615:   } /* end i */
                   3616:   
                   3617:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   3618:     for(jj=1; jj<= nlstate+ndeath; jj++){
                   3619:       ps[ii][jj]=0;
                   3620:       ps[ii][ii]=1;
                   3621:     }
                   3622:   }
1.296     brouard  3623:   /* Added for prevbcast */ /* Transposed matrix too */
1.234     brouard  3624:   for(jj=1; jj<= nlstate+ndeath; jj++){
                   3625:     s1=0.;
                   3626:     for(ii=1; ii<= nlstate+ndeath; ii++){
                   3627:       s1+=ps[ii][jj];
                   3628:     }
                   3629:     for(ii=1; ii<= nlstate; ii++){
                   3630:       ps[ii][jj]=ps[ii][jj]/s1;
                   3631:     }
                   3632:   }
                   3633:   /* Transposition */
                   3634:   for(jj=1; jj<= nlstate+ndeath; jj++){
                   3635:     for(ii=jj; ii<= nlstate+ndeath; ii++){
                   3636:       s1=ps[ii][jj];
                   3637:       ps[ii][jj]=ps[jj][ii];
                   3638:       ps[jj][ii]=s1;
                   3639:     }
                   3640:   }
                   3641:   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   3642:   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   3643:   /*   printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   3644:   /*   } */
                   3645:   /*   printf("\n "); */
                   3646:   /* } */
                   3647:   /* printf("\n ");printf("%lf ",cov[2]);*/
                   3648:   /*
                   3649:     for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   3650:     goto end;*/
                   3651:   return ps;
1.217     brouard  3652: }
                   3653: 
                   3654: 
1.126     brouard  3655: /**************** Product of 2 matrices ******************/
                   3656: 
1.145     brouard  3657: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
1.126     brouard  3658: {
                   3659:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   3660:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                   3661:   /* in, b, out are matrice of pointers which should have been initialized 
                   3662:      before: only the contents of out is modified. The function returns
                   3663:      a pointer to pointers identical to out */
1.145     brouard  3664:   int i, j, k;
1.126     brouard  3665:   for(i=nrl; i<= nrh; i++)
1.145     brouard  3666:     for(k=ncolol; k<=ncoloh; k++){
                   3667:       out[i][k]=0.;
                   3668:       for(j=ncl; j<=nch; j++)
                   3669:        out[i][k] +=in[i][j]*b[j][k];
                   3670:     }
1.126     brouard  3671:   return out;
                   3672: }
                   3673: 
                   3674: 
                   3675: /************* Higher Matrix Product ***************/
                   3676: 
1.235     brouard  3677: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
1.126     brouard  3678: {
1.336     brouard  3679:   /* Already optimized with precov.
                   3680:      Computes the transition matrix starting at age 'age' and dummies values in each resultline (loop on ij to find the corresponding combination) to over 
1.126     brouard  3681:      'nhstepm*hstepm*stepm' months (i.e. until
                   3682:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                   3683:      nhstepm*hstepm matrices. 
                   3684:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
                   3685:      (typically every 2 years instead of every month which is too big 
                   3686:      for the memory).
                   3687:      Model is determined by parameters x and covariates have to be 
                   3688:      included manually here. 
                   3689: 
                   3690:      */
                   3691: 
1.330     brouard  3692:   int i, j, d, h, k, k1;
1.131     brouard  3693:   double **out, cov[NCOVMAX+1];
1.126     brouard  3694:   double **newm;
1.187     brouard  3695:   double agexact;
1.214     brouard  3696:   double agebegin, ageend;
1.126     brouard  3697: 
                   3698:   /* Hstepm could be zero and should return the unit matrix */
                   3699:   for (i=1;i<=nlstate+ndeath;i++)
                   3700:     for (j=1;j<=nlstate+ndeath;j++){
                   3701:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   3702:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   3703:     }
                   3704:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   3705:   for(h=1; h <=nhstepm; h++){
                   3706:     for(d=1; d <=hstepm; d++){
                   3707:       newm=savm;
                   3708:       /* Covariates have to be included here again */
                   3709:       cov[1]=1.;
1.214     brouard  3710:       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
1.187     brouard  3711:       cov[2]=agexact;
1.319     brouard  3712:       if(nagesqr==1){
1.227     brouard  3713:        cov[3]= agexact*agexact;
1.319     brouard  3714:       }
1.330     brouard  3715:       /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
                   3716:       /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
                   3717:       for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  3718:        if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */
1.332     brouard  3719:          cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
                   3720:        }else{
                   3721:          cov[2+nagesqr+k1]=precov[nres][k1];
                   3722:        }
                   3723:       }/* End of loop on model equation */
                   3724:        /* Old code */ 
                   3725: /*     if( Dummy[k1]==0 && Typevar[k1]==0 ){ /\* Single dummy  *\/ */
                   3726: /* /\*    V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) *\/ */
                   3727: /* /\*       for (k=1; k<=nsd;k++) { /\\* For single dummy covariates only *\\/ *\/ */
                   3728: /* /\* /\\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\\/ *\/ */
                   3729: /*     /\* codtabm(ij,k)  (1 & (ij-1) >> (k-1))+1 *\/ */
                   3730: /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
                   3731: /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
                   3732: /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
                   3733: /* /\*    nsd         1   2                              3 *\/ /\* Counting single dummies covar fixed or tv *\/ */
                   3734: /* /\*TvarsD[nsd]     4   3                              1 *\/ /\* ID of single dummy cova fixed or timevary*\/ */
                   3735: /* /\*TvarsDind[k]    2   3                              9 *\/ /\* position K of single dummy cova *\/ */
                   3736: /*       /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];or [codtabm(ij,TnsdVar[TvarsD[k]] *\/ */
                   3737: /*       cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */
                   3738: /*       /\* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,TnsdVar[TvarsD[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,TnsdVar[TvarsD[k]])); *\/ */
                   3739: /*       printf("hpxij Dummy combi=%d k1=%d Tvar[%d]=V%d cov[2+%d+%d]=%lf resultmodel[nres][%d]=%d nres/nresult=%d/%d \n",ij,k1,k1, Tvar[k1],nagesqr,k1,cov[2+nagesqr+k1],k1,resultmodel[nres][k1],nres,nresult); */
                   3740: /*       printf("hpxij new Dummy precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
                   3741: /*     }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /\* Single quantitative variables  *\/ */
                   3742: /*       /\* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline *\/ */
                   3743: /*       cov[2+nagesqr+k1]=Tqresult[nres][resultmodel[nres][k1]];  */
                   3744: /*       /\* for (k=1; k<=nsq;k++) { /\\* For single varying covariates only *\\/ *\/ */
                   3745: /*       /\*   /\\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\\/ *\/ */
                   3746: /*       /\*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
                   3747: /*       printf("hPxij Quantitative k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
                   3748: /*       printf("hpxij new Quanti precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
                   3749: /*     }else if( Dummy[k1]==2 ){ /\* For dummy with age product *\/ */
                   3750: /*       /\* Tvar[k1] Variable in the age product age*V1 is 1 *\/ */
                   3751: /*       /\* [Tinvresult[nres][V1] is its value in the resultline nres *\/ */
                   3752: /*       cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvar[k1]]*cov[2]; */
                   3753: /*       printf("DhPxij Dummy with age k1=%d Tvar[%d]=%d TinvDoQresult[nres=%d][%d]=%.f age=%.2f,cov[2+%d+%d]=%.3f\n",k1,k1,Tvar[k1],nres,TinvDoQresult[nres][Tvar[k1]],cov[2],nagesqr,k1,cov[2+nagesqr+k1]); */
                   3754: /*       printf("hpxij new Dummy with age product precov[nres=%d][k1=%d]=%.4f * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
                   3755: 
                   3756: /*       /\* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];    *\/ */
                   3757: /*       /\* for (k=1; k<=cptcovage;k++){ /\\* For product with age V1+V1*age +V4 +age*V3 *\\/ *\/ */
                   3758: /*       /\* 1+2 Tage[1]=2 TVar[2]=1 Dummy[2]=2, Tage[2]=4 TVar[4]=3 Dummy[4]=3 quant*\/ */
                   3759: /*       /\* *\/ */
1.330     brouard  3760: /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
                   3761: /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
                   3762: /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
1.332     brouard  3763: /* /\*cptcovage=2                   1               2      *\/ */
                   3764: /* /\*Tage[k]=                      5               8      *\/  */
                   3765: /*     }else if( Dummy[k1]==3 ){ /\* For quant with age product *\/ */
                   3766: /*       cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];        */
                   3767: /*       printf("QhPxij Quant with age k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
                   3768: /*       printf("hpxij new Quanti with age product precov[nres=%d][k1=%d] * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
                   3769: /*       /\* if(Dummy[Tage[k]]== 2){ /\\* dummy with age *\\/ *\/ */
                   3770: /*       /\* /\\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\\* dummy with age *\\\/ *\\/ *\/ */
                   3771: /*       /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\\/ *\/ */
                   3772: /*       /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\\/ *\/ */
                   3773: /*       /\*   cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\/ */
                   3774: /*       /\*   printf("hPxij Age combi=%d k=%d cptcovage=%d Tage[%d]=%d Tvar[Tage[%d]]=V%d nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]]])]=%d nres=%d\n",ij,k,cptcovage,k,Tage[k],k,Tvar[Tage[k]], nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]])],nres); *\/ */
                   3775: /*       /\* } else if(Dummy[Tage[k]]== 3){ /\\* quantitative with age *\\/ *\/ */
                   3776: /*       /\*   cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; *\/ */
                   3777: /*       /\* } *\/ */
                   3778: /*       /\* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   3779: /*     }else if(Typevar[k1]==2 ){ /\* For product (not with age) *\/ */
                   3780: /* /\*       for (k=1; k<=cptcovprod;k++){ /\\*  For product without age *\\/ *\/ */
                   3781: /* /\* /\\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\\/ *\/ */
                   3782: /* /\* /\\*    k        1  2   3   4     5    6    7     8    9 *\\/ *\/ */
                   3783: /* /\* /\\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\\/ *\/ */
                   3784: /* /\* /\\*cptcovprod=1            1               2            *\\/ *\/ */
                   3785: /* /\* /\\*Tprod[]=                4               7            *\\/ *\/ */
                   3786: /* /\* /\\*Tvard[][1]             4               1             *\\/ *\/ */
                   3787: /* /\* /\\*Tvard[][2]               3               2           *\\/ *\/ */
1.330     brouard  3788:          
1.332     brouard  3789: /*       /\* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]=%d nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]=%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2],nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])],nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]); *\/ */
                   3790: /*       /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   3791: /*       cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];     */
                   3792: /*       printf("hPxij Prod ij=%d k1=%d  cov[2+%d+%d]=%.5f Tvard[%d][1]=V%d * Tvard[%d][2]=V%d ; TinvDoQresult[nres][Tvardk[k1][1]]=%.4f * TinvDoQresult[nres][Tvardk[k1][1]]=%.4f\n",ij,k1,nagesqr,k1,cov[2+nagesqr+k1],k1,Tvardk[k1][1], k1,Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][1]], TinvDoQresult[nres][Tvardk[k1][2]]); */
                   3793: /*       printf("hpxij new Product no age product precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
                   3794: 
                   3795: /*       /\* if(Dummy[Tvardk[k1][1]]==0){ *\/ */
                   3796: /*       /\*   if(Dummy[Tvardk[k1][2]]==0){ /\\* Product of dummies *\\/ *\/ */
                   3797: /*           /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   3798: /*           /\* cov[2+nagesqr+k1]=Tinvresult[nres][Tvardk[k1][1]] * Tinvresult[nres][Tvardk[k1][2]];   *\/ */
                   3799: /*           /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])]; *\/ */
                   3800: /*         /\* }else{ /\\* Product of dummy by quantitative *\\/ *\/ */
                   3801: /*           /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * Tqresult[nres][k]; *\/ */
                   3802: /*           /\* cov[2+nagesqr+k1]=Tresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]; *\/ */
                   3803: /*       /\*   } *\/ */
                   3804: /*       /\* }else{ /\\* Product of quantitative by...*\\/ *\/ */
                   3805: /*       /\*   if(Dummy[Tvard[k][2]]==0){  /\\* quant by dummy *\\/ *\/ */
                   3806: /*       /\*     /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][Tvard[k][1]]; *\\/ *\/ */
                   3807: /*       /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
                   3808: /*       /\*   }else{ /\\* Product of two quant *\\/ *\/ */
                   3809: /*       /\*     /\\* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\\/ *\/ */
                   3810: /*       /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
                   3811: /*       /\*   } *\/ */
                   3812: /*       /\* }/\\*end of products quantitative *\\/ *\/ */
                   3813: /*     }/\*end of products *\/ */
                   3814:       /* } /\* End of loop on model equation *\/ */
1.235     brouard  3815:       /* for (k=1; k<=cptcovn;k++)  */
                   3816:       /*       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
                   3817:       /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
                   3818:       /*       cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
                   3819:       /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
                   3820:       /*       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
1.227     brouard  3821:       
                   3822:       
1.126     brouard  3823:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   3824:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
1.319     brouard  3825:       /* right multiplication of oldm by the current matrix */
1.126     brouard  3826:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                   3827:                   pmij(pmmij,cov,ncovmodel,x,nlstate));
1.217     brouard  3828:       /* if((int)age == 70){ */
                   3829:       /*       printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
                   3830:       /*       for(i=1; i<=nlstate+ndeath; i++) { */
                   3831:       /*         printf("%d pmmij ",i); */
                   3832:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3833:       /*           printf("%f ",pmmij[i][j]); */
                   3834:       /*         } */
                   3835:       /*         printf(" oldm "); */
                   3836:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3837:       /*           printf("%f ",oldm[i][j]); */
                   3838:       /*         } */
                   3839:       /*         printf("\n"); */
                   3840:       /*       } */
                   3841:       /* } */
1.126     brouard  3842:       savm=oldm;
                   3843:       oldm=newm;
                   3844:     }
                   3845:     for(i=1; i<=nlstate+ndeath; i++)
                   3846:       for(j=1;j<=nlstate+ndeath;j++) {
1.267     brouard  3847:        po[i][j][h]=newm[i][j];
                   3848:        /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
1.126     brouard  3849:       }
1.128     brouard  3850:     /*printf("h=%d ",h);*/
1.126     brouard  3851:   } /* end h */
1.267     brouard  3852:   /*     printf("\n H=%d \n",h); */
1.126     brouard  3853:   return po;
                   3854: }
                   3855: 
1.217     brouard  3856: /************* Higher Back Matrix Product ***************/
1.218     brouard  3857: /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
1.267     brouard  3858: double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres )
1.217     brouard  3859: {
1.332     brouard  3860:   /* For dummy covariates given in each resultline (for historical, computes the corresponding combination ij),
                   3861:      computes the transition matrix starting at age 'age' over
1.217     brouard  3862:      'nhstepm*hstepm*stepm' months (i.e. until
1.218     brouard  3863:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
                   3864:      nhstepm*hstepm matrices.
                   3865:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step
                   3866:      (typically every 2 years instead of every month which is too big
1.217     brouard  3867:      for the memory).
1.218     brouard  3868:      Model is determined by parameters x and covariates have to be
1.266     brouard  3869:      included manually here. Then we use a call to bmij(x and cov)
                   3870:      The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output
1.222     brouard  3871:   */
1.217     brouard  3872: 
1.332     brouard  3873:   int i, j, d, h, k, k1;
1.266     brouard  3874:   double **out, cov[NCOVMAX+1], **bmij();
                   3875:   double **newm, ***newmm;
1.217     brouard  3876:   double agexact;
                   3877:   double agebegin, ageend;
1.222     brouard  3878:   double **oldm, **savm;
1.217     brouard  3879: 
1.266     brouard  3880:   newmm=po; /* To be saved */
                   3881:   oldm=oldms;savm=savms; /* Global pointers */
1.217     brouard  3882:   /* Hstepm could be zero and should return the unit matrix */
                   3883:   for (i=1;i<=nlstate+ndeath;i++)
                   3884:     for (j=1;j<=nlstate+ndeath;j++){
                   3885:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   3886:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   3887:     }
                   3888:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   3889:   for(h=1; h <=nhstepm; h++){
                   3890:     for(d=1; d <=hstepm; d++){
                   3891:       newm=savm;
                   3892:       /* Covariates have to be included here again */
                   3893:       cov[1]=1.;
1.271     brouard  3894:       agexact=age-( (h-1)*hstepm + (d)  )*stepm/YEARM; /* age just before transition, d or d-1? */
1.217     brouard  3895:       /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
1.318     brouard  3896:         /* Debug */
                   3897:       /* printf("hBxij age=%lf, agexact=%lf\n", age, agexact); */
1.217     brouard  3898:       cov[2]=agexact;
1.332     brouard  3899:       if(nagesqr==1){
1.222     brouard  3900:        cov[3]= agexact*agexact;
1.332     brouard  3901:       }
                   3902:       /** New code */
                   3903:       for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  3904:        if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */
1.332     brouard  3905:          cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
1.325     brouard  3906:        }else{
1.332     brouard  3907:          cov[2+nagesqr+k1]=precov[nres][k1];
1.325     brouard  3908:        }
1.332     brouard  3909:       }/* End of loop on model equation */
                   3910:       /** End of new code */
                   3911:   /** This was old code */
                   3912:       /* for (k=1; k<=nsd;k++){ /\* For single dummy covariates only *\//\* cptcovn error *\/ */
                   3913:       /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
                   3914:       /* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
                   3915:       /*       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])];/\* Bug valgrind *\/ */
                   3916:       /*   /\* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
                   3917:       /* } */
                   3918:       /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
                   3919:       /*       /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
                   3920:       /*       cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
                   3921:       /*       /\* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
                   3922:       /* } */
                   3923:       /* for (k=1; k<=cptcovage;k++){ /\* Should start at cptcovn+1 *\//\* For product with age *\/ */
                   3924:       /*       /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age error!!!*\\/ *\/ */
                   3925:       /*       if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
                   3926:       /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                   3927:       /*       } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
                   3928:       /*         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];  */
                   3929:       /*       } */
                   3930:       /*       /\* printf("hBxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   3931:       /* } */
                   3932:       /* for (k=1; k<=cptcovprod;k++){ /\* Useless because included in cptcovn *\/ */
                   3933:       /*       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                   3934:       /*       if(Dummy[Tvard[k][1]]==0){ */
                   3935:       /*         if(Dummy[Tvard[k][2]]==0){ */
                   3936:       /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]; */
                   3937:       /*         }else{ */
                   3938:       /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
                   3939:       /*         } */
                   3940:       /*       }else{ */
                   3941:       /*         if(Dummy[Tvard[k][2]]==0){ */
                   3942:       /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
                   3943:       /*         }else{ */
                   3944:       /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
                   3945:       /*         } */
                   3946:       /*       } */
                   3947:       /* }                      */
                   3948:       /* /\*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*\/ */
                   3949:       /* /\*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*\/ */
                   3950: /** End of old code */
                   3951:       
1.218     brouard  3952:       /* Careful transposed matrix */
1.266     brouard  3953:       /* age is in cov[2], prevacurrent at beginning of transition. */
1.218     brouard  3954:       /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
1.222     brouard  3955:       /*                                                1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
1.218     brouard  3956:       out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
1.325     brouard  3957:                   1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);/* Bug valgrind */
1.217     brouard  3958:       /* if((int)age == 70){ */
                   3959:       /*       printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
                   3960:       /*       for(i=1; i<=nlstate+ndeath; i++) { */
                   3961:       /*         printf("%d pmmij ",i); */
                   3962:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3963:       /*           printf("%f ",pmmij[i][j]); */
                   3964:       /*         } */
                   3965:       /*         printf(" oldm "); */
                   3966:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   3967:       /*           printf("%f ",oldm[i][j]); */
                   3968:       /*         } */
                   3969:       /*         printf("\n"); */
                   3970:       /*       } */
                   3971:       /* } */
                   3972:       savm=oldm;
                   3973:       oldm=newm;
                   3974:     }
                   3975:     for(i=1; i<=nlstate+ndeath; i++)
                   3976:       for(j=1;j<=nlstate+ndeath;j++) {
1.222     brouard  3977:        po[i][j][h]=newm[i][j];
1.268     brouard  3978:        /* if(h==nhstepm) */
                   3979:        /*   printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */
1.217     brouard  3980:       }
1.268     brouard  3981:     /* printf("h=%d %.1f ",h, agexact); */
1.217     brouard  3982:   } /* end h */
1.268     brouard  3983:   /* printf("\n H=%d nhs=%d \n",h, nhstepm); */
1.217     brouard  3984:   return po;
                   3985: }
                   3986: 
                   3987: 
1.162     brouard  3988: #ifdef NLOPT
                   3989:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
                   3990:   double fret;
                   3991:   double *xt;
                   3992:   int j;
                   3993:   myfunc_data *d2 = (myfunc_data *) pd;
                   3994: /* xt = (p1-1); */
                   3995:   xt=vector(1,n); 
                   3996:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
                   3997: 
                   3998:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
                   3999:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
                   4000:   printf("Function = %.12lf ",fret);
                   4001:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
                   4002:   printf("\n");
                   4003:  free_vector(xt,1,n);
                   4004:   return fret;
                   4005: }
                   4006: #endif
1.126     brouard  4007: 
                   4008: /*************** log-likelihood *************/
                   4009: double func( double *x)
                   4010: {
1.336     brouard  4011:   int i, ii, j, k, mi, d, kk, kf=0;
1.226     brouard  4012:   int ioffset=0;
1.339     brouard  4013:   int ipos=0,iposold=0,ncovv=0;
                   4014: 
1.340     brouard  4015:   double cotvarv, cotvarvold;
1.226     brouard  4016:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
                   4017:   double **out;
                   4018:   double lli; /* Individual log likelihood */
                   4019:   int s1, s2;
1.228     brouard  4020:   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
1.336     brouard  4021: 
1.226     brouard  4022:   double bbh, survp;
                   4023:   double agexact;
1.336     brouard  4024:   double agebegin, ageend;
1.226     brouard  4025:   /*extern weight */
                   4026:   /* We are differentiating ll according to initial status */
                   4027:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   4028:   /*for(i=1;i<imx;i++) 
                   4029:     printf(" %d\n",s[4][i]);
                   4030:   */
1.162     brouard  4031: 
1.226     brouard  4032:   ++countcallfunc;
1.162     brouard  4033: 
1.226     brouard  4034:   cov[1]=1.;
1.126     brouard  4035: 
1.226     brouard  4036:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.224     brouard  4037:   ioffset=0;
1.226     brouard  4038:   if(mle==1){
                   4039:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   4040:       /* Computes the values of the ncovmodel covariates of the model
                   4041:         depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
                   4042:         Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   4043:         to be observed in j being in i according to the model.
                   4044:       */
1.243     brouard  4045:       ioffset=2+nagesqr ;
1.233     brouard  4046:    /* Fixed */
1.345     brouard  4047:       for (kf=1; kf<=ncovf;kf++){ /* For each fixed covariate dummy or quant or prod */
1.319     brouard  4048:        /* # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi */
                   4049:         /*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   4050:        /*  TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
1.320     brouard  4051:         /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
1.336     brouard  4052:        cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (TvarFind[1]=6)*/
1.319     brouard  4053:        /* V1*V2 (7)  TvarFind[2]=7, TvarFind[3]=9 */
1.234     brouard  4054:       }
1.226     brouard  4055:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
1.319     brouard  4056:         is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
1.226     brouard  4057:         has been calculated etc */
                   4058:       /* For an individual i, wav[i] gives the number of effective waves */
                   4059:       /* We compute the contribution to Likelihood of each effective transition
                   4060:         mw[mi][i] is real wave of the mi th effectve wave */
                   4061:       /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
                   4062:         s2=s[mw[mi+1][i]][i];
1.341     brouard  4063:         And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] because now is moved after nvocol+nqv 
1.226     brouard  4064:         But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
                   4065:         meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
                   4066:       */
1.336     brouard  4067:       for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
                   4068:       /* Wave varying (but not age varying) */
1.339     brouard  4069:        /* for(k=1; k <= ncovv ; k++){ /\* Varying  covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3)  Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*\/ */
                   4070:        /*   /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? *\/ */
                   4071:        /*   cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */
                   4072:        /* } */
1.340     brouard  4073:        for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying  covariates (single and product but no age )*/
                   4074:          itv=TvarVV[ncovv]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate */
                   4075:          ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
1.345     brouard  4076:          if(FixedV[itv]!=0){ /* Not a fixed covariate */
1.341     brouard  4077:            cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i];  /* cotvar[wav][ncovcol+nqv+iv][i] */
1.340     brouard  4078:          }else{ /* fixed covariate */
1.345     brouard  4079:            cotvarv=covar[itv][i];  /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */
1.340     brouard  4080:          }
1.339     brouard  4081:          if(ipos!=iposold){ /* Not a product or first of a product */
1.340     brouard  4082:            cotvarvold=cotvarv;
                   4083:          }else{ /* A second product */
                   4084:            cotvarv=cotvarv*cotvarvold;
1.339     brouard  4085:          }
                   4086:          iposold=ipos;
1.340     brouard  4087:          cov[ioffset+ipos]=cotvarv;
1.234     brouard  4088:        }
1.339     brouard  4089:        /* for products of time varying to be done */
1.234     brouard  4090:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   4091:          for (j=1;j<=nlstate+ndeath;j++){
                   4092:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4093:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4094:          }
1.336     brouard  4095: 
                   4096:        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
                   4097:        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
1.234     brouard  4098:        for(d=0; d<dh[mi][i]; d++){
                   4099:          newm=savm;
                   4100:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   4101:          cov[2]=agexact;
                   4102:          if(nagesqr==1)
                   4103:            cov[3]= agexact*agexact;  /* Should be changed here */
1.349     brouard  4104:          /* for (kk=1; kk<=cptcovage;kk++) { */
                   4105:          /*   if(!FixedV[Tvar[Tage[kk]]]) */
                   4106:          /*     cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /\* Tage[kk] gives the data-covariate associated with age *\/ */
                   4107:          /*   else */
                   4108:          /*     cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/  */
                   4109:          /* } */
                   4110:          for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying  covariates with age including individual from products, product is computed dynamically */
                   4111:            itv=TvarAVVA[ncovva]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm  */
                   4112:            ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
                   4113:            if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */
                   4114:              cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i];  /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ 
                   4115:            }else{ /* fixed covariate */
                   4116:              cotvarv=covar[itv][i];  /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */
                   4117:            }
                   4118:            if(ipos!=iposold){ /* Not a product or first of a product */
                   4119:              cotvarvold=cotvarv;
                   4120:            }else{ /* A second product */
                   4121:              cotvarv=cotvarv*cotvarvold;
                   4122:            }
                   4123:            iposold=ipos;
                   4124:            cov[ioffset+ipos]=cotvarv*agexact;
                   4125:            /* For products */
1.234     brouard  4126:          }
1.349     brouard  4127:          
1.234     brouard  4128:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4129:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4130:          savm=oldm;
                   4131:          oldm=newm;
                   4132:        } /* end mult */
                   4133:        
                   4134:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   4135:        /* But now since version 0.9 we anticipate for bias at large stepm.
                   4136:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   4137:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   4138:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   4139:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   4140:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   4141:         * probability in order to take into account the bias as a fraction of the way
1.231     brouard  4142:                                 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   4143:                                 * -stepm/2 to stepm/2 .
                   4144:                                 * For stepm=1 the results are the same as for previous versions of Imach.
                   4145:                                 * For stepm > 1 the results are less biased than in previous versions. 
                   4146:                                 */
1.234     brouard  4147:        s1=s[mw[mi][i]][i];
                   4148:        s2=s[mw[mi+1][i]][i];
                   4149:        bbh=(double)bh[mi][i]/(double)stepm; 
                   4150:        /* bias bh is positive if real duration
                   4151:         * is higher than the multiple of stepm and negative otherwise.
                   4152:         */
                   4153:        /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                   4154:        if( s2 > nlstate){ 
                   4155:          /* i.e. if s2 is a death state and if the date of death is known 
                   4156:             then the contribution to the likelihood is the probability to 
                   4157:             die between last step unit time and current  step unit time, 
                   4158:             which is also equal to probability to die before dh 
                   4159:             minus probability to die before dh-stepm . 
                   4160:             In version up to 0.92 likelihood was computed
                   4161:             as if date of death was unknown. Death was treated as any other
                   4162:             health state: the date of the interview describes the actual state
                   4163:             and not the date of a change in health state. The former idea was
                   4164:             to consider that at each interview the state was recorded
                   4165:             (healthy, disable or death) and IMaCh was corrected; but when we
                   4166:             introduced the exact date of death then we should have modified
                   4167:             the contribution of an exact death to the likelihood. This new
                   4168:             contribution is smaller and very dependent of the step unit
                   4169:             stepm. It is no more the probability to die between last interview
                   4170:             and month of death but the probability to survive from last
                   4171:             interview up to one month before death multiplied by the
                   4172:             probability to die within a month. Thanks to Chris
                   4173:             Jackson for correcting this bug.  Former versions increased
                   4174:             mortality artificially. The bad side is that we add another loop
                   4175:             which slows down the processing. The difference can be up to 10%
                   4176:             lower mortality.
                   4177:          */
                   4178:          /* If, at the beginning of the maximization mostly, the
                   4179:             cumulative probability or probability to be dead is
                   4180:             constant (ie = 1) over time d, the difference is equal to
                   4181:             0.  out[s1][3] = savm[s1][3]: probability, being at state
                   4182:             s1 at precedent wave, to be dead a month before current
                   4183:             wave is equal to probability, being at state s1 at
                   4184:             precedent wave, to be dead at mont of the current
                   4185:             wave. Then the observed probability (that this person died)
                   4186:             is null according to current estimated parameter. In fact,
                   4187:             it should be very low but not zero otherwise the log go to
                   4188:             infinity.
                   4189:          */
1.183     brouard  4190: /* #ifdef INFINITYORIGINAL */
                   4191: /*         lli=log(out[s1][s2] - savm[s1][s2]); */
                   4192: /* #else */
                   4193: /*       if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
                   4194: /*         lli=log(mytinydouble); */
                   4195: /*       else */
                   4196: /*         lli=log(out[s1][s2] - savm[s1][s2]); */
                   4197: /* #endif */
1.226     brouard  4198:          lli=log(out[s1][s2] - savm[s1][s2]);
1.216     brouard  4199:          
1.226     brouard  4200:        } else if  ( s2==-1 ) { /* alive */
                   4201:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   4202:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   4203:          /*survp += out[s1][j]; */
                   4204:          lli= log(survp);
                   4205:        }
1.336     brouard  4206:        /* else if  (s2==-4) {  */
                   4207:        /*   for (j=3,survp=0. ; j<=nlstate; j++)   */
                   4208:        /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
                   4209:        /*   lli= log(survp);  */
                   4210:        /* }  */
                   4211:        /* else if  (s2==-5) {  */
                   4212:        /*   for (j=1,survp=0. ; j<=2; j++)   */
                   4213:        /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
                   4214:        /*   lli= log(survp);  */
                   4215:        /* }  */
1.226     brouard  4216:        else{
                   4217:          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   4218:          /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   4219:        } 
                   4220:        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   4221:        /*if(lli ==000.0)*/
1.340     brouard  4222:        /* printf("num[i], i=%d, bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
1.226     brouard  4223:        ipmx +=1;
                   4224:        sw += weight[i];
                   4225:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   4226:        /* if (lli < log(mytinydouble)){ */
                   4227:        /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
                   4228:        /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
                   4229:        /* } */
                   4230:       } /* end of wave */
                   4231:     } /* end of individual */
                   4232:   }  else if(mle==2){
                   4233:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.319     brouard  4234:       ioffset=2+nagesqr ;
                   4235:       for (k=1; k<=ncovf;k++)
                   4236:        cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];
1.226     brouard  4237:       for(mi=1; mi<= wav[i]-1; mi++){
1.319     brouard  4238:        for(k=1; k <= ncovv ; k++){
1.341     brouard  4239:          cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
1.319     brouard  4240:        }
1.226     brouard  4241:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   4242:          for (j=1;j<=nlstate+ndeath;j++){
                   4243:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4244:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4245:          }
                   4246:        for(d=0; d<=dh[mi][i]; d++){
                   4247:          newm=savm;
                   4248:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   4249:          cov[2]=agexact;
                   4250:          if(nagesqr==1)
                   4251:            cov[3]= agexact*agexact;
                   4252:          for (kk=1; kk<=cptcovage;kk++) {
                   4253:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   4254:          }
                   4255:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4256:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4257:          savm=oldm;
                   4258:          oldm=newm;
                   4259:        } /* end mult */
                   4260:       
                   4261:        s1=s[mw[mi][i]][i];
                   4262:        s2=s[mw[mi+1][i]][i];
                   4263:        bbh=(double)bh[mi][i]/(double)stepm; 
                   4264:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   4265:        ipmx +=1;
                   4266:        sw += weight[i];
                   4267:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   4268:       } /* end of wave */
                   4269:     } /* end of individual */
                   4270:   }  else if(mle==3){  /* exponential inter-extrapolation */
                   4271:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   4272:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   4273:       for(mi=1; mi<= wav[i]-1; mi++){
                   4274:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   4275:          for (j=1;j<=nlstate+ndeath;j++){
                   4276:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4277:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4278:          }
                   4279:        for(d=0; d<dh[mi][i]; d++){
                   4280:          newm=savm;
                   4281:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   4282:          cov[2]=agexact;
                   4283:          if(nagesqr==1)
                   4284:            cov[3]= agexact*agexact;
                   4285:          for (kk=1; kk<=cptcovage;kk++) {
1.340     brouard  4286:            if(!FixedV[Tvar[Tage[kk]]])
                   4287:              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
                   4288:            else
1.341     brouard  4289:              cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
1.226     brouard  4290:          }
                   4291:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4292:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4293:          savm=oldm;
                   4294:          oldm=newm;
                   4295:        } /* end mult */
                   4296:       
                   4297:        s1=s[mw[mi][i]][i];
                   4298:        s2=s[mw[mi+1][i]][i];
                   4299:        bbh=(double)bh[mi][i]/(double)stepm; 
                   4300:        lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   4301:        ipmx +=1;
                   4302:        sw += weight[i];
                   4303:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   4304:       } /* end of wave */
                   4305:     } /* end of individual */
                   4306:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
                   4307:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   4308:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   4309:       for(mi=1; mi<= wav[i]-1; mi++){
                   4310:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   4311:          for (j=1;j<=nlstate+ndeath;j++){
                   4312:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4313:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4314:          }
                   4315:        for(d=0; d<dh[mi][i]; d++){
                   4316:          newm=savm;
                   4317:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   4318:          cov[2]=agexact;
                   4319:          if(nagesqr==1)
                   4320:            cov[3]= agexact*agexact;
                   4321:          for (kk=1; kk<=cptcovage;kk++) {
                   4322:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   4323:          }
1.126     brouard  4324:        
1.226     brouard  4325:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4326:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4327:          savm=oldm;
                   4328:          oldm=newm;
                   4329:        } /* end mult */
                   4330:       
                   4331:        s1=s[mw[mi][i]][i];
                   4332:        s2=s[mw[mi+1][i]][i];
                   4333:        if( s2 > nlstate){ 
                   4334:          lli=log(out[s1][s2] - savm[s1][s2]);
                   4335:        } else if  ( s2==-1 ) { /* alive */
                   4336:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   4337:            survp += out[s1][j];
                   4338:          lli= log(survp);
                   4339:        }else{
                   4340:          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   4341:        }
                   4342:        ipmx +=1;
                   4343:        sw += weight[i];
                   4344:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.343     brouard  4345:        /* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
1.226     brouard  4346:       } /* end of wave */
                   4347:     } /* end of individual */
                   4348:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   4349:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   4350:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   4351:       for(mi=1; mi<= wav[i]-1; mi++){
                   4352:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   4353:          for (j=1;j<=nlstate+ndeath;j++){
                   4354:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4355:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4356:          }
                   4357:        for(d=0; d<dh[mi][i]; d++){
                   4358:          newm=savm;
                   4359:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   4360:          cov[2]=agexact;
                   4361:          if(nagesqr==1)
                   4362:            cov[3]= agexact*agexact;
                   4363:          for (kk=1; kk<=cptcovage;kk++) {
1.340     brouard  4364:            if(!FixedV[Tvar[Tage[kk]]])
                   4365:              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
                   4366:            else
1.341     brouard  4367:              cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
1.226     brouard  4368:          }
1.126     brouard  4369:        
1.226     brouard  4370:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4371:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4372:          savm=oldm;
                   4373:          oldm=newm;
                   4374:        } /* end mult */
                   4375:       
                   4376:        s1=s[mw[mi][i]][i];
                   4377:        s2=s[mw[mi+1][i]][i];
                   4378:        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   4379:        ipmx +=1;
                   4380:        sw += weight[i];
                   4381:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   4382:        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                   4383:       } /* end of wave */
                   4384:     } /* end of individual */
                   4385:   } /* End of if */
                   4386:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   4387:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   4388:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   4389:   return -l;
1.126     brouard  4390: }
                   4391: 
                   4392: /*************** log-likelihood *************/
                   4393: double funcone( double *x)
                   4394: {
1.228     brouard  4395:   /* Same as func but slower because of a lot of printf and if */
1.349     brouard  4396:   int i, ii, j, k, mi, d, kk, kv=0, kf=0;
1.228     brouard  4397:   int ioffset=0;
1.339     brouard  4398:   int ipos=0,iposold=0,ncovv=0;
                   4399: 
1.340     brouard  4400:   double cotvarv, cotvarvold;
1.131     brouard  4401:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
1.126     brouard  4402:   double **out;
                   4403:   double lli; /* Individual log likelihood */
                   4404:   double llt;
                   4405:   int s1, s2;
1.228     brouard  4406:   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
                   4407: 
1.126     brouard  4408:   double bbh, survp;
1.187     brouard  4409:   double agexact;
1.214     brouard  4410:   double agebegin, ageend;
1.126     brouard  4411:   /*extern weight */
                   4412:   /* We are differentiating ll according to initial status */
                   4413:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   4414:   /*for(i=1;i<imx;i++) 
                   4415:     printf(" %d\n",s[4][i]);
                   4416:   */
                   4417:   cov[1]=1.;
                   4418: 
                   4419:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.224     brouard  4420:   ioffset=0;
                   4421:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.336     brouard  4422:     /* Computes the values of the ncovmodel covariates of the model
                   4423:        depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
                   4424:        Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   4425:        to be observed in j being in i according to the model.
                   4426:     */
1.243     brouard  4427:     /* ioffset=2+nagesqr+cptcovage; */
                   4428:     ioffset=2+nagesqr;
1.232     brouard  4429:     /* Fixed */
1.224     brouard  4430:     /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
1.232     brouard  4431:     /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
1.349     brouard  4432:     for (kf=1; kf<=ncovf;kf++){ /*  V2  +  V3  +  V4  Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */
1.339     brouard  4433:       /* printf("Debug3 TvarFind[%d]=%d",kf, TvarFind[kf]); */
                   4434:       /* printf(" Tvar[TvarFind[kf]]=%d", Tvar[TvarFind[kf]]); */
                   4435:       /* printf(" i=%d covar[Tvar[TvarFind[kf]]][i]=%f\n",i,covar[Tvar[TvarFind[kf]]][i]); */
1.335     brouard  4436:       cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
1.232     brouard  4437: /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
                   4438: /*    cov[2+6]=covar[Tvar[6]][i];  */
                   4439: /*    cov[2+6]=covar[2][i]; V2  */
                   4440: /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
                   4441: /*    cov[2+7]=covar[Tvar[7]][i];  */
                   4442: /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
                   4443: /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
                   4444: /*    cov[2+9]=covar[Tvar[9]][i];  */
                   4445: /*    cov[2+9]=covar[1][i]; V1  */
1.225     brouard  4446:     }
1.336     brouard  4447:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
                   4448:         is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
                   4449:         has been calculated etc */
                   4450:       /* For an individual i, wav[i] gives the number of effective waves */
                   4451:       /* We compute the contribution to Likelihood of each effective transition
                   4452:         mw[mi][i] is real wave of the mi th effectve wave */
                   4453:       /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
                   4454:         s2=s[mw[mi+1][i]][i];
1.341     brouard  4455:         And the iv th varying covariate in the DATA is the cotvar[mw[mi+1][i]][ncovcol+nqv+iv][i]
1.336     brouard  4456:       */
                   4457:     /* This part may be useless now because everythin should be in covar */
1.232     brouard  4458:     /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
                   4459:     /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
                   4460:     /* } */
1.231     brouard  4461:     /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
                   4462:     /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
                   4463:     /* } */
1.225     brouard  4464:     
1.233     brouard  4465: 
                   4466:     for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
1.339     brouard  4467:       /* Wave varying (but not age varying) *//* V1+V3+age*V1+age*V3+V1*V3 with V4 tv and V5 tvq k= 1 to 5 and extra at V(5+1)=6 for V1*V3 */
                   4468:       /* for(k=1; k <= ncovv ; k++){ /\* Varying  covariates (single and product but no age )*\/ */
                   4469:       /*       /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; *\/ */
                   4470:       /*       cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */
                   4471:       /* } */
                   4472:       
                   4473:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
                   4474:       /* model V1+V3+age*V1+age*V3+V1*V3 */
                   4475:       /*  Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   4476:       /*  TvarVV[1]=V3 (first time varying in the model equation, TvarVV[2]=V1 (in V1*V3) TvarVV[3]=3(V3)  */
                   4477:       /* We need the position of the time varying or product in the model */
                   4478:       /* TvarVVind={2,5,5}, for V3 at position 2 and then the product V1*V3 is decomposed into V1 and V3 but at same position 5 */            
                   4479:       /* TvarVV gives the variable name */
1.340     brouard  4480:       /* Other example V1 + V3 + V5 + age*V1  + age*V3 + age*V5 + V1*V3  + V3*V5  + V1*V5 
                   4481:       *      k=         1   2     3     4         5        6        7       8        9
                   4482:       *  varying            1     2                                 3       4        5
                   4483:       *  ncovv              1     2                                3 4     5 6      7 8
1.343     brouard  4484:       * TvarVV[ncovv]      V3     5                                1 3     3 5      1 5
1.340     brouard  4485:       * TvarVVind           2     3                                7 7     8 8      9 9
                   4486:       * TvarFind[k]     1   0     0     0         0        0        0       0        0
                   4487:       */
1.345     brouard  4488:       /* Other model ncovcol=5 nqv=0 ntv=3 nqtv=0 nlstate=3
1.349     brouard  4489:        * V2 V3 V4 are fixed V6 V7 are timevarying so V8 and V5 are not in the model and product column will start at 9 Tvar[(v6*V2)6]=9
1.345     brouard  4490:        * FixedV[ncovcol+qv+ntv+nqtv]       V5
1.349     brouard  4491:        * 3           V1  V2     V3    V4   V5 V6     V7  V8 V3*V2 V7*V2  V6*V3 V7*V3 V6*V4 V7*V4
                   4492:        *             0   0      0      0    0  1      1   1  0, 0, 1,1,   1, 0, 1, 0, 1, 0, 1, 0}
                   4493:        * 3           0   0      0      0    0  1      1   1  0,     1      1    1      1    1}
                   4494:        * model=          V2  +  V3  +  V4  +  V6  +  V7  +  V6*V2  +  V7*V2  +  V6*V3  +  V7*V3  +  V6*V4  +  V7*V4  
                   4495:         *                +age*V2 +age*V3 +age*V4 +age*V6 + age*V7
                   4496:         *                +age*V6*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   4497:        * model2=          V2  +  V3  +  V4  +  V6  +  V7  +  V3*V2  +  V7*V2  +  V6*V3  +  V7*V3  +  V6*V4  +  V7*V4  
                   4498:         *                +age*V2 +age*V3 +age*V4 +age*V6 + age*V7
                   4499:         *                +age*V3*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   4500:        * model3=          V2  +  V3  +  V4  +  V6  +  V7  + age*V3*V2  +  V7*V2  +  V6*V3  +  V7*V3  +  V6*V4  +  V7*V4  
                   4501:         *                +age*V2 +age*V3 +age*V4 +age*V6 + age*V7
                   4502:         *                +V3*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   4503:        * kmodel           1     2      3      4      5        6         7         8         9        10        11    
                   4504:        *                  12       13      14      15       16
                   4505:        *                    17        18         19        20         21
                   4506:        * Tvar[kmodel]     2     3      4      6      7        9        10        11        12        13        14
                   4507:        *                   2       3        4       6        7
                   4508:        *                     9         11          12        13         14            
                   4509:        * cptcovage=5+5 total of covariates with age 
                   4510:        * Tage[cptcovage] age*V2=12      13      14      15       16
                   4511:        *1                   17            18         19        20         21 gives the position in model of covariates associated with age
                   4512:        *3 Tage[cptcovage] age*V3*V2=6  
                   4513:        *3                age*V2=12         13      14      15       16
                   4514:        *3                age*V6*V3=18      19    20   21
                   4515:        * Tvar[Tage[cptcovage]]    Tvar[12]=2      3      4       6         Tvar[16]=7(age*V7)
                   4516:        *     Tvar[17]age*V6*V2=9      Tvar[18]age*V6*V3=11  age*V7*V3=12         age*V6*V4=13        Tvar[21]age*V7*V4=14
                   4517:        * 2   Tvar[17]age*V3*V2=9      Tvar[18]age*V6*V3=11  age*V7*V3=12         age*V6*V4=13        Tvar[21]age*V7*V4=14
                   4518:        * 3 Tvar[Tage[cptcovage]]    Tvar[6]=9      Tvar[12]=2      3     4       6         Tvar[16]=7(age*V7)
                   4519:        * 3     Tvar[18]age*V6*V3=11  age*V7*V3=12         age*V6*V4=13        Tvar[21]age*V7*V4=14
                   4520:        * 3 Tage[cptcovage] age*V3*V2=6   age*V2=12 age*V3 13    14      15       16
                   4521:        *                    age*V6*V3=18         19        20         21 gives the position in model of covariates associated with age
                   4522:        * 3   Tvar[17]age*V3*V2=9      Tvar[18]age*V6*V3=11  age*V7*V3=12         age*V6*V4=13        Tvar[21]age*V7*V4=14
                   4523:        * Tvar=                {2, 3, 4, 6, 7,
                   4524:        *                       9, 10, 11, 12, 13, 14,
                   4525:        *              Tvar[12]=2, 3, 4, 6, 7,
                   4526:        *              Tvar[17]=9, 11, 12, 13, 14}
                   4527:        * Typevar[1]@21 = {0, 0, 0, 0, 0,
                   4528:        *                  2, 2, 2, 2, 2, 2,
                   4529:        * 3                3, 2, 2, 2, 2, 2,
                   4530:        *                  1, 1, 1, 1, 1, 
                   4531:        *                  3, 3, 3, 3, 3}
                   4532:        * 3                 2, 3, 3, 3, 3}
                   4533:        * p Tposprod[1]@21 {0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 1, 3, 4, 5, 6} Id of the prod at position k in the model
                   4534:        * p Tprod[1]@21 {6, 7, 8, 9, 10, 11, 0 <repeats 15 times>}
                   4535:        * 3 Tposprod[1]@21 {0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 1, 3, 4, 5, 6}
                   4536:        * 3 Tprod[1]@21 {17, 7, 8, 9, 10, 11, 0 <repeats 15 times>}
                   4537:        * cptcovprod=11 (6+5)
                   4538:        * FixedV[Tvar[Tage[cptcovage]]]]  FixedV[2]=0      FixedV[3]=0      0      1          (age*V7)Tvar[16]=1 FixedV[absolute] not [kmodel]
                   4539:        *   FixedV[Tvar[17]=FixedV[age*V6*V2]=FixedV[9]=1        1         1          1         1  
                   4540:        * 3 FixedV[Tvar[17]=FixedV[age*V3*V2]=FixedV[9]=0        [11]=1         1          1         1  
                   4541:        * FixedV[]          V1=0     V2=0   V3=0  v4=0    V5=0  V6=1    V7=1 v8=1  OK then model dependent
                   4542:        *                   9=1  [V7*V2]=[10]=1 11=1  12=1  13=1  14=1
                   4543:        * 3                 9=0  [V7*V2]=[10]=1 11=1  12=1  13=1  14=1
                   4544:        * cptcovdageprod=5  for gnuplot printing
                   4545:        * cptcovprodvage=6 
                   4546:        * ncova=15           1        2       3       4       5
                   4547:        *                      6 7        8 9      10 11        12 13     14 15
                   4548:        * TvarA              2        3       4       6       7
                   4549:        *                      6 2        6 7       7 3          6 4       7 4
                   4550:        * TvaAind             12 12      13 13     14 14      15 15       16 16        
1.345     brouard  4551:        * ncovf            1     2      3
1.349     brouard  4552:        *                                    V6       V7      V6*V2     V7*V2     V6*V3     V7*V3     V6*V4     V7*V4
                   4553:        * ncovvt=14                            1      2        3 4       5 6       7 8       9 10     11 12     13 14     
                   4554:        * TvarVV[1]@14 = itv               {V6=6,     7, V6*V2=6, 2,     7, 2,     6, 3,     7, 3,     6, 4,     7, 4}
                   4555:        * TvarVVind[1]@14=                    {4,     5,       6, 6,     7, 7,     8, 8,      9, 9,   10, 10,   11, 11}
                   4556:        * 3 ncovvt=12                        V6       V7      V7*V2     V6*V3     V7*V3     V6*V4     V7*V4
                   4557:        * 3 TvarVV[1]@12 = itv                {6,     7, V7*V2=7, 2,     6, 3,     7, 3,     6, 4,     7, 4}
                   4558:        * 3                                    1      2        3  4      5  6      7  8      9 10     11 12
                   4559:        * TvarVVind[1]@12=         {V6 is in k=4,     5,  7,(4isV2)=7,   8, 8,      9, 9,   10,10,    11,11}TvarVVind[12]=k=11
                   4560:        * TvarV              6, 7, 9, 10, 11, 12, 13, 14
                   4561:        * 3 cptcovprodvage=6
                   4562:        * 3 ncovta=15    +age*V3*V2+age*V2+agev3+ageV4 +age*V6 + age*V7 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   4563:        * 3 TvarAVVA[1]@15= itva 3 2    2      3    4        6       7        6 3         7 3         6 4         7 4 
                   4564:        * 3 ncovta             1 2      3      4    5        6       7        8 9       10 11       12 13        14 15
1.354     brouard  4565:        *?TvarAVVAind[1]@15= V3 is in k=2 1 1  2    3        4       5        4,2         5,2,      4,3           5 3}TvarVVAind[]
1.349     brouard  4566:        * TvarAVVAind[1]@15= V3 is in k=6 6 12  13   14      15      16       18 18       19,19,     20,20        21,21}TvarVVAind[]
                   4567:        * 3 ncovvta=10     +age*V6 + age*V7 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   4568:        * 3 we want to compute =cotvar[mw[mi][i]][TvarVVA[ncovva]][i] at position TvarVVAind[ncovva]
                   4569:        * 3 TvarVVA[1]@10= itva   6       7        6 3         7 3         6 4         7 4 
                   4570:        * 3 ncovva                1       2        3 4         5 6         7 8         9 10
                   4571:        * TvarVVAind[1]@10= V6 is in k=4  5        8,8         9, 9,      10,10        11 11}TvarVVAind[]
                   4572:        * TvarVVAind[1]@10=       15       16     18,18        19,19,      20,20        21 21}TvarVVAind[]
                   4573:        * TvarVA              V3*V2=6 6 , 1, 2, 11, 12, 13, 14
1.345     brouard  4574:        * TvarFind[1]@14= {1,    2,     3,     0 <repeats 12 times>}
1.349     brouard  4575:        * Tvar[1]@21=     {2,    3,     4,    6,      7,      9,      10,        11,       12,      13,       14,
                   4576:        *                   2, 3, 4, 6, 7,
                   4577:        *                     6, 8, 9, 10, 11}
1.345     brouard  4578:        * TvarFind[itv]                        0      0       0
                   4579:        * FixedV[itv]                          1      1       1  0      1 0       1 0       1 0       0
1.354     brouard  4580:        *? FixedV[itv]                          1      1       1  0      1 0       1 0       1 0      1 0     1 0
1.345     brouard  4581:        * Tvar[TvarFind[ncovf]]=[1]=2 [2]=3 [4]=4
                   4582:        * Tvar[TvarFind[itv]]                [0]=?      ?ncovv 1 à ncovvt]
                   4583:        *   Not a fixed cotvar[mw][itv][i]     6       7      6  2      7, 2,     6, 3,     7, 3,     6, 4,     7, 4}
1.349     brouard  4584:        *   fixed covar[itv]                  [6]     [7]    [6][2] 
1.345     brouard  4585:        */
                   4586: 
1.349     brouard  4587:       for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /*  V6       V7      V7*V2     V6*V3     V7*V3     V6*V4     V7*V4 Time varying  covariates (single and extended product but no age) including individual from products, product is computed dynamically */
                   4588:        itv=TvarVV[ncovv]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate, or fixed covariate of a varying product after exploding product Vn*Vm into Vn and then Vm  */
1.340     brouard  4589:        ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
1.345     brouard  4590:        /* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */
                   4591:        if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */
1.354     brouard  4592:          /* printf("DEBUG ncovv=%d, Varying TvarVV[ncovv]=%d\n",ncovv, TvarVV[ncovv]); */
1.345     brouard  4593:          cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i];  /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ 
1.354     brouard  4594:          /* printf("DEBUG Varying cov[ioffset+ipos=%d]=%g \n",ioffset+ipos,cotvarv); */
1.340     brouard  4595:        }else{ /* fixed covariate */
1.345     brouard  4596:          /* cotvarv=covar[Tvar[TvarFind[itv]]][i];  /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */
1.354     brouard  4597:          /* printf("DEBUG ncovv=%d, Fixed TvarVV[ncovv]=%d\n",ncovv, TvarVV[ncovv]); */
1.349     brouard  4598:          cotvarv=covar[itv][i];  /* Good: In V6*V3, 3 is fixed at position of the data */
1.354     brouard  4599:          /* printf("DEBUG Fixed cov[ioffset+ipos=%d]=%g \n",ioffset+ipos,cotvarv); */
1.340     brouard  4600:        }
1.339     brouard  4601:        if(ipos!=iposold){ /* Not a product or first of a product */
1.340     brouard  4602:          cotvarvold=cotvarv;
                   4603:        }else{ /* A second product */
                   4604:          cotvarv=cotvarv*cotvarvold;
1.339     brouard  4605:        }
                   4606:        iposold=ipos;
1.340     brouard  4607:        cov[ioffset+ipos]=cotvarv;
1.354     brouard  4608:        /* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */
1.339     brouard  4609:        /* For products */
                   4610:       }
                   4611:       /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates single *\/ */
                   4612:       /*       iv=TvarVDind[itv]; /\* iv, position in the model equation of time varying covariate itv *\/ */
                   4613:       /*       /\*         "V1+V3+age*V1+age*V3+V1*V3" with V3 time varying *\/ */
                   4614:       /*       /\*           1  2   3      4      5                         *\/ */
                   4615:       /*       /\*itv           1                                           *\/ */
                   4616:       /*       /\* TvarVInd[1]= 2                                           *\/ */
                   4617:       /*       /\* iv= Tvar[Tmodelind[itv]]-ncovcol-nqv;  /\\* Counting the # varying covariate from 1 to ntveff *\\/ *\/ */
                   4618:       /*       /\* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; *\/ */
                   4619:       /*       /\* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; *\/ */
                   4620:       /*       /\* k=ioffset-2-nagesqr-cptcovage+itv; /\\* position in simple model *\\/ *\/ */
                   4621:       /*       /\* cov[ioffset+iv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; *\/ */
                   4622:       /*       cov[ioffset+iv]=cotvar[mw[mi][i]][itv][i]; */
                   4623:       /*       /\* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][itv][i]=%f\n", i, mi, itv, TvarVDind[itv],cotvar[mw[mi][i]][itv][i]); *\/ */
                   4624:       /* } */
1.232     brouard  4625:       /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
1.242     brouard  4626:       /*       iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
                   4627:       /*       /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
                   4628:       /*       cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
1.232     brouard  4629:       /* } */
1.126     brouard  4630:       for (ii=1;ii<=nlstate+ndeath;ii++)
1.242     brouard  4631:        for (j=1;j<=nlstate+ndeath;j++){
                   4632:          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4633:          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4634:        }
1.214     brouard  4635:       
                   4636:       agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
                   4637:       ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
                   4638:       for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
1.247     brouard  4639:       /* for(d=0; d<=0; d++){  /\* Delay between two effective waves Only one matrix to speed up*\/ */
1.242     brouard  4640:        /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   4641:          and mw[mi+1][i]. dh depends on stepm.*/
                   4642:        newm=savm;
1.247     brouard  4643:        agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;  /* Here d is needed */
1.242     brouard  4644:        cov[2]=agexact;
                   4645:        if(nagesqr==1)
                   4646:          cov[3]= agexact*agexact;
1.349     brouard  4647:        for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying  covariates with age including individual from products, product is computed dynamically */
                   4648:          itv=TvarAVVA[ncovva]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm  */
                   4649:          ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
                   4650:          /* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */
                   4651:          if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */
                   4652:            /* printf("DEBUG  ncovva=%d, Varying TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */
                   4653:            cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i];  /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ 
                   4654:          }else{ /* fixed covariate */
                   4655:            /* cotvarv=covar[Tvar[TvarFind[itv]]][i];  /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */
                   4656:            /* printf("DEBUG ncovva=%d, Fixed TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */
                   4657:            cotvarv=covar[itv][i];  /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */
                   4658:          }
                   4659:          if(ipos!=iposold){ /* Not a product or first of a product */
                   4660:            cotvarvold=cotvarv;
                   4661:          }else{ /* A second product */
                   4662:            /* printf("DEBUG * \n"); */
                   4663:            cotvarv=cotvarv*cotvarvold;
                   4664:          }
                   4665:          iposold=ipos;
                   4666:          /* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */
                   4667:          cov[ioffset+ipos]=cotvarv*agexact;
                   4668:          /* For products */
1.242     brouard  4669:        }
1.349     brouard  4670: 
1.242     brouard  4671:        /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
                   4672:        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   4673:        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   4674:                     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   4675:        /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                   4676:        /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                   4677:        savm=oldm;
                   4678:        oldm=newm;
1.126     brouard  4679:       } /* end mult */
1.336     brouard  4680:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   4681:        /* But now since version 0.9 we anticipate for bias at large stepm.
                   4682:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   4683:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   4684:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   4685:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   4686:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   4687:         * probability in order to take into account the bias as a fraction of the way
                   4688:                                 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   4689:                                 * -stepm/2 to stepm/2 .
                   4690:                                 * For stepm=1 the results are the same as for previous versions of Imach.
                   4691:                                 * For stepm > 1 the results are less biased than in previous versions. 
                   4692:                                 */
1.126     brouard  4693:       s1=s[mw[mi][i]][i];
                   4694:       s2=s[mw[mi+1][i]][i];
1.217     brouard  4695:       /* if(s2==-1){ */
1.268     brouard  4696:       /*       printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */
1.217     brouard  4697:       /*       /\* exit(1); *\/ */
                   4698:       /* } */
1.126     brouard  4699:       bbh=(double)bh[mi][i]/(double)stepm; 
                   4700:       /* bias is positive if real duration
                   4701:        * is higher than the multiple of stepm and negative otherwise.
                   4702:        */
                   4703:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
1.242     brouard  4704:        lli=log(out[s1][s2] - savm[s1][s2]);
1.216     brouard  4705:       } else if  ( s2==-1 ) { /* alive */
1.242     brouard  4706:        for (j=1,survp=0. ; j<=nlstate; j++) 
                   4707:          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   4708:        lli= log(survp);
1.126     brouard  4709:       }else if (mle==1){
1.242     brouard  4710:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
1.126     brouard  4711:       } else if(mle==2){
1.242     brouard  4712:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
1.126     brouard  4713:       } else if(mle==3){  /* exponential inter-extrapolation */
1.242     brouard  4714:        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
1.126     brouard  4715:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
1.242     brouard  4716:        lli=log(out[s1][s2]); /* Original formula */
1.136     brouard  4717:       } else{  /* mle=0 back to 1 */
1.242     brouard  4718:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   4719:        /*lli=log(out[s1][s2]); */ /* Original formula */
1.126     brouard  4720:       } /* End of if */
                   4721:       ipmx +=1;
                   4722:       sw += weight[i];
                   4723:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.342     brouard  4724:       /* Printing covariates values for each contribution for checking */
1.343     brouard  4725:       /* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
1.126     brouard  4726:       if(globpr){
1.246     brouard  4727:        fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
1.126     brouard  4728:  %11.6f %11.6f %11.6f ", \
1.242     brouard  4729:                num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
1.268     brouard  4730:                2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2]));
1.343     brouard  4731:        /*      printf("%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ */
                   4732:        /* %11.6f %11.6f %11.6f ", \ */
                   4733:        /*              num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, */
                   4734:        /*              2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
1.242     brouard  4735:        for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                   4736:          llt +=ll[k]*gipmx/gsw;
                   4737:          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
1.335     brouard  4738:          /* printf(" %10.6f",-ll[k]*gipmx/gsw); */
1.242     brouard  4739:        }
1.343     brouard  4740:        fprintf(ficresilk," %10.6f ", -llt);
1.335     brouard  4741:        /* printf(" %10.6f\n", -llt); */
1.342     brouard  4742:        /* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */
1.343     brouard  4743:        /* fprintf(ficresilk,"%09ld ", num[i]); */ /* not necessary */
                   4744:        for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */
                   4745:          fprintf(ficresilk," %g",covar[Tvar[TvarFind[kf]]][i]);
                   4746:        }
                   4747:        for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying  covariates (single and product but no age) including individual from products */
                   4748:          ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
                   4749:          if(ipos!=iposold){ /* Not a product or first of a product */
                   4750:            fprintf(ficresilk," %g",cov[ioffset+ipos]);
                   4751:            /* printf(" %g",cov[ioffset+ipos]); */
                   4752:          }else{
                   4753:            fprintf(ficresilk,"*");
                   4754:            /* printf("*"); */
1.342     brouard  4755:          }
1.343     brouard  4756:          iposold=ipos;
                   4757:        }
1.349     brouard  4758:        /* for (kk=1; kk<=cptcovage;kk++) { */
                   4759:        /*   if(!FixedV[Tvar[Tage[kk]]]){ */
                   4760:        /*     fprintf(ficresilk," %g*age",covar[Tvar[Tage[kk]]][i]); */
                   4761:        /*     /\* printf(" %g*age",covar[Tvar[Tage[kk]]][i]); *\/ */
                   4762:        /*   }else{ */
                   4763:        /*     fprintf(ficresilk," %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/  */
                   4764:        /*     /\* printf(" %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/\\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\\/  *\/ */
                   4765:        /*   } */
                   4766:        /* } */
                   4767:        for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying  covariates with age including individual from products, product is computed dynamically */
                   4768:          itv=TvarAVVA[ncovva]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm  */
                   4769:          ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
                   4770:          /* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */
                   4771:          if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */
                   4772:            /* printf("DEBUG  ncovva=%d, Varying TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */
                   4773:            cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i];  /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ 
                   4774:          }else{ /* fixed covariate */
                   4775:            /* cotvarv=covar[Tvar[TvarFind[itv]]][i];  /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */
                   4776:            /* printf("DEBUG ncovva=%d, Fixed TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */
                   4777:            cotvarv=covar[itv][i];  /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */
                   4778:          }
                   4779:          if(ipos!=iposold){ /* Not a product or first of a product */
                   4780:            cotvarvold=cotvarv;
                   4781:          }else{ /* A second product */
                   4782:            /* printf("DEBUG * \n"); */
                   4783:            cotvarv=cotvarv*cotvarvold;
1.342     brouard  4784:          }
1.349     brouard  4785:          cotvarv=cotvarv*agexact;
                   4786:          fprintf(ficresilk," %g*age",cotvarv);
                   4787:          iposold=ipos;
                   4788:          /* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */
                   4789:          cov[ioffset+ipos]=cotvarv;
                   4790:          /* For products */
1.343     brouard  4791:        }
                   4792:        /* printf("\n"); */
1.342     brouard  4793:        /* } /\*  End debugILK *\/ */
                   4794:        fprintf(ficresilk,"\n");
                   4795:       } /* End if globpr */
1.335     brouard  4796:     } /* end of wave */
                   4797:   } /* end of individual */
                   4798:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
1.232     brouard  4799: /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
1.335     brouard  4800:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   4801:   if(globpr==0){ /* First time we count the contributions and weights */
                   4802:     gipmx=ipmx;
                   4803:     gsw=sw;
                   4804:   }
1.343     brouard  4805:   return -l;
1.126     brouard  4806: }
                   4807: 
                   4808: 
                   4809: /*************** function likelione ***********/
1.292     brouard  4810: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double []))
1.126     brouard  4811: {
                   4812:   /* This routine should help understanding what is done with 
                   4813:      the selection of individuals/waves and
                   4814:      to check the exact contribution to the likelihood.
                   4815:      Plotting could be done.
1.342     brouard  4816:   */
                   4817:   void pstamp(FILE *ficres);
1.343     brouard  4818:   int k, kf, kk, kvar, ncovv, iposold, ipos;
1.126     brouard  4819: 
                   4820:   if(*globpri !=0){ /* Just counts and sums, no printings */
1.201     brouard  4821:     strcpy(fileresilk,"ILK_"); 
1.202     brouard  4822:     strcat(fileresilk,fileresu);
1.126     brouard  4823:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   4824:       printf("Problem with resultfile: %s\n", fileresilk);
                   4825:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   4826:     }
1.342     brouard  4827:     pstamp(ficresilk);fprintf(ficresilk,"# model=1+age+%s\n",model);
1.214     brouard  4828:     fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                   4829:     fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
1.126     brouard  4830:     /*         i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   4831:     for(k=1; k<=nlstate; k++) 
                   4832:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
1.342     brouard  4833:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total) ");
                   4834: 
                   4835:     /* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */
                   4836:       for(kf=1;kf <= ncovf; kf++){
                   4837:        fprintf(ficresilk,"V%d",Tvar[TvarFind[kf]]);
                   4838:        /* printf("V%d",Tvar[TvarFind[kf]]); */
                   4839:       }
                   4840:       for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){
1.343     brouard  4841:        ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */
1.342     brouard  4842:        if(ipos!=iposold){ /* Not a product or first of a product */
                   4843:          /* printf(" %d",ipos); */
                   4844:          fprintf(ficresilk," V%d",TvarVV[ncovv]);
                   4845:        }else{
                   4846:          /* printf("*"); */
                   4847:          fprintf(ficresilk,"*");
1.343     brouard  4848:        }
1.342     brouard  4849:        iposold=ipos;
                   4850:       }
                   4851:       for (kk=1; kk<=cptcovage;kk++) {
                   4852:        if(!FixedV[Tvar[Tage[kk]]]){
                   4853:          /* printf(" %d*age(Fixed)",Tvar[Tage[kk]]); */
                   4854:          fprintf(ficresilk," %d*age(Fixed)",Tvar[Tage[kk]]);
                   4855:        }else{
                   4856:          fprintf(ficresilk," %d*age(Varying)",Tvar[Tage[kk]]);/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
                   4857:          /* printf(" %d*age(Varying)",Tvar[Tage[kk]]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/  */
                   4858:        }
                   4859:       }
                   4860:     /* } /\* End if debugILK *\/ */
                   4861:     /* printf("\n"); */
                   4862:     fprintf(ficresilk,"\n");
                   4863:   } /* End glogpri */
1.126     brouard  4864: 
1.292     brouard  4865:   *fretone=(*func)(p);
1.126     brouard  4866:   if(*globpri !=0){
                   4867:     fclose(ficresilk);
1.205     brouard  4868:     if (mle ==0)
                   4869:       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
                   4870:     else if(mle >=1)
                   4871:       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
                   4872:     fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
1.274     brouard  4873:     fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); 
1.208     brouard  4874:       
1.207     brouard  4875:     fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
1.343     brouard  4876: <img src=\"%s-ori.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
1.207     brouard  4877:     fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
1.343     brouard  4878: <img src=\"%s-dest.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
                   4879:     
                   4880:     for (k=1; k<= nlstate ; k++) {
                   4881:       fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br>\n \
                   4882: <img src=\"%s-p%dj.png\">\n",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
                   4883:       for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */
1.350     brouard  4884:         kvar=Tvar[TvarFind[kf]];  /* variable */
                   4885:         fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): ",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]]);
                   4886:         fprintf(fichtm,"<a href=\"%s-p%dj-%d.png\">%s-p%dj-%d.png</a><br>",subdirf2(optionfilefiname,"ILK_"),k,kvar,subdirf2(optionfilefiname,"ILK_"),k,kvar);
                   4887:         fprintf(fichtm,"<img src=\"%s-p%dj-%d.png\">",subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]);
1.343     brouard  4888:       }
                   4889:       for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Loop on the time varying extended covariates (with extension of Vn*Vm */
                   4890:        ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */
                   4891:        kvar=TvarVV[ncovv]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate */
                   4892:        /* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */
                   4893:        if(ipos!=iposold){ /* Not a product or first of a product */
                   4894:          /* fprintf(ficresilk," V%d",TvarVV[ncovv]); */
                   4895:          /* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); */
                   4896:          if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm)  */
                   4897:            fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored time varying dummy covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
                   4898: <img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar);
                   4899:          } /* End only for dummies time varying (single?) */
                   4900:        }else{ /* Useless product */
                   4901:          /* printf("*"); */
                   4902:          /* fprintf(ficresilk,"*"); */ 
                   4903:        }
                   4904:        iposold=ipos;
                   4905:       } /* For each time varying covariate */
                   4906:     } /* End loop on states */
                   4907: 
                   4908: /*     if(debugILK){ */
                   4909: /*       for(kf=1; kf <= ncovf; kf++){ /\* For each simple dummy covariate of the model *\/ */
                   4910: /*     /\* kvar=Tvar[TvarFind[kf]]; *\/ /\* variable *\/ */
                   4911: /*     for (k=1; k<= nlstate ; k++) { */
                   4912: /*       fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */
                   4913: /* <img src=\"%s-p%dj-%d.png\">",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]); */
                   4914: /*     } */
                   4915: /*       } */
                   4916: /*       for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /\* Loop on the time varying extended covariates (with extension of Vn*Vm *\/ */
                   4917: /*     ipos=TvarVVind[ncovv]; /\* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate *\/ */
                   4918: /*     kvar=TvarVV[ncovv]; /\*  TvarVV={3, 1, 3} gives the name of each varying covariate *\/ */
                   4919: /*     /\* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); *\/ */
                   4920: /*     if(ipos!=iposold){ /\* Not a product or first of a product *\/ */
                   4921: /*       /\* fprintf(ficresilk," V%d",TvarVV[ncovv]); *\/ */
                   4922: /*       /\* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); *\/ */
                   4923: /*       if(Dummy[ipos]==0 && Typevar[ipos]==0){ /\* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm)  *\/ */
                   4924: /*         for (k=1; k<= nlstate ; k++) { */
                   4925: /*           fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */
                   4926: /* <img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar); */
                   4927: /*         } /\* End state *\/ */
                   4928: /*       } /\* End only for dummies time varying (single?) *\/ */
                   4929: /*     }else{ /\* Useless product *\/ */
                   4930: /*       /\* printf("*"); *\/ */
                   4931: /*       /\* fprintf(ficresilk,"*"); *\/  */
                   4932: /*     } */
                   4933: /*     iposold=ipos; */
                   4934: /*       } /\* For each time varying covariate *\/ */
                   4935: /*     }/\* End debugILK *\/ */
1.207     brouard  4936:     fflush(fichtm);
1.343     brouard  4937:   }/* End globpri */
1.126     brouard  4938:   return;
                   4939: }
                   4940: 
                   4941: 
                   4942: /*********** Maximum Likelihood Estimation ***************/
                   4943: 
                   4944: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   4945: {
1.319     brouard  4946:   int i,j,k, jk, jkk=0, iter=0;
1.126     brouard  4947:   double **xi;
                   4948:   double fret;
                   4949:   double fretone; /* Only one call to likelihood */
                   4950:   /*  char filerespow[FILENAMELENGTH];*/
1.354     brouard  4951:   
                   4952:   double * p1; /* Shifted parameters from 0 instead of 1 */
1.162     brouard  4953: #ifdef NLOPT
                   4954:   int creturn;
                   4955:   nlopt_opt opt;
                   4956:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
                   4957:   double *lb;
                   4958:   double minf; /* the minimum objective value, upon return */
1.354     brouard  4959: 
1.162     brouard  4960:   myfunc_data dinst, *d = &dinst;
                   4961: #endif
                   4962: 
                   4963: 
1.126     brouard  4964:   xi=matrix(1,npar,1,npar);
                   4965:   for (i=1;i<=npar;i++)
                   4966:     for (j=1;j<=npar;j++)
                   4967:       xi[i][j]=(i==j ? 1.0 : 0.0);
                   4968:   printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.201     brouard  4969:   strcpy(filerespow,"POW_"); 
1.126     brouard  4970:   strcat(filerespow,fileres);
                   4971:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   4972:     printf("Problem with resultfile: %s\n", filerespow);
                   4973:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   4974:   }
                   4975:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   4976:   for (i=1;i<=nlstate;i++)
                   4977:     for(j=1;j<=nlstate+ndeath;j++)
                   4978:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   4979:   fprintf(ficrespow,"\n");
1.162     brouard  4980: #ifdef POWELL
1.319     brouard  4981: #ifdef LINMINORIGINAL
                   4982: #else /* LINMINORIGINAL */
                   4983:   
                   4984:   flatdir=ivector(1,npar); 
                   4985:   for (j=1;j<=npar;j++) flatdir[j]=0; 
                   4986: #endif /*LINMINORIGINAL */
                   4987: 
                   4988: #ifdef FLATSUP
                   4989:   powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
                   4990:   /* reorganizing p by suppressing flat directions */
                   4991:   for(i=1, jk=1; i <=nlstate; i++){
                   4992:     for(k=1; k <=(nlstate+ndeath); k++){
                   4993:       if (k != i) {
                   4994:         printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
                   4995:         if(flatdir[jk]==1){
                   4996:           printf(" To be skipped %d%d flatdir[%d]=%d ",i,k,jk, flatdir[jk]);
                   4997:         }
                   4998:         for(j=1; j <=ncovmodel; j++){
                   4999:           printf("%12.7f ",p[jk]);
                   5000:           jk++; 
                   5001:         }
                   5002:         printf("\n");
                   5003:       }
                   5004:     }
                   5005:   }
                   5006: /* skipping */
                   5007:   /* for(i=1, jk=1, jkk=1;(flatdir[jk]==0)&& (i <=nlstate); i++){ */
                   5008:   for(i=1, jk=1, jkk=1;i <=nlstate; i++){
                   5009:     for(k=1; k <=(nlstate+ndeath); k++){
                   5010:       if (k != i) {
                   5011:         printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
                   5012:         if(flatdir[jk]==1){
                   5013:           printf(" To be skipped %d%d flatdir[%d]=%d jk=%d p[%d] ",i,k,jk, flatdir[jk],jk, jk);
                   5014:           for(j=1; j <=ncovmodel;  jk++,j++){
                   5015:             printf(" p[%d]=%12.7f",jk, p[jk]);
                   5016:             /*q[jjk]=p[jk];*/
                   5017:           }
                   5018:         }else{
                   5019:           printf(" To be kept %d%d flatdir[%d]=%d jk=%d q[%d]=p[%d] ",i,k,jk, flatdir[jk],jk, jkk, jk);
                   5020:           for(j=1; j <=ncovmodel;  jk++,jkk++,j++){
                   5021:             printf(" p[%d]=%12.7f=q[%d]",jk, p[jk],jkk);
                   5022:             /*q[jjk]=p[jk];*/
                   5023:           }
                   5024:         }
                   5025:         printf("\n");
                   5026:       }
                   5027:       fflush(stdout);
                   5028:     }
                   5029:   }
                   5030:   powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
                   5031: #else  /* FLATSUP */
1.126     brouard  5032:   powell(p,xi,npar,ftol,&iter,&fret,func);
1.319     brouard  5033: #endif  /* FLATSUP */
                   5034: 
                   5035: #ifdef LINMINORIGINAL
                   5036: #else
                   5037:       free_ivector(flatdir,1,npar); 
                   5038: #endif  /* LINMINORIGINAL*/
                   5039: #endif /* POWELL */
1.126     brouard  5040: 
1.162     brouard  5041: #ifdef NLOPT
                   5042: #ifdef NEWUOA
                   5043:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
                   5044: #else
                   5045:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
                   5046: #endif
                   5047:   lb=vector(0,npar-1);
                   5048:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                   5049:   nlopt_set_lower_bounds(opt, lb);
                   5050:   nlopt_set_initial_step1(opt, 0.1);
                   5051:   
                   5052:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                   5053:   d->function = func;
                   5054:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                   5055:   nlopt_set_min_objective(opt, myfunc, d);
                   5056:   nlopt_set_xtol_rel(opt, ftol);
                   5057:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                   5058:     printf("nlopt failed! %d\n",creturn); 
                   5059:   }
                   5060:   else {
                   5061:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   5062:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                   5063:     iter=1; /* not equal */
                   5064:   }
                   5065:   nlopt_destroy(opt);
                   5066: #endif
1.319     brouard  5067: #ifdef FLATSUP
                   5068:   /* npared = npar -flatd/ncovmodel; */
                   5069:   /* xired= matrix(1,npared,1,npared); */
                   5070:   /* paramred= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */
                   5071:   /* powell(pred,xired,npared,ftol,&iter,&fret,flatdir,func); */
                   5072:   /* free_matrix(xire,1,npared,1,npared); */
                   5073: #else  /* FLATSUP */
                   5074: #endif /* FLATSUP */
1.126     brouard  5075:   free_matrix(xi,1,npar,1,npar);
                   5076:   fclose(ficrespow);
1.203     brouard  5077:   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   5078:   fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.180     brouard  5079:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.126     brouard  5080: 
                   5081: }
                   5082: 
                   5083: /**** Computes Hessian and covariance matrix ***/
1.203     brouard  5084: void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
1.126     brouard  5085: {
                   5086:   double  **a,**y,*x,pd;
1.203     brouard  5087:   /* double **hess; */
1.164     brouard  5088:   int i, j;
1.126     brouard  5089:   int *indx;
                   5090: 
                   5091:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
1.203     brouard  5092:   double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
1.126     brouard  5093:   void lubksb(double **a, int npar, int *indx, double b[]) ;
                   5094:   void ludcmp(double **a, int npar, int *indx, double *d) ;
                   5095:   double gompertz(double p[]);
1.203     brouard  5096:   /* hess=matrix(1,npar,1,npar); */
1.126     brouard  5097: 
                   5098:   printf("\nCalculation of the hessian matrix. Wait...\n");
                   5099:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                   5100:   for (i=1;i<=npar;i++){
1.203     brouard  5101:     printf("%d-",i);fflush(stdout);
                   5102:     fprintf(ficlog,"%d-",i);fflush(ficlog);
1.126     brouard  5103:    
                   5104:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                   5105:     
                   5106:     /*  printf(" %f ",p[i]);
                   5107:        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
                   5108:   }
                   5109:   
                   5110:   for (i=1;i<=npar;i++) {
                   5111:     for (j=1;j<=npar;j++)  {
                   5112:       if (j>i) { 
1.203     brouard  5113:        printf(".%d-%d",i,j);fflush(stdout);
                   5114:        fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
                   5115:        hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
1.126     brouard  5116:        
                   5117:        hess[j][i]=hess[i][j];    
                   5118:        /*printf(" %lf ",hess[i][j]);*/
                   5119:       }
                   5120:     }
                   5121:   }
                   5122:   printf("\n");
                   5123:   fprintf(ficlog,"\n");
                   5124: 
                   5125:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   5126:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   5127:   
                   5128:   a=matrix(1,npar,1,npar);
                   5129:   y=matrix(1,npar,1,npar);
                   5130:   x=vector(1,npar);
                   5131:   indx=ivector(1,npar);
                   5132:   for (i=1;i<=npar;i++)
                   5133:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   5134:   ludcmp(a,npar,indx,&pd);
                   5135: 
                   5136:   for (j=1;j<=npar;j++) {
                   5137:     for (i=1;i<=npar;i++) x[i]=0;
                   5138:     x[j]=1;
                   5139:     lubksb(a,npar,indx,x);
                   5140:     for (i=1;i<=npar;i++){ 
                   5141:       matcov[i][j]=x[i];
                   5142:     }
                   5143:   }
                   5144: 
                   5145:   printf("\n#Hessian matrix#\n");
                   5146:   fprintf(ficlog,"\n#Hessian matrix#\n");
                   5147:   for (i=1;i<=npar;i++) { 
                   5148:     for (j=1;j<=npar;j++) { 
1.203     brouard  5149:       printf("%.6e ",hess[i][j]);
                   5150:       fprintf(ficlog,"%.6e ",hess[i][j]);
1.126     brouard  5151:     }
                   5152:     printf("\n");
                   5153:     fprintf(ficlog,"\n");
                   5154:   }
                   5155: 
1.203     brouard  5156:   /* printf("\n#Covariance matrix#\n"); */
                   5157:   /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
                   5158:   /* for (i=1;i<=npar;i++) {  */
                   5159:   /*   for (j=1;j<=npar;j++) {  */
                   5160:   /*     printf("%.6e ",matcov[i][j]); */
                   5161:   /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
                   5162:   /*   } */
                   5163:   /*   printf("\n"); */
                   5164:   /*   fprintf(ficlog,"\n"); */
                   5165:   /* } */
                   5166: 
1.126     brouard  5167:   /* Recompute Inverse */
1.203     brouard  5168:   /* for (i=1;i<=npar;i++) */
                   5169:   /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
                   5170:   /* ludcmp(a,npar,indx,&pd); */
                   5171: 
                   5172:   /*  printf("\n#Hessian matrix recomputed#\n"); */
                   5173: 
                   5174:   /* for (j=1;j<=npar;j++) { */
                   5175:   /*   for (i=1;i<=npar;i++) x[i]=0; */
                   5176:   /*   x[j]=1; */
                   5177:   /*   lubksb(a,npar,indx,x); */
                   5178:   /*   for (i=1;i<=npar;i++){  */
                   5179:   /*     y[i][j]=x[i]; */
                   5180:   /*     printf("%.3e ",y[i][j]); */
                   5181:   /*     fprintf(ficlog,"%.3e ",y[i][j]); */
                   5182:   /*   } */
                   5183:   /*   printf("\n"); */
                   5184:   /*   fprintf(ficlog,"\n"); */
                   5185:   /* } */
                   5186: 
                   5187:   /* Verifying the inverse matrix */
                   5188: #ifdef DEBUGHESS
                   5189:   y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
1.126     brouard  5190: 
1.203     brouard  5191:    printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
                   5192:    fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
1.126     brouard  5193: 
                   5194:   for (j=1;j<=npar;j++) {
                   5195:     for (i=1;i<=npar;i++){ 
1.203     brouard  5196:       printf("%.2f ",y[i][j]);
                   5197:       fprintf(ficlog,"%.2f ",y[i][j]);
1.126     brouard  5198:     }
                   5199:     printf("\n");
                   5200:     fprintf(ficlog,"\n");
                   5201:   }
1.203     brouard  5202: #endif
1.126     brouard  5203: 
                   5204:   free_matrix(a,1,npar,1,npar);
                   5205:   free_matrix(y,1,npar,1,npar);
                   5206:   free_vector(x,1,npar);
                   5207:   free_ivector(indx,1,npar);
1.203     brouard  5208:   /* free_matrix(hess,1,npar,1,npar); */
1.126     brouard  5209: 
                   5210: 
                   5211: }
                   5212: 
                   5213: /*************** hessian matrix ****************/
                   5214: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
1.203     brouard  5215: { /* Around values of x, computes the function func and returns the scales delti and hessian */
1.126     brouard  5216:   int i;
                   5217:   int l=1, lmax=20;
1.203     brouard  5218:   double k1,k2, res, fx;
1.132     brouard  5219:   double p2[MAXPARM+1]; /* identical to x */
1.126     brouard  5220:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                   5221:   int k=0,kmax=10;
                   5222:   double l1;
                   5223: 
                   5224:   fx=func(x);
                   5225:   for (i=1;i<=npar;i++) p2[i]=x[i];
1.145     brouard  5226:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
1.126     brouard  5227:     l1=pow(10,l);
                   5228:     delts=delt;
                   5229:     for(k=1 ; k <kmax; k=k+1){
                   5230:       delt = delta*(l1*k);
                   5231:       p2[theta]=x[theta] +delt;
1.145     brouard  5232:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
1.126     brouard  5233:       p2[theta]=x[theta]-delt;
                   5234:       k2=func(p2)-fx;
                   5235:       /*res= (k1-2.0*fx+k2)/delt/delt; */
1.203     brouard  5236:       res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
1.126     brouard  5237:       
1.203     brouard  5238: #ifdef DEBUGHESSII
1.126     brouard  5239:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   5240:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   5241: #endif
                   5242:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   5243:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   5244:        k=kmax;
                   5245:       }
                   5246:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
1.164     brouard  5247:        k=kmax; l=lmax*10;
1.126     brouard  5248:       }
                   5249:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   5250:        delts=delt;
                   5251:       }
1.203     brouard  5252:     } /* End loop k */
1.126     brouard  5253:   }
                   5254:   delti[theta]=delts;
                   5255:   return res; 
                   5256:   
                   5257: }
                   5258: 
1.203     brouard  5259: double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
1.126     brouard  5260: {
                   5261:   int i;
1.164     brouard  5262:   int l=1, lmax=20;
1.126     brouard  5263:   double k1,k2,k3,k4,res,fx;
1.132     brouard  5264:   double p2[MAXPARM+1];
1.203     brouard  5265:   int k, kmax=1;
                   5266:   double v1, v2, cv12, lc1, lc2;
1.208     brouard  5267: 
                   5268:   int firstime=0;
1.203     brouard  5269:   
1.126     brouard  5270:   fx=func(x);
1.203     brouard  5271:   for (k=1; k<=kmax; k=k+10) {
1.126     brouard  5272:     for (i=1;i<=npar;i++) p2[i]=x[i];
1.203     brouard  5273:     p2[thetai]=x[thetai]+delti[thetai]*k;
                   5274:     p2[thetaj]=x[thetaj]+delti[thetaj]*k;
1.126     brouard  5275:     k1=func(p2)-fx;
                   5276:   
1.203     brouard  5277:     p2[thetai]=x[thetai]+delti[thetai]*k;
                   5278:     p2[thetaj]=x[thetaj]-delti[thetaj]*k;
1.126     brouard  5279:     k2=func(p2)-fx;
                   5280:   
1.203     brouard  5281:     p2[thetai]=x[thetai]-delti[thetai]*k;
                   5282:     p2[thetaj]=x[thetaj]+delti[thetaj]*k;
1.126     brouard  5283:     k3=func(p2)-fx;
                   5284:   
1.203     brouard  5285:     p2[thetai]=x[thetai]-delti[thetai]*k;
                   5286:     p2[thetaj]=x[thetaj]-delti[thetaj]*k;
1.126     brouard  5287:     k4=func(p2)-fx;
1.203     brouard  5288:     res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
                   5289:     if(k1*k2*k3*k4 <0.){
1.208     brouard  5290:       firstime=1;
1.203     brouard  5291:       kmax=kmax+10;
1.208     brouard  5292:     }
                   5293:     if(kmax >=10 || firstime ==1){
1.354     brouard  5294:       /* What are the thetai and thetaj? thetai/ncovmodel thetai=(thetai-thetai%ncovmodel)/ncovmodel +thetai%ncovmodel=(line,pos)  */
1.246     brouard  5295:       printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
                   5296:       fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
1.203     brouard  5297:       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   5298:       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   5299:     }
                   5300: #ifdef DEBUGHESSIJ
                   5301:     v1=hess[thetai][thetai];
                   5302:     v2=hess[thetaj][thetaj];
                   5303:     cv12=res;
                   5304:     /* Computing eigen value of Hessian matrix */
                   5305:     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   5306:     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   5307:     if ((lc2 <0) || (lc1 <0) ){
                   5308:       printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                   5309:       fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                   5310:       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   5311:       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   5312:     }
1.126     brouard  5313: #endif
                   5314:   }
                   5315:   return res;
                   5316: }
                   5317: 
1.203     brouard  5318:     /* Not done yet: Was supposed to fix if not exactly at the maximum */
                   5319: /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
                   5320: /* { */
                   5321: /*   int i; */
                   5322: /*   int l=1, lmax=20; */
                   5323: /*   double k1,k2,k3,k4,res,fx; */
                   5324: /*   double p2[MAXPARM+1]; */
                   5325: /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
                   5326: /*   int k=0,kmax=10; */
                   5327: /*   double l1; */
                   5328:   
                   5329: /*   fx=func(x); */
                   5330: /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
                   5331: /*     l1=pow(10,l); */
                   5332: /*     delts=delt; */
                   5333: /*     for(k=1 ; k <kmax; k=k+1){ */
                   5334: /*       delt = delti*(l1*k); */
                   5335: /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
                   5336: /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
                   5337: /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
                   5338: /*       k1=func(p2)-fx; */
                   5339:       
                   5340: /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
                   5341: /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
                   5342: /*       k2=func(p2)-fx; */
                   5343:       
                   5344: /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
                   5345: /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
                   5346: /*       k3=func(p2)-fx; */
                   5347:       
                   5348: /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
                   5349: /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
                   5350: /*       k4=func(p2)-fx; */
                   5351: /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
                   5352: /* #ifdef DEBUGHESSIJ */
                   5353: /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
                   5354: /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
                   5355: /* #endif */
                   5356: /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
                   5357: /*     k=kmax; */
                   5358: /*       } */
                   5359: /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
                   5360: /*     k=kmax; l=lmax*10; */
                   5361: /*       } */
                   5362: /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
                   5363: /*     delts=delt; */
                   5364: /*       } */
                   5365: /*     } /\* End loop k *\/ */
                   5366: /*   } */
                   5367: /*   delti[theta]=delts; */
                   5368: /*   return res;  */
                   5369: /* } */
                   5370: 
                   5371: 
1.126     brouard  5372: /************** Inverse of matrix **************/
                   5373: void ludcmp(double **a, int n, int *indx, double *d) 
                   5374: { 
                   5375:   int i,imax,j,k; 
                   5376:   double big,dum,sum,temp; 
                   5377:   double *vv; 
                   5378:  
                   5379:   vv=vector(1,n); 
                   5380:   *d=1.0; 
                   5381:   for (i=1;i<=n;i++) { 
                   5382:     big=0.0; 
                   5383:     for (j=1;j<=n;j++) 
                   5384:       if ((temp=fabs(a[i][j])) > big) big=temp; 
1.256     brouard  5385:     if (big == 0.0){
                   5386:       printf(" Singular Hessian matrix at row %d:\n",i);
                   5387:       for (j=1;j<=n;j++) {
                   5388:        printf(" a[%d][%d]=%f,",i,j,a[i][j]);
                   5389:        fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]);
                   5390:       }
                   5391:       fflush(ficlog);
                   5392:       fclose(ficlog);
                   5393:       nrerror("Singular matrix in routine ludcmp"); 
                   5394:     }
1.126     brouard  5395:     vv[i]=1.0/big; 
                   5396:   } 
                   5397:   for (j=1;j<=n;j++) { 
                   5398:     for (i=1;i<j;i++) { 
                   5399:       sum=a[i][j]; 
                   5400:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   5401:       a[i][j]=sum; 
                   5402:     } 
                   5403:     big=0.0; 
                   5404:     for (i=j;i<=n;i++) { 
                   5405:       sum=a[i][j]; 
                   5406:       for (k=1;k<j;k++) 
                   5407:        sum -= a[i][k]*a[k][j]; 
                   5408:       a[i][j]=sum; 
                   5409:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   5410:        big=dum; 
                   5411:        imax=i; 
                   5412:       } 
                   5413:     } 
                   5414:     if (j != imax) { 
                   5415:       for (k=1;k<=n;k++) { 
                   5416:        dum=a[imax][k]; 
                   5417:        a[imax][k]=a[j][k]; 
                   5418:        a[j][k]=dum; 
                   5419:       } 
                   5420:       *d = -(*d); 
                   5421:       vv[imax]=vv[j]; 
                   5422:     } 
                   5423:     indx[j]=imax; 
                   5424:     if (a[j][j] == 0.0) a[j][j]=TINY; 
                   5425:     if (j != n) { 
                   5426:       dum=1.0/(a[j][j]); 
                   5427:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                   5428:     } 
                   5429:   } 
                   5430:   free_vector(vv,1,n);  /* Doesn't work */
                   5431: ;
                   5432: } 
                   5433: 
                   5434: void lubksb(double **a, int n, int *indx, double b[]) 
                   5435: { 
                   5436:   int i,ii=0,ip,j; 
                   5437:   double sum; 
                   5438:  
                   5439:   for (i=1;i<=n;i++) { 
                   5440:     ip=indx[i]; 
                   5441:     sum=b[ip]; 
                   5442:     b[ip]=b[i]; 
                   5443:     if (ii) 
                   5444:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   5445:     else if (sum) ii=i; 
                   5446:     b[i]=sum; 
                   5447:   } 
                   5448:   for (i=n;i>=1;i--) { 
                   5449:     sum=b[i]; 
                   5450:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                   5451:     b[i]=sum/a[i][i]; 
                   5452:   } 
                   5453: } 
                   5454: 
                   5455: void pstamp(FILE *fichier)
                   5456: {
1.196     brouard  5457:   fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
1.126     brouard  5458: }
                   5459: 
1.297     brouard  5460: void date2dmy(double date,double *day, double *month, double *year){
                   5461:   double yp=0., yp1=0., yp2=0.;
                   5462:   
                   5463:   yp1=modf(date,&yp);/* extracts integral of date in yp  and
                   5464:                        fractional in yp1 */
                   5465:   *year=yp;
                   5466:   yp2=modf((yp1*12),&yp);
                   5467:   *month=yp;
                   5468:   yp1=modf((yp2*30.5),&yp);
                   5469:   *day=yp;
                   5470:   if(*day==0) *day=1;
                   5471:   if(*month==0) *month=1;
                   5472: }
                   5473: 
1.253     brouard  5474: 
                   5475: 
1.126     brouard  5476: /************ Frequencies ********************/
1.251     brouard  5477: void  freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
1.226     brouard  5478:                  int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
                   5479:                  int firstpass,  int lastpass, int stepm, int weightopt, char model[])
1.250     brouard  5480: {  /* Some frequencies as well as proposing some starting values */
1.332     brouard  5481:   /* Frequencies of any combination of dummy covariate used in the model equation */ 
1.265     brouard  5482:   int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1;
1.226     brouard  5483:   int iind=0, iage=0;
                   5484:   int mi; /* Effective wave */
                   5485:   int first;
                   5486:   double ***freq; /* Frequencies */
1.268     brouard  5487:   double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */
                   5488:   int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb);
1.284     brouard  5489:   double *meanq, *stdq, *idq;
1.226     brouard  5490:   double **meanqt;
                   5491:   double *pp, **prop, *posprop, *pospropt;
                   5492:   double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
                   5493:   char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
                   5494:   double agebegin, ageend;
                   5495:     
                   5496:   pp=vector(1,nlstate);
1.251     brouard  5497:   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
1.226     brouard  5498:   posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
                   5499:   pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
                   5500:   /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
                   5501:   meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
1.284     brouard  5502:   stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
1.283     brouard  5503:   idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
1.226     brouard  5504:   meanqt=matrix(1,lastpass,1,nqtveff);
                   5505:   strcpy(fileresp,"P_");
                   5506:   strcat(fileresp,fileresu);
                   5507:   /*strcat(fileresphtm,fileresu);*/
                   5508:   if((ficresp=fopen(fileresp,"w"))==NULL) {
                   5509:     printf("Problem with prevalence resultfile: %s\n", fileresp);
                   5510:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   5511:     exit(0);
                   5512:   }
1.240     brouard  5513:   
1.226     brouard  5514:   strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
                   5515:   if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
                   5516:     printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                   5517:     fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                   5518:     fflush(ficlog);
                   5519:     exit(70); 
                   5520:   }
                   5521:   else{
                   5522:     fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
1.240     brouard  5523: <hr size=\"2\" color=\"#EC5E5E\"> \n                                   \
1.214     brouard  5524: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.226     brouard  5525:            fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   5526:   }
1.319     brouard  5527:   fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies (weight=%d) and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm, weightopt);
1.240     brouard  5528:   
1.226     brouard  5529:   strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
                   5530:   if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
                   5531:     printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                   5532:     fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                   5533:     fflush(ficlog);
                   5534:     exit(70); 
1.240     brouard  5535:   } else{
1.226     brouard  5536:     fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
1.319     brouard  5537: ,<hr size=\"2\" color=\"#EC5E5E\"> \n                                  \
1.214     brouard  5538: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.226     brouard  5539:            fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   5540:   }
1.319     brouard  5541:   fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>(weight=%d) frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr,weightopt);
1.240     brouard  5542:   
1.253     brouard  5543:   y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
                   5544:   x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
1.251     brouard  5545:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE);
1.226     brouard  5546:   j1=0;
1.126     brouard  5547:   
1.227     brouard  5548:   /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
1.335     brouard  5549:   j=cptcoveff;  /* Only simple dummy covariates used in the model */
1.330     brouard  5550:   /* j=cptcovn;  /\* Only dummy covariates of the model *\/ */
1.226     brouard  5551:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
1.240     brouard  5552:   
                   5553:   
1.226     brouard  5554:   /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
                   5555:      reference=low_education V1=0,V2=0
                   5556:      med_educ                V1=1 V2=0, 
                   5557:      high_educ               V1=0 V2=1
1.330     brouard  5558:      Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcovn 
1.226     brouard  5559:   */
1.249     brouard  5560:   dateintsum=0;
                   5561:   k2cpt=0;
                   5562: 
1.253     brouard  5563:   if(cptcoveff == 0 )
1.265     brouard  5564:     nl=1;  /* Constant and age model only */
1.253     brouard  5565:   else
                   5566:     nl=2;
1.265     brouard  5567: 
                   5568:   /* if a constant only model, one pass to compute frequency tables and to write it on ficresp */
                   5569:   /* Loop on nj=1 or 2 if dummy covariates j!=0
1.335     brouard  5570:    *   Loop on j1(1 to 2**cptcoveff) covariate combination
1.265     brouard  5571:    *     freq[s1][s2][iage] =0.
                   5572:    *     Loop on iind
                   5573:    *       ++freq[s1][s2][iage] weighted
                   5574:    *     end iind
                   5575:    *     if covariate and j!0
                   5576:    *       headers Variable on one line
                   5577:    *     endif cov j!=0
                   5578:    *     header of frequency table by age
                   5579:    *     Loop on age
                   5580:    *       pp[s1]+=freq[s1][s2][iage] weighted
                   5581:    *       pos+=freq[s1][s2][iage] weighted
                   5582:    *       Loop on s1 initial state
                   5583:    *         fprintf(ficresp
                   5584:    *       end s1
                   5585:    *     end age
                   5586:    *     if j!=0 computes starting values
                   5587:    *     end compute starting values
                   5588:    *   end j1
                   5589:    * end nl 
                   5590:    */
1.253     brouard  5591:   for (nj = 1; nj <= nl; nj++){   /* nj= 1 constant model, nl number of loops. */
                   5592:     if(nj==1)
                   5593:       j=0;  /* First pass for the constant */
1.265     brouard  5594:     else{
1.335     brouard  5595:       j=cptcoveff; /* Other passes for the covariate values number of simple covariates in the model V2+V1 =2 (simple dummy fixed or time varying) */
1.265     brouard  5596:     }
1.251     brouard  5597:     first=1;
1.332     brouard  5598:     for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all dummy covariates combination of the model, ie excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */
1.251     brouard  5599:       posproptt=0.;
1.330     brouard  5600:       /*printf("cptcovn=%d Tvaraff=%d", cptcovn,Tvaraff[1]);
1.251     brouard  5601:        scanf("%d", i);*/
                   5602:       for (i=-5; i<=nlstate+ndeath; i++)  
1.265     brouard  5603:        for (s2=-5; s2<=nlstate+ndeath; s2++)  
1.251     brouard  5604:          for(m=iagemin; m <= iagemax+3; m++)
1.265     brouard  5605:            freq[i][s2][m]=0;
1.251     brouard  5606:       
                   5607:       for (i=1; i<=nlstate; i++)  {
1.240     brouard  5608:        for(m=iagemin; m <= iagemax+3; m++)
1.251     brouard  5609:          prop[i][m]=0;
                   5610:        posprop[i]=0;
                   5611:        pospropt[i]=0;
                   5612:       }
1.283     brouard  5613:       for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */
1.284     brouard  5614:         idq[z1]=0.;
                   5615:         meanq[z1]=0.;
                   5616:         stdq[z1]=0.;
1.283     brouard  5617:       }
                   5618:       /* for (z1=1; z1<= nqtveff; z1++) { */
1.251     brouard  5619:       /*   for(m=1;m<=lastpass;m++){ */
1.283     brouard  5620:       /*         meanqt[m][z1]=0.; */
                   5621:       /*       } */
                   5622:       /* }       */
1.251     brouard  5623:       /* dateintsum=0; */
                   5624:       /* k2cpt=0; */
                   5625:       
1.265     brouard  5626:       /* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */
1.251     brouard  5627:       for (iind=1; iind<=imx; iind++) { /* For each individual iind */
                   5628:        bool=1;
                   5629:        if(j !=0){
                   5630:          if(anyvaryingduminmodel==0){ /* If All fixed covariates */
1.335     brouard  5631:            if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                   5632:              for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */
1.251     brouard  5633:                /* if(Tvaraff[z1] ==-20){ */
                   5634:                /*       /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
                   5635:                /* }else  if(Tvaraff[z1] ==-10){ */
                   5636:                /*       /\* sumnew+=coqvar[z1][iind]; *\/ */
1.330     brouard  5637:                /* }else  */ /* TODO TODO codtabm(j1,z1) or codtabm(j1,Tvaraff[z1]]z1)*/
1.335     brouard  5638:                /* if( iind >=imx-3) printf("Searching error iind=%d Tvaraff[z1]=%d covar[Tvaraff[z1]][iind]=%.f TnsdVar[Tvaraff[z1]]=%d, cptcoveff=%d, cptcovs=%d \n",iind, Tvaraff[z1], covar[Tvaraff[z1]][iind],TnsdVar[Tvaraff[z1]],cptcoveff, cptcovs); */
                   5639:                if(Tvaraff[z1]<1 || Tvaraff[z1]>=NCOVMAX)
1.338     brouard  5640:                  printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=1+age+%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model);
1.332     brouard  5641:                if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]){ /* for combination j1 of covariates */
1.265     brouard  5642:                  /* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */
1.251     brouard  5643:                  bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */
1.332     brouard  5644:                  /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", */
                   5645:                  /*   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),*/
                   5646:                   /*   j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
1.251     brouard  5647:                  /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
                   5648:                } /* Onlyf fixed */
                   5649:              } /* end z1 */
1.335     brouard  5650:            } /* cptcoveff > 0 */
1.251     brouard  5651:          } /* end any */
                   5652:        }/* end j==0 */
1.265     brouard  5653:        if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */
1.251     brouard  5654:          /* for(m=firstpass; m<=lastpass; m++){ */
1.284     brouard  5655:          for(mi=1; mi<wav[iind];mi++){ /* For each wave */
1.251     brouard  5656:            m=mw[mi][iind];
                   5657:            if(j!=0){
                   5658:              if(anyvaryingduminmodel==1){ /* Some are varying covariates */
1.335     brouard  5659:                for (z1=1; z1<=cptcoveff; z1++) {
1.251     brouard  5660:                  if( Fixed[Tmodelind[z1]]==1){
1.341     brouard  5661:                    /* iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; /\* Good *\/ */
                   5662:                    iv= Tvar[Tmodelind[z1]]; /* Good *//* because cotvar starts now at first at ncovcol+nqv+ntv */ 
1.332     brouard  5663:                    if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality. If covariate's 
1.251     brouard  5664:                                                                                      value is -1, we don't select. It differs from the 
                   5665:                                                                                      constant and age model which counts them. */
                   5666:                      bool=0; /* not selected */
                   5667:                  }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
1.334     brouard  5668:                    /* i1=Tvaraff[z1]; */
                   5669:                    /* i2=TnsdVar[i1]; */
                   5670:                    /* i3=nbcode[i1][i2]; */
                   5671:                    /* i4=covar[i1][iind]; */
                   5672:                    /* if(i4 != i3){ */
                   5673:                    if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { /* Bug valgrind */
1.251     brouard  5674:                      bool=0;
                   5675:                    }
                   5676:                  }
                   5677:                }
                   5678:              }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
                   5679:            } /* end j==0 */
                   5680:            /* bool =0 we keep that guy which corresponds to the combination of dummy values */
1.284     brouard  5681:            if(bool==1){ /*Selected */
1.251     brouard  5682:              /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                   5683:                 and mw[mi+1][iind]. dh depends on stepm. */
                   5684:              agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
                   5685:              ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
                   5686:              if(m >=firstpass && m <=lastpass){
                   5687:                k2=anint[m][iind]+(mint[m][iind]/12.);
                   5688:                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   5689:                if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
                   5690:                if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                   5691:                if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
                   5692:                  prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
                   5693:                if (m<lastpass) {
                   5694:                  /* if(s[m][iind]==4 && s[m+1][iind]==4) */
                   5695:                  /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
                   5696:                  if(s[m][iind]==-1)
                   5697:                    printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
                   5698:                  freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
1.311     brouard  5699:                  for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean on known values only */
                   5700:                    if(!isnan(covar[ncovcol+z1][iind])){
1.332     brouard  5701:                      idq[z1]=idq[z1]+weight[iind];
                   5702:                      meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /* Computes mean of quantitative with selected filter */
                   5703:                      /* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; *//*error*/
                   5704:                      stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]; /* *weight[iind];*/  /* Computes mean of quantitative with selected filter */
1.311     brouard  5705:                    }
1.284     brouard  5706:                  }
1.251     brouard  5707:                  /* if((int)agev[m][iind] == 55) */
                   5708:                  /*   printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */
                   5709:                  /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
                   5710:                  freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
1.234     brouard  5711:                }
1.251     brouard  5712:              } /* end if between passes */  
                   5713:              if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) {
                   5714:                dateintsum=dateintsum+k2; /* on all covariates ?*/
                   5715:                k2cpt++;
                   5716:                /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
1.234     brouard  5717:              }
1.251     brouard  5718:            }else{
                   5719:              bool=1;
                   5720:            }/* end bool 2 */
                   5721:          } /* end m */
1.284     brouard  5722:          /* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */
                   5723:          /*   idq[z1]=idq[z1]+weight[iind]; */
                   5724:          /*   meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /\* Computes mean of quantitative with selected filter *\/ */
                   5725:          /*   stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/  /\* Computes mean of quantitative with selected filter *\/ */
                   5726:          /* } */
1.251     brouard  5727:        } /* end bool */
                   5728:       } /* end iind = 1 to imx */
1.319     brouard  5729:       /* prop[s][age] is fed for any initial and valid live state as well as
1.251     brouard  5730:         freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
                   5731:       
                   5732:       
                   5733:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
1.335     brouard  5734:       if(cptcoveff==0 && nj==1) /* no covariate and first pass */
1.265     brouard  5735:         pstamp(ficresp);
1.335     brouard  5736:       if  (cptcoveff>0 && j!=0){
1.265     brouard  5737:         pstamp(ficresp);
1.251     brouard  5738:        printf( "\n#********** Variable "); 
                   5739:        fprintf(ficresp, "\n#********** Variable "); 
                   5740:        fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
                   5741:        fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
                   5742:        fprintf(ficlog, "\n#********** Variable "); 
1.340     brouard  5743:        for (z1=1; z1<=cptcoveff; z1++){
1.251     brouard  5744:          if(!FixedV[Tvaraff[z1]]){
1.330     brouard  5745:            printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5746:            fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5747:            fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5748:            fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5749:            fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
1.250     brouard  5750:          }else{
1.330     brouard  5751:            printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5752:            fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5753:            fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5754:            fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5755:            fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
1.251     brouard  5756:          }
                   5757:        }
                   5758:        printf( "**********\n#");
                   5759:        fprintf(ficresp, "**********\n#");
                   5760:        fprintf(ficresphtm, "**********</h3>\n");
                   5761:        fprintf(ficresphtmfr, "**********</h3>\n");
                   5762:        fprintf(ficlog, "**********\n");
                   5763:       }
1.284     brouard  5764:       /*
                   5765:        Printing means of quantitative variables if any
                   5766:       */
                   5767:       for (z1=1; z1<= nqfveff; z1++) {
1.311     brouard  5768:        fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.3g (weighted) individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]);
1.312     brouard  5769:        fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]);
1.284     brouard  5770:        if(weightopt==1){
                   5771:          printf(" Weighted mean and standard deviation of");
                   5772:          fprintf(ficlog," Weighted mean and standard deviation of");
                   5773:          fprintf(ficresphtmfr," Weighted mean and standard deviation of");
                   5774:        }
1.311     brouard  5775:        /* mu = \frac{w x}{\sum w}
                   5776:            var = \frac{\sum w (x-mu)^2}{\sum w} = \frac{w x^2}{\sum w} - mu^2 
                   5777:        */
                   5778:        printf(" fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
                   5779:        fprintf(ficlog," fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
                   5780:        fprintf(ficresphtmfr," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
1.284     brouard  5781:       }
                   5782:       /* for (z1=1; z1<= nqtveff; z1++) { */
                   5783:       /*       for(m=1;m<=lastpass;m++){ */
                   5784:       /*         fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */
                   5785:       /*   } */
                   5786:       /* } */
1.283     brouard  5787: 
1.251     brouard  5788:       fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
1.335     brouard  5789:       if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */
1.265     brouard  5790:         fprintf(ficresp, " Age");
1.335     brouard  5791:       if(nj==2) for (z1=1; z1<=cptcoveff; z1++) {
                   5792:          printf(" V%d=%d, z1=%d, Tvaraff[z1]=%d, j1=%d, TnsdVar[Tvaraff[%d]]=%d |",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])], z1, Tvaraff[z1], j1,z1,TnsdVar[Tvaraff[z1]]);
                   5793:          fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   5794:        }
1.251     brouard  5795:       for(i=1; i<=nlstate;i++) {
1.335     brouard  5796:        if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d)  N(%d)  N  ",i,i);
1.251     brouard  5797:        fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
                   5798:       }
1.335     brouard  5799:       if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n");
1.251     brouard  5800:       fprintf(ficresphtm, "\n");
                   5801:       
                   5802:       /* Header of frequency table by age */
                   5803:       fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
                   5804:       fprintf(ficresphtmfr,"<th>Age</th> ");
1.265     brouard  5805:       for(s2=-1; s2 <=nlstate+ndeath; s2++){
1.251     brouard  5806:        for(m=-1; m <=nlstate+ndeath; m++){
1.265     brouard  5807:          if(s2!=0 && m!=0)
                   5808:            fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m);
1.240     brouard  5809:        }
1.226     brouard  5810:       }
1.251     brouard  5811:       fprintf(ficresphtmfr, "\n");
                   5812:     
                   5813:       /* For each age */
                   5814:       for(iage=iagemin; iage <= iagemax+3; iage++){
                   5815:        fprintf(ficresphtm,"<tr>");
                   5816:        if(iage==iagemax+1){
                   5817:          fprintf(ficlog,"1");
                   5818:          fprintf(ficresphtmfr,"<tr><th>0</th> ");
                   5819:        }else if(iage==iagemax+2){
                   5820:          fprintf(ficlog,"0");
                   5821:          fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
                   5822:        }else if(iage==iagemax+3){
                   5823:          fprintf(ficlog,"Total");
                   5824:          fprintf(ficresphtmfr,"<tr><th>Total</th> ");
                   5825:        }else{
1.240     brouard  5826:          if(first==1){
1.251     brouard  5827:            first=0;
                   5828:            printf("See log file for details...\n");
                   5829:          }
                   5830:          fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
                   5831:          fprintf(ficlog,"Age %d", iage);
                   5832:        }
1.265     brouard  5833:        for(s1=1; s1 <=nlstate ; s1++){
                   5834:          for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++)
                   5835:            pp[s1] += freq[s1][m][iage]; 
1.251     brouard  5836:        }
1.265     brouard  5837:        for(s1=1; s1 <=nlstate ; s1++){
1.251     brouard  5838:          for(m=-1, pos=0; m <=0 ; m++)
1.265     brouard  5839:            pos += freq[s1][m][iage];
                   5840:          if(pp[s1]>=1.e-10){
1.251     brouard  5841:            if(first==1){
1.265     brouard  5842:              printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
1.251     brouard  5843:            }
1.265     brouard  5844:            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
1.251     brouard  5845:          }else{
                   5846:            if(first==1)
1.265     brouard  5847:              printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
                   5848:            fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
1.240     brouard  5849:          }
                   5850:        }
                   5851:       
1.265     brouard  5852:        for(s1=1; s1 <=nlstate ; s1++){ 
                   5853:          /* posprop[s1]=0; */
                   5854:          for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
                   5855:            pp[s1] += freq[s1][m][iage];
                   5856:        }       /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */
                   5857:       
                   5858:        for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){
                   5859:          pos += pp[s1]; /* pos is the total number of transitions until this age */
                   5860:          posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state
                   5861:                                            from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
                   5862:          pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state
                   5863:                                          from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
                   5864:        }
                   5865:        
                   5866:        /* Writing ficresp */
1.335     brouard  5867:        if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
1.265     brouard  5868:           if( iage <= iagemax){
                   5869:            fprintf(ficresp," %d",iage);
                   5870:           }
                   5871:         }else if( nj==2){
                   5872:           if( iage <= iagemax){
                   5873:            fprintf(ficresp," %d",iage);
1.335     brouard  5874:             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
1.265     brouard  5875:           }
1.240     brouard  5876:        }
1.265     brouard  5877:        for(s1=1; s1 <=nlstate ; s1++){
1.240     brouard  5878:          if(pos>=1.e-5){
1.251     brouard  5879:            if(first==1)
1.265     brouard  5880:              printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
                   5881:            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
1.251     brouard  5882:          }else{
                   5883:            if(first==1)
1.265     brouard  5884:              printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
                   5885:            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
1.251     brouard  5886:          }
                   5887:          if( iage <= iagemax){
                   5888:            if(pos>=1.e-5){
1.335     brouard  5889:              if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
1.265     brouard  5890:                fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                   5891:               }else if( nj==2){
                   5892:                fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                   5893:               }
                   5894:              fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                   5895:              /*probs[iage][s1][j1]= pp[s1]/pos;*/
                   5896:              /*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/
                   5897:            } else{
1.335     brouard  5898:              if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta);
1.265     brouard  5899:              fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta);
1.251     brouard  5900:            }
1.240     brouard  5901:          }
1.265     brouard  5902:          pospropt[s1] +=posprop[s1];
                   5903:        } /* end loop s1 */
1.251     brouard  5904:        /* pospropt=0.; */
1.265     brouard  5905:        for(s1=-1; s1 <=nlstate+ndeath; s1++){
1.251     brouard  5906:          for(m=-1; m <=nlstate+ndeath; m++){
1.265     brouard  5907:            if(freq[s1][m][iage] !=0 ) { /* minimizing output */
1.251     brouard  5908:              if(first==1){
1.265     brouard  5909:                printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]);
1.251     brouard  5910:              }
1.265     brouard  5911:              /* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */
                   5912:              fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]);
1.251     brouard  5913:            }
1.265     brouard  5914:            if(s1!=0 && m!=0)
                   5915:              fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]);
1.240     brouard  5916:          }
1.265     brouard  5917:        } /* end loop s1 */
1.251     brouard  5918:        posproptt=0.; 
1.265     brouard  5919:        for(s1=1; s1 <=nlstate; s1++){
                   5920:          posproptt += pospropt[s1];
1.251     brouard  5921:        }
                   5922:        fprintf(ficresphtmfr,"</tr>\n ");
1.265     brouard  5923:        fprintf(ficresphtm,"</tr>\n");
1.335     brouard  5924:        if((cptcoveff==0 && nj==1)|| nj==2 ) {
1.265     brouard  5925:          if(iage <= iagemax)
                   5926:            fprintf(ficresp,"\n");
1.240     brouard  5927:        }
1.251     brouard  5928:        if(first==1)
                   5929:          printf("Others in log...\n");
                   5930:        fprintf(ficlog,"\n");
                   5931:       } /* end loop age iage */
1.265     brouard  5932:       
1.251     brouard  5933:       fprintf(ficresphtm,"<tr><th>Tot</th>");
1.265     brouard  5934:       for(s1=1; s1 <=nlstate ; s1++){
1.251     brouard  5935:        if(posproptt < 1.e-5){
1.265     brouard  5936:          fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); 
1.251     brouard  5937:        }else{
1.265     brouard  5938:          fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt);  
1.240     brouard  5939:        }
1.226     brouard  5940:       }
1.251     brouard  5941:       fprintf(ficresphtm,"</tr>\n");
                   5942:       fprintf(ficresphtm,"</table>\n");
                   5943:       fprintf(ficresphtmfr,"</table>\n");
1.226     brouard  5944:       if(posproptt < 1.e-5){
1.251     brouard  5945:        fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
                   5946:        fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
1.260     brouard  5947:        fprintf(ficlog,"#  This combination (%d) is not valid and no result will be produced\n",j1);
                   5948:        printf("#  This combination (%d) is not valid and no result will be produced\n",j1);
1.251     brouard  5949:        invalidvarcomb[j1]=1;
1.226     brouard  5950:       }else{
1.338     brouard  5951:        fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced (or no resultline).</p>",j1);
1.251     brouard  5952:        invalidvarcomb[j1]=0;
1.226     brouard  5953:       }
1.251     brouard  5954:       fprintf(ficresphtmfr,"</table>\n");
                   5955:       fprintf(ficlog,"\n");
                   5956:       if(j!=0){
                   5957:        printf("#Freqsummary: Starting values for combination j1=%d:\n", j1);
1.265     brouard  5958:        for(i=1,s1=1; i <=nlstate; i++){
1.251     brouard  5959:          for(k=1; k <=(nlstate+ndeath); k++){
                   5960:            if (k != i) {
1.265     brouard  5961:              for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */
1.253     brouard  5962:                if(jj==1){  /* Constant case (in fact cste + age) */
1.251     brouard  5963:                  if(j1==1){ /* All dummy covariates to zero */
                   5964:                    freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */
                   5965:                    freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */
1.252     brouard  5966:                    printf("%d%d ",i,k);
                   5967:                    fprintf(ficlog,"%d%d ",i,k);
1.265     brouard  5968:                    printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]));
                   5969:                    fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                   5970:                    pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
1.251     brouard  5971:                  }
1.253     brouard  5972:                }else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */
                   5973:                  for(iage=iagemin; iage <= iagemax+3; iage++){
                   5974:                    x[iage]= (double)iage;
                   5975:                    y[iage]= log(freq[i][k][iage]/freq[i][i][iage]);
1.265     brouard  5976:                    /* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */
1.253     brouard  5977:                  }
1.268     brouard  5978:                  /* Some are not finite, but linreg will ignore these ages */
                   5979:                  no=0;
1.253     brouard  5980:                  linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */
1.265     brouard  5981:                  pstart[s1]=b;
                   5982:                  pstart[s1-1]=a;
1.252     brouard  5983:                }else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj)  && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ 
                   5984:                  printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
                   5985:                  printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
1.265     brouard  5986:                  pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]));
1.252     brouard  5987:                  printf("%d%d ",i,k);
                   5988:                  fprintf(ficlog,"%d%d ",i,k);
1.265     brouard  5989:                  printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4]));
1.251     brouard  5990:                }else{ /* Other cases, like quantitative fixed or varying covariates */
                   5991:                  ;
                   5992:                }
                   5993:                /* printf("%12.7f )", param[i][jj][k]); */
                   5994:                /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
1.265     brouard  5995:                s1++; 
1.251     brouard  5996:              } /* end jj */
                   5997:            } /* end k!= i */
                   5998:          } /* end k */
1.265     brouard  5999:        } /* end i, s1 */
1.251     brouard  6000:       } /* end j !=0 */
                   6001:     } /* end selected combination of covariate j1 */
                   6002:     if(j==0){ /* We can estimate starting values from the occurences in each case */
                   6003:       printf("#Freqsummary: Starting values for the constants:\n");
                   6004:       fprintf(ficlog,"\n");
1.265     brouard  6005:       for(i=1,s1=1; i <=nlstate; i++){
1.251     brouard  6006:        for(k=1; k <=(nlstate+ndeath); k++){
                   6007:          if (k != i) {
                   6008:            printf("%d%d ",i,k);
                   6009:            fprintf(ficlog,"%d%d ",i,k);
                   6010:            for(jj=1; jj <=ncovmodel; jj++){
1.265     brouard  6011:              pstart[s1]=p[s1]; /* Setting pstart to p values by default */
1.253     brouard  6012:              if(jj==1){ /* Age has to be done */
1.265     brouard  6013:                pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
                   6014:                printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                   6015:                fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
1.251     brouard  6016:              }
                   6017:              /* printf("%12.7f )", param[i][jj][k]); */
                   6018:              /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
1.265     brouard  6019:              s1++; 
1.250     brouard  6020:            }
1.251     brouard  6021:            printf("\n");
                   6022:            fprintf(ficlog,"\n");
1.250     brouard  6023:          }
                   6024:        }
1.284     brouard  6025:       } /* end of state i */
1.251     brouard  6026:       printf("#Freqsummary\n");
                   6027:       fprintf(ficlog,"\n");
1.265     brouard  6028:       for(s1=-1; s1 <=nlstate+ndeath; s1++){
                   6029:        for(s2=-1; s2 <=nlstate+ndeath; s2++){
                   6030:          /* param[i]|j][k]= freq[s1][s2][iagemax+3] */
                   6031:          printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
                   6032:          fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
                   6033:          /* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */
                   6034:          /*   printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
                   6035:          /*   fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
1.251     brouard  6036:          /* } */
                   6037:        }
1.265     brouard  6038:       } /* end loop s1 */
1.251     brouard  6039:       
                   6040:       printf("\n");
                   6041:       fprintf(ficlog,"\n");
                   6042:     } /* end j=0 */
1.249     brouard  6043:   } /* end j */
1.252     brouard  6044: 
1.253     brouard  6045:   if(mle == -2){  /* We want to use these values as starting values */
1.252     brouard  6046:     for(i=1, jk=1; i <=nlstate; i++){
                   6047:       for(j=1; j <=nlstate+ndeath; j++){
                   6048:        if(j!=i){
                   6049:          /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   6050:          printf("%1d%1d",i,j);
                   6051:          fprintf(ficparo,"%1d%1d",i,j);
                   6052:          for(k=1; k<=ncovmodel;k++){
                   6053:            /*    printf(" %lf",param[i][j][k]); */
                   6054:            /*    fprintf(ficparo," %lf",param[i][j][k]); */
                   6055:            p[jk]=pstart[jk];
                   6056:            printf(" %f ",pstart[jk]);
                   6057:            fprintf(ficparo," %f ",pstart[jk]);
                   6058:            jk++;
                   6059:          }
                   6060:          printf("\n");
                   6061:          fprintf(ficparo,"\n");
                   6062:        }
                   6063:       }
                   6064:     }
                   6065:   } /* end mle=-2 */
1.226     brouard  6066:   dateintmean=dateintsum/k2cpt; 
1.296     brouard  6067:   date2dmy(dateintmean,&jintmean,&mintmean,&aintmean);
1.240     brouard  6068:   
1.226     brouard  6069:   fclose(ficresp);
                   6070:   fclose(ficresphtm);
                   6071:   fclose(ficresphtmfr);
1.283     brouard  6072:   free_vector(idq,1,nqfveff);
1.226     brouard  6073:   free_vector(meanq,1,nqfveff);
1.284     brouard  6074:   free_vector(stdq,1,nqfveff);
1.226     brouard  6075:   free_matrix(meanqt,1,lastpass,1,nqtveff);
1.253     brouard  6076:   free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
                   6077:   free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
1.251     brouard  6078:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
1.226     brouard  6079:   free_vector(pospropt,1,nlstate);
                   6080:   free_vector(posprop,1,nlstate);
1.251     brouard  6081:   free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE);
1.226     brouard  6082:   free_vector(pp,1,nlstate);
                   6083:   /* End of freqsummary */
                   6084: }
1.126     brouard  6085: 
1.268     brouard  6086: /* Simple linear regression */
                   6087: int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) {
                   6088: 
                   6089:   /* y=a+bx regression */
                   6090:   double   sumx = 0.0;                        /* sum of x                      */
                   6091:   double   sumx2 = 0.0;                       /* sum of x**2                   */
                   6092:   double   sumxy = 0.0;                       /* sum of x * y                  */
                   6093:   double   sumy = 0.0;                        /* sum of y                      */
                   6094:   double   sumy2 = 0.0;                       /* sum of y**2                   */
                   6095:   double   sume2 = 0.0;                       /* sum of square or residuals */
                   6096:   double yhat;
                   6097:   
                   6098:   double denom=0;
                   6099:   int i;
                   6100:   int ne=*no;
                   6101:   
                   6102:   for ( i=ifi, ne=0;i<=ila;i++) {
                   6103:     if(!isfinite(x[i]) || !isfinite(y[i])){
                   6104:       /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
                   6105:       continue;
                   6106:     }
                   6107:     ne=ne+1;
                   6108:     sumx  += x[i];       
                   6109:     sumx2 += x[i]*x[i];  
                   6110:     sumxy += x[i] * y[i];
                   6111:     sumy  += y[i];      
                   6112:     sumy2 += y[i]*y[i]; 
                   6113:     denom = (ne * sumx2 - sumx*sumx);
                   6114:     /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
                   6115:   } 
                   6116:   
                   6117:   denom = (ne * sumx2 - sumx*sumx);
                   6118:   if (denom == 0) {
                   6119:     // vertical, slope m is infinity
                   6120:     *b = INFINITY;
                   6121:     *a = 0;
                   6122:     if (r) *r = 0;
                   6123:     return 1;
                   6124:   }
                   6125:   
                   6126:   *b = (ne * sumxy  -  sumx * sumy) / denom;
                   6127:   *a = (sumy * sumx2  -  sumx * sumxy) / denom;
                   6128:   if (r!=NULL) {
                   6129:     *r = (sumxy - sumx * sumy / ne) /          /* compute correlation coeff     */
                   6130:       sqrt((sumx2 - sumx*sumx/ne) *
                   6131:           (sumy2 - sumy*sumy/ne));
                   6132:   }
                   6133:   *no=ne;
                   6134:   for ( i=ifi, ne=0;i<=ila;i++) {
                   6135:     if(!isfinite(x[i]) || !isfinite(y[i])){
                   6136:       /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
                   6137:       continue;
                   6138:     }
                   6139:     ne=ne+1;
                   6140:     yhat = y[i] - *a -*b* x[i];
                   6141:     sume2  += yhat * yhat ;       
                   6142:     
                   6143:     denom = (ne * sumx2 - sumx*sumx);
                   6144:     /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
                   6145:   } 
                   6146:   *sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne));
                   6147:   *sa= *sb * sqrt(sumx2/ne);
                   6148:   
                   6149:   return 0; 
                   6150: }
                   6151: 
1.126     brouard  6152: /************ Prevalence ********************/
1.227     brouard  6153: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   6154: {  
                   6155:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   6156:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   6157:      We still use firstpass and lastpass as another selection.
                   6158:   */
1.126     brouard  6159:  
1.227     brouard  6160:   int i, m, jk, j1, bool, z1,j, iv;
                   6161:   int mi; /* Effective wave */
                   6162:   int iage;
                   6163:   double agebegin, ageend;
                   6164: 
                   6165:   double **prop;
                   6166:   double posprop; 
                   6167:   double  y2; /* in fractional years */
                   6168:   int iagemin, iagemax;
                   6169:   int first; /** to stop verbosity which is redirected to log file */
                   6170: 
                   6171:   iagemin= (int) agemin;
                   6172:   iagemax= (int) agemax;
                   6173:   /*pp=vector(1,nlstate);*/
1.251     brouard  6174:   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
1.227     brouard  6175:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   6176:   j1=0;
1.222     brouard  6177:   
1.227     brouard  6178:   /*j=cptcoveff;*/
                   6179:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
1.222     brouard  6180:   
1.288     brouard  6181:   first=0;
1.335     brouard  6182:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of simple dummy covariates */
1.227     brouard  6183:     for (i=1; i<=nlstate; i++)  
1.251     brouard  6184:       for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++)
1.227     brouard  6185:        prop[i][iage]=0.0;
                   6186:     printf("Prevalence combination of varying and fixed dummies %d\n",j1);
                   6187:     /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
                   6188:     fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
                   6189:     
                   6190:     for (i=1; i<=imx; i++) { /* Each individual */
                   6191:       bool=1;
                   6192:       /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
                   6193:       for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
                   6194:        m=mw[mi][i];
                   6195:        /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
                   6196:        /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
                   6197:        for (z1=1; z1<=cptcoveff; z1++){
                   6198:          if( Fixed[Tmodelind[z1]]==1){
1.341     brouard  6199:            iv= Tvar[Tmodelind[z1]];/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
1.332     brouard  6200:            if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality */
1.227     brouard  6201:              bool=0;
                   6202:          }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
1.332     brouard  6203:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) {
1.227     brouard  6204:              bool=0;
                   6205:            }
                   6206:        }
                   6207:        if(bool==1){ /* Otherwise we skip that wave/person */
                   6208:          agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
                   6209:          /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
                   6210:          if(m >=firstpass && m <=lastpass){
                   6211:            y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   6212:            if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                   6213:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   6214:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
1.251     brouard  6215:              if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){
1.227     brouard  6216:                printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
                   6217:                exit(1);
                   6218:              }
                   6219:              if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   6220:                /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   6221:                prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
                   6222:                prop[s[m][i]][iagemax+3] += weight[i]; 
                   6223:              } /* end valid statuses */ 
                   6224:            } /* end selection of dates */
                   6225:          } /* end selection of waves */
                   6226:        } /* end bool */
                   6227:       } /* end wave */
                   6228:     } /* end individual */
                   6229:     for(i=iagemin; i <= iagemax+3; i++){  
                   6230:       for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   6231:        posprop += prop[jk][i]; 
                   6232:       } 
                   6233:       
                   6234:       for(jk=1; jk <=nlstate ; jk++){      
                   6235:        if( i <=  iagemax){ 
                   6236:          if(posprop>=1.e-5){ 
                   6237:            probs[i][jk][j1]= prop[jk][i]/posprop;
                   6238:          } else{
1.288     brouard  6239:            if(!first){
                   6240:              first=1;
1.266     brouard  6241:              printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);
                   6242:            }else{
1.288     brouard  6243:              fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]);
1.227     brouard  6244:            }
                   6245:          }
                   6246:        } 
                   6247:       }/* end jk */ 
                   6248:     }/* end i */ 
1.222     brouard  6249:      /*} *//* end i1 */
1.227     brouard  6250:   } /* end j1 */
1.222     brouard  6251:   
1.227     brouard  6252:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   6253:   /*free_vector(pp,1,nlstate);*/
1.251     brouard  6254:   free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE);
1.227     brouard  6255: }  /* End of prevalence */
1.126     brouard  6256: 
                   6257: /************* Waves Concatenation ***************/
                   6258: 
                   6259: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   6260: {
1.298     brouard  6261:   /* Concatenates waves: wav[i] is the number of effective (useful waves in the sense that a non interview is useless) of individual i.
1.126     brouard  6262:      Death is a valid wave (if date is known).
                   6263:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   6264:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
1.298     brouard  6265:      and mw[mi+1][i]. dh depends on stepm. s[m][i] exists for any wave from firstpass to lastpass
1.227     brouard  6266:   */
1.126     brouard  6267: 
1.224     brouard  6268:   int i=0, mi=0, m=0, mli=0;
1.126     brouard  6269:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   6270:      double sum=0., jmean=0.;*/
1.224     brouard  6271:   int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
1.126     brouard  6272:   int j, k=0,jk, ju, jl;
                   6273:   double sum=0.;
                   6274:   first=0;
1.214     brouard  6275:   firstwo=0;
1.217     brouard  6276:   firsthree=0;
1.218     brouard  6277:   firstfour=0;
1.164     brouard  6278:   jmin=100000;
1.126     brouard  6279:   jmax=-1;
                   6280:   jmean=0.;
1.224     brouard  6281: 
                   6282: /* Treating live states */
1.214     brouard  6283:   for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
1.224     brouard  6284:     mi=0;  /* First valid wave */
1.227     brouard  6285:     mli=0; /* Last valid wave */
1.309     brouard  6286:     m=firstpass;  /* Loop on waves */
                   6287:     while(s[m][i] <= nlstate){  /* a live state or unknown state  */
1.227     brouard  6288:       if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
                   6289:        mli=m-1;/* mw[++mi][i]=m-1; */
                   6290:       }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
1.309     brouard  6291:        mw[++mi][i]=m; /* Valid wave: incrementing mi and updating mi; mw[mi] is the wave number of mi_th valid transition   */
1.227     brouard  6292:        mli=m;
1.224     brouard  6293:       } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
                   6294:       if(m < lastpass){ /* m < lastpass, standard case */
1.227     brouard  6295:        m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
1.216     brouard  6296:       }
1.309     brouard  6297:       else{ /* m = lastpass, eventual special issue with warning */
1.224     brouard  6298: #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
1.227     brouard  6299:        break;
1.224     brouard  6300: #else
1.317     brouard  6301:        if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ /* no death date and known date of interview, case -2 (vital status unknown is warned later */
1.227     brouard  6302:          if(firsthree == 0){
1.302     brouard  6303:            printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
1.227     brouard  6304:            firsthree=1;
1.317     brouard  6305:          }else if(firsthree >=1 && firsthree < 10){
                   6306:            fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
                   6307:            firsthree++;
                   6308:          }else if(firsthree == 10){
                   6309:            printf("Information, too many Information flags: no more reported to log either\n");
                   6310:            fprintf(ficlog,"Information, too many Information flags: no more reported to log either\n");
                   6311:            firsthree++;
                   6312:          }else{
                   6313:            firsthree++;
1.227     brouard  6314:          }
1.309     brouard  6315:          mw[++mi][i]=m; /* Valid transition with unknown status */
1.227     brouard  6316:          mli=m;
                   6317:        }
                   6318:        if(s[m][i]==-2){ /* Vital status is really unknown */
                   6319:          nbwarn++;
1.309     brouard  6320:          if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified?not a transition */
1.227     brouard  6321:            printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                   6322:            fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                   6323:          }
                   6324:          break;
                   6325:        }
                   6326:        break;
1.224     brouard  6327: #endif
1.227     brouard  6328:       }/* End m >= lastpass */
1.126     brouard  6329:     }/* end while */
1.224     brouard  6330: 
1.227     brouard  6331:     /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
1.216     brouard  6332:     /* After last pass */
1.224     brouard  6333: /* Treating death states */
1.214     brouard  6334:     if (s[m][i] > nlstate){  /* In a death state */
1.227     brouard  6335:       /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
                   6336:       /* } */
1.126     brouard  6337:       mi++;    /* Death is another wave */
                   6338:       /* if(mi==0)  never been interviewed correctly before death */
1.227     brouard  6339:       /* Only death is a correct wave */
1.126     brouard  6340:       mw[mi][i]=m;
1.257     brouard  6341:     } /* else not in a death state */
1.224     brouard  6342: #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
1.257     brouard  6343:     else if ((int) andc[i] != 9999) {  /* Date of death is known */
1.218     brouard  6344:       if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
1.309     brouard  6345:        if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* month of death occured before last wave month and status should have been death instead of -1 */
1.227     brouard  6346:          nbwarn++;
                   6347:          if(firstfiv==0){
1.309     brouard  6348:            printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  6349:            firstfiv=1;
                   6350:          }else{
1.309     brouard  6351:            fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  6352:          }
1.309     brouard  6353:            s[m][i]=nlstate+1; /* Fixing the status as death. Be careful if multiple death states */
                   6354:        }else{ /* Month of Death occured afer last wave month, potential bias */
1.227     brouard  6355:          nberr++;
                   6356:          if(firstwo==0){
1.309     brouard  6357:            printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  6358:            firstwo=1;
                   6359:          }
1.309     brouard  6360:          fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  6361:        }
1.257     brouard  6362:       }else{ /* if date of interview is unknown */
1.227     brouard  6363:        /* death is known but not confirmed by death status at any wave */
                   6364:        if(firstfour==0){
1.309     brouard  6365:          printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  6366:          firstfour=1;
                   6367:        }
1.309     brouard  6368:        fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d  with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.214     brouard  6369:       }
1.224     brouard  6370:     } /* end if date of death is known */
                   6371: #endif
1.309     brouard  6372:     wav[i]=mi; /* mi should be the last effective wave (or mli),  */
                   6373:     /* wav[i]=mw[mi][i];   */
1.126     brouard  6374:     if(mi==0){
                   6375:       nbwarn++;
                   6376:       if(first==0){
1.227     brouard  6377:        printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                   6378:        first=1;
1.126     brouard  6379:       }
                   6380:       if(first==1){
1.227     brouard  6381:        fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
1.126     brouard  6382:       }
                   6383:     } /* end mi==0 */
                   6384:   } /* End individuals */
1.214     brouard  6385:   /* wav and mw are no more changed */
1.223     brouard  6386:        
1.317     brouard  6387:   printf("Information, you have to check %d informations which haven't been logged!\n",firsthree);
                   6388:   fprintf(ficlog,"Information, you have to check %d informations which haven't been logged!\n",firsthree);
                   6389: 
                   6390: 
1.126     brouard  6391:   for(i=1; i<=imx; i++){
                   6392:     for(mi=1; mi<wav[i];mi++){
                   6393:       if (stepm <=0)
1.227     brouard  6394:        dh[mi][i]=1;
1.126     brouard  6395:       else{
1.260     brouard  6396:        if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */
1.227     brouard  6397:          if (agedc[i] < 2*AGESUP) {
                   6398:            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   6399:            if(j==0) j=1;  /* Survives at least one month after exam */
                   6400:            else if(j<0){
                   6401:              nberr++;
                   6402:              printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   6403:              j=1; /* Temporary Dangerous patch */
                   6404:              printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   6405:              fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   6406:              fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   6407:            }
                   6408:            k=k+1;
                   6409:            if (j >= jmax){
                   6410:              jmax=j;
                   6411:              ijmax=i;
                   6412:            }
                   6413:            if (j <= jmin){
                   6414:              jmin=j;
                   6415:              ijmin=i;
                   6416:            }
                   6417:            sum=sum+j;
                   6418:            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   6419:            /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   6420:          }
                   6421:        }
                   6422:        else{
                   6423:          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1.126     brouard  6424: /*       if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
1.223     brouard  6425:                                        
1.227     brouard  6426:          k=k+1;
                   6427:          if (j >= jmax) {
                   6428:            jmax=j;
                   6429:            ijmax=i;
                   6430:          }
                   6431:          else if (j <= jmin){
                   6432:            jmin=j;
                   6433:            ijmin=i;
                   6434:          }
                   6435:          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   6436:          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   6437:          if(j<0){
                   6438:            nberr++;
                   6439:            printf("Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   6440:            fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld at line %d who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
                   6441:          }
                   6442:          sum=sum+j;
                   6443:        }
                   6444:        jk= j/stepm;
                   6445:        jl= j -jk*stepm;
                   6446:        ju= j -(jk+1)*stepm;
                   6447:        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   6448:          if(jl==0){
                   6449:            dh[mi][i]=jk;
                   6450:            bh[mi][i]=0;
                   6451:          }else{ /* We want a negative bias in order to only have interpolation ie
                   6452:                  * to avoid the price of an extra matrix product in likelihood */
                   6453:            dh[mi][i]=jk+1;
                   6454:            bh[mi][i]=ju;
                   6455:          }
                   6456:        }else{
                   6457:          if(jl <= -ju){
                   6458:            dh[mi][i]=jk;
                   6459:            bh[mi][i]=jl;       /* bias is positive if real duration
                   6460:                                 * is higher than the multiple of stepm and negative otherwise.
                   6461:                                 */
                   6462:          }
                   6463:          else{
                   6464:            dh[mi][i]=jk+1;
                   6465:            bh[mi][i]=ju;
                   6466:          }
                   6467:          if(dh[mi][i]==0){
                   6468:            dh[mi][i]=1; /* At least one step */
                   6469:            bh[mi][i]=ju; /* At least one step */
                   6470:            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   6471:          }
                   6472:        } /* end if mle */
1.126     brouard  6473:       }
                   6474:     } /* end wave */
                   6475:   }
                   6476:   jmean=sum/k;
                   6477:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
1.141     brouard  6478:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
1.227     brouard  6479: }
1.126     brouard  6480: 
                   6481: /*********** Tricode ****************************/
1.220     brouard  6482:  void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
1.242     brouard  6483:  {
                   6484:    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                   6485:    /*    Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                   6486:     * Boring subroutine which should only output nbcode[Tvar[j]][k]
                   6487:     * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
                   6488:     * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
                   6489:     */
1.130     brouard  6490: 
1.242     brouard  6491:    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                   6492:    int modmaxcovj=0; /* Modality max of covariates j */
                   6493:    int cptcode=0; /* Modality max of covariates j */
                   6494:    int modmincovj=0; /* Modality min of covariates j */
1.145     brouard  6495: 
                   6496: 
1.242     brouard  6497:    /* cptcoveff=0;  */
                   6498:    /* *cptcov=0; */
1.126     brouard  6499:  
1.242     brouard  6500:    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
1.285     brouard  6501:    for (k=1; k <= maxncov; k++)
                   6502:      for(j=1; j<=2; j++)
                   6503:        nbcode[k][j]=0; /* Valgrind */
1.126     brouard  6504: 
1.242     brouard  6505:    /* Loop on covariates without age and products and no quantitative variable */
1.335     brouard  6506:    for (k=1; k<=cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
1.242     brouard  6507:      for (j=-1; (j < maxncov); j++) Ndum[j]=0;
1.343     brouard  6508:      /* printf("Testing k=%d, cptcovt=%d\n",k, cptcovt); */
1.349     brouard  6509:      if(Dummy[k]==0 && Typevar[k] !=1 && Typevar[k] != 3  && Typevar[k] != 2){ /* Dummy covariate and not age product nor fixed product */ 
1.242     brouard  6510:        switch(Fixed[k]) {
                   6511:        case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
1.311     brouard  6512:         modmaxcovj=0;
                   6513:         modmincovj=0;
1.242     brouard  6514:         for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
1.339     brouard  6515:           /* printf("Waiting for error tricode Tvar[%d]=%d i=%d (int)(covar[Tvar[k]][i]=%d\n",k,Tvar[k], i, (int)(covar[Tvar[k]][i])); */
1.242     brouard  6516:           ij=(int)(covar[Tvar[k]][i]);
                   6517:           /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                   6518:            * If product of Vn*Vm, still boolean *:
                   6519:            * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                   6520:            * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                   6521:           /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                   6522:              modality of the nth covariate of individual i. */
                   6523:           if (ij > modmaxcovj)
                   6524:             modmaxcovj=ij; 
                   6525:           else if (ij < modmincovj) 
                   6526:             modmincovj=ij; 
1.287     brouard  6527:           if (ij <0 || ij >1 ){
1.311     brouard  6528:             printf("ERROR, IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
                   6529:             fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
                   6530:             fflush(ficlog);
                   6531:             exit(1);
1.287     brouard  6532:           }
                   6533:           if ((ij < -1) || (ij > NCOVMAX)){
1.242     brouard  6534:             printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                   6535:             exit(1);
                   6536:           }else
                   6537:             Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                   6538:           /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                   6539:           /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                   6540:           /* getting the maximum value of the modality of the covariate
                   6541:              (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                   6542:              female ies 1, then modmaxcovj=1.
                   6543:           */
                   6544:         } /* end for loop on individuals i */
                   6545:         printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                   6546:         fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                   6547:         cptcode=modmaxcovj;
                   6548:         /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                   6549:         /*for (i=0; i<=cptcode; i++) {*/
                   6550:         for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
                   6551:           printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                   6552:           fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                   6553:           if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
                   6554:             if( j != -1){
                   6555:               ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
                   6556:                                  covariate for which somebody answered excluding 
                   6557:                                  undefined. Usually 2: 0 and 1. */
                   6558:             }
                   6559:             ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
                   6560:                                     covariate for which somebody answered including 
                   6561:                                     undefined. Usually 3: -1, 0 and 1. */
                   6562:           }    /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
                   6563:                 * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                   6564:         } /* Ndum[-1] number of undefined modalities */
1.231     brouard  6565:                        
1.242     brouard  6566:         /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                   6567:         /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
                   6568:         /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
                   6569:         /* modmincovj=3; modmaxcovj = 7; */
                   6570:         /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
                   6571:         /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
                   6572:         /*              defining two dummy variables: variables V1_1 and V1_2.*/
                   6573:         /* nbcode[Tvar[j]][ij]=k; */
                   6574:         /* nbcode[Tvar[j]][1]=0; */
                   6575:         /* nbcode[Tvar[j]][2]=1; */
                   6576:         /* nbcode[Tvar[j]][3]=2; */
                   6577:         /* To be continued (not working yet). */
                   6578:         ij=0; /* ij is similar to i but can jump over null modalities */
1.287     brouard  6579: 
                   6580:         /* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
                   6581:         /* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */
                   6582:         /* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of
                   6583:          * nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */
                   6584:         /*, could be restored in the future */
                   6585:         for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
1.242     brouard  6586:           if (Ndum[i] == 0) { /* If nobody responded to this modality k */
                   6587:             break;
                   6588:           }
                   6589:           ij++;
1.287     brouard  6590:           nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/
1.242     brouard  6591:           cptcode = ij; /* New max modality for covar j */
                   6592:         } /* end of loop on modality i=-1 to 1 or more */
                   6593:         break;
                   6594:        case 1: /* Testing on varying covariate, could be simple and
                   6595:                * should look at waves or product of fixed *
                   6596:                * varying. No time to test -1, assuming 0 and 1 only */
                   6597:         ij=0;
                   6598:         for(i=0; i<=1;i++){
                   6599:           nbcode[Tvar[k]][++ij]=i;
                   6600:         }
                   6601:         break;
                   6602:        default:
                   6603:         break;
                   6604:        } /* end switch */
                   6605:      } /* end dummy test */
1.349     brouard  6606:      if(Dummy[k]==1 && Typevar[k] !=1 && Typevar[k] !=3 && Fixed ==0){ /* Fixed Quantitative covariate and not age product */ 
1.311     brouard  6607:        for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
1.335     brouard  6608:         if(Tvar[k]<=0 || Tvar[k]>=NCOVMAX){
                   6609:           printf("Error k=%d \n",k);
                   6610:           exit(1);
                   6611:         }
1.311     brouard  6612:         if(isnan(covar[Tvar[k]][i])){
                   6613:           printf("ERROR, IMaCh doesn't treat fixed quantitative covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
                   6614:           fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
                   6615:           fflush(ficlog);
                   6616:           exit(1);
                   6617:          }
                   6618:        }
1.335     brouard  6619:      } /* end Quanti */
1.287     brouard  6620:    } /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/  
1.242     brouard  6621:   
                   6622:    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
                   6623:    /* Look at fixed dummy (single or product) covariates to check empty modalities */
                   6624:    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
                   6625:      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
                   6626:      ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
                   6627:      Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
                   6628:      /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
                   6629:    } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
                   6630:   
                   6631:    ij=0;
                   6632:    /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
1.335     brouard  6633:    for (k=1; k<=  cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
                   6634:      /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
1.242     brouard  6635:      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
                   6636:      /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
1.335     brouard  6637:      if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy simple and non empty in the model */
                   6638:        /* Typevar[k] =0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */
                   6639:        /* Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product*/
1.242     brouard  6640:        /* If product not in single variable we don't print results */
                   6641:        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
1.335     brouard  6642:        ++ij;/*    V5 + V4 + V3 + V4*V3 + V5*age + V2 +  V1*V2 + V1*age + V1, *//* V5 quanti, V2 quanti, V4, V3, V1 dummies */
                   6643:        /* k=       1    2   3     4       5       6      7       8        9  */
                   6644:        /* Tvar[k]= 5    4    3    6       5       2      7       1        1  */
                   6645:        /* ij            1    2                                            3  */  
                   6646:        /* Tvaraff[ij]=  4    3                                            1  */
                   6647:        /* Tmodelind[ij]=2    3                                            9  */
                   6648:        /* TmodelInvind[ij]=2 1                                            1  */
1.242     brouard  6649:        Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
                   6650:        Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
                   6651:        TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
                   6652:        if(Fixed[k]!=0)
                   6653:         anyvaryingduminmodel=1;
                   6654:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
                   6655:        /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
                   6656:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
                   6657:        /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
                   6658:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
                   6659:        /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
                   6660:      } 
                   6661:    } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
                   6662:    /* ij--; */
                   6663:    /* cptcoveff=ij; /\*Number of total covariates*\/ */
1.335     brouard  6664:    *cptcov=ij; /* cptcov= Number of total real effective simple dummies (fixed or time  arying) effective (used as cptcoveff in other functions)
1.242     brouard  6665:                * because they can be excluded from the model and real
                   6666:                * if in the model but excluded because missing values, but how to get k from ij?*/
                   6667:    for(j=ij+1; j<= cptcovt; j++){
                   6668:      Tvaraff[j]=0;
                   6669:      Tmodelind[j]=0;
                   6670:    }
                   6671:    for(j=ntveff+1; j<= cptcovt; j++){
                   6672:      TmodelInvind[j]=0;
                   6673:    }
                   6674:    /* To be sorted */
                   6675:    ;
                   6676:  }
1.126     brouard  6677: 
1.145     brouard  6678: 
1.126     brouard  6679: /*********** Health Expectancies ****************/
                   6680: 
1.235     brouard  6681:  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
1.126     brouard  6682: 
                   6683: {
                   6684:   /* Health expectancies, no variances */
1.329     brouard  6685:   /* cij is the combination in the list of combination of dummy covariates */
                   6686:   /* strstart is a string of time at start of computing */
1.164     brouard  6687:   int i, j, nhstepm, hstepm, h, nstepm;
1.126     brouard  6688:   int nhstepma, nstepma; /* Decreasing with age */
                   6689:   double age, agelim, hf;
                   6690:   double ***p3mat;
                   6691:   double eip;
                   6692: 
1.238     brouard  6693:   /* pstamp(ficreseij); */
1.126     brouard  6694:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   6695:   fprintf(ficreseij,"# Age");
                   6696:   for(i=1; i<=nlstate;i++){
                   6697:     for(j=1; j<=nlstate;j++){
                   6698:       fprintf(ficreseij," e%1d%1d ",i,j);
                   6699:     }
                   6700:     fprintf(ficreseij," e%1d. ",i);
                   6701:   }
                   6702:   fprintf(ficreseij,"\n");
                   6703: 
                   6704:   
                   6705:   if(estepm < stepm){
                   6706:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   6707:   }
                   6708:   else  hstepm=estepm;   
                   6709:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   6710:    * This is mainly to measure the difference between two models: for example
                   6711:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   6712:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   6713:    * progression in between and thus overestimating or underestimating according
                   6714:    * to the curvature of the survival function. If, for the same date, we 
                   6715:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   6716:    * to compare the new estimate of Life expectancy with the same linear 
                   6717:    * hypothesis. A more precise result, taking into account a more precise
                   6718:    * curvature will be obtained if estepm is as small as stepm. */
                   6719: 
                   6720:   /* For example we decided to compute the life expectancy with the smallest unit */
                   6721:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   6722:      nhstepm is the number of hstepm from age to agelim 
                   6723:      nstepm is the number of stepm from age to agelin. 
1.270     brouard  6724:      Look at hpijx to understand the reason which relies in memory size consideration
1.126     brouard  6725:      and note for a fixed period like estepm months */
                   6726:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   6727:      survival function given by stepm (the optimization length). Unfortunately it
                   6728:      means that if the survival funtion is printed only each two years of age and if
                   6729:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   6730:      results. So we changed our mind and took the option of the best precision.
                   6731:   */
                   6732:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   6733: 
                   6734:   agelim=AGESUP;
                   6735:   /* If stepm=6 months */
                   6736:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   6737:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   6738:     
                   6739: /* nhstepm age range expressed in number of stepm */
                   6740:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   6741:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   6742:   /* if (stepm >= YEARM) hstepm=1;*/
                   6743:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   6744:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6745: 
                   6746:   for (age=bage; age<=fage; age ++){ 
                   6747:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   6748:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   6749:     /* if (stepm >= YEARM) hstepm=1;*/
                   6750:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   6751: 
                   6752:     /* If stepm=6 months */
                   6753:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   6754:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
1.330     brouard  6755:     /* printf("HELLO evsij Entering hpxij age=%d cij=%d hstepm=%d x[1]=%f nres=%d\n",(int) age, cij, hstepm, x[1], nres); */
1.235     brouard  6756:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
1.126     brouard  6757:     
                   6758:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   6759:     
                   6760:     printf("%d|",(int)age);fflush(stdout);
                   6761:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   6762:     
                   6763:     /* Computing expectancies */
                   6764:     for(i=1; i<=nlstate;i++)
                   6765:       for(j=1; j<=nlstate;j++)
                   6766:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   6767:          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   6768:          
                   6769:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   6770: 
                   6771:        }
                   6772: 
                   6773:     fprintf(ficreseij,"%3.0f",age );
                   6774:     for(i=1; i<=nlstate;i++){
                   6775:       eip=0;
                   6776:       for(j=1; j<=nlstate;j++){
                   6777:        eip +=eij[i][j][(int)age];
                   6778:        fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                   6779:       }
                   6780:       fprintf(ficreseij,"%9.4f", eip );
                   6781:     }
                   6782:     fprintf(ficreseij,"\n");
                   6783:     
                   6784:   }
                   6785:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6786:   printf("\n");
                   6787:   fprintf(ficlog,"\n");
                   6788:   
                   6789: }
                   6790: 
1.235     brouard  6791:  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
1.126     brouard  6792: 
                   6793: {
                   6794:   /* Covariances of health expectancies eij and of total life expectancies according
1.222     brouard  6795:      to initial status i, ei. .
1.126     brouard  6796:   */
1.336     brouard  6797:   /* Very time consuming function, but already optimized with precov */
1.126     brouard  6798:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                   6799:   int nhstepma, nstepma; /* Decreasing with age */
                   6800:   double age, agelim, hf;
                   6801:   double ***p3matp, ***p3matm, ***varhe;
                   6802:   double **dnewm,**doldm;
                   6803:   double *xp, *xm;
                   6804:   double **gp, **gm;
                   6805:   double ***gradg, ***trgradg;
                   6806:   int theta;
                   6807: 
                   6808:   double eip, vip;
                   6809: 
                   6810:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                   6811:   xp=vector(1,npar);
                   6812:   xm=vector(1,npar);
                   6813:   dnewm=matrix(1,nlstate*nlstate,1,npar);
                   6814:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   6815:   
                   6816:   pstamp(ficresstdeij);
                   6817:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                   6818:   fprintf(ficresstdeij,"# Age");
                   6819:   for(i=1; i<=nlstate;i++){
                   6820:     for(j=1; j<=nlstate;j++)
                   6821:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   6822:     fprintf(ficresstdeij," e%1d. ",i);
                   6823:   }
                   6824:   fprintf(ficresstdeij,"\n");
                   6825: 
                   6826:   pstamp(ficrescveij);
                   6827:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                   6828:   fprintf(ficrescveij,"# Age");
                   6829:   for(i=1; i<=nlstate;i++)
                   6830:     for(j=1; j<=nlstate;j++){
                   6831:       cptj= (j-1)*nlstate+i;
                   6832:       for(i2=1; i2<=nlstate;i2++)
                   6833:        for(j2=1; j2<=nlstate;j2++){
                   6834:          cptj2= (j2-1)*nlstate+i2;
                   6835:          if(cptj2 <= cptj)
                   6836:            fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                   6837:        }
                   6838:     }
                   6839:   fprintf(ficrescveij,"\n");
                   6840:   
                   6841:   if(estepm < stepm){
                   6842:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   6843:   }
                   6844:   else  hstepm=estepm;   
                   6845:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   6846:    * This is mainly to measure the difference between two models: for example
                   6847:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   6848:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   6849:    * progression in between and thus overestimating or underestimating according
                   6850:    * to the curvature of the survival function. If, for the same date, we 
                   6851:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   6852:    * to compare the new estimate of Life expectancy with the same linear 
                   6853:    * hypothesis. A more precise result, taking into account a more precise
                   6854:    * curvature will be obtained if estepm is as small as stepm. */
                   6855: 
                   6856:   /* For example we decided to compute the life expectancy with the smallest unit */
                   6857:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   6858:      nhstepm is the number of hstepm from age to agelim 
                   6859:      nstepm is the number of stepm from age to agelin. 
                   6860:      Look at hpijx to understand the reason of that which relies in memory size
                   6861:      and note for a fixed period like estepm months */
                   6862:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   6863:      survival function given by stepm (the optimization length). Unfortunately it
                   6864:      means that if the survival funtion is printed only each two years of age and if
                   6865:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   6866:      results. So we changed our mind and took the option of the best precision.
                   6867:   */
                   6868:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   6869: 
                   6870:   /* If stepm=6 months */
                   6871:   /* nhstepm age range expressed in number of stepm */
                   6872:   agelim=AGESUP;
                   6873:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
                   6874:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   6875:   /* if (stepm >= YEARM) hstepm=1;*/
                   6876:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   6877:   
                   6878:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6879:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6880:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   6881:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                   6882:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   6883:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
                   6884: 
                   6885:   for (age=bage; age<=fage; age ++){ 
                   6886:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   6887:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   6888:     /* if (stepm >= YEARM) hstepm=1;*/
                   6889:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
1.218     brouard  6890:                
1.126     brouard  6891:     /* If stepm=6 months */
                   6892:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   6893:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   6894:     
                   6895:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
1.218     brouard  6896:                
1.126     brouard  6897:     /* Computing  Variances of health expectancies */
                   6898:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                   6899:        decrease memory allocation */
                   6900:     for(theta=1; theta <=npar; theta++){
                   6901:       for(i=1; i<=npar; i++){ 
1.222     brouard  6902:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   6903:        xm[i] = x[i] - (i==theta ?delti[theta]:0);
1.126     brouard  6904:       }
1.235     brouard  6905:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
                   6906:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
1.218     brouard  6907:                        
1.126     brouard  6908:       for(j=1; j<= nlstate; j++){
1.222     brouard  6909:        for(i=1; i<=nlstate; i++){
                   6910:          for(h=0; h<=nhstepm-1; h++){
                   6911:            gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                   6912:            gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                   6913:          }
                   6914:        }
1.126     brouard  6915:       }
1.218     brouard  6916:                        
1.126     brouard  6917:       for(ij=1; ij<= nlstate*nlstate; ij++)
1.222     brouard  6918:        for(h=0; h<=nhstepm-1; h++){
                   6919:          gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                   6920:        }
1.126     brouard  6921:     }/* End theta */
                   6922:     
                   6923:     
                   6924:     for(h=0; h<=nhstepm-1; h++)
                   6925:       for(j=1; j<=nlstate*nlstate;j++)
1.222     brouard  6926:        for(theta=1; theta <=npar; theta++)
                   6927:          trgradg[h][j][theta]=gradg[h][theta][j];
1.126     brouard  6928:     
1.218     brouard  6929:                
1.222     brouard  6930:     for(ij=1;ij<=nlstate*nlstate;ij++)
1.126     brouard  6931:       for(ji=1;ji<=nlstate*nlstate;ji++)
1.222     brouard  6932:        varhe[ij][ji][(int)age] =0.;
1.218     brouard  6933:                
1.222     brouard  6934:     printf("%d|",(int)age);fflush(stdout);
                   6935:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   6936:     for(h=0;h<=nhstepm-1;h++){
1.126     brouard  6937:       for(k=0;k<=nhstepm-1;k++){
1.222     brouard  6938:        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   6939:        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   6940:        for(ij=1;ij<=nlstate*nlstate;ij++)
                   6941:          for(ji=1;ji<=nlstate*nlstate;ji++)
                   6942:            varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
1.126     brouard  6943:       }
                   6944:     }
1.320     brouard  6945:     /* if((int)age ==50){ */
                   6946:     /*   printf(" age=%d cij=%d nres=%d varhe[%d][%d]=%f ",(int)age, cij, nres, 1,2,varhe[1][2]); */
                   6947:     /* } */
1.126     brouard  6948:     /* Computing expectancies */
1.235     brouard  6949:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
1.126     brouard  6950:     for(i=1; i<=nlstate;i++)
                   6951:       for(j=1; j<=nlstate;j++)
1.222     brouard  6952:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   6953:          eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
1.218     brouard  6954:                                        
1.222     brouard  6955:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
1.218     brouard  6956:                                        
1.222     brouard  6957:        }
1.269     brouard  6958: 
                   6959:     /* Standard deviation of expectancies ij */                
1.126     brouard  6960:     fprintf(ficresstdeij,"%3.0f",age );
                   6961:     for(i=1; i<=nlstate;i++){
                   6962:       eip=0.;
                   6963:       vip=0.;
                   6964:       for(j=1; j<=nlstate;j++){
1.222     brouard  6965:        eip += eij[i][j][(int)age];
                   6966:        for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                   6967:          vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                   6968:        fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
1.126     brouard  6969:       }
                   6970:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   6971:     }
                   6972:     fprintf(ficresstdeij,"\n");
1.218     brouard  6973:                
1.269     brouard  6974:     /* Variance of expectancies ij */          
1.126     brouard  6975:     fprintf(ficrescveij,"%3.0f",age );
                   6976:     for(i=1; i<=nlstate;i++)
                   6977:       for(j=1; j<=nlstate;j++){
1.222     brouard  6978:        cptj= (j-1)*nlstate+i;
                   6979:        for(i2=1; i2<=nlstate;i2++)
                   6980:          for(j2=1; j2<=nlstate;j2++){
                   6981:            cptj2= (j2-1)*nlstate+i2;
                   6982:            if(cptj2 <= cptj)
                   6983:              fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                   6984:          }
1.126     brouard  6985:       }
                   6986:     fprintf(ficrescveij,"\n");
1.218     brouard  6987:                
1.126     brouard  6988:   }
                   6989:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   6990:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   6991:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   6992:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                   6993:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6994:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   6995:   printf("\n");
                   6996:   fprintf(ficlog,"\n");
1.218     brouard  6997:        
1.126     brouard  6998:   free_vector(xm,1,npar);
                   6999:   free_vector(xp,1,npar);
                   7000:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   7001:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   7002:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   7003: }
1.218     brouard  7004:  
1.126     brouard  7005: /************ Variance ******************/
1.235     brouard  7006:  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
1.218     brouard  7007:  {
1.279     brouard  7008:    /** Variance of health expectancies 
                   7009:     *  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);
                   7010:     * double **newm;
                   7011:     * int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) 
                   7012:     */
1.218     brouard  7013:   
                   7014:    /* int movingaverage(); */
                   7015:    double **dnewm,**doldm;
                   7016:    double **dnewmp,**doldmp;
                   7017:    int i, j, nhstepm, hstepm, h, nstepm ;
1.288     brouard  7018:    int first=0;
1.218     brouard  7019:    int k;
                   7020:    double *xp;
1.279     brouard  7021:    double **gp, **gm;  /**< for var eij */
                   7022:    double ***gradg, ***trgradg; /**< for var eij */
                   7023:    double **gradgp, **trgradgp; /**< for var p point j */
                   7024:    double *gpp, *gmp; /**< for var p point j */
                   7025:    double **varppt; /**< for var p point j nlstate to nlstate+ndeath */
1.218     brouard  7026:    double ***p3mat;
                   7027:    double age,agelim, hf;
                   7028:    /* double ***mobaverage; */
                   7029:    int theta;
                   7030:    char digit[4];
                   7031:    char digitp[25];
                   7032: 
                   7033:    char fileresprobmorprev[FILENAMELENGTH];
                   7034: 
                   7035:    if(popbased==1){
                   7036:      if(mobilav!=0)
                   7037:        strcpy(digitp,"-POPULBASED-MOBILAV_");
                   7038:      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
                   7039:    }
                   7040:    else 
                   7041:      strcpy(digitp,"-STABLBASED_");
1.126     brouard  7042: 
1.218     brouard  7043:    /* if (mobilav!=0) { */
                   7044:    /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   7045:    /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
                   7046:    /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
                   7047:    /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
                   7048:    /*   } */
                   7049:    /* } */
                   7050: 
                   7051:    strcpy(fileresprobmorprev,"PRMORPREV-"); 
                   7052:    sprintf(digit,"%-d",ij);
                   7053:    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   7054:    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   7055:    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   7056:    strcat(fileresprobmorprev,fileresu);
                   7057:    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   7058:      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   7059:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   7060:    }
                   7061:    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   7062:    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   7063:    pstamp(ficresprobmorprev);
                   7064:    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
1.238     brouard  7065:    fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
1.337     brouard  7066: 
                   7067:    /* We use TinvDoQresult[nres][resultmodel[nres][j] we sort according to the equation model and the resultline: it is a choice */
                   7068:    /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ /\* To be done*\/ */
                   7069:    /*   fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   7070:    /* } */
                   7071:    for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ /* To be done*/
1.344     brouard  7072:      /* fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); */
1.337     brouard  7073:      fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  7074:    }
1.337     brouard  7075:    /* for(j=1;j<=cptcoveff;j++)  */
                   7076:    /*   fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); */
1.238     brouard  7077:    fprintf(ficresprobmorprev,"\n");
                   7078: 
1.218     brouard  7079:    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   7080:    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   7081:      fprintf(ficresprobmorprev," p.%-d SE",j);
                   7082:      for(i=1; i<=nlstate;i++)
                   7083:        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   7084:    }  
                   7085:    fprintf(ficresprobmorprev,"\n");
                   7086:   
                   7087:    fprintf(ficgp,"\n# Routine varevsij");
                   7088:    fprintf(ficgp,"\nunset title \n");
                   7089:    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
                   7090:    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   7091:    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
1.279     brouard  7092: 
1.218     brouard  7093:    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   7094:    pstamp(ficresvij);
                   7095:    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
                   7096:    if(popbased==1)
                   7097:      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
                   7098:    else
                   7099:      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
                   7100:    fprintf(ficresvij,"# Age");
                   7101:    for(i=1; i<=nlstate;i++)
                   7102:      for(j=1; j<=nlstate;j++)
                   7103:        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
                   7104:    fprintf(ficresvij,"\n");
                   7105: 
                   7106:    xp=vector(1,npar);
                   7107:    dnewm=matrix(1,nlstate,1,npar);
                   7108:    doldm=matrix(1,nlstate,1,nlstate);
                   7109:    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   7110:    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   7111: 
                   7112:    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   7113:    gpp=vector(nlstate+1,nlstate+ndeath);
                   7114:    gmp=vector(nlstate+1,nlstate+ndeath);
                   7115:    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
1.126     brouard  7116:   
1.218     brouard  7117:    if(estepm < stepm){
                   7118:      printf ("Problem %d lower than %d\n",estepm, stepm);
                   7119:    }
                   7120:    else  hstepm=estepm;   
                   7121:    /* For example we decided to compute the life expectancy with the smallest unit */
                   7122:    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   7123:       nhstepm is the number of hstepm from age to agelim 
                   7124:       nstepm is the number of stepm from age to agelim. 
                   7125:       Look at function hpijx to understand why because of memory size limitations, 
                   7126:       we decided (b) to get a life expectancy respecting the most precise curvature of the
                   7127:       survival function given by stepm (the optimization length). Unfortunately it
                   7128:       means that if the survival funtion is printed every two years of age and if
                   7129:       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   7130:       results. So we changed our mind and took the option of the best precision.
                   7131:    */
                   7132:    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   7133:    agelim = AGESUP;
                   7134:    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   7135:      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   7136:      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   7137:      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   7138:      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   7139:      gp=matrix(0,nhstepm,1,nlstate);
                   7140:      gm=matrix(0,nhstepm,1,nlstate);
                   7141:                
                   7142:                
                   7143:      for(theta=1; theta <=npar; theta++){
                   7144:        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                   7145:         xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   7146:        }
1.279     brouard  7147:        /**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and 
                   7148:        * returns into prlim .
1.288     brouard  7149:        */
1.242     brouard  7150:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
1.279     brouard  7151: 
                   7152:        /* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */
1.218     brouard  7153:        if (popbased==1) {
                   7154:         if(mobilav ==0){
                   7155:           for(i=1; i<=nlstate;i++)
                   7156:             prlim[i][i]=probs[(int)age][i][ij];
                   7157:         }else{ /* mobilav */ 
                   7158:           for(i=1; i<=nlstate;i++)
                   7159:             prlim[i][i]=mobaverage[(int)age][i][ij];
                   7160:         }
                   7161:        }
1.295     brouard  7162:        /**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h.
1.279     brouard  7163:        */                      
                   7164:        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=0 to nhstepm */
1.292     brouard  7165:        /**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability
1.279     brouard  7166:        * at horizon h in state j including mortality.
                   7167:        */
1.218     brouard  7168:        for(j=1; j<= nlstate; j++){
                   7169:         for(h=0; h<=nhstepm; h++){
                   7170:           for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   7171:             gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   7172:         }
                   7173:        }
1.279     brouard  7174:        /* Next for computing shifted+ probability of death (h=1 means
1.218     brouard  7175:          computed over hstepm matrices product = hstepm*stepm months) 
1.279     brouard  7176:          as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 .
1.218     brouard  7177:        */
                   7178:        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   7179:         for(i=1,gpp[j]=0.; i<= nlstate; i++)
                   7180:           gpp[j] += prlim[i][i]*p3mat[i][j][1];
1.279     brouard  7181:        }
                   7182:        
                   7183:        /* Again with minus shift */
1.218     brouard  7184:                        
                   7185:        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   7186:         xp[i] = x[i] - (i==theta ?delti[theta]:0);
1.288     brouard  7187: 
1.242     brouard  7188:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);
1.218     brouard  7189:                        
                   7190:        if (popbased==1) {
                   7191:         if(mobilav ==0){
                   7192:           for(i=1; i<=nlstate;i++)
                   7193:             prlim[i][i]=probs[(int)age][i][ij];
                   7194:         }else{ /* mobilav */ 
                   7195:           for(i=1; i<=nlstate;i++)
                   7196:             prlim[i][i]=mobaverage[(int)age][i][ij];
                   7197:         }
                   7198:        }
                   7199:                        
1.235     brouard  7200:        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
1.218     brouard  7201:                        
                   7202:        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
                   7203:         for(h=0; h<=nhstepm; h++){
                   7204:           for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   7205:             gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   7206:         }
                   7207:        }
                   7208:        /* This for computing probability of death (h=1 means
                   7209:          computed over hstepm matrices product = hstepm*stepm months) 
                   7210:          as a weighted average of prlim.
                   7211:        */
                   7212:        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   7213:         for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   7214:           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   7215:        }    
1.279     brouard  7216:        /* end shifting computations */
                   7217: 
                   7218:        /**< Computing gradient matrix at horizon h 
                   7219:        */
1.218     brouard  7220:        for(j=1; j<= nlstate; j++) /* vareij */
                   7221:         for(h=0; h<=nhstepm; h++){
                   7222:           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   7223:         }
1.279     brouard  7224:        /**< Gradient of overall mortality p.3 (or p.j) 
                   7225:        */
                   7226:        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */
1.218     brouard  7227:         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   7228:        }
                   7229:                        
                   7230:      } /* End theta */
1.279     brouard  7231:      
                   7232:      /* We got the gradient matrix for each theta and state j */               
1.218     brouard  7233:      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   7234:                
                   7235:      for(h=0; h<=nhstepm; h++) /* veij */
                   7236:        for(j=1; j<=nlstate;j++)
                   7237:         for(theta=1; theta <=npar; theta++)
                   7238:           trgradg[h][j][theta]=gradg[h][theta][j];
                   7239:                
                   7240:      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   7241:        for(theta=1; theta <=npar; theta++)
                   7242:         trgradgp[j][theta]=gradgp[theta][j];
1.279     brouard  7243:      /**< as well as its transposed matrix 
                   7244:       */               
1.218     brouard  7245:                
                   7246:      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   7247:      for(i=1;i<=nlstate;i++)
                   7248:        for(j=1;j<=nlstate;j++)
                   7249:         vareij[i][j][(int)age] =0.;
1.279     brouard  7250: 
                   7251:      /* Computing trgradg by matcov by gradg at age and summing over h
                   7252:       * and k (nhstepm) formula 15 of article
                   7253:       * Lievre-Brouard-Heathcote
                   7254:       */
                   7255:      
1.218     brouard  7256:      for(h=0;h<=nhstepm;h++){
                   7257:        for(k=0;k<=nhstepm;k++){
                   7258:         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   7259:         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   7260:         for(i=1;i<=nlstate;i++)
                   7261:           for(j=1;j<=nlstate;j++)
                   7262:             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   7263:        }
                   7264:      }
                   7265:                
1.279     brouard  7266:      /* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of
                   7267:       * p.j overall mortality formula 49 but computed directly because
                   7268:       * we compute the grad (wix pijx) instead of grad (pijx),even if
                   7269:       * wix is independent of theta.
                   7270:       */
1.218     brouard  7271:      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   7272:      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                   7273:      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   7274:        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                   7275:         varppt[j][i]=doldmp[j][i];
                   7276:      /* end ppptj */
                   7277:      /*  x centered again */
                   7278:                
1.242     brouard  7279:      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
1.218     brouard  7280:                
                   7281:      if (popbased==1) {
                   7282:        if(mobilav ==0){
                   7283:         for(i=1; i<=nlstate;i++)
                   7284:           prlim[i][i]=probs[(int)age][i][ij];
                   7285:        }else{ /* mobilav */ 
                   7286:         for(i=1; i<=nlstate;i++)
                   7287:           prlim[i][i]=mobaverage[(int)age][i][ij];
                   7288:        }
                   7289:      }
                   7290:                
                   7291:      /* This for computing probability of death (h=1 means
                   7292:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   7293:        as a weighted average of prlim.
                   7294:      */
1.235     brouard  7295:      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
1.218     brouard  7296:      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   7297:        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                   7298:         gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   7299:      }    
                   7300:      /* end probability of death */
                   7301:                
                   7302:      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   7303:      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   7304:        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   7305:        for(i=1; i<=nlstate;i++){
                   7306:         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   7307:        }
                   7308:      } 
                   7309:      fprintf(ficresprobmorprev,"\n");
                   7310:                
                   7311:      fprintf(ficresvij,"%.0f ",age );
                   7312:      for(i=1; i<=nlstate;i++)
                   7313:        for(j=1; j<=nlstate;j++){
                   7314:         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   7315:        }
                   7316:      fprintf(ficresvij,"\n");
                   7317:      free_matrix(gp,0,nhstepm,1,nlstate);
                   7318:      free_matrix(gm,0,nhstepm,1,nlstate);
                   7319:      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   7320:      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   7321:      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   7322:    } /* End age */
                   7323:    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   7324:    free_vector(gmp,nlstate+1,nlstate+ndeath);
                   7325:    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   7326:    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   7327:    /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
                   7328:    fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
                   7329:    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   7330:    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                   7331:    fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                   7332:    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   7333:    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   7334:    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   7335:    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
                   7336:    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
                   7337:    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
                   7338:    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   7339:    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                   7340:    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
1.126     brouard  7341:     */
1.218     brouard  7342:    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
                   7343:    fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
1.126     brouard  7344: 
1.218     brouard  7345:    free_vector(xp,1,npar);
                   7346:    free_matrix(doldm,1,nlstate,1,nlstate);
                   7347:    free_matrix(dnewm,1,nlstate,1,npar);
                   7348:    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   7349:    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   7350:    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   7351:    /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   7352:    fclose(ficresprobmorprev);
                   7353:    fflush(ficgp);
                   7354:    fflush(fichtm); 
                   7355:  }  /* end varevsij */
1.126     brouard  7356: 
                   7357: /************ Variance of prevlim ******************/
1.269     brouard  7358:  void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
1.126     brouard  7359: {
1.205     brouard  7360:   /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
1.126     brouard  7361:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
1.164     brouard  7362: 
1.268     brouard  7363:   double **dnewmpar,**doldm;
1.126     brouard  7364:   int i, j, nhstepm, hstepm;
                   7365:   double *xp;
                   7366:   double *gp, *gm;
                   7367:   double **gradg, **trgradg;
1.208     brouard  7368:   double **mgm, **mgp;
1.126     brouard  7369:   double age,agelim;
                   7370:   int theta;
                   7371:   
                   7372:   pstamp(ficresvpl);
1.288     brouard  7373:   fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n");
1.241     brouard  7374:   fprintf(ficresvpl,"# Age ");
                   7375:   if(nresult >=1)
                   7376:     fprintf(ficresvpl," Result# ");
1.126     brouard  7377:   for(i=1; i<=nlstate;i++)
                   7378:       fprintf(ficresvpl," %1d-%1d",i,i);
                   7379:   fprintf(ficresvpl,"\n");
                   7380: 
                   7381:   xp=vector(1,npar);
1.268     brouard  7382:   dnewmpar=matrix(1,nlstate,1,npar);
1.126     brouard  7383:   doldm=matrix(1,nlstate,1,nlstate);
                   7384:   
                   7385:   hstepm=1*YEARM; /* Every year of age */
                   7386:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   7387:   agelim = AGESUP;
                   7388:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   7389:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   7390:     if (stepm >= YEARM) hstepm=1;
                   7391:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   7392:     gradg=matrix(1,npar,1,nlstate);
1.208     brouard  7393:     mgp=matrix(1,npar,1,nlstate);
                   7394:     mgm=matrix(1,npar,1,nlstate);
1.126     brouard  7395:     gp=vector(1,nlstate);
                   7396:     gm=vector(1,nlstate);
                   7397: 
                   7398:     for(theta=1; theta <=npar; theta++){
                   7399:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   7400:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   7401:       }
1.288     brouard  7402:       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
                   7403:       /*       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
                   7404:       /* else */
                   7405:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.208     brouard  7406:       for(i=1;i<=nlstate;i++){
1.126     brouard  7407:        gp[i] = prlim[i][i];
1.208     brouard  7408:        mgp[theta][i] = prlim[i][i];
                   7409:       }
1.126     brouard  7410:       for(i=1; i<=npar; i++) /* Computes gradient */
                   7411:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
1.288     brouard  7412:       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
                   7413:       /*       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
                   7414:       /* else */
                   7415:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.208     brouard  7416:       for(i=1;i<=nlstate;i++){
1.126     brouard  7417:        gm[i] = prlim[i][i];
1.208     brouard  7418:        mgm[theta][i] = prlim[i][i];
                   7419:       }
1.126     brouard  7420:       for(i=1;i<=nlstate;i++)
                   7421:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
1.209     brouard  7422:       /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
1.126     brouard  7423:     } /* End theta */
                   7424: 
                   7425:     trgradg =matrix(1,nlstate,1,npar);
                   7426: 
                   7427:     for(j=1; j<=nlstate;j++)
                   7428:       for(theta=1; theta <=npar; theta++)
                   7429:        trgradg[j][theta]=gradg[theta][j];
1.209     brouard  7430:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   7431:     /*   printf("\nmgm mgp %d ",(int)age); */
                   7432:     /*   for(j=1; j<=nlstate;j++){ */
                   7433:     /*         printf(" %d ",j); */
                   7434:     /*         for(theta=1; theta <=npar; theta++) */
                   7435:     /*           printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
                   7436:     /*         printf("\n "); */
                   7437:     /*   } */
                   7438:     /* } */
                   7439:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   7440:     /*   printf("\n gradg %d ",(int)age); */
                   7441:     /*   for(j=1; j<=nlstate;j++){ */
                   7442:     /*         printf("%d ",j); */
                   7443:     /*         for(theta=1; theta <=npar; theta++) */
                   7444:     /*           printf("%d %lf ",theta,gradg[theta][j]); */
                   7445:     /*         printf("\n "); */
                   7446:     /*   } */
                   7447:     /* } */
1.126     brouard  7448: 
                   7449:     for(i=1;i<=nlstate;i++)
                   7450:       varpl[i][(int)age] =0.;
1.209     brouard  7451:     if((int)age==79 ||(int)age== 80  ||(int)age== 81){
1.268     brouard  7452:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   7453:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
1.205     brouard  7454:     }else{
1.268     brouard  7455:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   7456:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
1.205     brouard  7457:     }
1.126     brouard  7458:     for(i=1;i<=nlstate;i++)
                   7459:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   7460: 
                   7461:     fprintf(ficresvpl,"%.0f ",age );
1.241     brouard  7462:     if(nresult >=1)
                   7463:       fprintf(ficresvpl,"%d ",nres );
1.288     brouard  7464:     for(i=1; i<=nlstate;i++){
1.126     brouard  7465:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
1.288     brouard  7466:       /* for(j=1;j<=nlstate;j++) */
                   7467:       /*       fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */
                   7468:     }
1.126     brouard  7469:     fprintf(ficresvpl,"\n");
                   7470:     free_vector(gp,1,nlstate);
                   7471:     free_vector(gm,1,nlstate);
1.208     brouard  7472:     free_matrix(mgm,1,npar,1,nlstate);
                   7473:     free_matrix(mgp,1,npar,1,nlstate);
1.126     brouard  7474:     free_matrix(gradg,1,npar,1,nlstate);
                   7475:     free_matrix(trgradg,1,nlstate,1,npar);
                   7476:   } /* End age */
                   7477: 
                   7478:   free_vector(xp,1,npar);
                   7479:   free_matrix(doldm,1,nlstate,1,npar);
1.268     brouard  7480:   free_matrix(dnewmpar,1,nlstate,1,nlstate);
                   7481: 
                   7482: }
                   7483: 
                   7484: 
                   7485: /************ Variance of backprevalence limit ******************/
1.269     brouard  7486:  void varbrevlim(char fileresvbl[], FILE  *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres)
1.268     brouard  7487: {
                   7488:   /* Variance of backward prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
                   7489:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                   7490: 
                   7491:   double **dnewmpar,**doldm;
                   7492:   int i, j, nhstepm, hstepm;
                   7493:   double *xp;
                   7494:   double *gp, *gm;
                   7495:   double **gradg, **trgradg;
                   7496:   double **mgm, **mgp;
                   7497:   double age,agelim;
                   7498:   int theta;
                   7499:   
                   7500:   pstamp(ficresvbl);
                   7501:   fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n");
                   7502:   fprintf(ficresvbl,"# Age ");
                   7503:   if(nresult >=1)
                   7504:     fprintf(ficresvbl," Result# ");
                   7505:   for(i=1; i<=nlstate;i++)
                   7506:       fprintf(ficresvbl," %1d-%1d",i,i);
                   7507:   fprintf(ficresvbl,"\n");
                   7508: 
                   7509:   xp=vector(1,npar);
                   7510:   dnewmpar=matrix(1,nlstate,1,npar);
                   7511:   doldm=matrix(1,nlstate,1,nlstate);
                   7512:   
                   7513:   hstepm=1*YEARM; /* Every year of age */
                   7514:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   7515:   agelim = AGEINF;
                   7516:   for (age=fage; age>=bage; age --){ /* If stepm=6 months */
                   7517:     nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   7518:     if (stepm >= YEARM) hstepm=1;
                   7519:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   7520:     gradg=matrix(1,npar,1,nlstate);
                   7521:     mgp=matrix(1,npar,1,nlstate);
                   7522:     mgm=matrix(1,npar,1,nlstate);
                   7523:     gp=vector(1,nlstate);
                   7524:     gm=vector(1,nlstate);
                   7525: 
                   7526:     for(theta=1; theta <=npar; theta++){
                   7527:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   7528:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   7529:       }
                   7530:       if(mobilavproj > 0 )
                   7531:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   7532:       else
                   7533:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   7534:       for(i=1;i<=nlstate;i++){
                   7535:        gp[i] = bprlim[i][i];
                   7536:        mgp[theta][i] = bprlim[i][i];
                   7537:       }
                   7538:      for(i=1; i<=npar; i++) /* Computes gradient */
                   7539:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   7540:        if(mobilavproj > 0 )
                   7541:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   7542:        else
                   7543:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   7544:       for(i=1;i<=nlstate;i++){
                   7545:        gm[i] = bprlim[i][i];
                   7546:        mgm[theta][i] = bprlim[i][i];
                   7547:       }
                   7548:       for(i=1;i<=nlstate;i++)
                   7549:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   7550:       /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
                   7551:     } /* End theta */
                   7552: 
                   7553:     trgradg =matrix(1,nlstate,1,npar);
                   7554: 
                   7555:     for(j=1; j<=nlstate;j++)
                   7556:       for(theta=1; theta <=npar; theta++)
                   7557:        trgradg[j][theta]=gradg[theta][j];
                   7558:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   7559:     /*   printf("\nmgm mgp %d ",(int)age); */
                   7560:     /*   for(j=1; j<=nlstate;j++){ */
                   7561:     /*         printf(" %d ",j); */
                   7562:     /*         for(theta=1; theta <=npar; theta++) */
                   7563:     /*           printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
                   7564:     /*         printf("\n "); */
                   7565:     /*   } */
                   7566:     /* } */
                   7567:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   7568:     /*   printf("\n gradg %d ",(int)age); */
                   7569:     /*   for(j=1; j<=nlstate;j++){ */
                   7570:     /*         printf("%d ",j); */
                   7571:     /*         for(theta=1; theta <=npar; theta++) */
                   7572:     /*           printf("%d %lf ",theta,gradg[theta][j]); */
                   7573:     /*         printf("\n "); */
                   7574:     /*   } */
                   7575:     /* } */
                   7576: 
                   7577:     for(i=1;i<=nlstate;i++)
                   7578:       varbpl[i][(int)age] =0.;
                   7579:     if((int)age==79 ||(int)age== 80  ||(int)age== 81){
                   7580:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   7581:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
                   7582:     }else{
                   7583:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   7584:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
                   7585:     }
                   7586:     for(i=1;i<=nlstate;i++)
                   7587:       varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   7588: 
                   7589:     fprintf(ficresvbl,"%.0f ",age );
                   7590:     if(nresult >=1)
                   7591:       fprintf(ficresvbl,"%d ",nres );
                   7592:     for(i=1; i<=nlstate;i++)
                   7593:       fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age]));
                   7594:     fprintf(ficresvbl,"\n");
                   7595:     free_vector(gp,1,nlstate);
                   7596:     free_vector(gm,1,nlstate);
                   7597:     free_matrix(mgm,1,npar,1,nlstate);
                   7598:     free_matrix(mgp,1,npar,1,nlstate);
                   7599:     free_matrix(gradg,1,npar,1,nlstate);
                   7600:     free_matrix(trgradg,1,nlstate,1,npar);
                   7601:   } /* End age */
                   7602: 
                   7603:   free_vector(xp,1,npar);
                   7604:   free_matrix(doldm,1,nlstate,1,npar);
                   7605:   free_matrix(dnewmpar,1,nlstate,1,nlstate);
1.126     brouard  7606: 
                   7607: }
                   7608: 
                   7609: /************ Variance of one-step probabilities  ******************/
                   7610: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
1.222     brouard  7611:  {
                   7612:    int i, j=0,  k1, l1, tj;
                   7613:    int k2, l2, j1,  z1;
                   7614:    int k=0, l;
                   7615:    int first=1, first1, first2;
1.326     brouard  7616:    int nres=0; /* New */
1.222     brouard  7617:    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   7618:    double **dnewm,**doldm;
                   7619:    double *xp;
                   7620:    double *gp, *gm;
                   7621:    double **gradg, **trgradg;
                   7622:    double **mu;
                   7623:    double age, cov[NCOVMAX+1];
                   7624:    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   7625:    int theta;
                   7626:    char fileresprob[FILENAMELENGTH];
                   7627:    char fileresprobcov[FILENAMELENGTH];
                   7628:    char fileresprobcor[FILENAMELENGTH];
                   7629:    double ***varpij;
                   7630: 
                   7631:    strcpy(fileresprob,"PROB_"); 
1.356   ! brouard  7632:    strcat(fileresprob,fileresu);
1.222     brouard  7633:    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   7634:      printf("Problem with resultfile: %s\n", fileresprob);
                   7635:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   7636:    }
                   7637:    strcpy(fileresprobcov,"PROBCOV_"); 
                   7638:    strcat(fileresprobcov,fileresu);
                   7639:    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   7640:      printf("Problem with resultfile: %s\n", fileresprobcov);
                   7641:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   7642:    }
                   7643:    strcpy(fileresprobcor,"PROBCOR_"); 
                   7644:    strcat(fileresprobcor,fileresu);
                   7645:    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   7646:      printf("Problem with resultfile: %s\n", fileresprobcor);
                   7647:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   7648:    }
                   7649:    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   7650:    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   7651:    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   7652:    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   7653:    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   7654:    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   7655:    pstamp(ficresprob);
                   7656:    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   7657:    fprintf(ficresprob,"# Age");
                   7658:    pstamp(ficresprobcov);
                   7659:    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   7660:    fprintf(ficresprobcov,"# Age");
                   7661:    pstamp(ficresprobcor);
                   7662:    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   7663:    fprintf(ficresprobcor,"# Age");
1.126     brouard  7664: 
                   7665: 
1.222     brouard  7666:    for(i=1; i<=nlstate;i++)
                   7667:      for(j=1; j<=(nlstate+ndeath);j++){
                   7668:        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   7669:        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   7670:        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   7671:      }  
                   7672:    /* fprintf(ficresprob,"\n");
                   7673:       fprintf(ficresprobcov,"\n");
                   7674:       fprintf(ficresprobcor,"\n");
                   7675:    */
                   7676:    xp=vector(1,npar);
                   7677:    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   7678:    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   7679:    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   7680:    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   7681:    first=1;
                   7682:    fprintf(ficgp,"\n# Routine varprob");
                   7683:    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   7684:    fprintf(fichtm,"\n");
                   7685: 
1.288     brouard  7686:    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov);
1.222     brouard  7687:    fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
                   7688:    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
1.126     brouard  7689: and drawn. It helps understanding how is the covariance between two incidences.\
                   7690:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
1.222     brouard  7691:    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
1.126     brouard  7692: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   7693: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   7694: standard deviations wide on each axis. <br>\
                   7695:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   7696:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   7697: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                   7698: 
1.222     brouard  7699:    cov[1]=1;
                   7700:    /* tj=cptcoveff; */
1.225     brouard  7701:    tj = (int) pow(2,cptcoveff);
1.222     brouard  7702:    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   7703:    j1=0;
1.332     brouard  7704: 
                   7705:    for(nres=1;nres <=nresult; nres++){ /* For each resultline */
                   7706:    for(j1=1; j1<=tj;j1++){ /* For any combination of dummy covariates, fixed and varying */
1.342     brouard  7707:      /* printf("Varprob  TKresult[nres]=%d j1=%d, nres=%d, cptcovn=%d, cptcoveff=%d tj=%d cptcovs=%d\n",  TKresult[nres], j1, nres, cptcovn, cptcoveff, tj, cptcovs); */
1.332     brouard  7708:      if(tj != 1 && TKresult[nres]!= j1)
                   7709:        continue;
                   7710: 
                   7711:    /* for(j1=1; j1<=tj;j1++){  /\* For each valid combination of covariates or only once*\/ */
                   7712:      /* for(nres=1;nres <=1; nres++){ /\* For each resultline *\/ */
                   7713:      /* /\* for(nres=1;nres <=nresult; nres++){ /\\* For each resultline *\\/ *\/ */
1.222     brouard  7714:      if  (cptcovn>0) {
1.334     brouard  7715:        fprintf(ficresprob, "\n#********** Variable ");
                   7716:        fprintf(ficresprobcov, "\n#********** Variable "); 
                   7717:        fprintf(ficgp, "\n#********** Variable ");
                   7718:        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                   7719:        fprintf(ficresprobcor, "\n#********** Variable ");    
                   7720: 
                   7721:        /* Including quantitative variables of the resultline to be done */
                   7722:        for (z1=1; z1<=cptcovs; z1++){ /* Loop on each variable of this resultline  */
1.343     brouard  7723:         /* printf("Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); */
1.338     brouard  7724:         fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model);
                   7725:         /* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */
1.334     brouard  7726:         if(Dummy[modelresult[nres][z1]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to z1 in resultline  */
                   7727:           if(Fixed[modelresult[nres][z1]]==0){ /* Fixed referenced to model equation */
                   7728:             fprintf(ficresprob,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7729:             fprintf(ficresprobcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7730:             fprintf(ficgp,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7731:             fprintf(fichtmcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7732:             fprintf(ficresprobcor,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   7733:             fprintf(ficresprob,"fixed ");
                   7734:             fprintf(ficresprobcov,"fixed ");
                   7735:             fprintf(ficgp,"fixed ");
                   7736:             fprintf(fichtmcov,"fixed ");
                   7737:             fprintf(ficresprobcor,"fixed ");
                   7738:           }else{
                   7739:             fprintf(ficresprob,"varyi ");
                   7740:             fprintf(ficresprobcov,"varyi ");
                   7741:             fprintf(ficgp,"varyi ");
                   7742:             fprintf(fichtmcov,"varyi ");
                   7743:             fprintf(ficresprobcor,"varyi ");
                   7744:           }
                   7745:         }else if(Dummy[modelresult[nres][z1]]==1){ /* Quanti variable */
                   7746:           /* For each selected (single) quantitative value */
1.337     brouard  7747:           fprintf(ficresprob," V%d=%lg ",Tvqresult[nres][z1],Tqresult[nres][z1]);
1.334     brouard  7748:           if(Fixed[modelresult[nres][z1]]==0){ /* Fixed */
                   7749:             fprintf(ficresprob,"fixed ");
                   7750:             fprintf(ficresprobcov,"fixed ");
                   7751:             fprintf(ficgp,"fixed ");
                   7752:             fprintf(fichtmcov,"fixed ");
                   7753:             fprintf(ficresprobcor,"fixed ");
                   7754:           }else{
                   7755:             fprintf(ficresprob,"varyi ");
                   7756:             fprintf(ficresprobcov,"varyi ");
                   7757:             fprintf(ficgp,"varyi ");
                   7758:             fprintf(fichtmcov,"varyi ");
                   7759:             fprintf(ficresprobcor,"varyi ");
                   7760:           }
                   7761:         }else{
                   7762:           printf("Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   7763:           fprintf(ficlog,"Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   7764:           exit(1);
                   7765:         }
                   7766:        } /* End loop on variable of this resultline */
                   7767:        /* for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); */
1.222     brouard  7768:        fprintf(ficresprob, "**********\n#\n");
                   7769:        fprintf(ficresprobcov, "**********\n#\n");
                   7770:        fprintf(ficgp, "**********\n#\n");
                   7771:        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                   7772:        fprintf(ficresprobcor, "**********\n#");    
                   7773:        if(invalidvarcomb[j1]){
                   7774:         fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
                   7775:         fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
                   7776:         continue;
                   7777:        }
                   7778:      }
                   7779:      gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   7780:      trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   7781:      gp=vector(1,(nlstate)*(nlstate+ndeath));
                   7782:      gm=vector(1,(nlstate)*(nlstate+ndeath));
1.334     brouard  7783:      for (age=bage; age<=fage; age ++){ /* Fo each age we feed the model equation with covariates, using precov as in hpxij() ? */
1.222     brouard  7784:        cov[2]=age;
                   7785:        if(nagesqr==1)
                   7786:         cov[3]= age*age;
1.334     brouard  7787:        /* New code end of combination but for each resultline */
                   7788:        for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  7789:         if(Typevar[k1]==1 || Typevar[k1] ==3){ /* A product with age */
1.334     brouard  7790:           cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
1.326     brouard  7791:         }else{
1.334     brouard  7792:           cov[2+nagesqr+k1]=precov[nres][k1];
1.326     brouard  7793:         }
1.334     brouard  7794:        }/* End of loop on model equation */
                   7795: /* Old code */
                   7796:        /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
                   7797:        /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; *\/ */
                   7798:        /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
                   7799:        /*       /\* Here comes the value of the covariate 'j1' after renumbering k with single dummy covariates *\/ */
                   7800:        /*       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(j1,TnsdVar[TvarsD[k]])]; */
                   7801:        /*       /\*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*\//\* j1 1 2 3 4 */
                   7802:        /*                                                                  * 1  1 1 1 1 */
                   7803:        /*                                                                  * 2  2 1 1 1 */
                   7804:        /*                                                                  * 3  1 2 1 1 */
                   7805:        /*                                                                  *\/ */
                   7806:        /*       /\* nbcode[1][1]=0 nbcode[1][2]=1;*\/ */
                   7807:        /* } */
                   7808:        /* /\* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */
                   7809:        /* /\* ) p nbcode[Tvar[Tage[k]]][(1 & (ij-1) >> (k-1))+1] *\/ */
                   7810:        /* /\*for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; *\/ */
                   7811:        /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
                   7812:        /*       if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
                   7813:        /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(j1,TnsdVar[Tvar[Tage[k]]])]*cov[2]; */
                   7814:        /*         /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
                   7815:        /*       } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
                   7816:        /*         printf("Internal IMaCh error, don't know which value for quantitative covariate with age, Tage[k]%d, k=%d, Tvar[Tage[k]]=V%d, age=%d\n",Tage[k],k ,Tvar[Tage[k]], (int)cov[2]); */
                   7817:        /*         /\* cov[2+nagesqr+Tage[k]]=meanq[k]/idq[k]*cov[2];/\\* Using the mean of quantitative variable Tvar[Tage[k]] /\\* Tqresult[nres][k]; *\\/ *\/ */
                   7818:        /*         /\* exit(1); *\/ */
                   7819:        /*         /\* cov[++k1]=Tqresult[nres][k];  *\/ */
                   7820:        /*       } */
                   7821:        /*       /\* cov[2+Tage[k]+nagesqr]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
                   7822:        /* } */
                   7823:        /* for (k=1; k<=cptcovprod;k++){/\* For product without age *\/ */
                   7824:        /*       if(Dummy[Tvard[k][1]]==0){ */
                   7825:        /*         if(Dummy[Tvard[k][2]]==0){ */
                   7826:        /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])]; */
                   7827:        /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   7828:        /*         }else{ /\* Should we use the mean of the quantitative variables? *\/ */
                   7829:        /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * Tqresult[nres][resultmodel[nres][k]]; */
                   7830:        /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
                   7831:        /*         } */
                   7832:        /*       }else{ */
                   7833:        /*         if(Dummy[Tvard[k][2]]==0){ */
                   7834:        /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][TnsdVar[Tvard[k][1]]]; */
                   7835:        /*           /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
                   7836:        /*         }else{ */
                   7837:        /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][TnsdVar[Tvard[k][1]]]*  Tqinvresult[nres][TnsdVar[Tvard[k][2]]]; */
                   7838:        /*           /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
                   7839:        /*         } */
                   7840:        /*       } */
                   7841:        /*       /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   7842:        /* } */                 
1.326     brouard  7843: /* For each age and combination of dummy covariates we slightly move the parameters of delti in order to get the gradient*/                    
1.222     brouard  7844:        for(theta=1; theta <=npar; theta++){
                   7845:         for(i=1; i<=npar; i++)
                   7846:           xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
1.220     brouard  7847:                                
1.222     brouard  7848:         pmij(pmmij,cov,ncovmodel,xp,nlstate);
1.220     brouard  7849:                                
1.222     brouard  7850:         k=0;
                   7851:         for(i=1; i<= (nlstate); i++){
                   7852:           for(j=1; j<=(nlstate+ndeath);j++){
                   7853:             k=k+1;
                   7854:             gp[k]=pmmij[i][j];
                   7855:           }
                   7856:         }
1.220     brouard  7857:                                
1.222     brouard  7858:         for(i=1; i<=npar; i++)
                   7859:           xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
1.220     brouard  7860:                                
1.222     brouard  7861:         pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   7862:         k=0;
                   7863:         for(i=1; i<=(nlstate); i++){
                   7864:           for(j=1; j<=(nlstate+ndeath);j++){
                   7865:             k=k+1;
                   7866:             gm[k]=pmmij[i][j];
                   7867:           }
                   7868:         }
1.220     brouard  7869:                                
1.222     brouard  7870:         for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                   7871:           gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                   7872:        }
1.126     brouard  7873: 
1.222     brouard  7874:        for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   7875:         for(theta=1; theta <=npar; theta++)
                   7876:           trgradg[j][theta]=gradg[theta][j];
1.220     brouard  7877:                        
1.222     brouard  7878:        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   7879:        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
1.220     brouard  7880:                        
1.222     brouard  7881:        pmij(pmmij,cov,ncovmodel,x,nlstate);
1.220     brouard  7882:                        
1.222     brouard  7883:        k=0;
                   7884:        for(i=1; i<=(nlstate); i++){
                   7885:         for(j=1; j<=(nlstate+ndeath);j++){
                   7886:           k=k+1;
                   7887:           mu[k][(int) age]=pmmij[i][j];
                   7888:         }
                   7889:        }
                   7890:        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   7891:         for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   7892:           varpij[i][j][(int)age] = doldm[i][j];
1.220     brouard  7893:                        
1.222     brouard  7894:        /*printf("\n%d ",(int)age);
                   7895:         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   7896:         printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   7897:         fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   7898:         }*/
1.220     brouard  7899:                        
1.222     brouard  7900:        fprintf(ficresprob,"\n%d ",(int)age);
                   7901:        fprintf(ficresprobcov,"\n%d ",(int)age);
                   7902:        fprintf(ficresprobcor,"\n%d ",(int)age);
1.220     brouard  7903:                        
1.222     brouard  7904:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   7905:         fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   7906:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   7907:         fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   7908:         fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   7909:        }
                   7910:        i=0;
                   7911:        for (k=1; k<=(nlstate);k++){
                   7912:         for (l=1; l<=(nlstate+ndeath);l++){ 
                   7913:           i++;
                   7914:           fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   7915:           fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   7916:           for (j=1; j<=i;j++){
                   7917:             /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                   7918:             fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   7919:             fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   7920:           }
                   7921:         }
                   7922:        }/* end of loop for state */
                   7923:      } /* end of loop for age */
                   7924:      free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   7925:      free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   7926:      free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   7927:      free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   7928:     
                   7929:      /* Confidence intervalle of pij  */
                   7930:      /*
                   7931:        fprintf(ficgp,"\nunset parametric;unset label");
                   7932:        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   7933:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   7934:        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   7935:        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   7936:        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   7937:        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   7938:      */
                   7939:                
                   7940:      /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   7941:      first1=1;first2=2;
                   7942:      for (k2=1; k2<=(nlstate);k2++){
                   7943:        for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   7944:         if(l2==k2) continue;
                   7945:         j=(k2-1)*(nlstate+ndeath)+l2;
                   7946:         for (k1=1; k1<=(nlstate);k1++){
                   7947:           for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   7948:             if(l1==k1) continue;
                   7949:             i=(k1-1)*(nlstate+ndeath)+l1;
                   7950:             if(i<=j) continue;
                   7951:             for (age=bage; age<=fage; age ++){ 
                   7952:               if ((int)age %5==0){
                   7953:                 v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   7954:                 v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   7955:                 cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   7956:                 mu1=mu[i][(int) age]/stepm*YEARM ;
                   7957:                 mu2=mu[j][(int) age]/stepm*YEARM;
                   7958:                 c12=cv12/sqrt(v1*v2);
                   7959:                 /* Computing eigen value of matrix of covariance */
                   7960:                 lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   7961:                 lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   7962:                 if ((lc2 <0) || (lc1 <0) ){
                   7963:                   if(first2==1){
                   7964:                     first1=0;
                   7965:                     printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                   7966:                   }
                   7967:                   fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                   7968:                   /* lc1=fabs(lc1); */ /* If we want to have them positive */
                   7969:                   /* lc2=fabs(lc2); */
                   7970:                 }
1.220     brouard  7971:                                                                
1.222     brouard  7972:                 /* Eigen vectors */
1.280     brouard  7973:                 if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){
                   7974:                   printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                   7975:                   fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                   7976:                   v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12)));
                   7977:                 }else
                   7978:                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
1.222     brouard  7979:                 /*v21=sqrt(1.-v11*v11); *//* error */
                   7980:                 v21=(lc1-v1)/cv12*v11;
                   7981:                 v12=-v21;
                   7982:                 v22=v11;
                   7983:                 tnalp=v21/v11;
                   7984:                 if(first1==1){
                   7985:                   first1=0;
                   7986:                   printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   7987:                 }
                   7988:                 fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   7989:                 /*printf(fignu*/
                   7990:                 /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   7991:                 /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   7992:                 if(first==1){
                   7993:                   first=0;
                   7994:                   fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                   7995:                   fprintf(ficgp,"\nset parametric;unset label");
                   7996:                   fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                   7997:                   fprintf(ficgp,"\nset ter svg size 640, 480");
1.266     brouard  7998:                   fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
1.220     brouard  7999:  :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                          \
1.201     brouard  8000: %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
1.222     brouard  8001:                           subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
                   8002:                           subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   8003:                   fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   8004:                   fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                   8005:                   fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   8006:                   fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   8007:                   fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   8008:                   fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
1.280     brouard  8009:                           mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \
                   8010:                           mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */
1.222     brouard  8011:                 }else{
                   8012:                   first=0;
                   8013:                   fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                   8014:                   fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   8015:                   fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   8016:                   fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
1.266     brouard  8017:                           mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)),   \
                   8018:                           mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2)));
1.222     brouard  8019:                 }/* if first */
                   8020:               } /* age mod 5 */
                   8021:             } /* end loop age */
                   8022:             fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   8023:             first=1;
                   8024:           } /*l12 */
                   8025:         } /* k12 */
                   8026:        } /*l1 */
                   8027:      }/* k1 */
1.332     brouard  8028:    }  /* loop on combination of covariates j1 */
1.326     brouard  8029:    } /* loop on nres */
1.222     brouard  8030:    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   8031:    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                   8032:    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   8033:    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
                   8034:    free_vector(xp,1,npar);
                   8035:    fclose(ficresprob);
                   8036:    fclose(ficresprobcov);
                   8037:    fclose(ficresprobcor);
                   8038:    fflush(ficgp);
                   8039:    fflush(fichtmcov);
                   8040:  }
1.126     brouard  8041: 
                   8042: 
                   8043: /******************* Printing html file ***********/
1.201     brouard  8044: void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
1.126     brouard  8045:                  int lastpass, int stepm, int weightopt, char model[],\
                   8046:                  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
1.296     brouard  8047:                  int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \
                   8048:                  double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \
                   8049:                  double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){
1.237     brouard  8050:   int jj1, k1, i1, cpt, k4, nres;
1.319     brouard  8051:   /* In fact some results are already printed in fichtm which is open */
1.126     brouard  8052:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                   8053:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                   8054: </ul>");
1.319     brouard  8055: /*    fprintf(fichtm,"<ul><li> model=1+age+%s\n \ */
                   8056: /* </ul>", model); */
1.214     brouard  8057:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
                   8058:    fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
                   8059:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
1.332     brouard  8060:    fprintf(fichtm,"<li> - Observed prevalence (cross-sectional prevalence) in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
1.213     brouard  8061:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
                   8062:    fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
1.126     brouard  8063:    fprintf(fichtm,"\
                   8064:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
1.201     brouard  8065:           stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
1.126     brouard  8066:    fprintf(fichtm,"\
1.217     brouard  8067:  - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   8068:           stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
                   8069:    fprintf(fichtm,"\
1.288     brouard  8070:  - Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
1.201     brouard  8071:           subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
1.126     brouard  8072:    fprintf(fichtm,"\
1.288     brouard  8073:  - Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
1.217     brouard  8074:           subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
                   8075:    fprintf(fichtm,"\
1.211     brouard  8076:  - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
1.126     brouard  8077:    <a href=\"%s\">%s</a> <br>\n",
1.201     brouard  8078:           estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
1.211     brouard  8079:    if(prevfcast==1){
                   8080:      fprintf(fichtm,"\
                   8081:  - Prevalence projections by age and states:                           \
1.201     brouard  8082:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
1.211     brouard  8083:    }
1.126     brouard  8084: 
                   8085: 
1.225     brouard  8086:    m=pow(2,cptcoveff);
1.222     brouard  8087:    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
1.126     brouard  8088: 
1.317     brouard  8089:    fprintf(fichtm," \n<ul><li><b>Graphs (first order)</b></li><p>");
1.264     brouard  8090: 
                   8091:    jj1=0;
                   8092: 
                   8093:    fprintf(fichtm," \n<ul>");
1.337     brouard  8094:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   8095:      /* k1=nres; */
1.338     brouard  8096:      k1=TKresult[nres];
                   8097:      if(TKresult[nres]==0)k1=1; /* To be checked for no result */
1.337     brouard  8098:    /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
                   8099:    /*   if(m != 1 && TKresult[nres]!= k1) */
                   8100:    /*     continue; */
1.264     brouard  8101:      jj1++;
                   8102:      if (cptcovn > 0) {
                   8103:        fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescov");
1.337     brouard  8104:        for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
                   8105:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.264     brouard  8106:        }
1.337     brouard  8107:        /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
                   8108:        /*       fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
                   8109:        /* } */
                   8110:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8111:        /*       fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   8112:        /* } */
1.264     brouard  8113:        fprintf(fichtm,"\">");
                   8114:        
                   8115:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
                   8116:        fprintf(fichtm,"************ Results for covariates");
1.337     brouard  8117:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   8118:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.264     brouard  8119:        }
1.337     brouard  8120:        /* fprintf(fichtm,"************ Results for covariates"); */
                   8121:        /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
                   8122:        /*       fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
                   8123:        /* } */
                   8124:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8125:        /*       fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   8126:        /* } */
1.264     brouard  8127:        if(invalidvarcomb[k1]){
                   8128:         fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
                   8129:         continue;
                   8130:        }
                   8131:        fprintf(fichtm,"</a></li>");
                   8132:      } /* cptcovn >0 */
                   8133:    }
1.317     brouard  8134:    fprintf(fichtm," \n</ul>");
1.264     brouard  8135: 
1.222     brouard  8136:    jj1=0;
1.237     brouard  8137: 
1.337     brouard  8138:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   8139:      /* k1=nres; */
1.338     brouard  8140:      k1=TKresult[nres];
                   8141:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8142:    /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
                   8143:    /*   if(m != 1 && TKresult[nres]!= k1) */
                   8144:    /*     continue; */
1.220     brouard  8145: 
1.222     brouard  8146:      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
                   8147:      jj1++;
                   8148:      if (cptcovn > 0) {
1.264     brouard  8149:        fprintf(fichtm,"\n<p><a name=\"rescov");
1.337     brouard  8150:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   8151:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.264     brouard  8152:        }
1.337     brouard  8153:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8154:        /*       fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   8155:        /* } */
1.264     brouard  8156:        fprintf(fichtm,"\"</a>");
                   8157:  
1.222     brouard  8158:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
1.337     brouard  8159:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   8160:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
                   8161:         printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.237     brouard  8162:         /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
                   8163:         /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
1.222     brouard  8164:        }
1.230     brouard  8165:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
1.338     brouard  8166:        fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
1.222     brouard  8167:        if(invalidvarcomb[k1]){
                   8168:         fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
                   8169:         printf("\nCombination (%d) ignored because no cases \n",k1); 
                   8170:         continue;
                   8171:        }
                   8172:      }
                   8173:      /* aij, bij */
1.259     brouard  8174:      fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \
1.241     brouard  8175: <img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
1.222     brouard  8176:      /* Pij */
1.241     brouard  8177:      fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \
                   8178: <img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);     
1.222     brouard  8179:      /* Quasi-incidences */
                   8180:      fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
1.220     brouard  8181:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
1.211     brouard  8182:  incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
1.241     brouard  8183: divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \
                   8184: <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); 
1.222     brouard  8185:      /* Survival functions (period) in state j */
                   8186:      for(cpt=1; cpt<=nlstate;cpt++){
1.329     brouard  8187:        fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
                   8188:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
                   8189:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
1.222     brouard  8190:      }
                   8191:      /* State specific survival functions (period) */
                   8192:      for(cpt=1; cpt<=nlstate;cpt++){
1.292     brouard  8193:        fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\
                   8194:  And probability to be observed in various states (up to %d) being in state %d at different ages.      \
1.329     brouard  8195:  <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> ", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
                   8196:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
                   8197:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
1.222     brouard  8198:      }
1.288     brouard  8199:      /* Period (forward stable) prevalence in each health state */
1.222     brouard  8200:      for(cpt=1; cpt<=nlstate;cpt++){
1.329     brouard  8201:        fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.338     brouard  8202:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
1.329     brouard  8203:       fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.222     brouard  8204:      }
1.296     brouard  8205:      if(prevbcast==1){
1.288     brouard  8206:        /* Backward prevalence in each health state */
1.222     brouard  8207:        for(cpt=1; cpt<=nlstate;cpt++){
1.338     brouard  8208:         fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
                   8209:         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJB_"),subdirf2(optionfilefiname,"PIJB_"));
                   8210:         fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
1.222     brouard  8211:        }
1.217     brouard  8212:      }
1.222     brouard  8213:      if(prevfcast==1){
1.288     brouard  8214:        /* Projection of prevalence up to period (forward stable) prevalence in each health state */
1.222     brouard  8215:        for(cpt=1; cpt<=nlstate;cpt++){
1.314     brouard  8216:         fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
                   8217:         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"F_"),subdirf2(optionfilefiname,"F_"));
                   8218:         fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",
                   8219:                 subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
1.222     brouard  8220:        }
                   8221:      }
1.296     brouard  8222:      if(prevbcast==1){
1.268     brouard  8223:       /* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */
                   8224:        for(cpt=1; cpt<=nlstate;cpt++){
1.273     brouard  8225:         fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \
                   8226:  from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d (randomness in cross-sectional prevalence is not taken into \
                   8227:  account but can visually be appreciated). Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \
1.314     brouard  8228: with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
                   8229:         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"FB_"),subdirf2(optionfilefiname,"FB_"));
                   8230:         fprintf(fichtm," <img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
1.268     brouard  8231:        }
                   8232:      }
1.220     brouard  8233:         
1.222     brouard  8234:      for(cpt=1; cpt<=nlstate;cpt++) {
1.314     brouard  8235:        fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
                   8236:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\"> %s.txt</a>)\n<br>",subdirf2(optionfilefiname,"E_"),subdirf2(optionfilefiname,"E_"));
                   8237:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres );
1.222     brouard  8238:      }
                   8239:      /* } /\* end i1 *\/ */
1.337     brouard  8240:    }/* End k1=nres */
1.222     brouard  8241:    fprintf(fichtm,"</ul>");
1.126     brouard  8242: 
1.222     brouard  8243:    fprintf(fichtm,"\
1.126     brouard  8244: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
1.193     brouard  8245:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
1.203     brouard  8246:  - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
1.197     brouard  8247: But because parameters are usually highly correlated (a higher incidence of disability \
                   8248: and a higher incidence of recovery can give very close observed transition) it might \
                   8249: be very useful to look not only at linear confidence intervals estimated from the \
                   8250: variances but at the covariance matrix. And instead of looking at the estimated coefficients \
                   8251: (parameters) of the logistic regression, it might be more meaningful to visualize the \
                   8252: covariance matrix of the one-step probabilities. \
                   8253: See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
1.126     brouard  8254: 
1.222     brouard  8255:    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   8256:           subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
                   8257:    fprintf(fichtm,"\
1.126     brouard  8258:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  8259:           subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
1.126     brouard  8260: 
1.222     brouard  8261:    fprintf(fichtm,"\
1.126     brouard  8262:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  8263:           subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
                   8264:    fprintf(fichtm,"\
1.126     brouard  8265:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                   8266:    <a href=\"%s\">%s</a> <br>\n</li>",
1.201     brouard  8267:           estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
1.222     brouard  8268:    fprintf(fichtm,"\
1.126     brouard  8269:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                   8270:    <a href=\"%s\">%s</a> <br>\n</li>",
1.201     brouard  8271:           estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
1.222     brouard  8272:    fprintf(fichtm,"\
1.288     brouard  8273:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
1.222     brouard  8274:           estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
                   8275:    fprintf(fichtm,"\
1.128     brouard  8276:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  8277:           estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
                   8278:    fprintf(fichtm,"\
1.288     brouard  8279:  - Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\
1.222     brouard  8280:           subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
1.126     brouard  8281: 
                   8282: /*  if(popforecast==1) fprintf(fichtm,"\n */
                   8283: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                   8284: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                   8285: /*     <br>",fileres,fileres,fileres,fileres); */
                   8286: /*  else  */
1.338     brouard  8287: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=1+age+%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
1.222     brouard  8288:    fflush(fichtm);
1.126     brouard  8289: 
1.225     brouard  8290:    m=pow(2,cptcoveff);
1.222     brouard  8291:    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
1.126     brouard  8292: 
1.317     brouard  8293:    fprintf(fichtm," <ul><li><b>Graphs (second order)</b></li><p>");
                   8294: 
                   8295:   jj1=0;
                   8296: 
                   8297:    fprintf(fichtm," \n<ul>");
1.337     brouard  8298:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   8299:      /* k1=nres; */
1.338     brouard  8300:      k1=TKresult[nres];
1.337     brouard  8301:      /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
                   8302:      /* if(m != 1 && TKresult[nres]!= k1) */
                   8303:      /*   continue; */
1.317     brouard  8304:      jj1++;
                   8305:      if (cptcovn > 0) {
                   8306:        fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescovsecond");
1.337     brouard  8307:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   8308:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.317     brouard  8309:        }
                   8310:        fprintf(fichtm,"\">");
                   8311:        
                   8312:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
                   8313:        fprintf(fichtm,"************ Results for covariates");
1.337     brouard  8314:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   8315:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.317     brouard  8316:        }
                   8317:        if(invalidvarcomb[k1]){
                   8318:         fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
                   8319:         continue;
                   8320:        }
                   8321:        fprintf(fichtm,"</a></li>");
                   8322:      } /* cptcovn >0 */
1.337     brouard  8323:    } /* End nres */
1.317     brouard  8324:    fprintf(fichtm," \n</ul>");
                   8325: 
1.222     brouard  8326:    jj1=0;
1.237     brouard  8327: 
1.241     brouard  8328:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8329:      /* k1=nres; */
1.338     brouard  8330:      k1=TKresult[nres];
                   8331:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8332:      /* for(k1=1; k1<=m;k1++){ */
                   8333:      /* if(m != 1 && TKresult[nres]!= k1) */
                   8334:      /*   continue; */
1.222     brouard  8335:      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
                   8336:      jj1++;
1.126     brouard  8337:      if (cptcovn > 0) {
1.317     brouard  8338:        fprintf(fichtm,"\n<p><a name=\"rescovsecond");
1.337     brouard  8339:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   8340:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.317     brouard  8341:        }
                   8342:        fprintf(fichtm,"\"</a>");
                   8343:        
1.126     brouard  8344:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
1.337     brouard  8345:        for (cpt=1; cpt<=cptcovs;cpt++){  /**< cptcoveff number of variables */
                   8346:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
                   8347:         printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.237     brouard  8348:         /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
1.317     brouard  8349:        }
1.237     brouard  8350: 
1.338     brouard  8351:        fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
1.220     brouard  8352: 
1.222     brouard  8353:        if(invalidvarcomb[k1]){
                   8354:         fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
                   8355:         continue;
                   8356:        }
1.337     brouard  8357:      } /* If cptcovn >0 */
1.126     brouard  8358:      for(cpt=1; cpt<=nlstate;cpt++) {
1.258     brouard  8359:        fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \
1.314     brouard  8360: prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
                   8361:        fprintf(fichtm," (data from text file  <a href=\"%s\">%s</a>)\n <br>",subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
                   8362:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"V_"), cpt,k1,nres);
1.126     brouard  8363:      }
                   8364:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
1.314     brouard  8365: health expectancies in each live states (1 to %d). If popbased=1 the smooth (due to the model) \
1.128     brouard  8366: true period expectancies (those weighted with period prevalences are also\
                   8367:  drawn in addition to the population based expectancies computed using\
1.314     brouard  8368:  observed and cahotic prevalences:  <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>",nlstate, subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);
                   8369:      fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>) \n<br>",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_"));
                   8370:      fprintf(fichtm,"<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres);
1.222     brouard  8371:      /* } /\* end i1 *\/ */
1.241     brouard  8372:   }/* End nres */
1.222     brouard  8373:    fprintf(fichtm,"</ul>");
                   8374:    fflush(fichtm);
1.126     brouard  8375: }
                   8376: 
                   8377: /******************* Gnuplot file **************/
1.296     brouard  8378: void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){
1.126     brouard  8379: 
1.354     brouard  8380:   char dirfileres[256],optfileres[256];
                   8381:   char gplotcondition[256], gplotlabel[256];
1.343     brouard  8382:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,kf=0,kvar=0,kk=0,ipos=0,iposold=0,ij=0, ijp=0, l=0;
1.211     brouard  8383:   int lv=0, vlv=0, kl=0;
1.130     brouard  8384:   int ng=0;
1.201     brouard  8385:   int vpopbased;
1.223     brouard  8386:   int ioffset; /* variable offset for columns */
1.270     brouard  8387:   int iyearc=1; /* variable column for year of projection  */
                   8388:   int iagec=1; /* variable column for age of projection  */
1.235     brouard  8389:   int nres=0; /* Index of resultline */
1.266     brouard  8390:   int istart=1; /* For starting graphs in projections */
1.219     brouard  8391: 
1.126     brouard  8392: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                   8393: /*     printf("Problem with file %s",optionfilegnuplot); */
                   8394: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   8395: /*   } */
                   8396: 
                   8397:   /*#ifdef windows */
                   8398:   fprintf(ficgp,"cd \"%s\" \n",pathc);
1.223     brouard  8399:   /*#endif */
1.225     brouard  8400:   m=pow(2,cptcoveff);
1.126     brouard  8401: 
1.274     brouard  8402:   /* diagram of the model */
                   8403:   fprintf(ficgp,"\n#Diagram of the model \n");
                   8404:   fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n");
                   8405:   fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate);
                   8406:   fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
                   8407: 
1.343     brouard  8408:   fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] for [j=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0)  ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate, nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
1.274     brouard  8409:   fprintf(ficgp,"\n#show arrow\nunset label\n");
                   8410:   fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
                   8411:   fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0.  font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate);
                   8412:   fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n");
                   8413:   fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_"));
                   8414:   fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n");
                   8415: 
1.202     brouard  8416:   /* Contribution to likelihood */
                   8417:   /* Plot the probability implied in the likelihood */
1.223     brouard  8418:   fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
                   8419:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
                   8420:   /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
                   8421:   fprintf(ficgp,"\nset ter pngcairo size 640, 480");
1.204     brouard  8422: /* nice for mle=4 plot by number of matrix products.
1.202     brouard  8423:    replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
                   8424: /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
1.223     brouard  8425:   /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
                   8426:   fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
                   8427:   fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
                   8428:   fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
                   8429:   fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
                   8430:   for (i=1; i<= nlstate ; i ++) {
                   8431:     fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
                   8432:     fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
                   8433:     fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
                   8434:     for (j=2; j<= nlstate+ndeath ; j ++) {
                   8435:       fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
                   8436:     }
                   8437:     fprintf(ficgp,";\nset out; unset ylabel;\n"); 
                   8438:   }
                   8439:   /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */               
                   8440:   /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
                   8441:   /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
                   8442:   fprintf(ficgp,"\nset out;unset log\n");
                   8443:   /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
1.202     brouard  8444: 
1.343     brouard  8445:   /* Plot the probability implied in the likelihood by covariate value */
                   8446:   fprintf(ficgp,"\nset ter pngcairo size 640, 480");
                   8447:   /* if(debugILK==1){ */
                   8448:   for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */
1.347     brouard  8449:     kvar=Tvar[TvarFind[kf]]; /* variable name */
                   8450:     /* k=18+Tvar[TvarFind[kf]];/\*offset because there are 18 columns in the ILK_ file but could be placed else where *\/ */
1.350     brouard  8451:     /* k=18+kf;/\*offset because there are 18 columns in the ILK_ file *\/ */
1.356   ! brouard  8452:     /* k=19+kf;/\*offset because there are 19 columns in the ILK_ file *\/ */
1.355     brouard  8453:     k=16+nlstate+kf;/*offset because there are 19 columns in the ILK_ file, first cov Vn on col 21 with 4 living states */
1.343     brouard  8454:     for (i=1; i<= nlstate ; i ++) {
                   8455:       fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar);
                   8456:       fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot  \"%s\"",subdirf(fileresilk));
1.348     brouard  8457:       if(gnuplotversion >=5.2){ /* Former gnuplot versions do not have variable pointsize!! */
                   8458:        fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar);
                   8459:        for (j=2; j<= nlstate+ndeath ; j ++) {
                   8460:          fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar);
                   8461:        }
                   8462:       }else{
                   8463:        fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable \\\n",i,1,k,i,1,kvar);
                   8464:        for (j=2; j<= nlstate+ndeath ; j ++) {
                   8465:          fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable ",i,j,k,i,j,kvar);
                   8466:        }
1.343     brouard  8467:       }
                   8468:       fprintf(ficgp,";\nset out; unset ylabel;\n"); 
                   8469:     }
                   8470:   } /* End of each covariate dummy */
                   8471:   for(ncovv=1, iposold=0, kk=0; ncovv <= ncovvt ; ncovv++){
                   8472:     /* Other example        V1 + V3 + V5 + age*V1  + age*V3 + age*V5 + V1*V3  + V3*V5  + V1*V5 
                   8473:      *     kmodel       =     1   2     3     4         5        6        7       8        9
                   8474:      *  varying                   1     2                                 3       4        5
                   8475:      *  ncovv                     1     2                                3 4     5 6      7 8
                   8476:      * TvarVV[ncovv]             V3     5                                1 3     3 5      1 5
                   8477:      * TvarVVind[ncovv]=kmodel    2     3                                7 7     8 8      9 9
                   8478:      * TvarFind[kmodel]       1   0     0     0         0        0        0       0        0
                   8479:      * kdata     ncovcol=[V1 V2] nqv=0 ntv=[V3 V4] nqtv=V5
                   8480:      * Dummy[kmodel]          0   0     1     2         2        3        1       1        1
                   8481:      */
                   8482:     ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */
                   8483:     kvar=TvarVV[ncovv]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate */
                   8484:     /* printf("DebugILK ficgp ncovv=%d, kvar=TvarVV[ncovv]=%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */
                   8485:     if(ipos!=iposold){ /* Not a product or first of a product */
                   8486:       /* printf(" %d",ipos); */
                   8487:       /* fprintf(ficresilk," V%d",TvarVV[ncovv]); */
                   8488:       /* printf(" DebugILK ficgp suite ipos=%d != iposold=%d\n", ipos, iposold); */
                   8489:       kk++; /* Position of the ncovv column in ILK_ */
                   8490:       k=18+ncovf+kk; /*offset because there are 18 columns in the ILK_ file plus ncovf fixed covariate */
                   8491:       if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm)  */
                   8492:        for (i=1; i<= nlstate ; i ++) {
                   8493:          fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar);
                   8494:          fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot  \"%s\"",subdirf(fileresilk));
                   8495: 
1.348     brouard  8496:            /* printf("Before DebugILK gnuplotversion=%g >=5.2\n",gnuplotversion); */
1.343     brouard  8497:          if(gnuplotversion >=5.2){ /* Former gnuplot versions do not have variable pointsize!! */
                   8498:            /* printf("DebugILK gnuplotversion=%g >=5.2\n",gnuplotversion); */
                   8499:            fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar);
                   8500:            for (j=2; j<= nlstate+ndeath ; j ++) {
                   8501:              fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar);
                   8502:            }
                   8503:          }else{
                   8504:            /* printf("DebugILK gnuplotversion=%g <5.2\n",gnuplotversion); */
                   8505:            fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable \\\n",i,1,k,i,1,kvar);
                   8506:            for (j=2; j<= nlstate+ndeath ; j ++) {
                   8507:              fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable ",i,j,k,i,j,kvar);
                   8508:            }
                   8509:          }
                   8510:          fprintf(ficgp,";\nset out; unset ylabel;\n"); 
                   8511:        }
                   8512:       }/* End if dummy varying */
                   8513:     }else{ /*Product */
                   8514:       /* printf("*"); */
                   8515:       /* fprintf(ficresilk,"*"); */
                   8516:     }
                   8517:     iposold=ipos;
                   8518:   } /* For each time varying covariate */
                   8519:   /* } /\* debugILK==1 *\/ */
                   8520:   /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */               
                   8521:   /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
                   8522:   /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
                   8523:   fprintf(ficgp,"\nset out;unset log\n");
                   8524:   /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
                   8525: 
                   8526: 
                   8527:   
1.126     brouard  8528:   strcpy(dirfileres,optionfilefiname);
                   8529:   strcpy(optfileres,"vpl");
1.223     brouard  8530:   /* 1eme*/
1.238     brouard  8531:   for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
1.337     brouard  8532:     /* for (k1=1; k1<= m ; k1 ++){ /\* For each valid combination of covariate *\/ */
1.236     brouard  8533:       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8534:        k1=TKresult[nres];
1.338     brouard  8535:        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.238     brouard  8536:        /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
1.337     brouard  8537:        /* if(m != 1 && TKresult[nres]!= k1) */
                   8538:        /*   continue; */
1.238     brouard  8539:        /* We are interested in selected combination by the resultline */
1.246     brouard  8540:        /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */
1.288     brouard  8541:        fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
1.264     brouard  8542:        strcpy(gplotlabel,"(");
1.337     brouard  8543:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8544:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8545:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8546: 
                   8547:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate k get corresponding value lv for combination k1 *\/ */
                   8548:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the value of the covariate corresponding to k1 combination *\\/ *\/ */
                   8549:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8550:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8551:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8552:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8553:        /*   vlv= nbcode[Tvaraff[k]][lv]; /\* vlv is the value of the covariate lv, 0 or 1 *\/ */
                   8554:        /*   /\* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv *\/ */
                   8555:        /*   /\* printf(" V%d=%d ",Tvaraff[k],vlv); *\/ */
                   8556:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8557:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8558:        /* } */
                   8559:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8560:        /*   /\* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); *\/ */
                   8561:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   8562:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
1.264     brouard  8563:        }
                   8564:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.246     brouard  8565:        /* printf("\n#\n"); */
1.238     brouard  8566:        fprintf(ficgp,"\n#\n");
                   8567:        if(invalidvarcomb[k1]){
1.260     brouard  8568:           /*k1=k1-1;*/ /* To be checked */
1.238     brouard  8569:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8570:          continue;
                   8571:        }
1.235     brouard  8572:       
1.241     brouard  8573:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
                   8574:        fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);
1.276     brouard  8575:        /* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */
1.338     brouard  8576:        fprintf(ficgp,"set title \"Alive state %d %s model=1+age+%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model);
1.260     brouard  8577:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
                   8578:        /* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */
                   8579:       /* k1-1 error should be nres-1*/
1.238     brouard  8580:        for (i=1; i<= nlstate ; i ++) {
                   8581:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   8582:          else        fprintf(ficgp," %%*lf (%%*lf)");
                   8583:        }
1.288     brouard  8584:        fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
1.238     brouard  8585:        for (i=1; i<= nlstate ; i ++) {
                   8586:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   8587:          else fprintf(ficgp," %%*lf (%%*lf)");
                   8588:        } 
1.260     brouard  8589:        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); 
1.238     brouard  8590:        for (i=1; i<= nlstate ; i ++) {
                   8591:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   8592:          else fprintf(ficgp," %%*lf (%%*lf)");
                   8593:        }  
1.265     brouard  8594:        /* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */
                   8595:        
                   8596:        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_"));
                   8597:         if(cptcoveff ==0){
1.271     brouard  8598:          fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3",      2+3*(cpt-1),  cpt );
1.265     brouard  8599:        }else{
                   8600:          kl=0;
                   8601:          for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
1.332     brouard  8602:            /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
                   8603:            lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
1.265     brouard  8604:            /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   8605:            /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   8606:            /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   8607:            vlv= nbcode[Tvaraff[k]][lv];
                   8608:            kl++;
                   8609:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   8610:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   8611:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   8612:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   8613:            if(k==cptcoveff){
                   8614:              fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                   8615:                      2+cptcoveff*2+3*(cpt-1),  cpt );  /* 4 or 6 ?*/
                   8616:            }else{
                   8617:              fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                   8618:              kl++;
                   8619:            }
                   8620:          } /* end covariate */
                   8621:        } /* end if no covariate */
                   8622: 
1.296     brouard  8623:        if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
1.238     brouard  8624:          /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
1.242     brouard  8625:          fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */
1.238     brouard  8626:          if(cptcoveff ==0){
1.245     brouard  8627:            fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3",    2+(cpt-1),  cpt );
1.238     brouard  8628:          }else{
                   8629:            kl=0;
                   8630:            for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
1.332     brouard  8631:              /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
                   8632:              lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
1.238     brouard  8633:              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   8634:              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   8635:              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
1.332     brouard  8636:              /* vlv= nbcode[Tvaraff[k]][lv]; */
                   8637:              vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])];
1.223     brouard  8638:              kl++;
1.238     brouard  8639:              /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   8640:              /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   8641:              /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   8642:              /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   8643:              if(k==cptcoveff){
1.245     brouard  8644:                fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
1.242     brouard  8645:                        2+cptcoveff*2+(cpt-1),  cpt );  /* 4 or 6 ?*/
1.238     brouard  8646:              }else{
1.332     brouard  8647:                fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]);
1.238     brouard  8648:                kl++;
                   8649:              }
                   8650:            } /* end covariate */
                   8651:          } /* end if no covariate */
1.296     brouard  8652:          if(prevbcast == 1){
1.268     brouard  8653:            fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
                   8654:            /* k1-1 error should be nres-1*/
                   8655:            for (i=1; i<= nlstate ; i ++) {
                   8656:              if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   8657:              else        fprintf(ficgp," %%*lf (%%*lf)");
                   8658:            }
1.271     brouard  8659:            fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
1.268     brouard  8660:            for (i=1; i<= nlstate ; i ++) {
                   8661:              if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   8662:              else fprintf(ficgp," %%*lf (%%*lf)");
                   8663:            } 
1.276     brouard  8664:            fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); 
1.268     brouard  8665:            for (i=1; i<= nlstate ; i ++) {
                   8666:              if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   8667:              else fprintf(ficgp," %%*lf (%%*lf)");
                   8668:            } 
1.274     brouard  8669:            fprintf(ficgp,"\" t\"\" w l lt 4");
1.268     brouard  8670:          } /* end if backprojcast */
1.296     brouard  8671:        } /* end if prevbcast */
1.276     brouard  8672:        /* fprintf(ficgp,"\nset out ;unset label;\n"); */
                   8673:        fprintf(ficgp,"\nset out ;unset title;\n");
1.238     brouard  8674:       } /* nres */
1.337     brouard  8675:     /* } /\* k1 *\/ */
1.201     brouard  8676:   } /* cpt */
1.235     brouard  8677: 
                   8678:   
1.126     brouard  8679:   /*2 eme*/
1.337     brouard  8680:   /* for (k1=1; k1<= m ; k1 ++){   */
1.238     brouard  8681:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8682:       k1=TKresult[nres];
1.338     brouard  8683:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8684:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8685:       /*       continue; */
1.238     brouard  8686:       fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
1.264     brouard  8687:       strcpy(gplotlabel,"(");
1.337     brouard  8688:       for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8689:        fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8690:        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8691:       /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8692:       /*       /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8693:       /*       lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8694:       /*       /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8695:       /*       /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8696:       /*       /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8697:       /*       /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8698:       /*       vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8699:       /*       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8700:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8701:       /* } */
                   8702:       /* /\* for(k=1; k <= ncovds; k++){ *\/ */
                   8703:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8704:       /*       printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   8705:       /*       fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   8706:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
1.238     brouard  8707:       }
1.264     brouard  8708:       strcpy(gplotlabel+strlen(gplotlabel),")");
1.211     brouard  8709:       fprintf(ficgp,"\n#\n");
1.223     brouard  8710:       if(invalidvarcomb[k1]){
                   8711:        fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8712:        continue;
                   8713:       }
1.219     brouard  8714:                        
1.241     brouard  8715:       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres);
1.238     brouard  8716:       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
1.264     brouard  8717:        fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel);
                   8718:        if(vpopbased==0){
1.238     brouard  8719:          fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
1.264     brouard  8720:        }else
1.238     brouard  8721:          fprintf(ficgp,"\nreplot ");
                   8722:        for (i=1; i<= nlstate+1 ; i ++) {
                   8723:          k=2*i;
1.261     brouard  8724:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased);
1.238     brouard  8725:          for (j=1; j<= nlstate+1 ; j ++) {
                   8726:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   8727:            else fprintf(ficgp," %%*lf (%%*lf)");
                   8728:          }   
                   8729:          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
                   8730:          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
1.261     brouard  8731:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
1.238     brouard  8732:          for (j=1; j<= nlstate+1 ; j ++) {
                   8733:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   8734:            else fprintf(ficgp," %%*lf (%%*lf)");
                   8735:          }   
                   8736:          fprintf(ficgp,"\" t\"\" w l lt 0,");
1.261     brouard  8737:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
1.238     brouard  8738:          for (j=1; j<= nlstate+1 ; j ++) {
                   8739:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   8740:            else fprintf(ficgp," %%*lf (%%*lf)");
                   8741:          }   
                   8742:          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
                   8743:          else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
                   8744:        } /* state */
                   8745:       } /* vpopbased */
1.264     brouard  8746:       fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */
1.238     brouard  8747:     } /* end nres */
1.337     brouard  8748:   /* } /\* k1 end 2 eme*\/ */
1.238     brouard  8749:        
                   8750:        
                   8751:   /*3eme*/
1.337     brouard  8752:   /* for (k1=1; k1<= m ; k1 ++){ */
1.238     brouard  8753:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8754:       k1=TKresult[nres];
1.338     brouard  8755:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8756:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8757:       /*       continue; */
1.238     brouard  8758: 
1.332     brouard  8759:       for (cpt=1; cpt<= nlstate ; cpt ++) { /* Fragile no verification of covariate values */
1.261     brouard  8760:        fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
1.264     brouard  8761:        strcpy(gplotlabel,"(");
1.337     brouard  8762:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8763:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8764:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8765:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8766:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8767:        /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   8768:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8769:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8770:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8771:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8772:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8773:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8774:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8775:        /* } */
                   8776:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8777:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
                   8778:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
                   8779:        }
1.264     brouard  8780:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.238     brouard  8781:        fprintf(ficgp,"\n#\n");
                   8782:        if(invalidvarcomb[k1]){
                   8783:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8784:          continue;
                   8785:        }
                   8786:                        
                   8787:        /*       k=2+nlstate*(2*cpt-2); */
                   8788:        k=2+(nlstate+1)*(cpt-1);
1.241     brouard  8789:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
1.264     brouard  8790:        fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel);
1.238     brouard  8791:        fprintf(ficgp,"set ter svg size 640, 480\n\
1.261     brouard  8792: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt);
1.238     brouard  8793:        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   8794:          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   8795:          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   8796:          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   8797:          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   8798:          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
1.219     brouard  8799:                                
1.238     brouard  8800:        */
                   8801:        for (i=1; i< nlstate ; i ++) {
1.261     brouard  8802:          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1);
1.238     brouard  8803:          /*    fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
1.219     brouard  8804:                                
1.238     brouard  8805:        } 
1.261     brouard  8806:        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt);
1.238     brouard  8807:       }
1.264     brouard  8808:       fprintf(ficgp,"\nunset label;\n");
1.238     brouard  8809:     } /* end nres */
1.337     brouard  8810:   /* } /\* end kl 3eme *\/ */
1.126     brouard  8811:   
1.223     brouard  8812:   /* 4eme */
1.201     brouard  8813:   /* Survival functions (period) from state i in state j by initial state i */
1.337     brouard  8814:   /* for (k1=1; k1<=m; k1++){    /\* For each covariate and each value *\/ */
1.238     brouard  8815:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8816:       k1=TKresult[nres];
1.338     brouard  8817:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8818:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8819:       /*       continue; */
1.238     brouard  8820:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
1.264     brouard  8821:        strcpy(gplotlabel,"(");
1.337     brouard  8822:        fprintf(ficgp,"\n#\n#\n# Survival functions in state %d : 'LIJ_' files, cov=%d state=%d", cpt, k1, cpt);
                   8823:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8824:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8825:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8826:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8827:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8828:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8829:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8830:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8831:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8832:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8833:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8834:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8835:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8836:        /* } */
                   8837:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8838:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8839:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.238     brouard  8840:        }       
1.264     brouard  8841:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.238     brouard  8842:        fprintf(ficgp,"\n#\n");
                   8843:        if(invalidvarcomb[k1]){
                   8844:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8845:          continue;
1.223     brouard  8846:        }
1.238     brouard  8847:       
1.241     brouard  8848:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
1.264     brouard  8849:        fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.238     brouard  8850:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
                   8851: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   8852:        k=3;
                   8853:        for (i=1; i<= nlstate ; i ++){
                   8854:          if(i==1){
                   8855:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   8856:          }else{
                   8857:            fprintf(ficgp,", '' ");
                   8858:          }
                   8859:          l=(nlstate+ndeath)*(i-1)+1;
                   8860:          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
                   8861:          for (j=2; j<= nlstate+ndeath ; j ++)
                   8862:            fprintf(ficgp,"+$%d",k+l+j-1);
                   8863:          fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
                   8864:        } /* nlstate */
1.264     brouard  8865:        fprintf(ficgp,"\nset out; unset label;\n");
1.238     brouard  8866:       } /* end cpt state*/ 
                   8867:     } /* end nres */
1.337     brouard  8868:   /* } /\* end covariate k1 *\/   */
1.238     brouard  8869: 
1.220     brouard  8870: /* 5eme */
1.201     brouard  8871:   /* Survival functions (period) from state i in state j by final state j */
1.337     brouard  8872:   /* for (k1=1; k1<= m ; k1++){ /\* For each covariate combination if any *\/ */
1.238     brouard  8873:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8874:       k1=TKresult[nres];
1.338     brouard  8875:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8876:       /* if(m != 1 && TKresult[nres]!= k1) */
                   8877:       /*       continue; */
1.238     brouard  8878:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
1.264     brouard  8879:        strcpy(gplotlabel,"(");
1.238     brouard  8880:        fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
1.337     brouard  8881:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8882:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8883:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8884:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8885:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8886:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8887:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8888:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8889:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8890:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8891:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8892:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8893:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8894:        /* } */
                   8895:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8896:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8897:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.238     brouard  8898:        }       
1.264     brouard  8899:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.238     brouard  8900:        fprintf(ficgp,"\n#\n");
                   8901:        if(invalidvarcomb[k1]){
                   8902:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8903:          continue;
                   8904:        }
1.227     brouard  8905:       
1.241     brouard  8906:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
1.264     brouard  8907:        fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.238     brouard  8908:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
                   8909: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   8910:        k=3;
                   8911:        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
                   8912:          if(j==1)
                   8913:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   8914:          else
                   8915:            fprintf(ficgp,", '' ");
                   8916:          l=(nlstate+ndeath)*(cpt-1) +j;
                   8917:          fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
                   8918:          /* for (i=2; i<= nlstate+ndeath ; i ++) */
                   8919:          /*   fprintf(ficgp,"+$%d",k+l+i-1); */
                   8920:          fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
                   8921:        } /* nlstate */
                   8922:        fprintf(ficgp,", '' ");
                   8923:        fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
                   8924:        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
                   8925:          l=(nlstate+ndeath)*(cpt-1) +j;
                   8926:          if(j < nlstate)
                   8927:            fprintf(ficgp,"$%d +",k+l);
                   8928:          else
                   8929:            fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
                   8930:        }
1.264     brouard  8931:        fprintf(ficgp,"\nset out; unset label;\n");
1.238     brouard  8932:       } /* end cpt state*/ 
1.337     brouard  8933:     /* } /\* end covariate *\/   */
1.238     brouard  8934:   } /* end nres */
1.227     brouard  8935:   
1.220     brouard  8936: /* 6eme */
1.202     brouard  8937:   /* CV preval stable (period) for each covariate */
1.337     brouard  8938:   /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.237     brouard  8939:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8940:      k1=TKresult[nres];
1.338     brouard  8941:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  8942:      /* if(m != 1 && TKresult[nres]!= k1) */
                   8943:      /*  continue; */
1.255     brouard  8944:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */
1.264     brouard  8945:       strcpy(gplotlabel,"(");      
1.288     brouard  8946:       fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
1.337     brouard  8947:       for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   8948:        fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8949:        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   8950:       /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   8951:       /*       /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   8952:       /*       lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   8953:       /*       /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   8954:       /*       /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   8955:       /*       /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   8956:       /*       /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   8957:       /*       vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   8958:       /*       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   8959:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   8960:       /* } */
                   8961:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   8962:       /*       fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   8963:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.237     brouard  8964:       }        
1.264     brouard  8965:       strcpy(gplotlabel+strlen(gplotlabel),")");
1.211     brouard  8966:       fprintf(ficgp,"\n#\n");
1.223     brouard  8967:       if(invalidvarcomb[k1]){
1.227     brouard  8968:        fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   8969:        continue;
1.223     brouard  8970:       }
1.227     brouard  8971:       
1.241     brouard  8972:       fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.264     brouard  8973:       fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.126     brouard  8974:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.238     brouard  8975: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.211     brouard  8976:       k=3; /* Offset */
1.255     brouard  8977:       for (i=1; i<= nlstate ; i ++){ /* State of origin */
1.227     brouard  8978:        if(i==1)
                   8979:          fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   8980:        else
                   8981:          fprintf(ficgp,", '' ");
1.255     brouard  8982:        l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
1.227     brouard  8983:        fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
                   8984:        for (j=2; j<= nlstate ; j ++)
                   8985:          fprintf(ficgp,"+$%d",k+l+j-1);
                   8986:        fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
1.153     brouard  8987:       } /* nlstate */
1.264     brouard  8988:       fprintf(ficgp,"\nset out; unset label;\n");
1.153     brouard  8989:     } /* end cpt state*/ 
                   8990:   } /* end covariate */  
1.227     brouard  8991:   
                   8992:   
1.220     brouard  8993: /* 7eme */
1.296     brouard  8994:   if(prevbcast == 1){
1.288     brouard  8995:     /* CV backward prevalence  for each covariate */
1.337     brouard  8996:     /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.237     brouard  8997:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  8998:       k1=TKresult[nres];
1.338     brouard  8999:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  9000:       /* if(m != 1 && TKresult[nres]!= k1) */
                   9001:       /*       continue; */
1.268     brouard  9002:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */
1.264     brouard  9003:        strcpy(gplotlabel,"(");      
1.288     brouard  9004:        fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt);
1.337     brouard  9005:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   9006:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   9007:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   9008:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   9009:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   9010:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   9011:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   9012:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   9013:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   9014:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   9015:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   9016:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   9017:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   9018:        /* } */
                   9019:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   9020:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   9021:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.237     brouard  9022:        }       
1.264     brouard  9023:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.227     brouard  9024:        fprintf(ficgp,"\n#\n");
                   9025:        if(invalidvarcomb[k1]){
                   9026:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   9027:          continue;
                   9028:        }
                   9029:        
1.241     brouard  9030:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
1.268     brouard  9031:        fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.227     brouard  9032:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.238     brouard  9033: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.227     brouard  9034:        k=3; /* Offset */
1.268     brouard  9035:        for (i=1; i<= nlstate ; i ++){ /* State of arrival */
1.227     brouard  9036:          if(i==1)
                   9037:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
                   9038:          else
                   9039:            fprintf(ficgp,", '' ");
                   9040:          /* l=(nlstate+ndeath)*(i-1)+1; */
1.255     brouard  9041:          l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
1.324     brouard  9042:          /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
                   9043:          /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
1.255     brouard  9044:          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */
1.227     brouard  9045:          /* for (j=2; j<= nlstate ; j ++) */
                   9046:          /*    fprintf(ficgp,"+$%d",k+l+j-1); */
                   9047:          /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
1.268     brouard  9048:          fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i);
1.227     brouard  9049:        } /* nlstate */
1.264     brouard  9050:        fprintf(ficgp,"\nset out; unset label;\n");
1.218     brouard  9051:       } /* end cpt state*/ 
                   9052:     } /* end covariate */  
1.296     brouard  9053:   } /* End if prevbcast */
1.218     brouard  9054:   
1.223     brouard  9055:   /* 8eme */
1.218     brouard  9056:   if(prevfcast==1){
1.288     brouard  9057:     /* Projection from cross-sectional to forward stable (period) prevalence for each covariate */
1.218     brouard  9058:     
1.337     brouard  9059:     /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.237     brouard  9060:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  9061:       k1=TKresult[nres];
1.338     brouard  9062:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  9063:       /* if(m != 1 && TKresult[nres]!= k1) */
                   9064:       /*       continue; */
1.211     brouard  9065:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
1.264     brouard  9066:        strcpy(gplotlabel,"(");      
1.288     brouard  9067:        fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
1.337     brouard  9068:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   9069:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   9070:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   9071:        /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
                   9072:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
                   9073:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   9074:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   9075:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   9076:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   9077:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   9078:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   9079:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   9080:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   9081:        /* } */
                   9082:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   9083:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   9084:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.237     brouard  9085:        }       
1.264     brouard  9086:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.227     brouard  9087:        fprintf(ficgp,"\n#\n");
                   9088:        if(invalidvarcomb[k1]){
                   9089:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   9090:          continue;
                   9091:        }
                   9092:        
                   9093:        fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
1.241     brouard  9094:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
1.264     brouard  9095:        fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.227     brouard  9096:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
1.238     brouard  9097: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.266     brouard  9098: 
                   9099:        /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
                   9100:        istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
                   9101:        /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
                   9102:        for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
1.227     brouard  9103:          /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   9104:          /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   9105:          /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   9106:          /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
1.266     brouard  9107:          if(i==istart){
1.227     brouard  9108:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
                   9109:          }else{
                   9110:            fprintf(ficgp,",\\\n '' ");
                   9111:          }
                   9112:          if(cptcoveff ==0){ /* No covariate */
                   9113:            ioffset=2; /* Age is in 2 */
                   9114:            /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   9115:            /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   9116:            /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   9117:            /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   9118:            fprintf(ficgp," u %d:(", ioffset); 
1.266     brouard  9119:            if(i==nlstate+1){
1.270     brouard  9120:              fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ",        \
1.266     brouard  9121:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   9122:              fprintf(ficgp,",\\\n '' ");
                   9123:              fprintf(ficgp," u %d:(",ioffset); 
1.270     brouard  9124:              fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \
1.266     brouard  9125:                     offyear,                           \
1.268     brouard  9126:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate );
1.266     brouard  9127:            }else
1.227     brouard  9128:              fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                   9129:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                   9130:          }else{ /* more than 2 covariates */
1.270     brouard  9131:            ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
                   9132:            /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   9133:            /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
                   9134:            iyearc=ioffset-1;
                   9135:            iagec=ioffset;
1.227     brouard  9136:            fprintf(ficgp," u %d:(",ioffset); 
                   9137:            kl=0;
                   9138:            strcpy(gplotcondition,"(");
1.351     brouard  9139:            /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate writing the chain of conditions *\/ */
1.332     brouard  9140:              /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
1.351     brouard  9141:            for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   9142:              /* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   9143:              lv=Tvresult[nres][k];
                   9144:              vlv=TinvDoQresult[nres][Tvresult[nres][k]];
1.227     brouard  9145:              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   9146:              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   9147:              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
1.332     brouard  9148:              /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
1.351     brouard  9149:              /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
1.227     brouard  9150:              kl++;
1.351     brouard  9151:              /* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */
                   9152:              sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,lv, kl+1, vlv );
1.227     brouard  9153:              kl++;
1.351     brouard  9154:              if(k <cptcovs && cptcovs>1)
1.227     brouard  9155:                sprintf(gplotcondition+strlen(gplotcondition)," && ");
                   9156:            }
                   9157:            strcpy(gplotcondition+strlen(gplotcondition),")");
                   9158:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   9159:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   9160:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   9161:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   9162:            if(i==nlstate+1){
1.270     brouard  9163:              fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \
                   9164:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt );
1.266     brouard  9165:              fprintf(ficgp,",\\\n '' ");
1.270     brouard  9166:              fprintf(ficgp," u %d:(",iagec); 
                   9167:              fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \
                   9168:                      iyearc, iagec, offyear,                           \
                   9169:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc );
1.266     brouard  9170: /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
1.227     brouard  9171:            }else{
                   9172:              fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                   9173:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                   9174:            }
                   9175:          } /* end if covariate */
                   9176:        } /* nlstate */
1.264     brouard  9177:        fprintf(ficgp,"\nset out; unset label;\n");
1.223     brouard  9178:       } /* end cpt state*/
                   9179:     } /* end covariate */
                   9180:   } /* End if prevfcast */
1.227     brouard  9181:   
1.296     brouard  9182:   if(prevbcast==1){
1.268     brouard  9183:     /* Back projection from cross-sectional to stable (mixed) for each covariate */
                   9184:     
1.337     brouard  9185:     /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.268     brouard  9186:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  9187:      k1=TKresult[nres];
1.338     brouard  9188:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  9189:        /* if(m != 1 && TKresult[nres]!= k1) */
                   9190:        /*      continue; */
1.268     brouard  9191:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
                   9192:        strcpy(gplotlabel,"(");      
                   9193:        fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt);
1.337     brouard  9194:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   9195:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   9196:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   9197:        /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
                   9198:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
                   9199:        /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   9200:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   9201:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   9202:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   9203:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   9204:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   9205:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   9206:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   9207:        /* } */
                   9208:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   9209:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   9210:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.268     brouard  9211:        }       
                   9212:        strcpy(gplotlabel+strlen(gplotlabel),")");
                   9213:        fprintf(ficgp,"\n#\n");
                   9214:        if(invalidvarcomb[k1]){
                   9215:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   9216:          continue;
                   9217:        }
                   9218:        
                   9219:        fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n ");
                   9220:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
                   9221:        fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
                   9222:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
                   9223: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   9224: 
                   9225:        /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
                   9226:        istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
                   9227:        /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
                   9228:        for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
                   9229:          /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   9230:          /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   9231:          /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   9232:          /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   9233:          if(i==istart){
                   9234:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_"));
                   9235:          }else{
                   9236:            fprintf(ficgp,",\\\n '' ");
                   9237:          }
1.351     brouard  9238:          /* if(cptcoveff ==0){ /\* No covariate *\/ */
                   9239:          if(cptcovs ==0){ /* No covariate */
1.268     brouard  9240:            ioffset=2; /* Age is in 2 */
                   9241:            /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   9242:            /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   9243:            /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   9244:            /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   9245:            fprintf(ficgp," u %d:(", ioffset); 
                   9246:            if(i==nlstate+1){
1.270     brouard  9247:              fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \
1.268     brouard  9248:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   9249:              fprintf(ficgp,",\\\n '' ");
                   9250:              fprintf(ficgp," u %d:(",ioffset); 
1.270     brouard  9251:              fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \
1.268     brouard  9252:                     offbyear,                          \
                   9253:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1) );
                   9254:            }else
                   9255:              fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ",      \
                   9256:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i );
                   9257:          }else{ /* more than 2 covariates */
1.270     brouard  9258:            ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
                   9259:            /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   9260:            /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
                   9261:            iyearc=ioffset-1;
                   9262:            iagec=ioffset;
1.268     brouard  9263:            fprintf(ficgp," u %d:(",ioffset); 
                   9264:            kl=0;
                   9265:            strcpy(gplotcondition,"(");
1.337     brouard  9266:            for (k=1; k<=cptcovs; k++){    /* For each covariate k of the resultline, get corresponding value lv for combination k1 */
1.338     brouard  9267:              if(Dummy[modelresult[nres][k]]==0){  /* To be verified */
1.337     brouard  9268:                /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate writing the chain of conditions *\/ */
                   9269:                /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   9270:                /* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   9271:                lv=Tvresult[nres][k];
                   9272:                vlv=TinvDoQresult[nres][Tvresult[nres][k]];
                   9273:                /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   9274:                /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   9275:                /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   9276:                /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
                   9277:                /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   9278:                kl++;
                   9279:                /* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */
                   9280:                sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,Tvresult[nres][k], kl+1,TinvDoQresult[nres][Tvresult[nres][k]]);
                   9281:                kl++;
1.338     brouard  9282:                if(k <cptcovs && cptcovs>1)
1.337     brouard  9283:                  sprintf(gplotcondition+strlen(gplotcondition)," && ");
                   9284:              }
1.268     brouard  9285:            }
                   9286:            strcpy(gplotcondition+strlen(gplotcondition),")");
                   9287:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   9288:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   9289:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   9290:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   9291:            if(i==nlstate+1){
1.270     brouard  9292:              fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \
                   9293:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt );
1.268     brouard  9294:              fprintf(ficgp,",\\\n '' ");
1.270     brouard  9295:              fprintf(ficgp," u %d:(",iagec); 
1.268     brouard  9296:              /* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */
1.270     brouard  9297:              fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \
                   9298:                      iyearc,iagec,offbyear,                            \
                   9299:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc );
1.268     brouard  9300: /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
                   9301:            }else{
                   9302:              /* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */
                   9303:              fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \
                   9304:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i );
                   9305:            }
                   9306:          } /* end if covariate */
                   9307:        } /* nlstate */
                   9308:        fprintf(ficgp,"\nset out; unset label;\n");
                   9309:       } /* end cpt state*/
                   9310:     } /* end covariate */
1.296     brouard  9311:   } /* End if prevbcast */
1.268     brouard  9312:   
1.227     brouard  9313:   
1.238     brouard  9314:   /* 9eme writing MLE parameters */
                   9315:   fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n");
1.126     brouard  9316:   for(i=1,jk=1; i <=nlstate; i++){
1.187     brouard  9317:     fprintf(ficgp,"# initial state %d\n",i);
1.126     brouard  9318:     for(k=1; k <=(nlstate+ndeath); k++){
                   9319:       if (k != i) {
1.227     brouard  9320:        fprintf(ficgp,"#   current state %d\n",k);
                   9321:        for(j=1; j <=ncovmodel; j++){
                   9322:          fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
                   9323:          jk++; 
                   9324:        }
                   9325:        fprintf(ficgp,"\n");
1.126     brouard  9326:       }
                   9327:     }
1.223     brouard  9328:   }
1.187     brouard  9329:   fprintf(ficgp,"##############\n#\n");
1.227     brouard  9330:   
1.145     brouard  9331:   /*goto avoid;*/
1.238     brouard  9332:   /* 10eme Graphics of probabilities or incidences using written MLE parameters */
                   9333:   fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n");
1.187     brouard  9334:   fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
                   9335:   fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
                   9336:   fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
                   9337:   fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
                   9338:   fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   9339:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
                   9340:   fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   9341:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
                   9342:   fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
                   9343:   fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   9344:   fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
                   9345:   fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
                   9346:   fprintf(ficgp,"#\n");
1.223     brouard  9347:   for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
1.238     brouard  9348:     fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
1.338     brouard  9349:     fprintf(ficgp,"#model=1+age+%s \n",model);
1.238     brouard  9350:     fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
1.351     brouard  9351:     /* fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcoveff,m);/\* to be checked *\/ */
                   9352:     fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcovs,m);/* to be checked */
1.337     brouard  9353:     /* for(k1=1; k1 <=m; k1++)  /\* For each combination of covariate *\/ */
1.237     brouard  9354:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  9355:      /* k1=nres; */
1.338     brouard  9356:       k1=TKresult[nres];
                   9357:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  9358:       fprintf(ficgp,"\n\n# Resultline k1=%d ",k1);
1.264     brouard  9359:       strcpy(gplotlabel,"(");
1.276     brouard  9360:       /*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/
1.337     brouard  9361:       for (k=1; k<=cptcovs; k++){  /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
                   9362:        /* for each resultline nres, and position k, Tvresult[nres][k] gives the name of the variable and
                   9363:           TinvDoQresult[nres][Tvresult[nres][k]] gives its value double or integer) */
                   9364:        fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   9365:        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   9366:       }
                   9367:       /* if(m != 1 && TKresult[nres]!= k1) */
                   9368:       /*       continue; */
                   9369:       /* fprintf(ficgp,"\n\n# Combination of dummy  k1=%d which is ",k1); */
                   9370:       /* strcpy(gplotlabel,"("); */
                   9371:       /* /\*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*\/ */
                   9372:       /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
                   9373:       /*       /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
                   9374:       /*       lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   9375:       /*       /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   9376:       /*       /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   9377:       /*       /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   9378:       /*       /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   9379:       /*       vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   9380:       /*       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   9381:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   9382:       /* } */
                   9383:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   9384:       /*       fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   9385:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   9386:       /* }      */
1.264     brouard  9387:       strcpy(gplotlabel+strlen(gplotlabel),")");
1.237     brouard  9388:       fprintf(ficgp,"\n#\n");
1.264     brouard  9389:       fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres);
1.276     brouard  9390:       fprintf(ficgp,"\nset key outside ");
                   9391:       /* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */
                   9392:       fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel);
1.223     brouard  9393:       fprintf(ficgp,"\nset ter svg size 640, 480 ");
                   9394:       if (ng==1){
                   9395:        fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
                   9396:        fprintf(ficgp,"\nunset log y");
                   9397:       }else if (ng==2){
                   9398:        fprintf(ficgp,"\nset ylabel \"Probability\"\n");
                   9399:        fprintf(ficgp,"\nset log y");
                   9400:       }else if (ng==3){
                   9401:        fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                   9402:        fprintf(ficgp,"\nset log y");
                   9403:       }else
                   9404:        fprintf(ficgp,"\nunset title ");
                   9405:       fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                   9406:       i=1;
                   9407:       for(k2=1; k2<=nlstate; k2++) {
                   9408:        k3=i;
                   9409:        for(k=1; k<=(nlstate+ndeath); k++) {
                   9410:          if (k != k2){
                   9411:            switch( ng) {
                   9412:            case 1:
                   9413:              if(nagesqr==0)
                   9414:                fprintf(ficgp," p%d+p%d*x",i,i+1);
                   9415:              else /* nagesqr =1 */
                   9416:                fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                   9417:              break;
                   9418:            case 2: /* ng=2 */
                   9419:              if(nagesqr==0)
                   9420:                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                   9421:              else /* nagesqr =1 */
                   9422:                fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                   9423:              break;
                   9424:            case 3:
                   9425:              if(nagesqr==0)
                   9426:                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   9427:              else /* nagesqr =1 */
                   9428:                fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                   9429:              break;
                   9430:            }
                   9431:            ij=1;/* To be checked else nbcode[0][0] wrong */
1.237     brouard  9432:            ijp=1; /* product no age */
                   9433:            /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
                   9434:            for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
1.223     brouard  9435:              /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
1.329     brouard  9436:              switch(Typevar[j]){
                   9437:              case 1:
                   9438:                if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                   9439:                  if(j==Tage[ij]) { /* Product by age  To be looked at!!*//* Bug valgrind */
                   9440:                    if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                   9441:                      if(DummyV[j]==0){/* Bug valgrind */
                   9442:                        fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                   9443:                      }else{ /* quantitative */
                   9444:                        fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                   9445:                        /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   9446:                      }
                   9447:                      ij++;
1.268     brouard  9448:                    }
1.237     brouard  9449:                  }
1.329     brouard  9450:                }
                   9451:                break;
                   9452:              case 2:
                   9453:                if(cptcovprod >0){
                   9454:                  if(j==Tprod[ijp]) { /* */ 
                   9455:                    /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   9456:                    if(ijp <=cptcovprod) { /* Product */
                   9457:                      if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                   9458:                        if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                   9459:                          /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                   9460:                          fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                   9461:                        }else{ /* Vn is dummy and Vm is quanti */
                   9462:                          /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                   9463:                          fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   9464:                        }
                   9465:                      }else{ /* Vn*Vm Vn is quanti */
                   9466:                        if(DummyV[Tvard[ijp][2]]==0){
                   9467:                          fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                   9468:                        }else{ /* Both quanti */
                   9469:                          fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   9470:                        }
1.268     brouard  9471:                      }
1.329     brouard  9472:                      ijp++;
1.237     brouard  9473:                    }
1.329     brouard  9474:                  } /* end Tprod */
                   9475:                }
                   9476:                break;
1.349     brouard  9477:              case 3:
                   9478:                if(cptcovdageprod >0){
                   9479:                  /* if(j==Tprod[ijp]) { */ /* not necessary */ 
                   9480:                    /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
1.350     brouard  9481:                    if(ijp <=cptcovprod) { /* Product Vn*Vm and age*VN*Vm*/
                   9482:                      if(DummyV[Tvardk[ijp][1]]==0){/* Vn is dummy */
                   9483:                        if(DummyV[Tvardk[ijp][2]]==0){/* Vn and Vm are dummy */
1.349     brouard  9484:                          /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                   9485:                          fprintf(ficgp,"+p%d*%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                   9486:                        }else{ /* Vn is dummy and Vm is quanti */
                   9487:                          /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
1.350     brouard  9488:                          fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  9489:                        }
1.350     brouard  9490:                      }else{ /* age* Vn*Vm Vn is quanti HERE */
1.349     brouard  9491:                        if(DummyV[Tvard[ijp][2]]==0){
1.350     brouard  9492:                          fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvardk[ijp][2]],Tqinvresult[nres][Tvardk[ijp][1]]);
1.349     brouard  9493:                        }else{ /* Both quanti */
1.350     brouard  9494:                          fprintf(ficgp,"+p%d*%f*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  9495:                        }
                   9496:                      }
                   9497:                      ijp++;
                   9498:                    }
                   9499:                    /* } */ /* end Tprod */
                   9500:                }
                   9501:                break;
1.329     brouard  9502:              case 0:
                   9503:                /* simple covariate */
1.264     brouard  9504:                /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
1.237     brouard  9505:                if(Dummy[j]==0){
                   9506:                  fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
                   9507:                }else{ /* quantitative */
                   9508:                  fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
1.264     brouard  9509:                  /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
1.223     brouard  9510:                }
1.329     brouard  9511:               /* end simple */
                   9512:                break;
                   9513:              default:
                   9514:                break;
                   9515:              } /* end switch */
1.237     brouard  9516:            } /* end j */
1.329     brouard  9517:          }else{ /* k=k2 */
                   9518:            if(ng !=1 ){ /* For logit formula of log p11 is more difficult to get */
                   9519:              fprintf(ficgp," (1.");i=i-ncovmodel;
                   9520:            }else
                   9521:              i=i-ncovmodel;
1.223     brouard  9522:          }
1.227     brouard  9523:          
1.223     brouard  9524:          if(ng != 1){
                   9525:            fprintf(ficgp,")/(1");
1.227     brouard  9526:            
1.264     brouard  9527:            for(cpt=1; cpt <=nlstate; cpt++){ 
1.223     brouard  9528:              if(nagesqr==0)
1.264     brouard  9529:                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1);
1.223     brouard  9530:              else /* nagesqr =1 */
1.264     brouard  9531:                fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr);
1.217     brouard  9532:               
1.223     brouard  9533:              ij=1;
1.329     brouard  9534:              ijp=1;
                   9535:              /* for(j=3; j <=ncovmodel-nagesqr; j++){ */
                   9536:              for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
                   9537:                switch(Typevar[j]){
                   9538:                case 1:
                   9539:                  if(cptcovage >0){ 
                   9540:                    if(j==Tage[ij]) { /* Bug valgrind */
                   9541:                      if(ij <=cptcovage) { /* Bug valgrind */
                   9542:                        if(DummyV[j]==0){/* Bug valgrind */
                   9543:                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); */
                   9544:                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,nbcode[Tvar[j]][codtabm(k1,j)]); */
                   9545:                          fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]);
                   9546:                          /* fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; */
                   9547:                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   9548:                        }else{ /* quantitative */
                   9549:                          /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                   9550:                          fprintf(ficgp,"+p%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                   9551:                          /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                   9552:                          /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   9553:                        }
                   9554:                        ij++;
                   9555:                      }
                   9556:                    }
                   9557:                  }
                   9558:                  break;
                   9559:                case 2:
                   9560:                  if(cptcovprod >0){
                   9561:                    if(j==Tprod[ijp]) { /* */ 
                   9562:                      /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   9563:                      if(ijp <=cptcovprod) { /* Product */
                   9564:                        if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                   9565:                          if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                   9566:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                   9567:                            fprintf(ficgp,"+p%d*%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                   9568:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */
                   9569:                          }else{ /* Vn is dummy and Vm is quanti */
                   9570:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                   9571:                            fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   9572:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   9573:                          }
                   9574:                        }else{ /* Vn*Vm Vn is quanti */
                   9575:                          if(DummyV[Tvard[ijp][2]]==0){
                   9576:                            fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                   9577:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */
                   9578:                          }else{ /* Both quanti */
                   9579:                            fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   9580:                            /* fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   9581:                          } 
                   9582:                        }
                   9583:                        ijp++;
                   9584:                      }
                   9585:                    } /* end Tprod */
                   9586:                  } /* end if */
                   9587:                  break;
1.349     brouard  9588:                case 3:
                   9589:                  if(cptcovdageprod >0){
                   9590:                    /* if(j==Tprod[ijp]) { /\* *\/  */
                   9591:                      /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   9592:                      if(ijp <=cptcovprod) { /* Product */
1.350     brouard  9593:                        if(DummyV[Tvardk[ijp][1]]==0){/* Vn is dummy */
                   9594:                          if(DummyV[Tvardk[ijp][2]]==0){/* Vn and Vm are dummy */
1.349     brouard  9595:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
1.350     brouard  9596:                            fprintf(ficgp,"+p%d*%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][1]],Tinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  9597:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */
                   9598:                          }else{ /* Vn is dummy and Vm is quanti */
                   9599:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
1.350     brouard  9600:                            fprintf(ficgp,"+p%d*%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  9601:                            /* fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   9602:                          }
                   9603:                        }else{ /* Vn*Vm Vn is quanti */
1.350     brouard  9604:                          if(DummyV[Tvardk[ijp][2]]==0){
                   9605:                            fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][2]],Tqinvresult[nres][Tvardk[ijp][1]]);
1.349     brouard  9606:                            /* fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */
                   9607:                          }else{ /* Both quanti */
1.350     brouard  9608:                            fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  9609:                            /* fprintf(ficgp,"+p%d*%f*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   9610:                          } 
                   9611:                        }
                   9612:                        ijp++;
                   9613:                      }
                   9614:                    /* } /\* end Tprod *\/ */
                   9615:                  } /* end if */
                   9616:                  break;
1.329     brouard  9617:                case 0: 
                   9618:                  /* simple covariate */
                   9619:                  /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
                   9620:                  if(Dummy[j]==0){
                   9621:                    /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                   9622:                    fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); /*  */
                   9623:                    /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                   9624:                  }else{ /* quantitative */
                   9625:                    fprintf(ficgp,"+p%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* */
                   9626:                    /* fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* *\/ */
                   9627:                    /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   9628:                  }
                   9629:                  /* end simple */
                   9630:                  /* fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/\* Valgrind bug nbcode *\/ */
                   9631:                  break;
                   9632:                default:
                   9633:                  break;
                   9634:                } /* end switch */
1.223     brouard  9635:              }
                   9636:              fprintf(ficgp,")");
                   9637:            }
                   9638:            fprintf(ficgp,")");
                   9639:            if(ng ==2)
1.276     brouard  9640:              fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
1.223     brouard  9641:            else /* ng= 3 */
1.276     brouard  9642:              fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
1.329     brouard  9643:           }else{ /* end ng <> 1 */
1.223     brouard  9644:            if( k !=k2) /* logit p11 is hard to draw */
1.276     brouard  9645:              fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
1.223     brouard  9646:          }
                   9647:          if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
                   9648:            fprintf(ficgp,",");
                   9649:          if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
                   9650:            fprintf(ficgp,",");
                   9651:          i=i+ncovmodel;
                   9652:        } /* end k */
                   9653:       } /* end k2 */
1.276     brouard  9654:       /* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */
                   9655:       fprintf(ficgp,"\n set out; unset title;set key default;\n");
1.337     brouard  9656:     } /* end resultline */
1.223     brouard  9657:   } /* end ng */
                   9658:   /* avoid: */
                   9659:   fflush(ficgp); 
1.126     brouard  9660: }  /* end gnuplot */
                   9661: 
                   9662: 
                   9663: /*************** Moving average **************/
1.219     brouard  9664: /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
1.222     brouard  9665:  int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
1.218     brouard  9666:    
1.222     brouard  9667:    int i, cpt, cptcod;
                   9668:    int modcovmax =1;
                   9669:    int mobilavrange, mob;
                   9670:    int iage=0;
1.288     brouard  9671:    int firstA1=0, firstA2=0;
1.222     brouard  9672: 
1.266     brouard  9673:    double sum=0., sumr=0.;
1.222     brouard  9674:    double age;
1.266     brouard  9675:    double *sumnewp, *sumnewm, *sumnewmr;
                   9676:    double *agemingood, *agemaxgood; 
                   9677:    double *agemingoodr, *agemaxgoodr; 
1.222     brouard  9678:   
                   9679:   
1.278     brouard  9680:    /* modcovmax=2*cptcoveff;  Max number of modalities. We suppose  */
                   9681:    /*             a covariate has 2 modalities, should be equal to ncovcombmax   */
1.222     brouard  9682: 
                   9683:    sumnewp = vector(1,ncovcombmax);
                   9684:    sumnewm = vector(1,ncovcombmax);
1.266     brouard  9685:    sumnewmr = vector(1,ncovcombmax);
1.222     brouard  9686:    agemingood = vector(1,ncovcombmax); 
1.266     brouard  9687:    agemingoodr = vector(1,ncovcombmax);        
1.222     brouard  9688:    agemaxgood = vector(1,ncovcombmax);
1.266     brouard  9689:    agemaxgoodr = vector(1,ncovcombmax);
1.222     brouard  9690: 
                   9691:    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
1.266     brouard  9692:      sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.;
1.222     brouard  9693:      sumnewp[cptcod]=0.;
1.266     brouard  9694:      agemingood[cptcod]=0, agemingoodr[cptcod]=0;
                   9695:      agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0;
1.222     brouard  9696:    }
                   9697:    if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
                   9698:   
1.266     brouard  9699:    if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                   9700:      if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */
1.222     brouard  9701:      else mobilavrange=mobilav;
                   9702:      for (age=bage; age<=fage; age++)
                   9703:        for (i=1; i<=nlstate;i++)
                   9704:         for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
                   9705:           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   9706:      /* We keep the original values on the extreme ages bage, fage and for 
                   9707:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                   9708:        we use a 5 terms etc. until the borders are no more concerned. 
                   9709:      */ 
                   9710:      for (mob=3;mob <=mobilavrange;mob=mob+2){
                   9711:        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
1.266     brouard  9712:         for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                   9713:           sumnewm[cptcod]=0.;
                   9714:           for (i=1; i<=nlstate;i++){
1.222     brouard  9715:             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   9716:             for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   9717:               mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   9718:               mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   9719:             }
                   9720:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
1.266     brouard  9721:             sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   9722:           } /* end i */
                   9723:           if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */
                   9724:         } /* end cptcod */
1.222     brouard  9725:        }/* end age */
                   9726:      }/* end mob */
1.266     brouard  9727:    }else{
                   9728:      printf("Error internal in movingaverage, mobilav=%d.\n",mobilav);
1.222     brouard  9729:      return -1;
1.266     brouard  9730:    }
                   9731: 
                   9732:    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */
1.222     brouard  9733:      /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
                   9734:      if(invalidvarcomb[cptcod]){
                   9735:        printf("\nCombination (%d) ignored because no cases \n",cptcod); 
                   9736:        continue;
                   9737:      }
1.219     brouard  9738: 
1.266     brouard  9739:      for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */
                   9740:        sumnewm[cptcod]=0.;
                   9741:        sumnewmr[cptcod]=0.;
                   9742:        for (i=1; i<=nlstate;i++){
                   9743:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   9744:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   9745:        }
                   9746:        if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
                   9747:         agemingoodr[cptcod]=age;
                   9748:        }
                   9749:        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   9750:           agemingood[cptcod]=age;
                   9751:        }
                   9752:      } /* age */
                   9753:      for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */
1.222     brouard  9754:        sumnewm[cptcod]=0.;
1.266     brouard  9755:        sumnewmr[cptcod]=0.;
1.222     brouard  9756:        for (i=1; i<=nlstate;i++){
                   9757:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
1.266     brouard  9758:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   9759:        }
                   9760:        if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
                   9761:         agemaxgoodr[cptcod]=age;
1.222     brouard  9762:        }
                   9763:        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
1.266     brouard  9764:         agemaxgood[cptcod]=age;
                   9765:        }
                   9766:      } /* age */
                   9767:      /* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */
                   9768:      /* but they will change */
1.288     brouard  9769:      firstA1=0;firstA2=0;
1.266     brouard  9770:      for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */
                   9771:        sumnewm[cptcod]=0.;
                   9772:        sumnewmr[cptcod]=0.;
                   9773:        for (i=1; i<=nlstate;i++){
                   9774:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   9775:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   9776:        }
                   9777:        if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
                   9778:         if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
                   9779:           agemaxgoodr[cptcod]=age;  /* age min */
                   9780:           for (i=1; i<=nlstate;i++)
                   9781:             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   9782:         }else{ /* bad we change the value with the values of good ages */
                   9783:           for (i=1; i<=nlstate;i++){
                   9784:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod];
                   9785:           } /* i */
                   9786:         } /* end bad */
                   9787:        }else{
                   9788:         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   9789:           agemaxgood[cptcod]=age;
                   9790:         }else{ /* bad we change the value with the values of good ages */
                   9791:           for (i=1; i<=nlstate;i++){
                   9792:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
                   9793:           } /* i */
                   9794:         } /* end bad */
                   9795:        }/* end else */
                   9796:        sum=0.;sumr=0.;
                   9797:        for (i=1; i<=nlstate;i++){
                   9798:         sum+=mobaverage[(int)age][i][cptcod];
                   9799:         sumr+=probs[(int)age][i][cptcod];
                   9800:        }
                   9801:        if(fabs(sum - 1.) > 1.e-3) { /* bad */
1.288     brouard  9802:         if(!firstA1){
                   9803:           firstA1=1;
                   9804:           printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
                   9805:         }
                   9806:         fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
1.266     brouard  9807:        } /* end bad */
                   9808:        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
                   9809:        if(fabs(sumr - 1.) > 1.e-3) { /* bad */
1.288     brouard  9810:         if(!firstA2){
                   9811:           firstA2=1;
                   9812:           printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
                   9813:         }
                   9814:         fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
1.222     brouard  9815:        } /* end bad */
                   9816:      }/* age */
1.266     brouard  9817: 
                   9818:      for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */
1.222     brouard  9819:        sumnewm[cptcod]=0.;
1.266     brouard  9820:        sumnewmr[cptcod]=0.;
1.222     brouard  9821:        for (i=1; i<=nlstate;i++){
                   9822:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
1.266     brouard  9823:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   9824:        } 
                   9825:        if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
                   9826:         if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */
                   9827:           agemingoodr[cptcod]=age;
                   9828:           for (i=1; i<=nlstate;i++)
                   9829:             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   9830:         }else{ /* bad we change the value with the values of good ages */
                   9831:           for (i=1; i<=nlstate;i++){
                   9832:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod];
                   9833:           } /* i */
                   9834:         } /* end bad */
                   9835:        }else{
                   9836:         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   9837:           agemingood[cptcod]=age;
                   9838:         }else{ /* bad */
                   9839:           for (i=1; i<=nlstate;i++){
                   9840:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
                   9841:           } /* i */
                   9842:         } /* end bad */
                   9843:        }/* end else */
                   9844:        sum=0.;sumr=0.;
                   9845:        for (i=1; i<=nlstate;i++){
                   9846:         sum+=mobaverage[(int)age][i][cptcod];
                   9847:         sumr+=mobaverage[(int)age][i][cptcod];
1.222     brouard  9848:        }
1.266     brouard  9849:        if(fabs(sum - 1.) > 1.e-3) { /* bad */
1.268     brouard  9850:         printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage);
1.266     brouard  9851:        } /* end bad */
                   9852:        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
                   9853:        if(fabs(sumr - 1.) > 1.e-3) { /* bad */
1.268     brouard  9854:         printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage);
1.222     brouard  9855:        } /* end bad */
                   9856:      }/* age */
1.266     brouard  9857: 
1.222     brouard  9858:                
                   9859:      for (age=bage; age<=fage; age++){
1.235     brouard  9860:        /* printf("%d %d ", cptcod, (int)age); */
1.222     brouard  9861:        sumnewp[cptcod]=0.;
                   9862:        sumnewm[cptcod]=0.;
                   9863:        for (i=1; i<=nlstate;i++){
                   9864:         sumnewp[cptcod]+=probs[(int)age][i][cptcod];
                   9865:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   9866:         /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
                   9867:        }
                   9868:        /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
                   9869:      }
                   9870:      /* printf("\n"); */
                   9871:      /* } */
1.266     brouard  9872: 
1.222     brouard  9873:      /* brutal averaging */
1.266     brouard  9874:      /* for (i=1; i<=nlstate;i++){ */
                   9875:      /*   for (age=1; age<=bage; age++){ */
                   9876:      /*         mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
                   9877:      /*         /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
                   9878:      /*   }     */
                   9879:      /*   for (age=fage; age<=AGESUP; age++){ */
                   9880:      /*         mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */
                   9881:      /*         /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
                   9882:      /*   } */
                   9883:      /* } /\* end i status *\/ */
                   9884:      /* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */
                   9885:      /*   for (age=1; age<=AGESUP; age++){ */
                   9886:      /*         /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */
                   9887:      /*         mobaverage[(int)age][i][cptcod]=0.; */
                   9888:      /*   } */
                   9889:      /* } */
1.222     brouard  9890:    }/* end cptcod */
1.266     brouard  9891:    free_vector(agemaxgoodr,1, ncovcombmax);
                   9892:    free_vector(agemaxgood,1, ncovcombmax);
                   9893:    free_vector(agemingood,1, ncovcombmax);
                   9894:    free_vector(agemingoodr,1, ncovcombmax);
                   9895:    free_vector(sumnewmr,1, ncovcombmax);
1.222     brouard  9896:    free_vector(sumnewm,1, ncovcombmax);
                   9897:    free_vector(sumnewp,1, ncovcombmax);
                   9898:    return 0;
                   9899:  }/* End movingaverage */
1.218     brouard  9900:  
1.126     brouard  9901: 
1.296     brouard  9902:  
1.126     brouard  9903: /************** Forecasting ******************/
1.296     brouard  9904: /* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/
                   9905: void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
                   9906:   /* dateintemean, mean date of interviews
                   9907:      dateprojd, year, month, day of starting projection 
                   9908:      dateprojf date of end of projection;year of end of projection (same day and month as proj1).
1.126     brouard  9909:      agemin, agemax range of age
                   9910:      dateprev1 dateprev2 range of dates during which prevalence is computed
                   9911:   */
1.296     brouard  9912:   /* double anprojd, mprojd, jprojd; */
                   9913:   /* double anprojf, mprojf, jprojf; */
1.267     brouard  9914:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
1.126     brouard  9915:   double agec; /* generic age */
1.296     brouard  9916:   double agelim, ppij, yp,yp1,yp2;
1.126     brouard  9917:   double *popeffectif,*popcount;
                   9918:   double ***p3mat;
1.218     brouard  9919:   /* double ***mobaverage; */
1.126     brouard  9920:   char fileresf[FILENAMELENGTH];
                   9921: 
                   9922:   agelim=AGESUP;
1.211     brouard  9923:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   9924:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   9925:      We still use firstpass and lastpass as another selection.
                   9926:   */
1.214     brouard  9927:   /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
                   9928:   /*         firstpass, lastpass,  stepm,  weightopt, model); */
1.126     brouard  9929:  
1.201     brouard  9930:   strcpy(fileresf,"F_"); 
                   9931:   strcat(fileresf,fileresu);
1.126     brouard  9932:   if((ficresf=fopen(fileresf,"w"))==NULL) {
                   9933:     printf("Problem with forecast resultfile: %s\n", fileresf);
                   9934:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                   9935:   }
1.235     brouard  9936:   printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
                   9937:   fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
1.126     brouard  9938: 
1.225     brouard  9939:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
1.126     brouard  9940: 
                   9941: 
                   9942:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   9943:   if (stepm<=12) stepsize=1;
                   9944:   if(estepm < stepm){
                   9945:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   9946:   }
1.270     brouard  9947:   else{
                   9948:     hstepm=estepm;   
                   9949:   }
                   9950:   if(estepm > stepm){ /* Yes every two year */
                   9951:     stepsize=2;
                   9952:   }
1.296     brouard  9953:   hstepm=hstepm/stepm;
1.126     brouard  9954: 
1.296     brouard  9955:   
                   9956:   /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                   9957:   /*                              fractional in yp1 *\/ */
                   9958:   /* aintmean=yp; */
                   9959:   /* yp2=modf((yp1*12),&yp); */
                   9960:   /* mintmean=yp; */
                   9961:   /* yp1=modf((yp2*30.5),&yp); */
                   9962:   /* jintmean=yp; */
                   9963:   /* if(jintmean==0) jintmean=1; */
                   9964:   /* if(mintmean==0) mintmean=1; */
1.126     brouard  9965: 
1.296     brouard  9966: 
                   9967:   /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */
                   9968:   /* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */
                   9969:   /* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */
1.351     brouard  9970:   /* i1=pow(2,cptcoveff); */
                   9971:   /* if (cptcovn < 1){i1=1;} */
1.126     brouard  9972:   
1.296     brouard  9973:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); 
1.126     brouard  9974:   
                   9975:   fprintf(ficresf,"#****** Routine prevforecast **\n");
1.227     brouard  9976:   
1.126     brouard  9977: /*           if (h==(int)(YEARM*yearp)){ */
1.351     brouard  9978:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   9979:     k=TKresult[nres];
                   9980:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
                   9981:     /*  for(k=1; k<=i1;k++){ /\* We want to find the combination k corresponding to the values of the dummies given in this resut line (to be cleaned one day) *\/ */
                   9982:     /* if(i1 != 1 && TKresult[nres]!= k) */
                   9983:     /*   continue; */
                   9984:     /* if(invalidvarcomb[k]){ */
                   9985:     /*   printf("\nCombination (%d) projection ignored because no cases \n",k);  */
                   9986:     /*   continue; */
                   9987:     /* } */
1.227     brouard  9988:     fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
1.351     brouard  9989:     for(j=1;j<=cptcovs;j++){
                   9990:       /* for(j=1;j<=cptcoveff;j++) { */
                   9991:     /*   /\* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); *\/ */
                   9992:     /*   fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   9993:     /* } */
                   9994:     /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   9995:     /*   fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   9996:     /* } */
                   9997:       fprintf(ficresf," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.235     brouard  9998:     }
1.351     brouard  9999:  
1.227     brouard  10000:     fprintf(ficresf," yearproj age");
                   10001:     for(j=1; j<=nlstate+ndeath;j++){ 
                   10002:       for(i=1; i<=nlstate;i++)               
                   10003:        fprintf(ficresf," p%d%d",i,j);
                   10004:       fprintf(ficresf," wp.%d",j);
                   10005:     }
1.296     brouard  10006:     for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) {
1.227     brouard  10007:       fprintf(ficresf,"\n");
1.296     brouard  10008:       fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp);   
1.270     brouard  10009:       /* for (agec=fage; agec>=(ageminpar-1); agec--){  */
                   10010:       for (agec=fage; agec>=(bage); agec--){ 
1.227     brouard  10011:        nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                   10012:        nhstepm = nhstepm/hstepm; 
                   10013:        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   10014:        oldm=oldms;savm=savms;
1.268     brouard  10015:        /* We compute pii at age agec over nhstepm);*/
1.235     brouard  10016:        hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
1.268     brouard  10017:        /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
1.227     brouard  10018:        for (h=0; h<=nhstepm; h++){
                   10019:          if (h*hstepm/YEARM*stepm ==yearp) {
1.268     brouard  10020:            break;
                   10021:          }
                   10022:        }
                   10023:        fprintf(ficresf,"\n");
1.351     brouard  10024:        /* for(j=1;j<=cptcoveff;j++)  */
                   10025:        for(j=1;j<=cptcovs;j++) 
                   10026:          fprintf(ficresf,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.332     brouard  10027:          /* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Tvaraff not correct *\/ */
1.351     brouard  10028:          /* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* TnsdVar[Tvaraff]  correct *\/ */
1.296     brouard  10029:        fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm);
1.268     brouard  10030:        
                   10031:        for(j=1; j<=nlstate+ndeath;j++) {
                   10032:          ppij=0.;
                   10033:          for(i=1; i<=nlstate;i++) {
1.278     brouard  10034:            if (mobilav>=1)
                   10035:             ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k];
                   10036:            else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */
                   10037:                ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
                   10038:            }
1.268     brouard  10039:            fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   10040:          } /* end i */
                   10041:          fprintf(ficresf," %.3f", ppij);
                   10042:        }/* end j */
1.227     brouard  10043:        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   10044:       } /* end agec */
1.266     brouard  10045:       /* diffyear=(int) anproj1+yearp-ageminpar-1; */
                   10046:       /*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/
1.227     brouard  10047:     } /* end yearp */
                   10048:   } /* end  k */
1.219     brouard  10049:        
1.126     brouard  10050:   fclose(ficresf);
1.215     brouard  10051:   printf("End of Computing forecasting \n");
                   10052:   fprintf(ficlog,"End of Computing forecasting\n");
                   10053: 
1.126     brouard  10054: }
                   10055: 
1.269     brouard  10056: /************** Back Forecasting ******************/
1.296     brouard  10057:  /* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
                   10058:  void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
                   10059:   /* back1, year, month, day of starting backprojection
1.267     brouard  10060:      agemin, agemax range of age
                   10061:      dateprev1 dateprev2 range of dates during which prevalence is computed
1.269     brouard  10062:      anback2 year of end of backprojection (same day and month as back1).
                   10063:      prevacurrent and prev are prevalences.
1.267     brouard  10064:   */
                   10065:   int yearp, stepsize, hstepm, nhstepm, j, k, cptcod, i, h, i1, k4, nres=0;
                   10066:   double agec; /* generic age */
1.302     brouard  10067:   double agelim, ppij, ppi, yp,yp1,yp2; /* ,jintmean,mintmean,aintmean;*/
1.267     brouard  10068:   double *popeffectif,*popcount;
                   10069:   double ***p3mat;
                   10070:   /* double ***mobaverage; */
                   10071:   char fileresfb[FILENAMELENGTH];
                   10072:  
1.268     brouard  10073:   agelim=AGEINF;
1.267     brouard  10074:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   10075:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   10076:      We still use firstpass and lastpass as another selection.
                   10077:   */
                   10078:   /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
                   10079:   /*         firstpass, lastpass,  stepm,  weightopt, model); */
                   10080: 
                   10081:   /*Do we need to compute prevalence again?*/
                   10082: 
                   10083:   /* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
                   10084:   
                   10085:   strcpy(fileresfb,"FB_");
                   10086:   strcat(fileresfb,fileresu);
                   10087:   if((ficresfb=fopen(fileresfb,"w"))==NULL) {
                   10088:     printf("Problem with back forecast resultfile: %s\n", fileresfb);
                   10089:     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb);
                   10090:   }
                   10091:   printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
                   10092:   fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
                   10093:   
                   10094:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   10095:   
                   10096:    
                   10097:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   10098:   if (stepm<=12) stepsize=1;
                   10099:   if(estepm < stepm){
                   10100:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   10101:   }
1.270     brouard  10102:   else{
                   10103:     hstepm=estepm;   
                   10104:   }
                   10105:   if(estepm >= stepm){ /* Yes every two year */
                   10106:     stepsize=2;
                   10107:   }
1.267     brouard  10108:   
                   10109:   hstepm=hstepm/stepm;
1.296     brouard  10110:   /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                   10111:   /*                              fractional in yp1 *\/ */
                   10112:   /* aintmean=yp; */
                   10113:   /* yp2=modf((yp1*12),&yp); */
                   10114:   /* mintmean=yp; */
                   10115:   /* yp1=modf((yp2*30.5),&yp); */
                   10116:   /* jintmean=yp; */
                   10117:   /* if(jintmean==0) jintmean=1; */
                   10118:   /* if(mintmean==0) jintmean=1; */
1.267     brouard  10119:   
1.351     brouard  10120:   /* i1=pow(2,cptcoveff); */
                   10121:   /* if (cptcovn < 1){i1=1;} */
1.267     brouard  10122:   
1.296     brouard  10123:   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
                   10124:   printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
1.267     brouard  10125:   
                   10126:   fprintf(ficresfb,"#****** Routine prevbackforecast **\n");
                   10127:   
1.351     brouard  10128:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   10129:     k=TKresult[nres];
                   10130:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
                   10131:   /* for(k=1; k<=i1;k++){ */
                   10132:   /*   if(i1 != 1 && TKresult[nres]!= k) */
                   10133:   /*     continue; */
                   10134:   /*   if(invalidvarcomb[k]){ */
                   10135:   /*     printf("\nCombination (%d) projection ignored because no cases \n",k);  */
                   10136:   /*     continue; */
                   10137:   /*   } */
1.268     brouard  10138:     fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#");
1.351     brouard  10139:     for(j=1;j<=cptcovs;j++){
                   10140:     /* for(j=1;j<=cptcoveff;j++) { */
                   10141:     /*   fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   10142:     /* } */
                   10143:       fprintf(ficresfb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.267     brouard  10144:     }
1.351     brouard  10145:    /*  fprintf(ficrespij,"******\n"); */
                   10146:    /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10147:    /*    fprintf(ficresfb," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   10148:    /*  } */
1.267     brouard  10149:     fprintf(ficresfb," yearbproj age");
                   10150:     for(j=1; j<=nlstate+ndeath;j++){
                   10151:       for(i=1; i<=nlstate;i++)
1.268     brouard  10152:        fprintf(ficresfb," b%d%d",i,j);
                   10153:       fprintf(ficresfb," b.%d",j);
1.267     brouard  10154:     }
1.296     brouard  10155:     for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) {
1.267     brouard  10156:       /* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  */
                   10157:       fprintf(ficresfb,"\n");
1.296     brouard  10158:       fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp);
1.273     brouard  10159:       /* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */
1.270     brouard  10160:       /* for (agec=bage; agec<=agemax-1; agec++){  /\* testing *\/ */
                   10161:       for (agec=bage; agec<=fage; agec++){  /* testing */
1.268     brouard  10162:        /* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/
1.271     brouard  10163:        nhstepm=(int) (agec-agelim) *YEARM/stepm;/*     nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/
1.267     brouard  10164:        nhstepm = nhstepm/hstepm;
                   10165:        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   10166:        oldm=oldms;savm=savms;
1.268     brouard  10167:        /* computes hbxij at age agec over 1 to nhstepm */
1.271     brouard  10168:        /* printf("####prevbackforecast debug  agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */
1.267     brouard  10169:        hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres);
1.268     brouard  10170:        /* hpxij(p3mat,nhstepm,agec,hstepm,p,             nlstate,stepm,oldm,savm, k,nres); */
                   10171:        /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
                   10172:        /* printf(" agec=%.2f\n",agec);fflush(stdout); */
1.267     brouard  10173:        for (h=0; h<=nhstepm; h++){
1.268     brouard  10174:          if (h*hstepm/YEARM*stepm ==-yearp) {
                   10175:            break;
                   10176:          }
                   10177:        }
                   10178:        fprintf(ficresfb,"\n");
1.351     brouard  10179:        /* for(j=1;j<=cptcoveff;j++) */
                   10180:        for(j=1;j<=cptcovs;j++)
                   10181:          fprintf(ficresfb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   10182:          /* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
1.296     brouard  10183:        fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm);
1.268     brouard  10184:        for(i=1; i<=nlstate+ndeath;i++) {
                   10185:          ppij=0.;ppi=0.;
                   10186:          for(j=1; j<=nlstate;j++) {
                   10187:            /* if (mobilav==1) */
1.269     brouard  10188:            ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k];
                   10189:            ppi=ppi+prevacurrent[(int)agec][j][k];
                   10190:            /* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */
                   10191:            /* ppi=ppi+mobaverage[(int)agec][j][k]; */
1.267     brouard  10192:              /* else { */
                   10193:              /*        ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */
                   10194:              /* } */
1.268     brouard  10195:            fprintf(ficresfb," %.3f", p3mat[i][j][h]);
                   10196:          } /* end j */
                   10197:          if(ppi <0.99){
                   10198:            printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
                   10199:            fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
                   10200:          }
                   10201:          fprintf(ficresfb," %.3f", ppij);
                   10202:        }/* end j */
1.267     brouard  10203:        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   10204:       } /* end agec */
                   10205:     } /* end yearp */
                   10206:   } /* end k */
1.217     brouard  10207:   
1.267     brouard  10208:   /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
1.217     brouard  10209:   
1.267     brouard  10210:   fclose(ficresfb);
                   10211:   printf("End of Computing Back forecasting \n");
                   10212:   fprintf(ficlog,"End of Computing Back forecasting\n");
1.218     brouard  10213:        
1.267     brouard  10214: }
1.217     brouard  10215: 
1.269     brouard  10216: /* Variance of prevalence limit: varprlim */
                   10217:  void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
1.288     brouard  10218:     /*------- Variance of forward period (stable) prevalence------*/   
1.269     brouard  10219:  
                   10220:    char fileresvpl[FILENAMELENGTH];  
                   10221:    FILE *ficresvpl;
                   10222:    double **oldm, **savm;
                   10223:    double **varpl; /* Variances of prevalence limits by age */   
                   10224:    int i1, k, nres, j ;
                   10225:    
                   10226:     strcpy(fileresvpl,"VPL_");
                   10227:     strcat(fileresvpl,fileresu);
                   10228:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
1.288     brouard  10229:       printf("Problem with variance of forward period (stable) prevalence  resultfile: %s\n", fileresvpl);
1.269     brouard  10230:       exit(0);
                   10231:     }
1.288     brouard  10232:     printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
                   10233:     fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
1.269     brouard  10234:     
                   10235:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   10236:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   10237:     
                   10238:     i1=pow(2,cptcoveff);
                   10239:     if (cptcovn < 1){i1=1;}
                   10240: 
1.337     brouard  10241:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   10242:        k=TKresult[nres];
1.338     brouard  10243:        if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  10244:      /* for(k=1; k<=i1;k++){ /\* We find the combination equivalent to result line values of dummies *\/ */
1.269     brouard  10245:       if(i1 != 1 && TKresult[nres]!= k)
                   10246:        continue;
                   10247:       fprintf(ficresvpl,"\n#****** ");
                   10248:       printf("\n#****** ");
                   10249:       fprintf(ficlog,"\n#****** ");
1.337     brouard  10250:       for(j=1;j<=cptcovs;j++) {
                   10251:        fprintf(ficresvpl,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   10252:        fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   10253:        printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   10254:        /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   10255:        /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
1.269     brouard  10256:       }
1.337     brouard  10257:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   10258:       /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   10259:       /*       fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   10260:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   10261:       /* }      */
1.269     brouard  10262:       fprintf(ficresvpl,"******\n");
                   10263:       printf("******\n");
                   10264:       fprintf(ficlog,"******\n");
                   10265:       
                   10266:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
                   10267:       oldm=oldms;savm=savms;
                   10268:       varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres);
                   10269:       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
                   10270:       /*}*/
                   10271:     }
                   10272:     
                   10273:     fclose(ficresvpl);
1.288     brouard  10274:     printf("done variance-covariance of forward period prevalence\n");fflush(stdout);
                   10275:     fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog);
1.269     brouard  10276: 
                   10277:  }
                   10278: /* Variance of back prevalence: varbprlim */
                   10279:  void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
                   10280:       /*------- Variance of back (stable) prevalence------*/
                   10281: 
                   10282:    char fileresvbl[FILENAMELENGTH];  
                   10283:    FILE  *ficresvbl;
                   10284: 
                   10285:    double **oldm, **savm;
                   10286:    double **varbpl; /* Variances of back prevalence limits by age */   
                   10287:    int i1, k, nres, j ;
                   10288: 
                   10289:    strcpy(fileresvbl,"VBL_");
                   10290:    strcat(fileresvbl,fileresu);
                   10291:    if((ficresvbl=fopen(fileresvbl,"w"))==NULL) {
                   10292:      printf("Problem with variance of back (stable) prevalence  resultfile: %s\n", fileresvbl);
                   10293:      exit(0);
                   10294:    }
                   10295:    printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout);
                   10296:    fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog);
                   10297:    
                   10298:    
                   10299:    i1=pow(2,cptcoveff);
                   10300:    if (cptcovn < 1){i1=1;}
                   10301:    
1.337     brouard  10302:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   10303:      k=TKresult[nres];
1.338     brouard  10304:      if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  10305:     /* for(k=1; k<=i1;k++){ */
                   10306:     /*    if(i1 != 1 && TKresult[nres]!= k) */
                   10307:     /*          continue; */
1.269     brouard  10308:        fprintf(ficresvbl,"\n#****** ");
                   10309:        printf("\n#****** ");
                   10310:        fprintf(ficlog,"\n#****** ");
1.337     brouard  10311:        for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */
1.338     brouard  10312:         printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
                   10313:         fprintf(ficresvbl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
                   10314:         fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
1.337     brouard  10315:        /* for(j=1;j<=cptcoveff;j++) { */
                   10316:        /*       fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   10317:        /*       fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   10318:        /*       printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   10319:        /* } */
                   10320:        /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   10321:        /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   10322:        /*       fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   10323:        /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
1.269     brouard  10324:        }
                   10325:        fprintf(ficresvbl,"******\n");
                   10326:        printf("******\n");
                   10327:        fprintf(ficlog,"******\n");
                   10328:        
                   10329:        varbpl=matrix(1,nlstate,(int) bage, (int) fage);
                   10330:        oldm=oldms;savm=savms;
                   10331:        
                   10332:        varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres);
                   10333:        free_matrix(varbpl,1,nlstate,(int) bage, (int)fage);
                   10334:        /*}*/
                   10335:      }
                   10336:    
                   10337:    fclose(ficresvbl);
                   10338:    printf("done variance-covariance of back prevalence\n");fflush(stdout);
                   10339:    fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog);
                   10340: 
                   10341:  } /* End of varbprlim */
                   10342: 
1.126     brouard  10343: /************** Forecasting *****not tested NB*************/
1.227     brouard  10344: /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
1.126     brouard  10345:   
1.227     brouard  10346: /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
                   10347: /*   int *popage; */
                   10348: /*   double calagedatem, agelim, kk1, kk2; */
                   10349: /*   double *popeffectif,*popcount; */
                   10350: /*   double ***p3mat,***tabpop,***tabpopprev; */
                   10351: /*   /\* double ***mobaverage; *\/ */
                   10352: /*   char filerespop[FILENAMELENGTH]; */
1.126     brouard  10353: 
1.227     brouard  10354: /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   10355: /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   10356: /*   agelim=AGESUP; */
                   10357: /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
1.126     brouard  10358:   
1.227     brouard  10359: /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
1.126     brouard  10360:   
                   10361:   
1.227     brouard  10362: /*   strcpy(filerespop,"POP_");  */
                   10363: /*   strcat(filerespop,fileresu); */
                   10364: /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
                   10365: /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
                   10366: /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
                   10367: /*   } */
                   10368: /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
                   10369: /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
1.126     brouard  10370: 
1.227     brouard  10371: /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
1.126     brouard  10372: 
1.227     brouard  10373: /*   /\* if (mobilav!=0) { *\/ */
                   10374: /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
                   10375: /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
                   10376: /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   10377: /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   10378: /*   /\*   } *\/ */
                   10379: /*   /\* } *\/ */
1.126     brouard  10380: 
1.227     brouard  10381: /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
                   10382: /*   if (stepm<=12) stepsize=1; */
1.126     brouard  10383:   
1.227     brouard  10384: /*   agelim=AGESUP; */
1.126     brouard  10385:   
1.227     brouard  10386: /*   hstepm=1; */
                   10387: /*   hstepm=hstepm/stepm;  */
1.218     brouard  10388:        
1.227     brouard  10389: /*   if (popforecast==1) { */
                   10390: /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
                   10391: /*       printf("Problem with population file : %s\n",popfile);exit(0); */
                   10392: /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
                   10393: /*     }  */
                   10394: /*     popage=ivector(0,AGESUP); */
                   10395: /*     popeffectif=vector(0,AGESUP); */
                   10396: /*     popcount=vector(0,AGESUP); */
1.126     brouard  10397:     
1.227     brouard  10398: /*     i=1;    */
                   10399: /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
1.218     brouard  10400:     
1.227     brouard  10401: /*     imx=i; */
                   10402: /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
                   10403: /*   } */
1.218     brouard  10404:   
1.227     brouard  10405: /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
                   10406: /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
                   10407: /*       k=k+1; */
                   10408: /*       fprintf(ficrespop,"\n#******"); */
                   10409: /*       for(j=1;j<=cptcoveff;j++) { */
                   10410: /*     fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
                   10411: /*       } */
                   10412: /*       fprintf(ficrespop,"******\n"); */
                   10413: /*       fprintf(ficrespop,"# Age"); */
                   10414: /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
                   10415: /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
1.126     brouard  10416:       
1.227     brouard  10417: /*       for (cpt=0; cpt<=0;cpt++) {  */
                   10418: /*     fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
1.126     brouard  10419:        
1.227     brouard  10420: /*     for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
                   10421: /*       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
                   10422: /*       nhstepm = nhstepm/hstepm;  */
1.126     brouard  10423:          
1.227     brouard  10424: /*       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   10425: /*       oldm=oldms;savm=savms; */
                   10426: /*       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
1.218     brouard  10427:          
1.227     brouard  10428: /*       for (h=0; h<=nhstepm; h++){ */
                   10429: /*         if (h==(int) (calagedatem+YEARM*cpt)) { */
                   10430: /*           fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
                   10431: /*         }  */
                   10432: /*         for(j=1; j<=nlstate+ndeath;j++) { */
                   10433: /*           kk1=0.;kk2=0; */
                   10434: /*           for(i=1; i<=nlstate;i++) {               */
                   10435: /*             if (mobilav==1)  */
                   10436: /*               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
                   10437: /*             else { */
                   10438: /*               kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
                   10439: /*             } */
                   10440: /*           } */
                   10441: /*           if (h==(int)(calagedatem+12*cpt)){ */
                   10442: /*             tabpop[(int)(agedeb)][j][cptcod]=kk1; */
                   10443: /*             /\*fprintf(ficrespop," %.3f", kk1); */
                   10444: /*               if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
                   10445: /*           } */
                   10446: /*         } */
                   10447: /*         for(i=1; i<=nlstate;i++){ */
                   10448: /*           kk1=0.; */
                   10449: /*           for(j=1; j<=nlstate;j++){ */
                   10450: /*             kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
                   10451: /*           } */
                   10452: /*           tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
                   10453: /*         } */
1.218     brouard  10454:            
1.227     brouard  10455: /*         if (h==(int)(calagedatem+12*cpt)) */
                   10456: /*           for(j=1; j<=nlstate;j++)  */
                   10457: /*             fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
                   10458: /*       } */
                   10459: /*       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   10460: /*     } */
                   10461: /*       } */
1.218     brouard  10462:       
1.227     brouard  10463: /*       /\******\/ */
1.218     brouard  10464:       
1.227     brouard  10465: /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
                   10466: /*     fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
                   10467: /*     for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
                   10468: /*       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
                   10469: /*       nhstepm = nhstepm/hstepm;  */
1.126     brouard  10470:          
1.227     brouard  10471: /*       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   10472: /*       oldm=oldms;savm=savms; */
                   10473: /*       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
                   10474: /*       for (h=0; h<=nhstepm; h++){ */
                   10475: /*         if (h==(int) (calagedatem+YEARM*cpt)) { */
                   10476: /*           fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
                   10477: /*         }  */
                   10478: /*         for(j=1; j<=nlstate+ndeath;j++) { */
                   10479: /*           kk1=0.;kk2=0; */
                   10480: /*           for(i=1; i<=nlstate;i++) {               */
                   10481: /*             kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
                   10482: /*           } */
                   10483: /*           if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
                   10484: /*         } */
                   10485: /*       } */
                   10486: /*       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   10487: /*     } */
                   10488: /*       } */
                   10489: /*     }  */
                   10490: /*   } */
1.218     brouard  10491:   
1.227     brouard  10492: /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
1.218     brouard  10493:   
1.227     brouard  10494: /*   if (popforecast==1) { */
                   10495: /*     free_ivector(popage,0,AGESUP); */
                   10496: /*     free_vector(popeffectif,0,AGESUP); */
                   10497: /*     free_vector(popcount,0,AGESUP); */
                   10498: /*   } */
                   10499: /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   10500: /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   10501: /*   fclose(ficrespop); */
                   10502: /* } /\* End of popforecast *\/ */
1.218     brouard  10503:  
1.126     brouard  10504: int fileappend(FILE *fichier, char *optionfich)
                   10505: {
                   10506:   if((fichier=fopen(optionfich,"a"))==NULL) {
                   10507:     printf("Problem with file: %s\n", optionfich);
                   10508:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
                   10509:     return (0);
                   10510:   }
                   10511:   fflush(fichier);
                   10512:   return (1);
                   10513: }
                   10514: 
                   10515: 
                   10516: /**************** function prwizard **********************/
                   10517: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
                   10518: {
                   10519: 
                   10520:   /* Wizard to print covariance matrix template */
                   10521: 
1.164     brouard  10522:   char ca[32], cb[32];
                   10523:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
1.126     brouard  10524:   int numlinepar;
                   10525: 
                   10526:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   10527:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   10528:   for(i=1; i <=nlstate; i++){
                   10529:     jj=0;
                   10530:     for(j=1; j <=nlstate+ndeath; j++){
                   10531:       if(j==i) continue;
                   10532:       jj++;
                   10533:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   10534:       printf("%1d%1d",i,j);
                   10535:       fprintf(ficparo,"%1d%1d",i,j);
                   10536:       for(k=1; k<=ncovmodel;k++){
                   10537:        /*        printf(" %lf",param[i][j][k]); */
                   10538:        /*        fprintf(ficparo," %lf",param[i][j][k]); */
                   10539:        printf(" 0.");
                   10540:        fprintf(ficparo," 0.");
                   10541:       }
                   10542:       printf("\n");
                   10543:       fprintf(ficparo,"\n");
                   10544:     }
                   10545:   }
                   10546:   printf("# Scales (for hessian or gradient estimation)\n");
                   10547:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   10548:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
                   10549:   for(i=1; i <=nlstate; i++){
                   10550:     jj=0;
                   10551:     for(j=1; j <=nlstate+ndeath; j++){
                   10552:       if(j==i) continue;
                   10553:       jj++;
                   10554:       fprintf(ficparo,"%1d%1d",i,j);
                   10555:       printf("%1d%1d",i,j);
                   10556:       fflush(stdout);
                   10557:       for(k=1; k<=ncovmodel;k++){
                   10558:        /*      printf(" %le",delti3[i][j][k]); */
                   10559:        /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   10560:        printf(" 0.");
                   10561:        fprintf(ficparo," 0.");
                   10562:       }
                   10563:       numlinepar++;
                   10564:       printf("\n");
                   10565:       fprintf(ficparo,"\n");
                   10566:     }
                   10567:   }
                   10568:   printf("# Covariance matrix\n");
                   10569: /* # 121 Var(a12)\n\ */
                   10570: /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   10571: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   10572: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   10573: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   10574: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   10575: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   10576: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   10577:   fflush(stdout);
                   10578:   fprintf(ficparo,"# Covariance matrix\n");
                   10579:   /* # 121 Var(a12)\n\ */
                   10580:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   10581:   /* #   ...\n\ */
                   10582:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   10583:   
                   10584:   for(itimes=1;itimes<=2;itimes++){
                   10585:     jj=0;
                   10586:     for(i=1; i <=nlstate; i++){
                   10587:       for(j=1; j <=nlstate+ndeath; j++){
                   10588:        if(j==i) continue;
                   10589:        for(k=1; k<=ncovmodel;k++){
                   10590:          jj++;
                   10591:          ca[0]= k+'a'-1;ca[1]='\0';
                   10592:          if(itimes==1){
                   10593:            printf("#%1d%1d%d",i,j,k);
                   10594:            fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   10595:          }else{
                   10596:            printf("%1d%1d%d",i,j,k);
                   10597:            fprintf(ficparo,"%1d%1d%d",i,j,k);
                   10598:            /*  printf(" %.5le",matcov[i][j]); */
                   10599:          }
                   10600:          ll=0;
                   10601:          for(li=1;li <=nlstate; li++){
                   10602:            for(lj=1;lj <=nlstate+ndeath; lj++){
                   10603:              if(lj==li) continue;
                   10604:              for(lk=1;lk<=ncovmodel;lk++){
                   10605:                ll++;
                   10606:                if(ll<=jj){
                   10607:                  cb[0]= lk +'a'-1;cb[1]='\0';
                   10608:                  if(ll<jj){
                   10609:                    if(itimes==1){
                   10610:                      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   10611:                      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   10612:                    }else{
                   10613:                      printf(" 0.");
                   10614:                      fprintf(ficparo," 0.");
                   10615:                    }
                   10616:                  }else{
                   10617:                    if(itimes==1){
                   10618:                      printf(" Var(%s%1d%1d)",ca,i,j);
                   10619:                      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                   10620:                    }else{
                   10621:                      printf(" 0.");
                   10622:                      fprintf(ficparo," 0.");
                   10623:                    }
                   10624:                  }
                   10625:                }
                   10626:              } /* end lk */
                   10627:            } /* end lj */
                   10628:          } /* end li */
                   10629:          printf("\n");
                   10630:          fprintf(ficparo,"\n");
                   10631:          numlinepar++;
                   10632:        } /* end k*/
                   10633:       } /*end j */
                   10634:     } /* end i */
                   10635:   } /* end itimes */
                   10636: 
                   10637: } /* end of prwizard */
                   10638: /******************* Gompertz Likelihood ******************************/
                   10639: double gompertz(double x[])
                   10640: { 
1.302     brouard  10641:   double A=0.0,B=0.,L=0.0,sump=0.,num=0.;
1.126     brouard  10642:   int i,n=0; /* n is the size of the sample */
                   10643: 
1.220     brouard  10644:   for (i=1;i<=imx ; i++) {
1.126     brouard  10645:     sump=sump+weight[i];
                   10646:     /*    sump=sump+1;*/
                   10647:     num=num+1;
                   10648:   }
1.302     brouard  10649:   L=0.0;
                   10650:   /* agegomp=AGEGOMP; */
1.126     brouard  10651:   /* for (i=0; i<=imx; i++) 
                   10652:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   10653: 
1.302     brouard  10654:   for (i=1;i<=imx ; i++) {
                   10655:     /* mu(a)=mu(agecomp)*exp(teta*(age-agegomp))
                   10656:        mu(a)=x[1]*exp(x[2]*(age-agegomp)); x[1] and x[2] are per year.
                   10657:      * L= Product mu(agedeces)exp(-\int_ageexam^agedc mu(u) du ) for a death between agedc (in month) 
                   10658:      *   and agedc +1 month, cens[i]=0: log(x[1]/YEARM)
                   10659:      * +
                   10660:      * exp(-\int_ageexam^agecens mu(u) du ) when censored, cens[i]=1
                   10661:      */
                   10662:      if (wav[i] > 1 || agedc[i] < AGESUP) {
                   10663:        if (cens[i] == 1){
                   10664:         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
                   10665:        } else if (cens[i] == 0){
1.126     brouard  10666:        A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
1.302     brouard  10667:          +log(x[1]/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM);
                   10668:       } else
                   10669:         printf("Gompertz cens[%d] neither 1 nor 0\n",i);
1.126     brouard  10670:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
1.302     brouard  10671:        L=L+A*weight[i];
1.126     brouard  10672:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
1.302     brouard  10673:      }
                   10674:   }
1.126     brouard  10675: 
1.302     brouard  10676:   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
1.126     brouard  10677:  
                   10678:   return -2*L*num/sump;
                   10679: }
                   10680: 
1.136     brouard  10681: #ifdef GSL
                   10682: /******************* Gompertz_f Likelihood ******************************/
                   10683: double gompertz_f(const gsl_vector *v, void *params)
                   10684: { 
1.302     brouard  10685:   double A=0.,B=0.,LL=0.0,sump=0.,num=0.;
1.136     brouard  10686:   double *x= (double *) v->data;
                   10687:   int i,n=0; /* n is the size of the sample */
                   10688: 
                   10689:   for (i=0;i<=imx-1 ; i++) {
                   10690:     sump=sump+weight[i];
                   10691:     /*    sump=sump+1;*/
                   10692:     num=num+1;
                   10693:   }
                   10694:  
                   10695:  
                   10696:   /* for (i=0; i<=imx; i++) 
                   10697:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   10698:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
                   10699:   for (i=1;i<=imx ; i++)
                   10700:     {
                   10701:       if (cens[i] == 1 && wav[i]>1)
                   10702:        A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
                   10703:       
                   10704:       if (cens[i] == 0 && wav[i]>1)
                   10705:        A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                   10706:             +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
                   10707:       
                   10708:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   10709:       if (wav[i] > 1 ) { /* ??? */
                   10710:        LL=LL+A*weight[i];
                   10711:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   10712:       }
                   10713:     }
                   10714: 
                   10715:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   10716:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
                   10717:  
                   10718:   return -2*LL*num/sump;
                   10719: }
                   10720: #endif
                   10721: 
1.126     brouard  10722: /******************* Printing html file ***********/
1.201     brouard  10723: void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
1.126     brouard  10724:                  int lastpass, int stepm, int weightopt, char model[],\
                   10725:                  int imx,  double p[],double **matcov,double agemortsup){
                   10726:   int i,k;
                   10727: 
                   10728:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
                   10729:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
                   10730:   for (i=1;i<=2;i++) 
                   10731:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
1.199     brouard  10732:   fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
1.126     brouard  10733:   fprintf(fichtm,"</ul>");
                   10734: 
                   10735: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
                   10736: 
                   10737:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
                   10738: 
                   10739:  for (k=agegomp;k<(agemortsup-2);k++) 
                   10740:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   10741: 
                   10742:  
                   10743:   fflush(fichtm);
                   10744: }
                   10745: 
                   10746: /******************* Gnuplot file **************/
1.201     brouard  10747: void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
1.126     brouard  10748: 
                   10749:   char dirfileres[132],optfileres[132];
1.164     brouard  10750: 
1.126     brouard  10751:   int ng;
                   10752: 
                   10753: 
                   10754:   /*#ifdef windows */
                   10755:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   10756:     /*#endif */
                   10757: 
                   10758: 
                   10759:   strcpy(dirfileres,optionfilefiname);
                   10760:   strcpy(optfileres,"vpl");
1.199     brouard  10761:   fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
1.126     brouard  10762:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
1.199     brouard  10763:   fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
1.145     brouard  10764:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
1.126     brouard  10765:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
                   10766: 
                   10767: } 
                   10768: 
1.136     brouard  10769: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
                   10770: {
1.126     brouard  10771: 
1.136     brouard  10772:   /*-------- data file ----------*/
                   10773:   FILE *fic;
                   10774:   char dummy[]="                         ";
1.240     brouard  10775:   int i=0, j=0, n=0, iv=0, v;
1.223     brouard  10776:   int lstra;
1.136     brouard  10777:   int linei, month, year,iout;
1.302     brouard  10778:   int noffset=0; /* This is the offset if BOM data file */
1.136     brouard  10779:   char line[MAXLINE], linetmp[MAXLINE];
1.164     brouard  10780:   char stra[MAXLINE], strb[MAXLINE];
1.136     brouard  10781:   char *stratrunc;
1.223     brouard  10782: 
1.349     brouard  10783:   /* DummyV=ivector(-1,NCOVMAX); /\* 1 to 3 *\/ */
                   10784:   /* FixedV=ivector(-1,NCOVMAX); /\* 1 to 3 *\/ */
1.339     brouard  10785:   
                   10786:   ncovcolt=ncovcol+nqv+ntv+nqtv; /* total of covariates in the data, not in the model equation */
                   10787:   
1.136     brouard  10788:   if((fic=fopen(datafile,"r"))==NULL)    {
1.218     brouard  10789:     printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
                   10790:     fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
1.136     brouard  10791:   }
1.126     brouard  10792: 
1.302     brouard  10793:     /* Is it a BOM UTF-8 Windows file? */
                   10794:   /* First data line */
                   10795:   linei=0;
                   10796:   while(fgets(line, MAXLINE, fic)) {
                   10797:     noffset=0;
                   10798:     if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
                   10799:     {
                   10800:       noffset=noffset+3;
                   10801:       printf("# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);fflush(stdout);
                   10802:       fprintf(ficlog,"# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);
                   10803:       fflush(ficlog); return 1;
                   10804:     }
                   10805:     /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
                   10806:     else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
                   10807:     {
                   10808:       noffset=noffset+2;
1.304     brouard  10809:       printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
                   10810:       fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
1.302     brouard  10811:       fflush(ficlog); return 1;
                   10812:     }
                   10813:     else if( line[0] == 0 && line[1] == 0)
                   10814:     {
                   10815:       if( line[2] == (char)0xFE && line[3] == (char)0xFF){
                   10816:        noffset=noffset+4;
1.304     brouard  10817:        printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
                   10818:        fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
1.302     brouard  10819:        fflush(ficlog); return 1;
                   10820:       }
                   10821:     } else{
                   10822:       ;/*printf(" Not a BOM file\n");*/
                   10823:     }
                   10824:         /* If line starts with a # it is a comment */
                   10825:     if (line[noffset] == '#') {
                   10826:       linei=linei+1;
                   10827:       break;
                   10828:     }else{
                   10829:       break;
                   10830:     }
                   10831:   }
                   10832:   fclose(fic);
                   10833:   if((fic=fopen(datafile,"r"))==NULL)    {
                   10834:     printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
                   10835:     fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
                   10836:   }
                   10837:   /* Not a Bom file */
                   10838:   
1.136     brouard  10839:   i=1;
                   10840:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
                   10841:     linei=linei+1;
                   10842:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
                   10843:       if(line[j] == '\t')
                   10844:        line[j] = ' ';
                   10845:     }
                   10846:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
                   10847:       ;
                   10848:     };
                   10849:     line[j+1]=0;  /* Trims blanks at end of line */
                   10850:     if(line[0]=='#'){
                   10851:       fprintf(ficlog,"Comment line\n%s\n",line);
                   10852:       printf("Comment line\n%s\n",line);
                   10853:       continue;
                   10854:     }
                   10855:     trimbb(linetmp,line); /* Trims multiple blanks in line */
1.164     brouard  10856:     strcpy(line, linetmp);
1.223     brouard  10857:     
                   10858:     /* Loops on waves */
                   10859:     for (j=maxwav;j>=1;j--){
                   10860:       for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
1.238     brouard  10861:        cutv(stra, strb, line, ' '); 
                   10862:        if(strb[0]=='.') { /* Missing value */
                   10863:          lval=-1;
                   10864:          cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
1.341     brouard  10865:          cotvar[j][ncovcol+nqv+ntv+iv][i]=-1; /* For performance reasons */
1.238     brouard  10866:          if(isalpha(strb[1])) { /* .m or .d Really Missing value */
                   10867:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
                   10868:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
                   10869:            return 1;
                   10870:          }
                   10871:        }else{
                   10872:          errno=0;
                   10873:          /* what_kind_of_number(strb); */
                   10874:          dval=strtod(strb,&endptr); 
                   10875:          /* if( strb[0]=='\0' || (*endptr != '\0')){ */
                   10876:          /* if(strb != endptr && *endptr == '\0') */
                   10877:          /*    dval=dlval; */
                   10878:          /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                   10879:          if( strb[0]=='\0' || (*endptr != '\0')){
                   10880:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
                   10881:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
                   10882:            return 1;
                   10883:          }
                   10884:          cotqvar[j][iv][i]=dval; 
1.341     brouard  10885:          cotvar[j][ncovcol+nqv+ntv+iv][i]=dval; /* because cotvar starts now at first ntv */ 
1.238     brouard  10886:        }
                   10887:        strcpy(line,stra);
1.223     brouard  10888:       }/* end loop ntqv */
1.225     brouard  10889:       
1.223     brouard  10890:       for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
1.238     brouard  10891:        cutv(stra, strb, line, ' '); 
                   10892:        if(strb[0]=='.') { /* Missing value */
                   10893:          lval=-1;
                   10894:        }else{
                   10895:          errno=0;
                   10896:          lval=strtol(strb,&endptr,10); 
                   10897:          /*    if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                   10898:          if( strb[0]=='\0' || (*endptr != '\0')){
                   10899:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
                   10900:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
                   10901:            return 1;
                   10902:          }
                   10903:        }
                   10904:        if(lval <-1 || lval >1){
                   10905:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.319     brouard  10906:  Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
1.223     brouard  10907:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.238     brouard  10908:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   10909:  build V1=0 V2=0 for the reference value (1),\n                                \
                   10910:         V1=1 V2=0 for (2) \n                                           \
1.223     brouard  10911:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.238     brouard  10912:  output of IMaCh is often meaningless.\n                               \
1.319     brouard  10913:  Exiting.\n",lval,linei, i,line,iv,j);
1.238     brouard  10914:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.319     brouard  10915:  Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
1.223     brouard  10916:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.238     brouard  10917:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   10918:  build V1=0 V2=0 for the reference value (1),\n                                \
                   10919:         V1=1 V2=0 for (2) \n                                           \
1.223     brouard  10920:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.238     brouard  10921:  output of IMaCh is often meaningless.\n                               \
1.319     brouard  10922:  Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog);
1.238     brouard  10923:          return 1;
                   10924:        }
1.341     brouard  10925:        cotvar[j][ncovcol+nqv+iv][i]=(double)(lval);
1.238     brouard  10926:        strcpy(line,stra);
1.223     brouard  10927:       }/* end loop ntv */
1.225     brouard  10928:       
1.223     brouard  10929:       /* Statuses  at wave */
1.137     brouard  10930:       cutv(stra, strb, line, ' '); 
1.223     brouard  10931:       if(strb[0]=='.') { /* Missing value */
1.238     brouard  10932:        lval=-1;
1.136     brouard  10933:       }else{
1.238     brouard  10934:        errno=0;
                   10935:        lval=strtol(strb,&endptr,10); 
                   10936:        /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
1.347     brouard  10937:        if( strb[0]=='\0' || (*endptr != '\0' )){
                   10938:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);
                   10939:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
                   10940:          return 1;
                   10941:        }else if( lval==0 || lval > nlstate+ndeath){
1.348     brouard  10942:          printf("Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %ld.\n Fix your data file '%s'!  Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile);fflush(stdout);
                   10943:          fprintf(ficlog,"Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %ld.\n Fix your data file '%s'!  Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile); fflush(ficlog);
1.238     brouard  10944:          return 1;
                   10945:        }
1.136     brouard  10946:       }
1.225     brouard  10947:       
1.136     brouard  10948:       s[j][i]=lval;
1.225     brouard  10949:       
1.223     brouard  10950:       /* Date of Interview */
1.136     brouard  10951:       strcpy(line,stra);
                   10952:       cutv(stra, strb,line,' ');
1.169     brouard  10953:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  10954:       }
1.169     brouard  10955:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
1.225     brouard  10956:        month=99;
                   10957:        year=9999;
1.136     brouard  10958:       }else{
1.225     brouard  10959:        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
                   10960:        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
                   10961:        return 1;
1.136     brouard  10962:       }
                   10963:       anint[j][i]= (double) year; 
1.302     brouard  10964:       mint[j][i]= (double)month;
                   10965:       /* if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ */
                   10966:       /*       printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
                   10967:       /*       fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
                   10968:       /* } */
1.136     brouard  10969:       strcpy(line,stra);
1.223     brouard  10970:     } /* End loop on waves */
1.225     brouard  10971:     
1.223     brouard  10972:     /* Date of death */
1.136     brouard  10973:     cutv(stra, strb,line,' '); 
1.169     brouard  10974:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  10975:     }
1.169     brouard  10976:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
1.136     brouard  10977:       month=99;
                   10978:       year=9999;
                   10979:     }else{
1.141     brouard  10980:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
1.225     brouard  10981:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
                   10982:       return 1;
1.136     brouard  10983:     }
                   10984:     andc[i]=(double) year; 
                   10985:     moisdc[i]=(double) month; 
                   10986:     strcpy(line,stra);
                   10987:     
1.223     brouard  10988:     /* Date of birth */
1.136     brouard  10989:     cutv(stra, strb,line,' '); 
1.169     brouard  10990:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  10991:     }
1.169     brouard  10992:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
1.136     brouard  10993:       month=99;
                   10994:       year=9999;
                   10995:     }else{
1.141     brouard  10996:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
                   10997:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.225     brouard  10998:       return 1;
1.136     brouard  10999:     }
                   11000:     if (year==9999) {
1.141     brouard  11001:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
                   11002:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.225     brouard  11003:       return 1;
                   11004:       
1.136     brouard  11005:     }
                   11006:     annais[i]=(double)(year);
1.302     brouard  11007:     moisnais[i]=(double)(month);
                   11008:     for (j=1;j<=maxwav;j++){
                   11009:       if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){
                   11010:        printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j,(int)moisnais[i],(int)annais[i]);
                   11011:        fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j, (int)moisnais[i],(int)annais[i]);
                   11012:       }
                   11013:     }
                   11014: 
1.136     brouard  11015:     strcpy(line,stra);
1.225     brouard  11016:     
1.223     brouard  11017:     /* Sample weight */
1.136     brouard  11018:     cutv(stra, strb,line,' '); 
                   11019:     errno=0;
                   11020:     dval=strtod(strb,&endptr); 
                   11021:     if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  11022:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
                   11023:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
1.136     brouard  11024:       fflush(ficlog);
                   11025:       return 1;
                   11026:     }
                   11027:     weight[i]=dval; 
                   11028:     strcpy(line,stra);
1.225     brouard  11029:     
1.223     brouard  11030:     for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
                   11031:       cutv(stra, strb, line, ' '); 
                   11032:       if(strb[0]=='.') { /* Missing value */
1.225     brouard  11033:        lval=-1;
1.311     brouard  11034:        coqvar[iv][i]=NAN; 
                   11035:        covar[ncovcol+iv][i]=NAN; /* including qvar in standard covar for performance reasons */ 
1.223     brouard  11036:       }else{
1.225     brouard  11037:        errno=0;
                   11038:        /* what_kind_of_number(strb); */
                   11039:        dval=strtod(strb,&endptr);
                   11040:        /* if(strb != endptr && *endptr == '\0') */
                   11041:        /*   dval=dlval; */
                   11042:        /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                   11043:        if( strb[0]=='\0' || (*endptr != '\0')){
                   11044:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
                   11045:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
                   11046:          return 1;
                   11047:        }
                   11048:        coqvar[iv][i]=dval; 
1.226     brouard  11049:        covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
1.223     brouard  11050:       }
                   11051:       strcpy(line,stra);
                   11052:     }/* end loop nqv */
1.136     brouard  11053:     
1.223     brouard  11054:     /* Covariate values */
1.136     brouard  11055:     for (j=ncovcol;j>=1;j--){
                   11056:       cutv(stra, strb,line,' '); 
1.223     brouard  11057:       if(strb[0]=='.') { /* Missing covariate value */
1.225     brouard  11058:        lval=-1;
1.136     brouard  11059:       }else{
1.225     brouard  11060:        errno=0;
                   11061:        lval=strtol(strb,&endptr,10); 
                   11062:        if( strb[0]=='\0' || (*endptr != '\0')){
                   11063:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
                   11064:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
                   11065:          return 1;
                   11066:        }
1.136     brouard  11067:       }
                   11068:       if(lval <-1 || lval >1){
1.225     brouard  11069:        printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  11070:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   11071:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.225     brouard  11072:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   11073:  build V1=0 V2=0 for the reference value (1),\n                                \
                   11074:         V1=1 V2=0 for (2) \n                                           \
1.136     brouard  11075:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.225     brouard  11076:  output of IMaCh is often meaningless.\n                               \
1.136     brouard  11077:  Exiting.\n",lval,linei, i,line,j);
1.225     brouard  11078:        fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  11079:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   11080:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.225     brouard  11081:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   11082:  build V1=0 V2=0 for the reference value (1),\n                                \
                   11083:         V1=1 V2=0 for (2) \n                                           \
1.136     brouard  11084:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.225     brouard  11085:  output of IMaCh is often meaningless.\n                               \
1.136     brouard  11086:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
1.225     brouard  11087:        return 1;
1.136     brouard  11088:       }
                   11089:       covar[j][i]=(double)(lval);
                   11090:       strcpy(line,stra);
                   11091:     }  
                   11092:     lstra=strlen(stra);
1.225     brouard  11093:     
1.136     brouard  11094:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                   11095:       stratrunc = &(stra[lstra-9]);
                   11096:       num[i]=atol(stratrunc);
                   11097:     }
                   11098:     else
                   11099:       num[i]=atol(stra);
                   11100:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
                   11101:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
                   11102:     
                   11103:     i=i+1;
                   11104:   } /* End loop reading  data */
1.225     brouard  11105:   
1.136     brouard  11106:   *imax=i-1; /* Number of individuals */
                   11107:   fclose(fic);
1.225     brouard  11108:   
1.136     brouard  11109:   return (0);
1.164     brouard  11110:   /* endread: */
1.225     brouard  11111:   printf("Exiting readdata: ");
                   11112:   fclose(fic);
                   11113:   return (1);
1.223     brouard  11114: }
1.126     brouard  11115: 
1.234     brouard  11116: void removefirstspace(char **stri){/*, char stro[]) {*/
1.230     brouard  11117:   char *p1 = *stri, *p2 = *stri;
1.235     brouard  11118:   while (*p2 == ' ')
1.234     brouard  11119:     p2++; 
                   11120:   /* while ((*p1++ = *p2++) !=0) */
                   11121:   /*   ; */
                   11122:   /* do */
                   11123:   /*   while (*p2 == ' ') */
                   11124:   /*     p2++; */
                   11125:   /* while (*p1++ == *p2++); */
                   11126:   *stri=p2; 
1.145     brouard  11127: }
                   11128: 
1.330     brouard  11129: int decoderesult( char resultline[], int nres)
1.230     brouard  11130: /**< This routine decode one result line and returns the combination # of dummy covariates only **/
                   11131: {
1.235     brouard  11132:   int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
1.230     brouard  11133:   char resultsav[MAXLINE];
1.330     brouard  11134:   /* int resultmodel[MAXLINE]; */
1.334     brouard  11135:   /* int modelresult[MAXLINE]; */
1.230     brouard  11136:   char stra[80], strb[80], strc[80], strd[80],stre[80];
                   11137: 
1.234     brouard  11138:   removefirstspace(&resultline);
1.332     brouard  11139:   printf("decoderesult:%s\n",resultline);
1.230     brouard  11140: 
1.332     brouard  11141:   strcpy(resultsav,resultline);
1.342     brouard  11142:   /* printf("Decoderesult resultsav=\"%s\" resultline=\"%s\"\n", resultsav, resultline); */
1.230     brouard  11143:   if (strlen(resultsav) >1){
1.334     brouard  11144:     j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' in this resultline */
1.230     brouard  11145:   }
1.353     brouard  11146:   if(j == 0 && cptcovs== 0){ /* Resultline but no =  and no covariate in the model */
1.253     brouard  11147:     TKresult[nres]=0; /* Combination for the nresult and the model */
                   11148:     return (0);
                   11149:   }
1.234     brouard  11150:   if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
1.353     brouard  11151:     fprintf(ficlog,"ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, 1+age+%s.\n",j, cptcovs, model);fflush(ficlog);
                   11152:     printf("ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, 1+age+%s.\n",j, cptcovs, model);fflush(stdout);
                   11153:     if(j==0)
                   11154:       return 1;
1.234     brouard  11155:   }
1.334     brouard  11156:   for(k=1; k<=j;k++){ /* Loop on any covariate of the RESULT LINE */
1.234     brouard  11157:     if(nbocc(resultsav,'=') >1){
1.318     brouard  11158:       cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' (stra is the rest of the resultline to be analyzed in the next loop *//*     resultsav= "V4=1 V5=25.1 V3=0" stra= "V5=25.1 V3=0" strb= "V4=1" */
1.332     brouard  11159:       /* If resultsav= "V4= 1 V5=25.1 V3=0" with a blank then strb="V4=" and stra="1 V5=25.1 V3=0" */
1.318     brouard  11160:       cutl(strc,strd,strb,'=');  /* strb:"V4=1" strc="1" strd="V4" */
1.332     brouard  11161:       /* If a blank, then strc="V4=" and strd='\0' */
                   11162:       if(strc[0]=='\0'){
                   11163:       printf("Error in resultline, probably a blank after the \"%s\", \"result:%s\", stra=\"%s\" resultsav=\"%s\"\n",strb,resultline, stra, resultsav);
                   11164:        fprintf(ficlog,"Error in resultline, probably a blank after the \"V%s=\", resultline=%s\n",strb,resultline);
                   11165:        return 1;
                   11166:       }
1.234     brouard  11167:     }else
                   11168:       cutl(strc,strd,resultsav,'=');
1.318     brouard  11169:     Tvalsel[k]=atof(strc); /* 1 */ /* Tvalsel of k is the float value of the kth covariate appearing in this result line */
1.234     brouard  11170:     
1.230     brouard  11171:     cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
1.318     brouard  11172:     Tvarsel[k]=atoi(strc);  /* 4 */ /* Tvarsel is the id of the kth covariate in the result line Tvarsel[1] in "V4=1.." is 4.*/
1.230     brouard  11173:     /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
                   11174:     /* cptcovsel++;     */
                   11175:     if (nbocc(stra,'=') >0)
                   11176:       strcpy(resultsav,stra); /* and analyzes it */
                   11177:   }
1.235     brouard  11178:   /* Checking for missing or useless values in comparison of current model needs */
1.332     brouard  11179:   /* Feeds resultmodel[nres][k1]=k2 for k1th product covariate with age in the model equation fed by the index k2 of the resutline*/
1.334     brouard  11180:   for(k1=1; k1<= cptcovt ;k1++){ /* Loop on MODEL LINE V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.332     brouard  11181:     if(Typevar[k1]==0){ /* Single covariate in model */
                   11182:       /* 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
1.234     brouard  11183:       match=0;
1.318     brouard  11184:       for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   11185:        if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
1.334     brouard  11186:          modelresult[nres][k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
1.318     brouard  11187:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
1.234     brouard  11188:          break;
                   11189:        }
                   11190:       }
                   11191:       if(match == 0){
1.338     brouard  11192:        printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]);
                   11193:        fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s\n",Tvar[k1], resultline, model);
1.310     brouard  11194:        return 1;
1.234     brouard  11195:       }
1.332     brouard  11196:     }else if(Typevar[k1]==1){ /* Product with age We want to get the position k2 in the resultline of the product k1 in the model line*/
                   11197:       /* We feed resultmodel[k1]=k2; */
                   11198:       match=0;
                   11199:       for(k2=1; k2 <=j;k2++){/* Loop on resultline.  jth occurence of = signs in the result line. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   11200:        if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
1.334     brouard  11201:          modelresult[nres][k2]=k1;/* we found a Vn=1 corrresponding to Vn*age in the model modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
1.332     brouard  11202:          resultmodel[nres][k1]=k2; /* Added here */
1.342     brouard  11203:          /* printf("Decoderesult first modelresult[k2=%d]=%d (k1) V%d*AGE\n",k2,k1,Tvar[k1]); */
1.332     brouard  11204:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
                   11205:          break;
                   11206:        }
                   11207:       }
                   11208:       if(match == 0){
1.338     brouard  11209:        printf("Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
                   11210:        fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
1.332     brouard  11211:       return 1;
                   11212:       }
1.349     brouard  11213:     }else if(Typevar[k1]==2 || Typevar[k1]==3){ /* Product with or without age. We want to get the position in the resultline of the product in the model line*/
1.332     brouard  11214:       /* resultmodel[nres][of such a Vn * Vm product k1] is not unique, so can't exist, we feed Tvard[k1][1] and [2] */ 
                   11215:       match=0;
1.342     brouard  11216:       /* printf("Decoderesult very first Product Tvardk[k1=%d][1]=%d Tvardk[k1=%d][2]=%d V%d * V%d\n",k1,Tvardk[k1][1],k1,Tvardk[k1][2],Tvardk[k1][1],Tvardk[k1][2]); */
1.332     brouard  11217:       for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   11218:        if(Tvardk[k1][1]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
                   11219:          /* modelresult[k2]=k1; */
1.342     brouard  11220:          /* printf("Decoderesult first Product modelresult[k2=%d]=%d (k1) V%d * \n",k2,k1,Tvarsel[k2]); */
1.332     brouard  11221:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
                   11222:        }
                   11223:       }
                   11224:       if(match == 0){
1.349     brouard  11225:        printf("Error in result line (Product without age first variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
                   11226:        fprintf(ficlog,"Error in result line (Product without age first variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
1.332     brouard  11227:        return 1;
                   11228:       }
                   11229:       match=0;
                   11230:       for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   11231:        if(Tvardk[k1][2]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
                   11232:          /* modelresult[k2]=k1;*/
1.342     brouard  11233:          /* printf("Decoderesult second Product modelresult[k2=%d]=%d (k1) * V%d \n ",k2,k1,Tvarsel[k2]); */
1.332     brouard  11234:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
                   11235:          break;
                   11236:        }
                   11237:       }
                   11238:       if(match == 0){
1.349     brouard  11239:        printf("Error in result line (Product without age second variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
                   11240:        fprintf(ficlog,"Error in result line (Product without age second variable or double product with age): V%d is missing in result : %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
1.332     brouard  11241:        return 1;
                   11242:       }
                   11243:     }/* End of testing */
1.333     brouard  11244:   }/* End loop cptcovt */
1.235     brouard  11245:   /* Checking for missing or useless values in comparison of current model needs */
1.332     brouard  11246:   /* Feeds resultmodel[nres][k1]=k2 for single covariate (k1) in the model equation */
1.334     brouard  11247:   for(k2=1; k2 <=j;k2++){ /* j or cptcovs is the number of single covariates used either in the model line as well as in the result line (dummy or quantitative)
                   11248:                           * Loop on resultline variables: result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
1.234     brouard  11249:     match=0;
1.318     brouard  11250:     for(k1=1; k1<= cptcovt ;k1++){ /* loop on model: model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.332     brouard  11251:       if(Typevar[k1]==0){ /* Single only */
1.349     brouard  11252:        if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4  What if a product?  */
1.330     brouard  11253:          resultmodel[nres][k1]=k2;  /* k1th position in the model equation corresponds to k2th position in the result line. resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
1.334     brouard  11254:          modelresult[nres][k2]=k1; /* k1th position in the model equation corresponds to k2th position in the result line. modelresult[1]=2 modelresult[2]=1  modelresult[3]=3  remodelresult[4]=6 modelresult[5]=9 */
1.234     brouard  11255:          ++match;
                   11256:        }
                   11257:       }
                   11258:     }
                   11259:     if(match == 0){
1.338     brouard  11260:       printf("Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
                   11261:       fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
1.310     brouard  11262:       return 1;
1.234     brouard  11263:     }else if(match > 1){
1.338     brouard  11264:       printf("Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
                   11265:       fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
1.310     brouard  11266:       return 1;
1.234     brouard  11267:     }
                   11268:   }
1.334     brouard  11269:   /* cptcovres=j /\* Number of variables in the resultline is equal to cptcovs and thus useless *\/     */
1.234     brouard  11270:   /* We need to deduce which combination number is chosen and save quantitative values */
1.235     brouard  11271:   /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.330     brouard  11272:   /* nres=1st result line: V4=1 V5=25.1 V3=0  V2=8 V1=1 */
                   11273:   /* should correspond to the combination 6 of dummy: V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 1*1 + 0*2 + 1*4 = 5 + (1offset) = 6*/
                   11274:   /* nres=2nd result line: V4=1 V5=24.1 V3=1  V2=8 V1=0 */
1.235     brouard  11275:   /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
                   11276:   /*    1 0 0 0 */
                   11277:   /*    2 1 0 0 */
                   11278:   /*    3 0 1 0 */ 
1.330     brouard  11279:   /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 (nres=2)*/
1.235     brouard  11280:   /*    5 0 0 1 */
1.330     brouard  11281:   /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 (nres=1)*/
1.235     brouard  11282:   /*    7 0 1 1 */
                   11283:   /*    8 1 1 1 */
1.237     brouard  11284:   /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
                   11285:   /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
                   11286:   /* V5*age V5 known which value for nres?  */
                   11287:   /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
1.334     brouard  11288:   for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* cptcovt number of covariates (excluding 1 and age or age*age) in the MODEL equation.
                   11289:                                                   * loop on position k1 in the MODEL LINE */
1.331     brouard  11290:     /* k counting number of combination of single dummies in the equation model */
                   11291:     /* k4 counting single dummies in the equation model */
                   11292:     /* k4q counting single quantitatives in the equation model */
1.344     brouard  11293:     if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Dummy and Single, fixed or timevarying, k1 is sorting according to MODEL, but k3 to resultline */
1.334     brouard  11294:        /* k4+1= (not always if quant in model) position in the resultline V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) */
1.332     brouard  11295:       /* modelresult[k3]=k1: k3th position in the result line corresponds to the k1 position in the model line (doesn't work with products)*/
1.330     brouard  11296:       /* Value in the (current nres) resultline of the variable at the k1th position in the model equation resultmodel[nres][k1]= k3 */
1.332     brouard  11297:       /* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline                        */
                   11298:       /*      k3 is the position in the nres result line of the k1th variable of the model equation                                  */
                   11299:       /* Tvarsel[k3]: Name of the variable at the k3th position in the result line.                                                  */
                   11300:       /* Tvalsel[k3]: Value of the variable at the k3th position in the result line.                                                 */
                   11301:       /* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline                   */
1.334     brouard  11302:       /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline                     */
1.332     brouard  11303:       /* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line                                        */
1.330     brouard  11304:       /* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line                                                      */
1.332     brouard  11305:       k3= resultmodel[nres][k1]; /* From position k1 in model get position k3 in result line */
                   11306:       /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
                   11307:       k2=(int)Tvarsel[k3]; /* from position k3 in resultline get name k2: nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
1.330     brouard  11308:       k+=Tvalsel[k3]*pow(2,k4);  /* nres=1 k1=2 Tvalsel[1]=1 (V4=1); k1=3 k3=2 Tvalsel[2]=0 (V3=0) */
1.334     brouard  11309:       TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][Name]=Value; stores the value into the name of the variable. */
1.332     brouard  11310:       /* Tinvresult[nres][4]=1 */
1.334     brouard  11311:       /* Tresult[nres][k4+1]=Tvalsel[k3];/\* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) *\/ */
                   11312:       Tresult[nres][k3]=Tvalsel[k3];/* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) */
                   11313:       /* Tvresult[nres][k4+1]=(int)Tvarsel[k3];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
                   11314:       Tvresult[nres][k3]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
1.237     brouard  11315:       Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
1.334     brouard  11316:       precov[nres][k1]=Tvalsel[k3]; /* Value from resultline of the variable at the k1 position in the model */
1.342     brouard  11317:       /* printf("Decoderesult Dummy k=%d, k1=%d precov[nres=%d][k1=%d]=%.f V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k1, nres, k1,precov[nres][k1], k2, k3, (int)Tvalsel[k3], k4); */
1.235     brouard  11318:       k4++;;
1.331     brouard  11319:     }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Quantitative and single */
1.330     brouard  11320:       /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 */
1.332     brouard  11321:       /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline                                 */
1.330     brouard  11322:       /* Tqinvresult[nres][Name of a quantitative variable]= value of the variable in the result line                                                      */
1.332     brouard  11323:       k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 5 =k3q */
                   11324:       k2q=(int)Tvarsel[k3q]; /*  Name of variable at k3q th position in the resultline */
                   11325:       /* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
1.334     brouard  11326:       /* Tqresult[nres][k4q+1]=Tvalsel[k3q]; /\* Tqresult[nres][1]=25.1 *\/ */
                   11327:       /* Tvresult[nres][k4q+1]=(int)Tvarsel[k3q];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
                   11328:       /* Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /\* Tvqresult[nres][1]=5 *\/ */
                   11329:       Tqresult[nres][k3q]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
                   11330:       Tvresult[nres][k3q]=(int)Tvarsel[k3q];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
                   11331:       Tvqresult[nres][k3q]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
1.237     brouard  11332:       Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
1.330     brouard  11333:       TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
1.332     brouard  11334:       precov[nres][k1]=Tvalsel[k3q];
1.342     brouard  11335:       /* printf("Decoderesult Quantitative nres=%d,precov[nres=%d][k1=%d]=%.f V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, nres, k1,precov[nres][k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */
1.235     brouard  11336:       k4q++;;
1.350     brouard  11337:     }else if( Dummy[k1]==2 ){ /* For dummy with age product "V2+V3+V4+V6+V7+V6*V2+V7*V2+V6*V3+V7*V3+V6*V4+V7*V4+age*V2+age*V3+age*V4+age*V6+age*V7+age*V6*V2+age*V6*V3+age*V7*V3+age*V6*V4+age*V7*V4\r"*/
                   11338:       /* Tvar[k1]; */ /* Age variable */ /* 17 age*V6*V2 ?*/
1.332     brouard  11339:       /* Wrong we want the value of variable name Tvar[k1] */
1.350     brouard  11340:       if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */
                   11341:        precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];      
                   11342:       /* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */
                   11343:       }else{
                   11344:        k3= resultmodel[nres][k1]; /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
                   11345:        k2=(int)Tvarsel[k3]; /* nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
                   11346:        TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][4]=1 */
                   11347:        precov[nres][k1]=Tvalsel[k3];
                   11348:       }
1.342     brouard  11349:       /* printf("Decoderesult Dummy with age k=%d, k1=%d precov[nres=%d][k1=%d]=%.f Tvar[%d]=V%d k2=Tvarsel[%d]=%d Tvalsel[%d]=%d\n",k, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k3,(int)Tvarsel[k3], k3, (int)Tvalsel[k3]); */
1.331     brouard  11350:     }else if( Dummy[k1]==3 ){ /* For quant with age product */
1.350     brouard  11351:       if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */
                   11352:        precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];      
                   11353:       /* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */
                   11354:       }else{
                   11355:        k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 25.1=k3q */
                   11356:        k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
                   11357:        TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* TinvDoQresult[nres][5]=25.1 */
                   11358:        precov[nres][k1]=Tvalsel[k3q];
                   11359:       }
1.342     brouard  11360:       /* printf("Decoderesult Quantitative with age nres=%d, k1=%d, precov[nres=%d][k1=%d]=%f Tvar[%d]=V%d V(k2q=%d)= Tvarsel[%d]=%d, Tvalsel[%d]=%f\n",nres, k1, nres, k1,precov[nres][k1], k1,  Tvar[k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */
1.349     brouard  11361:     }else if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */
1.332     brouard  11362:       precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];      
1.342     brouard  11363:       /* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */
1.330     brouard  11364:     }else{
1.332     brouard  11365:       printf("Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
                   11366:       fprintf(ficlog,"Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
1.235     brouard  11367:     }
                   11368:   }
1.234     brouard  11369:   
1.334     brouard  11370:   TKresult[nres]=++k; /* Number of combinations of dummies for the nresult and the model =Tvalsel[k3]*pow(2,k4) + 1*/
1.230     brouard  11371:   return (0);
                   11372: }
1.235     brouard  11373: 
1.230     brouard  11374: int decodemodel( char model[], int lastobs)
                   11375:  /**< This routine decodes the model and returns:
1.224     brouard  11376:        * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
                   11377:        * - nagesqr = 1 if age*age in the model, otherwise 0.
                   11378:        * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
                   11379:        * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
                   11380:        * - cptcovage number of covariates with age*products =2
                   11381:        * - cptcovs number of simple covariates
1.339     brouard  11382:        * ncovcolt=ncovcol+nqv+ntv+nqtv total of covariates in the data, not in the model equation
1.224     brouard  11383:        * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
1.339     brouard  11384:        *     which is a new column after the 9 (ncovcol+nqv+ntv+nqtv) variables. 
1.319     brouard  11385:        * - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual
1.224     brouard  11386:        * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
                   11387:        *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
                   11388:        * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
                   11389:        */
1.319     brouard  11390: /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */
1.136     brouard  11391: {
1.238     brouard  11392:   int i, j, k, ks, v;
1.349     brouard  11393:   int n,m;
                   11394:   int  j1, k1, k11, k12, k2, k3, k4;
                   11395:   char modelsav[300];
                   11396:   char stra[300], strb[300], strc[300], strd[300],stre[300],strf[300];
1.187     brouard  11397:   char *strpt;
1.349     brouard  11398:   int  **existcomb;
                   11399:   
                   11400:   existcomb=imatrix(1,NCOVMAX,1,NCOVMAX);
                   11401:   for(i=1;i<=NCOVMAX;i++)
                   11402:     for(j=1;j<=NCOVMAX;j++)
                   11403:       existcomb[i][j]=0;
                   11404:     
1.145     brouard  11405:   /*removespace(model);*/
1.136     brouard  11406:   if (strlen(model) >1){ /* If there is at least 1 covariate */
1.349     brouard  11407:     j=0, j1=0, k1=0, k12=0, k2=-1, ks=0, cptcovn=0;
1.137     brouard  11408:     if (strstr(model,"AGE") !=0){
1.192     brouard  11409:       printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
                   11410:       fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
1.136     brouard  11411:       return 1;
                   11412:     }
1.141     brouard  11413:     if (strstr(model,"v") !=0){
1.338     brouard  11414:       printf("Error. 'v' must be in upper case 'V' model=1+age+%s ",model);
                   11415:       fprintf(ficlog,"Error. 'v' must be in upper case model=1+age+%s ",model);fflush(ficlog);
1.141     brouard  11416:       return 1;
                   11417:     }
1.187     brouard  11418:     strcpy(modelsav,model); 
                   11419:     if ((strpt=strstr(model,"age*age")) !=0){
1.338     brouard  11420:       printf(" strpt=%s, model=1+age+%s\n",strpt, model);
1.187     brouard  11421:       if(strpt != model){
1.338     brouard  11422:        printf("Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
1.192     brouard  11423:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
1.187     brouard  11424:  corresponding column of parameters.\n",model);
1.338     brouard  11425:        fprintf(ficlog,"Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
1.192     brouard  11426:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
1.187     brouard  11427:  corresponding column of parameters.\n",model); fflush(ficlog);
1.234     brouard  11428:        return 1;
1.225     brouard  11429:       }
1.187     brouard  11430:       nagesqr=1;
                   11431:       if (strstr(model,"+age*age") !=0)
1.234     brouard  11432:        substrchaine(modelsav, model, "+age*age");
1.187     brouard  11433:       else if (strstr(model,"age*age+") !=0)
1.234     brouard  11434:        substrchaine(modelsav, model, "age*age+");
1.187     brouard  11435:       else 
1.234     brouard  11436:        substrchaine(modelsav, model, "age*age");
1.187     brouard  11437:     }else
                   11438:       nagesqr=0;
1.349     brouard  11439:     if (strlen(modelsav) >1){ /* V2 +V3 +V4 +V6 +V7 +V6*V2 +V7*V2 +V6*V3 +V7*V3 +V6*V4 +V7*V4 +age*V2 +age*V3 +age*V4 +age*V6 +age*V7 +age*V6*V2 +V7*V2 +age*V6*V3 +age*V7*V3 +age*V6*V4 +age*V7*V4 */
1.187     brouard  11440:       j=nbocc(modelsav,'+'); /**< j=Number of '+' */
                   11441:       j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
1.351     brouard  11442:       cptcovs=0; /**<  Number of simple covariates V1 +V1*age +V3 +V3*V4 +age*age => V1 + V3 =4+1-3=2  Wrong */
1.187     brouard  11443:       cptcovt= j+1; /* Number of total covariates in the model, not including
1.225     brouard  11444:                     * cst, age and age*age 
                   11445:                     * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
                   11446:       /* including age products which are counted in cptcovage.
                   11447:        * but the covariates which are products must be treated 
                   11448:        * separately: ncovn=4- 2=2 (V1+V3). */
1.349     brouard  11449:       cptcovprod=0; /**< Number of products  V1*V2 +v3*age = 2 */
                   11450:       cptcovdageprod=0; /* Number of doouble products with age age*Vn*VM or Vn*age*Vm or Vn*Vm*age */
1.187     brouard  11451:       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
1.349     brouard  11452:       cptcovprodage=0;
                   11453:       /* cptcovprodage=nboccstr(modelsav,"age");*/
1.225     brouard  11454:       
1.187     brouard  11455:       /*   Design
                   11456:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
                   11457:        *  <          ncovcol=8                >
                   11458:        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
                   11459:        *   k=  1    2      3       4     5       6      7        8
                   11460:        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
1.345     brouard  11461:        *  covar[k,i], are for fixed covariates, value of kth covariate if not including age for individual i:
1.224     brouard  11462:        *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
                   11463:        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
1.187     brouard  11464:        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
                   11465:        *  Tage[++cptcovage]=k
1.345     brouard  11466:        *       if products, new covar are created after ncovcol + nqv (quanti fixed) with k1
1.187     brouard  11467:        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
                   11468:        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
                   11469:        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
                   11470:        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
                   11471:        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
                   11472:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
1.345     brouard  11473:        *  <          ncovcol=8  8 fixed covariate. Additional starts at 9 (V5*V6) and 10(V7*V8)              >
1.187     brouard  11474:        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
                   11475:        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
1.345     brouard  11476:        *     Tvard[k]= 2    1      3       3    10      11      8        8    5    6    7   8
                   11477:        * p Tvar[1]@12={2,   1,     3,      3,   9,     10,     8,       8}
1.187     brouard  11478:        * p Tprod[1]@2={                         6, 5}
                   11479:        *p Tvard[1][1]@4= {7, 8, 5, 6}
                   11480:        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
                   11481:        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
1.319     brouard  11482:        *How to reorganize? Tvars(orted)
1.187     brouard  11483:        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
                   11484:        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
                   11485:        *       {2,   1,     4,      8,    5,      6,     3,       7}
                   11486:        * Struct []
                   11487:        */
1.225     brouard  11488:       
1.187     brouard  11489:       /* This loop fills the array Tvar from the string 'model'.*/
                   11490:       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
                   11491:       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
                   11492:       /*       k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
                   11493:       /*       k=3 V4 Tvar[k=3]= 4 (from V4) */
                   11494:       /*       k=2 V1 Tvar[k=2]= 1 (from V1) */
                   11495:       /*       k=1 Tvar[1]=2 (from V2) */
                   11496:       /*       k=5 Tvar[5] */
                   11497:       /* for (k=1; k<=cptcovn;k++) { */
1.198     brouard  11498:       /*       cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
1.187     brouard  11499:       /*       } */
1.198     brouard  11500:       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
1.187     brouard  11501:       /*
                   11502:        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
1.227     brouard  11503:       for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
                   11504:         Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
                   11505:       }
1.187     brouard  11506:       cptcovage=0;
1.351     brouard  11507: 
                   11508:       /* First loop in order to calculate */
                   11509:       /* for age*VN*Vm
                   11510:        * Provides, Typevar[k], Tage[cptcovage], existcomb[n][m], FixedV[ncovcolt+k12]
                   11511:        * Tprod[k1]=k  Tposprod[k]=k1;    Tvard[k1][1] =m;
                   11512:       */
                   11513:       /* Needs  FixedV[Tvardk[k][1]] */
                   11514:       /* For others:
                   11515:        * Sets  Typevar[k];
                   11516:        * Tvar[k]=ncovcol+nqv+ntv+nqtv+k11;
                   11517:        *       Tposprod[k]=k11;
                   11518:        *       Tprod[k11]=k;
                   11519:        *       Tvardk[k][1] =m;
                   11520:        * Needs FixedV[Tvardk[k][1]] == 0
                   11521:       */
                   11522:       
1.319     brouard  11523:       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model line */
                   11524:        cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' cutl from left to right
                   11525:                                         modelsav==V2+V1+V5*age+V4+V3*age strb=V3*age stra=V2+V1V5*age+V4 */    /* <model> "V5+V4+V3+V4*V3+V5*age+V1*age+V1" strb="V5" stra="V4+V3+V4*V3+V5*age+V1*age+V1" */
                   11526:        if (nbocc(modelsav,'+')==0)
                   11527:          strcpy(strb,modelsav); /* and analyzes it */
1.234     brouard  11528:        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
                   11529:        /*scanf("%d",i);*/
1.349     brouard  11530:        if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V5*age+ V4+V3*age strb=V3*age OR double product with age strb=age*V6*V2 or V6*V2*age or V6*age*V2 */
                   11531:          cutl(strc,strd,strb,'*'); /**< k=1 strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 OR strb=age*V6*V2 strc=V6*V2 strd=age OR c=V2*age OR c=age*V2  */
                   11532:          if(strchr(strc,'*')) { /**< Model with age and DOUBLE product: allowed since 0.99r44, strc=V6*V2 or V2*age or age*V2, strd=age or V6 or V6   */
                   11533:            Typevar[k]=3;  /* 3 for age and double product age*Vn*Vm varying of fixed */
                   11534:             if(strstr(strc,"age")!=0) { /* It means that strc=V2*age or age*V2 and thus that strd=Vn */
                   11535:               cutl(stre,strf,strc,'*') ; /* strf=age or Vm, stre=Vm or age. If strc=V6*V2 then strf=V6 and stre=V2 */
                   11536:              strcpy(strc,strb); /* save strb(=age*Vn*Vm) into strc */
                   11537:              /* We want strb=Vn*Vm */
                   11538:               if(strcmp(strf,"age")==0){ /* strf is "age" so that stre=Vm =V2 . */
                   11539:                 strcpy(strb,strd);
                   11540:                 strcat(strb,"*");
                   11541:                 strcat(strb,stre);
                   11542:               }else{  /* strf=Vm  If strf=V6 then stre=V2 */
                   11543:                 strcpy(strb,strf);
                   11544:                 strcat(strb,"*");
                   11545:                 strcat(strb,stre);
                   11546:                 strcpy(strd,strb); /* in order for strd to not be "age"  for next test (will be Vn*Vm */
                   11547:               }
1.351     brouard  11548:              /* printf("DEBUG FIXED k=%d, Tage[k]=%d, Tvar[Tage[k]=%d,FixedV[Tvar[Tage[k]]]=%d\n",k,Tage[k],Tvar[Tage[k]],FixedV[Tvar[Tage[k]]]); */
                   11549:              /* FixedV[Tvar[Tage[k]]]=0; /\* HERY not sure if V7*V4*age Fixed might not exist  yet*\/ */
1.349     brouard  11550:             }else{  /* strc=Vn*Vm (and strd=age) and should be strb=Vn*Vm but want to keep original strb double product  */
                   11551:              strcpy(stre,strb); /* save full b in stre */
                   11552:              strcpy(strb,strc); /* save short c in new short b for next block strb=Vn*Vm*/
                   11553:              strcpy(strf,strc); /* save short c in new short f */
                   11554:               cutl(strc,strd,strf,'*'); /* We get strd=Vn and strc=Vm for next block (strb=Vn*Vm)*/
                   11555:              /* strcpy(strc,stre);*/ /* save full e in c for future */
                   11556:             }
                   11557:             cptcovdageprod++; /* double product with age  Which product is it? */
                   11558:             /* strcpy(strb,strc);  /\* strb was age*V6*V2 or V6*V2*age or V6*age*V2 IS now V6*V2 or V2*age or age*V2 *\/ */
                   11559:             /* cutl(strc,strd,strb,'*'); /\* strd=  V6    or   V2     or    age and  strc=  V2 or    age or    V2 *\/ */
1.234     brouard  11560:            cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
1.349     brouard  11561:            n=atoi(stre);
1.234     brouard  11562:            cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
1.349     brouard  11563:            m=atoi(strc);
                   11564:            cptcovage++; /* Counts the number of covariates which include age as a product */
                   11565:            Tage[cptcovage]=k; /* For age*V3*V2 gives the position in model of covariates associated with age Tage[1]=6 HERY too*/
                   11566:            if(existcomb[n][m] == 0){
                   11567:              /*  r /home/brouard/Documents/Recherches/REVES/Zachary/Zach-2022/Feinuo_Sun/Feinuo-threeway/femV12V15_3wayintNBe.imach */
                   11568:              printf("Warning in model combination V%d*V%d should exist in the model before adding V%d*V%d*age !\n",n,m,n,m);
                   11569:              fprintf(ficlog,"Warning in model combination V%d*V%d should exist in the model before adding V%d*V%d*age !\n",n,m,n,m);
                   11570:              fflush(ficlog);
                   11571:              k1++;  /* The combination Vn*Vm will be in the model so we create it at k1 */
                   11572:              k12++;
                   11573:              existcomb[n][m]=k1;
                   11574:              existcomb[m][n]=k1;
                   11575:              Tvar[k]=ncovcol+nqv+ntv+nqtv+k1;
                   11576:              Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2+ age*V6*V3 Gives the k position of the k1 double product Vn*Vm or age*Vn*Vm*/
                   11577:              Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 Gives the k1 double product  Vn*Vm or age*Vn*Vm at the k position */
                   11578:              Tvard[k1][1] =m; /* m 1 for V1*/
                   11579:              Tvardk[k][1] =m; /* m 1 for V1*/
                   11580:              Tvard[k1][2] =n; /* n 4 for V4*/
                   11581:              Tvardk[k][2] =n; /* n 4 for V4*/
1.351     brouard  11582: /*           Tvar[Tage[cptcovage]]=k1;*/ /* Tvar[6=age*V3*V2]=9 (new fixed covariate) */ /* We don't know about Fixed yet HERE */
1.349     brouard  11583:              if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */
                   11584:                for (i=1; i<=lastobs;i++){/* For fixed product */
                   11585:                  /* Computes the new covariate which is a product of
                   11586:                     covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                   11587:                  covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
                   11588:                }
                   11589:                cptcovprodage++; /* Counting the number of fixed covariate with age */
                   11590:                FixedV[ncovcolt+k12]=0; /* We expand Vn*Vm */
                   11591:                k12++;
                   11592:                FixedV[ncovcolt+k12]=0;
                   11593:              }else{ /*End of FixedV */
                   11594:                cptcovprodvage++; /* Counting the number of varying covariate with age */
                   11595:                FixedV[ncovcolt+k12]=1; /* We expand Vn*Vm */
                   11596:                k12++;
                   11597:                FixedV[ncovcolt+k12]=1;
                   11598:              }
                   11599:            }else{  /* k1 Vn*Vm already exists */
                   11600:              k11=existcomb[n][m];
                   11601:              Tposprod[k]=k11; /* OK */
                   11602:              Tvar[k]=Tvar[Tprod[k11]]; /* HERY */
                   11603:              Tvardk[k][1]=m;
                   11604:              Tvardk[k][2]=n;
                   11605:              if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */
                   11606:                /*cptcovage++;*/ /* Counts the number of covariates which include age as a product */
                   11607:                cptcovprodage++; /* Counting the number of fixed covariate with age */
                   11608:                /*Tage[cptcovage]=k;*/ /* For age*V3*V2 Tage[1]=V3*V3=9 HERY too*/
                   11609:                Tvar[Tage[cptcovage]]=k1;
                   11610:                FixedV[ncovcolt+k12]=0; /* We expand Vn*Vm */
                   11611:                k12++;
                   11612:                FixedV[ncovcolt+k12]=0;
                   11613:              }else{ /* Already exists but time varying (and age) */
                   11614:                /*cptcovage++;*/ /* Counts the number of covariates which include age as a product */
                   11615:                /*Tage[cptcovage]=k;*/ /* For age*V3*V2 Tage[1]=V3*V3=9 HERY too*/
                   11616:                /* Tvar[Tage[cptcovage]]=k1; */
                   11617:                cptcovprodvage++;
                   11618:                FixedV[ncovcolt+k12]=1; /* We expand Vn*Vm */
                   11619:                k12++;
                   11620:                FixedV[ncovcolt+k12]=1;
                   11621:              }
                   11622:            }
                   11623:            /* Tage[cptcovage]=k;  /\*  V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */
                   11624:            /* Tvar[k]=k11; /\* HERY *\/ */
                   11625:          } else {/* simple product strb=age*Vn so that c=Vn and d=age, or strb=Vn*age so that c=age and d=Vn, or b=Vn*Vm so that c=Vm and d=Vn */
                   11626:             cptcovprod++;
                   11627:             if (strcmp(strc,"age")==0) { /**< Model includes age: strb= Vn*age c=age d=Vn*/
                   11628:               /* covar is not filled and then is empty */
                   11629:               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
                   11630:               Tvar[k]=atoi(stre);  /* V2+V1+V5*age+V4+V3*age Tvar[5]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
                   11631:               Typevar[k]=1;  /* 1 for age product */
                   11632:               cptcovage++; /* Counts the number of covariates which include age as a product */
                   11633:               Tage[cptcovage]=k;  /*  V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
                   11634:              if( FixedV[Tvar[k]] == 0){
                   11635:                cptcovprodage++; /* Counting the number of fixed covariate with age */
                   11636:              }else{
                   11637:                cptcovprodvage++; /* Counting the number of fixedvarying covariate with age */
                   11638:              }
                   11639:               /*printf("stre=%s ", stre);*/
                   11640:             } else if (strcmp(strd,"age")==0) { /* strb= age*Vn c=Vn */
                   11641:               cutl(stre,strb,strc,'V');
                   11642:               Tvar[k]=atoi(stre);
                   11643:               Typevar[k]=1;  /* 1 for age product */
                   11644:               cptcovage++;
                   11645:               Tage[cptcovage]=k;
                   11646:              if( FixedV[Tvar[k]] == 0){
                   11647:                cptcovprodage++; /* Counting the number of fixed covariate with age */
                   11648:              }else{
                   11649:                cptcovprodvage++; /* Counting the number of fixedvarying covariate with age */
1.339     brouard  11650:              }
1.349     brouard  11651:             }else{ /*  for product Vn*Vm */
                   11652:              Typevar[k]=2;  /* 2 for product Vn*Vm */
                   11653:              cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
                   11654:              n=atoi(stre);
                   11655:              cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
                   11656:              m=atoi(strc);
                   11657:              k1++;
                   11658:              cptcovprodnoage++;
                   11659:              if(existcomb[n][m] != 0 || existcomb[m][n] != 0){
                   11660:                printf("Warning in model combination V%d*V%d already exists in the model in position k1=%d!\n",n,m,existcomb[n][m]);
                   11661:                fprintf(ficlog,"Warning in model combination V%d*V%d already exists in the model in position k1=%d!\n",n,m,existcomb[n][m]);
                   11662:                fflush(ficlog);
                   11663:                k11=existcomb[n][m];
                   11664:                Tvar[k]=ncovcol+nqv+ntv+nqtv+k11;
                   11665:                Tposprod[k]=k11;
                   11666:                Tprod[k11]=k;
                   11667:                Tvardk[k][1] =m; /* m 1 for V1*/
                   11668:                /* Tvard[k11][1] =m; /\* n 4 for V4*\/ */
                   11669:                Tvardk[k][2] =n; /* n 4 for V4*/                
                   11670:                /* Tvard[k11][2] =n; /\* n 4 for V4*\/ */
                   11671:              }else{ /* combination Vn*Vm doesn't exist we create it (no age)*/
                   11672:                existcomb[n][m]=k1;
                   11673:                existcomb[m][n]=k1;
                   11674:                Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* ncovcolt+k1; For model-covariate k tells which data-covariate to use but
                   11675:                                                    because this model-covariate is a construction we invent a new column
                   11676:                                                    which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                   11677:                                                    If already ncovcol=4 and model= V2 + V1 + V1*V4 + age*V3 + V3*V2
                   11678:                                                    thus after V4 we invent V5 and V6 because age*V3 will be computed in 4
                   11679:                                                    Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=3 etc */
                   11680:                /* Please remark that the new variables are model dependent */
                   11681:                /* If we have 4 variable but the model uses only 3, like in
                   11682:                 * model= V1 + age*V1 + V2 + V3 + age*V2 + age*V3 + V1*V2 + V1*V3
                   11683:                 *  k=     1     2      3   4     5        6        7       8
                   11684:                 * Tvar[k]=1     1       2   3     2        3       (5       6) (and not 4 5 because of V4 missing)
                   11685:                 * Tage[kk]    [1]= 2           [2]=5      [3]=6                  kk=1 to cptcovage=3
                   11686:                 * Tvar[Tage[kk]][1]=2          [2]=2      [3]=3
                   11687:                 */
                   11688:                /* We need to feed some variables like TvarVV, but later on next loop because of ncovv (k2) is not correct */
                   11689:                Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 +V6*V2*age  */
                   11690:                Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */
                   11691:                Tvard[k1][1] =m; /* m 1 for V1*/
                   11692:                Tvardk[k][1] =m; /* m 1 for V1*/
                   11693:                Tvard[k1][2] =n; /* n 4 for V4*/
                   11694:                Tvardk[k][2] =n; /* n 4 for V4*/
                   11695:                k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
                   11696:                /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
                   11697:                /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
                   11698:                /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
                   11699:                /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
                   11700:                if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */
                   11701:                  for (i=1; i<=lastobs;i++){/* For fixed product */
                   11702:                    /* Computes the new covariate which is a product of
                   11703:                       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                   11704:                    covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
                   11705:                  }
                   11706:                  /* TvarVV[k2]=n; */
                   11707:                  /* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   11708:                  /* TvarVV[k2+1]=m; */
                   11709:                  /* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   11710:                }else{ /* not FixedV */
                   11711:                  /* TvarVV[k2]=n; */
                   11712:                  /* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   11713:                  /* TvarVV[k2+1]=m; */
                   11714:                  /* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   11715:                }                 
                   11716:              }  /* End of creation of Vn*Vm if not created by age*Vn*Vm earlier  */
                   11717:            } /*  End of product Vn*Vm */
                   11718:           } /* End of age*double product or simple product */
                   11719:        }else { /* not a product */
1.234     brouard  11720:          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                   11721:          /*  scanf("%d",i);*/
                   11722:          cutl(strd,strc,strb,'V');
                   11723:          ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
                   11724:          cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
                   11725:          Tvar[k]=atoi(strd);
                   11726:          Typevar[k]=0;  /* 0 for simple covariates */
                   11727:        }
                   11728:        strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
1.223     brouard  11729:                                /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
1.225     brouard  11730:                                  scanf("%d",i);*/
1.187     brouard  11731:       } /* end of loop + on total covariates */
1.351     brouard  11732: 
                   11733:       
1.187     brouard  11734:     } /* end if strlen(modelsave == 0) age*age might exist */
                   11735:   } /* end if strlen(model == 0) */
1.349     brouard  11736:   cptcovs=cptcovt - cptcovdageprod - cptcovprod;/**<  Number of simple covariates V1 +V1*age +V3 +V3*V4 +age*age + age*v4*V3=> V1 + V3 =4+1-3=2  */
                   11737: 
1.136     brouard  11738:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                   11739:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
1.225     brouard  11740:   
1.136     brouard  11741:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
1.225     brouard  11742:      printf("cptcovprod=%d ", cptcovprod);
                   11743:      fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
                   11744:      scanf("%d ",i);*/
                   11745: 
                   11746: 
1.230     brouard  11747: /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
                   11748:    of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
1.226     brouard  11749: /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
                   11750:    model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
                   11751:    k =           1    2   3     4       5       6      7      8        9
                   11752:    Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
1.319     brouard  11753:    Typevar[k]=   0    0   0     2       1       0      2      1        0
1.227     brouard  11754:    Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
                   11755:    Dummy[k]      1    0   0     0       3       1      1      2        3
                   11756:          Tmodelind[combination of covar]=k;
1.225     brouard  11757: */  
                   11758: /* Dispatching between quantitative and time varying covariates */
1.226     brouard  11759:   /* If Tvar[k] >ncovcol it is a product */
1.225     brouard  11760:   /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
1.226     brouard  11761:        /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
1.318     brouard  11762:   printf("Model=1+age+%s\n\
1.349     brouard  11763: Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product, 3 for double product with age \n\
1.227     brouard  11764: Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
                   11765: Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
1.318     brouard  11766:   fprintf(ficlog,"Model=1+age+%s\n\
1.349     brouard  11767: Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product, 3 for double product with age  \n\
1.227     brouard  11768: Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
                   11769: Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
1.342     brouard  11770:   for(k=-1;k<=NCOVMAX; k++){ Fixed[k]=0; Dummy[k]=0;}
                   11771:   for(k=1;k<=NCOVMAX; k++){TvarFind[k]=0; TvarVind[k]=0;}
1.351     brouard  11772: 
                   11773: 
                   11774:   /* Second loop for calculating  Fixed[k], Dummy[k]*/
                   11775: 
                   11776:   
1.349     brouard  11777:   for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0,ncovva=0,ncovvta=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0, ncovvt=0;k<=cptcovt; k++){ /* or cptocvt loop on k from model */
1.234     brouard  11778:     if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
1.227     brouard  11779:       Fixed[k]= 0;
                   11780:       Dummy[k]= 0;
1.225     brouard  11781:       ncoveff++;
1.232     brouard  11782:       ncovf++;
1.234     brouard  11783:       nsd++;
                   11784:       modell[k].maintype= FTYPE;
                   11785:       TvarsD[nsd]=Tvar[k];
                   11786:       TvarsDind[nsd]=k;
1.330     brouard  11787:       TnsdVar[Tvar[k]]=nsd;
1.234     brouard  11788:       TvarF[ncovf]=Tvar[k];
                   11789:       TvarFind[ncovf]=k;
                   11790:       TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   11791:       TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.339     brouard  11792:     /* }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /\* Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol *\/ */
1.240     brouard  11793:     }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
1.227     brouard  11794:       Fixed[k]= 0;
                   11795:       Dummy[k]= 1;
1.230     brouard  11796:       nqfveff++;
1.234     brouard  11797:       modell[k].maintype= FTYPE;
                   11798:       modell[k].subtype= FQ;
                   11799:       nsq++;
1.334     brouard  11800:       TvarsQ[nsq]=Tvar[k]; /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary see below */
                   11801:       TvarsQind[nsq]=k;    /* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
1.232     brouard  11802:       ncovf++;
1.234     brouard  11803:       TvarF[ncovf]=Tvar[k];
                   11804:       TvarFind[ncovf]=k;
1.231     brouard  11805:       TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
1.230     brouard  11806:       TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
1.242     brouard  11807:     }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */
1.339     brouard  11808:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
                   11809:       /* model V1+V3+age*V1+age*V3+V1*V3 */
                   11810:       /*  Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   11811:       ncovvt++;
                   11812:       TvarVV[ncovvt]=Tvar[k];  /*  TvarVV[1]=V3 (first time varying in the model equation  */
                   11813:       TvarVVind[ncovvt]=k;    /*  TvarVVind[1]=2 (second position in the model equation  */
                   11814: 
1.227     brouard  11815:       Fixed[k]= 1;
                   11816:       Dummy[k]= 0;
1.225     brouard  11817:       ntveff++; /* Only simple time varying dummy variable */
1.234     brouard  11818:       modell[k].maintype= VTYPE;
                   11819:       modell[k].subtype= VD;
                   11820:       nsd++;
                   11821:       TvarsD[nsd]=Tvar[k];
                   11822:       TvarsDind[nsd]=k;
1.330     brouard  11823:       TnsdVar[Tvar[k]]=nsd; /* To be verified */
1.234     brouard  11824:       ncovv++; /* Only simple time varying variables */
                   11825:       TvarV[ncovv]=Tvar[k];
1.242     brouard  11826:       TvarVind[ncovv]=k; /* TvarVind[2]=2  TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
1.231     brouard  11827:       TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
                   11828:       TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
1.228     brouard  11829:       printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
                   11830:       printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
1.231     brouard  11831:     }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
1.339     brouard  11832:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
                   11833:       /* model V1+V3+age*V1+age*V3+V1*V3 */
                   11834:       /*  Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   11835:       ncovvt++;
                   11836:       TvarVV[ncovvt]=Tvar[k];  /*  TvarVV[1]=V3 (first time varying in the model equation  */
                   11837:       TvarVVind[ncovvt]=k;  /*  TvarVV[1]=V3 (first time varying in the model equation  */
                   11838:       
1.234     brouard  11839:       Fixed[k]= 1;
                   11840:       Dummy[k]= 1;
                   11841:       nqtveff++;
                   11842:       modell[k].maintype= VTYPE;
                   11843:       modell[k].subtype= VQ;
                   11844:       ncovv++; /* Only simple time varying variables */
                   11845:       nsq++;
1.334     brouard  11846:       TvarsQ[nsq]=Tvar[k]; /* k=1 Tvar=5 nsq=1 TvarsQ[1]=5 */ /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary here) */
                   11847:       TvarsQind[nsq]=k; /* For single quantitative covariate gives the model position of each single quantitative covariate *//* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
1.234     brouard  11848:       TvarV[ncovv]=Tvar[k];
1.242     brouard  11849:       TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
1.231     brouard  11850:       TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   11851:       TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
1.234     brouard  11852:       TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
                   11853:       /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
1.349     brouard  11854:       /* printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%Ad,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); */
1.342     brouard  11855:       /* printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); */
1.227     brouard  11856:     }else if (Typevar[k] == 1) {  /* product with age */
1.234     brouard  11857:       ncova++;
                   11858:       TvarA[ncova]=Tvar[k];
                   11859:       TvarAind[ncova]=k;
1.349     brouard  11860:       /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */
                   11861:       /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
1.231     brouard  11862:       if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
1.240     brouard  11863:        Fixed[k]= 2;
                   11864:        Dummy[k]= 2;
                   11865:        modell[k].maintype= ATYPE;
                   11866:        modell[k].subtype= APFD;
1.349     brouard  11867:        ncovta++;
                   11868:        TvarAVVA[ncovta]=Tvar[k]; /*  (2)age*V3 */
                   11869:        TvarAVVAind[ncovta]=k;
1.240     brouard  11870:        /* ncoveff++; */
1.227     brouard  11871:       }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
1.240     brouard  11872:        Fixed[k]= 2;
                   11873:        Dummy[k]= 3;
                   11874:        modell[k].maintype= ATYPE;
                   11875:        modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
1.349     brouard  11876:        ncovta++;
                   11877:        TvarAVVA[ncovta]=Tvar[k]; /*   */
                   11878:        TvarAVVAind[ncovta]=k;
1.240     brouard  11879:        /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
1.227     brouard  11880:       }else if( Tvar[k] <=ncovcol+nqv+ntv ){
1.240     brouard  11881:        Fixed[k]= 3;
                   11882:        Dummy[k]= 2;
                   11883:        modell[k].maintype= ATYPE;
                   11884:        modell[k].subtype= APVD;                /*      Product age * varying dummy */
1.349     brouard  11885:        ncovva++;
                   11886:        TvarVVA[ncovva]=Tvar[k]; /*  (1)+age*V6 + (2)age*V7 */
                   11887:        TvarVVAind[ncovva]=k;
                   11888:        ncovta++;
                   11889:        TvarAVVA[ncovta]=Tvar[k]; /*   */
                   11890:        TvarAVVAind[ncovta]=k;
1.240     brouard  11891:        /* ntveff++; /\* Only simple time varying dummy variable *\/ */
1.227     brouard  11892:       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
1.240     brouard  11893:        Fixed[k]= 3;
                   11894:        Dummy[k]= 3;
                   11895:        modell[k].maintype= ATYPE;
                   11896:        modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
1.349     brouard  11897:        ncovva++;
                   11898:        TvarVVA[ncovva]=Tvar[k]; /*   */
                   11899:        TvarVVAind[ncovva]=k;
                   11900:        ncovta++;
                   11901:        TvarAVVA[ncovta]=Tvar[k]; /*  (1)+age*V6 + (2)age*V7 */
                   11902:        TvarAVVAind[ncovta]=k;
1.240     brouard  11903:        /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
1.227     brouard  11904:       }
1.349     brouard  11905:     }else if( Tposprod[k]>0  &&  Typevar[k]==2){  /* Detects if fixed product no age Vm*Vn */
                   11906:       printf("MEMORY ERRORR k=%d  Tposprod[k]=%d, Typevar[k]=%d\n ",k, Tposprod[k], Typevar[k]);
                   11907:       if(FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* Needs a fixed product Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol V3*V2 */
                   11908:       printf("MEMORY ERRORR k=%d Tvardk[k][1]=%d, Tvardk[k][2]=%d, FixedV[Tvardk[k][1]]=%d,FixedV[Tvardk[k][2]]=%d\n ",k,Tvardk[k][1],Tvardk[k][2],FixedV[Tvardk[k][1]],FixedV[Tvardk[k][2]]);
                   11909:        Fixed[k]= 0;
                   11910:        Dummy[k]= 0;
                   11911:        ncoveff++;
                   11912:        ncovf++;
                   11913:        /* ncovv++; */
                   11914:        /* TvarVV[ncovv]=Tvardk[k][1]; */
                   11915:        /* FixedV[ncovcolt+ncovv]=0; /\* or FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   11916:        /* ncovv++; */
                   11917:        /* TvarVV[ncovv]=Tvardk[k][2]; */
                   11918:        /* FixedV[ncovcolt+ncovv]=0; /\* or FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   11919:        modell[k].maintype= FTYPE;
                   11920:        TvarF[ncovf]=Tvar[k];
                   11921:        /* TnsdVar[Tvar[k]]=nsd; */ /* To be done */
                   11922:        TvarFind[ncovf]=k;
                   11923:        TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   11924:        TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   11925:       }else{/* product varying Vn * Vm without age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product  */
                   11926:        /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
                   11927:        /* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age*/
                   11928:        /*  Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   11929:        k1=Tposprod[k];  /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1, 1} k1=1 first product but second time varying because of V3 */
                   11930:        ncovvt++;
                   11931:        TvarVV[ncovvt]=Tvard[k1][1];  /*  TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */
                   11932:        TvarVVind[ncovvt]=k;  /*  TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */
                   11933:        ncovvt++;
                   11934:        TvarVV[ncovvt]=Tvard[k1][2];  /*  TvarVV[3]=V3 */
                   11935:        TvarVVind[ncovvt]=k;  /*  TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */
                   11936:        
                   11937:        /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */
                   11938:        /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
                   11939:        
                   11940:        if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */
                   11941:          if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */
                   11942:            Fixed[k]= 1;
                   11943:            Dummy[k]= 0;
                   11944:            modell[k].maintype= FTYPE;
                   11945:            modell[k].subtype= FPDD;            /*      Product fixed dummy * fixed dummy */
                   11946:            ncovf++; /* Fixed variables without age */
                   11947:            TvarF[ncovf]=Tvar[k];
                   11948:            TvarFind[ncovf]=k;
                   11949:          }else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */
                   11950:            Fixed[k]= 0;  /* Fixed product */
                   11951:            Dummy[k]= 1;
                   11952:            modell[k].maintype= FTYPE;
                   11953:            modell[k].subtype= FPDQ;            /*      Product fixed dummy * fixed quantitative */
                   11954:            ncovf++; /* Varying variables without age */
                   11955:            TvarF[ncovf]=Tvar[k];
                   11956:            TvarFind[ncovf]=k;
                   11957:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */
                   11958:            Fixed[k]= 1;
                   11959:            Dummy[k]= 0;
                   11960:            modell[k].maintype= VTYPE;
                   11961:            modell[k].subtype= VPDD;            /*      Product fixed dummy * varying dummy */
                   11962:            ncovv++; /* Varying variables without age */
                   11963:            TvarV[ncovv]=Tvar[k];  /* TvarV[1]=Tvar[5]=5 because there is a V4 */
                   11964:            TvarVind[ncovv]=k;/* TvarVind[1]=5 */ 
                   11965:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */
                   11966:            Fixed[k]= 1;
                   11967:            Dummy[k]= 1;
                   11968:            modell[k].maintype= VTYPE;
                   11969:            modell[k].subtype= VPDQ;            /*      Product fixed dummy * varying quantitative */
                   11970:            ncovv++; /* Varying variables without age */
                   11971:            TvarV[ncovv]=Tvar[k];
                   11972:            TvarVind[ncovv]=k;
                   11973:          }
                   11974:        }else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti  */
                   11975:          if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */
                   11976:            Fixed[k]= 0;  /*  Fixed product */
                   11977:            Dummy[k]= 1;
                   11978:            modell[k].maintype= FTYPE;
                   11979:            modell[k].subtype= FPDQ;            /*      Product fixed quantitative * fixed dummy */
                   11980:            ncovf++; /* Fixed variables without age */
                   11981:            TvarF[ncovf]=Tvar[k];
                   11982:            TvarFind[ncovf]=k;
                   11983:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */
                   11984:            Fixed[k]= 1;
                   11985:            Dummy[k]= 1;
                   11986:            modell[k].maintype= VTYPE;
                   11987:            modell[k].subtype= VPDQ;            /*      Product fixed quantitative * varying dummy */
                   11988:            ncovv++; /* Varying variables without age */
                   11989:            TvarV[ncovv]=Tvar[k];
                   11990:            TvarVind[ncovv]=k;
                   11991:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */
                   11992:            Fixed[k]= 1;
                   11993:            Dummy[k]= 1;
                   11994:            modell[k].maintype= VTYPE;
                   11995:            modell[k].subtype= VPQQ;            /*      Product fixed quantitative * varying quantitative */
                   11996:            ncovv++; /* Varying variables without age */
                   11997:            TvarV[ncovv]=Tvar[k];
                   11998:            TvarVind[ncovv]=k;
                   11999:            ncovv++; /* Varying variables without age */
                   12000:            TvarV[ncovv]=Tvar[k];
                   12001:            TvarVind[ncovv]=k;
                   12002:          }
                   12003:        }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */
                   12004:          if(Tvard[k1][2] <=ncovcol){
                   12005:            Fixed[k]= 1;
                   12006:            Dummy[k]= 1;
                   12007:            modell[k].maintype= VTYPE;
                   12008:            modell[k].subtype= VPDD;            /*      Product time varying dummy * fixed dummy */
                   12009:            ncovv++; /* Varying variables without age */
                   12010:            TvarV[ncovv]=Tvar[k];
                   12011:            TvarVind[ncovv]=k;
                   12012:          }else if(Tvard[k1][2] <=ncovcol+nqv){
                   12013:            Fixed[k]= 1;
                   12014:            Dummy[k]= 1;
                   12015:            modell[k].maintype= VTYPE;
                   12016:            modell[k].subtype= VPDQ;            /*      Product time varying dummy * fixed quantitative */
                   12017:            ncovv++; /* Varying variables without age */
                   12018:            TvarV[ncovv]=Tvar[k];
                   12019:            TvarVind[ncovv]=k;
                   12020:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   12021:            Fixed[k]= 1;
                   12022:            Dummy[k]= 0;
                   12023:            modell[k].maintype= VTYPE;
                   12024:            modell[k].subtype= VPDD;            /*      Product time varying dummy * time varying dummy */
                   12025:            ncovv++; /* Varying variables without age */
                   12026:            TvarV[ncovv]=Tvar[k];
                   12027:            TvarVind[ncovv]=k;
                   12028:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   12029:            Fixed[k]= 1;
                   12030:            Dummy[k]= 1;
                   12031:            modell[k].maintype= VTYPE;
                   12032:            modell[k].subtype= VPDQ;            /*      Product time varying dummy * time varying quantitative */
                   12033:            ncovv++; /* Varying variables without age */
                   12034:            TvarV[ncovv]=Tvar[k];
                   12035:            TvarVind[ncovv]=k;
                   12036:          }
                   12037:        }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */
                   12038:          if(Tvard[k1][2] <=ncovcol){
                   12039:            Fixed[k]= 1;
                   12040:            Dummy[k]= 1;
                   12041:            modell[k].maintype= VTYPE;
                   12042:            modell[k].subtype= VPDQ;            /*      Product time varying quantitative * fixed dummy */
                   12043:            ncovv++; /* Varying variables without age */
                   12044:            TvarV[ncovv]=Tvar[k];
                   12045:            TvarVind[ncovv]=k;
                   12046:          }else if(Tvard[k1][2] <=ncovcol+nqv){
                   12047:            Fixed[k]= 1;
                   12048:            Dummy[k]= 1;
                   12049:            modell[k].maintype= VTYPE;
                   12050:            modell[k].subtype= VPQQ;            /*      Product time varying quantitative * fixed quantitative */
                   12051:            ncovv++; /* Varying variables without age */
                   12052:            TvarV[ncovv]=Tvar[k];
                   12053:            TvarVind[ncovv]=k;
                   12054:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   12055:            Fixed[k]= 1;
                   12056:            Dummy[k]= 1;
                   12057:            modell[k].maintype= VTYPE;
                   12058:            modell[k].subtype= VPDQ;            /*      Product time varying quantitative * time varying dummy */
                   12059:            ncovv++; /* Varying variables without age */
                   12060:            TvarV[ncovv]=Tvar[k];
                   12061:            TvarVind[ncovv]=k;
                   12062:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   12063:            Fixed[k]= 1;
                   12064:            Dummy[k]= 1;
                   12065:            modell[k].maintype= VTYPE;
                   12066:            modell[k].subtype= VPQQ;            /*      Product time varying quantitative * time varying quantitative */
                   12067:            ncovv++; /* Varying variables without age */
                   12068:            TvarV[ncovv]=Tvar[k];
                   12069:            TvarVind[ncovv]=k;
                   12070:          }
                   12071:        }else{
                   12072:          printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   12073:          fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   12074:        } /*end k1*/
                   12075:       }
                   12076:     }else if(Typevar[k] == 3){  /* product Vn * Vm with age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product  */
1.339     brouard  12077:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
1.349     brouard  12078:       /* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age*/
                   12079:       /*  Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   12080:       k1=Tposprod[k];  /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1, 1} k1=1 first product but second time varying because of V3 */
                   12081:       ncova++;
                   12082:       TvarA[ncova]=Tvard[k1][1];  /*  TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */
                   12083:       TvarAind[ncova]=k;  /*  TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */
                   12084:       ncova++;
                   12085:       TvarA[ncova]=Tvard[k1][2];  /*  TvarVV[3]=V3 */
                   12086:       TvarAind[ncova]=k;  /*  TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */
1.339     brouard  12087: 
1.349     brouard  12088:       /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */
                   12089:       /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
                   12090:       if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){
                   12091:        ncovta++;
                   12092:        TvarAVVA[ncovta]=Tvard[k1][1]; /*   age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */
                   12093:        TvarAVVAind[ncovta]=k;
                   12094:        ncovta++;
                   12095:        TvarAVVA[ncovta]=Tvard[k1][2]; /*   age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */
                   12096:        TvarAVVAind[ncovta]=k;
                   12097:       }else{
                   12098:        ncovva++;  /* HERY  reached */
                   12099:        TvarVVA[ncovva]=Tvard[k1][1]; /*  age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4  */
                   12100:        TvarVVAind[ncovva]=k;
                   12101:        ncovva++;
                   12102:        TvarVVA[ncovva]=Tvard[k1][2]; /*   */
                   12103:        TvarVVAind[ncovva]=k;
                   12104:        ncovta++;
                   12105:        TvarAVVA[ncovta]=Tvard[k1][1]; /*   age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */
                   12106:        TvarAVVAind[ncovta]=k;
                   12107:        ncovta++;
                   12108:        TvarAVVA[ncovta]=Tvard[k1][2]; /*   age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */
                   12109:        TvarAVVAind[ncovta]=k;
                   12110:       }
1.339     brouard  12111:       if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */
                   12112:        if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */
1.349     brouard  12113:          Fixed[k]= 2;
                   12114:          Dummy[k]= 2;
1.240     brouard  12115:          modell[k].maintype= FTYPE;
                   12116:          modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
1.349     brouard  12117:          /* TvarF[ncova]=Tvar[k];   /\* Problem to solve *\/ */
                   12118:          /* TvarFind[ncova]=k; */
1.339     brouard  12119:        }else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */
1.349     brouard  12120:          Fixed[k]= 2;  /* Fixed product */
                   12121:          Dummy[k]= 3;
1.240     brouard  12122:          modell[k].maintype= FTYPE;
                   12123:          modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
1.349     brouard  12124:          /* TvarF[ncova]=Tvar[k]; */
                   12125:          /* TvarFind[ncova]=k; */
1.339     brouard  12126:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */
1.349     brouard  12127:          Fixed[k]= 3;
                   12128:          Dummy[k]= 2;
1.240     brouard  12129:          modell[k].maintype= VTYPE;
                   12130:          modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
1.349     brouard  12131:          TvarV[ncova]=Tvar[k];  /* TvarV[1]=Tvar[5]=5 because there is a V4 */
                   12132:          TvarVind[ncova]=k;/* TvarVind[1]=5 */ 
1.339     brouard  12133:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */
1.349     brouard  12134:          Fixed[k]= 3;
                   12135:          Dummy[k]= 3;
1.240     brouard  12136:          modell[k].maintype= VTYPE;
                   12137:          modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
1.349     brouard  12138:          /* ncovv++; /\* Varying variables without age *\/ */
                   12139:          /* TvarV[ncovv]=Tvar[k]; */
                   12140:          /* TvarVind[ncovv]=k; */
1.240     brouard  12141:        }
1.339     brouard  12142:       }else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti  */
                   12143:        if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */
1.349     brouard  12144:          Fixed[k]= 2;  /*  Fixed product */
                   12145:          Dummy[k]= 2;
1.240     brouard  12146:          modell[k].maintype= FTYPE;
                   12147:          modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
1.349     brouard  12148:          /* ncova++; /\* Fixed variables with age *\/ */
                   12149:          /* TvarF[ncovf]=Tvar[k]; */
                   12150:          /* TvarFind[ncovf]=k; */
1.339     brouard  12151:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */
1.349     brouard  12152:          Fixed[k]= 2;
                   12153:          Dummy[k]= 3;
1.240     brouard  12154:          modell[k].maintype= VTYPE;
                   12155:          modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
1.349     brouard  12156:          /* ncova++; /\* Varying variables with age *\/ */
                   12157:          /* TvarV[ncova]=Tvar[k]; */
                   12158:          /* TvarVind[ncova]=k; */
1.339     brouard  12159:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */
1.349     brouard  12160:          Fixed[k]= 3;
                   12161:          Dummy[k]= 2;
1.240     brouard  12162:          modell[k].maintype= VTYPE;
                   12163:          modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
1.349     brouard  12164:          ncova++; /* Varying variables without age */
                   12165:          TvarV[ncova]=Tvar[k];
                   12166:          TvarVind[ncova]=k;
                   12167:          /* ncova++; /\* Varying variables without age *\/ */
                   12168:          /* TvarV[ncova]=Tvar[k]; */
                   12169:          /* TvarVind[ncova]=k; */
1.240     brouard  12170:        }
1.339     brouard  12171:       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */
1.240     brouard  12172:        if(Tvard[k1][2] <=ncovcol){
1.349     brouard  12173:          Fixed[k]= 2;
                   12174:          Dummy[k]= 2;
1.240     brouard  12175:          modell[k].maintype= VTYPE;
                   12176:          modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
1.349     brouard  12177:          /* ncova++; /\* Varying variables with age *\/ */
                   12178:          /* TvarV[ncova]=Tvar[k]; */
                   12179:          /* TvarVind[ncova]=k; */
1.240     brouard  12180:        }else if(Tvard[k1][2] <=ncovcol+nqv){
1.349     brouard  12181:          Fixed[k]= 2;
                   12182:          Dummy[k]= 3;
1.240     brouard  12183:          modell[k].maintype= VTYPE;
                   12184:          modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
1.349     brouard  12185:          /* ncova++; /\* Varying variables with age *\/ */
                   12186:          /* TvarV[ncova]=Tvar[k]; */
                   12187:          /* TvarVind[ncova]=k; */
1.240     brouard  12188:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
1.349     brouard  12189:          Fixed[k]= 3;
                   12190:          Dummy[k]= 2;
1.240     brouard  12191:          modell[k].maintype= VTYPE;
                   12192:          modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
1.349     brouard  12193:          /* ncova++; /\* Varying variables with age *\/ */
                   12194:          /* TvarV[ncova]=Tvar[k]; */
                   12195:          /* TvarVind[ncova]=k; */
1.240     brouard  12196:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
1.349     brouard  12197:          Fixed[k]= 3;
                   12198:          Dummy[k]= 3;
1.240     brouard  12199:          modell[k].maintype= VTYPE;
                   12200:          modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
1.349     brouard  12201:          /* ncova++; /\* Varying variables with age *\/ */
                   12202:          /* TvarV[ncova]=Tvar[k]; */
                   12203:          /* TvarVind[ncova]=k; */
1.240     brouard  12204:        }
1.339     brouard  12205:       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */
1.240     brouard  12206:        if(Tvard[k1][2] <=ncovcol){
1.349     brouard  12207:          Fixed[k]= 2;
                   12208:          Dummy[k]= 2;
1.240     brouard  12209:          modell[k].maintype= VTYPE;
                   12210:          modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
1.349     brouard  12211:          /* ncova++; /\* Varying variables with age *\/ */
                   12212:          /* TvarV[ncova]=Tvar[k]; */
                   12213:          /* TvarVind[ncova]=k; */
1.240     brouard  12214:        }else if(Tvard[k1][2] <=ncovcol+nqv){
1.349     brouard  12215:          Fixed[k]= 2;
                   12216:          Dummy[k]= 3;
1.240     brouard  12217:          modell[k].maintype= VTYPE;
                   12218:          modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
1.349     brouard  12219:          /* ncova++; /\* Varying variables with age *\/ */
                   12220:          /* TvarV[ncova]=Tvar[k]; */
                   12221:          /* TvarVind[ncova]=k; */
1.240     brouard  12222:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
1.349     brouard  12223:          Fixed[k]= 3;
                   12224:          Dummy[k]= 2;
1.240     brouard  12225:          modell[k].maintype= VTYPE;
                   12226:          modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
1.349     brouard  12227:          /* ncova++; /\* Varying variables with age *\/ */
                   12228:          /* TvarV[ncova]=Tvar[k]; */
                   12229:          /* TvarVind[ncova]=k; */
1.240     brouard  12230:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
1.349     brouard  12231:          Fixed[k]= 3;
                   12232:          Dummy[k]= 3;
1.240     brouard  12233:          modell[k].maintype= VTYPE;
                   12234:          modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
1.349     brouard  12235:          /* ncova++; /\* Varying variables with age *\/ */
                   12236:          /* TvarV[ncova]=Tvar[k]; */
                   12237:          /* TvarVind[ncova]=k; */
1.240     brouard  12238:        }
1.227     brouard  12239:       }else{
1.240     brouard  12240:        printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   12241:        fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   12242:       } /*end k1*/
1.349     brouard  12243:     } else{
1.226     brouard  12244:       printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
                   12245:       fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
1.225     brouard  12246:     }
1.342     brouard  12247:     /* printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); */
                   12248:     /* printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); */
1.227     brouard  12249:     fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
                   12250:   }
1.349     brouard  12251:   ncovvta=ncovva;
1.227     brouard  12252:   /* Searching for doublons in the model */
                   12253:   for(k1=1; k1<= cptcovt;k1++){
                   12254:     for(k2=1; k2 <k1;k2++){
1.285     brouard  12255:       /* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */
                   12256:       if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){
1.234     brouard  12257:        if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
                   12258:          if(Tvar[k1]==Tvar[k2]){
1.338     brouard  12259:            printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]);
                   12260:            fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog);
1.234     brouard  12261:            return(1);
                   12262:          }
                   12263:        }else if (Typevar[k1] ==2){
                   12264:          k3=Tposprod[k1];
                   12265:          k4=Tposprod[k2];
                   12266:          if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
1.338     brouard  12267:            printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
                   12268:            fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
1.234     brouard  12269:            return(1);
                   12270:          }
                   12271:        }
1.227     brouard  12272:       }
                   12273:     }
1.225     brouard  12274:   }
                   12275:   printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
                   12276:   fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
1.234     brouard  12277:   printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
                   12278:   fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
1.349     brouard  12279: 
                   12280:   free_imatrix(existcomb,1,NCOVMAX,1,NCOVMAX);
1.137     brouard  12281:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
1.164     brouard  12282:   /*endread:*/
1.225     brouard  12283:   printf("Exiting decodemodel: ");
                   12284:   return (1);
1.136     brouard  12285: }
                   12286: 
1.169     brouard  12287: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
1.248     brouard  12288: {/* Check ages at death */
1.136     brouard  12289:   int i, m;
1.218     brouard  12290:   int firstone=0;
                   12291:   
1.136     brouard  12292:   for (i=1; i<=imx; i++) {
                   12293:     for(m=2; (m<= maxwav); m++) {
                   12294:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
                   12295:        anint[m][i]=9999;
1.216     brouard  12296:        if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
                   12297:          s[m][i]=-1;
1.136     brouard  12298:       }
                   12299:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
1.260     brouard  12300:        *nberr = *nberr + 1;
1.218     brouard  12301:        if(firstone == 0){
                   12302:          firstone=1;
1.260     brouard  12303:        printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
1.218     brouard  12304:        }
1.262     brouard  12305:        fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
1.260     brouard  12306:        s[m][i]=-1;  /* Droping the death status */
1.136     brouard  12307:       }
                   12308:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
1.169     brouard  12309:        (*nberr)++;
1.259     brouard  12310:        printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
1.262     brouard  12311:        fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
1.259     brouard  12312:        s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */
1.136     brouard  12313:       }
                   12314:     }
                   12315:   }
                   12316: 
                   12317:   for (i=1; i<=imx; i++)  {
                   12318:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
                   12319:     for(m=firstpass; (m<= lastpass); m++){
1.214     brouard  12320:       if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
1.136     brouard  12321:        if (s[m][i] >= nlstate+1) {
1.169     brouard  12322:          if(agedc[i]>0){
                   12323:            if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
1.136     brouard  12324:              agev[m][i]=agedc[i];
1.214     brouard  12325:              /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
1.169     brouard  12326:            }else {
1.136     brouard  12327:              if ((int)andc[i]!=9999){
                   12328:                nbwarn++;
                   12329:                printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   12330:                fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   12331:                agev[m][i]=-1;
                   12332:              }
                   12333:            }
1.169     brouard  12334:          } /* agedc > 0 */
1.214     brouard  12335:        } /* end if */
1.136     brouard  12336:        else if(s[m][i] !=9){ /* Standard case, age in fractional
                   12337:                                 years but with the precision of a month */
                   12338:          agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                   12339:          if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
                   12340:            agev[m][i]=1;
                   12341:          else if(agev[m][i] < *agemin){ 
                   12342:            *agemin=agev[m][i];
                   12343:            printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
                   12344:          }
                   12345:          else if(agev[m][i] >*agemax){
                   12346:            *agemax=agev[m][i];
1.156     brouard  12347:            /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
1.136     brouard  12348:          }
                   12349:          /*agev[m][i]=anint[m][i]-annais[i];*/
                   12350:          /*     agev[m][i] = age[i]+2*m;*/
1.214     brouard  12351:        } /* en if 9*/
1.136     brouard  12352:        else { /* =9 */
1.214     brouard  12353:          /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
1.136     brouard  12354:          agev[m][i]=1;
                   12355:          s[m][i]=-1;
                   12356:        }
                   12357:       }
1.214     brouard  12358:       else if(s[m][i]==0) /*= 0 Unknown */
1.136     brouard  12359:        agev[m][i]=1;
1.214     brouard  12360:       else{
                   12361:        printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
                   12362:        fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
                   12363:        agev[m][i]=0;
                   12364:       }
                   12365:     } /* End for lastpass */
                   12366:   }
1.136     brouard  12367:     
                   12368:   for (i=1; i<=imx; i++)  {
                   12369:     for(m=firstpass; (m<=lastpass); m++){
                   12370:       if (s[m][i] > (nlstate+ndeath)) {
1.169     brouard  12371:        (*nberr)++;
1.136     brouard  12372:        printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   12373:        fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   12374:        return 1;
                   12375:       }
                   12376:     }
                   12377:   }
                   12378: 
                   12379:   /*for (i=1; i<=imx; i++){
                   12380:   for (m=firstpass; (m<lastpass); m++){
                   12381:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
                   12382: }
                   12383: 
                   12384: }*/
                   12385: 
                   12386: 
1.139     brouard  12387:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
                   12388:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
1.136     brouard  12389: 
                   12390:   return (0);
1.164     brouard  12391:  /* endread:*/
1.136     brouard  12392:     printf("Exiting calandcheckages: ");
                   12393:     return (1);
                   12394: }
                   12395: 
1.172     brouard  12396: #if defined(_MSC_VER)
                   12397: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
                   12398: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
                   12399: //#include "stdafx.h"
                   12400: //#include <stdio.h>
                   12401: //#include <tchar.h>
                   12402: //#include <windows.h>
                   12403: //#include <iostream>
                   12404: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
                   12405: 
                   12406: LPFN_ISWOW64PROCESS fnIsWow64Process;
                   12407: 
                   12408: BOOL IsWow64()
                   12409: {
                   12410:        BOOL bIsWow64 = FALSE;
                   12411: 
                   12412:        //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
                   12413:        //  (HANDLE, PBOOL);
                   12414: 
                   12415:        //LPFN_ISWOW64PROCESS fnIsWow64Process;
                   12416: 
                   12417:        HMODULE module = GetModuleHandle(_T("kernel32"));
                   12418:        const char funcName[] = "IsWow64Process";
                   12419:        fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   12420:                GetProcAddress(module, funcName);
                   12421: 
                   12422:        if (NULL != fnIsWow64Process)
                   12423:        {
                   12424:                if (!fnIsWow64Process(GetCurrentProcess(),
                   12425:                        &bIsWow64))
                   12426:                        //throw std::exception("Unknown error");
                   12427:                        printf("Unknown error\n");
                   12428:        }
                   12429:        return bIsWow64 != FALSE;
                   12430: }
                   12431: #endif
1.177     brouard  12432: 
1.191     brouard  12433: void syscompilerinfo(int logged)
1.292     brouard  12434: {
                   12435: #include <stdint.h>
                   12436: 
                   12437:   /* #include "syscompilerinfo.h"*/
1.185     brouard  12438:    /* command line Intel compiler 32bit windows, XP compatible:*/
                   12439:    /* /GS /W3 /Gy
                   12440:       /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
                   12441:       "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
                   12442:       "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
1.186     brouard  12443:       /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
                   12444:    */ 
                   12445:    /* 64 bits */
1.185     brouard  12446:    /*
                   12447:      /GS /W3 /Gy
                   12448:      /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
                   12449:      /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
                   12450:      /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
                   12451:      "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
                   12452:    /* Optimization are useless and O3 is slower than O2 */
                   12453:    /*
                   12454:      /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
                   12455:      /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
                   12456:      /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
                   12457:      /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
                   12458:    */
1.186     brouard  12459:    /* Link is */ /* /OUT:"visual studio
1.185     brouard  12460:       2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
                   12461:       /PDB:"visual studio
                   12462:       2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
                   12463:       "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
                   12464:       "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
                   12465:       "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
                   12466:       /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
                   12467:       /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
                   12468:       uiAccess='false'"
                   12469:       /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
                   12470:       /NOLOGO /TLBID:1
                   12471:    */
1.292     brouard  12472: 
                   12473: 
1.177     brouard  12474: #if defined __INTEL_COMPILER
1.178     brouard  12475: #if defined(__GNUC__)
                   12476:        struct utsname sysInfo;  /* For Intel on Linux and OS/X */
                   12477: #endif
1.177     brouard  12478: #elif defined(__GNUC__) 
1.179     brouard  12479: #ifndef  __APPLE__
1.174     brouard  12480: #include <gnu/libc-version.h>  /* Only on gnu */
1.179     brouard  12481: #endif
1.177     brouard  12482:    struct utsname sysInfo;
1.178     brouard  12483:    int cross = CROSS;
                   12484:    if (cross){
                   12485:           printf("Cross-");
1.191     brouard  12486:           if(logged) fprintf(ficlog, "Cross-");
1.178     brouard  12487:    }
1.174     brouard  12488: #endif
                   12489: 
1.191     brouard  12490:    printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
1.169     brouard  12491: #if defined(__clang__)
1.191     brouard  12492:    printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");      /* Clang/LLVM. ---------------------------------------------- */
1.169     brouard  12493: #endif
                   12494: #if defined(__ICC) || defined(__INTEL_COMPILER)
1.191     brouard  12495:    printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
1.169     brouard  12496: #endif
                   12497: #if defined(__GNUC__) || defined(__GNUG__)
1.191     brouard  12498:    printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
1.169     brouard  12499: #endif
                   12500: #if defined(__HP_cc) || defined(__HP_aCC)
1.191     brouard  12501:    printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
1.169     brouard  12502: #endif
                   12503: #if defined(__IBMC__) || defined(__IBMCPP__)
1.191     brouard  12504:    printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
1.169     brouard  12505: #endif
                   12506: #if defined(_MSC_VER)
1.191     brouard  12507:    printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
1.169     brouard  12508: #endif
                   12509: #if defined(__PGI)
1.191     brouard  12510:    printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
1.169     brouard  12511: #endif
                   12512: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
1.191     brouard  12513:    printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
1.167     brouard  12514: #endif
1.191     brouard  12515:    printf(" for "); if (logged) fprintf(ficlog, " for ");
1.169     brouard  12516:    
1.167     brouard  12517: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
                   12518: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
                   12519:     // Windows (x64 and x86)
1.191     brouard  12520:    printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
1.167     brouard  12521: #elif __unix__ // all unices, not all compilers
                   12522:     // Unix
1.191     brouard  12523:    printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
1.167     brouard  12524: #elif __linux__
                   12525:     // linux
1.191     brouard  12526:    printf("linux ");if(logged) fprintf(ficlog,"linux ");
1.167     brouard  12527: #elif __APPLE__
1.174     brouard  12528:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
1.191     brouard  12529:    printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
1.167     brouard  12530: #endif
                   12531: 
                   12532: /*  __MINGW32__          */
                   12533: /*  __CYGWIN__  */
                   12534: /* __MINGW64__  */
                   12535: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
                   12536: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
                   12537: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
                   12538: /* _WIN64  // Defined for applications for Win64. */
                   12539: /* _M_X64 // Defined for compilations that target x64 processors. */
                   12540: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
1.171     brouard  12541: 
1.167     brouard  12542: #if UINTPTR_MAX == 0xffffffff
1.191     brouard  12543:    printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
1.167     brouard  12544: #elif UINTPTR_MAX == 0xffffffffffffffff
1.191     brouard  12545:    printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
1.167     brouard  12546: #else
1.191     brouard  12547:    printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
1.167     brouard  12548: #endif
                   12549: 
1.169     brouard  12550: #if defined(__GNUC__)
                   12551: # if defined(__GNUC_PATCHLEVEL__)
                   12552: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   12553:                             + __GNUC_MINOR__ * 100 \
                   12554:                             + __GNUC_PATCHLEVEL__)
                   12555: # else
                   12556: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   12557:                             + __GNUC_MINOR__ * 100)
                   12558: # endif
1.174     brouard  12559:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
1.191     brouard  12560:    if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
1.176     brouard  12561: 
                   12562:    if (uname(&sysInfo) != -1) {
                   12563:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
1.191     brouard  12564:         if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
1.176     brouard  12565:    }
                   12566:    else
                   12567:       perror("uname() error");
1.179     brouard  12568:    //#ifndef __INTEL_COMPILER 
                   12569: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
1.174     brouard  12570:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
1.191     brouard  12571:    if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
1.177     brouard  12572: #endif
1.169     brouard  12573: #endif
1.172     brouard  12574: 
1.286     brouard  12575:    //   void main ()
1.172     brouard  12576:    //   {
1.169     brouard  12577: #if defined(_MSC_VER)
1.174     brouard  12578:    if (IsWow64()){
1.191     brouard  12579:           printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
                   12580:           if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
1.174     brouard  12581:    }
                   12582:    else{
1.191     brouard  12583:           printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
                   12584:           if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
1.174     brouard  12585:    }
1.172     brouard  12586:    //     printf("\nPress Enter to continue...");
                   12587:    //     getchar();
                   12588:    //   }
                   12589: 
1.169     brouard  12590: #endif
                   12591:    
1.167     brouard  12592: 
1.219     brouard  12593: }
1.136     brouard  12594: 
1.219     brouard  12595: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
1.288     brouard  12596:   /*--------------- Prevalence limit  (forward period or forward stable prevalence) --------------*/
1.332     brouard  12597:   /* Computes the prevalence limit for each combination of the dummy covariates */
1.235     brouard  12598:   int i, j, k, i1, k4=0, nres=0 ;
1.202     brouard  12599:   /* double ftolpl = 1.e-10; */
1.180     brouard  12600:   double age, agebase, agelim;
1.203     brouard  12601:   double tot;
1.180     brouard  12602: 
1.202     brouard  12603:   strcpy(filerespl,"PL_");
                   12604:   strcat(filerespl,fileresu);
                   12605:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
1.288     brouard  12606:     printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
                   12607:     fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
1.202     brouard  12608:   }
1.288     brouard  12609:   printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
                   12610:   fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
1.202     brouard  12611:   pstamp(ficrespl);
1.288     brouard  12612:   fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
1.202     brouard  12613:   fprintf(ficrespl,"#Age ");
                   12614:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
                   12615:   fprintf(ficrespl,"\n");
1.180     brouard  12616:   
1.219     brouard  12617:   /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
1.180     brouard  12618: 
1.219     brouard  12619:   agebase=ageminpar;
                   12620:   agelim=agemaxpar;
1.180     brouard  12621: 
1.227     brouard  12622:   /* i1=pow(2,ncoveff); */
1.234     brouard  12623:   i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
1.219     brouard  12624:   if (cptcovn < 1){i1=1;}
1.180     brouard  12625: 
1.337     brouard  12626:   /* for(k=1; k<=i1;k++){ /\* For each combination k of dummy covariates in the model *\/ */
1.238     brouard  12627:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  12628:       k=TKresult[nres];
1.338     brouard  12629:       if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  12630:       /* if(i1 != 1 && TKresult[nres]!= k) /\* We found the combination k corresponding to the resultline value of dummies *\/ */
                   12631:       /*       continue; */
1.235     brouard  12632: 
1.238     brouard  12633:       /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   12634:       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
                   12635:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   12636:       /* k=k+1; */
                   12637:       /* to clean */
1.332     brouard  12638:       /*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*/
1.238     brouard  12639:       fprintf(ficrespl,"#******");
                   12640:       printf("#******");
                   12641:       fprintf(ficlog,"#******");
1.337     brouard  12642:       for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
1.332     brouard  12643:        /* fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Here problem for varying dummy*\/ */
1.337     brouard  12644:        /* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   12645:        /* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   12646:        fprintf(ficrespl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   12647:        printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   12648:        fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   12649:       }
                   12650:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   12651:       /*       printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   12652:       /*       fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   12653:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   12654:       /* } */
1.238     brouard  12655:       fprintf(ficrespl,"******\n");
                   12656:       printf("******\n");
                   12657:       fprintf(ficlog,"******\n");
                   12658:       if(invalidvarcomb[k]){
                   12659:        printf("\nCombination (%d) ignored because no case \n",k); 
                   12660:        fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
                   12661:        fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
                   12662:        continue;
                   12663:       }
1.219     brouard  12664: 
1.238     brouard  12665:       fprintf(ficrespl,"#Age ");
1.337     brouard  12666:       /* for(j=1;j<=cptcoveff;j++) { */
                   12667:       /*       fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   12668:       /* } */
                   12669:       for(j=1;j<=cptcovs;j++) { /* New the quanti variable is added */
                   12670:        fprintf(ficrespl,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  12671:       }
                   12672:       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
                   12673:       fprintf(ficrespl,"Total Years_to_converge\n");
1.227     brouard  12674:     
1.238     brouard  12675:       for (age=agebase; age<=agelim; age++){
                   12676:        /* for (age=agebase; age<=agebase; age++){ */
1.337     brouard  12677:        /**< Computes the prevalence limit in each live state at age x and for covariate combination (k and) nres */
                   12678:        prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); /* Nicely done */
1.238     brouard  12679:        fprintf(ficrespl,"%.0f ",age );
1.337     brouard  12680:        /* for(j=1;j<=cptcoveff;j++) */
                   12681:        /*   fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   12682:        for(j=1;j<=cptcovs;j++)
                   12683:          fprintf(ficrespl,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  12684:        tot=0.;
                   12685:        for(i=1; i<=nlstate;i++){
                   12686:          tot +=  prlim[i][i];
                   12687:          fprintf(ficrespl," %.5f", prlim[i][i]);
                   12688:        }
                   12689:        fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
                   12690:       } /* Age */
                   12691:       /* was end of cptcod */
1.337     brouard  12692:     } /* nres */
                   12693:   /* } /\* for each combination *\/ */
1.219     brouard  12694:   return 0;
1.180     brouard  12695: }
                   12696: 
1.218     brouard  12697: int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
1.288     brouard  12698:        /*--------------- Back Prevalence limit  (backward stable prevalence) --------------*/
1.218     brouard  12699:        
                   12700:        /* Computes the back prevalence limit  for any combination      of covariate values 
                   12701:    * at any age between ageminpar and agemaxpar
                   12702:         */
1.235     brouard  12703:   int i, j, k, i1, nres=0 ;
1.217     brouard  12704:   /* double ftolpl = 1.e-10; */
                   12705:   double age, agebase, agelim;
                   12706:   double tot;
1.218     brouard  12707:   /* double ***mobaverage; */
                   12708:   /* double     **dnewm, **doldm, **dsavm;  /\* for use *\/ */
1.217     brouard  12709: 
                   12710:   strcpy(fileresplb,"PLB_");
                   12711:   strcat(fileresplb,fileresu);
                   12712:   if((ficresplb=fopen(fileresplb,"w"))==NULL) {
1.288     brouard  12713:     printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
                   12714:     fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
1.217     brouard  12715:   }
1.288     brouard  12716:   printf("Computing backward prevalence: result on file '%s' \n", fileresplb);
                   12717:   fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb);
1.217     brouard  12718:   pstamp(ficresplb);
1.288     brouard  12719:   fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl);
1.217     brouard  12720:   fprintf(ficresplb,"#Age ");
                   12721:   for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
                   12722:   fprintf(ficresplb,"\n");
                   12723:   
1.218     brouard  12724:   
                   12725:   /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
                   12726:   
                   12727:   agebase=ageminpar;
                   12728:   agelim=agemaxpar;
                   12729:   
                   12730:   
1.227     brouard  12731:   i1=pow(2,cptcoveff);
1.218     brouard  12732:   if (cptcovn < 1){i1=1;}
1.227     brouard  12733:   
1.238     brouard  12734:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.338     brouard  12735:     /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
                   12736:       k=TKresult[nres];
                   12737:       if(TKresult[nres]==0) k=1; /* To be checked for noresult */
                   12738:      /* if(i1 != 1 && TKresult[nres]!= k) */
                   12739:      /*        continue; */
                   12740:      /* /\*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*\/ */
1.238     brouard  12741:       fprintf(ficresplb,"#******");
                   12742:       printf("#******");
                   12743:       fprintf(ficlog,"#******");
1.338     brouard  12744:       for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
                   12745:        printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   12746:        fprintf(ficresplb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   12747:        fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  12748:       }
1.338     brouard  12749:       /* for(j=1;j<=cptcoveff ;j++) {/\* all covariates *\/ */
                   12750:       /*       fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   12751:       /*       printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   12752:       /*       fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   12753:       /* } */
                   12754:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   12755:       /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   12756:       /*       fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   12757:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   12758:       /* } */
1.238     brouard  12759:       fprintf(ficresplb,"******\n");
                   12760:       printf("******\n");
                   12761:       fprintf(ficlog,"******\n");
                   12762:       if(invalidvarcomb[k]){
                   12763:        printf("\nCombination (%d) ignored because no cases \n",k); 
                   12764:        fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
                   12765:        fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
                   12766:        continue;
                   12767:       }
1.218     brouard  12768:     
1.238     brouard  12769:       fprintf(ficresplb,"#Age ");
1.338     brouard  12770:       for(j=1;j<=cptcovs;j++) {
                   12771:        fprintf(ficresplb,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  12772:       }
                   12773:       for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
                   12774:       fprintf(ficresplb,"Total Years_to_converge\n");
1.218     brouard  12775:     
                   12776:     
1.238     brouard  12777:       for (age=agebase; age<=agelim; age++){
                   12778:        /* for (age=agebase; age<=agebase; age++){ */
                   12779:        if(mobilavproj > 0){
                   12780:          /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
                   12781:          /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
1.242     brouard  12782:          bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres);
1.238     brouard  12783:        }else if (mobilavproj == 0){
                   12784:          printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
                   12785:          fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
                   12786:          exit(1);
                   12787:        }else{
                   12788:          /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
1.242     brouard  12789:          bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres);
1.266     brouard  12790:          /* printf("TOTOT\n"); */
                   12791:           /* exit(1); */
1.238     brouard  12792:        }
                   12793:        fprintf(ficresplb,"%.0f ",age );
1.338     brouard  12794:        for(j=1;j<=cptcovs;j++)
                   12795:          fprintf(ficresplb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  12796:        tot=0.;
                   12797:        for(i=1; i<=nlstate;i++){
                   12798:          tot +=  bprlim[i][i];
                   12799:          fprintf(ficresplb," %.5f", bprlim[i][i]);
                   12800:        }
                   12801:        fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
                   12802:       } /* Age */
                   12803:       /* was end of cptcod */
1.255     brouard  12804:       /*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */
1.338     brouard  12805:     /* } /\* end of any combination *\/ */
1.238     brouard  12806:   } /* end of nres */  
1.218     brouard  12807:   /* hBijx(p, bage, fage); */
                   12808:   /* fclose(ficrespijb); */
                   12809:   
                   12810:   return 0;
1.217     brouard  12811: }
1.218     brouard  12812:  
1.180     brouard  12813: int hPijx(double *p, int bage, int fage){
                   12814:     /*------------- h Pij x at various ages ------------*/
1.336     brouard  12815:   /* to be optimized with precov */
1.180     brouard  12816:   int stepsize;
                   12817:   int agelim;
                   12818:   int hstepm;
                   12819:   int nhstepm;
1.235     brouard  12820:   int h, i, i1, j, k, k4, nres=0;
1.180     brouard  12821: 
                   12822:   double agedeb;
                   12823:   double ***p3mat;
                   12824: 
1.337     brouard  12825:   strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
                   12826:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
                   12827:     printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
                   12828:     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
                   12829:   }
                   12830:   printf("Computing pij: result on file '%s' \n", filerespij);
                   12831:   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
                   12832:   
                   12833:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   12834:   /*if (stepm<=24) stepsize=2;*/
                   12835:   
                   12836:   agelim=AGESUP;
                   12837:   hstepm=stepsize*YEARM; /* Every year of age */
                   12838:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   12839:   
                   12840:   /* hstepm=1;   aff par mois*/
                   12841:   pstamp(ficrespij);
                   12842:   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
                   12843:   i1= pow(2,cptcoveff);
                   12844:   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   12845:   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   12846:   /*   k=k+1;  */
                   12847:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   12848:     k=TKresult[nres];
1.338     brouard  12849:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  12850:     /* for(k=1; k<=i1;k++){ */
                   12851:     /* if(i1 != 1 && TKresult[nres]!= k) */
                   12852:     /*         continue; */
                   12853:     fprintf(ficrespij,"\n#****** ");
                   12854:     for(j=1;j<=cptcovs;j++){
                   12855:       fprintf(ficrespij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   12856:       /* fprintf(ficrespij,"@wV%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   12857:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   12858:       /*       printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   12859:       /*       fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   12860:     }
                   12861:     fprintf(ficrespij,"******\n");
                   12862:     
                   12863:     for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
                   12864:       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   12865:       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   12866:       
                   12867:       /*         nhstepm=nhstepm*YEARM; aff par mois*/
                   12868:       
                   12869:       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   12870:       oldm=oldms;savm=savms;
                   12871:       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
                   12872:       fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
                   12873:       for(i=1; i<=nlstate;i++)
                   12874:        for(j=1; j<=nlstate+ndeath;j++)
                   12875:          fprintf(ficrespij," %1d-%1d",i,j);
                   12876:       fprintf(ficrespij,"\n");
                   12877:       for (h=0; h<=nhstepm; h++){
                   12878:        /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
                   12879:        fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
1.183     brouard  12880:        for(i=1; i<=nlstate;i++)
                   12881:          for(j=1; j<=nlstate+ndeath;j++)
1.337     brouard  12882:            fprintf(ficrespij," %.5f", p3mat[i][j][h]);
1.183     brouard  12883:        fprintf(ficrespij,"\n");
                   12884:       }
1.337     brouard  12885:       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   12886:       fprintf(ficrespij,"\n");
1.180     brouard  12887:     }
1.337     brouard  12888:   }
                   12889:   /*}*/
                   12890:   return 0;
1.180     brouard  12891: }
1.218     brouard  12892:  
                   12893:  int hBijx(double *p, int bage, int fage, double ***prevacurrent){
1.217     brouard  12894:     /*------------- h Bij x at various ages ------------*/
1.336     brouard  12895:     /* To be optimized with precov */
1.217     brouard  12896:   int stepsize;
1.218     brouard  12897:   /* int agelim; */
                   12898:        int ageminl;
1.217     brouard  12899:   int hstepm;
                   12900:   int nhstepm;
1.238     brouard  12901:   int h, i, i1, j, k, nres;
1.218     brouard  12902:        
1.217     brouard  12903:   double agedeb;
                   12904:   double ***p3mat;
1.218     brouard  12905:        
                   12906:   strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
                   12907:   if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
                   12908:     printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
                   12909:     fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
                   12910:   }
                   12911:   printf("Computing pij back: result on file '%s' \n", filerespijb);
                   12912:   fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
                   12913:   
                   12914:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   12915:   /*if (stepm<=24) stepsize=2;*/
1.217     brouard  12916:   
1.218     brouard  12917:   /* agelim=AGESUP; */
1.289     brouard  12918:   ageminl=AGEINF; /* was 30 */
1.218     brouard  12919:   hstepm=stepsize*YEARM; /* Every year of age */
                   12920:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
                   12921:   
                   12922:   /* hstepm=1;   aff par mois*/
                   12923:   pstamp(ficrespijb);
1.255     brouard  12924:   fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 ");
1.227     brouard  12925:   i1= pow(2,cptcoveff);
1.218     brouard  12926:   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   12927:   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   12928:   /*   k=k+1;  */
1.238     brouard  12929:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  12930:     k=TKresult[nres];
1.338     brouard  12931:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  12932:     /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
                   12933:     /*    if(i1 != 1 && TKresult[nres]!= k) */
                   12934:     /*         continue; */
                   12935:     fprintf(ficrespijb,"\n#****** ");
                   12936:     for(j=1;j<=cptcovs;j++){
1.338     brouard  12937:       fprintf(ficrespijb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.337     brouard  12938:       /* for(j=1;j<=cptcoveff;j++) */
                   12939:       /*       fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   12940:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   12941:       /*       fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   12942:     }
                   12943:     fprintf(ficrespijb,"******\n");
                   12944:     if(invalidvarcomb[k]){  /* Is it necessary here? */
                   12945:       fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
                   12946:       continue;
                   12947:     }
                   12948:     
                   12949:     /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
                   12950:     for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
                   12951:       /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
                   12952:       nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */
                   12953:       nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/
                   12954:       
                   12955:       /*         nhstepm=nhstepm*YEARM; aff par mois*/
                   12956:       
                   12957:       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */
                   12958:       /* and memory limitations if stepm is small */
                   12959:       
                   12960:       /* oldm=oldms;savm=savms; */
                   12961:       /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
                   12962:       hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */
                   12963:       /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
                   12964:       fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j=");
                   12965:       for(i=1; i<=nlstate;i++)
                   12966:        for(j=1; j<=nlstate+ndeath;j++)
                   12967:          fprintf(ficrespijb," %1d-%1d",i,j);
                   12968:       fprintf(ficrespijb,"\n");
                   12969:       for (h=0; h<=nhstepm; h++){
                   12970:        /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
                   12971:        fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
                   12972:        /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
1.217     brouard  12973:        for(i=1; i<=nlstate;i++)
                   12974:          for(j=1; j<=nlstate+ndeath;j++)
1.337     brouard  12975:            fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */
1.217     brouard  12976:        fprintf(ficrespijb,"\n");
1.337     brouard  12977:       }
                   12978:       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   12979:       fprintf(ficrespijb,"\n");
                   12980:     } /* end age deb */
                   12981:     /* } /\* end combination *\/ */
1.238     brouard  12982:   } /* end nres */
1.218     brouard  12983:   return 0;
                   12984:  } /*  hBijx */
1.217     brouard  12985: 
1.180     brouard  12986: 
1.136     brouard  12987: /***********************************************/
                   12988: /**************** Main Program *****************/
                   12989: /***********************************************/
                   12990: 
                   12991: int main(int argc, char *argv[])
                   12992: {
                   12993: #ifdef GSL
                   12994:   const gsl_multimin_fminimizer_type *T;
                   12995:   size_t iteri = 0, it;
                   12996:   int rval = GSL_CONTINUE;
                   12997:   int status = GSL_SUCCESS;
                   12998:   double ssval;
                   12999: #endif
                   13000:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
1.290     brouard  13001:   int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */
                   13002:   /* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */
1.209     brouard  13003:   int ncvyear=0; /* Number of years needed for the period prevalence to converge */
1.164     brouard  13004:   int jj, ll, li, lj, lk;
1.136     brouard  13005:   int numlinepar=0; /* Current linenumber of parameter file */
1.197     brouard  13006:   int num_filled;
1.136     brouard  13007:   int itimes;
                   13008:   int NDIM=2;
                   13009:   int vpopbased=0;
1.235     brouard  13010:   int nres=0;
1.258     brouard  13011:   int endishere=0;
1.277     brouard  13012:   int noffset=0;
1.274     brouard  13013:   int ncurrv=0; /* Temporary variable */
                   13014:   
1.164     brouard  13015:   char ca[32], cb[32];
1.136     brouard  13016:   /*  FILE *fichtm; *//* Html File */
                   13017:   /* FILE *ficgp;*/ /*Gnuplot File */
                   13018:   struct stat info;
1.191     brouard  13019:   double agedeb=0.;
1.194     brouard  13020: 
                   13021:   double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
1.219     brouard  13022:   double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
1.136     brouard  13023: 
1.165     brouard  13024:   double fret;
1.191     brouard  13025:   double dum=0.; /* Dummy variable */
1.136     brouard  13026:   double ***p3mat;
1.218     brouard  13027:   /* double ***mobaverage; */
1.319     brouard  13028:   double wald;
1.164     brouard  13029: 
1.351     brouard  13030:   char line[MAXLINE], linetmp[MAXLINE];
1.197     brouard  13031:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
                   13032: 
1.234     brouard  13033:   char  modeltemp[MAXLINE];
1.332     brouard  13034:   char resultline[MAXLINE], resultlineori[MAXLINE];
1.230     brouard  13035:   
1.136     brouard  13036:   char pathr[MAXLINE], pathimach[MAXLINE]; 
1.164     brouard  13037:   char *tok, *val; /* pathtot */
1.334     brouard  13038:   /* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */
1.195     brouard  13039:   int c,  h , cpt, c2;
1.191     brouard  13040:   int jl=0;
                   13041:   int i1, j1, jk, stepsize=0;
1.194     brouard  13042:   int count=0;
                   13043: 
1.164     brouard  13044:   int *tab; 
1.136     brouard  13045:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
1.296     brouard  13046:   /* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */
                   13047:   /* double anprojf, mprojf, jprojf; */
                   13048:   /* double jintmean,mintmean,aintmean;   */
                   13049:   int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
                   13050:   int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
                   13051:   double yrfproj= 10.0; /* Number of years of forward projections */
                   13052:   double yrbproj= 10.0; /* Number of years of backward projections */
                   13053:   int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */
1.136     brouard  13054:   int mobilav=0,popforecast=0;
1.191     brouard  13055:   int hstepm=0, nhstepm=0;
1.136     brouard  13056:   int agemortsup;
                   13057:   float  sumlpop=0.;
                   13058:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
                   13059:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
                   13060: 
1.191     brouard  13061:   double bage=0, fage=110., age, agelim=0., agebase=0.;
1.136     brouard  13062:   double ftolpl=FTOL;
                   13063:   double **prlim;
1.217     brouard  13064:   double **bprlim;
1.317     brouard  13065:   double ***param; /* Matrix of parameters, param[i][j][k] param=ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel) 
                   13066:                     state of origin, state of destination including death, for each covariate: constante, age, and V1 V2 etc. */
1.251     brouard  13067:   double ***paramstart; /* Matrix of starting parameter values */
                   13068:   double  *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */
1.136     brouard  13069:   double **matcov; /* Matrix of covariance */
1.203     brouard  13070:   double **hess; /* Hessian matrix */
1.136     brouard  13071:   double ***delti3; /* Scale */
                   13072:   double *delti; /* Scale */
                   13073:   double ***eij, ***vareij;
                   13074:   double **varpl; /* Variances of prevalence limits by age */
1.269     brouard  13075: 
1.136     brouard  13076:   double *epj, vepp;
1.164     brouard  13077: 
1.273     brouard  13078:   double dateprev1, dateprev2;
1.296     brouard  13079:   double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0;
                   13080:   double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0;
                   13081: 
1.217     brouard  13082: 
1.136     brouard  13083:   double **ximort;
1.145     brouard  13084:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
1.136     brouard  13085:   int *dcwave;
                   13086: 
1.164     brouard  13087:   char z[1]="c";
1.136     brouard  13088: 
                   13089:   /*char  *strt;*/
                   13090:   char strtend[80];
1.126     brouard  13091: 
1.164     brouard  13092: 
1.126     brouard  13093: /*   setlocale (LC_ALL, ""); */
                   13094: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                   13095: /*   textdomain (PACKAGE); */
                   13096: /*   setlocale (LC_CTYPE, ""); */
                   13097: /*   setlocale (LC_MESSAGES, ""); */
                   13098: 
                   13099:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
1.157     brouard  13100:   rstart_time = time(NULL);  
                   13101:   /*  (void) gettimeofday(&start_time,&tzp);*/
                   13102:   start_time = *localtime(&rstart_time);
1.126     brouard  13103:   curr_time=start_time;
1.157     brouard  13104:   /*tml = *localtime(&start_time.tm_sec);*/
                   13105:   /* strcpy(strstart,asctime(&tml)); */
                   13106:   strcpy(strstart,asctime(&start_time));
1.126     brouard  13107: 
                   13108: /*  printf("Localtime (at start)=%s",strstart); */
1.157     brouard  13109: /*  tp.tm_sec = tp.tm_sec +86400; */
                   13110: /*  tm = *localtime(&start_time.tm_sec); */
1.126     brouard  13111: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                   13112: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                   13113: /*   tmg.tm_hour=tmg.tm_hour + 1; */
1.157     brouard  13114: /*   tp.tm_sec = mktime(&tmg); */
1.126     brouard  13115: /*   strt=asctime(&tmg); */
                   13116: /*   printf("Time(after) =%s",strstart);  */
                   13117: /*  (void) time (&time_value);
                   13118: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
                   13119: *  tm = *localtime(&time_value);
                   13120: *  strstart=asctime(&tm);
                   13121: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
                   13122: */
                   13123: 
                   13124:   nberr=0; /* Number of errors and warnings */
                   13125:   nbwarn=0;
1.184     brouard  13126: #ifdef WIN32
                   13127:   _getcwd(pathcd, size);
                   13128: #else
1.126     brouard  13129:   getcwd(pathcd, size);
1.184     brouard  13130: #endif
1.191     brouard  13131:   syscompilerinfo(0);
1.196     brouard  13132:   printf("\nIMaCh version %s, %s\n%s",version, copyright, fullversion);
1.126     brouard  13133:   if(argc <=1){
                   13134:     printf("\nEnter the parameter file name: ");
1.205     brouard  13135:     if(!fgets(pathr,FILENAMELENGTH,stdin)){
                   13136:       printf("ERROR Empty parameter file name\n");
                   13137:       goto end;
                   13138:     }
1.126     brouard  13139:     i=strlen(pathr);
                   13140:     if(pathr[i-1]=='\n')
                   13141:       pathr[i-1]='\0';
1.156     brouard  13142:     i=strlen(pathr);
1.205     brouard  13143:     if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
1.156     brouard  13144:       pathr[i-1]='\0';
1.205     brouard  13145:     }
                   13146:     i=strlen(pathr);
                   13147:     if( i==0 ){
                   13148:       printf("ERROR Empty parameter file name\n");
                   13149:       goto end;
                   13150:     }
                   13151:     for (tok = pathr; tok != NULL; ){
1.126     brouard  13152:       printf("Pathr |%s|\n",pathr);
                   13153:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
                   13154:       printf("val= |%s| pathr=%s\n",val,pathr);
                   13155:       strcpy (pathtot, val);
                   13156:       if(pathr[0] == '\0') break; /* Dirty */
                   13157:     }
                   13158:   }
1.281     brouard  13159:   else if (argc<=2){
                   13160:     strcpy(pathtot,argv[1]);
                   13161:   }
1.126     brouard  13162:   else{
                   13163:     strcpy(pathtot,argv[1]);
1.281     brouard  13164:     strcpy(z,argv[2]);
                   13165:     printf("\nargv[2]=%s z=%c\n",argv[2],z[0]);
1.126     brouard  13166:   }
                   13167:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
                   13168:   /*cygwin_split_path(pathtot,path,optionfile);
                   13169:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
                   13170:   /* cutv(path,optionfile,pathtot,'\\');*/
                   13171: 
                   13172:   /* Split argv[0], imach program to get pathimach */
                   13173:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
                   13174:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   13175:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   13176:  /*   strcpy(pathimach,argv[0]); */
                   13177:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
                   13178:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
                   13179:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
1.184     brouard  13180: #ifdef WIN32
                   13181:   _chdir(path); /* Can be a relative path */
                   13182:   if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
                   13183: #else
1.126     brouard  13184:   chdir(path); /* Can be a relative path */
1.184     brouard  13185:   if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
                   13186: #endif
                   13187:   printf("Current directory %s!\n",pathcd);
1.126     brouard  13188:   strcpy(command,"mkdir ");
                   13189:   strcat(command,optionfilefiname);
                   13190:   if((outcmd=system(command)) != 0){
1.169     brouard  13191:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
1.126     brouard  13192:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   13193:     /* fclose(ficlog); */
                   13194: /*     exit(1); */
                   13195:   }
                   13196: /*   if((imk=mkdir(optionfilefiname))<0){ */
                   13197: /*     perror("mkdir"); */
                   13198: /*   } */
                   13199: 
                   13200:   /*-------- arguments in the command line --------*/
                   13201: 
1.186     brouard  13202:   /* Main Log file */
1.126     brouard  13203:   strcat(filelog, optionfilefiname);
                   13204:   strcat(filelog,".log");    /* */
                   13205:   if((ficlog=fopen(filelog,"w"))==NULL)    {
                   13206:     printf("Problem with logfile %s\n",filelog);
                   13207:     goto end;
                   13208:   }
                   13209:   fprintf(ficlog,"Log filename:%s\n",filelog);
1.197     brouard  13210:   fprintf(ficlog,"Version %s %s",version,fullversion);
1.126     brouard  13211:   fprintf(ficlog,"\nEnter the parameter file name: \n");
                   13212:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
                   13213:  path=%s \n\
                   13214:  optionfile=%s\n\
                   13215:  optionfilext=%s\n\
1.156     brouard  13216:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.126     brouard  13217: 
1.197     brouard  13218:   syscompilerinfo(1);
1.167     brouard  13219: 
1.126     brouard  13220:   printf("Local time (at start):%s",strstart);
                   13221:   fprintf(ficlog,"Local time (at start): %s",strstart);
                   13222:   fflush(ficlog);
                   13223: /*   (void) gettimeofday(&curr_time,&tzp); */
1.157     brouard  13224: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
1.126     brouard  13225: 
                   13226:   /* */
                   13227:   strcpy(fileres,"r");
                   13228:   strcat(fileres, optionfilefiname);
1.201     brouard  13229:   strcat(fileresu, optionfilefiname); /* Without r in front */
1.126     brouard  13230:   strcat(fileres,".txt");    /* Other files have txt extension */
1.201     brouard  13231:   strcat(fileresu,".txt");    /* Other files have txt extension */
1.126     brouard  13232: 
1.186     brouard  13233:   /* Main ---------arguments file --------*/
1.126     brouard  13234: 
                   13235:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
1.155     brouard  13236:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
                   13237:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
1.126     brouard  13238:     fflush(ficlog);
1.149     brouard  13239:     /* goto end; */
                   13240:     exit(70); 
1.126     brouard  13241:   }
                   13242: 
                   13243:   strcpy(filereso,"o");
1.201     brouard  13244:   strcat(filereso,fileresu);
1.126     brouard  13245:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
                   13246:     printf("Problem with Output resultfile: %s\n", filereso);
                   13247:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
                   13248:     fflush(ficlog);
                   13249:     goto end;
                   13250:   }
1.278     brouard  13251:       /*-------- Rewriting parameter file ----------*/
                   13252:   strcpy(rfileres,"r");    /* "Rparameterfile */
                   13253:   strcat(rfileres,optionfilefiname);    /* Parameter file first name */
                   13254:   strcat(rfileres,".");    /* */
                   13255:   strcat(rfileres,optionfilext);    /* Other files have txt extension */
                   13256:   if((ficres =fopen(rfileres,"w"))==NULL) {
                   13257:     printf("Problem writing new parameter file: %s\n", rfileres);goto end;
                   13258:     fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
                   13259:     fflush(ficlog);
                   13260:     goto end;
                   13261:   }
                   13262:   fprintf(ficres,"#IMaCh %s\n",version);
1.126     brouard  13263: 
1.278     brouard  13264:                                      
1.126     brouard  13265:   /* Reads comments: lines beginning with '#' */
                   13266:   numlinepar=0;
1.277     brouard  13267:   /* Is it a BOM UTF-8 Windows file? */
                   13268:   /* First parameter line */
1.197     brouard  13269:   while(fgets(line, MAXLINE, ficpar)) {
1.277     brouard  13270:     noffset=0;
                   13271:     if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
                   13272:     {
                   13273:       noffset=noffset+3;
                   13274:       printf("# File is an UTF8 Bom.\n"); // 0xBF
                   13275:     }
1.302     brouard  13276: /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
                   13277:     else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
1.277     brouard  13278:     {
                   13279:       noffset=noffset+2;
                   13280:       printf("# File is an UTF16BE BOM file\n");
                   13281:     }
                   13282:     else if( line[0] == 0 && line[1] == 0)
                   13283:     {
                   13284:       if( line[2] == (char)0xFE && line[3] == (char)0xFF){
                   13285:        noffset=noffset+4;
                   13286:        printf("# File is an UTF16BE BOM file\n");
                   13287:       }
                   13288:     } else{
                   13289:       ;/*printf(" Not a BOM file\n");*/
                   13290:     }
                   13291:   
1.197     brouard  13292:     /* If line starts with a # it is a comment */
1.277     brouard  13293:     if (line[noffset] == '#') {
1.197     brouard  13294:       numlinepar++;
                   13295:       fputs(line,stdout);
                   13296:       fputs(line,ficparo);
1.278     brouard  13297:       fputs(line,ficres);
1.197     brouard  13298:       fputs(line,ficlog);
                   13299:       continue;
                   13300:     }else
                   13301:       break;
                   13302:   }
                   13303:   if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                   13304:                        title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
                   13305:     if (num_filled != 5) {
                   13306:       printf("Should be 5 parameters\n");
1.283     brouard  13307:       fprintf(ficlog,"Should be 5 parameters\n");
1.197     brouard  13308:     }
1.126     brouard  13309:     numlinepar++;
1.197     brouard  13310:     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
1.283     brouard  13311:     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
                   13312:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
                   13313:     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
1.197     brouard  13314:   }
                   13315:   /* Second parameter line */
                   13316:   while(fgets(line, MAXLINE, ficpar)) {
1.283     brouard  13317:     /* while(fscanf(ficpar,"%[^\n]", line)) { */
                   13318:     /* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */
1.197     brouard  13319:     if (line[0] == '#') {
                   13320:       numlinepar++;
1.283     brouard  13321:       printf("%s",line);
                   13322:       fprintf(ficres,"%s",line);
                   13323:       fprintf(ficparo,"%s",line);
                   13324:       fprintf(ficlog,"%s",line);
1.197     brouard  13325:       continue;
                   13326:     }else
                   13327:       break;
                   13328:   }
1.223     brouard  13329:   if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                   13330:                        &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
                   13331:     if (num_filled != 11) {
                   13332:       printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
1.209     brouard  13333:       printf("but line=%s\n",line);
1.283     brouard  13334:       fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
                   13335:       fprintf(ficlog,"but line=%s\n",line);
1.197     brouard  13336:     }
1.286     brouard  13337:     if( lastpass > maxwav){
                   13338:       printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
                   13339:       fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
                   13340:       fflush(ficlog);
                   13341:       goto end;
                   13342:     }
                   13343:       printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.283     brouard  13344:     fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.286     brouard  13345:     fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt);
1.283     brouard  13346:     fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.126     brouard  13347:   }
1.203     brouard  13348:   /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
1.209     brouard  13349:   /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
1.197     brouard  13350:   /* Third parameter line */
                   13351:   while(fgets(line, MAXLINE, ficpar)) {
                   13352:     /* If line starts with a # it is a comment */
                   13353:     if (line[0] == '#') {
                   13354:       numlinepar++;
1.283     brouard  13355:       printf("%s",line);
                   13356:       fprintf(ficres,"%s",line);
                   13357:       fprintf(ficparo,"%s",line);
                   13358:       fprintf(ficlog,"%s",line);
1.197     brouard  13359:       continue;
                   13360:     }else
                   13361:       break;
                   13362:   }
1.351     brouard  13363:   if((num_filled=sscanf(line,"model=%[^.\n]", model)) !=EOF){ /* Every character after model but dot and  return */
                   13364:     if (num_filled != 1){
                   13365:       printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
                   13366:       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
                   13367:       model[0]='\0';
                   13368:       goto end;
                   13369:     }else{
                   13370:       trimbtab(linetmp,line); /* Trims multiple blanks in line */
                   13371:       strcpy(line, linetmp);
                   13372:     }
                   13373:   }
                   13374:   if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ /* Every character after 1+age but dot and  return */
1.279     brouard  13375:     if (num_filled != 1){
1.302     brouard  13376:       printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
                   13377:       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
1.197     brouard  13378:       model[0]='\0';
                   13379:       goto end;
                   13380:     }
                   13381:     else{
                   13382:       if (model[0]=='+'){
                   13383:        for(i=1; i<=strlen(model);i++)
                   13384:          modeltemp[i-1]=model[i];
1.201     brouard  13385:        strcpy(model,modeltemp); 
1.197     brouard  13386:       }
                   13387:     }
1.338     brouard  13388:     /* printf(" model=1+age%s modeltemp= %s, model=1+age+%s\n",model, modeltemp, model);fflush(stdout); */
1.203     brouard  13389:     printf("model=1+age+%s\n",model);fflush(stdout);
1.283     brouard  13390:     fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout);
                   13391:     fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout);
                   13392:     fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout);
1.197     brouard  13393:   }
                   13394:   /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
                   13395:   /* numlinepar=numlinepar+3; /\* In general *\/ */
                   13396:   /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
1.283     brouard  13397:   /* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
                   13398:   /* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
1.126     brouard  13399:   fflush(ficlog);
1.190     brouard  13400:   /* if(model[0]=='#'|| model[0]== '\0'){ */
                   13401:   if(model[0]=='#'){
1.279     brouard  13402:     printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \
                   13403:  'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \
                   13404:  'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n");           \
1.187     brouard  13405:     if(mle != -1){
1.279     brouard  13406:       printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n");
1.187     brouard  13407:       exit(1);
                   13408:     }
                   13409:   }
1.126     brouard  13410:   while((c=getc(ficpar))=='#' && c!= EOF){
                   13411:     ungetc(c,ficpar);
                   13412:     fgets(line, MAXLINE, ficpar);
                   13413:     numlinepar++;
1.195     brouard  13414:     if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
                   13415:       z[0]=line[1];
1.342     brouard  13416:     }else if(line[1]=='d'){ /* For debugging individual values of covariates in ficresilk */
1.343     brouard  13417:       debugILK=1;printf("DebugILK\n");
1.195     brouard  13418:     }
                   13419:     /* printf("****line [1] = %c \n",line[1]); */
1.141     brouard  13420:     fputs(line, stdout);
                   13421:     //puts(line);
1.126     brouard  13422:     fputs(line,ficparo);
                   13423:     fputs(line,ficlog);
                   13424:   }
                   13425:   ungetc(c,ficpar);
                   13426: 
                   13427:    
1.290     brouard  13428:   covar=matrix(0,NCOVMAX,firstobs,lastobs);  /**< used in readdata */
                   13429:   if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs);  /**< Fixed quantitative covariate */
                   13430:   if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs);  /**< Time varying quantitative covariate */
1.341     brouard  13431:   /* if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs);  /\**< Time varying covariate (dummy and quantitative)*\/ */
                   13432:   if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs);  /**< Might be better */
1.136     brouard  13433:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
                   13434:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
                   13435:      v1+v2*age+v2*v3 makes cptcovn = 3
                   13436:   */
                   13437:   if (strlen(model)>1) 
1.187     brouard  13438:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
1.145     brouard  13439:   else
1.187     brouard  13440:     ncovmodel=2; /* Constant and age */
1.133     brouard  13441:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
                   13442:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
1.131     brouard  13443:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
                   13444:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   13445:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   13446:     fflush(stdout);
                   13447:     fclose (ficlog);
                   13448:     goto end;
                   13449:   }
1.126     brouard  13450:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   13451:   delti=delti3[1][1];
                   13452:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
                   13453:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
1.247     brouard  13454: /* We could also provide initial parameters values giving by simple logistic regression 
                   13455:  * only one way, that is without matrix product. We will have nlstate maximizations */
                   13456:       /* for(i=1;i<nlstate;i++){ */
                   13457:       /*       /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
                   13458:       /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
                   13459:       /* } */
1.126     brouard  13460:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
1.191     brouard  13461:     printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   13462:     fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
1.126     brouard  13463:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   13464:     fclose (ficparo);
                   13465:     fclose (ficlog);
                   13466:     goto end;
                   13467:     exit(0);
1.220     brouard  13468:   }  else if(mle==-5) { /* Main Wizard */
1.126     brouard  13469:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
1.192     brouard  13470:     printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   13471:     fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
1.126     brouard  13472:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   13473:     matcov=matrix(1,npar,1,npar);
1.203     brouard  13474:     hess=matrix(1,npar,1,npar);
1.220     brouard  13475:   }  else{ /* Begin of mle != -1 or -5 */
1.145     brouard  13476:     /* Read guessed parameters */
1.126     brouard  13477:     /* Reads comments: lines beginning with '#' */
                   13478:     while((c=getc(ficpar))=='#' && c!= EOF){
                   13479:       ungetc(c,ficpar);
                   13480:       fgets(line, MAXLINE, ficpar);
                   13481:       numlinepar++;
1.141     brouard  13482:       fputs(line,stdout);
1.126     brouard  13483:       fputs(line,ficparo);
                   13484:       fputs(line,ficlog);
                   13485:     }
                   13486:     ungetc(c,ficpar);
                   13487:     
                   13488:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
1.251     brouard  13489:     paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
1.126     brouard  13490:     for(i=1; i <=nlstate; i++){
1.234     brouard  13491:       j=0;
1.126     brouard  13492:       for(jj=1; jj <=nlstate+ndeath; jj++){
1.234     brouard  13493:        if(jj==i) continue;
                   13494:        j++;
1.292     brouard  13495:        while((c=getc(ficpar))=='#' && c!= EOF){
                   13496:          ungetc(c,ficpar);
                   13497:          fgets(line, MAXLINE, ficpar);
                   13498:          numlinepar++;
                   13499:          fputs(line,stdout);
                   13500:          fputs(line,ficparo);
                   13501:          fputs(line,ficlog);
                   13502:        }
                   13503:        ungetc(c,ficpar);
1.234     brouard  13504:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   13505:        if ((i1 != i) || (j1 != jj)){
                   13506:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
1.126     brouard  13507: It might be a problem of design; if ncovcol and the model are correct\n \
                   13508: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
1.234     brouard  13509:          exit(1);
                   13510:        }
                   13511:        fprintf(ficparo,"%1d%1d",i1,j1);
                   13512:        if(mle==1)
                   13513:          printf("%1d%1d",i,jj);
                   13514:        fprintf(ficlog,"%1d%1d",i,jj);
                   13515:        for(k=1; k<=ncovmodel;k++){
                   13516:          fscanf(ficpar," %lf",&param[i][j][k]);
                   13517:          if(mle==1){
                   13518:            printf(" %lf",param[i][j][k]);
                   13519:            fprintf(ficlog," %lf",param[i][j][k]);
                   13520:          }
                   13521:          else
                   13522:            fprintf(ficlog," %lf",param[i][j][k]);
                   13523:          fprintf(ficparo," %lf",param[i][j][k]);
                   13524:        }
                   13525:        fscanf(ficpar,"\n");
                   13526:        numlinepar++;
                   13527:        if(mle==1)
                   13528:          printf("\n");
                   13529:        fprintf(ficlog,"\n");
                   13530:        fprintf(ficparo,"\n");
1.126     brouard  13531:       }
                   13532:     }  
                   13533:     fflush(ficlog);
1.234     brouard  13534:     
1.251     brouard  13535:     /* Reads parameters values */
1.126     brouard  13536:     p=param[1][1];
1.251     brouard  13537:     pstart=paramstart[1][1];
1.126     brouard  13538:     
                   13539:     /* Reads comments: lines beginning with '#' */
                   13540:     while((c=getc(ficpar))=='#' && c!= EOF){
                   13541:       ungetc(c,ficpar);
                   13542:       fgets(line, MAXLINE, ficpar);
                   13543:       numlinepar++;
1.141     brouard  13544:       fputs(line,stdout);
1.126     brouard  13545:       fputs(line,ficparo);
                   13546:       fputs(line,ficlog);
                   13547:     }
                   13548:     ungetc(c,ficpar);
                   13549: 
                   13550:     for(i=1; i <=nlstate; i++){
                   13551:       for(j=1; j <=nlstate+ndeath-1; j++){
1.234     brouard  13552:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   13553:        if ( (i1-i) * (j1-j) != 0){
                   13554:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   13555:          exit(1);
                   13556:        }
                   13557:        printf("%1d%1d",i,j);
                   13558:        fprintf(ficparo,"%1d%1d",i1,j1);
                   13559:        fprintf(ficlog,"%1d%1d",i1,j1);
                   13560:        for(k=1; k<=ncovmodel;k++){
                   13561:          fscanf(ficpar,"%le",&delti3[i][j][k]);
                   13562:          printf(" %le",delti3[i][j][k]);
                   13563:          fprintf(ficparo," %le",delti3[i][j][k]);
                   13564:          fprintf(ficlog," %le",delti3[i][j][k]);
                   13565:        }
                   13566:        fscanf(ficpar,"\n");
                   13567:        numlinepar++;
                   13568:        printf("\n");
                   13569:        fprintf(ficparo,"\n");
                   13570:        fprintf(ficlog,"\n");
1.126     brouard  13571:       }
                   13572:     }
                   13573:     fflush(ficlog);
1.234     brouard  13574:     
1.145     brouard  13575:     /* Reads covariance matrix */
1.126     brouard  13576:     delti=delti3[1][1];
1.220     brouard  13577:                
                   13578:                
1.126     brouard  13579:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
1.220     brouard  13580:                
1.126     brouard  13581:     /* Reads comments: lines beginning with '#' */
                   13582:     while((c=getc(ficpar))=='#' && c!= EOF){
                   13583:       ungetc(c,ficpar);
                   13584:       fgets(line, MAXLINE, ficpar);
                   13585:       numlinepar++;
1.141     brouard  13586:       fputs(line,stdout);
1.126     brouard  13587:       fputs(line,ficparo);
                   13588:       fputs(line,ficlog);
                   13589:     }
                   13590:     ungetc(c,ficpar);
1.220     brouard  13591:                
1.126     brouard  13592:     matcov=matrix(1,npar,1,npar);
1.203     brouard  13593:     hess=matrix(1,npar,1,npar);
1.131     brouard  13594:     for(i=1; i <=npar; i++)
                   13595:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
1.220     brouard  13596:                
1.194     brouard  13597:     /* Scans npar lines */
1.126     brouard  13598:     for(i=1; i <=npar; i++){
1.226     brouard  13599:       count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
1.194     brouard  13600:       if(count != 3){
1.226     brouard  13601:        printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
1.194     brouard  13602: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
                   13603: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
1.226     brouard  13604:        fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
1.194     brouard  13605: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
                   13606: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
1.226     brouard  13607:        exit(1);
1.220     brouard  13608:       }else{
1.226     brouard  13609:        if(mle==1)
                   13610:          printf("%1d%1d%d",i1,j1,jk);
                   13611:       }
                   13612:       fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
                   13613:       fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
1.126     brouard  13614:       for(j=1; j <=i; j++){
1.226     brouard  13615:        fscanf(ficpar," %le",&matcov[i][j]);
                   13616:        if(mle==1){
                   13617:          printf(" %.5le",matcov[i][j]);
                   13618:        }
                   13619:        fprintf(ficlog," %.5le",matcov[i][j]);
                   13620:        fprintf(ficparo," %.5le",matcov[i][j]);
1.126     brouard  13621:       }
                   13622:       fscanf(ficpar,"\n");
                   13623:       numlinepar++;
                   13624:       if(mle==1)
1.220     brouard  13625:                                printf("\n");
1.126     brouard  13626:       fprintf(ficlog,"\n");
                   13627:       fprintf(ficparo,"\n");
                   13628:     }
1.194     brouard  13629:     /* End of read covariance matrix npar lines */
1.126     brouard  13630:     for(i=1; i <=npar; i++)
                   13631:       for(j=i+1;j<=npar;j++)
1.226     brouard  13632:        matcov[i][j]=matcov[j][i];
1.126     brouard  13633:     
                   13634:     if(mle==1)
                   13635:       printf("\n");
                   13636:     fprintf(ficlog,"\n");
                   13637:     
                   13638:     fflush(ficlog);
                   13639:     
                   13640:   }    /* End of mle != -3 */
1.218     brouard  13641:   
1.186     brouard  13642:   /*  Main data
                   13643:    */
1.290     brouard  13644:   nobs=lastobs-firstobs+1; /* was = lastobs;*/
                   13645:   /* num=lvector(1,n); */
                   13646:   /* moisnais=vector(1,n); */
                   13647:   /* annais=vector(1,n); */
                   13648:   /* moisdc=vector(1,n); */
                   13649:   /* andc=vector(1,n); */
                   13650:   /* weight=vector(1,n); */
                   13651:   /* agedc=vector(1,n); */
                   13652:   /* cod=ivector(1,n); */
                   13653:   /* for(i=1;i<=n;i++){ */
                   13654:   num=lvector(firstobs,lastobs);
                   13655:   moisnais=vector(firstobs,lastobs);
                   13656:   annais=vector(firstobs,lastobs);
                   13657:   moisdc=vector(firstobs,lastobs);
                   13658:   andc=vector(firstobs,lastobs);
                   13659:   weight=vector(firstobs,lastobs);
                   13660:   agedc=vector(firstobs,lastobs);
                   13661:   cod=ivector(firstobs,lastobs);
                   13662:   for(i=firstobs;i<=lastobs;i++){
1.234     brouard  13663:     num[i]=0;
                   13664:     moisnais[i]=0;
                   13665:     annais[i]=0;
                   13666:     moisdc[i]=0;
                   13667:     andc[i]=0;
                   13668:     agedc[i]=0;
                   13669:     cod[i]=0;
                   13670:     weight[i]=1.0; /* Equal weights, 1 by default */
                   13671:   }
1.290     brouard  13672:   mint=matrix(1,maxwav,firstobs,lastobs);
                   13673:   anint=matrix(1,maxwav,firstobs,lastobs);
1.325     brouard  13674:   s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */
1.336     brouard  13675:   /* printf("BUG ncovmodel=%d NCOVMAX=%d 2**ncovmodel=%f BUG\n",ncovmodel,NCOVMAX,pow(2,ncovmodel)); */
1.126     brouard  13676:   tab=ivector(1,NCOVMAX);
1.144     brouard  13677:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.192     brouard  13678:   ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.126     brouard  13679: 
1.136     brouard  13680:   /* Reads data from file datafile */
                   13681:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
                   13682:     goto end;
                   13683: 
                   13684:   /* Calculation of the number of parameters from char model */
1.234     brouard  13685:   /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
1.137     brouard  13686:        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
                   13687:        k=3 V4 Tvar[k=3]= 4 (from V4)
                   13688:        k=2 V1 Tvar[k=2]= 1 (from V1)
                   13689:        k=1 Tvar[1]=2 (from V2)
1.234     brouard  13690:   */
                   13691:   
                   13692:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
                   13693:   TvarsDind=ivector(1,NCOVMAX); /*  */
1.330     brouard  13694:   TnsdVar=ivector(1,NCOVMAX); /*  */
1.335     brouard  13695:     /* for(i=1; i<=NCOVMAX;i++) TnsdVar[i]=3; */
1.234     brouard  13696:   TvarsD=ivector(1,NCOVMAX); /*  */
                   13697:   TvarsQind=ivector(1,NCOVMAX); /*  */
                   13698:   TvarsQ=ivector(1,NCOVMAX); /*  */
1.232     brouard  13699:   TvarF=ivector(1,NCOVMAX); /*  */
                   13700:   TvarFind=ivector(1,NCOVMAX); /*  */
                   13701:   TvarV=ivector(1,NCOVMAX); /*  */
                   13702:   TvarVind=ivector(1,NCOVMAX); /*  */
                   13703:   TvarA=ivector(1,NCOVMAX); /*  */
                   13704:   TvarAind=ivector(1,NCOVMAX); /*  */
1.231     brouard  13705:   TvarFD=ivector(1,NCOVMAX); /*  */
                   13706:   TvarFDind=ivector(1,NCOVMAX); /*  */
                   13707:   TvarFQ=ivector(1,NCOVMAX); /*  */
                   13708:   TvarFQind=ivector(1,NCOVMAX); /*  */
                   13709:   TvarVD=ivector(1,NCOVMAX); /*  */
                   13710:   TvarVDind=ivector(1,NCOVMAX); /*  */
                   13711:   TvarVQ=ivector(1,NCOVMAX); /*  */
                   13712:   TvarVQind=ivector(1,NCOVMAX); /*  */
1.339     brouard  13713:   TvarVV=ivector(1,NCOVMAX); /*  */
                   13714:   TvarVVind=ivector(1,NCOVMAX); /*  */
1.349     brouard  13715:   TvarVVA=ivector(1,NCOVMAX); /*  */
                   13716:   TvarVVAind=ivector(1,NCOVMAX); /*  */
                   13717:   TvarAVVA=ivector(1,NCOVMAX); /*  */
                   13718:   TvarAVVAind=ivector(1,NCOVMAX); /*  */
1.231     brouard  13719: 
1.230     brouard  13720:   Tvalsel=vector(1,NCOVMAX); /*  */
1.233     brouard  13721:   Tvarsel=ivector(1,NCOVMAX); /*  */
1.226     brouard  13722:   Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
                   13723:   Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
                   13724:   Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
1.349     brouard  13725:   DummyV=ivector(-1,NCOVMAX); /* 1 to 3 */
                   13726:   FixedV=ivector(-1,NCOVMAX); /* 1 to 3 */
                   13727: 
1.137     brouard  13728:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
                   13729:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
                   13730:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
                   13731:   */
                   13732:   /* For model-covariate k tells which data-covariate to use but
                   13733:     because this model-covariate is a construction we invent a new column
                   13734:     ncovcol + k1
                   13735:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
                   13736:     Tvar[3=V1*V4]=4+1 etc */
1.227     brouard  13737:   Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
                   13738:   Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
1.137     brouard  13739:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
                   13740:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
1.227     brouard  13741:      Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
1.137     brouard  13742:   */
1.145     brouard  13743:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
                   13744:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
1.141     brouard  13745:                            * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                   13746:                            * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
1.351     brouard  13747:   Tvardk=imatrix(0,NCOVMAX,1,2);
1.145     brouard  13748:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
1.137     brouard  13749:                         4 covariates (3 plus signs)
                   13750:                         Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
1.328     brouard  13751:                           */  
                   13752:   for(i=1;i<NCOVMAX;i++)
                   13753:     Tage[i]=0;
1.230     brouard  13754:   Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
1.227     brouard  13755:                                * individual dummy, fixed or varying:
                   13756:                                * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                   13757:                                * 3, 1, 0, 0, 0, 0, 0, 0},
1.230     brouard  13758:                                * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                   13759:                                * V1 df, V2 qf, V3 & V4 dv, V5 qv
                   13760:                                * Tmodelind[1]@9={9,0,3,2,}*/
                   13761:   TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
                   13762:   TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
1.228     brouard  13763:                                * individual quantitative, fixed or varying:
                   13764:                                * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                   13765:                                * 3, 1, 0, 0, 0, 0, 0, 0},
                   13766:                                * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
1.349     brouard  13767: 
                   13768: /* Probably useless zeroes */
                   13769:   for(i=1;i<NCOVMAX;i++){
                   13770:     DummyV[i]=0;
                   13771:     FixedV[i]=0;
                   13772:   }
                   13773: 
                   13774:   for(i=1; i <=ncovcol;i++){
                   13775:     DummyV[i]=0;
                   13776:     FixedV[i]=0;
                   13777:   }
                   13778:   for(i=ncovcol+1; i <=ncovcol+nqv;i++){
                   13779:     DummyV[i]=1;
                   13780:     FixedV[i]=0;
                   13781:   }
                   13782:   for(i=ncovcol+nqv+1; i <=ncovcol+nqv+ntv;i++){
                   13783:     DummyV[i]=0;
                   13784:     FixedV[i]=1;
                   13785:   }
                   13786:   for(i=ncovcol+nqv+ntv+1; i <=ncovcol+nqv+ntv+nqtv;i++){
                   13787:     DummyV[i]=1;
                   13788:     FixedV[i]=1;
                   13789:   }
                   13790:   for(i=1; i <=ncovcol+nqv+ntv+nqtv;i++){
                   13791:     printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",i,i,DummyV[i],i,FixedV[i]);
                   13792:     fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",i,i,DummyV[i],i,FixedV[i]);
                   13793:   }
                   13794: 
                   13795: 
                   13796: 
1.186     brouard  13797: /* Main decodemodel */
                   13798: 
1.187     brouard  13799: 
1.223     brouard  13800:   if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
1.136     brouard  13801:     goto end;
                   13802: 
1.137     brouard  13803:   if((double)(lastobs-imx)/(double)imx > 1.10){
                   13804:     nbwarn++;
                   13805:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   13806:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   13807:   }
1.136     brouard  13808:     /*  if(mle==1){*/
1.137     brouard  13809:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
                   13810:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
1.136     brouard  13811:   }
                   13812: 
                   13813:     /*-calculation of age at interview from date of interview and age at death -*/
                   13814:   agev=matrix(1,maxwav,1,imx);
                   13815: 
                   13816:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
                   13817:     goto end;
                   13818: 
1.126     brouard  13819: 
1.136     brouard  13820:   agegomp=(int)agemin;
1.290     brouard  13821:   free_vector(moisnais,firstobs,lastobs);
                   13822:   free_vector(annais,firstobs,lastobs);
1.126     brouard  13823:   /* free_matrix(mint,1,maxwav,1,n);
                   13824:      free_matrix(anint,1,maxwav,1,n);*/
1.215     brouard  13825:   /* free_vector(moisdc,1,n); */
                   13826:   /* free_vector(andc,1,n); */
1.145     brouard  13827:   /* */
                   13828:   
1.126     brouard  13829:   wav=ivector(1,imx);
1.214     brouard  13830:   /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
                   13831:   /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
                   13832:   /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
                   13833:   dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
                   13834:   bh=imatrix(1,lastpass-firstpass+2,1,imx);
                   13835:   mw=imatrix(1,lastpass-firstpass+2,1,imx);
1.126     brouard  13836:    
                   13837:   /* Concatenates waves */
1.214     brouard  13838:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   13839:      Death is a valid wave (if date is known).
                   13840:      mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
                   13841:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   13842:      and mw[mi+1][i]. dh depends on stepm.
                   13843:   */
                   13844: 
1.126     brouard  13845:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
1.248     brouard  13846:   /* Concatenates waves */
1.145     brouard  13847:  
1.290     brouard  13848:   free_vector(moisdc,firstobs,lastobs);
                   13849:   free_vector(andc,firstobs,lastobs);
1.215     brouard  13850: 
1.126     brouard  13851:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
                   13852:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
                   13853:   ncodemax[1]=1;
1.145     brouard  13854:   Ndum =ivector(-1,NCOVMAX);  
1.225     brouard  13855:   cptcoveff=0;
1.220     brouard  13856:   if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
1.335     brouard  13857:     tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; as well as calculate cptcoveff or number of total effective dummy covariates*/
1.227     brouard  13858:   }
                   13859:   
                   13860:   ncovcombmax=pow(2,cptcoveff);
1.338     brouard  13861:   invalidvarcomb=ivector(0, ncovcombmax); 
                   13862:   for(i=0;i<ncovcombmax;i++)
1.227     brouard  13863:     invalidvarcomb[i]=0;
                   13864:   
1.211     brouard  13865:   /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
1.186     brouard  13866:      V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
1.211     brouard  13867:   /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
1.227     brouard  13868:   
1.200     brouard  13869:   /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
1.198     brouard  13870:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
1.186     brouard  13871:   /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
1.211     brouard  13872:   /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
                   13873:    * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
                   13874:    * (currently 0 or 1) in the data.
                   13875:    * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
                   13876:    * corresponding modality (h,j).
                   13877:    */
                   13878: 
1.145     brouard  13879:   h=0;
                   13880:   /*if (cptcovn > 0) */
1.126     brouard  13881:   m=pow(2,cptcoveff);
                   13882:  
1.144     brouard  13883:          /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
1.211     brouard  13884:           * For k=4 covariates, h goes from 1 to m=2**k
                   13885:           * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
                   13886:            * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
1.329     brouard  13887:           *     h\k   1     2     3     4   *  h-1\k-1  4  3  2  1          
                   13888:           *______________________________   *______________________
                   13889:           *     1 i=1 1 i=1 1 i=1 1 i=1 1   *     0     0  0  0  0 
                   13890:           *     2     2     1     1     1   *     1     0  0  0  1 
                   13891:           *     3 i=2 1     2     1     1   *     2     0  0  1  0 
                   13892:           *     4     2     2     1     1   *     3     0  0  1  1 
                   13893:           *     5 i=3 1 i=2 1     2     1   *     4     0  1  0  0 
                   13894:           *     6     2     1     2     1   *     5     0  1  0  1 
                   13895:           *     7 i=4 1     2     2     1   *     6     0  1  1  0 
                   13896:           *     8     2     2     2     1   *     7     0  1  1  1 
                   13897:           *     9 i=5 1 i=3 1 i=2 1     2   *     8     1  0  0  0 
                   13898:           *    10     2     1     1     2   *     9     1  0  0  1 
                   13899:           *    11 i=6 1     2     1     2   *    10     1  0  1  0 
                   13900:           *    12     2     2     1     2   *    11     1  0  1  1 
                   13901:           *    13 i=7 1 i=4 1     2     2   *    12     1  1  0  0  
                   13902:           *    14     2     1     2     2   *    13     1  1  0  1 
                   13903:           *    15 i=8 1     2     2     2   *    14     1  1  1  0 
                   13904:           *    16     2     2     2     2   *    15     1  1  1  1          
                   13905:           */                                     
1.212     brouard  13906:   /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
1.211     brouard  13907:      /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
                   13908:      * and the value of each covariate?
                   13909:      * V1=1, V2=1, V3=2, V4=1 ?
                   13910:      * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
                   13911:      * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
                   13912:      * In order to get the real value in the data, we use nbcode
                   13913:      * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
                   13914:      * We are keeping this crazy system in order to be able (in the future?) 
                   13915:      * to have more than 2 values (0 or 1) for a covariate.
                   13916:      * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
                   13917:      * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
                   13918:      *              bbbbbbbb
                   13919:      *              76543210     
                   13920:      *   h-1        00000101 (6-1=5)
1.219     brouard  13921:      *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
1.211     brouard  13922:      *           &
                   13923:      *     1        00000001 (1)
1.219     brouard  13924:      *              00000000        = 1 & ((h-1) >> (k-1))
                   13925:      *          +1= 00000001 =1 
1.211     brouard  13926:      *
                   13927:      * h=14, k=3 => h'=h-1=13, k'=k-1=2
                   13928:      *          h'      1101 =2^3+2^2+0x2^1+2^0
                   13929:      *    >>k'            11
                   13930:      *          &   00000001
                   13931:      *            = 00000001
                   13932:      *      +1    = 00000010=2    =  codtabm(14,3)   
                   13933:      * Reverse h=6 and m=16?
                   13934:      * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
                   13935:      * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
                   13936:      * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
                   13937:      * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
                   13938:      * V3=decodtabm(14,3,2**4)=2
                   13939:      *          h'=13   1101 =2^3+2^2+0x2^1+2^0
                   13940:      *(h-1) >> (j-1)    0011 =13 >> 2
                   13941:      *          &1 000000001
                   13942:      *           = 000000001
                   13943:      *         +1= 000000010 =2
                   13944:      *                  2211
                   13945:      *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
                   13946:      *                  V3=2
1.220     brouard  13947:                 * codtabm and decodtabm are identical
1.211     brouard  13948:      */
                   13949: 
1.145     brouard  13950: 
                   13951:  free_ivector(Ndum,-1,NCOVMAX);
                   13952: 
                   13953: 
1.126     brouard  13954:     
1.186     brouard  13955:   /* Initialisation of ----------- gnuplot -------------*/
1.126     brouard  13956:   strcpy(optionfilegnuplot,optionfilefiname);
                   13957:   if(mle==-3)
1.201     brouard  13958:     strcat(optionfilegnuplot,"-MORT_");
1.126     brouard  13959:   strcat(optionfilegnuplot,".gp");
                   13960: 
                   13961:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
                   13962:     printf("Problem with file %s",optionfilegnuplot);
                   13963:   }
                   13964:   else{
1.204     brouard  13965:     fprintf(ficgp,"\n# IMaCh-%s\n", version); 
1.126     brouard  13966:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
1.141     brouard  13967:     //fprintf(ficgp,"set missing 'NaNq'\n");
                   13968:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
1.126     brouard  13969:   }
                   13970:   /*  fclose(ficgp);*/
1.186     brouard  13971: 
                   13972: 
                   13973:   /* Initialisation of --------- index.htm --------*/
1.126     brouard  13974: 
                   13975:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
                   13976:   if(mle==-3)
1.201     brouard  13977:     strcat(optionfilehtm,"-MORT_");
1.126     brouard  13978:   strcat(optionfilehtm,".htm");
                   13979:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
1.131     brouard  13980:     printf("Problem with %s \n",optionfilehtm);
                   13981:     exit(0);
1.126     brouard  13982:   }
                   13983: 
                   13984:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   13985:   strcat(optionfilehtmcov,"-cov.htm");
                   13986:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                   13987:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
                   13988:   }
                   13989:   else{
                   13990:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                   13991: <hr size=\"2\" color=\"#EC5E5E\"> \n\
1.204     brouard  13992: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.126     brouard  13993:          optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   13994:   }
                   13995: 
1.335     brouard  13996:   fprintf(fichtm,"<html><head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n\
                   13997: <title>IMaCh %s</title></head>\n\
                   13998:  <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n\
                   13999: <font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>\
                   14000: -EUROREVES-Institut de longévité-2013-2022-Japan Society for the Promotion of Sciences 日本学術振興会 \
                   14001: (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - \
                   14002: <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \n", optionfilehtm);
                   14003:   
                   14004:   fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\"> \n\
1.204     brouard  14005: <font size=\"2\">IMaCh-%s <br> %s</font> \
1.126     brouard  14006: <hr size=\"2\" color=\"#EC5E5E\"> \n\
1.337     brouard  14007: This file: <a href=\"%s\">%s</a></br>Title=%s <br>Datafile=<a href=\"%s\">%s</a> Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
1.126     brouard  14008: \n\
                   14009: <hr  size=\"2\" color=\"#EC5E5E\">\
                   14010:  <ul><li><h4>Parameter files</h4>\n\
                   14011:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                   14012:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                   14013:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                   14014:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                   14015:  - Date and time at start: %s</ul>\n",\
1.335     brouard  14016:          version,fullversion,optionfilehtm,optionfilehtm,title,datafile,datafile,firstpass,lastpass,stepm, weightopt, model, \
1.126     brouard  14017:          optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                   14018:          fileres,fileres,\
                   14019:          filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                   14020:   fflush(fichtm);
                   14021: 
                   14022:   strcpy(pathr,path);
                   14023:   strcat(pathr,optionfilefiname);
1.184     brouard  14024: #ifdef WIN32
                   14025:   _chdir(optionfilefiname); /* Move to directory named optionfile */
                   14026: #else
1.126     brouard  14027:   chdir(optionfilefiname); /* Move to directory named optionfile */
1.184     brouard  14028: #endif
                   14029:          
1.126     brouard  14030:   
1.220     brouard  14031:   /* Calculates basic frequencies. Computes observed prevalence at single age 
                   14032:                 and for any valid combination of covariates
1.126     brouard  14033:      and prints on file fileres'p'. */
1.251     brouard  14034:   freqsummary(fileres, p, pstart, agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
1.227     brouard  14035:              firstpass, lastpass,  stepm,  weightopt, model);
1.126     brouard  14036: 
                   14037:   fprintf(fichtm,"\n");
1.286     brouard  14038:   fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\
1.274     brouard  14039:          ftol, stepm);
                   14040:   fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol);
                   14041:   ncurrv=1;
                   14042:   for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i);
                   14043:   fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); 
                   14044:   ncurrv=i;
                   14045:   for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i);
1.290     brouard  14046:   fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv);
1.274     brouard  14047:   ncurrv=i;
                   14048:   for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i);
1.290     brouard  14049:   fprintf(fichtm,"\n<li>Number of time varying  quantitative covariates: nqtv=%d ", nqtv);
1.274     brouard  14050:   ncurrv=i;
                   14051:   for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i);
                   14052:   fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \
                   14053:           nlstate, ndeath, maxwav, mle, weightopt);
                   14054: 
                   14055:   fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\
                   14056: <img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"));
                   14057: 
                   14058:   
1.317     brouard  14059:   fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Number of (used) observations=%d <br>\n\
1.126     brouard  14060: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   14061: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
1.274     brouard  14062:   imx,agemin,agemax,jmin,jmax,jmean);
1.126     brouard  14063:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
1.268     brouard  14064:   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   14065:   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   14066:   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   14067:   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
1.218     brouard  14068: 
1.126     brouard  14069:   /* For Powell, parameters are in a vector p[] starting at p[1]
                   14070:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                   14071:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
                   14072: 
                   14073:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
1.186     brouard  14074:   /* For mortality only */
1.126     brouard  14075:   if (mle==-3){
1.136     brouard  14076:     ximort=matrix(1,NDIM,1,NDIM); 
1.248     brouard  14077:     for(i=1;i<=NDIM;i++)
                   14078:       for(j=1;j<=NDIM;j++)
                   14079:        ximort[i][j]=0.;
1.186     brouard  14080:     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
1.290     brouard  14081:     cens=ivector(firstobs,lastobs);
                   14082:     ageexmed=vector(firstobs,lastobs);
                   14083:     agecens=vector(firstobs,lastobs);
                   14084:     dcwave=ivector(firstobs,lastobs);
1.223     brouard  14085:                
1.126     brouard  14086:     for (i=1; i<=imx; i++){
                   14087:       dcwave[i]=-1;
                   14088:       for (m=firstpass; m<=lastpass; m++)
1.226     brouard  14089:        if (s[m][i]>nlstate) {
                   14090:          dcwave[i]=m;
                   14091:          /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                   14092:          break;
                   14093:        }
1.126     brouard  14094:     }
1.226     brouard  14095:     
1.126     brouard  14096:     for (i=1; i<=imx; i++) {
                   14097:       if (wav[i]>0){
1.226     brouard  14098:        ageexmed[i]=agev[mw[1][i]][i];
                   14099:        j=wav[i];
                   14100:        agecens[i]=1.; 
                   14101:        
                   14102:        if (ageexmed[i]> 1 && wav[i] > 0){
                   14103:          agecens[i]=agev[mw[j][i]][i];
                   14104:          cens[i]= 1;
                   14105:        }else if (ageexmed[i]< 1) 
                   14106:          cens[i]= -1;
                   14107:        if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                   14108:          cens[i]=0 ;
1.126     brouard  14109:       }
                   14110:       else cens[i]=-1;
                   14111:     }
                   14112:     
                   14113:     for (i=1;i<=NDIM;i++) {
                   14114:       for (j=1;j<=NDIM;j++)
1.226     brouard  14115:        ximort[i][j]=(i == j ? 1.0 : 0.0);
1.126     brouard  14116:     }
                   14117:     
1.302     brouard  14118:     p[1]=0.0268; p[NDIM]=0.083;
                   14119:     /* printf("%lf %lf", p[1], p[2]); */
1.126     brouard  14120:     
                   14121:     
1.136     brouard  14122: #ifdef GSL
                   14123:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
1.162     brouard  14124: #else
1.126     brouard  14125:     printf("Powell\n");  fprintf(ficlog,"Powell\n");
1.136     brouard  14126: #endif
1.201     brouard  14127:     strcpy(filerespow,"POW-MORT_"); 
                   14128:     strcat(filerespow,fileresu);
1.126     brouard  14129:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   14130:       printf("Problem with resultfile: %s\n", filerespow);
                   14131:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   14132:     }
1.136     brouard  14133: #ifdef GSL
                   14134:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
1.162     brouard  14135: #else
1.126     brouard  14136:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
1.136     brouard  14137: #endif
1.126     brouard  14138:     /*  for (i=1;i<=nlstate;i++)
                   14139:        for(j=1;j<=nlstate+ndeath;j++)
                   14140:        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   14141:     */
                   14142:     fprintf(ficrespow,"\n");
1.136     brouard  14143: #ifdef GSL
                   14144:     /* gsl starts here */ 
                   14145:     T = gsl_multimin_fminimizer_nmsimplex;
                   14146:     gsl_multimin_fminimizer *sfm = NULL;
                   14147:     gsl_vector *ss, *x;
                   14148:     gsl_multimin_function minex_func;
                   14149: 
                   14150:     /* Initial vertex size vector */
                   14151:     ss = gsl_vector_alloc (NDIM);
                   14152:     
                   14153:     if (ss == NULL){
                   14154:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
                   14155:     }
                   14156:     /* Set all step sizes to 1 */
                   14157:     gsl_vector_set_all (ss, 0.001);
                   14158: 
                   14159:     /* Starting point */
1.126     brouard  14160:     
1.136     brouard  14161:     x = gsl_vector_alloc (NDIM);
                   14162:     
                   14163:     if (x == NULL){
                   14164:       gsl_vector_free(ss);
                   14165:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
                   14166:     }
                   14167:   
                   14168:     /* Initialize method and iterate */
                   14169:     /*     p[1]=0.0268; p[NDIM]=0.083; */
1.186     brouard  14170:     /*     gsl_vector_set(x, 0, 0.0268); */
                   14171:     /*     gsl_vector_set(x, 1, 0.083); */
1.136     brouard  14172:     gsl_vector_set(x, 0, p[1]);
                   14173:     gsl_vector_set(x, 1, p[2]);
                   14174: 
                   14175:     minex_func.f = &gompertz_f;
                   14176:     minex_func.n = NDIM;
                   14177:     minex_func.params = (void *)&p; /* ??? */
                   14178:     
                   14179:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
                   14180:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
                   14181:     
                   14182:     printf("Iterations beginning .....\n\n");
                   14183:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
                   14184: 
                   14185:     iteri=0;
                   14186:     while (rval == GSL_CONTINUE){
                   14187:       iteri++;
                   14188:       status = gsl_multimin_fminimizer_iterate(sfm);
                   14189:       
                   14190:       if (status) printf("error: %s\n", gsl_strerror (status));
                   14191:       fflush(0);
                   14192:       
                   14193:       if (status) 
                   14194:         break;
                   14195:       
                   14196:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
                   14197:       ssval = gsl_multimin_fminimizer_size (sfm);
                   14198:       
                   14199:       if (rval == GSL_SUCCESS)
                   14200:         printf ("converged to a local maximum at\n");
                   14201:       
                   14202:       printf("%5d ", iteri);
                   14203:       for (it = 0; it < NDIM; it++){
                   14204:        printf ("%10.5f ", gsl_vector_get (sfm->x, it));
                   14205:       }
                   14206:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
                   14207:     }
                   14208:     
                   14209:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
                   14210:     
                   14211:     gsl_vector_free(x); /* initial values */
                   14212:     gsl_vector_free(ss); /* inital step size */
                   14213:     for (it=0; it<NDIM; it++){
                   14214:       p[it+1]=gsl_vector_get(sfm->x,it);
                   14215:       fprintf(ficrespow," %.12lf", p[it]);
                   14216:     }
                   14217:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
                   14218: #endif
                   14219: #ifdef POWELL
                   14220:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
                   14221: #endif  
1.126     brouard  14222:     fclose(ficrespow);
                   14223:     
1.203     brouard  14224:     hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
1.126     brouard  14225: 
                   14226:     for(i=1; i <=NDIM; i++)
                   14227:       for(j=i+1;j<=NDIM;j++)
1.220     brouard  14228:                                matcov[i][j]=matcov[j][i];
1.126     brouard  14229:     
                   14230:     printf("\nCovariance matrix\n ");
1.203     brouard  14231:     fprintf(ficlog,"\nCovariance matrix\n ");
1.126     brouard  14232:     for(i=1; i <=NDIM; i++) {
                   14233:       for(j=1;j<=NDIM;j++){ 
1.220     brouard  14234:                                printf("%f ",matcov[i][j]);
                   14235:                                fprintf(ficlog,"%f ",matcov[i][j]);
1.126     brouard  14236:       }
1.203     brouard  14237:       printf("\n ");  fprintf(ficlog,"\n ");
1.126     brouard  14238:     }
                   14239:     
                   14240:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
1.193     brouard  14241:     for (i=1;i<=NDIM;i++) {
1.126     brouard  14242:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
1.193     brouard  14243:       fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   14244:     }
1.302     brouard  14245:     lsurv=vector(agegomp,AGESUP);
                   14246:     lpop=vector(agegomp,AGESUP);
                   14247:     tpop=vector(agegomp,AGESUP);
1.126     brouard  14248:     lsurv[agegomp]=100000;
                   14249:     
                   14250:     for (k=agegomp;k<=AGESUP;k++) {
                   14251:       agemortsup=k;
                   14252:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
                   14253:     }
                   14254:     
                   14255:     for (k=agegomp;k<agemortsup;k++)
                   14256:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
                   14257:     
                   14258:     for (k=agegomp;k<agemortsup;k++){
                   14259:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
                   14260:       sumlpop=sumlpop+lpop[k];
                   14261:     }
                   14262:     
                   14263:     tpop[agegomp]=sumlpop;
                   14264:     for (k=agegomp;k<(agemortsup-3);k++){
                   14265:       /*  tpop[k+1]=2;*/
                   14266:       tpop[k+1]=tpop[k]-lpop[k];
                   14267:     }
                   14268:     
                   14269:     
                   14270:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
                   14271:     for (k=agegomp;k<(agemortsup-2);k++) 
                   14272:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   14273:     
                   14274:     
                   14275:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
1.220     brouard  14276:                ageminpar=50;
                   14277:                agemaxpar=100;
1.194     brouard  14278:     if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
                   14279:        printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
                   14280: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   14281: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
                   14282:        fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
                   14283: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   14284: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.220     brouard  14285:     }else{
                   14286:                        printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                   14287:                        fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
1.201     brouard  14288:       printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
1.220     brouard  14289:                }
1.201     brouard  14290:     printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
1.126     brouard  14291:                     stepm, weightopt,\
                   14292:                     model,imx,p,matcov,agemortsup);
                   14293:     
1.302     brouard  14294:     free_vector(lsurv,agegomp,AGESUP);
                   14295:     free_vector(lpop,agegomp,AGESUP);
                   14296:     free_vector(tpop,agegomp,AGESUP);
1.220     brouard  14297:     free_matrix(ximort,1,NDIM,1,NDIM);
1.290     brouard  14298:     free_ivector(dcwave,firstobs,lastobs);
                   14299:     free_vector(agecens,firstobs,lastobs);
                   14300:     free_vector(ageexmed,firstobs,lastobs);
                   14301:     free_ivector(cens,firstobs,lastobs);
1.220     brouard  14302: #ifdef GSL
1.136     brouard  14303: #endif
1.186     brouard  14304:   } /* Endof if mle==-3 mortality only */
1.205     brouard  14305:   /* Standard  */
                   14306:   else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
                   14307:     globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
                   14308:     /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
1.132     brouard  14309:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
1.126     brouard  14310:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   14311:     for (k=1; k<=npar;k++)
                   14312:       printf(" %d %8.5f",k,p[k]);
                   14313:     printf("\n");
1.205     brouard  14314:     if(mle>=1){ /* Could be 1 or 2, Real Maximization */
                   14315:       /* mlikeli uses func not funcone */
1.247     brouard  14316:       /* for(i=1;i<nlstate;i++){ */
                   14317:       /*       /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
                   14318:       /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
                   14319:       /* } */
1.205     brouard  14320:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
                   14321:     }
                   14322:     if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
                   14323:       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
                   14324:       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
                   14325:       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   14326:     }
                   14327:     globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
1.126     brouard  14328:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   14329:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
1.335     brouard  14330:           /* exit(0); */
1.126     brouard  14331:     for (k=1; k<=npar;k++)
                   14332:       printf(" %d %8.5f",k,p[k]);
                   14333:     printf("\n");
                   14334:     
                   14335:     /*--------- results files --------------*/
1.283     brouard  14336:     /* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */
1.126     brouard  14337:     
                   14338:     
                   14339:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
1.319     brouard  14340:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); /* Printing model equation */
1.126     brouard  14341:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
1.319     brouard  14342: 
                   14343:     printf("#model=  1      +     age ");
                   14344:     fprintf(ficres,"#model=  1      +     age ");
                   14345:     fprintf(ficlog,"#model=  1      +     age ");
                   14346:     fprintf(fichtm,"\n<ul><li> model=1+age+%s\n \
                   14347: </ul>", model);
                   14348: 
                   14349:     fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">\n");
                   14350:     fprintf(fichtm, "<tr><th>Model=</th><th>1</th><th>+ age</th>");
                   14351:     if(nagesqr==1){
                   14352:       printf("  + age*age  ");
                   14353:       fprintf(ficres,"  + age*age  ");
                   14354:       fprintf(ficlog,"  + age*age  ");
                   14355:       fprintf(fichtm, "<th>+ age*age</th>");
                   14356:     }
                   14357:     for(j=1;j <=ncovmodel-2;j++){
                   14358:       if(Typevar[j]==0) {
                   14359:        printf("  +      V%d  ",Tvar[j]);
                   14360:        fprintf(ficres,"  +      V%d  ",Tvar[j]);
                   14361:        fprintf(ficlog,"  +      V%d  ",Tvar[j]);
                   14362:        fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
                   14363:       }else if(Typevar[j]==1) {
                   14364:        printf("  +    V%d*age ",Tvar[j]);
                   14365:        fprintf(ficres,"  +    V%d*age ",Tvar[j]);
                   14366:        fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
                   14367:        fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
                   14368:       }else if(Typevar[j]==2) {
                   14369:        printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   14370:        fprintf(ficres,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   14371:        fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   14372:        fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.349     brouard  14373:       }else if(Typevar[j]==3) { /* TO VERIFY */
                   14374:        printf("  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   14375:        fprintf(ficres,"  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   14376:        fprintf(ficlog,"  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   14377:        fprintf(fichtm, "<th>+  V%d*V%d*age</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.319     brouard  14378:       }
                   14379:     }
                   14380:     printf("\n");
                   14381:     fprintf(ficres,"\n");
                   14382:     fprintf(ficlog,"\n");
                   14383:     fprintf(fichtm, "</tr>");
                   14384:     fprintf(fichtm, "\n");
                   14385:     
                   14386:     
1.126     brouard  14387:     for(i=1,jk=1; i <=nlstate; i++){
                   14388:       for(k=1; k <=(nlstate+ndeath); k++){
1.225     brouard  14389:        if (k != i) {
1.319     brouard  14390:          fprintf(fichtm, "<tr>");
1.225     brouard  14391:          printf("%d%d ",i,k);
                   14392:          fprintf(ficlog,"%d%d ",i,k);
                   14393:          fprintf(ficres,"%1d%1d ",i,k);
1.319     brouard  14394:          fprintf(fichtm, "<td>%1d%1d</td>",i,k);
1.225     brouard  14395:          for(j=1; j <=ncovmodel; j++){
                   14396:            printf("%12.7f ",p[jk]);
                   14397:            fprintf(ficlog,"%12.7f ",p[jk]);
                   14398:            fprintf(ficres,"%12.7f ",p[jk]);
1.319     brouard  14399:            fprintf(fichtm, "<td>%12.7f</td>",p[jk]);
1.225     brouard  14400:            jk++; 
                   14401:          }
                   14402:          printf("\n");
                   14403:          fprintf(ficlog,"\n");
                   14404:          fprintf(ficres,"\n");
1.319     brouard  14405:          fprintf(fichtm, "</tr>\n");
1.225     brouard  14406:        }
1.126     brouard  14407:       }
                   14408:     }
1.319     brouard  14409:     /* fprintf(fichtm,"</tr>\n"); */
                   14410:     fprintf(fichtm,"</table>\n");
                   14411:     fprintf(fichtm, "\n");
                   14412: 
1.203     brouard  14413:     if(mle != 0){
                   14414:       /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
1.126     brouard  14415:       ftolhess=ftol; /* Usually correct */
1.203     brouard  14416:       hesscov(matcov, hess, p, npar, delti, ftolhess, func);
                   14417:       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
                   14418:       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
1.322     brouard  14419:       fprintf(fichtm, "\n<p>The Wald test results are output only if the maximimzation of the Likelihood is performed (mle=1)\n</br>Parameters, Wald tests and Wald-based confidence intervals\n</br> W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n</br> And Wald-based confidence intervals plus and minus 1.96 * W \n </br> It might be better to visualize the covariance matrix. See the page '<a href=\"%s\">Matrix of variance-covariance of one-step probabilities and its graphs</a>'.\n</br>",optionfilehtmcov);
1.319     brouard  14420:       fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">");
                   14421:       fprintf(fichtm, "\n<tr><th>Model=</th><th>1</th><th>+ age</th>");
                   14422:       if(nagesqr==1){
                   14423:        printf("  + age*age  ");
                   14424:        fprintf(ficres,"  + age*age  ");
                   14425:        fprintf(ficlog,"  + age*age  ");
                   14426:        fprintf(fichtm, "<th>+ age*age</th>");
                   14427:       }
                   14428:       for(j=1;j <=ncovmodel-2;j++){
                   14429:        if(Typevar[j]==0) {
                   14430:          printf("  +      V%d  ",Tvar[j]);
                   14431:          fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
                   14432:        }else if(Typevar[j]==1) {
                   14433:          printf("  +    V%d*age ",Tvar[j]);
                   14434:          fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
                   14435:        }else if(Typevar[j]==2) {
                   14436:          fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.349     brouard  14437:        }else if(Typevar[j]==3) { /* TO VERIFY */
                   14438:          fprintf(fichtm, "<th>+  V%d*V%d*age</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.319     brouard  14439:        }
                   14440:       }
                   14441:       fprintf(fichtm, "</tr>\n");
                   14442:  
1.203     brouard  14443:       for(i=1,jk=1; i <=nlstate; i++){
1.225     brouard  14444:        for(k=1; k <=(nlstate+ndeath); k++){
                   14445:          if (k != i) {
1.319     brouard  14446:            fprintf(fichtm, "<tr valign=top>");
1.225     brouard  14447:            printf("%d%d ",i,k);
                   14448:            fprintf(ficlog,"%d%d ",i,k);
1.319     brouard  14449:            fprintf(fichtm, "<td>%1d%1d</td>",i,k);
1.225     brouard  14450:            for(j=1; j <=ncovmodel; j++){
1.319     brouard  14451:              wald=p[jk]/sqrt(matcov[jk][jk]);
1.324     brouard  14452:              printf("%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                   14453:              fprintf(ficlog,"%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
1.319     brouard  14454:              if(fabs(wald) > 1.96){
1.321     brouard  14455:                fprintf(fichtm, "<td><b>%12.7f</b></br> (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
1.319     brouard  14456:              }else{
                   14457:                fprintf(fichtm, "<td>%12.7f (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
                   14458:              }
1.324     brouard  14459:              fprintf(fichtm,"W=%8.3f</br>",wald);
1.319     brouard  14460:              fprintf(fichtm,"[%12.7f;%12.7f]</br></td>", p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
1.225     brouard  14461:              jk++; 
                   14462:            }
                   14463:            printf("\n");
                   14464:            fprintf(ficlog,"\n");
1.319     brouard  14465:            fprintf(fichtm, "</tr>\n");
1.225     brouard  14466:          }
                   14467:        }
1.193     brouard  14468:       }
1.203     brouard  14469:     } /* end of hesscov and Wald tests */
1.319     brouard  14470:     fprintf(fichtm,"</table>\n");
1.225     brouard  14471:     
1.203     brouard  14472:     /*  */
1.126     brouard  14473:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   14474:     printf("# Scales (for hessian or gradient estimation)\n");
                   14475:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                   14476:     for(i=1,jk=1; i <=nlstate; i++){
                   14477:       for(j=1; j <=nlstate+ndeath; j++){
1.225     brouard  14478:        if (j!=i) {
                   14479:          fprintf(ficres,"%1d%1d",i,j);
                   14480:          printf("%1d%1d",i,j);
                   14481:          fprintf(ficlog,"%1d%1d",i,j);
                   14482:          for(k=1; k<=ncovmodel;k++){
                   14483:            printf(" %.5e",delti[jk]);
                   14484:            fprintf(ficlog," %.5e",delti[jk]);
                   14485:            fprintf(ficres," %.5e",delti[jk]);
                   14486:            jk++;
                   14487:          }
                   14488:          printf("\n");
                   14489:          fprintf(ficlog,"\n");
                   14490:          fprintf(ficres,"\n");
                   14491:        }
1.126     brouard  14492:       }
                   14493:     }
                   14494:     
                   14495:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
1.349     brouard  14496:     if(mle >= 1) /* Too big for the screen */
1.126     brouard  14497:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   14498:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   14499:     /* # 121 Var(a12)\n\ */
                   14500:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   14501:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   14502:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   14503:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   14504:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   14505:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   14506:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   14507:     
                   14508:     
                   14509:     /* Just to have a covariance matrix which will be more understandable
                   14510:        even is we still don't want to manage dictionary of variables
                   14511:     */
                   14512:     for(itimes=1;itimes<=2;itimes++){
                   14513:       jj=0;
                   14514:       for(i=1; i <=nlstate; i++){
1.225     brouard  14515:        for(j=1; j <=nlstate+ndeath; j++){
                   14516:          if(j==i) continue;
                   14517:          for(k=1; k<=ncovmodel;k++){
                   14518:            jj++;
                   14519:            ca[0]= k+'a'-1;ca[1]='\0';
                   14520:            if(itimes==1){
                   14521:              if(mle>=1)
                   14522:                printf("#%1d%1d%d",i,j,k);
                   14523:              fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   14524:              fprintf(ficres,"#%1d%1d%d",i,j,k);
                   14525:            }else{
                   14526:              if(mle>=1)
                   14527:                printf("%1d%1d%d",i,j,k);
                   14528:              fprintf(ficlog,"%1d%1d%d",i,j,k);
                   14529:              fprintf(ficres,"%1d%1d%d",i,j,k);
                   14530:            }
                   14531:            ll=0;
                   14532:            for(li=1;li <=nlstate; li++){
                   14533:              for(lj=1;lj <=nlstate+ndeath; lj++){
                   14534:                if(lj==li) continue;
                   14535:                for(lk=1;lk<=ncovmodel;lk++){
                   14536:                  ll++;
                   14537:                  if(ll<=jj){
                   14538:                    cb[0]= lk +'a'-1;cb[1]='\0';
                   14539:                    if(ll<jj){
                   14540:                      if(itimes==1){
                   14541:                        if(mle>=1)
                   14542:                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   14543:                        fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   14544:                        fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   14545:                      }else{
                   14546:                        if(mle>=1)
                   14547:                          printf(" %.5e",matcov[jj][ll]); 
                   14548:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   14549:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   14550:                      }
                   14551:                    }else{
                   14552:                      if(itimes==1){
                   14553:                        if(mle>=1)
                   14554:                          printf(" Var(%s%1d%1d)",ca,i,j);
                   14555:                        fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                   14556:                        fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                   14557:                      }else{
                   14558:                        if(mle>=1)
                   14559:                          printf(" %.7e",matcov[jj][ll]); 
                   14560:                        fprintf(ficlog," %.7e",matcov[jj][ll]); 
                   14561:                        fprintf(ficres," %.7e",matcov[jj][ll]); 
                   14562:                      }
                   14563:                    }
                   14564:                  }
                   14565:                } /* end lk */
                   14566:              } /* end lj */
                   14567:            } /* end li */
                   14568:            if(mle>=1)
                   14569:              printf("\n");
                   14570:            fprintf(ficlog,"\n");
                   14571:            fprintf(ficres,"\n");
                   14572:            numlinepar++;
                   14573:          } /* end k*/
                   14574:        } /*end j */
1.126     brouard  14575:       } /* end i */
                   14576:     } /* end itimes */
                   14577:     
                   14578:     fflush(ficlog);
                   14579:     fflush(ficres);
1.225     brouard  14580:     while(fgets(line, MAXLINE, ficpar)) {
                   14581:       /* If line starts with a # it is a comment */
                   14582:       if (line[0] == '#') {
                   14583:        numlinepar++;
                   14584:        fputs(line,stdout);
                   14585:        fputs(line,ficparo);
                   14586:        fputs(line,ficlog);
1.299     brouard  14587:        fputs(line,ficres);
1.225     brouard  14588:        continue;
                   14589:       }else
                   14590:        break;
                   14591:     }
                   14592:     
1.209     brouard  14593:     /* while((c=getc(ficpar))=='#' && c!= EOF){ */
                   14594:     /*   ungetc(c,ficpar); */
                   14595:     /*   fgets(line, MAXLINE, ficpar); */
                   14596:     /*   fputs(line,stdout); */
                   14597:     /*   fputs(line,ficparo); */
                   14598:     /* } */
                   14599:     /* ungetc(c,ficpar); */
1.126     brouard  14600:     
                   14601:     estepm=0;
1.209     brouard  14602:     if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
1.225     brouard  14603:       
                   14604:       if (num_filled != 6) {
                   14605:        printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                   14606:        fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                   14607:        goto end;
                   14608:       }
                   14609:       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
                   14610:     }
                   14611:     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
                   14612:     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
                   14613:     
1.209     brouard  14614:     /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
1.126     brouard  14615:     if (estepm==0 || estepm < stepm) estepm=stepm;
                   14616:     if (fage <= 2) {
                   14617:       bage = ageminpar;
                   14618:       fage = agemaxpar;
                   14619:     }
                   14620:     
                   14621:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
1.211     brouard  14622:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   14623:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
1.220     brouard  14624:                
1.186     brouard  14625:     /* Other stuffs, more or less useful */    
1.254     brouard  14626:     while(fgets(line, MAXLINE, ficpar)) {
                   14627:       /* If line starts with a # it is a comment */
                   14628:       if (line[0] == '#') {
                   14629:        numlinepar++;
                   14630:        fputs(line,stdout);
                   14631:        fputs(line,ficparo);
                   14632:        fputs(line,ficlog);
1.299     brouard  14633:        fputs(line,ficres);
1.254     brouard  14634:        continue;
                   14635:       }else
                   14636:        break;
                   14637:     }
                   14638: 
                   14639:     if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){
                   14640:       
                   14641:       if (num_filled != 7) {
                   14642:        printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   14643:        fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   14644:        goto end;
                   14645:       }
                   14646:       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   14647:       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   14648:       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   14649:       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
1.126     brouard  14650:     }
1.254     brouard  14651: 
                   14652:     while(fgets(line, MAXLINE, ficpar)) {
                   14653:       /* If line starts with a # it is a comment */
                   14654:       if (line[0] == '#') {
                   14655:        numlinepar++;
                   14656:        fputs(line,stdout);
                   14657:        fputs(line,ficparo);
                   14658:        fputs(line,ficlog);
1.299     brouard  14659:        fputs(line,ficres);
1.254     brouard  14660:        continue;
                   14661:       }else
                   14662:        break;
1.126     brouard  14663:     }
                   14664:     
                   14665:     
                   14666:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                   14667:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
                   14668:     
1.254     brouard  14669:     if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){
                   14670:       if (num_filled != 1) {
                   14671:        printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   14672:        fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   14673:        goto end;
                   14674:       }
                   14675:       printf("pop_based=%d\n",popbased);
                   14676:       fprintf(ficlog,"pop_based=%d\n",popbased);
                   14677:       fprintf(ficparo,"pop_based=%d\n",popbased);   
                   14678:       fprintf(ficres,"pop_based=%d\n",popbased);   
                   14679:     }
                   14680:      
1.258     brouard  14681:     /* Results */
1.332     brouard  14682:     /* Value of covariate in each resultine will be compututed (if product) and sorted according to model rank */
                   14683:     /* It is precov[] because we need the varying age in order to compute the real cov[] of the model equation */  
                   14684:     precov=matrix(1,MAXRESULTLINESPONE,1,NCOVMAX+1);
1.307     brouard  14685:     endishere=0;
1.258     brouard  14686:     nresult=0;
1.308     brouard  14687:     parameterline=0;
1.258     brouard  14688:     do{
                   14689:       if(!fgets(line, MAXLINE, ficpar)){
                   14690:        endishere=1;
1.308     brouard  14691:        parameterline=15;
1.258     brouard  14692:       }else if (line[0] == '#') {
                   14693:        /* If line starts with a # it is a comment */
1.254     brouard  14694:        numlinepar++;
                   14695:        fputs(line,stdout);
                   14696:        fputs(line,ficparo);
                   14697:        fputs(line,ficlog);
1.299     brouard  14698:        fputs(line,ficres);
1.254     brouard  14699:        continue;
1.258     brouard  14700:       }else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp))
                   14701:        parameterline=11;
1.296     brouard  14702:       else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp))
1.258     brouard  14703:        parameterline=12;
1.307     brouard  14704:       else if(sscanf(line,"result:%[^\n]\n",modeltemp)){
1.258     brouard  14705:        parameterline=13;
1.307     brouard  14706:       }
1.258     brouard  14707:       else{
                   14708:        parameterline=14;
1.254     brouard  14709:       }
1.308     brouard  14710:       switch (parameterline){ /* =0 only if only comments */
1.258     brouard  14711:       case 11:
1.296     brouard  14712:        if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){
                   14713:                  fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
1.258     brouard  14714:          printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   14715:          fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   14716:          fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   14717:          /* day and month of proj2 are not used but only year anproj2.*/
1.273     brouard  14718:          dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.;
                   14719:          dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.;
1.296     brouard  14720:           prvforecast = 1;
                   14721:        } 
                   14722:        else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/
1.313     brouard  14723:          printf("prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
                   14724:          fprintf(ficlog,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
                   14725:          fprintf(ficres,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
1.296     brouard  14726:           prvforecast = 2;
                   14727:        }
                   14728:        else {
                   14729:          printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   14730:          fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   14731:          goto end;
1.258     brouard  14732:        }
1.254     brouard  14733:        break;
1.258     brouard  14734:       case 12:
1.296     brouard  14735:        if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){
                   14736:           fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   14737:          printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   14738:          fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   14739:          fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   14740:          /* day and month of back2 are not used but only year anback2.*/
1.273     brouard  14741:          dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.;
                   14742:          dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.;
1.296     brouard  14743:           prvbackcast = 1;
                   14744:        } 
                   14745:        else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/
1.313     brouard  14746:          printf("prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
                   14747:          fprintf(ficlog,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
                   14748:          fprintf(ficres,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
1.296     brouard  14749:           prvbackcast = 2;
                   14750:        }
                   14751:        else {
                   14752:          printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   14753:          fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   14754:          goto end;
1.258     brouard  14755:        }
1.230     brouard  14756:        break;
1.258     brouard  14757:       case 13:
1.332     brouard  14758:        num_filled=sscanf(line,"result:%[^\n]\n",resultlineori);
1.307     brouard  14759:        nresult++; /* Sum of resultlines */
1.342     brouard  14760:        /* printf("Result %d: result:%s\n",nresult, resultlineori); */
1.332     brouard  14761:        /* removefirstspace(&resultlineori); */
                   14762:        
                   14763:        if(strstr(resultlineori,"v") !=0){
                   14764:          printf("Error. 'v' must be in upper case 'V' result: %s ",resultlineori);
                   14765:          fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultlineori);fflush(ficlog);
                   14766:          return 1;
                   14767:        }
                   14768:        trimbb(resultline, resultlineori); /* Suppressing double blank in the resultline */
1.342     brouard  14769:        /* printf("Decoderesult resultline=\"%s\" resultlineori=\"%s\"\n", resultline, resultlineori); */
1.318     brouard  14770:        if(nresult > MAXRESULTLINESPONE-1){
                   14771:          printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
                   14772:          fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
1.307     brouard  14773:          goto end;
                   14774:        }
1.332     brouard  14775:        
1.310     brouard  14776:        if(!decoderesult(resultline, nresult)){ /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
1.314     brouard  14777:          fprintf(ficparo,"result: %s\n",resultline);
                   14778:          fprintf(ficres,"result: %s\n",resultline);
                   14779:          fprintf(ficlog,"result: %s\n",resultline);
1.310     brouard  14780:        } else
                   14781:          goto end;
1.307     brouard  14782:        break;
                   14783:       case 14:
                   14784:        printf("Error: Unknown command '%s'\n",line);
                   14785:        fprintf(ficlog,"Error: Unknown command '%s'\n",line);
1.314     brouard  14786:        if(line[0] == ' ' || line[0] == '\n'){
                   14787:          printf("It should not be an empty line '%s'\n",line);
                   14788:          fprintf(ficlog,"It should not be an empty line '%s'\n",line);
                   14789:        }         
1.307     brouard  14790:        if(ncovmodel >=2 && nresult==0 ){
                   14791:          printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
                   14792:          fprintf(ficlog,"ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
1.258     brouard  14793:        }
1.307     brouard  14794:        /* goto end; */
                   14795:        break;
1.308     brouard  14796:       case 15:
                   14797:        printf("End of resultlines.\n");
                   14798:        fprintf(ficlog,"End of resultlines.\n");
                   14799:        break;
                   14800:       default: /* parameterline =0 */
1.307     brouard  14801:        nresult=1;
                   14802:        decoderesult(".",nresult ); /* No covariate */
1.258     brouard  14803:       } /* End switch parameterline */
                   14804:     }while(endishere==0); /* End do */
1.126     brouard  14805:     
1.230     brouard  14806:     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
1.145     brouard  14807:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
1.126     brouard  14808:     
                   14809:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
1.194     brouard  14810:     if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
1.230     brouard  14811:       printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
1.194     brouard  14812: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   14813: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.230     brouard  14814:       fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
1.194     brouard  14815: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   14816: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.220     brouard  14817:     }else{
1.270     brouard  14818:       /* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */
1.296     brouard  14819:       /* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */
                   14820:       /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */
                   14821:       if(prvforecast==1){
                   14822:         dateprojd=(jproj1+12*mproj1+365*anproj1)/365;
                   14823:         jprojd=jproj1;
                   14824:         mprojd=mproj1;
                   14825:         anprojd=anproj1;
                   14826:         dateprojf=(jproj2+12*mproj2+365*anproj2)/365;
                   14827:         jprojf=jproj2;
                   14828:         mprojf=mproj2;
                   14829:         anprojf=anproj2;
                   14830:       } else if(prvforecast == 2){
                   14831:         dateprojd=dateintmean;
                   14832:         date2dmy(dateprojd,&jprojd, &mprojd, &anprojd);
                   14833:         dateprojf=dateintmean+yrfproj;
                   14834:         date2dmy(dateprojf,&jprojf, &mprojf, &anprojf);
                   14835:       }
                   14836:       if(prvbackcast==1){
                   14837:         datebackd=(jback1+12*mback1+365*anback1)/365;
                   14838:         jbackd=jback1;
                   14839:         mbackd=mback1;
                   14840:         anbackd=anback1;
                   14841:         datebackf=(jback2+12*mback2+365*anback2)/365;
                   14842:         jbackf=jback2;
                   14843:         mbackf=mback2;
                   14844:         anbackf=anback2;
                   14845:       } else if(prvbackcast == 2){
                   14846:         datebackd=dateintmean;
                   14847:         date2dmy(datebackd,&jbackd, &mbackd, &anbackd);
                   14848:         datebackf=dateintmean-yrbproj;
                   14849:         date2dmy(datebackf,&jbackf, &mbackf, &anbackf);
                   14850:       }
                   14851:       
1.350     brouard  14852:       printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage);/* HERE valgrind Tvard*/
1.220     brouard  14853:     }
                   14854:     printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
1.296     brouard  14855:                 model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \
                   14856:                 jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf);
1.220     brouard  14857:                
1.225     brouard  14858:     /*------------ free_vector  -------------*/
                   14859:     /*  chdir(path); */
1.220     brouard  14860:                
1.215     brouard  14861:     /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
                   14862:     /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
                   14863:     /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
                   14864:     /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
1.290     brouard  14865:     free_lvector(num,firstobs,lastobs);
                   14866:     free_vector(agedc,firstobs,lastobs);
1.126     brouard  14867:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
                   14868:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
                   14869:     fclose(ficparo);
                   14870:     fclose(ficres);
1.220     brouard  14871:                
                   14872:                
1.186     brouard  14873:     /* Other results (useful)*/
1.220     brouard  14874:                
                   14875:                
1.126     brouard  14876:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
1.180     brouard  14877:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
                   14878:     prlim=matrix(1,nlstate,1,nlstate);
1.332     brouard  14879:     /* Computes the prevalence limit for each combination k of the dummy covariates by calling prevalim(k) */
1.209     brouard  14880:     prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
1.126     brouard  14881:     fclose(ficrespl);
                   14882: 
                   14883:     /*------------- h Pij x at various ages ------------*/
1.180     brouard  14884:     /*#include "hpijx.h"*/
1.332     brouard  14885:     /** h Pij x Probability to be in state j at age x+h being in i at x, for each combination k of dummies in the model line or to nres?*/
                   14886:     /* calls hpxij with combination k */
1.180     brouard  14887:     hPijx(p, bage, fage);
1.145     brouard  14888:     fclose(ficrespij);
1.227     brouard  14889:     
1.220     brouard  14890:     /* ncovcombmax=  pow(2,cptcoveff); */
1.332     brouard  14891:     /*-------------- Variance of one-step probabilities for a combination ij or for nres ?---*/
1.145     brouard  14892:     k=1;
1.126     brouard  14893:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
1.227     brouard  14894:     
1.269     brouard  14895:     /* Prevalence for each covariate combination in probs[age][status][cov] */
                   14896:     probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
                   14897:     for(i=AGEINF;i<=AGESUP;i++)
1.219     brouard  14898:       for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
1.225     brouard  14899:        for(k=1;k<=ncovcombmax;k++)
                   14900:          probs[i][j][k]=0.;
1.269     brouard  14901:     prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, 
                   14902:               ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
1.219     brouard  14903:     if (mobilav!=0 ||mobilavproj !=0 ) {
1.269     brouard  14904:       mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
                   14905:       for(i=AGEINF;i<=AGESUP;i++)
1.268     brouard  14906:        for(j=1;j<=nlstate+ndeath;j++)
1.227     brouard  14907:          for(k=1;k<=ncovcombmax;k++)
                   14908:            mobaverages[i][j][k]=0.;
1.219     brouard  14909:       mobaverage=mobaverages;
                   14910:       if (mobilav!=0) {
1.235     brouard  14911:        printf("Movingaveraging observed prevalence\n");
1.258     brouard  14912:        fprintf(ficlog,"Movingaveraging observed prevalence\n");
1.227     brouard  14913:        if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
                   14914:          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   14915:          printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   14916:        }
1.269     brouard  14917:       } else if (mobilavproj !=0) {
1.235     brouard  14918:        printf("Movingaveraging projected observed prevalence\n");
1.258     brouard  14919:        fprintf(ficlog,"Movingaveraging projected observed prevalence\n");
1.227     brouard  14920:        if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
                   14921:          fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
                   14922:          printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
                   14923:        }
1.269     brouard  14924:       }else{
                   14925:        printf("Internal error moving average\n");
                   14926:        fflush(stdout);
                   14927:        exit(1);
1.219     brouard  14928:       }
                   14929:     }/* end if moving average */
1.227     brouard  14930:     
1.126     brouard  14931:     /*---------- Forecasting ------------------*/
1.296     brouard  14932:     if(prevfcast==1){ 
                   14933:       /*   /\*    if(stepm ==1){*\/ */
                   14934:       /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
                   14935:       /*This done previously after freqsummary.*/
                   14936:       /*   dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */
                   14937:       /*   dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */
                   14938:       
                   14939:       /* } else if (prvforecast==2){ */
                   14940:       /*   /\*    if(stepm ==1){*\/ */
                   14941:       /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
                   14942:       /* } */
                   14943:       /*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/
                   14944:       prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff);
1.126     brouard  14945:     }
1.269     brouard  14946: 
1.296     brouard  14947:     /* Prevbcasting */
                   14948:     if(prevbcast==1){
1.219     brouard  14949:       ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);       
                   14950:       ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);       
                   14951:       ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
                   14952: 
                   14953:       /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
                   14954: 
                   14955:       bprlim=matrix(1,nlstate,1,nlstate);
1.269     brouard  14956: 
1.219     brouard  14957:       back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
                   14958:       fclose(ficresplb);
                   14959: 
1.222     brouard  14960:       hBijx(p, bage, fage, mobaverage);
                   14961:       fclose(ficrespijb);
1.219     brouard  14962: 
1.296     brouard  14963:       /* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */
                   14964:       /* /\*                  mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */
                   14965:       /* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */
                   14966:       /*                      mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
                   14967:       prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2,
                   14968:                       mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff);
                   14969: 
                   14970:       
1.269     brouard  14971:       varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
1.268     brouard  14972: 
                   14973:       
1.269     brouard  14974:       free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
1.219     brouard  14975:       free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   14976:       free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   14977:       free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
1.296     brouard  14978:     }    /* end  Prevbcasting */
1.268     brouard  14979:  
1.186     brouard  14980:  
                   14981:     /* ------ Other prevalence ratios------------ */
1.126     brouard  14982: 
1.215     brouard  14983:     free_ivector(wav,1,imx);
                   14984:     free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
                   14985:     free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
                   14986:     free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
1.218     brouard  14987:                
                   14988:                
1.127     brouard  14989:     /*---------- Health expectancies, no variances ------------*/
1.218     brouard  14990:                
1.201     brouard  14991:     strcpy(filerese,"E_");
                   14992:     strcat(filerese,fileresu);
1.126     brouard  14993:     if((ficreseij=fopen(filerese,"w"))==NULL) {
                   14994:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   14995:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   14996:     }
1.208     brouard  14997:     printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
                   14998:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
1.238     brouard  14999: 
                   15000:     pstamp(ficreseij);
1.219     brouard  15001:                
1.351     brouard  15002:     /* i1=pow(2,cptcoveff); /\* Number of combination of dummy covariates *\/ */
                   15003:     /* if (cptcovn < 1){i1=1;} */
1.235     brouard  15004:     
1.351     brouard  15005:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   15006:     /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
                   15007:       /* if(i1 != 1 && TKresult[nres]!= k) */
                   15008:       /*       continue; */
1.219     brouard  15009:       fprintf(ficreseij,"\n#****** ");
1.235     brouard  15010:       printf("\n#****** ");
1.351     brouard  15011:       for(j=1;j<=cptcovs;j++){
                   15012:       /* for(j=1;j<=cptcoveff;j++) { */
                   15013:        /* fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   15014:        fprintf(ficreseij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   15015:        printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   15016:        /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
1.235     brouard  15017:       }
                   15018:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
1.337     brouard  15019:        printf(" V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */
                   15020:        fprintf(ficreseij,"V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]);
1.219     brouard  15021:       }
                   15022:       fprintf(ficreseij,"******\n");
1.235     brouard  15023:       printf("******\n");
1.219     brouard  15024:       
                   15025:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   15026:       oldm=oldms;savm=savms;
1.330     brouard  15027:       /* printf("HELLO Entering evsij bage=%d fage=%d k=%d estepm=%d nres=%d\n",(int) bage, (int)fage, k, estepm, nres); */
1.235     brouard  15028:       evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
1.127     brouard  15029:       
1.219     brouard  15030:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
1.127     brouard  15031:     }
                   15032:     fclose(ficreseij);
1.208     brouard  15033:     printf("done evsij\n");fflush(stdout);
                   15034:     fprintf(ficlog,"done evsij\n");fflush(ficlog);
1.269     brouard  15035: 
1.218     brouard  15036:                
1.227     brouard  15037:     /*---------- State-specific expectancies and variances ------------*/
1.336     brouard  15038:     /* Should be moved in a function */                
1.201     brouard  15039:     strcpy(filerest,"T_");
                   15040:     strcat(filerest,fileresu);
1.127     brouard  15041:     if((ficrest=fopen(filerest,"w"))==NULL) {
                   15042:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                   15043:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
                   15044:     }
1.208     brouard  15045:     printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
                   15046:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
1.201     brouard  15047:     strcpy(fileresstde,"STDE_");
                   15048:     strcat(fileresstde,fileresu);
1.126     brouard  15049:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
1.227     brouard  15050:       printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
                   15051:       fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
1.126     brouard  15052:     }
1.227     brouard  15053:     printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
                   15054:     fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
1.126     brouard  15055: 
1.201     brouard  15056:     strcpy(filerescve,"CVE_");
                   15057:     strcat(filerescve,fileresu);
1.126     brouard  15058:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
1.227     brouard  15059:       printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
                   15060:       fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
1.126     brouard  15061:     }
1.227     brouard  15062:     printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
                   15063:     fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
1.126     brouard  15064: 
1.201     brouard  15065:     strcpy(fileresv,"V_");
                   15066:     strcat(fileresv,fileresu);
1.126     brouard  15067:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
                   15068:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
                   15069:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
                   15070:     }
1.227     brouard  15071:     printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
                   15072:     fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
1.126     brouard  15073: 
1.235     brouard  15074:     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
                   15075:     if (cptcovn < 1){i1=1;}
                   15076:     
1.334     brouard  15077:     for(nres=1; nres <= nresult; nres++) /* For each resultline, find the combination and output results according to the values of dummies and then quanti.  */
                   15078:     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying. For each nres and each value at position k
                   15079:                          * we know Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline
                   15080:                          * Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline 
                   15081:                          * and Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
                   15082:       /* */
                   15083:       if(i1 != 1 && TKresult[nres]!= k) /* TKresult[nres] is the combination of this nres resultline. All the i1 combinations are not output */
1.235     brouard  15084:        continue;
1.350     brouard  15085:       printf("\n# model %s \n#****** Result for:", model);  /* HERE model is empty */
1.321     brouard  15086:       fprintf(ficrest,"\n# model %s \n#****** Result for:", model);
                   15087:       fprintf(ficlog,"\n# model %s \n#****** Result for:", model);
1.334     brouard  15088:       /* It might not be a good idea to mix dummies and quantitative */
                   15089:       /* for(j=1;j<=cptcoveff;j++){ /\* j=resultpos. Could be a loop on cptcovs: number of single dummy covariate in the result line as well as in the model *\/ */
                   15090:       for(j=1;j<=cptcovs;j++){ /* j=resultpos. Could be a loop on cptcovs: number of single covariate (dummy or quantitative) in the result line as well as in the model */
                   15091:        /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* Output by variables in the resultline *\/ */
                   15092:        /* Tvaraff[j] is the name of the dummy variable in position j in the equation model:
                   15093:         * Tvaraff[1]@9={4, 3, 0, 0, 0, 0, 0, 0, 0}, in model=V5+V4+V3+V4*V3+V5*age
                   15094:         * (V5 is quanti) V4 and V3 are dummies
                   15095:         * TnsdVar[4] is the position 1 and TnsdVar[3]=2 in codtabm(k,l)(V4  V3)=V4  V3
                   15096:         *                                                              l=1 l=2
                   15097:         *                                                           k=1  1   1   0   0
                   15098:         *                                                           k=2  2   1   1   0
                   15099:         *                                                           k=3 [1] [2]  0   1
                   15100:         *                                                           k=4  2   2   1   1
                   15101:         * If nres=1 result: V3=1 V4=0 then k=3 and outputs
                   15102:         * If nres=2 result: V4=1 V3=0 then k=2 and outputs
                   15103:         * nres=1 =>k=3 j=1 V4= nbcode[4][codtabm(3,1)=1)=0; j=2  V3= nbcode[3][codtabm(3,2)=2]=1
                   15104:         * nres=2 =>k=2 j=1 V4= nbcode[4][codtabm(2,1)=2)=1; j=2  V3= nbcode[3][codtabm(2,2)=1]=0
                   15105:         */
                   15106:        /* Tvresult[nres][j] Name of the variable at position j in this resultline */
                   15107:        /* Tresult[nres][j] Value of this variable at position j could be a float if quantitative  */
                   15108: /* We give up with the combinations!! */
1.342     brouard  15109:        /* if(debugILK) */
                   15110:        /*   printf("\n j=%d In computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d Fixed[modelresult[nres][j]]=%d\n", j, nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff,Fixed[modelresult[nres][j]]);  /\* end if dummy  or quanti *\/ */
1.334     brouard  15111: 
                   15112:        if(Dummy[modelresult[nres][j]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to j in resultline  */
1.344     brouard  15113:          /* printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /\* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  *\/ */ /* TinvDoQresult[nres][Name of the variable] */
                   15114:          printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordered by the covariate values in the resultline  */
                   15115:          fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   15116:          fprintf(ficrest,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
1.334     brouard  15117:          if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
                   15118:            printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
                   15119:          }else{
                   15120:            printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
                   15121:          }
                   15122:          /* fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   15123:          /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   15124:        }else if(Dummy[modelresult[nres][j]]==1){ /* Quanti variable */
                   15125:          /* For each selected (single) quantitative value */
1.337     brouard  15126:          printf(" V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
                   15127:          fprintf(ficlog," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
                   15128:          fprintf(ficrest," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
1.334     brouard  15129:          if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
                   15130:            printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
                   15131:          }else{
                   15132:            printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
                   15133:          }
                   15134:        }else{
                   15135:          printf("Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   15136:          fprintf(ficlog,"Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   15137:          exit(1);
                   15138:        }
1.335     brouard  15139:       } /* End loop for each variable in the resultline */
1.334     brouard  15140:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   15141:       /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /\* Wrong j is not in the equation model *\/ */
                   15142:       /*       fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   15143:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   15144:       /* }      */
1.208     brouard  15145:       fprintf(ficrest,"******\n");
1.227     brouard  15146:       fprintf(ficlog,"******\n");
                   15147:       printf("******\n");
1.208     brouard  15148:       
                   15149:       fprintf(ficresstdeij,"\n#****** ");
                   15150:       fprintf(ficrescveij,"\n#****** ");
1.337     brouard  15151:       /* It could have been: for(j=1;j<=cptcoveff;j++) {printf("V=%d=%lg",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);} */
                   15152:       /* But it won't be sorted and depends on how the resultline is ordered */
1.225     brouard  15153:       for(j=1;j<=cptcoveff;j++) {
1.334     brouard  15154:        fprintf(ficresstdeij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
                   15155:        /* fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   15156:        /* fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   15157:       }
                   15158:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value, TvarsQind gives the position of a quantitative in model equation  */
1.337     brouard  15159:        fprintf(ficresstdeij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
                   15160:        fprintf(ficrescveij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
1.235     brouard  15161:       }        
1.208     brouard  15162:       fprintf(ficresstdeij,"******\n");
                   15163:       fprintf(ficrescveij,"******\n");
                   15164:       
                   15165:       fprintf(ficresvij,"\n#****** ");
1.238     brouard  15166:       /* pstamp(ficresvij); */
1.225     brouard  15167:       for(j=1;j<=cptcoveff;j++) 
1.335     brouard  15168:        fprintf(ficresvij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
                   15169:        /* fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[TnsdVar[Tvaraff[j]]])]); */
1.235     brouard  15170:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
1.332     brouard  15171:        /* fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); /\* To solve *\/ */
1.337     brouard  15172:        fprintf(ficresvij," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */
1.235     brouard  15173:       }        
1.208     brouard  15174:       fprintf(ficresvij,"******\n");
                   15175:       
                   15176:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   15177:       oldm=oldms;savm=savms;
1.235     brouard  15178:       printf(" cvevsij ");
                   15179:       fprintf(ficlog, " cvevsij ");
                   15180:       cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
1.208     brouard  15181:       printf(" end cvevsij \n ");
                   15182:       fprintf(ficlog, " end cvevsij \n ");
                   15183:       
                   15184:       /*
                   15185:        */
                   15186:       /* goto endfree; */
                   15187:       
                   15188:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   15189:       pstamp(ficrest);
                   15190:       
1.269     brouard  15191:       epj=vector(1,nlstate+1);
1.208     brouard  15192:       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
1.227     brouard  15193:        oldm=oldms;savm=savms; /* ZZ Segmentation fault */
                   15194:        cptcod= 0; /* To be deleted */
                   15195:        printf("varevsij vpopbased=%d \n",vpopbased);
                   15196:        fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
1.235     brouard  15197:        varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
1.227     brouard  15198:        fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
                   15199:        if(vpopbased==1)
                   15200:          fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
                   15201:        else
1.288     brouard  15202:          fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n");
1.335     brouard  15203:        fprintf(ficrest,"# Age popbased mobilav e.. (std) "); /* Adding covariate values? */
1.227     brouard  15204:        for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                   15205:        fprintf(ficrest,"\n");
                   15206:        /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
1.288     brouard  15207:        printf("Computing age specific forward period (stable) prevalences in each health state \n");
                   15208:        fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n");
1.227     brouard  15209:        for(age=bage; age <=fage ;age++){
1.235     brouard  15210:          prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
1.227     brouard  15211:          if (vpopbased==1) {
                   15212:            if(mobilav ==0){
                   15213:              for(i=1; i<=nlstate;i++)
                   15214:                prlim[i][i]=probs[(int)age][i][k];
                   15215:            }else{ /* mobilav */ 
                   15216:              for(i=1; i<=nlstate;i++)
                   15217:                prlim[i][i]=mobaverage[(int)age][i][k];
                   15218:            }
                   15219:          }
1.219     brouard  15220:          
1.227     brouard  15221:          fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
                   15222:          /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
                   15223:          /* printf(" age %4.0f ",age); */
                   15224:          for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                   15225:            for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   15226:              epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   15227:              /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   15228:              /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                   15229:            }
                   15230:            epj[nlstate+1] +=epj[j];
                   15231:          }
                   15232:          /* printf(" age %4.0f \n",age); */
1.219     brouard  15233:          
1.227     brouard  15234:          for(i=1, vepp=0.;i <=nlstate;i++)
                   15235:            for(j=1;j <=nlstate;j++)
                   15236:              vepp += vareij[i][j][(int)age];
                   15237:          fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                   15238:          for(j=1;j <=nlstate;j++){
                   15239:            fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                   15240:          }
                   15241:          fprintf(ficrest,"\n");
                   15242:        }
1.208     brouard  15243:       } /* End vpopbased */
1.269     brouard  15244:       free_vector(epj,1,nlstate+1);
1.208     brouard  15245:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   15246:       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
1.235     brouard  15247:       printf("done selection\n");fflush(stdout);
                   15248:       fprintf(ficlog,"done selection\n");fflush(ficlog);
1.208     brouard  15249:       
1.335     brouard  15250:     } /* End k selection or end covariate selection for nres */
1.227     brouard  15251: 
                   15252:     printf("done State-specific expectancies\n");fflush(stdout);
                   15253:     fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
                   15254: 
1.335     brouard  15255:     /* variance-covariance of forward period prevalence */
1.269     brouard  15256:     varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
1.268     brouard  15257: 
1.227     brouard  15258:     
1.290     brouard  15259:     free_vector(weight,firstobs,lastobs);
1.351     brouard  15260:     free_imatrix(Tvardk,0,NCOVMAX,1,2);
1.227     brouard  15261:     free_imatrix(Tvard,1,NCOVMAX,1,2);
1.290     brouard  15262:     free_imatrix(s,1,maxwav+1,firstobs,lastobs);
                   15263:     free_matrix(anint,1,maxwav,firstobs,lastobs); 
                   15264:     free_matrix(mint,1,maxwav,firstobs,lastobs);
                   15265:     free_ivector(cod,firstobs,lastobs);
1.227     brouard  15266:     free_ivector(tab,1,NCOVMAX);
                   15267:     fclose(ficresstdeij);
                   15268:     fclose(ficrescveij);
                   15269:     fclose(ficresvij);
                   15270:     fclose(ficrest);
                   15271:     fclose(ficpar);
                   15272:     
                   15273:     
1.126     brouard  15274:     /*---------- End : free ----------------*/
1.219     brouard  15275:     if (mobilav!=0 ||mobilavproj !=0)
1.269     brouard  15276:       free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
                   15277:     free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
1.220     brouard  15278:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
                   15279:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
1.126     brouard  15280:   }  /* mle==-3 arrives here for freeing */
1.227     brouard  15281:   /* endfree:*/
                   15282:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   15283:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   15284:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
1.341     brouard  15285:   /* if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs); */
                   15286:   if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs);
1.290     brouard  15287:   if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs);
                   15288:   if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs);
                   15289:   free_matrix(covar,0,NCOVMAX,firstobs,lastobs);
1.227     brouard  15290:   free_matrix(matcov,1,npar,1,npar);
                   15291:   free_matrix(hess,1,npar,1,npar);
                   15292:   /*free_vector(delti,1,npar);*/
                   15293:   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   15294:   free_matrix(agev,1,maxwav,1,imx);
1.269     brouard  15295:   free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
1.227     brouard  15296:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
                   15297:   
                   15298:   free_ivector(ncodemax,1,NCOVMAX);
                   15299:   free_ivector(ncodemaxwundef,1,NCOVMAX);
                   15300:   free_ivector(Dummy,-1,NCOVMAX);
                   15301:   free_ivector(Fixed,-1,NCOVMAX);
1.349     brouard  15302:   free_ivector(DummyV,-1,NCOVMAX);
                   15303:   free_ivector(FixedV,-1,NCOVMAX);
1.227     brouard  15304:   free_ivector(Typevar,-1,NCOVMAX);
                   15305:   free_ivector(Tvar,1,NCOVMAX);
1.234     brouard  15306:   free_ivector(TvarsQ,1,NCOVMAX);
                   15307:   free_ivector(TvarsQind,1,NCOVMAX);
                   15308:   free_ivector(TvarsD,1,NCOVMAX);
1.330     brouard  15309:   free_ivector(TnsdVar,1,NCOVMAX);
1.234     brouard  15310:   free_ivector(TvarsDind,1,NCOVMAX);
1.231     brouard  15311:   free_ivector(TvarFD,1,NCOVMAX);
                   15312:   free_ivector(TvarFDind,1,NCOVMAX);
1.232     brouard  15313:   free_ivector(TvarF,1,NCOVMAX);
                   15314:   free_ivector(TvarFind,1,NCOVMAX);
                   15315:   free_ivector(TvarV,1,NCOVMAX);
                   15316:   free_ivector(TvarVind,1,NCOVMAX);
                   15317:   free_ivector(TvarA,1,NCOVMAX);
                   15318:   free_ivector(TvarAind,1,NCOVMAX);
1.231     brouard  15319:   free_ivector(TvarFQ,1,NCOVMAX);
                   15320:   free_ivector(TvarFQind,1,NCOVMAX);
                   15321:   free_ivector(TvarVD,1,NCOVMAX);
                   15322:   free_ivector(TvarVDind,1,NCOVMAX);
                   15323:   free_ivector(TvarVQ,1,NCOVMAX);
                   15324:   free_ivector(TvarVQind,1,NCOVMAX);
1.349     brouard  15325:   free_ivector(TvarAVVA,1,NCOVMAX);
                   15326:   free_ivector(TvarAVVAind,1,NCOVMAX);
                   15327:   free_ivector(TvarVVA,1,NCOVMAX);
                   15328:   free_ivector(TvarVVAind,1,NCOVMAX);
1.339     brouard  15329:   free_ivector(TvarVV,1,NCOVMAX);
                   15330:   free_ivector(TvarVVind,1,NCOVMAX);
                   15331:   
1.230     brouard  15332:   free_ivector(Tvarsel,1,NCOVMAX);
                   15333:   free_vector(Tvalsel,1,NCOVMAX);
1.227     brouard  15334:   free_ivector(Tposprod,1,NCOVMAX);
                   15335:   free_ivector(Tprod,1,NCOVMAX);
                   15336:   free_ivector(Tvaraff,1,NCOVMAX);
1.338     brouard  15337:   free_ivector(invalidvarcomb,0,ncovcombmax);
1.227     brouard  15338:   free_ivector(Tage,1,NCOVMAX);
                   15339:   free_ivector(Tmodelind,1,NCOVMAX);
1.228     brouard  15340:   free_ivector(TmodelInvind,1,NCOVMAX);
                   15341:   free_ivector(TmodelInvQind,1,NCOVMAX);
1.332     brouard  15342: 
                   15343:   free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /* Could be elsewhere ?*/
                   15344: 
1.227     brouard  15345:   free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
                   15346:   /* free_imatrix(codtab,1,100,1,10); */
1.126     brouard  15347:   fflush(fichtm);
                   15348:   fflush(ficgp);
                   15349:   
1.227     brouard  15350:   
1.126     brouard  15351:   if((nberr >0) || (nbwarn>0)){
1.216     brouard  15352:     printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
                   15353:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
1.126     brouard  15354:   }else{
                   15355:     printf("End of Imach\n");
                   15356:     fprintf(ficlog,"End of Imach\n");
                   15357:   }
                   15358:   printf("See log file on %s\n",filelog);
                   15359:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
1.157     brouard  15360:   /*(void) gettimeofday(&end_time,&tzp);*/
                   15361:   rend_time = time(NULL);  
                   15362:   end_time = *localtime(&rend_time);
                   15363:   /* tml = *localtime(&end_time.tm_sec); */
                   15364:   strcpy(strtend,asctime(&end_time));
1.126     brouard  15365:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
                   15366:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
1.157     brouard  15367:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
1.227     brouard  15368:   
1.157     brouard  15369:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
                   15370:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
                   15371:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
1.126     brouard  15372:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
                   15373: /*   if(fileappend(fichtm,optionfilehtm)){ */
                   15374:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   15375:   fclose(fichtm);
                   15376:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   15377:   fclose(fichtmcov);
                   15378:   fclose(ficgp);
                   15379:   fclose(ficlog);
                   15380:   /*------ End -----------*/
1.227     brouard  15381:   
1.281     brouard  15382: 
                   15383: /* Executes gnuplot */
1.227     brouard  15384:   
                   15385:   printf("Before Current directory %s!\n",pathcd);
1.184     brouard  15386: #ifdef WIN32
1.227     brouard  15387:   if (_chdir(pathcd) != 0)
                   15388:     printf("Can't move to directory %s!\n",path);
                   15389:   if(_getcwd(pathcd,MAXLINE) > 0)
1.184     brouard  15390: #else
1.227     brouard  15391:     if(chdir(pathcd) != 0)
                   15392:       printf("Can't move to directory %s!\n", path);
                   15393:   if (getcwd(pathcd, MAXLINE) > 0)
1.184     brouard  15394: #endif 
1.126     brouard  15395:     printf("Current directory %s!\n",pathcd);
                   15396:   /*strcat(plotcmd,CHARSEPARATOR);*/
                   15397:   sprintf(plotcmd,"gnuplot");
1.157     brouard  15398: #ifdef _WIN32
1.126     brouard  15399:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
                   15400: #endif
                   15401:   if(!stat(plotcmd,&info)){
1.158     brouard  15402:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  15403:     if(!stat(getenv("GNUPLOTBIN"),&info)){
1.158     brouard  15404:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
1.126     brouard  15405:     }else
                   15406:       strcpy(pplotcmd,plotcmd);
1.157     brouard  15407: #ifdef __unix
1.126     brouard  15408:     strcpy(plotcmd,GNUPLOTPROGRAM);
                   15409:     if(!stat(plotcmd,&info)){
1.158     brouard  15410:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  15411:     }else
                   15412:       strcpy(pplotcmd,plotcmd);
                   15413: #endif
                   15414:   }else
                   15415:     strcpy(pplotcmd,plotcmd);
                   15416:   
                   15417:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
1.158     brouard  15418:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
1.292     brouard  15419:   strcpy(pplotcmd,plotcmd);
1.227     brouard  15420:   
1.126     brouard  15421:   if((outcmd=system(plotcmd)) != 0){
1.292     brouard  15422:     printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
1.154     brouard  15423:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
1.152     brouard  15424:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
1.292     brouard  15425:     if((outcmd=system(plotcmd)) != 0){
1.153     brouard  15426:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
1.292     brouard  15427:       strcpy(plotcmd,pplotcmd);
                   15428:     }
1.126     brouard  15429:   }
1.158     brouard  15430:   printf(" Successful, please wait...");
1.126     brouard  15431:   while (z[0] != 'q') {
                   15432:     /* chdir(path); */
1.154     brouard  15433:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
1.126     brouard  15434:     scanf("%s",z);
                   15435: /*     if (z[0] == 'c') system("./imach"); */
                   15436:     if (z[0] == 'e') {
1.158     brouard  15437: #ifdef __APPLE__
1.152     brouard  15438:       sprintf(pplotcmd, "open %s", optionfilehtm);
1.157     brouard  15439: #elif __linux
                   15440:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
1.153     brouard  15441: #else
1.152     brouard  15442:       sprintf(pplotcmd, "%s", optionfilehtm);
1.153     brouard  15443: #endif
                   15444:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
                   15445:       system(pplotcmd);
1.126     brouard  15446:     }
                   15447:     else if (z[0] == 'g') system(plotcmd);
                   15448:     else if (z[0] == 'q') exit(0);
                   15449:   }
1.227     brouard  15450: end:
1.126     brouard  15451:   while (z[0] != 'q') {
1.195     brouard  15452:     printf("\nType  q for exiting: "); fflush(stdout);
1.126     brouard  15453:     scanf("%s",z);
                   15454:   }
1.283     brouard  15455:   printf("End\n");
1.282     brouard  15456:   exit(0);
1.126     brouard  15457: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>