Annotation of imach/src/imach.c, revision 1.359

1.359   ! brouard     1: /* $Id: imach.c,v 1.353 2023/05/08 18:48:22 brouard Exp $
1.126     brouard     2:   $State: Exp $
1.359   ! brouard     3:   $Log: imachprax.c,v $
        !             4:   Revision 1.6  2024/04/24 21:10:29  brouard
        !             5:   Summary: First IMaCh version using Brent Praxis software based on Buckhardt and Gegenfürtner C codes
1.358     brouard     6: 
1.359   ! brouard     7:   Revision 1.5  2023/10/09 09:10:01  brouard
        !             8:   Summary: trying to reconsider
1.357     brouard     9: 
1.359   ! brouard    10:   Revision 1.4  2023/06/22 12:50:51  brouard
        !            11:   Summary: stil on going
1.357     brouard    12: 
1.359   ! brouard    13:   Revision 1.3  2023/06/22 11:28:07  brouard
        !            14:   *** empty log message ***
1.356     brouard    15: 
1.359   ! brouard    16:   Revision 1.2  2023/06/22 11:22:40  brouard
        !            17:   Summary: with svd but not working yet
1.355     brouard    18: 
1.354     brouard    19:   Revision 1.353  2023/05/08 18:48:22  brouard
                     20:   *** empty log message ***
                     21: 
1.353     brouard    22:   Revision 1.352  2023/04/29 10:46:21  brouard
                     23:   *** empty log message ***
                     24: 
1.352     brouard    25:   Revision 1.351  2023/04/29 10:43:47  brouard
                     26:   Summary: 099r45
                     27: 
1.351     brouard    28:   Revision 1.350  2023/04/24 11:38:06  brouard
                     29:   *** empty log message ***
                     30: 
1.350     brouard    31:   Revision 1.349  2023/01/31 09:19:37  brouard
                     32:   Summary: Improvements in models with age*Vn*Vm
                     33: 
1.348     brouard    34:   Revision 1.347  2022/09/18 14:36:44  brouard
                     35:   Summary: version 0.99r42
                     36: 
1.347     brouard    37:   Revision 1.346  2022/09/16 13:52:36  brouard
                     38:   * src/imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you  Feinuo
                     39: 
1.346     brouard    40:   Revision 1.345  2022/09/16 13:40:11  brouard
                     41:   Summary: Version 0.99r41
                     42: 
                     43:   * imach.c (Module): 0.99r41 Was an error when product of timevarying and fixed. Using FixedV[of name] now. Thank you  Feinuo
                     44: 
1.345     brouard    45:   Revision 1.344  2022/09/14 19:33:30  brouard
                     46:   Summary: version 0.99r40
                     47: 
                     48:   * imach.c (Module): Fixing names of variables in T_ (thanks to Feinuo)
                     49: 
1.344     brouard    50:   Revision 1.343  2022/09/14 14:22:16  brouard
                     51:   Summary: version 0.99r39
                     52: 
                     53:   * imach.c (Module): Version 0.99r39 with colored dummy covariates
                     54:   (fixed or time varying), using new last columns of
                     55:   ILK_parameter.txt file.
                     56: 
1.343     brouard    57:   Revision 1.342  2022/09/11 19:54:09  brouard
                     58:   Summary: 0.99r38
                     59: 
                     60:   * imach.c (Module): Adding timevarying products of any kinds,
                     61:   should work before shifting cotvar from ncovcol+nqv columns in
                     62:   order to have a correspondance between the column of cotvar and
                     63:   the id of column.
                     64:   (Module): Some cleaning and adding covariates in ILK.txt
                     65: 
1.342     brouard    66:   Revision 1.341  2022/09/11 07:58:42  brouard
                     67:   Summary: Version 0.99r38
                     68: 
                     69:   After adding change in cotvar.
                     70: 
1.341     brouard    71:   Revision 1.340  2022/09/11 07:53:11  brouard
                     72:   Summary: Version imach 0.99r37
                     73: 
                     74:   * imach.c (Module): Adding timevarying products of any kinds,
                     75:   should work before shifting cotvar from ncovcol+nqv columns in
                     76:   order to have a correspondance between the column of cotvar and
                     77:   the id of column.
                     78: 
1.340     brouard    79:   Revision 1.339  2022/09/09 17:55:22  brouard
                     80:   Summary: version 0.99r37
                     81: 
                     82:   * imach.c (Module): Many improvements for fixing products of fixed
                     83:   timevarying as well as fixed * fixed, and test with quantitative
                     84:   covariate.
                     85: 
1.339     brouard    86:   Revision 1.338  2022/09/04 17:40:33  brouard
                     87:   Summary: 0.99r36
                     88: 
                     89:   * imach.c (Module): Now the easy runs i.e. without result or
                     90:   model=1+age only did not work. The defautl combination should be 1
                     91:   and not 0 because everything hasn't been tranformed yet.
                     92: 
1.338     brouard    93:   Revision 1.337  2022/09/02 14:26:02  brouard
                     94:   Summary: version 0.99r35
                     95: 
                     96:   * src/imach.c: Version 0.99r35 because it outputs same results with
                     97:   1+age+V1+V1*age for females and 1+age for females only
                     98:   (education=1 noweight)
                     99: 
1.337     brouard   100:   Revision 1.336  2022/08/31 09:52:36  brouard
                    101:   *** empty log message ***
                    102: 
1.336     brouard   103:   Revision 1.335  2022/08/31 08:23:16  brouard
                    104:   Summary: improvements...
                    105: 
1.335     brouard   106:   Revision 1.334  2022/08/25 09:08:41  brouard
                    107:   Summary: In progress for quantitative
                    108: 
1.334     brouard   109:   Revision 1.333  2022/08/21 09:10:30  brouard
                    110:   * src/imach.c (Module): Version 0.99r33 A lot of changes in
                    111:   reassigning covariates: my first idea was that people will always
                    112:   use the first covariate V1 into the model but in fact they are
                    113:   producing data with many covariates and can use an equation model
                    114:   with some of the covariate; it means that in a model V2+V3 instead
                    115:   of codtabm(k,Tvaraff[j]) which calculates for combination k, for
                    116:   three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
                    117:   the equation model is restricted to two variables only (V2, V3)
                    118:   and the combination for V2 should be codtabm(k,1) instead of
                    119:   (codtabm(k,2), and the code should be
                    120:   codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
                    121:   made. All of these should be simplified once a day like we did in
                    122:   hpxij() for example by using precov[nres] which is computed in
                    123:   decoderesult for each nres of each resultline. Loop should be done
                    124:   on the equation model globally by distinguishing only product with
                    125:   age (which are changing with age) and no more on type of
                    126:   covariates, single dummies, single covariates.
                    127: 
1.333     brouard   128:   Revision 1.332  2022/08/21 09:06:25  brouard
                    129:   Summary: Version 0.99r33
                    130: 
                    131:   * src/imach.c (Module): Version 0.99r33 A lot of changes in
                    132:   reassigning covariates: my first idea was that people will always
                    133:   use the first covariate V1 into the model but in fact they are
                    134:   producing data with many covariates and can use an equation model
                    135:   with some of the covariate; it means that in a model V2+V3 instead
                    136:   of codtabm(k,Tvaraff[j]) which calculates for combination k, for
                    137:   three covariates (V1, V2, V3) the value of Tvaraff[j], but in fact
                    138:   the equation model is restricted to two variables only (V2, V3)
                    139:   and the combination for V2 should be codtabm(k,1) instead of
                    140:   (codtabm(k,2), and the code should be
                    141:   codtabm(k,TnsdVar[Tvaraff[j]]. Many many changes have been
                    142:   made. All of these should be simplified once a day like we did in
                    143:   hpxij() for example by using precov[nres] which is computed in
                    144:   decoderesult for each nres of each resultline. Loop should be done
                    145:   on the equation model globally by distinguishing only product with
                    146:   age (which are changing with age) and no more on type of
                    147:   covariates, single dummies, single covariates.
                    148: 
1.332     brouard   149:   Revision 1.331  2022/08/07 05:40:09  brouard
                    150:   *** empty log message ***
                    151: 
1.331     brouard   152:   Revision 1.330  2022/08/06 07:18:25  brouard
                    153:   Summary: last 0.99r31
                    154: 
                    155:   *  imach.c (Module): Version of imach using partly decoderesult to rebuild xpxij function
                    156: 
1.330     brouard   157:   Revision 1.329  2022/08/03 17:29:54  brouard
                    158:   *  imach.c (Module): Many errors in graphs fixed with Vn*age covariates.
                    159: 
1.329     brouard   160:   Revision 1.328  2022/07/27 17:40:48  brouard
                    161:   Summary: valgrind bug fixed by initializing to zero DummyV as well as Tage
                    162: 
1.328     brouard   163:   Revision 1.327  2022/07/27 14:47:35  brouard
                    164:   Summary: Still a problem for one-step probabilities in case of quantitative variables
                    165: 
1.327     brouard   166:   Revision 1.326  2022/07/26 17:33:55  brouard
                    167:   Summary: some test with nres=1
                    168: 
1.326     brouard   169:   Revision 1.325  2022/07/25 14:27:23  brouard
                    170:   Summary: r30
                    171: 
                    172:   * imach.c (Module): Error cptcovn instead of nsd in bmij (was
                    173:   coredumped, revealed by Feiuno, thank you.
                    174: 
1.325     brouard   175:   Revision 1.324  2022/07/23 17:44:26  brouard
                    176:   *** empty log message ***
                    177: 
1.324     brouard   178:   Revision 1.323  2022/07/22 12:30:08  brouard
                    179:   *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
                    180: 
1.323     brouard   181:   Revision 1.322  2022/07/22 12:27:48  brouard
                    182:   *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
                    183: 
1.322     brouard   184:   Revision 1.321  2022/07/22 12:04:24  brouard
                    185:   Summary: r28
                    186: 
                    187:   *  imach.c (Module): Output of Wald test in the htm file and not only in the log.
                    188: 
1.321     brouard   189:   Revision 1.320  2022/06/02 05:10:11  brouard
                    190:   *** empty log message ***
                    191: 
1.320     brouard   192:   Revision 1.319  2022/06/02 04:45:11  brouard
                    193:   * imach.c (Module): Adding the Wald tests from the log to the main
                    194:   htm for better display of the maximum likelihood estimators.
                    195: 
1.319     brouard   196:   Revision 1.318  2022/05/24 08:10:59  brouard
                    197:   * imach.c (Module): Some attempts to find a bug of wrong estimates
                    198:   of confidencce intervals with product in the equation modelC
                    199: 
1.318     brouard   200:   Revision 1.317  2022/05/15 15:06:23  brouard
                    201:   * imach.c (Module):  Some minor improvements
                    202: 
1.317     brouard   203:   Revision 1.316  2022/05/11 15:11:31  brouard
                    204:   Summary: r27
                    205: 
1.316     brouard   206:   Revision 1.315  2022/05/11 15:06:32  brouard
                    207:   *** empty log message ***
                    208: 
1.315     brouard   209:   Revision 1.314  2022/04/13 17:43:09  brouard
                    210:   * imach.c (Module): Adding link to text data files
                    211: 
1.314     brouard   212:   Revision 1.313  2022/04/11 15:57:42  brouard
                    213:   * imach.c (Module): Error in rewriting the 'r' file with yearsfproj or yearsbproj fixed
                    214: 
1.313     brouard   215:   Revision 1.312  2022/04/05 21:24:39  brouard
                    216:   *** empty log message ***
                    217: 
1.312     brouard   218:   Revision 1.311  2022/04/05 21:03:51  brouard
                    219:   Summary: Fixed quantitative covariates
                    220: 
                    221:          Fixed covariates (dummy or quantitative)
                    222:        with missing values have never been allowed but are ERRORS and
                    223:        program quits. Standard deviations of fixed covariates were
                    224:        wrongly computed. Mean and standard deviations of time varying
                    225:        covariates are still not computed.
                    226: 
1.311     brouard   227:   Revision 1.310  2022/03/17 08:45:53  brouard
                    228:   Summary: 99r25
                    229: 
                    230:   Improving detection of errors: result lines should be compatible with
                    231:   the model.
                    232: 
1.310     brouard   233:   Revision 1.309  2021/05/20 12:39:14  brouard
                    234:   Summary: Version 0.99r24
                    235: 
1.309     brouard   236:   Revision 1.308  2021/03/31 13:11:57  brouard
                    237:   Summary: Version 0.99r23
                    238: 
                    239: 
                    240:   * imach.c (Module): Still bugs in the result loop. Thank to Holly Benett
                    241: 
1.308     brouard   242:   Revision 1.307  2021/03/08 18:11:32  brouard
                    243:   Summary: 0.99r22 fixed bug on result:
                    244: 
1.307     brouard   245:   Revision 1.306  2021/02/20 15:44:02  brouard
                    246:   Summary: Version 0.99r21
                    247: 
                    248:   * imach.c (Module): Fix bug on quitting after result lines!
                    249:   (Module): Version 0.99r21
                    250: 
1.306     brouard   251:   Revision 1.305  2021/02/20 15:28:30  brouard
                    252:   * imach.c (Module): Fix bug on quitting after result lines!
                    253: 
1.305     brouard   254:   Revision 1.304  2021/02/12 11:34:20  brouard
                    255:   * imach.c (Module): The use of a Windows BOM (huge) file is now an error
                    256: 
1.304     brouard   257:   Revision 1.303  2021/02/11 19:50:15  brouard
                    258:   *  (Module): imach.c Someone entered 'results:' instead of 'result:'. Now it is an error which is printed.
                    259: 
1.303     brouard   260:   Revision 1.302  2020/02/22 21:00:05  brouard
                    261:   *  (Module): imach.c Update mle=-3 (for computing Life expectancy
                    262:   and life table from the data without any state)
                    263: 
1.302     brouard   264:   Revision 1.301  2019/06/04 13:51:20  brouard
                    265:   Summary: Error in 'r'parameter file backcast yearsbproj instead of yearsfproj
                    266: 
1.301     brouard   267:   Revision 1.300  2019/05/22 19:09:45  brouard
                    268:   Summary: version 0.99r19 of May 2019
                    269: 
1.300     brouard   270:   Revision 1.299  2019/05/22 18:37:08  brouard
                    271:   Summary: Cleaned 0.99r19
                    272: 
1.299     brouard   273:   Revision 1.298  2019/05/22 18:19:56  brouard
                    274:   *** empty log message ***
                    275: 
1.298     brouard   276:   Revision 1.297  2019/05/22 17:56:10  brouard
                    277:   Summary: Fix bug by moving date2dmy and nhstepm which gaefin=-1
                    278: 
1.297     brouard   279:   Revision 1.296  2019/05/20 13:03:18  brouard
                    280:   Summary: Projection syntax simplified
                    281: 
                    282: 
                    283:   We can now start projections, forward or backward, from the mean date
                    284:   of inteviews up to or down to a number of years of projection:
                    285:   prevforecast=1 yearsfproj=15.3 mobil_average=0
                    286:   or
                    287:   prevforecast=1 starting-proj-date=1/1/2007 final-proj-date=12/31/2017 mobil_average=0
                    288:   or
                    289:   prevbackcast=1 yearsbproj=12.3 mobil_average=1
                    290:   or
                    291:   prevbackcast=1 starting-back-date=1/10/1999 final-back-date=1/1/1985 mobil_average=1
                    292: 
1.296     brouard   293:   Revision 1.295  2019/05/18 09:52:50  brouard
                    294:   Summary: doxygen tex bug
                    295: 
1.295     brouard   296:   Revision 1.294  2019/05/16 14:54:33  brouard
                    297:   Summary: There was some wrong lines added
                    298: 
1.294     brouard   299:   Revision 1.293  2019/05/09 15:17:34  brouard
                    300:   *** empty log message ***
                    301: 
1.293     brouard   302:   Revision 1.292  2019/05/09 14:17:20  brouard
                    303:   Summary: Some updates
                    304: 
1.292     brouard   305:   Revision 1.291  2019/05/09 13:44:18  brouard
                    306:   Summary: Before ncovmax
                    307: 
1.291     brouard   308:   Revision 1.290  2019/05/09 13:39:37  brouard
                    309:   Summary: 0.99r18 unlimited number of individuals
                    310: 
                    311:   The number n which was limited to 20,000 cases is now unlimited, from firstobs to lastobs. If the number is too for the virtual memory, probably an error will occur.
                    312: 
1.290     brouard   313:   Revision 1.289  2018/12/13 09:16:26  brouard
                    314:   Summary: Bug for young ages (<-30) will be in r17
                    315: 
1.289     brouard   316:   Revision 1.288  2018/05/02 20:58:27  brouard
                    317:   Summary: Some bugs fixed
                    318: 
1.288     brouard   319:   Revision 1.287  2018/05/01 17:57:25  brouard
                    320:   Summary: Bug fixed by providing frequencies only for non missing covariates
                    321: 
1.287     brouard   322:   Revision 1.286  2018/04/27 14:27:04  brouard
                    323:   Summary: some minor bugs
                    324: 
1.286     brouard   325:   Revision 1.285  2018/04/21 21:02:16  brouard
                    326:   Summary: Some bugs fixed, valgrind tested
                    327: 
1.285     brouard   328:   Revision 1.284  2018/04/20 05:22:13  brouard
                    329:   Summary: Computing mean and stdeviation of fixed quantitative variables
                    330: 
1.284     brouard   331:   Revision 1.283  2018/04/19 14:49:16  brouard
                    332:   Summary: Some minor bugs fixed
                    333: 
1.283     brouard   334:   Revision 1.282  2018/02/27 22:50:02  brouard
                    335:   *** empty log message ***
                    336: 
1.282     brouard   337:   Revision 1.281  2018/02/27 19:25:23  brouard
                    338:   Summary: Adding second argument for quitting
                    339: 
1.281     brouard   340:   Revision 1.280  2018/02/21 07:58:13  brouard
                    341:   Summary: 0.99r15
                    342: 
                    343:   New Makefile with recent VirtualBox 5.26. Bug in sqrt negatve in imach.c
                    344: 
1.280     brouard   345:   Revision 1.279  2017/07/20 13:35:01  brouard
                    346:   Summary: temporary working
                    347: 
1.279     brouard   348:   Revision 1.278  2017/07/19 14:09:02  brouard
                    349:   Summary: Bug for mobil_average=0 and prevforecast fixed(?)
                    350: 
1.278     brouard   351:   Revision 1.277  2017/07/17 08:53:49  brouard
                    352:   Summary: BOM files can be read now
                    353: 
1.277     brouard   354:   Revision 1.276  2017/06/30 15:48:31  brouard
                    355:   Summary: Graphs improvements
                    356: 
1.276     brouard   357:   Revision 1.275  2017/06/30 13:39:33  brouard
                    358:   Summary: Saito's color
                    359: 
1.275     brouard   360:   Revision 1.274  2017/06/29 09:47:08  brouard
                    361:   Summary: Version 0.99r14
                    362: 
1.274     brouard   363:   Revision 1.273  2017/06/27 11:06:02  brouard
                    364:   Summary: More documentation on projections
                    365: 
1.273     brouard   366:   Revision 1.272  2017/06/27 10:22:40  brouard
                    367:   Summary: Color of backprojection changed from 6 to 5(yellow)
                    368: 
1.272     brouard   369:   Revision 1.271  2017/06/27 10:17:50  brouard
                    370:   Summary: Some bug with rint
                    371: 
1.271     brouard   372:   Revision 1.270  2017/05/24 05:45:29  brouard
                    373:   *** empty log message ***
                    374: 
1.270     brouard   375:   Revision 1.269  2017/05/23 08:39:25  brouard
                    376:   Summary: Code into subroutine, cleanings
                    377: 
1.269     brouard   378:   Revision 1.268  2017/05/18 20:09:32  brouard
                    379:   Summary: backprojection and confidence intervals of backprevalence
                    380: 
1.268     brouard   381:   Revision 1.267  2017/05/13 10:25:05  brouard
                    382:   Summary: temporary save for backprojection
                    383: 
1.267     brouard   384:   Revision 1.266  2017/05/13 07:26:12  brouard
                    385:   Summary: Version 0.99r13 (improvements and bugs fixed)
                    386: 
1.266     brouard   387:   Revision 1.265  2017/04/26 16:22:11  brouard
                    388:   Summary: imach 0.99r13 Some bugs fixed
                    389: 
1.265     brouard   390:   Revision 1.264  2017/04/26 06:01:29  brouard
                    391:   Summary: Labels in graphs
                    392: 
1.264     brouard   393:   Revision 1.263  2017/04/24 15:23:15  brouard
                    394:   Summary: to save
                    395: 
1.263     brouard   396:   Revision 1.262  2017/04/18 16:48:12  brouard
                    397:   *** empty log message ***
                    398: 
1.262     brouard   399:   Revision 1.261  2017/04/05 10:14:09  brouard
                    400:   Summary: Bug in E_ as well as in T_ fixed nres-1 vs k1-1
                    401: 
1.261     brouard   402:   Revision 1.260  2017/04/04 17:46:59  brouard
                    403:   Summary: Gnuplot indexations fixed (humm)
                    404: 
1.260     brouard   405:   Revision 1.259  2017/04/04 13:01:16  brouard
                    406:   Summary: Some errors to warnings only if date of death is unknown but status is death we could set to pi3
                    407: 
1.259     brouard   408:   Revision 1.258  2017/04/03 10:17:47  brouard
                    409:   Summary: Version 0.99r12
                    410: 
                    411:   Some cleanings, conformed with updated documentation.
                    412: 
1.258     brouard   413:   Revision 1.257  2017/03/29 16:53:30  brouard
                    414:   Summary: Temp
                    415: 
1.257     brouard   416:   Revision 1.256  2017/03/27 05:50:23  brouard
                    417:   Summary: Temporary
                    418: 
1.256     brouard   419:   Revision 1.255  2017/03/08 16:02:28  brouard
                    420:   Summary: IMaCh version 0.99r10 bugs in gnuplot fixed
                    421: 
1.255     brouard   422:   Revision 1.254  2017/03/08 07:13:00  brouard
                    423:   Summary: Fixing data parameter line
                    424: 
1.254     brouard   425:   Revision 1.253  2016/12/15 11:59:41  brouard
                    426:   Summary: 0.99 in progress
                    427: 
1.253     brouard   428:   Revision 1.252  2016/09/15 21:15:37  brouard
                    429:   *** empty log message ***
                    430: 
1.252     brouard   431:   Revision 1.251  2016/09/15 15:01:13  brouard
                    432:   Summary: not working
                    433: 
1.251     brouard   434:   Revision 1.250  2016/09/08 16:07:27  brouard
                    435:   Summary: continue
                    436: 
1.250     brouard   437:   Revision 1.249  2016/09/07 17:14:18  brouard
                    438:   Summary: Starting values from frequencies
                    439: 
1.249     brouard   440:   Revision 1.248  2016/09/07 14:10:18  brouard
                    441:   *** empty log message ***
                    442: 
1.248     brouard   443:   Revision 1.247  2016/09/02 11:11:21  brouard
                    444:   *** empty log message ***
                    445: 
1.247     brouard   446:   Revision 1.246  2016/09/02 08:49:22  brouard
                    447:   *** empty log message ***
                    448: 
1.246     brouard   449:   Revision 1.245  2016/09/02 07:25:01  brouard
                    450:   *** empty log message ***
                    451: 
1.245     brouard   452:   Revision 1.244  2016/09/02 07:17:34  brouard
                    453:   *** empty log message ***
                    454: 
1.244     brouard   455:   Revision 1.243  2016/09/02 06:45:35  brouard
                    456:   *** empty log message ***
                    457: 
1.243     brouard   458:   Revision 1.242  2016/08/30 15:01:20  brouard
                    459:   Summary: Fixing a lots
                    460: 
1.242     brouard   461:   Revision 1.241  2016/08/29 17:17:25  brouard
                    462:   Summary: gnuplot problem in Back projection to fix
                    463: 
1.241     brouard   464:   Revision 1.240  2016/08/29 07:53:18  brouard
                    465:   Summary: Better
                    466: 
1.240     brouard   467:   Revision 1.239  2016/08/26 15:51:03  brouard
                    468:   Summary: Improvement in Powell output in order to copy and paste
                    469: 
                    470:   Author:
                    471: 
1.239     brouard   472:   Revision 1.238  2016/08/26 14:23:35  brouard
                    473:   Summary: Starting tests of 0.99
                    474: 
1.238     brouard   475:   Revision 1.237  2016/08/26 09:20:19  brouard
                    476:   Summary: to valgrind
                    477: 
1.237     brouard   478:   Revision 1.236  2016/08/25 10:50:18  brouard
                    479:   *** empty log message ***
                    480: 
1.236     brouard   481:   Revision 1.235  2016/08/25 06:59:23  brouard
                    482:   *** empty log message ***
                    483: 
1.235     brouard   484:   Revision 1.234  2016/08/23 16:51:20  brouard
                    485:   *** empty log message ***
                    486: 
1.234     brouard   487:   Revision 1.233  2016/08/23 07:40:50  brouard
                    488:   Summary: not working
                    489: 
1.233     brouard   490:   Revision 1.232  2016/08/22 14:20:21  brouard
                    491:   Summary: not working
                    492: 
1.232     brouard   493:   Revision 1.231  2016/08/22 07:17:15  brouard
                    494:   Summary: not working
                    495: 
1.231     brouard   496:   Revision 1.230  2016/08/22 06:55:53  brouard
                    497:   Summary: Not working
                    498: 
1.230     brouard   499:   Revision 1.229  2016/07/23 09:45:53  brouard
                    500:   Summary: Completing for func too
                    501: 
1.229     brouard   502:   Revision 1.228  2016/07/22 17:45:30  brouard
                    503:   Summary: Fixing some arrays, still debugging
                    504: 
1.227     brouard   505:   Revision 1.226  2016/07/12 18:42:34  brouard
                    506:   Summary: temp
                    507: 
1.226     brouard   508:   Revision 1.225  2016/07/12 08:40:03  brouard
                    509:   Summary: saving but not running
                    510: 
1.225     brouard   511:   Revision 1.224  2016/07/01 13:16:01  brouard
                    512:   Summary: Fixes
                    513: 
1.224     brouard   514:   Revision 1.223  2016/02/19 09:23:35  brouard
                    515:   Summary: temporary
                    516: 
1.223     brouard   517:   Revision 1.222  2016/02/17 08:14:50  brouard
                    518:   Summary: Probably last 0.98 stable version 0.98r6
                    519: 
1.222     brouard   520:   Revision 1.221  2016/02/15 23:35:36  brouard
                    521:   Summary: minor bug
                    522: 
1.220     brouard   523:   Revision 1.219  2016/02/15 00:48:12  brouard
                    524:   *** empty log message ***
                    525: 
1.219     brouard   526:   Revision 1.218  2016/02/12 11:29:23  brouard
                    527:   Summary: 0.99 Back projections
                    528: 
1.218     brouard   529:   Revision 1.217  2015/12/23 17:18:31  brouard
                    530:   Summary: Experimental backcast
                    531: 
1.217     brouard   532:   Revision 1.216  2015/12/18 17:32:11  brouard
                    533:   Summary: 0.98r4 Warning and status=-2
                    534: 
                    535:   Version 0.98r4 is now:
                    536:    - displaying an error when status is -1, date of interview unknown and date of death known;
                    537:    - permitting a status -2 when the vital status is unknown at a known date of right truncation.
                    538:   Older changes concerning s=-2, dating from 2005 have been supersed.
                    539: 
1.216     brouard   540:   Revision 1.215  2015/12/16 08:52:24  brouard
                    541:   Summary: 0.98r4 working
                    542: 
1.215     brouard   543:   Revision 1.214  2015/12/16 06:57:54  brouard
                    544:   Summary: temporary not working
                    545: 
1.214     brouard   546:   Revision 1.213  2015/12/11 18:22:17  brouard
                    547:   Summary: 0.98r4
                    548: 
1.213     brouard   549:   Revision 1.212  2015/11/21 12:47:24  brouard
                    550:   Summary: minor typo
                    551: 
1.212     brouard   552:   Revision 1.211  2015/11/21 12:41:11  brouard
                    553:   Summary: 0.98r3 with some graph of projected cross-sectional
                    554: 
                    555:   Author: Nicolas Brouard
                    556: 
1.211     brouard   557:   Revision 1.210  2015/11/18 17:41:20  brouard
1.252     brouard   558:   Summary: Start working on projected prevalences  Revision 1.209  2015/11/17 22:12:03  brouard
1.210     brouard   559:   Summary: Adding ftolpl parameter
                    560:   Author: N Brouard
                    561: 
                    562:   We had difficulties to get smoothed confidence intervals. It was due
                    563:   to the period prevalence which wasn't computed accurately. The inner
                    564:   parameter ftolpl is now an outer parameter of the .imach parameter
                    565:   file after estepm. If ftolpl is small 1.e-4 and estepm too,
                    566:   computation are long.
                    567: 
1.209     brouard   568:   Revision 1.208  2015/11/17 14:31:57  brouard
                    569:   Summary: temporary
                    570: 
1.208     brouard   571:   Revision 1.207  2015/10/27 17:36:57  brouard
                    572:   *** empty log message ***
                    573: 
1.207     brouard   574:   Revision 1.206  2015/10/24 07:14:11  brouard
                    575:   *** empty log message ***
                    576: 
1.206     brouard   577:   Revision 1.205  2015/10/23 15:50:53  brouard
                    578:   Summary: 0.98r3 some clarification for graphs on likelihood contributions
                    579: 
1.205     brouard   580:   Revision 1.204  2015/10/01 16:20:26  brouard
                    581:   Summary: Some new graphs of contribution to likelihood
                    582: 
1.204     brouard   583:   Revision 1.203  2015/09/30 17:45:14  brouard
                    584:   Summary: looking at better estimation of the hessian
                    585: 
                    586:   Also a better criteria for convergence to the period prevalence And
                    587:   therefore adding the number of years needed to converge. (The
                    588:   prevalence in any alive state shold sum to one
                    589: 
1.203     brouard   590:   Revision 1.202  2015/09/22 19:45:16  brouard
                    591:   Summary: Adding some overall graph on contribution to likelihood. Might change
                    592: 
1.202     brouard   593:   Revision 1.201  2015/09/15 17:34:58  brouard
                    594:   Summary: 0.98r0
                    595: 
                    596:   - Some new graphs like suvival functions
                    597:   - Some bugs fixed like model=1+age+V2.
                    598: 
1.201     brouard   599:   Revision 1.200  2015/09/09 16:53:55  brouard
                    600:   Summary: Big bug thanks to Flavia
                    601: 
                    602:   Even model=1+age+V2. did not work anymore
                    603: 
1.200     brouard   604:   Revision 1.199  2015/09/07 14:09:23  brouard
                    605:   Summary: 0.98q6 changing default small png format for graph to vectorized svg.
                    606: 
1.199     brouard   607:   Revision 1.198  2015/09/03 07:14:39  brouard
                    608:   Summary: 0.98q5 Flavia
                    609: 
1.198     brouard   610:   Revision 1.197  2015/09/01 18:24:39  brouard
                    611:   *** empty log message ***
                    612: 
1.197     brouard   613:   Revision 1.196  2015/08/18 23:17:52  brouard
                    614:   Summary: 0.98q5
                    615: 
1.196     brouard   616:   Revision 1.195  2015/08/18 16:28:39  brouard
                    617:   Summary: Adding a hack for testing purpose
                    618: 
                    619:   After reading the title, ftol and model lines, if the comment line has
                    620:   a q, starting with #q, the answer at the end of the run is quit. It
                    621:   permits to run test files in batch with ctest. The former workaround was
                    622:   $ echo q | imach foo.imach
                    623: 
1.195     brouard   624:   Revision 1.194  2015/08/18 13:32:00  brouard
                    625:   Summary:  Adding error when the covariance matrix doesn't contain the exact number of lines required by the model line.
                    626: 
1.194     brouard   627:   Revision 1.193  2015/08/04 07:17:42  brouard
                    628:   Summary: 0.98q4
                    629: 
1.193     brouard   630:   Revision 1.192  2015/07/16 16:49:02  brouard
                    631:   Summary: Fixing some outputs
                    632: 
1.192     brouard   633:   Revision 1.191  2015/07/14 10:00:33  brouard
                    634:   Summary: Some fixes
                    635: 
1.191     brouard   636:   Revision 1.190  2015/05/05 08:51:13  brouard
                    637:   Summary: Adding digits in output parameters (7 digits instead of 6)
                    638: 
                    639:   Fix 1+age+.
                    640: 
1.190     brouard   641:   Revision 1.189  2015/04/30 14:45:16  brouard
                    642:   Summary: 0.98q2
                    643: 
1.189     brouard   644:   Revision 1.188  2015/04/30 08:27:53  brouard
                    645:   *** empty log message ***
                    646: 
1.188     brouard   647:   Revision 1.187  2015/04/29 09:11:15  brouard
                    648:   *** empty log message ***
                    649: 
1.187     brouard   650:   Revision 1.186  2015/04/23 12:01:52  brouard
                    651:   Summary: V1*age is working now, version 0.98q1
                    652: 
                    653:   Some codes had been disabled in order to simplify and Vn*age was
                    654:   working in the optimization phase, ie, giving correct MLE parameters,
                    655:   but, as usual, outputs were not correct and program core dumped.
                    656: 
1.186     brouard   657:   Revision 1.185  2015/03/11 13:26:42  brouard
                    658:   Summary: Inclusion of compile and links command line for Intel Compiler
                    659: 
1.185     brouard   660:   Revision 1.184  2015/03/11 11:52:39  brouard
                    661:   Summary: Back from Windows 8. Intel Compiler
                    662: 
1.184     brouard   663:   Revision 1.183  2015/03/10 20:34:32  brouard
                    664:   Summary: 0.98q0, trying with directest, mnbrak fixed
                    665: 
                    666:   We use directest instead of original Powell test; probably no
                    667:   incidence on the results, but better justifications;
                    668:   We fixed Numerical Recipes mnbrak routine which was wrong and gave
                    669:   wrong results.
                    670: 
1.183     brouard   671:   Revision 1.182  2015/02/12 08:19:57  brouard
                    672:   Summary: Trying to keep directest which seems simpler and more general
                    673:   Author: Nicolas Brouard
                    674: 
1.182     brouard   675:   Revision 1.181  2015/02/11 23:22:24  brouard
                    676:   Summary: Comments on Powell added
                    677: 
                    678:   Author:
                    679: 
1.181     brouard   680:   Revision 1.180  2015/02/11 17:33:45  brouard
                    681:   Summary: Finishing move from main to function (hpijx and prevalence_limit)
                    682: 
1.180     brouard   683:   Revision 1.179  2015/01/04 09:57:06  brouard
                    684:   Summary: back to OS/X
                    685: 
1.179     brouard   686:   Revision 1.178  2015/01/04 09:35:48  brouard
                    687:   *** empty log message ***
                    688: 
1.178     brouard   689:   Revision 1.177  2015/01/03 18:40:56  brouard
                    690:   Summary: Still testing ilc32 on OSX
                    691: 
1.177     brouard   692:   Revision 1.176  2015/01/03 16:45:04  brouard
                    693:   *** empty log message ***
                    694: 
1.176     brouard   695:   Revision 1.175  2015/01/03 16:33:42  brouard
                    696:   *** empty log message ***
                    697: 
1.175     brouard   698:   Revision 1.174  2015/01/03 16:15:49  brouard
                    699:   Summary: Still in cross-compilation
                    700: 
1.174     brouard   701:   Revision 1.173  2015/01/03 12:06:26  brouard
                    702:   Summary: trying to detect cross-compilation
                    703: 
1.173     brouard   704:   Revision 1.172  2014/12/27 12:07:47  brouard
                    705:   Summary: Back from Visual Studio and Intel, options for compiling for Windows XP
                    706: 
1.172     brouard   707:   Revision 1.171  2014/12/23 13:26:59  brouard
                    708:   Summary: Back from Visual C
                    709: 
                    710:   Still problem with utsname.h on Windows
                    711: 
1.171     brouard   712:   Revision 1.170  2014/12/23 11:17:12  brouard
                    713:   Summary: Cleaning some \%% back to %%
                    714: 
                    715:   The escape was mandatory for a specific compiler (which one?), but too many warnings.
                    716: 
1.170     brouard   717:   Revision 1.169  2014/12/22 23:08:31  brouard
                    718:   Summary: 0.98p
                    719: 
                    720:   Outputs some informations on compiler used, OS etc. Testing on different platforms.
                    721: 
1.169     brouard   722:   Revision 1.168  2014/12/22 15:17:42  brouard
1.170     brouard   723:   Summary: update
1.169     brouard   724: 
1.168     brouard   725:   Revision 1.167  2014/12/22 13:50:56  brouard
                    726:   Summary: Testing uname and compiler version and if compiled 32 or 64
                    727: 
                    728:   Testing on Linux 64
                    729: 
1.167     brouard   730:   Revision 1.166  2014/12/22 11:40:47  brouard
                    731:   *** empty log message ***
                    732: 
1.166     brouard   733:   Revision 1.165  2014/12/16 11:20:36  brouard
                    734:   Summary: After compiling on Visual C
                    735: 
                    736:   * imach.c (Module): Merging 1.61 to 1.162
                    737: 
1.165     brouard   738:   Revision 1.164  2014/12/16 10:52:11  brouard
                    739:   Summary: Merging with Visual C after suppressing some warnings for unused variables. Also fixing Saito's bug 0.98Xn
                    740: 
                    741:   * imach.c (Module): Merging 1.61 to 1.162
                    742: 
1.164     brouard   743:   Revision 1.163  2014/12/16 10:30:11  brouard
                    744:   * imach.c (Module): Merging 1.61 to 1.162
                    745: 
1.163     brouard   746:   Revision 1.162  2014/09/25 11:43:39  brouard
                    747:   Summary: temporary backup 0.99!
                    748: 
1.162     brouard   749:   Revision 1.1  2014/09/16 11:06:58  brouard
                    750:   Summary: With some code (wrong) for nlopt
                    751: 
                    752:   Author:
                    753: 
                    754:   Revision 1.161  2014/09/15 20:41:41  brouard
                    755:   Summary: Problem with macro SQR on Intel compiler
                    756: 
1.161     brouard   757:   Revision 1.160  2014/09/02 09:24:05  brouard
                    758:   *** empty log message ***
                    759: 
1.160     brouard   760:   Revision 1.159  2014/09/01 10:34:10  brouard
                    761:   Summary: WIN32
                    762:   Author: Brouard
                    763: 
1.159     brouard   764:   Revision 1.158  2014/08/27 17:11:51  brouard
                    765:   *** empty log message ***
                    766: 
1.158     brouard   767:   Revision 1.157  2014/08/27 16:26:55  brouard
                    768:   Summary: Preparing windows Visual studio version
                    769:   Author: Brouard
                    770: 
                    771:   In order to compile on Visual studio, time.h is now correct and time_t
                    772:   and tm struct should be used. difftime should be used but sometimes I
                    773:   just make the differences in raw time format (time(&now).
                    774:   Trying to suppress #ifdef LINUX
                    775:   Add xdg-open for __linux in order to open default browser.
                    776: 
1.157     brouard   777:   Revision 1.156  2014/08/25 20:10:10  brouard
                    778:   *** empty log message ***
                    779: 
1.156     brouard   780:   Revision 1.155  2014/08/25 18:32:34  brouard
                    781:   Summary: New compile, minor changes
                    782:   Author: Brouard
                    783: 
1.155     brouard   784:   Revision 1.154  2014/06/20 17:32:08  brouard
                    785:   Summary: Outputs now all graphs of convergence to period prevalence
                    786: 
1.154     brouard   787:   Revision 1.153  2014/06/20 16:45:46  brouard
                    788:   Summary: If 3 live state, convergence to period prevalence on same graph
                    789:   Author: Brouard
                    790: 
1.153     brouard   791:   Revision 1.152  2014/06/18 17:54:09  brouard
                    792:   Summary: open browser, use gnuplot on same dir than imach if not found in the path
                    793: 
1.152     brouard   794:   Revision 1.151  2014/06/18 16:43:30  brouard
                    795:   *** empty log message ***
                    796: 
1.151     brouard   797:   Revision 1.150  2014/06/18 16:42:35  brouard
                    798:   Summary: If gnuplot is not in the path try on same directory than imach binary (OSX)
                    799:   Author: brouard
                    800: 
1.150     brouard   801:   Revision 1.149  2014/06/18 15:51:14  brouard
                    802:   Summary: Some fixes in parameter files errors
                    803:   Author: Nicolas Brouard
                    804: 
1.149     brouard   805:   Revision 1.148  2014/06/17 17:38:48  brouard
                    806:   Summary: Nothing new
                    807:   Author: Brouard
                    808: 
                    809:   Just a new packaging for OS/X version 0.98nS
                    810: 
1.148     brouard   811:   Revision 1.147  2014/06/16 10:33:11  brouard
                    812:   *** empty log message ***
                    813: 
1.147     brouard   814:   Revision 1.146  2014/06/16 10:20:28  brouard
                    815:   Summary: Merge
                    816:   Author: Brouard
                    817: 
                    818:   Merge, before building revised version.
                    819: 
1.146     brouard   820:   Revision 1.145  2014/06/10 21:23:15  brouard
                    821:   Summary: Debugging with valgrind
                    822:   Author: Nicolas Brouard
                    823: 
                    824:   Lot of changes in order to output the results with some covariates
                    825:   After the Edimburgh REVES conference 2014, it seems mandatory to
                    826:   improve the code.
                    827:   No more memory valgrind error but a lot has to be done in order to
                    828:   continue the work of splitting the code into subroutines.
                    829:   Also, decodemodel has been improved. Tricode is still not
                    830:   optimal. nbcode should be improved. Documentation has been added in
                    831:   the source code.
                    832: 
1.144     brouard   833:   Revision 1.143  2014/01/26 09:45:38  brouard
                    834:   Summary: Version 0.98nR (to be improved, but gives same optimization results as 0.98k. Nice, promising
                    835: 
                    836:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    837:   (Module): Version 0.98nR Running ok, but output format still only works for three covariates.
                    838: 
1.143     brouard   839:   Revision 1.142  2014/01/26 03:57:36  brouard
                    840:   Summary: gnuplot changed plot w l 1 has to be changed to plot w l lt 2
                    841: 
                    842:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    843: 
1.142     brouard   844:   Revision 1.141  2014/01/26 02:42:01  brouard
                    845:   * imach.c (Module): Trying to merge old staffs together while being at Tokyo. Not tested...
                    846: 
1.141     brouard   847:   Revision 1.140  2011/09/02 10:37:54  brouard
                    848:   Summary: times.h is ok with mingw32 now.
                    849: 
1.140     brouard   850:   Revision 1.139  2010/06/14 07:50:17  brouard
                    851:   After the theft of my laptop, I probably lost some lines of codes which were not uploaded to the CVS tree.
                    852:   I remember having already fixed agemin agemax which are pointers now but not cvs saved.
                    853: 
1.139     brouard   854:   Revision 1.138  2010/04/30 18:19:40  brouard
                    855:   *** empty log message ***
                    856: 
1.138     brouard   857:   Revision 1.137  2010/04/29 18:11:38  brouard
                    858:   (Module): Checking covariates for more complex models
                    859:   than V1+V2. A lot of change to be done. Unstable.
                    860: 
1.137     brouard   861:   Revision 1.136  2010/04/26 20:30:53  brouard
                    862:   (Module): merging some libgsl code. Fixing computation
                    863:   of likelione (using inter/intrapolation if mle = 0) in order to
                    864:   get same likelihood as if mle=1.
                    865:   Some cleaning of code and comments added.
                    866: 
1.136     brouard   867:   Revision 1.135  2009/10/29 15:33:14  brouard
                    868:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    869: 
1.135     brouard   870:   Revision 1.134  2009/10/29 13:18:53  brouard
                    871:   (Module): Now imach stops if date of birth, at least year of birth, is not given. Some cleaning of the code.
                    872: 
1.134     brouard   873:   Revision 1.133  2009/07/06 10:21:25  brouard
                    874:   just nforces
                    875: 
1.133     brouard   876:   Revision 1.132  2009/07/06 08:22:05  brouard
                    877:   Many tings
                    878: 
1.132     brouard   879:   Revision 1.131  2009/06/20 16:22:47  brouard
                    880:   Some dimensions resccaled
                    881: 
1.131     brouard   882:   Revision 1.130  2009/05/26 06:44:34  brouard
                    883:   (Module): Max Covariate is now set to 20 instead of 8. A
                    884:   lot of cleaning with variables initialized to 0. Trying to make
                    885:   V2+V3*age+V1+V4 strb=V3*age+V1+V4 working better.
                    886: 
1.130     brouard   887:   Revision 1.129  2007/08/31 13:49:27  lievre
                    888:   Modification of the way of exiting when the covariate is not binary in order to see on the window the error message before exiting
                    889: 
1.129     lievre    890:   Revision 1.128  2006/06/30 13:02:05  brouard
                    891:   (Module): Clarifications on computing e.j
                    892: 
1.128     brouard   893:   Revision 1.127  2006/04/28 18:11:50  brouard
                    894:   (Module): Yes the sum of survivors was wrong since
                    895:   imach-114 because nhstepm was no more computed in the age
                    896:   loop. Now we define nhstepma in the age loop.
                    897:   (Module): In order to speed up (in case of numerous covariates) we
                    898:   compute health expectancies (without variances) in a first step
                    899:   and then all the health expectancies with variances or standard
                    900:   deviation (needs data from the Hessian matrices) which slows the
                    901:   computation.
                    902:   In the future we should be able to stop the program is only health
                    903:   expectancies and graph are needed without standard deviations.
                    904: 
1.127     brouard   905:   Revision 1.126  2006/04/28 17:23:28  brouard
                    906:   (Module): Yes the sum of survivors was wrong since
                    907:   imach-114 because nhstepm was no more computed in the age
                    908:   loop. Now we define nhstepma in the age loop.
                    909:   Version 0.98h
                    910: 
1.126     brouard   911:   Revision 1.125  2006/04/04 15:20:31  lievre
                    912:   Errors in calculation of health expectancies. Age was not initialized.
                    913:   Forecasting file added.
                    914: 
                    915:   Revision 1.124  2006/03/22 17:13:53  lievre
                    916:   Parameters are printed with %lf instead of %f (more numbers after the comma).
                    917:   The log-likelihood is printed in the log file
                    918: 
                    919:   Revision 1.123  2006/03/20 10:52:43  brouard
                    920:   * imach.c (Module): <title> changed, corresponds to .htm file
                    921:   name. <head> headers where missing.
                    922: 
                    923:   * imach.c (Module): Weights can have a decimal point as for
                    924:   English (a comma might work with a correct LC_NUMERIC environment,
                    925:   otherwise the weight is truncated).
                    926:   Modification of warning when the covariates values are not 0 or
                    927:   1.
                    928:   Version 0.98g
                    929: 
                    930:   Revision 1.122  2006/03/20 09:45:41  brouard
                    931:   (Module): Weights can have a decimal point as for
                    932:   English (a comma might work with a correct LC_NUMERIC environment,
                    933:   otherwise the weight is truncated).
                    934:   Modification of warning when the covariates values are not 0 or
                    935:   1.
                    936:   Version 0.98g
                    937: 
                    938:   Revision 1.121  2006/03/16 17:45:01  lievre
                    939:   * imach.c (Module): Comments concerning covariates added
                    940: 
                    941:   * imach.c (Module): refinements in the computation of lli if
                    942:   status=-2 in order to have more reliable computation if stepm is
                    943:   not 1 month. Version 0.98f
                    944: 
                    945:   Revision 1.120  2006/03/16 15:10:38  lievre
                    946:   (Module): refinements in the computation of lli if
                    947:   status=-2 in order to have more reliable computation if stepm is
                    948:   not 1 month. Version 0.98f
                    949: 
                    950:   Revision 1.119  2006/03/15 17:42:26  brouard
                    951:   (Module): Bug if status = -2, the loglikelihood was
                    952:   computed as likelihood omitting the logarithm. Version O.98e
                    953: 
                    954:   Revision 1.118  2006/03/14 18:20:07  brouard
                    955:   (Module): varevsij Comments added explaining the second
                    956:   table of variances if popbased=1 .
                    957:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    958:   (Module): Function pstamp added
                    959:   (Module): Version 0.98d
                    960: 
                    961:   Revision 1.117  2006/03/14 17:16:22  brouard
                    962:   (Module): varevsij Comments added explaining the second
                    963:   table of variances if popbased=1 .
                    964:   (Module): Covariances of eij, ekl added, graphs fixed, new html link.
                    965:   (Module): Function pstamp added
                    966:   (Module): Version 0.98d
                    967: 
                    968:   Revision 1.116  2006/03/06 10:29:27  brouard
                    969:   (Module): Variance-covariance wrong links and
                    970:   varian-covariance of ej. is needed (Saito).
                    971: 
                    972:   Revision 1.115  2006/02/27 12:17:45  brouard
                    973:   (Module): One freematrix added in mlikeli! 0.98c
                    974: 
                    975:   Revision 1.114  2006/02/26 12:57:58  brouard
                    976:   (Module): Some improvements in processing parameter
                    977:   filename with strsep.
                    978: 
                    979:   Revision 1.113  2006/02/24 14:20:24  brouard
                    980:   (Module): Memory leaks checks with valgrind and:
                    981:   datafile was not closed, some imatrix were not freed and on matrix
                    982:   allocation too.
                    983: 
                    984:   Revision 1.112  2006/01/30 09:55:26  brouard
                    985:   (Module): Back to gnuplot.exe instead of wgnuplot.exe
                    986: 
                    987:   Revision 1.111  2006/01/25 20:38:18  brouard
                    988:   (Module): Lots of cleaning and bugs added (Gompertz)
                    989:   (Module): Comments can be added in data file. Missing date values
                    990:   can be a simple dot '.'.
                    991: 
                    992:   Revision 1.110  2006/01/25 00:51:50  brouard
                    993:   (Module): Lots of cleaning and bugs added (Gompertz)
                    994: 
                    995:   Revision 1.109  2006/01/24 19:37:15  brouard
                    996:   (Module): Comments (lines starting with a #) are allowed in data.
                    997: 
                    998:   Revision 1.108  2006/01/19 18:05:42  lievre
                    999:   Gnuplot problem appeared...
                   1000:   To be fixed
                   1001: 
                   1002:   Revision 1.107  2006/01/19 16:20:37  brouard
                   1003:   Test existence of gnuplot in imach path
                   1004: 
                   1005:   Revision 1.106  2006/01/19 13:24:36  brouard
                   1006:   Some cleaning and links added in html output
                   1007: 
                   1008:   Revision 1.105  2006/01/05 20:23:19  lievre
                   1009:   *** empty log message ***
                   1010: 
                   1011:   Revision 1.104  2005/09/30 16:11:43  lievre
                   1012:   (Module): sump fixed, loop imx fixed, and simplifications.
                   1013:   (Module): If the status is missing at the last wave but we know
                   1014:   that the person is alive, then we can code his/her status as -2
                   1015:   (instead of missing=-1 in earlier versions) and his/her
                   1016:   contributions to the likelihood is 1 - Prob of dying from last
                   1017:   health status (= 1-p13= p11+p12 in the easiest case of somebody in
                   1018:   the healthy state at last known wave). Version is 0.98
                   1019: 
                   1020:   Revision 1.103  2005/09/30 15:54:49  lievre
                   1021:   (Module): sump fixed, loop imx fixed, and simplifications.
                   1022: 
                   1023:   Revision 1.102  2004/09/15 17:31:30  brouard
                   1024:   Add the possibility to read data file including tab characters.
                   1025: 
                   1026:   Revision 1.101  2004/09/15 10:38:38  brouard
                   1027:   Fix on curr_time
                   1028: 
                   1029:   Revision 1.100  2004/07/12 18:29:06  brouard
                   1030:   Add version for Mac OS X. Just define UNIX in Makefile
                   1031: 
                   1032:   Revision 1.99  2004/06/05 08:57:40  brouard
                   1033:   *** empty log message ***
                   1034: 
                   1035:   Revision 1.98  2004/05/16 15:05:56  brouard
                   1036:   New version 0.97 . First attempt to estimate force of mortality
                   1037:   directly from the data i.e. without the need of knowing the health
                   1038:   state at each age, but using a Gompertz model: log u =a + b*age .
                   1039:   This is the basic analysis of mortality and should be done before any
                   1040:   other analysis, in order to test if the mortality estimated from the
                   1041:   cross-longitudinal survey is different from the mortality estimated
                   1042:   from other sources like vital statistic data.
                   1043: 
                   1044:   The same imach parameter file can be used but the option for mle should be -3.
                   1045: 
1.324     brouard  1046:   Agnès, who wrote this part of the code, tried to keep most of the
1.126     brouard  1047:   former routines in order to include the new code within the former code.
                   1048: 
                   1049:   The output is very simple: only an estimate of the intercept and of
                   1050:   the slope with 95% confident intervals.
                   1051: 
                   1052:   Current limitations:
                   1053:   A) Even if you enter covariates, i.e. with the
                   1054:   model= V1+V2 equation for example, the programm does only estimate a unique global model without covariates.
                   1055:   B) There is no computation of Life Expectancy nor Life Table.
                   1056: 
                   1057:   Revision 1.97  2004/02/20 13:25:42  lievre
                   1058:   Version 0.96d. Population forecasting command line is (temporarily)
                   1059:   suppressed.
                   1060: 
                   1061:   Revision 1.96  2003/07/15 15:38:55  brouard
                   1062:   * imach.c (Repository): Errors in subdirf, 2, 3 while printing tmpout is
                   1063:   rewritten within the same printf. Workaround: many printfs.
                   1064: 
                   1065:   Revision 1.95  2003/07/08 07:54:34  brouard
                   1066:   * imach.c (Repository):
                   1067:   (Repository): Using imachwizard code to output a more meaningful covariance
                   1068:   matrix (cov(a12,c31) instead of numbers.
                   1069: 
                   1070:   Revision 1.94  2003/06/27 13:00:02  brouard
                   1071:   Just cleaning
                   1072: 
                   1073:   Revision 1.93  2003/06/25 16:33:55  brouard
                   1074:   (Module): On windows (cygwin) function asctime_r doesn't
                   1075:   exist so I changed back to asctime which exists.
                   1076:   (Module): Version 0.96b
                   1077: 
                   1078:   Revision 1.92  2003/06/25 16:30:45  brouard
                   1079:   (Module): On windows (cygwin) function asctime_r doesn't
                   1080:   exist so I changed back to asctime which exists.
                   1081: 
                   1082:   Revision 1.91  2003/06/25 15:30:29  brouard
                   1083:   * imach.c (Repository): Duplicated warning errors corrected.
                   1084:   (Repository): Elapsed time after each iteration is now output. It
                   1085:   helps to forecast when convergence will be reached. Elapsed time
                   1086:   is stamped in powell.  We created a new html file for the graphs
                   1087:   concerning matrix of covariance. It has extension -cov.htm.
                   1088: 
                   1089:   Revision 1.90  2003/06/24 12:34:15  brouard
                   1090:   (Module): Some bugs corrected for windows. Also, when
                   1091:   mle=-1 a template is output in file "or"mypar.txt with the design
                   1092:   of the covariance matrix to be input.
                   1093: 
                   1094:   Revision 1.89  2003/06/24 12:30:52  brouard
                   1095:   (Module): Some bugs corrected for windows. Also, when
                   1096:   mle=-1 a template is output in file "or"mypar.txt with the design
                   1097:   of the covariance matrix to be input.
                   1098: 
                   1099:   Revision 1.88  2003/06/23 17:54:56  brouard
                   1100:   * imach.c (Repository): Create a sub-directory where all the secondary files are. Only imach, htm, gp and r(imach) are on the main directory. Correct time and other things.
                   1101: 
                   1102:   Revision 1.87  2003/06/18 12:26:01  brouard
                   1103:   Version 0.96
                   1104: 
                   1105:   Revision 1.86  2003/06/17 20:04:08  brouard
                   1106:   (Module): Change position of html and gnuplot routines and added
                   1107:   routine fileappend.
                   1108: 
                   1109:   Revision 1.85  2003/06/17 13:12:43  brouard
                   1110:   * imach.c (Repository): Check when date of death was earlier that
                   1111:   current date of interview. It may happen when the death was just
                   1112:   prior to the death. In this case, dh was negative and likelihood
                   1113:   was wrong (infinity). We still send an "Error" but patch by
                   1114:   assuming that the date of death was just one stepm after the
                   1115:   interview.
                   1116:   (Repository): Because some people have very long ID (first column)
                   1117:   we changed int to long in num[] and we added a new lvector for
                   1118:   memory allocation. But we also truncated to 8 characters (left
                   1119:   truncation)
                   1120:   (Repository): No more line truncation errors.
                   1121: 
                   1122:   Revision 1.84  2003/06/13 21:44:43  brouard
                   1123:   * imach.c (Repository): Replace "freqsummary" at a correct
                   1124:   place. It differs from routine "prevalence" which may be called
                   1125:   many times. Probs is memory consuming and must be used with
                   1126:   parcimony.
                   1127:   Version 0.95a3 (should output exactly the same maximization than 0.8a2)
                   1128: 
                   1129:   Revision 1.83  2003/06/10 13:39:11  lievre
                   1130:   *** empty log message ***
                   1131: 
                   1132:   Revision 1.82  2003/06/05 15:57:20  brouard
                   1133:   Add log in  imach.c and  fullversion number is now printed.
                   1134: 
                   1135: */
                   1136: /*
                   1137:    Interpolated Markov Chain
                   1138: 
                   1139:   Short summary of the programme:
                   1140:   
1.227     brouard  1141:   This program computes Healthy Life Expectancies or State-specific
                   1142:   (if states aren't health statuses) Expectancies from
                   1143:   cross-longitudinal data. Cross-longitudinal data consist in: 
                   1144: 
                   1145:   -1- a first survey ("cross") where individuals from different ages
                   1146:   are interviewed on their health status or degree of disability (in
                   1147:   the case of a health survey which is our main interest)
                   1148: 
                   1149:   -2- at least a second wave of interviews ("longitudinal") which
                   1150:   measure each change (if any) in individual health status.  Health
                   1151:   expectancies are computed from the time spent in each health state
                   1152:   according to a model. More health states you consider, more time is
                   1153:   necessary to reach the Maximum Likelihood of the parameters involved
                   1154:   in the model.  The simplest model is the multinomial logistic model
                   1155:   where pij is the probability to be observed in state j at the second
                   1156:   wave conditional to be observed in state i at the first
                   1157:   wave. Therefore the model is: log(pij/pii)= aij + bij*age+ cij*sex +
                   1158:   etc , where 'age' is age and 'sex' is a covariate. If you want to
                   1159:   have a more complex model than "constant and age", you should modify
                   1160:   the program where the markup *Covariates have to be included here
                   1161:   again* invites you to do it.  More covariates you add, slower the
1.126     brouard  1162:   convergence.
                   1163: 
                   1164:   The advantage of this computer programme, compared to a simple
                   1165:   multinomial logistic model, is clear when the delay between waves is not
                   1166:   identical for each individual. Also, if a individual missed an
                   1167:   intermediate interview, the information is lost, but taken into
                   1168:   account using an interpolation or extrapolation.  
                   1169: 
                   1170:   hPijx is the probability to be observed in state i at age x+h
                   1171:   conditional to the observed state i at age x. The delay 'h' can be
                   1172:   split into an exact number (nh*stepm) of unobserved intermediate
                   1173:   states. This elementary transition (by month, quarter,
                   1174:   semester or year) is modelled as a multinomial logistic.  The hPx
                   1175:   matrix is simply the matrix product of nh*stepm elementary matrices
                   1176:   and the contribution of each individual to the likelihood is simply
                   1177:   hPijx.
                   1178: 
                   1179:   Also this programme outputs the covariance matrix of the parameters but also
1.218     brouard  1180:   of the life expectancies. It also computes the period (stable) prevalence.
                   1181: 
                   1182: Back prevalence and projections:
1.227     brouard  1183: 
                   1184:  - back_prevalence_limit(double *p, double **bprlim, double ageminpar,
                   1185:    double agemaxpar, double ftolpl, int *ncvyearp, double
                   1186:    dateprev1,double dateprev2, int firstpass, int lastpass, int
                   1187:    mobilavproj)
                   1188: 
                   1189:     Computes the back prevalence limit for any combination of
                   1190:     covariate values k at any age between ageminpar and agemaxpar and
                   1191:     returns it in **bprlim. In the loops,
                   1192: 
                   1193:    - **bprevalim(**bprlim, ***mobaverage, nlstate, *p, age, **oldm,
                   1194:        **savm, **dnewm, **doldm, **dsavm, ftolpl, ncvyearp, k);
                   1195: 
                   1196:    - hBijx Back Probability to be in state i at age x-h being in j at x
1.218     brouard  1197:    Computes for any combination of covariates k and any age between bage and fage 
                   1198:    p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   1199:                        oldm=oldms;savm=savms;
1.227     brouard  1200: 
1.267     brouard  1201:    - hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);
1.218     brouard  1202:      Computes the transition matrix starting at age 'age' over
                   1203:      'nhstepm*hstepm*stepm' months (i.e. until
                   1204:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
1.227     brouard  1205:      nhstepm*hstepm matrices. 
                   1206: 
                   1207:      Returns p3mat[i][j][h] after calling
                   1208:      p3mat[i][j][h]=matprod2(newm,
                   1209:      bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm,
                   1210:      dsavm,ij),\ 1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath,
                   1211:      oldm);
1.226     brouard  1212: 
                   1213: Important routines
                   1214: 
                   1215: - func (or funcone), computes logit (pij) distinguishing
                   1216:   o fixed variables (single or product dummies or quantitative);
                   1217:   o varying variables by:
                   1218:    (1) wave (single, product dummies, quantitative), 
                   1219:    (2) by age (can be month) age (done), age*age (done), age*Vn where Vn can be:
                   1220:        % fixed dummy (treated) or quantitative (not done because time-consuming);
                   1221:        % varying dummy (not done) or quantitative (not done);
                   1222: - Tricode which tests the modality of dummy variables (in order to warn with wrong or empty modalities)
                   1223:   and returns the number of efficient covariates cptcoveff and modalities nbcode[Tvar[k]][1]= 0 and nbcode[Tvar[k]][2]= 1 usually.
                   1224: - printinghtml which outputs results like life expectancy in and from a state for a combination of modalities of dummy variables
1.325     brouard  1225:   o There are 2**cptcoveff combinations of (0,1) for cptcoveff variables. Outputting only combinations with people, éliminating 1 1 if
1.226     brouard  1226:     race White (0 0), Black vs White (1 0), Hispanic (0 1) and 1 1 being meaningless.
1.218     brouard  1227: 
1.226     brouard  1228: 
                   1229:   
1.324     brouard  1230:   Authors: Nicolas Brouard (brouard@ined.fr) and Agnès Lièvre (lievre@ined.fr).
                   1231:            Institut national d'études démographiques, Paris.
1.126     brouard  1232:   This software have been partly granted by Euro-REVES, a concerted action
                   1233:   from the European Union.
                   1234:   It is copyrighted identically to a GNU software product, ie programme and
                   1235:   software can be distributed freely for non commercial use. Latest version
                   1236:   can be accessed at http://euroreves.ined.fr/imach .
                   1237: 
                   1238:   Help to debug: LD_PRELOAD=/usr/local/lib/libnjamd.so ./imach foo.imach
                   1239:   or better on gdb : set env LD_PRELOAD=/usr/local/lib/libnjamd.so
                   1240:   
                   1241:   **********************************************************************/
                   1242: /*
                   1243:   main
                   1244:   read parameterfile
                   1245:   read datafile
                   1246:   concatwav
                   1247:   freqsummary
                   1248:   if (mle >= 1)
                   1249:     mlikeli
                   1250:   print results files
                   1251:   if mle==1 
                   1252:      computes hessian
                   1253:   read end of parameter file: agemin, agemax, bage, fage, estepm
                   1254:       begin-prev-date,...
                   1255:   open gnuplot file
                   1256:   open html file
1.145     brouard  1257:   period (stable) prevalence      | pl_nom    1-1 2-2 etc by covariate
                   1258:    for age prevalim()             | #****** V1=0  V2=1  V3=1  V4=0 ******
                   1259:                                   | 65 1 0 2 1 3 1 4 0  0.96326 0.03674
                   1260:     freexexit2 possible for memory heap.
                   1261: 
                   1262:   h Pij x                         | pij_nom  ficrestpij
                   1263:    # Cov Agex agex+h hpijx with i,j= 1-1 1-2     1-3     2-1     2-2     2-3
                   1264:        1  85   85    1.00000             0.00000 0.00000 0.00000 1.00000 0.00000
                   1265:        1  85   86    0.68299             0.22291 0.09410 0.71093 0.00000 0.28907
                   1266: 
                   1267:        1  65   99    0.00364             0.00322 0.99314 0.00350 0.00310 0.99340
                   1268:        1  65  100    0.00214             0.00204 0.99581 0.00206 0.00196 0.99597
                   1269:   variance of p one-step probabilities varprob  | prob_nom   ficresprob #One-step probabilities and stand. devi in ()
                   1270:    Standard deviation of one-step probabilities | probcor_nom   ficresprobcor #One-step probabilities and correlation matrix
                   1271:    Matrix of variance covariance of one-step probabilities |  probcov_nom ficresprobcov #One-step probabilities and covariance matrix
                   1272: 
1.126     brouard  1273:   forecasting if prevfcast==1 prevforecast call prevalence()
                   1274:   health expectancies
                   1275:   Variance-covariance of DFLE
                   1276:   prevalence()
                   1277:    movingaverage()
                   1278:   varevsij() 
                   1279:   if popbased==1 varevsij(,popbased)
                   1280:   total life expectancies
                   1281:   Variance of period (stable) prevalence
                   1282:  end
                   1283: */
                   1284: 
1.187     brouard  1285: /* #define DEBUG */
                   1286: /* #define DEBUGBRENT */
1.203     brouard  1287: /* #define DEBUGLINMIN */
                   1288: /* #define DEBUGHESS */
                   1289: #define DEBUGHESSIJ
1.224     brouard  1290: /* #define LINMINORIGINAL  /\* Don't use loop on scale in linmin (accepting nan) *\/ */
1.165     brouard  1291: #define POWELL /* Instead of NLOPT */
1.224     brouard  1292: #define POWELLNOF3INFF1TEST /* Skip test */
1.186     brouard  1293: /* #define POWELLORIGINAL /\* Don't use Directest to decide new direction but original Powell test *\/ */
                   1294: /* #define MNBRAKORIGINAL /\* Don't use mnbrak fix *\/ */
1.319     brouard  1295: /* #define FLATSUP  *//* Suppresses directions where likelihood is flat */
1.359   ! brouard  1296: /* #define POWELLORIGINCONJUGATE  /\* Don't use conjugate but biggest decrease if valuable *\/ */
        !          1297: /* #define NOTMINFIT */
1.126     brouard  1298: 
                   1299: #include <math.h>
                   1300: #include <stdio.h>
                   1301: #include <stdlib.h>
                   1302: #include <string.h>
1.226     brouard  1303: #include <ctype.h>
1.159     brouard  1304: 
                   1305: #ifdef _WIN32
                   1306: #include <io.h>
1.172     brouard  1307: #include <windows.h>
                   1308: #include <tchar.h>
1.159     brouard  1309: #else
1.126     brouard  1310: #include <unistd.h>
1.159     brouard  1311: #endif
1.126     brouard  1312: 
                   1313: #include <limits.h>
                   1314: #include <sys/types.h>
1.171     brouard  1315: 
                   1316: #if defined(__GNUC__)
                   1317: #include <sys/utsname.h> /* Doesn't work on Windows */
                   1318: #endif
                   1319: 
1.126     brouard  1320: #include <sys/stat.h>
                   1321: #include <errno.h>
1.159     brouard  1322: /* extern int errno; */
1.126     brouard  1323: 
1.157     brouard  1324: /* #ifdef LINUX */
                   1325: /* #include <time.h> */
                   1326: /* #include "timeval.h" */
                   1327: /* #else */
                   1328: /* #include <sys/time.h> */
                   1329: /* #endif */
                   1330: 
1.126     brouard  1331: #include <time.h>
                   1332: 
1.136     brouard  1333: #ifdef GSL
                   1334: #include <gsl/gsl_errno.h>
                   1335: #include <gsl/gsl_multimin.h>
                   1336: #endif
                   1337: 
1.167     brouard  1338: 
1.162     brouard  1339: #ifdef NLOPT
                   1340: #include <nlopt.h>
                   1341: typedef struct {
                   1342:   double (* function)(double [] );
                   1343: } myfunc_data ;
                   1344: #endif
                   1345: 
1.126     brouard  1346: /* #include <libintl.h> */
                   1347: /* #define _(String) gettext (String) */
                   1348: 
1.349     brouard  1349: #define MAXLINE 16384 /* Was 256 and 1024 and 2048. Overflow with 312 with 2 states and 4 covariates. Should be ok */
1.126     brouard  1350: 
                   1351: #define GNUPLOTPROGRAM "gnuplot"
1.343     brouard  1352: #define GNUPLOTVERSION 5.1
                   1353: double gnuplotversion=GNUPLOTVERSION;
1.126     brouard  1354: /*#define GNUPLOTPROGRAM "..\\gp37mgw\\wgnuplot"*/
1.329     brouard  1355: #define FILENAMELENGTH 256
1.126     brouard  1356: 
                   1357: #define        GLOCK_ERROR_NOPATH              -1      /* empty path */
                   1358: #define        GLOCK_ERROR_GETCWD              -2      /* cannot get cwd */
                   1359: 
1.349     brouard  1360: #define MAXPARM 216 /**< Maximum number of parameters for the optimization was 128 */
1.144     brouard  1361: #define NPARMAX 64 /**< (nlstate+ndeath-1)*nlstate*ncovmodel */
1.126     brouard  1362: 
                   1363: #define NINTERVMAX 8
1.144     brouard  1364: #define NLSTATEMAX 8 /**< Maximum number of live states (for func) */
                   1365: #define NDEATHMAX 8 /**< Maximum number of dead states (for func) */
1.325     brouard  1366: #define NCOVMAX 30  /**< Maximum number of covariates used in the model, including generated covariates V1*V2 or V1*age */
1.197     brouard  1367: #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
1.211     brouard  1368: /*#define decodtabm(h,k,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (k-1)) & 1) +1 : -1)*/
                   1369: #define decodtabm(h,k,cptcoveff) (((h-1) >> (k-1)) & 1) +1 
1.290     brouard  1370: /*#define MAXN 20000 */ /* Should by replaced by nobs, real number of observations and unlimited */
1.144     brouard  1371: #define YEARM 12. /**< Number of months per year */
1.218     brouard  1372: /* #define AGESUP 130 */
1.288     brouard  1373: /* #define AGESUP 150 */
                   1374: #define AGESUP 200
1.268     brouard  1375: #define AGEINF 0
1.218     brouard  1376: #define AGEMARGE 25 /* Marge for agemin and agemax for(iage=agemin-AGEMARGE; iage <= agemax+3+AGEMARGE; iage++) */
1.126     brouard  1377: #define AGEBASE 40
1.194     brouard  1378: #define AGEOVERFLOW 1.e20
1.164     brouard  1379: #define AGEGOMP 10 /**< Minimal age for Gompertz adjustment */
1.157     brouard  1380: #ifdef _WIN32
                   1381: #define DIRSEPARATOR '\\'
                   1382: #define CHARSEPARATOR "\\"
                   1383: #define ODIRSEPARATOR '/'
                   1384: #else
1.126     brouard  1385: #define DIRSEPARATOR '/'
                   1386: #define CHARSEPARATOR "/"
                   1387: #define ODIRSEPARATOR '\\'
                   1388: #endif
                   1389: 
1.359   ! brouard  1390: /* $Id: imachprax.c,v 1.6 2024/04/24 21:10:29 brouard Exp $ */
1.126     brouard  1391: /* $State: Exp $ */
1.196     brouard  1392: #include "version.h"
                   1393: char version[]=__IMACH_VERSION__;
1.359   ! brouard  1394: char copyright[]="April 2023,INED-EUROREVES-Institut de longevite-Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research 25293121), Intel Software 2015-2020, Nihon University 2021-202, INED 2000-2022";
        !          1395: char fullversion[]="$Revision: 1.6 $ $Date: 2024/04/24 21:10:29 $"; 
1.126     brouard  1396: char strstart[80];
                   1397: char optionfilext[10], optionfilefiname[FILENAMELENGTH];
1.130     brouard  1398: int erreur=0, nberr=0, nbwarn=0; /* Error number, number of errors number of warnings  */
1.342     brouard  1399: int debugILK=0; /* debugILK is set by a #d in a comment line */
1.187     brouard  1400: int nagesqr=0, nforce=0; /* nagesqr=1 if model is including age*age, number of forces */
1.330     brouard  1401: /* Number of covariates model (1)=V2+V1+ V3*age+V2*V4 */
                   1402: /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
1.335     brouard  1403: int cptcovn=0; /**< cptcovn decodemodel: number of covariates k of the models excluding age*products =6 and age*age but including products */
1.330     brouard  1404: int cptcovt=0; /**< cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
1.335     brouard  1405: int cptcovs=0; /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
                   1406: int cptcovsnq=0; /**< cptcovsnq number of SIMPLE covariates in the model but non quantitative V2+V1 =2 */
1.145     brouard  1407: int cptcovage=0; /**< Number of covariates with age: V3*age only =1 */
1.349     brouard  1408: int cptcovprodage=0; /**< Number of fixed covariates with age: V3*age or V2*V3*age 1 */
                   1409: int cptcovprodvage=0; /**< Number of varying covariates with age: V7*age or V7*V6*age */
                   1410: int cptcovdageprod=0; /**< Number of doubleproducts with age, since 0.99r44 only: age*Vn*Vm for gnuplot printing*/
1.145     brouard  1411: int cptcovprodnoage=0; /**< Number of covariate products without age */   
1.335     brouard  1412: int cptcoveff=0; /* Total number of single dummy covariates (fixed or time varying) to vary for printing results (2**cptcoveff combinations of dummies)(computed in tricode as cptcov) */
1.233     brouard  1413: int ncovf=0; /* Total number of effective fixed covariates (dummy or quantitative) in the model */
                   1414: int ncovv=0; /* Total number of effective (wave) varying covariates (dummy or quantitative) in the model */
1.339     brouard  1415: int ncovvt=0; /* Total number of effective (wave) varying covariates (dummy or quantitative or products [without age]) in the model */
1.349     brouard  1416: int ncovvta=0; /*  +age*V6 + age*V7+ age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of expandend products [with age]) in the model */
                   1417: int ncovta=0; /*age*V3*V2 +age*V2+agev3+ageV4  +age*V6 + age*V7+ age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of expandend products [with age]) in the model */
                   1418: int ncova=0; /* Total number of effective (wave and stepm) varying with age covariates (single or product, dummy or quantitative) in the model */
                   1419: int ncovva=0; /* +age*V6 + age*V7+ge*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 Total number of effective (wave and stepm) varying with age covariates (single or product, dummy or quantitative) in the model */
1.234     brouard  1420: int nsd=0; /**< Total number of single dummy variables (output) */
                   1421: int nsq=0; /**< Total number of single quantitative variables (output) */
1.232     brouard  1422: int ncoveff=0; /* Total number of effective fixed dummy covariates in the model */
1.225     brouard  1423: int nqfveff=0; /**< nqfveff Number of Quantitative Fixed Variables Effective */
1.224     brouard  1424: int ntveff=0; /**< ntveff number of effective time varying variables */
                   1425: int nqtveff=0; /**< ntqveff number of effective time varying quantitative variables */
1.145     brouard  1426: int cptcov=0; /* Working variable */
1.334     brouard  1427: int firstobs=1, lastobs=10; /* nobs = lastobs-firstobs+1 declared globally ;*/
1.290     brouard  1428: int nobs=10;  /* Number of observations in the data lastobs-firstobs */
1.218     brouard  1429: int ncovcombmax=NCOVMAX; /* Maximum calculated number of covariate combination = pow(2, cptcoveff) */
1.302     brouard  1430: int npar=NPARMAX; /* Number of parameters (nlstate+ndeath-1)*nlstate*ncovmodel; */
1.126     brouard  1431: int nlstate=2; /* Number of live states */
                   1432: int ndeath=1; /* Number of dead states */
1.130     brouard  1433: int ncovmodel=0, ncovcol=0;     /* Total number of covariables including constant a12*1 +b12*x ncovmodel=2 */
1.339     brouard  1434: int nqv=0, ntv=0, nqtv=0;    /* Total number of quantitative variables, time variable (dummy), quantitative and time variable*/
                   1435: int ncovcolt=0; /* ncovcolt=ncovcol+nqv+ntv+nqtv; total of covariates in the data, not in the model equation*/ 
1.126     brouard  1436: int popbased=0;
                   1437: 
                   1438: int *wav; /* Number of waves for this individuual 0 is possible */
1.130     brouard  1439: int maxwav=0; /* Maxim number of waves */
                   1440: int jmin=0, jmax=0; /* min, max spacing between 2 waves */
                   1441: int ijmin=0, ijmax=0; /* Individuals having jmin and jmax */ 
1.359   ! brouard  1442: int gipmx = 0;
        !          1443: double gsw = 0; /* Global variables on the number of contributions
1.126     brouard  1444:                   to the likelihood and the sum of weights (done by funcone)*/
1.130     brouard  1445: int mle=1, weightopt=0;
1.126     brouard  1446: int **mw; /* mw[mi][i] is number of the mi wave for this individual */
                   1447: int **dh; /* dh[mi][i] is number of steps between mi,mi+1 for this individual */
                   1448: int **bh; /* bh[mi][i] is the bias (+ or -) for this individual if the delay between
                   1449:           * wave mi and wave mi+1 is not an exact multiple of stepm. */
1.162     brouard  1450: int countcallfunc=0;  /* Count the number of calls to func */
1.230     brouard  1451: int selected(int kvar); /* Is covariate kvar selected for printing results */
                   1452: 
1.130     brouard  1453: double jmean=1; /* Mean space between 2 waves */
1.145     brouard  1454: double **matprod2(); /* test */
1.126     brouard  1455: double **oldm, **newm, **savm; /* Working pointers to matrices */
                   1456: double **oldms, **newms, **savms; /* Fixed working pointers to matrices */
1.218     brouard  1457: double  **ddnewms, **ddoldms, **ddsavms; /* for freeing later */
                   1458: 
1.136     brouard  1459: /*FILE *fic ; */ /* Used in readdata only */
1.217     brouard  1460: FILE *ficpar, *ficparo,*ficres, *ficresp, *ficresphtm, *ficresphtmfr, *ficrespl, *ficresplb,*ficrespij, *ficrespijb, *ficrest,*ficresf, *ficresfb,*ficrespop;
1.126     brouard  1461: FILE *ficlog, *ficrespow;
1.130     brouard  1462: int globpr=0; /* Global variable for printing or not */
1.126     brouard  1463: double fretone; /* Only one call to likelihood */
1.130     brouard  1464: long ipmx=0; /* Number of contributions */
1.126     brouard  1465: double sw; /* Sum of weights */
                   1466: char filerespow[FILENAMELENGTH];
                   1467: char fileresilk[FILENAMELENGTH]; /* File of individual contributions to the likelihood */
                   1468: FILE *ficresilk;
                   1469: FILE *ficgp,*ficresprob,*ficpop, *ficresprobcov, *ficresprobcor;
                   1470: FILE *ficresprobmorprev;
                   1471: FILE *fichtm, *fichtmcov; /* Html File */
                   1472: FILE *ficreseij;
                   1473: char filerese[FILENAMELENGTH];
                   1474: FILE *ficresstdeij;
                   1475: char fileresstde[FILENAMELENGTH];
                   1476: FILE *ficrescveij;
                   1477: char filerescve[FILENAMELENGTH];
                   1478: FILE  *ficresvij;
                   1479: char fileresv[FILENAMELENGTH];
1.269     brouard  1480: 
1.126     brouard  1481: char title[MAXLINE];
1.234     brouard  1482: char model[MAXLINE]; /**< The model line */
1.217     brouard  1483: char optionfile[FILENAMELENGTH], datafile[FILENAMELENGTH],  filerespl[FILENAMELENGTH],  fileresplb[FILENAMELENGTH];
1.126     brouard  1484: char plotcmd[FILENAMELENGTH], pplotcmd[FILENAMELENGTH];
                   1485: char tmpout[FILENAMELENGTH],  tmpout2[FILENAMELENGTH]; 
                   1486: char command[FILENAMELENGTH];
                   1487: int  outcmd=0;
                   1488: 
1.217     brouard  1489: char fileres[FILENAMELENGTH], filerespij[FILENAMELENGTH], filerespijb[FILENAMELENGTH], filereso[FILENAMELENGTH], rfileres[FILENAMELENGTH];
1.202     brouard  1490: char fileresu[FILENAMELENGTH]; /* fileres without r in front */
1.126     brouard  1491: char filelog[FILENAMELENGTH]; /* Log file */
                   1492: char filerest[FILENAMELENGTH];
                   1493: char fileregp[FILENAMELENGTH];
                   1494: char popfile[FILENAMELENGTH];
                   1495: 
                   1496: char optionfilegnuplot[FILENAMELENGTH], optionfilehtm[FILENAMELENGTH], optionfilehtmcov[FILENAMELENGTH] ;
                   1497: 
1.157     brouard  1498: /* struct timeval start_time, end_time, curr_time, last_time, forecast_time; */
                   1499: /* struct timezone tzp; */
                   1500: /* extern int gettimeofday(); */
                   1501: struct tm tml, *gmtime(), *localtime();
                   1502: 
                   1503: extern time_t time();
                   1504: 
                   1505: struct tm start_time, end_time, curr_time, last_time, forecast_time;
                   1506: time_t  rstart_time, rend_time, rcurr_time, rlast_time, rforecast_time; /* raw time */
1.349     brouard  1507: time_t   rlast_btime; /* raw time */
1.157     brouard  1508: struct tm tm;
                   1509: 
1.126     brouard  1510: char strcurr[80], strfor[80];
                   1511: 
                   1512: char *endptr;
                   1513: long lval;
                   1514: double dval;
                   1515: 
                   1516: #define NR_END 1
                   1517: #define FREE_ARG char*
                   1518: #define FTOL 1.0e-10
                   1519: 
                   1520: #define NRANSI 
1.240     brouard  1521: #define ITMAX 200
                   1522: #define ITPOWMAX 20 /* This is now multiplied by the number of parameters */ 
1.126     brouard  1523: 
                   1524: #define TOL 2.0e-4 
                   1525: 
                   1526: #define CGOLD 0.3819660 
                   1527: #define ZEPS 1.0e-10 
                   1528: #define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
                   1529: 
                   1530: #define GOLD 1.618034 
                   1531: #define GLIMIT 100.0 
                   1532: #define TINY 1.0e-20 
                   1533: 
                   1534: static double maxarg1,maxarg2;
                   1535: #define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)>(maxarg2)? (maxarg1):(maxarg2))
                   1536: #define FMIN(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1)<(maxarg2)? (maxarg1):(maxarg2))
                   1537:   
                   1538: #define SIGN(a,b) ((b)>0.0 ? fabs(a) : -fabs(a))
                   1539: #define rint(a) floor(a+0.5)
1.166     brouard  1540: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/myutils_8h-source.html */
1.183     brouard  1541: #define mytinydouble 1.0e-16
1.166     brouard  1542: /* #define DEQUAL(a,b) (fabs((a)-(b))<mytinydouble) */
                   1543: /* http://www.thphys.uni-heidelberg.de/~robbers/cmbeasy/doc/html/mynrutils_8h-source.html */
                   1544: /* static double dsqrarg; */
                   1545: /* #define DSQR(a) (DEQUAL((dsqrarg=(a)),0.0) ? 0.0 : dsqrarg*dsqrarg) */
1.126     brouard  1546: static double sqrarg;
                   1547: #define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 :sqrarg*sqrarg)
                   1548: #define SWAP(a,b) {temp=(a);(a)=(b);(b)=temp;} 
                   1549: int agegomp= AGEGOMP;
                   1550: 
                   1551: int imx; 
                   1552: int stepm=1;
                   1553: /* Stepm, step in month: minimum step interpolation*/
                   1554: 
                   1555: int estepm;
                   1556: /* Estepm, step in month to interpolate survival function in order to approximate Life Expectancy*/
                   1557: 
                   1558: int m,nb;
                   1559: long *num;
1.197     brouard  1560: int firstpass=0, lastpass=4,*cod, *cens;
1.192     brouard  1561: int *ncodemax;  /* ncodemax[j]= Number of modalities of the j th
                   1562:                   covariate for which somebody answered excluding 
                   1563:                   undefined. Usually 2: 0 and 1. */
                   1564: int *ncodemaxwundef;  /* ncodemax[j]= Number of modalities of the j th
                   1565:                             covariate for which somebody answered including 
                   1566:                             undefined. Usually 3: -1, 0 and 1. */
1.126     brouard  1567: double **agev,*moisnais, *annais, *moisdc, *andc,**mint, **anint;
1.218     brouard  1568: double **pmmij, ***probs; /* Global pointer */
1.219     brouard  1569: double ***mobaverage, ***mobaverages; /* New global variable */
1.332     brouard  1570: double **precov; /* New global variable to store for each resultline, values of model covariates given by the resultlines (in order to speed up)  */
1.126     brouard  1571: double *ageexmed,*agecens;
                   1572: double dateintmean=0;
1.296     brouard  1573:   double anprojd, mprojd, jprojd; /* For eventual projections */
                   1574:   double anprojf, mprojf, jprojf;
1.126     brouard  1575: 
1.296     brouard  1576:   double anbackd, mbackd, jbackd; /* For eventual backprojections */
                   1577:   double anbackf, mbackf, jbackf;
                   1578:   double jintmean,mintmean,aintmean;  
1.126     brouard  1579: double *weight;
                   1580: int **s; /* Status */
1.141     brouard  1581: double *agedc;
1.145     brouard  1582: double  **covar; /**< covar[j,i], value of jth covariate for individual i,
1.141     brouard  1583:                  * covar=matrix(0,NCOVMAX,1,n); 
1.187     brouard  1584:                  * cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*age; */
1.268     brouard  1585: double **coqvar; /* Fixed quantitative covariate nqv */
1.341     brouard  1586: double ***cotvar; /* Time varying covariate start at ncovcol + nqv + (1 to ntv) */
1.225     brouard  1587: double ***cotqvar; /* Time varying quantitative covariate itqv */
1.141     brouard  1588: double  idx; 
                   1589: int **nbcode, *Tvar; /**< model=V2 => Tvar[1]= 2 */
1.319     brouard  1590: /* Some documentation */
                   1591:       /*   Design original data
                   1592:        *  V1   V2   V3   V4  V5  V6  V7  V8  Weight ddb ddth d1st s1 V9 V10 V11 V12 s2 V9 V10 V11 V12 
                   1593:        *  <          ncovcol=6   >   nqv=2 (V7 V8)                   dv dv  dv  qtv    dv dv  dvv qtv
                   1594:        *                                                             ntv=3     nqtv=1
1.330     brouard  1595:        *  cptcovn number of covariates (not including constant and age or age*age) = number of plus sign + 1 = 10+1=11
1.319     brouard  1596:        * For time varying covariate, quanti or dummies
                   1597:        *       cotqvar[wav][iv(1 to nqtv)][i]= [1][12][i]=(V12) quanti
1.341     brouard  1598:        *       cotvar[wav][ncovcol+nqv+ iv(1 to nqtv)][i]= [(1 to nqtv)][i]=(V12) quanti
1.319     brouard  1599:        *       cotvar[wav][iv(1 to ntv)][i]= [1][1][i]=(V9) dummies at wav 1
                   1600:        *       cotvar[wav][iv(1 to ntv)][i]= [1][2][i]=(V10) dummies at wav 1
1.332     brouard  1601:        *       covar[Vk,i], value of the Vkth fixed covariate dummy or quanti for individual i:
1.319     brouard  1602:        *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
                   1603:        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8 + V9 + V9*age + V10
                   1604:        *   k=  1    2      3       4     5       6      7        8   9     10       11 
                   1605:        */
                   1606: /* According to the model, more columns can be added to covar by the product of covariates */
1.318     brouard  1607: /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
                   1608:   # States 1=Coresidence, 2 Living alone, 3 Institution
                   1609:   # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
                   1610: */
1.349     brouard  1611: /*           V5+V4+ V3+V4*V3 +V5*age+V2 +V1*V2+V1*age+V1+V4*V3*age */
                   1612: /*    kmodel  1  2   3    4     5     6    7     8     9    10 */
                   1613: /*Typevar[k]=  0  0   0   2     1    0    2     1     0    3 *//*0 for simple covariate (dummy, quantitative,*/
                   1614:                                                                /* fixed or varying), 1 for age product, 2 for*/
                   1615:                                                                /* product without age, 3 for age and double product   */
                   1616: /*Dummy[k]=    1  0   0   1     3    1    1     2     0     3  *//*Dummy[k] 0=dummy (0 1), 1 quantitative */
                   1617:                                                                 /*(single or product without age), 2 dummy*/
                   1618:                                                                /* with age product, 3 quant with age product*/
                   1619: /*Tvar[k]=     5  4   3   6     5    2    7     1     1     6 */
                   1620: /*    nsd         1   2                               3 */ /* Counting single dummies covar fixed or tv */
                   1621: /*TnsdVar[Tvar]   1   2                               3 */ 
                   1622: /*Tvaraff[nsd]    4   3                               1 */ /* ID of single dummy cova fixed or timevary*/
                   1623: /*TvarsD[nsd]     4   3                               1 */ /* ID of single dummy cova fixed or timevary*/
                   1624: /*TvarsDind[nsd]  2   3                               9 */ /* position K of single dummy cova */
                   1625: /*    nsq      1                     2                  */ /* Counting single quantit tv */
                   1626: /* TvarsQ[k]   5                     2                  */ /* Number of single quantitative cova */
                   1627: /* TvarsQind   1                     6                  */ /* position K of single quantitative cova */
                   1628: /* Tprod[i]=k             1               2             */ /* Position in model of the ith prod without age */
                   1629: /* cptcovage                    1               2         3 */ /* Counting cov*age in the model equation */
                   1630: /* Tage[cptcovage]=k            5               8         10 */ /* Position in the model of ith cov*age */
1.350     brouard  1631: /* model="V2+V3+V4+V6+V7+V6*V2+V7*V2+V6*V3+V7*V3+V6*V4+V7*V4+age*V2+age*V3+age*V4+age*V6+age*V7+age*V6*V2+age*V6*V3+age*V7*V3+age*V6*V4+age*V7*V4\r"*/
                   1632: /*  p Tvard[1][1]@21 = {6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0}*/
1.354     brouard  1633: /*  p Tvard[2][1]@21 = {7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0 <repeats 11 times>} */
1.350     brouard  1634: /* p Tvardk[1][1]@24 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0}*/
                   1635: /* p Tvardk[1][1]@22 = {0, 0, 0, 0, 0, 0, 0, 0, 6, 2, 7, 2, 6, 3, 7, 3, 6, 4, 7, 4, 0, 0} */
1.349     brouard  1636: /* Tvard[1][1]@4={4,3,1,2}    V4*V3 V1*V2               */ /* Position in model of the ith prod without age */
1.330     brouard  1637: /* Tvardk[4][1]=4;Tvardk[4][2]=3;Tvardk[7][1]=1;Tvardk[7][2]=2 */ /* Variables of a prod at position in the model equation*/
1.319     brouard  1638: /* TvarF TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
1.320     brouard  1639: /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
1.234     brouard  1640: /* Type                    */
                   1641: /* V         1  2  3  4  5 */
                   1642: /*           F  F  V  V  V */
                   1643: /*           D  Q  D  D  Q */
                   1644: /*                         */
                   1645: int *TvarsD;
1.330     brouard  1646: int *TnsdVar;
1.234     brouard  1647: int *TvarsDind;
                   1648: int *TvarsQ;
                   1649: int *TvarsQind;
                   1650: 
1.318     brouard  1651: #define MAXRESULTLINESPONE 10+1
1.235     brouard  1652: int nresult=0;
1.258     brouard  1653: int parameterline=0; /* # of the parameter (type) line */
1.334     brouard  1654: int TKresult[MAXRESULTLINESPONE]; /* TKresult[nres]=k for each resultline nres give the corresponding combination of dummies */
                   1655: int resultmodel[MAXRESULTLINESPONE][NCOVMAX];/* resultmodel[k1]=k3: k1th position in the model corresponds to the k3 position in the resultline */
                   1656: int modelresult[MAXRESULTLINESPONE][NCOVMAX];/* modelresult[k3]=k1: k1th position in the model corresponds to the k3 position in the resultline */
                   1657: int Tresult[MAXRESULTLINESPONE][NCOVMAX];/* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline */
1.332     brouard  1658: int Tinvresult[MAXRESULTLINESPONE][NCOVMAX];/* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line  */
                   1659: double TinvDoQresult[MAXRESULTLINESPONE][NCOVMAX];/* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line */
1.334     brouard  1660: int Tvresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline */
1.332     brouard  1661: double Tqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
1.318     brouard  1662: double Tqinvresult[MAXRESULTLINESPONE][NCOVMAX]; /* For quantitative variable , value (output) */
1.332     brouard  1663: int Tvqresult[MAXRESULTLINESPONE][NCOVMAX]; /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline */
1.318     brouard  1664: 
                   1665: /* ncovcol=1(Males=0 Females=1) nqv=1(raedyrs) ntv=2(withoutiadl=0 withiadl=1, witoutadl=0 withoutadl=1) nqtv=1(bmi) nlstate=3 ndeath=1
                   1666:   # States 1=Coresidence, 2 Living alone, 3 Institution
                   1667:   # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi
                   1668: */
1.234     brouard  1669: /* int *TDvar; /\**< TDvar[1]=4,  TDvarF[2]=3, TDvar[3]=6  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
1.232     brouard  1670: int *TvarF; /**< TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1671: int *TvarFind; /**< TvarFind[1]=6,  TvarFind[2]=7, Tvarind[3]=9  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1672: int *TvarV; /**< TvarV[1]=Tvar[1]=5, TvarV[2]=Tvar[2]=4  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1673: int *TvarVind; /**< TvarVind[1]=1, TvarVind[2]=2  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1674: int *TvarA; /**< TvarA[1]=Tvar[5]=5, TvarA[2]=Tvar[8]=1  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1675: int *TvarAind; /**< TvarindA[1]=5, TvarAind[2]=8  in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.231     brouard  1676: int *TvarFD; /**< TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1677: int *TvarFDind; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   1678: int *TvarFQ; /* TvarFQ[1]=V2 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1679: int *TvarFQind; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1680: int *TvarVD; /* TvarVD[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1681: int *TvarVDind; /* TvarVDind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
                   1682: int *TvarVQ; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   1683: int *TvarVQind; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
1.339     brouard  1684: int *TvarVV; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */
                   1685: int *TvarVVind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */
1.349     brouard  1686: int *TvarVVA; /* We count ncovvt time varying covariates (single or products with age) and put their name into TvarVVA */
                   1687: int *TvarVVAind; /* We count ncovvt time varying covariates (single or products without age) and put their name into TvarVV */
                   1688: int *TvarAVVA; /* We count ALL ncovta time varying covariates (single or products with age) and put their name into TvarVVA */
                   1689: int *TvarAVVAind; /* We count ALL ncovta time varying covariates (single or products without age) and put their name into TvarVV */
1.339     brouard  1690:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
1.349     brouard  1691:       /* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age */
                   1692:       /*  Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   1693:       /* TvarVV={3,1,3,1,3}, for V3 and then the product V1*V3 is decomposed into V1 and V3 */        
                   1694:       /* TvarVVind={2,5,5,6,6}, for V3 and then the product V1*V3 is decomposed into V1 and V3 and V1*V3*age into 6,6 */              
1.230     brouard  1695: int *Tvarsel; /**< Selected covariates for output */
                   1696: double *Tvalsel; /**< Selected modality value of covariate for output */
1.349     brouard  1697: int *Typevar; /**< 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product, 3 age*Vn*Vm */
1.227     brouard  1698: int *Fixed; /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */ 
                   1699: int *Dummy; /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
1.238     brouard  1700: int *DummyV; /** Dummy[v] 0=dummy (0 1), 1 quantitative */
                   1701: int *FixedV; /** FixedV[v] 0 fixed, 1 varying */
1.197     brouard  1702: int *Tage;
1.227     brouard  1703: int anyvaryingduminmodel=0; /**< Any varying dummy in Model=1 yes, 0 no, to avoid a loop on waves in freq */ 
1.228     brouard  1704: int *Tmodelind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
1.230     brouard  1705: int *TmodelInvind; /** Tmodelind[Tvaraff[3]]=9 for V1 position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/ 
                   1706: int *TmodelInvQind; /** Tmodelqind[1]=1 for V5(quantitative varying) position,Tvaraff[1]@9={4, 3, 1, 0, 0, 0, 0, 0, 0}, model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1  */
1.145     brouard  1707: int *Ndum; /** Freq of modality (tricode */
1.200     brouard  1708: /* int **codtab;*/ /**< codtab=imatrix(1,100,1,10); */
1.227     brouard  1709: int **Tvard;
1.330     brouard  1710: int **Tvardk;
1.227     brouard  1711: int *Tprod;/**< Gives the k position of the k1 product */
1.238     brouard  1712: /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3  */
1.227     brouard  1713: int *Tposprod; /**< Gives the k1 product from the k position */
1.238     brouard  1714:    /* if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2) */
                   1715:    /* Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5(V3*V2)]=2 (2nd product without age) */
1.227     brouard  1716: int cptcovprod, *Tvaraff, *invalidvarcomb;
1.126     brouard  1717: double *lsurv, *lpop, *tpop;
                   1718: 
1.231     brouard  1719: #define FD 1; /* Fixed dummy covariate */
                   1720: #define FQ 2; /* Fixed quantitative covariate */
                   1721: #define FP 3; /* Fixed product covariate */
                   1722: #define FPDD 7; /* Fixed product dummy*dummy covariate */
                   1723: #define FPDQ 8; /* Fixed product dummy*quantitative covariate */
                   1724: #define FPQQ 9; /* Fixed product quantitative*quantitative covariate */
                   1725: #define VD 10; /* Varying dummy covariate */
                   1726: #define VQ 11; /* Varying quantitative covariate */
                   1727: #define VP 12; /* Varying product covariate */
                   1728: #define VPDD 13; /* Varying product dummy*dummy covariate */
                   1729: #define VPDQ 14; /* Varying product dummy*quantitative covariate */
                   1730: #define VPQQ 15; /* Varying product quantitative*quantitative covariate */
                   1731: #define APFD 16; /* Age product * fixed dummy covariate */
                   1732: #define APFQ 17; /* Age product * fixed quantitative covariate */
                   1733: #define APVD 18; /* Age product * varying dummy covariate */
                   1734: #define APVQ 19; /* Age product * varying quantitative covariate */
                   1735: 
                   1736: #define FTYPE 1; /* Fixed covariate */
                   1737: #define VTYPE 2; /* Varying covariate (loop in wave) */
                   1738: #define ATYPE 2; /* Age product covariate (loop in dh within wave)*/
                   1739: 
                   1740: struct kmodel{
                   1741:        int maintype; /* main type */
                   1742:        int subtype; /* subtype */
                   1743: };
                   1744: struct kmodel modell[NCOVMAX];
                   1745: 
1.143     brouard  1746: double ftol=FTOL; /**< Tolerance for computing Max Likelihood */
                   1747: double ftolhess; /**< Tolerance for computing hessian */
1.126     brouard  1748: 
                   1749: /**************** split *************************/
                   1750: static int split( char *path, char *dirc, char *name, char *ext, char *finame )
                   1751: {
                   1752:   /* From a file name with (full) path (either Unix or Windows) we extract the directory (dirc)
                   1753:      the name of the file (name), its extension only (ext) and its first part of the name (finame)
                   1754:   */ 
                   1755:   char *ss;                            /* pointer */
1.186     brouard  1756:   int  l1=0, l2=0;                             /* length counters */
1.126     brouard  1757: 
                   1758:   l1 = strlen(path );                  /* length of path */
                   1759:   if ( l1 == 0 ) return( GLOCK_ERROR_NOPATH );
                   1760:   ss= strrchr( path, DIRSEPARATOR );           /* find last / */
                   1761:   if ( ss == NULL ) {                  /* no directory, so determine current directory */
                   1762:     strcpy( name, path );              /* we got the fullname name because no directory */
                   1763:     /*if(strrchr(path, ODIRSEPARATOR )==NULL)
                   1764:       printf("Warning you should use %s as a separator\n",DIRSEPARATOR);*/
                   1765:     /* get current working directory */
                   1766:     /*    extern  char* getcwd ( char *buf , int len);*/
1.184     brouard  1767: #ifdef WIN32
                   1768:     if (_getcwd( dirc, FILENAME_MAX ) == NULL ) {
                   1769: #else
                   1770:        if (getcwd(dirc, FILENAME_MAX) == NULL) {
                   1771: #endif
1.126     brouard  1772:       return( GLOCK_ERROR_GETCWD );
                   1773:     }
                   1774:     /* got dirc from getcwd*/
                   1775:     printf(" DIRC = %s \n",dirc);
1.205     brouard  1776:   } else {                             /* strip directory from path */
1.126     brouard  1777:     ss++;                              /* after this, the filename */
                   1778:     l2 = strlen( ss );                 /* length of filename */
                   1779:     if ( l2 == 0 ) return( GLOCK_ERROR_NOPATH );
                   1780:     strcpy( name, ss );                /* save file name */
                   1781:     strncpy( dirc, path, l1 - l2 );    /* now the directory */
1.186     brouard  1782:     dirc[l1-l2] = '\0';                        /* add zero */
1.126     brouard  1783:     printf(" DIRC2 = %s \n",dirc);
                   1784:   }
                   1785:   /* We add a separator at the end of dirc if not exists */
                   1786:   l1 = strlen( dirc );                 /* length of directory */
                   1787:   if( dirc[l1-1] != DIRSEPARATOR ){
                   1788:     dirc[l1] =  DIRSEPARATOR;
                   1789:     dirc[l1+1] = 0; 
                   1790:     printf(" DIRC3 = %s \n",dirc);
                   1791:   }
                   1792:   ss = strrchr( name, '.' );           /* find last / */
                   1793:   if (ss >0){
                   1794:     ss++;
                   1795:     strcpy(ext,ss);                    /* save extension */
                   1796:     l1= strlen( name);
                   1797:     l2= strlen(ss)+1;
                   1798:     strncpy( finame, name, l1-l2);
                   1799:     finame[l1-l2]= 0;
                   1800:   }
                   1801: 
                   1802:   return( 0 );                         /* we're done */
                   1803: }
                   1804: 
                   1805: 
                   1806: /******************************************/
                   1807: 
                   1808: void replace_back_to_slash(char *s, char*t)
                   1809: {
                   1810:   int i;
                   1811:   int lg=0;
                   1812:   i=0;
                   1813:   lg=strlen(t);
                   1814:   for(i=0; i<= lg; i++) {
                   1815:     (s[i] = t[i]);
                   1816:     if (t[i]== '\\') s[i]='/';
                   1817:   }
                   1818: }
                   1819: 
1.132     brouard  1820: char *trimbb(char *out, char *in)
1.137     brouard  1821: { /* Trim multiple blanks in line but keeps first blanks if line starts with blanks */
1.132     brouard  1822:   char *s;
                   1823:   s=out;
                   1824:   while (*in != '\0'){
1.137     brouard  1825:     while( *in == ' ' && *(in+1) == ' '){ /* && *(in+1) != '\0'){*/
1.132     brouard  1826:       in++;
                   1827:     }
                   1828:     *out++ = *in++;
                   1829:   }
                   1830:   *out='\0';
                   1831:   return s;
                   1832: }
                   1833: 
1.351     brouard  1834: char *trimbtab(char *out, char *in)
                   1835: { /* Trim  blanks or tabs in line but keeps first blanks if line starts with blanks */
                   1836:   char *s;
                   1837:   s=out;
                   1838:   while (*in != '\0'){
                   1839:     while( (*in == ' ' || *in == '\t')){ /* && *(in+1) != '\0'){*/
                   1840:       in++;
                   1841:     }
                   1842:     *out++ = *in++;
                   1843:   }
                   1844:   *out='\0';
                   1845:   return s;
                   1846: }
                   1847: 
1.187     brouard  1848: /* char *substrchaine(char *out, char *in, char *chain) */
                   1849: /* { */
                   1850: /*   /\* Substract chain 'chain' from 'in', return and output 'out' *\/ */
                   1851: /*   char *s, *t; */
                   1852: /*   t=in;s=out; */
                   1853: /*   while ((*in != *chain) && (*in != '\0')){ */
                   1854: /*     *out++ = *in++; */
                   1855: /*   } */
                   1856: 
                   1857: /*   /\* *in matches *chain *\/ */
                   1858: /*   while ((*in++ == *chain++) && (*in != '\0')){ */
                   1859: /*     printf("*in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1860: /*   } */
                   1861: /*   in--; chain--; */
                   1862: /*   while ( (*in != '\0')){ */
                   1863: /*     printf("Bef *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1864: /*     *out++ = *in++; */
                   1865: /*     printf("Aft *in = %c, *out= %c *chain= %c \n", *in, *out, *chain);  */
                   1866: /*   } */
                   1867: /*   *out='\0'; */
                   1868: /*   out=s; */
                   1869: /*   return out; */
                   1870: /* } */
                   1871: char *substrchaine(char *out, char *in, char *chain)
                   1872: {
                   1873:   /* Substract chain 'chain' from 'in', return and output 'out' */
1.349     brouard  1874:   /* in="V1+V1*age+age*age+V2", chain="+age*age" out="V1+V1*age+V2" */
1.187     brouard  1875: 
                   1876:   char *strloc;
                   1877: 
1.349     brouard  1878:   strcpy (out, in);                   /* out="V1+V1*age+age*age+V2" */
                   1879:   strloc = strstr(out, chain); /* strloc points to out at "+age*age+V2"  */
                   1880:   printf("Bef strloc=%s chain=%s out=%s \n", strloc, chain, out); /* strloc=+age*age+V2 chain="+age*age", out="V1+V1*age+age*age+V2" */
1.187     brouard  1881:   if(strloc != NULL){ 
1.349     brouard  1882:     /* will affect out */ /* strloc+strlen(chain)=|+V2 = "V1+V1*age+age*age|+V2" */ /* Will also work in Unicodek */
                   1883:     memmove(strloc,strloc+strlen(chain), strlen(strloc+strlen(chain))+1); /* move number of bytes corresponding to the length of "+V2" which is 3, plus one is 4 (including the null)*/
                   1884:     /* equivalent to strcpy (strloc, strloc +strlen(chain)) if no overlap; Copies from "+V2" to V1+V1*age+ */
1.187     brouard  1885:   }
1.349     brouard  1886:   printf("Aft strloc=%s chain=%s in=%s out=%s \n", strloc, chain, in, out);  /* strloc=+V2 chain="+age*age", in="V1+V1*age+age*age+V2", out="V1+V1*age+V2" */
1.187     brouard  1887:   return out;
                   1888: }
                   1889: 
                   1890: 
1.145     brouard  1891: char *cutl(char *blocc, char *alocc, char *in, char occ)
                   1892: {
1.187     brouard  1893:   /* cuts string in into blocc and alocc where blocc ends before FIRST occurence of char 'occ' 
1.349     brouard  1894:      and alocc starts after first occurence of char 'occ' : ex cutl(blocc,alocc,"abcdef2ghi2j",'2')
1.310     brouard  1895:      gives alocc="abcdef" and blocc="ghi2j".
1.145     brouard  1896:      If occ is not found blocc is null and alocc is equal to in. Returns blocc
                   1897:   */
1.160     brouard  1898:   char *s, *t;
1.145     brouard  1899:   t=in;s=in;
                   1900:   while ((*in != occ) && (*in != '\0')){
                   1901:     *alocc++ = *in++;
                   1902:   }
                   1903:   if( *in == occ){
                   1904:     *(alocc)='\0';
                   1905:     s=++in;
                   1906:   }
                   1907:  
                   1908:   if (s == t) {/* occ not found */
                   1909:     *(alocc-(in-s))='\0';
                   1910:     in=s;
                   1911:   }
                   1912:   while ( *in != '\0'){
                   1913:     *blocc++ = *in++;
                   1914:   }
                   1915: 
                   1916:   *blocc='\0';
                   1917:   return t;
                   1918: }
1.137     brouard  1919: char *cutv(char *blocc, char *alocc, char *in, char occ)
                   1920: {
1.187     brouard  1921:   /* cuts string in into blocc and alocc where blocc ends before LAST occurence of char 'occ' 
1.137     brouard  1922:      and alocc starts after last occurence of char 'occ' : ex cutv(blocc,alocc,"abcdef2ghi2j",'2')
                   1923:      gives blocc="abcdef2ghi" and alocc="j".
                   1924:      If occ is not found blocc is null and alocc is equal to in. Returns alocc
                   1925:   */
                   1926:   char *s, *t;
                   1927:   t=in;s=in;
                   1928:   while (*in != '\0'){
                   1929:     while( *in == occ){
                   1930:       *blocc++ = *in++;
                   1931:       s=in;
                   1932:     }
                   1933:     *blocc++ = *in++;
                   1934:   }
                   1935:   if (s == t) /* occ not found */
                   1936:     *(blocc-(in-s))='\0';
                   1937:   else
                   1938:     *(blocc-(in-s)-1)='\0';
                   1939:   in=s;
                   1940:   while ( *in != '\0'){
                   1941:     *alocc++ = *in++;
                   1942:   }
                   1943: 
                   1944:   *alocc='\0';
                   1945:   return s;
                   1946: }
                   1947: 
1.126     brouard  1948: int nbocc(char *s, char occ)
                   1949: {
                   1950:   int i,j=0;
                   1951:   int lg=20;
                   1952:   i=0;
                   1953:   lg=strlen(s);
                   1954:   for(i=0; i<= lg; i++) {
1.234     brouard  1955:     if  (s[i] == occ ) j++;
1.126     brouard  1956:   }
                   1957:   return j;
                   1958: }
                   1959: 
1.349     brouard  1960: int nboccstr(char *textin, char *chain)
                   1961: {
                   1962:   /* Counts the number of occurence of "chain"  in string textin */
                   1963:   /*  in="+V7*V4+age*V2+age*V3+age*V4"  chain="age" */
                   1964:   char *strloc;
                   1965:   
                   1966:   int i,j=0;
                   1967: 
                   1968:   i=0;
                   1969: 
                   1970:   strloc=textin; /* strloc points to "^+V7*V4+age+..." in textin */
                   1971:   for(;;) {
                   1972:     strloc= strstr(strloc,chain); /* strloc points to first character of chain in textin if found. Example strloc points^ to "+V7*V4+^age" in textin  */
                   1973:     if(strloc != NULL){
                   1974:       strloc = strloc+strlen(chain); /* strloc points to "+V7*V4+age^" in textin */
                   1975:       j++;
                   1976:     }else
                   1977:       break;
                   1978:   }
                   1979:   return j;
                   1980:   
                   1981: }
1.137     brouard  1982: /* void cutv(char *u,char *v, char*t, char occ) */
                   1983: /* { */
                   1984: /*   /\* cuts string t into u and v where u ends before last occurence of char 'occ'  */
                   1985: /*      and v starts after last occurence of char 'occ' : ex cutv(u,v,"abcdef2ghi2j",'2') */
                   1986: /*      gives u="abcdef2ghi" and v="j" *\/ */
                   1987: /*   int i,lg,j,p=0; */
                   1988: /*   i=0; */
                   1989: /*   lg=strlen(t); */
                   1990: /*   for(j=0; j<=lg-1; j++) { */
                   1991: /*     if((t[j]!= occ) && (t[j+1]== occ)) p=j+1; */
                   1992: /*   } */
1.126     brouard  1993: 
1.137     brouard  1994: /*   for(j=0; j<p; j++) { */
                   1995: /*     (u[j] = t[j]); */
                   1996: /*   } */
                   1997: /*      u[p]='\0'; */
1.126     brouard  1998: 
1.137     brouard  1999: /*    for(j=0; j<= lg; j++) { */
                   2000: /*     if (j>=(p+1))(v[j-p-1] = t[j]); */
                   2001: /*   } */
                   2002: /* } */
1.126     brouard  2003: 
1.160     brouard  2004: #ifdef _WIN32
                   2005: char * strsep(char **pp, const char *delim)
                   2006: {
                   2007:   char *p, *q;
                   2008:          
                   2009:   if ((p = *pp) == NULL)
                   2010:     return 0;
                   2011:   if ((q = strpbrk (p, delim)) != NULL)
                   2012:   {
                   2013:     *pp = q + 1;
                   2014:     *q = '\0';
                   2015:   }
                   2016:   else
                   2017:     *pp = 0;
                   2018:   return p;
                   2019: }
                   2020: #endif
                   2021: 
1.126     brouard  2022: /********************** nrerror ********************/
                   2023: 
                   2024: void nrerror(char error_text[])
                   2025: {
                   2026:   fprintf(stderr,"ERREUR ...\n");
                   2027:   fprintf(stderr,"%s\n",error_text);
                   2028:   exit(EXIT_FAILURE);
                   2029: }
                   2030: /*********************** vector *******************/
                   2031: double *vector(int nl, int nh)
                   2032: {
                   2033:   double *v;
                   2034:   v=(double *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(double)));
                   2035:   if (!v) nrerror("allocation failure in vector");
                   2036:   return v-nl+NR_END;
                   2037: }
                   2038: 
                   2039: /************************ free vector ******************/
                   2040: void free_vector(double*v, int nl, int nh)
                   2041: {
                   2042:   free((FREE_ARG)(v+nl-NR_END));
                   2043: }
                   2044: 
                   2045: /************************ivector *******************************/
                   2046: int *ivector(long nl,long nh)
                   2047: {
                   2048:   int *v;
                   2049:   v=(int *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(int)));
                   2050:   if (!v) nrerror("allocation failure in ivector");
                   2051:   return v-nl+NR_END;
                   2052: }
                   2053: 
                   2054: /******************free ivector **************************/
                   2055: void free_ivector(int *v, long nl, long nh)
                   2056: {
                   2057:   free((FREE_ARG)(v+nl-NR_END));
                   2058: }
                   2059: 
                   2060: /************************lvector *******************************/
                   2061: long *lvector(long nl,long nh)
                   2062: {
                   2063:   long *v;
                   2064:   v=(long *) malloc((size_t)((nh-nl+1+NR_END)*sizeof(long)));
                   2065:   if (!v) nrerror("allocation failure in ivector");
                   2066:   return v-nl+NR_END;
                   2067: }
                   2068: 
                   2069: /******************free lvector **************************/
                   2070: void free_lvector(long *v, long nl, long nh)
                   2071: {
                   2072:   free((FREE_ARG)(v+nl-NR_END));
                   2073: }
                   2074: 
                   2075: /******************* imatrix *******************************/
                   2076: int **imatrix(long nrl, long nrh, long ncl, long nch) 
                   2077:      /* allocate a int matrix with subscript range m[nrl..nrh][ncl..nch] */ 
                   2078: { 
                   2079:   long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
                   2080:   int **m; 
                   2081:   
                   2082:   /* allocate pointers to rows */ 
                   2083:   m=(int **) malloc((size_t)((nrow+NR_END)*sizeof(int*))); 
                   2084:   if (!m) nrerror("allocation failure 1 in matrix()"); 
                   2085:   m += NR_END; 
                   2086:   m -= nrl; 
                   2087:   
                   2088:   
                   2089:   /* allocate rows and set pointers to them */ 
                   2090:   m[nrl]=(int *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(int))); 
                   2091:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
                   2092:   m[nrl] += NR_END; 
                   2093:   m[nrl] -= ncl; 
                   2094:   
                   2095:   for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
                   2096:   
                   2097:   /* return pointer to array of pointers to rows */ 
                   2098:   return m; 
                   2099: } 
                   2100: 
                   2101: /****************** free_imatrix *************************/
                   2102: void free_imatrix(m,nrl,nrh,ncl,nch)
                   2103:       int **m;
                   2104:       long nch,ncl,nrh,nrl; 
                   2105:      /* free an int matrix allocated by imatrix() */ 
                   2106: { 
                   2107:   free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
                   2108:   free((FREE_ARG) (m+nrl-NR_END)); 
                   2109: } 
                   2110: 
                   2111: /******************* matrix *******************************/
                   2112: double **matrix(long nrl, long nrh, long ncl, long nch)
                   2113: {
                   2114:   long i, nrow=nrh-nrl+1, ncol=nch-ncl+1;
                   2115:   double **m;
                   2116: 
                   2117:   m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   2118:   if (!m) nrerror("allocation failure 1 in matrix()");
                   2119:   m += NR_END;
                   2120:   m -= nrl;
                   2121: 
                   2122:   m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   2123:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   2124:   m[nrl] += NR_END;
                   2125:   m[nrl] -= ncl;
                   2126: 
                   2127:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   2128:   return m;
1.145     brouard  2129:   /* print *(*(m+1)+70) or print m[1][70]; print m+1 or print &(m[1]) or &(m[1][0])
                   2130: m[i] = address of ith row of the table. &(m[i]) is its value which is another adress
                   2131: that of m[i][0]. In order to get the value p m[i][0] but it is unitialized.
1.126     brouard  2132:    */
                   2133: }
                   2134: 
                   2135: /*************************free matrix ************************/
                   2136: void free_matrix(double **m, long nrl, long nrh, long ncl, long nch)
                   2137: {
                   2138:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   2139:   free((FREE_ARG)(m+nrl-NR_END));
                   2140: }
                   2141: 
                   2142: /******************* ma3x *******************************/
                   2143: double ***ma3x(long nrl, long nrh, long ncl, long nch, long nll, long nlh)
                   2144: {
                   2145:   long i, j, nrow=nrh-nrl+1, ncol=nch-ncl+1, nlay=nlh-nll+1;
                   2146:   double ***m;
                   2147: 
                   2148:   m=(double ***) malloc((size_t)((nrow+NR_END)*sizeof(double*)));
                   2149:   if (!m) nrerror("allocation failure 1 in matrix()");
                   2150:   m += NR_END;
                   2151:   m -= nrl;
                   2152: 
                   2153:   m[nrl]=(double **) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double)));
                   2154:   if (!m[nrl]) nrerror("allocation failure 2 in matrix()");
                   2155:   m[nrl] += NR_END;
                   2156:   m[nrl] -= ncl;
                   2157: 
                   2158:   for (i=nrl+1; i<=nrh; i++) m[i]=m[i-1]+ncol;
                   2159: 
                   2160:   m[nrl][ncl]=(double *) malloc((size_t)((nrow*ncol*nlay+NR_END)*sizeof(double)));
                   2161:   if (!m[nrl][ncl]) nrerror("allocation failure 3 in matrix()");
                   2162:   m[nrl][ncl] += NR_END;
                   2163:   m[nrl][ncl] -= nll;
                   2164:   for (j=ncl+1; j<=nch; j++) 
                   2165:     m[nrl][j]=m[nrl][j-1]+nlay;
                   2166:   
                   2167:   for (i=nrl+1; i<=nrh; i++) {
                   2168:     m[i][ncl]=m[i-1l][ncl]+ncol*nlay;
                   2169:     for (j=ncl+1; j<=nch; j++) 
                   2170:       m[i][j]=m[i][j-1]+nlay;
                   2171:   }
                   2172:   return m; 
                   2173:   /*  gdb: p *(m+1) <=> p m[1] and p (m+1) <=> p (m+1) <=> p &(m[1])
                   2174:            &(m[i][j][k]) <=> *((*(m+i) + j)+k)
                   2175:   */
                   2176: }
                   2177: 
                   2178: /*************************free ma3x ************************/
                   2179: void free_ma3x(double ***m, long nrl, long nrh, long ncl, long nch,long nll, long nlh)
                   2180: {
                   2181:   free((FREE_ARG)(m[nrl][ncl]+ nll-NR_END));
                   2182:   free((FREE_ARG)(m[nrl]+ncl-NR_END));
                   2183:   free((FREE_ARG)(m+nrl-NR_END));
                   2184: }
                   2185: 
                   2186: /*************** function subdirf ***********/
                   2187: char *subdirf(char fileres[])
                   2188: {
                   2189:   /* Caution optionfilefiname is hidden */
                   2190:   strcpy(tmpout,optionfilefiname);
                   2191:   strcat(tmpout,"/"); /* Add to the right */
                   2192:   strcat(tmpout,fileres);
                   2193:   return tmpout;
                   2194: }
                   2195: 
                   2196: /*************** function subdirf2 ***********/
                   2197: char *subdirf2(char fileres[], char *preop)
                   2198: {
1.314     brouard  2199:   /* Example subdirf2(optionfilefiname,"FB_") with optionfilefiname="texte", result="texte/FB_texte"
                   2200:  Errors in subdirf, 2, 3 while printing tmpout is
1.315     brouard  2201:  rewritten within the same printf. Workaround: many printfs */
1.126     brouard  2202:   /* Caution optionfilefiname is hidden */
                   2203:   strcpy(tmpout,optionfilefiname);
                   2204:   strcat(tmpout,"/");
                   2205:   strcat(tmpout,preop);
                   2206:   strcat(tmpout,fileres);
                   2207:   return tmpout;
                   2208: }
                   2209: 
                   2210: /*************** function subdirf3 ***********/
                   2211: char *subdirf3(char fileres[], char *preop, char *preop2)
                   2212: {
                   2213:   
                   2214:   /* Caution optionfilefiname is hidden */
                   2215:   strcpy(tmpout,optionfilefiname);
                   2216:   strcat(tmpout,"/");
                   2217:   strcat(tmpout,preop);
                   2218:   strcat(tmpout,preop2);
                   2219:   strcat(tmpout,fileres);
                   2220:   return tmpout;
                   2221: }
1.213     brouard  2222:  
                   2223: /*************** function subdirfext ***********/
                   2224: char *subdirfext(char fileres[], char *preop, char *postop)
                   2225: {
                   2226:   
                   2227:   strcpy(tmpout,preop);
                   2228:   strcat(tmpout,fileres);
                   2229:   strcat(tmpout,postop);
                   2230:   return tmpout;
                   2231: }
1.126     brouard  2232: 
1.213     brouard  2233: /*************** function subdirfext3 ***********/
                   2234: char *subdirfext3(char fileres[], char *preop, char *postop)
                   2235: {
                   2236:   
                   2237:   /* Caution optionfilefiname is hidden */
                   2238:   strcpy(tmpout,optionfilefiname);
                   2239:   strcat(tmpout,"/");
                   2240:   strcat(tmpout,preop);
                   2241:   strcat(tmpout,fileres);
                   2242:   strcat(tmpout,postop);
                   2243:   return tmpout;
                   2244: }
                   2245:  
1.162     brouard  2246: char *asc_diff_time(long time_sec, char ascdiff[])
                   2247: {
                   2248:   long sec_left, days, hours, minutes;
                   2249:   days = (time_sec) / (60*60*24);
                   2250:   sec_left = (time_sec) % (60*60*24);
                   2251:   hours = (sec_left) / (60*60) ;
                   2252:   sec_left = (sec_left) %(60*60);
                   2253:   minutes = (sec_left) /60;
                   2254:   sec_left = (sec_left) % (60);
                   2255:   sprintf(ascdiff,"%ld day(s) %ld hour(s) %ld minute(s) %ld second(s)",days, hours, minutes, sec_left);  
                   2256:   return ascdiff;
                   2257: }
                   2258: 
1.126     brouard  2259: /***************** f1dim *************************/
                   2260: extern int ncom; 
                   2261: extern double *pcom,*xicom;
                   2262: extern double (*nrfunc)(double []); 
                   2263:  
                   2264: double f1dim(double x) 
                   2265: { 
                   2266:   int j; 
                   2267:   double f;
                   2268:   double *xt; 
                   2269:  
                   2270:   xt=vector(1,ncom); 
                   2271:   for (j=1;j<=ncom;j++) xt[j]=pcom[j]+x*xicom[j]; 
                   2272:   f=(*nrfunc)(xt); 
                   2273:   free_vector(xt,1,ncom); 
                   2274:   return f; 
                   2275: } 
                   2276: 
                   2277: /*****************brent *************************/
                   2278: double brent(double ax, double bx, double cx, double (*f)(double), double tol,         double *xmin) 
1.187     brouard  2279: {
                   2280:   /* Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx is
                   2281:    * between ax and cx, and f(bx) is less than both f(ax) and f(cx) ), this routine isolates
                   2282:    * the minimum to a fractional precision of about tol using Brent’s method. The abscissa of
                   2283:    * the minimum is returned as xmin, and the minimum function value is returned as brent , the
                   2284:    * returned function value. 
                   2285:   */
1.126     brouard  2286:   int iter; 
                   2287:   double a,b,d,etemp;
1.159     brouard  2288:   double fu=0,fv,fw,fx;
1.164     brouard  2289:   double ftemp=0.;
1.126     brouard  2290:   double p,q,r,tol1,tol2,u,v,w,x,xm; 
                   2291:   double e=0.0; 
                   2292:  
                   2293:   a=(ax < cx ? ax : cx); 
                   2294:   b=(ax > cx ? ax : cx); 
                   2295:   x=w=v=bx; 
                   2296:   fw=fv=fx=(*f)(x); 
                   2297:   for (iter=1;iter<=ITMAX;iter++) { 
                   2298:     xm=0.5*(a+b); 
                   2299:     tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
                   2300:     /*         if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret)))*/
                   2301:     printf(".");fflush(stdout);
                   2302:     fprintf(ficlog,".");fflush(ficlog);
1.162     brouard  2303: #ifdef DEBUGBRENT
1.126     brouard  2304:     printf("br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   2305:     fprintf(ficlog,"br %d,x=%.10e xm=%.10e b=%.10e a=%.10e tol=%.10e tol1=%.10e tol2=%.10e x-xm=%.10e fx=%.12e fu=%.12e,fw=%.12e,ftemp=%.12e,ftol=%.12e\n",iter,x,xm,b,a,tol,tol1,tol2,(x-xm),fx,fu,fw,ftemp,ftol);
                   2306:     /*         if ((fabs(x-xm) <= (tol2-0.5*(b-a)))||(2.0*fabs(fu-ftemp) <= ftol*1.e-2*(fabs(fu)+fabs(ftemp)))) { */
                   2307: #endif
                   2308:     if (fabs(x-xm) <= (tol2-0.5*(b-a))){ 
                   2309:       *xmin=x; 
                   2310:       return fx; 
                   2311:     } 
                   2312:     ftemp=fu;
                   2313:     if (fabs(e) > tol1) { 
                   2314:       r=(x-w)*(fx-fv); 
                   2315:       q=(x-v)*(fx-fw); 
                   2316:       p=(x-v)*q-(x-w)*r; 
                   2317:       q=2.0*(q-r); 
                   2318:       if (q > 0.0) p = -p; 
                   2319:       q=fabs(q); 
                   2320:       etemp=e; 
                   2321:       e=d; 
                   2322:       if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
1.224     brouard  2323:                                d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
1.126     brouard  2324:       else { 
1.224     brouard  2325:                                d=p/q; 
                   2326:                                u=x+d; 
                   2327:                                if (u-a < tol2 || b-u < tol2) 
                   2328:                                        d=SIGN(tol1,xm-x); 
1.126     brouard  2329:       } 
                   2330:     } else { 
                   2331:       d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
                   2332:     } 
                   2333:     u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
                   2334:     fu=(*f)(u); 
                   2335:     if (fu <= fx) { 
                   2336:       if (u >= x) a=x; else b=x; 
                   2337:       SHFT(v,w,x,u) 
1.183     brouard  2338:       SHFT(fv,fw,fx,fu) 
                   2339:     } else { 
                   2340:       if (u < x) a=u; else b=u; 
                   2341:       if (fu <= fw || w == x) { 
1.224     brouard  2342:                                v=w; 
                   2343:                                w=u; 
                   2344:                                fv=fw; 
                   2345:                                fw=fu; 
1.183     brouard  2346:       } else if (fu <= fv || v == x || v == w) { 
1.224     brouard  2347:                                v=u; 
                   2348:                                fv=fu; 
1.183     brouard  2349:       } 
                   2350:     } 
1.126     brouard  2351:   } 
                   2352:   nrerror("Too many iterations in brent"); 
                   2353:   *xmin=x; 
                   2354:   return fx; 
                   2355: } 
                   2356: 
                   2357: /****************** mnbrak ***********************/
                   2358: 
                   2359: void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
                   2360:            double (*func)(double)) 
1.183     brouard  2361: { /* Given a function func , and given distinct initial points ax and bx , this routine searches in
                   2362: the downhill direction (defined by the function as evaluated at the initial points) and returns
                   2363: new points ax , bx , cx that bracket a minimum of the function. Also returned are the function
                   2364: values at the three points, fa, fb , and fc such that fa > fb and fb < fc.
                   2365:    */
1.126     brouard  2366:   double ulim,u,r,q, dum;
                   2367:   double fu; 
1.187     brouard  2368: 
                   2369:   double scale=10.;
                   2370:   int iterscale=0;
                   2371: 
                   2372:   *fa=(*func)(*ax); /*  xta[j]=pcom[j]+(*ax)*xicom[j]; fa=f(xta[j])*/
                   2373:   *fb=(*func)(*bx); /*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) */
                   2374: 
                   2375: 
                   2376:   /* while(*fb != *fb){ /\* *ax should be ok, reducing distance to *ax *\/ */
                   2377:   /*   printf("Warning mnbrak *fb = %lf, *bx=%lf *ax=%lf *fa==%lf iter=%d\n",*fb, *bx, *ax, *fa, iterscale++); */
                   2378:   /*   *bx = *ax - (*ax - *bx)/scale; */
                   2379:   /*   *fb=(*func)(*bx);  /\*  xtb[j]=pcom[j]+(*bx)*xicom[j]; fb=f(xtb[j]) *\/ */
                   2380:   /* } */
                   2381: 
1.126     brouard  2382:   if (*fb > *fa) { 
                   2383:     SHFT(dum,*ax,*bx,dum) 
1.183     brouard  2384:     SHFT(dum,*fb,*fa,dum) 
                   2385:   } 
1.126     brouard  2386:   *cx=(*bx)+GOLD*(*bx-*ax); 
                   2387:   *fc=(*func)(*cx); 
1.183     brouard  2388: #ifdef DEBUG
1.224     brouard  2389:   printf("mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
                   2390:   fprintf(ficlog,"mnbrak0 a=%lf *fa=%lf, b=%lf *fb=%lf, c=%lf *fc=%lf\n",*ax,*fa,*bx,*fb,*cx, *fc);
1.183     brouard  2391: #endif
1.224     brouard  2392:   while (*fb > *fc) { /* Declining a,b,c with fa> fb > fc. If fc=inf it exits and if flat fb=fc it exits too.*/
1.126     brouard  2393:     r=(*bx-*ax)*(*fb-*fc); 
1.224     brouard  2394:     q=(*bx-*cx)*(*fb-*fa); /* What if fa=inf */
1.126     brouard  2395:     u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/ 
1.183     brouard  2396:       (2.0*SIGN(FMAX(fabs(q-r),TINY),q-r)); /* Minimum abscissa of a parabolic estimated from (a,fa), (b,fb) and (c,fc). */
                   2397:     ulim=(*bx)+GLIMIT*(*cx-*bx); /* Maximum abscissa where function should be evaluated */
                   2398:     if ((*bx-u)*(u-*cx) > 0.0) { /* if u_p is between b and c */
1.126     brouard  2399:       fu=(*func)(u); 
1.163     brouard  2400: #ifdef DEBUG
                   2401:       /* f(x)=A(x-u)**2+f(u) */
                   2402:       double A, fparabu; 
                   2403:       A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   2404:       fparabu= *fa - A*(*ax-u)*(*ax-u);
1.224     brouard  2405:       printf("\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
                   2406:       fprintf(ficlog,"\nmnbrak (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf),  (*u=%.12f, fu=%.12lf, fparabu=%.12f, q=%lf < %lf=r)\n",*ax,*fa,*bx,*fb,*cx,*fc,u,fu, fparabu,q,r);
1.183     brouard  2407:       /* And thus,it can be that fu > *fc even if fparabu < *fc */
                   2408:       /* mnbrak (*ax=7.666299858533, *fa=299039.693133272231), (*bx=8.595447774979, *fb=298976.598289369489),
                   2409:         (*cx=10.098840694817, *fc=298946.631474258087),  (*u=9.852501168332, fu=298948.773013752128, fparabu=298945.434711494134) */
                   2410:       /* In that case, there is no bracket in the output! Routine is wrong with many consequences.*/
1.163     brouard  2411: #endif 
1.184     brouard  2412: #ifdef MNBRAKORIGINAL
1.183     brouard  2413: #else
1.191     brouard  2414: /*       if (fu > *fc) { */
                   2415: /* #ifdef DEBUG */
                   2416: /*       printf("mnbrak4  fu > fc \n"); */
                   2417: /*       fprintf(ficlog, "mnbrak4 fu > fc\n"); */
                   2418: /* #endif */
                   2419: /*     /\* SHFT(u,*cx,*cx,u) /\\* ie a=c, c=u and u=c; in that case, next SHFT(a,b,c,u) will give a=b=b, b=c=u, c=u=c and *\\/  *\/ */
                   2420: /*     /\* SHFT(*fa,*fc,fu,*fc) /\\* (b, u, c) is a bracket while test fb > fc will be fu > fc  will exit *\\/ *\/ */
                   2421: /*     dum=u; /\* Shifting c and u *\/ */
                   2422: /*     u = *cx; */
                   2423: /*     *cx = dum; */
                   2424: /*     dum = fu; */
                   2425: /*     fu = *fc; */
                   2426: /*     *fc =dum; */
                   2427: /*       } else { /\* end *\/ */
                   2428: /* #ifdef DEBUG */
                   2429: /*       printf("mnbrak3  fu < fc \n"); */
                   2430: /*       fprintf(ficlog, "mnbrak3 fu < fc\n"); */
                   2431: /* #endif */
                   2432: /*     dum=u; /\* Shifting c and u *\/ */
                   2433: /*     u = *cx; */
                   2434: /*     *cx = dum; */
                   2435: /*     dum = fu; */
                   2436: /*     fu = *fc; */
                   2437: /*     *fc =dum; */
                   2438: /*       } */
1.224     brouard  2439: #ifdef DEBUGMNBRAK
                   2440:                 double A, fparabu; 
                   2441:      A= (*fb - *fa)/(*bx-*ax)/(*bx+*ax-2*u);
                   2442:      fparabu= *fa - A*(*ax-u)*(*ax-u);
                   2443:      printf("\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
                   2444:      fprintf(ficlog,"\nmnbrak35 ax=%lf fa=%lf bx=%lf fb=%lf, u=%lf fp=%lf fu=%lf < or >= fc=%lf cx=%lf, q=%lf < %lf=r \n",*ax, *fa, *bx,*fb,u,fparabu,fu,*fc,*cx,q,r);
1.183     brouard  2445: #endif
1.191     brouard  2446:       dum=u; /* Shifting c and u */
                   2447:       u = *cx;
                   2448:       *cx = dum;
                   2449:       dum = fu;
                   2450:       fu = *fc;
                   2451:       *fc =dum;
1.183     brouard  2452: #endif
1.162     brouard  2453:     } else if ((*cx-u)*(u-ulim) > 0.0) { /* u is after c but before ulim */
1.183     brouard  2454: #ifdef DEBUG
1.224     brouard  2455:       printf("\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
                   2456:       fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim\n",u,*cx);
1.183     brouard  2457: #endif
1.126     brouard  2458:       fu=(*func)(u); 
                   2459:       if (fu < *fc) { 
1.183     brouard  2460: #ifdef DEBUG
1.224     brouard  2461:                                printf("\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
                   2462:                          fprintf(ficlog,"\nmnbrak2  u=%lf after c=%lf but before ulim=%lf AND fu=%lf < %lf=fc\n",u,*cx,ulim,fu, *fc);
                   2463: #endif
                   2464:                          SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
                   2465:                                SHFT(*fb,*fc,fu,(*func)(u)) 
                   2466: #ifdef DEBUG
                   2467:                                        printf("\nmnbrak2 shift GOLD c=%lf",*cx+GOLD*(*cx-*bx));
1.183     brouard  2468: #endif
                   2469:       } 
1.162     brouard  2470:     } else if ((u-ulim)*(ulim-*cx) >= 0.0) { /* u outside ulim (verifying that ulim is beyond c) */
1.183     brouard  2471: #ifdef DEBUG
1.224     brouard  2472:       printf("\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
                   2473:       fprintf(ficlog,"\nmnbrak2  u=%lf outside ulim=%lf (verifying that ulim is beyond c=%lf)\n",u,ulim,*cx);
1.183     brouard  2474: #endif
1.126     brouard  2475:       u=ulim; 
                   2476:       fu=(*func)(u); 
1.183     brouard  2477:     } else { /* u could be left to b (if r > q parabola has a maximum) */
                   2478: #ifdef DEBUG
1.224     brouard  2479:       printf("\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
                   2480:       fprintf(ficlog,"\nmnbrak2  u=%lf could be left to b=%lf (if r=%lf > q=%lf parabola has a maximum)\n",u,*bx,r,q);
1.183     brouard  2481: #endif
1.126     brouard  2482:       u=(*cx)+GOLD*(*cx-*bx); 
                   2483:       fu=(*func)(u); 
1.224     brouard  2484: #ifdef DEBUG
                   2485:       printf("\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
                   2486:       fprintf(ficlog,"\nmnbrak2 new u=%lf fu=%lf shifted gold left from c=%lf and b=%lf \n",u,fu,*cx,*bx);
                   2487: #endif
1.183     brouard  2488:     } /* end tests */
1.126     brouard  2489:     SHFT(*ax,*bx,*cx,u) 
1.183     brouard  2490:     SHFT(*fa,*fb,*fc,fu) 
                   2491: #ifdef DEBUG
1.224     brouard  2492:       printf("\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
                   2493:       fprintf(ficlog, "\nmnbrak2 shift (*ax=%.12f, *fa=%.12lf), (*bx=%.12f, *fb=%.12lf), (*cx=%.12f, *fc=%.12lf)\n",*ax,*fa,*bx,*fb,*cx,*fc);
1.183     brouard  2494: #endif
                   2495:   } /* end while; ie return (a, b, c, fa, fb, fc) such that a < b < c with f(a) > f(b) and fb < f(c) */
1.126     brouard  2496: } 
                   2497: 
                   2498: /*************** linmin ************************/
1.162     brouard  2499: /* Given an n -dimensional point p[1..n] and an n -dimensional direction xi[1..n] , moves and
                   2500: resets p to where the function func(p) takes on a minimum along the direction xi from p ,
                   2501: and replaces xi by the actual vector displacement that p was moved. Also returns as fret
                   2502: the value of func at the returned location p . This is actually all accomplished by calling the
                   2503: routines mnbrak and brent .*/
1.126     brouard  2504: int ncom; 
                   2505: double *pcom,*xicom;
                   2506: double (*nrfunc)(double []); 
                   2507:  
1.224     brouard  2508: #ifdef LINMINORIGINAL
1.126     brouard  2509: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double [])) 
1.224     brouard  2510: #else
                   2511: void linmin(double p[], double xi[], int n, double *fret,double (*func)(double []), int *flat) 
                   2512: #endif
1.126     brouard  2513: { 
                   2514:   double brent(double ax, double bx, double cx, 
                   2515:               double (*f)(double), double tol, double *xmin); 
                   2516:   double f1dim(double x); 
                   2517:   void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, 
                   2518:              double *fc, double (*func)(double)); 
                   2519:   int j; 
                   2520:   double xx,xmin,bx,ax; 
                   2521:   double fx,fb,fa;
1.187     brouard  2522: 
1.203     brouard  2523: #ifdef LINMINORIGINAL
                   2524: #else
                   2525:   double scale=10., axs, xxs; /* Scale added for infinity */
                   2526: #endif
                   2527:   
1.126     brouard  2528:   ncom=n; 
                   2529:   pcom=vector(1,n); 
                   2530:   xicom=vector(1,n); 
                   2531:   nrfunc=func; 
                   2532:   for (j=1;j<=n;j++) { 
                   2533:     pcom[j]=p[j]; 
1.202     brouard  2534:     xicom[j]=xi[j]; /* Former scale xi[j] of currrent direction i */
1.126     brouard  2535:   } 
1.187     brouard  2536: 
1.203     brouard  2537: #ifdef LINMINORIGINAL
                   2538:   xx=1.;
                   2539: #else
                   2540:   axs=0.0;
                   2541:   xxs=1.;
                   2542:   do{
                   2543:     xx= xxs;
                   2544: #endif
1.187     brouard  2545:     ax=0.;
                   2546:     mnbrak(&ax,&xx,&bx,&fa,&fx,&fb,f1dim);  /* Outputs: xtx[j]=pcom[j]+(*xx)*xicom[j]; fx=f(xtx[j]) */
                   2547:     /* brackets with inputs ax=0 and xx=1, but points, pcom=p, and directions values, xicom=xi, are sent via f1dim(x) */
                   2548:     /* xt[x,j]=pcom[j]+x*xicom[j]  f(ax) = f(xt(a,j=1,n)) = f(p(j) + 0 * xi(j)) and  f(xx) = f(xt(x, j=1,n)) = f(p(j) + 1 * xi(j))   */
                   2549:     /* Outputs: fa=f(p(j)) and fx=f(p(j) + xxs * xi(j) ) and f(bx)= f(p(j)+ bx* xi(j)) */
                   2550:     /* Given input ax=axs and xx=xxs, xx might be too far from ax to get a finite f(xx) */
                   2551:     /* Searches on line, outputs (ax, xx, bx) such that fx < min(fa and fb) */
                   2552:     /* Find a bracket a,x,b in direction n=xi ie xicom, order may change. Scale is [0:xxs*xi[j]] et non plus  [0:xi[j]]*/
1.203     brouard  2553: #ifdef LINMINORIGINAL
                   2554: #else
                   2555:     if (fx != fx){
1.224     brouard  2556:                        xxs=xxs/scale; /* Trying a smaller xx, closer to initial ax=0 */
                   2557:                        printf("|");
                   2558:                        fprintf(ficlog,"|");
1.203     brouard  2559: #ifdef DEBUGLINMIN
1.224     brouard  2560:                        printf("\nLinmin NAN : input [axs=%lf:xxs=%lf], mnbrak outputs fx=%lf <(fb=%lf and fa=%lf) with xx=%lf in [ax=%lf:bx=%lf] \n",  axs, xxs, fx,fb, fa, xx, ax, bx);
1.203     brouard  2561: #endif
                   2562:     }
1.224     brouard  2563:   }while(fx != fx && xxs > 1.e-5);
1.203     brouard  2564: #endif
                   2565:   
1.191     brouard  2566: #ifdef DEBUGLINMIN
                   2567:   printf("\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
1.202     brouard  2568:   fprintf(ficlog,"\nLinmin after mnbrak: ax=%12.7f xx=%12.7f bx=%12.7f fa=%12.2f fx=%12.2f fb=%12.2f\n",  ax,xx,bx,fa,fx,fb);
1.191     brouard  2569: #endif
1.224     brouard  2570: #ifdef LINMINORIGINAL
                   2571: #else
1.317     brouard  2572:   if(fb == fx){ /* Flat function in the direction */
                   2573:     xmin=xx;
1.224     brouard  2574:     *flat=1;
1.317     brouard  2575:   }else{
1.224     brouard  2576:     *flat=0;
                   2577: #endif
                   2578:                /*Flat mnbrak2 shift (*ax=0.000000000000, *fa=51626.272983130431), (*bx=-1.618034000000, *fb=51590.149499362531), (*cx=-4.236068025156, *fc=51590.149499362531) */
1.187     brouard  2579:   *fret=brent(ax,xx,bx,f1dim,TOL,&xmin); /* Giving a bracketting triplet (ax, xx, bx), find a minimum, xmin, according to f1dim, *fret(xmin),*/
                   2580:   /* fa = f(p[j] + ax * xi[j]), fx = f(p[j] + xx * xi[j]), fb = f(p[j] + bx * xi[j]) */
                   2581:   /* fmin = f(p[j] + xmin * xi[j]) */
                   2582:   /* P+lambda n in that direction (lambdamin), with TOL between abscisses */
                   2583:   /* f1dim(xmin): for (j=1;j<=ncom;j++) xt[j]=pcom[j]+xmin*xicom[j]; */
1.126     brouard  2584: #ifdef DEBUG
1.224     brouard  2585:   printf("retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
                   2586:   fprintf(ficlog,"retour brent from bracket (a=%lf fa=%lf, xx=%lf fx=%lf, b=%lf fb=%lf): fret=%lf xmin=%lf\n",ax,fa,xx,fx,bx,fb,*fret,xmin);
                   2587: #endif
                   2588: #ifdef LINMINORIGINAL
                   2589: #else
                   2590:                        }
1.126     brouard  2591: #endif
1.191     brouard  2592: #ifdef DEBUGLINMIN
                   2593:   printf("linmin end ");
1.202     brouard  2594:   fprintf(ficlog,"linmin end ");
1.191     brouard  2595: #endif
1.126     brouard  2596:   for (j=1;j<=n;j++) { 
1.203     brouard  2597: #ifdef LINMINORIGINAL
                   2598:     xi[j] *= xmin; 
                   2599: #else
                   2600: #ifdef DEBUGLINMIN
                   2601:     if(xxs <1.0)
                   2602:       printf(" before xi[%d]=%12.8f", j,xi[j]);
                   2603: #endif
                   2604:     xi[j] *= xmin*xxs; /* xi rescaled by xmin and number of loops: if xmin=-1.237 and xi=(1,0,...,0) xi=(-1.237,0,...,0) */
                   2605: #ifdef DEBUGLINMIN
                   2606:     if(xxs <1.0)
                   2607:       printf(" after xi[%d]=%12.8f, xmin=%12.8f, ax=%12.8f, xx=%12.8f, bx=%12.8f, xxs=%12.8f", j,xi[j], xmin, ax, xx, bx,xxs );
                   2608: #endif
                   2609: #endif
1.187     brouard  2610:     p[j] += xi[j]; /* Parameters values are updated accordingly */
1.126     brouard  2611:   } 
1.191     brouard  2612: #ifdef DEBUGLINMIN
1.203     brouard  2613:   printf("\n");
1.191     brouard  2614:   printf("Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
1.202     brouard  2615:   fprintf(ficlog,"Comparing last *frec(xmin=%12.8f)=%12.8f from Brent and frec(0.)=%12.8f \n", xmin, *fret, (*func)(p));
1.191     brouard  2616:   for (j=1;j<=n;j++) { 
1.202     brouard  2617:     printf(" xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
                   2618:     fprintf(ficlog," xi[%d]= %14.10f p[%d]= %12.7f",j,xi[j],j,p[j]);
                   2619:     if(j % ncovmodel == 0){
1.191     brouard  2620:       printf("\n");
1.202     brouard  2621:       fprintf(ficlog,"\n");
                   2622:     }
1.191     brouard  2623:   }
1.203     brouard  2624: #else
1.191     brouard  2625: #endif
1.126     brouard  2626:   free_vector(xicom,1,n); 
                   2627:   free_vector(pcom,1,n); 
                   2628: } 
                   2629: 
1.359   ! brouard  2630: /**** praxis gegen ****/
        !          2631: 
        !          2632: /* This has been tested by Visual C from Microsoft and works */
        !          2633: /* meaning tha valgrind could be wrong */
        !          2634: /*********************************************************************/
        !          2635: /*     f u n c t i o n     p r a x i s                              */
        !          2636: /*                                                                   */
        !          2637: /* praxis is a general purpose routine for the minimization of a     */
        !          2638: /* function in several variables. the algorithm used is a modifi-    */
        !          2639: /* cation of conjugate gradient search method by powell. the changes */
        !          2640: /* are due to r.p. brent, who gives an algol-w program, which served */
        !          2641: /* as a basis for this function.                                     */
        !          2642: /*                                                                   */
        !          2643: /* references:                                                       */
        !          2644: /*     - powell, m.j.d., 1964. an efficient method for finding       */
        !          2645: /*       the minimum of a function in several variables without      */
        !          2646: /*       calculating derivatives, computer journal, 7, 155-162       */
        !          2647: /*     - brent, r.p., 1973. algorithms for minimization without      */
        !          2648: /*       derivatives, prentice hall, englewood cliffs.               */
        !          2649: /*                                                                   */
        !          2650: /*     problems, suggestions or improvements are always wellcome     */
        !          2651: /*                       karl gegenfurtner   07/08/87                */
        !          2652: /*                                           c - version             */
        !          2653: /*********************************************************************/
        !          2654: /*                                                                   */
        !          2655: /* usage: min = praxis(tol, macheps, h, n, prin, x, func)      */
        !          2656: /* macheps has been suppressed because it is replaced by DBL_EPSILON */
        !          2657: /* and if it was an argument of praxis (as it is in original brent)  */
        !          2658: /* it should be declared external */
        !          2659: /* usage: min = praxis(tol, h, n, prin, x, func)      */
        !          2660: /* was    min = praxis(fun, x, n);                                   */
        !          2661: /*                                                                   */
        !          2662: /*  fun        the function to be minimized. fun is called from      */
        !          2663: /*             praxis with x and n as arguments                      */
        !          2664: /*  x          a double array containing the initial guesses for     */
        !          2665: /*             the minimum, which will contain the solution on       */
        !          2666: /*             return                                                */
        !          2667: /*  n          an integer specifying the number of unknown           */
        !          2668: /*             parameters                                            */
        !          2669: /*  min        praxis returns the least calculated value of fun      */
        !          2670: /*                                                                   */
        !          2671: /* some additional global variables control some more aspects of     */
        !          2672: /* the inner workings of praxis. setting them is optional, they      */
        !          2673: /* are all set to some reasonable default values given below.        */
        !          2674: /*                                                                   */
        !          2675: /*   prin      controls the printed output from the routine.         */
        !          2676: /*             0 -> no output                                        */
        !          2677: /*             1 -> print only starting and final values             */
        !          2678: /*             2 -> detailed map of the minimization process         */
        !          2679: /*             3 -> print also eigenvalues and vectors of the        */
        !          2680: /*                  search directions                                */
        !          2681: /*             the default value is 1                                */
        !          2682: /*  tol        is the tolerance allowed for the precision of the     */
        !          2683: /*             solution. praxis returns if the criterion             */
        !          2684: /*             2 * ||x[k]-x[k-1]|| <= sqrt(macheps) * ||x[k]|| + tol */
        !          2685: /*             is fulfilled more than ktm times.                     */
        !          2686: /*             the default value depends on the machine precision    */
        !          2687: /*  ktm        see just above. default is 1, and a value of 4 leads  */
        !          2688: /*             to a very(!) cautious stopping criterion.             */
        !          2689: /*  h0 or step       is a steplength parameter and should be set equal     */
        !          2690: /*             to the expected distance from the solution.           */
        !          2691: /*             exceptionally small or large values of step lead to   */
        !          2692: /*             slower convergence on the first few iterations        */
        !          2693: /*             the default value for step is 1.0                     */
        !          2694: /*  scbd       is a scaling parameter. 1.0 is the default and        */
        !          2695: /*             indicates no scaling. if the scales for the different */
        !          2696: /*             parameters are very different, scbd should be set to  */
        !          2697: /*             a value of about 10.0.                                */
        !          2698: /*  illc       should be set to true (1) if the problem is known to  */
        !          2699: /*             be ill-conditioned. the default is false (0). this    */
        !          2700: /*             variable is automatically set, when praxis finds      */
        !          2701: /*             the problem to be ill-conditioned during iterations.  */
        !          2702: /*  maxfun     is the maximum number of calls to fun allowed. praxis */
        !          2703: /*             will return after maxfun calls to fun even when the   */
        !          2704: /*             minimum is not yet found. the default value of 0      */
        !          2705: /*             indicates no limit on the number of calls.            */
        !          2706: /*             this return condition is only checked every n         */
        !          2707: /*             iterations.                                           */
        !          2708: /*                                                                   */
        !          2709: /*********************************************************************/
        !          2710: 
        !          2711: #include <math.h>
        !          2712: #include <stdio.h>
        !          2713: #include <stdlib.h>
        !          2714: #include <float.h> /* for DBL_EPSILON */
        !          2715: /* #include "machine.h" */
        !          2716: 
        !          2717: 
        !          2718: /* extern void minfit(int n, double eps, double tol, double **ab, double q[]); */
        !          2719: /* extern void minfit(int n, double eps, double tol, double ab[N][N], double q[]); */
        !          2720: /* control parameters */
        !          2721: /* control parameters */
        !          2722: #define SQREPSILON 1.0e-19
        !          2723: /* #define EPSILON 1.0e-8 */ /* in main */
        !          2724: 
        !          2725: double tol = SQREPSILON,
        !          2726:        scbd = 1.0,
        !          2727:        step = 1.0;
        !          2728: int    ktm = 1,
        !          2729:        /* prin = 2, */
        !          2730:        maxfun = 0,
        !          2731:        illc = 0;
        !          2732:        
        !          2733: /* some global variables */
        !          2734: static int i, j, k, k2, nl, nf, kl, kt;
        !          2735: /* static double s; */
        !          2736: double sl, dn, dmin,
        !          2737:        fx, f1, lds, ldt, sf, df,
        !          2738:        qf1, qd0, qd1, qa, qb, qc,
        !          2739:        m2, m4, small_windows, vsmall, large, 
        !          2740:        vlarge, ldfac, t2;
        !          2741: /* static double d[N], y[N], z[N], */
        !          2742: /*        q0[N], q1[N], v[N][N]; */
        !          2743: 
        !          2744: static double *d, *y, *z;
        !          2745: static double  *q0, *q1, **v;
        !          2746: double *tflin; /* used in flin: return (*fun)(tflin, n); */
        !          2747: double *e; /* used in minfit, don't konw how to free memory and thus made global */
        !          2748: /* static double s, sl, dn, dmin, */
        !          2749: /*        fx, f1, lds, ldt, sf, df, */
        !          2750: /*        qf1, qd0, qd1, qa, qb, qc, */
        !          2751: /*        m2, m4, small, vsmall, large,  */
        !          2752: /*        vlarge, ldfac, t2; */
        !          2753: /* static double d[N], y[N], z[N], */
        !          2754: /*        q0[N], q1[N], v[N][N]; */
        !          2755: 
        !          2756: /* these will be set by praxis to point to it's arguments */
        !          2757: static int prin; /* added */
        !          2758: static int n;
        !          2759: static double *x;
        !          2760: static double (*fun)();
        !          2761: /* static double (*fun)(double *x, int n); */
        !          2762: 
        !          2763: /* these will be set by praxis to the global control parameters */
        !          2764: /* static double h, macheps, t; */
        !          2765: extern double macheps;
        !          2766: static double h;
        !          2767: static double t;
        !          2768: 
        !          2769: static double 
        !          2770: drandom()      /* return random no between 0 and 1 */
        !          2771: {
        !          2772:    return (double)(rand()%(8192*2))/(double)(8192*2);
        !          2773: }
        !          2774: 
        !          2775: static void sort()             /* d and v in descending order */
        !          2776: {
        !          2777:    int k, i, j;
        !          2778:    double s;
        !          2779: 
        !          2780:    for (i=1; i<=n-1; i++) {
        !          2781:        k = i; s = d[i];
        !          2782:        for (j=i+1; j<=n; j++) {
        !          2783:            if (d[j] > s) {
        !          2784:              k = j;
        !          2785:              s = d[j];
        !          2786:           }
        !          2787:        }
        !          2788:        if (k > i) {
        !          2789:          d[k] = d[i];
        !          2790:          d[i] = s;
        !          2791:          for (j=1; j<=n; j++) {
        !          2792:              s = v[j][i];
        !          2793:              v[j][i] = v[j][k];
        !          2794:              v[j][k] = s;
        !          2795:          }
        !          2796:        }
        !          2797:    }
        !          2798: }
        !          2799: 
        !          2800: double randbrent ( int *naught )
        !          2801: {
        !          2802:   double ran1, ran3[127], half;
        !          2803:   int ran2, q, r, i, j;
        !          2804:   int init=0; /* false */
        !          2805:   double rr;
        !          2806:   /* REAL*8 RAN1,RAN3(127),HALF */
        !          2807: 
        !          2808:   /*     INTEGER RAN2,Q,R */
        !          2809:   /*     LOGICAL INIT */
        !          2810:   /*     DATA INIT/.FALSE./ */
        !          2811:   /*     IF (INIT) GO TO 3 */
        !          2812:   if(!init){ 
        !          2813: /*       R = MOD(NAUGHT,8190) + 1 *//* 1804289383 rand () */
        !          2814:     r = *naught % 8190 + 1;/* printf(" naught r %d %d",*naught,r); */
        !          2815:     ran2=127;
        !          2816:     for(i=ran2; i>0; i--){
        !          2817: /*       RAN2 = 128 */
        !          2818: /*       DO 2 I=1,127 */
        !          2819:       ran2 = ran2-1;
        !          2820: /*          RAN2 = RAN2 - 1 */
        !          2821:       ran1 = -pow(2.0,55);
        !          2822: /*          RAN1 = -2.D0**55 */
        !          2823: /*          DO 1 J=1,7 */
        !          2824:       for(j=1; j<=7;j++){
        !          2825: /*             R = MOD(1756*R,8191) */
        !          2826:        r = (1756*r) % 8191;/* printf(" i=%d (1756*r)%8191=%d",j,r); */
        !          2827:        q=r/32;
        !          2828: /*             Q = R/32 */
        !          2829: /* 1           RAN1 = (RAN1 + Q)*(1.0D0/256) */
        !          2830:        ran1 =(ran1+q)*(1.0/256);
        !          2831:       }
        !          2832: /* 2        RAN3(RAN2) = RAN1 */
        !          2833:       ran3[ran2] = ran1; /* printf(" ran2=%d ran1=%.7g \n",ran2,ran1); */ 
        !          2834:     }
        !          2835: /*       INIT = .TRUE. */
        !          2836:     init=1;
        !          2837: /* 3     IF (RAN2.EQ.1) RAN2 = 128 */
        !          2838:   }
        !          2839:   if(ran2 == 0) ran2 = 126;
        !          2840:   else ran2 = ran2 -1;
        !          2841:   /* RAN2 = RAN2 - 1 */
        !          2842:   /* RAN1 = RAN1 + RAN3(RAN2) */
        !          2843:   ran1 = ran1 + ran3[ran2];/* printf("BIS ran2=%d ran1=%.7g \n",ran2,ran1);  */
        !          2844:   half= 0.5;
        !          2845:   /* HALF = .5D0 */
        !          2846:   /* IF (RAN1.GE.0.D0) HALF = -HALF */
        !          2847:   if(ran1 >= 0.) half =-half;
        !          2848:   ran1 = ran1 +half;
        !          2849:   ran3[ran2] = ran1;
        !          2850:   rr= ran1+0.5;
        !          2851:   /* RAN1 = RAN1 + HALF */
        !          2852:   /*   RAN3(RAN2) = RAN1 */
        !          2853:   /*   RANDOM = RAN1 + .5D0 */
        !          2854: /*   r = ( ( double ) ( *seed ) ) * 4.656612875E-10; */
        !          2855:   return rr;
        !          2856: }
        !          2857: static void matprint(char *s, double **v, int m, int n)
        !          2858: /* char *s; */
        !          2859: /* double v[N][N]; */
        !          2860: {
        !          2861: #define INCX 8
        !          2862:   int i;
        !          2863:  
        !          2864:   int i2hi;
        !          2865:   int ihi;
        !          2866:   int ilo;
        !          2867:   int i2lo;
        !          2868:   int jlo=1;
        !          2869:   int j;
        !          2870:   int j2hi;
        !          2871:   int jhi;
        !          2872:   int j2lo;
        !          2873:   ilo=1;
        !          2874:   ihi=n;
        !          2875:   jlo=1;
        !          2876:   jhi=n;
        !          2877:   
        !          2878:   printf ("\n" );
        !          2879:   printf ("%s\n", s );
        !          2880:   for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX )
        !          2881:   {
        !          2882:     j2hi = j2lo + INCX - 1;
        !          2883:     if ( n < j2hi )
        !          2884:     {
        !          2885:       j2hi = n;
        !          2886:     }
        !          2887:     if ( jhi < j2hi )
        !          2888:     {
        !          2889:       j2hi = jhi;
        !          2890:     }
        !          2891: 
        !          2892:     /* fprintf ( ficlog, "\n" ); */
        !          2893:     printf ("\n" );
        !          2894: /*
        !          2895:   For each column J in the current range...
        !          2896: 
        !          2897:   Write the header.
        !          2898: */
        !          2899:     /* fprintf ( ficlog, "  Col:  "); */
        !          2900:     printf ("Col:");
        !          2901:     for ( j = j2lo; j <= j2hi; j++ )
        !          2902:     {
        !          2903:       /* fprintf ( ficlog, "  %7d     ", j - 1 ); */
        !          2904:       /* printf (" %9d      ", j - 1 ); */
        !          2905:       printf (" %9d      ", j );
        !          2906:     }
        !          2907:     /* fprintf ( ficlog, "\n" ); */
        !          2908:     /* fprintf ( ficlog, "  Row\n" ); */
        !          2909:     /* fprintf ( ficlog, "\n" ); */
        !          2910:     printf ("\n" );
        !          2911:     printf ("  Row\n" );
        !          2912:     printf ("\n" );
        !          2913: /*
        !          2914:   Determine the range of the rows in this strip.
        !          2915: */
        !          2916:     if ( 1 < ilo ){
        !          2917:       i2lo = ilo;
        !          2918:     }else{
        !          2919:       i2lo = 1;
        !          2920:     }
        !          2921:     if ( m < ihi ){
        !          2922:       i2hi = m;
        !          2923:     }else{
        !          2924:       i2hi = ihi;
        !          2925:     }
        !          2926: 
        !          2927:     for ( i = i2lo; i <= i2hi; i++ ){
        !          2928: /*
        !          2929:   Print out (up to) 5 entries in row I, that lie in the current strip.
        !          2930: */
        !          2931:       /* fprintf ( ficlog, "%5d:", i - 1 ); */
        !          2932:       /* printf ("%5d:", i - 1 ); */
        !          2933:       printf ("%5d:", i );
        !          2934:       for ( j = j2lo; j <= j2hi; j++ )
        !          2935:       {
        !          2936:         /* fprintf ( ficlog, "  %14g", a[i-1+(j-1)*m] ); */
        !          2937:         /* printf ("%14.7g  ", a[i-1+(j-1)*m] ); */
        !          2938:            /* printf("%14.7f  ", v[i-1][j-1]); */
        !          2939:            printf("%14.7f  ", v[i][j]);
        !          2940:         /* fprintf ( stdout, "  %14g", a[i-1+(j-1)*m] ); */
        !          2941:       }
        !          2942:       /* fprintf ( ficlog, "\n" ); */
        !          2943:       printf ("\n" );
        !          2944:     }
        !          2945:   }
        !          2946:  
        !          2947:    /* printf("%s\n", s); */
        !          2948:    /* for (k=0; k<n; k++) { */
        !          2949:    /*     for (i=0; i<n; i++) { */
        !          2950:    /*         /\* printf("%20.10e ", v[k][i]); *\/ */
        !          2951:    /*     } */
        !          2952:    /*     printf("\n"); */
        !          2953:    /* } */
        !          2954: #undef INCX  
        !          2955: }
        !          2956: 
        !          2957: void vecprint(char *s, double *x, int n)
        !          2958: /* char *s; */
        !          2959: /* double x[N]; */
        !          2960: {
        !          2961:    int i=0;
        !          2962:    
        !          2963:    printf(" %s", s);
        !          2964:    /* for (i=0; i<n; i++) */
        !          2965:    for (i=1; i<=n; i++)
        !          2966:      printf ("  %14.7g",  x[i] );
        !          2967:      /* printf("  %8d: %14g\n", i, x[i]); */
        !          2968:    printf ("\n" ); 
        !          2969: }
        !          2970: 
        !          2971: static void print()            /* print a line of traces */
        !          2972: {
        !          2973:  
        !          2974: 
        !          2975:    printf("\n");
        !          2976:    /* printf("... chi square reduced to ... %20.10e\n", fx); */
        !          2977:    /* printf("... after %u function calls ...\n", nf); */
        !          2978:    /* printf("... including %u linear searches ...\n", nl); */
        !          2979:    printf("%10d    %10d%14.7g",nl, nf, fx);
        !          2980:    vecprint("... current values of x ...", x, n);
        !          2981: }
        !          2982: /* static void print2(int n, double *x, int prin, double fx, int nf, int nl) */ /* print a line of traces */
        !          2983: static void print2() /* print a line of traces */
        !          2984: {
        !          2985:   int i; double fmin=0.;
        !          2986: 
        !          2987:    /* printf("\n"); */
        !          2988:    /* printf("... chi square reduced to ... %20.10e\n", fx); */
        !          2989:    /* printf("... after %u function calls ...\n", nf); */
        !          2990:    /* printf("... including %u linear searches ...\n", nl); */
        !          2991:    /* printf("%10d    %10d%14.7g",nl, nf, fx); */
        !          2992:   printf ( "\n" );
        !          2993:   printf ( "  Linear searches      %d", nl );
        !          2994:   /* printf ( "  Linear searches      %d\n", nl ); */
        !          2995:   /* printf ( "  Function evaluations %d\n", nf ); */
        !          2996:   /* printf ( "  Function value FX = %g\n", fx ); */
        !          2997:   printf ( "  Function evaluations %d", nf );
        !          2998:   printf ( "  Function value FX = %.12lf\n", fx );
        !          2999: #ifdef DEBUGPRAX
        !          3000:    printf("n=%d prin=%d\n",n,prin);
        !          3001: #endif
        !          3002:    if(fx <= fmin) printf(" UNDEFINED "); else  printf("%14.7g",log(fx-fmin));
        !          3003:    if ( n <= 4 || 2 < prin )
        !          3004:    {
        !          3005:      /* for(i=1;i<=n;i++)printf("%14.7g",x[i-1]); */
        !          3006:      for(i=1;i<=n;i++)printf("%14.7g",x[i]);
        !          3007:      /* r8vec_print ( n, x, "  X:" ); */
        !          3008:    }
        !          3009:    printf("\n");
        !          3010:  }
        !          3011: 
        !          3012: 
        !          3013: /* #ifdef MSDOS */
        !          3014: /* static double tflin[N]; */
        !          3015: /* #endif */
        !          3016: 
        !          3017: static double flin(double l, int j)
        !          3018: /* double l; */
        !          3019: {
        !          3020:    int i;
        !          3021:    /* #ifndef MSDOS */
        !          3022:    /*    double tflin[N]; */
        !          3023:    /* #endif    */
        !          3024:    /* double *tflin; */ /* Be careful to put tflin on a vector n */
        !          3025: 
        !          3026:    /* j is used from 0 to n-1 and can be -1 for parabolic search */
        !          3027: 
        !          3028:    /* if (j != -1) {           /\* linear search *\/ */
        !          3029:    if (j > 0) {                /* linear search */
        !          3030:      /* for (i=0; i<n; i++){ */
        !          3031:      for (i=1; i<=n; i++){
        !          3032:           tflin[i] = x[i] + l *v[i][j];
        !          3033: #ifdef DEBUGPRAX
        !          3034:          /* printf("     flin i=%14d t=%14.7f x=%14.7f l=%14.7f v[%d,%d]=%14.7f nf=%14d\n",i+1, tflin[i],x[i],l,i,j,v[i][j],nf); */
        !          3035:          printf("     flin i=%14d t=%14.7f x=%14.7f l=%14.7f v[%d,%d]=%14.7f nf=%14d\n",i, tflin[i],x[i],l,i,j,v[i][j],nf);
        !          3036: #endif
        !          3037:      }
        !          3038:    }
        !          3039:    else {                      /* search along parabolic space curve */
        !          3040:       qa = l*(l-qd1)/(qd0*(qd0+qd1));
        !          3041:       qb = (l+qd0)*(qd1-l)/(qd0*qd1);
        !          3042:       qc = l*(l+qd0)/(qd1*(qd0+qd1));
        !          3043: #ifdef DEBUGPRAX      
        !          3044:       printf("     search along a parabolic space curve. j=%14d nf=%14d l=%14.7f qd0=%14.7f qd1=%14.7f\n",j,nf,l,qd0,qd1);
        !          3045: #endif
        !          3046:       /* for (i=0; i<n; i++){ */
        !          3047:       for (i=1; i<=n; i++){
        !          3048:           tflin[i] = qa*q0[i]+qb*x[i]+qc*q1[i];
        !          3049: #ifdef DEBUGPRAX
        !          3050:           /* printf("      parabole i=%14d t(i)=%14.7f q0=%14.7f x=%14.7f q1=%14.7f\n",i+1,tflin[i],q0[i],x[i],q1[i]); */
        !          3051:           printf("      parabole i=%14d t(i)=%14.7e q0=%14.7e x=%14.7e q1=%14.7e\n",i,tflin[i],q0[i],x[i],q1[i]);
        !          3052: #endif
        !          3053:       }
        !          3054:    }
        !          3055:    nf++;
        !          3056: 
        !          3057: #ifdef NR_SHIFT
        !          3058:       return (*fun)((tflin-1), n);
        !          3059: #else
        !          3060:      /* return (*fun)(tflin, n);*/
        !          3061:       return (*fun)(tflin);
        !          3062: #endif
        !          3063: }
        !          3064: 
        !          3065: void minny(int j, int nits, double *d2, double *x1, double f1, int fk)
        !          3066: /* double *d2, *x1, f1; */
        !          3067: {
        !          3068: /* here j is from 0 to n-1 and can be -1 for parabolic search  */
        !          3069:   /*      MINIMIZES F FROM X IN THE DIRECTION V(*,J) */
        !          3070:           /*      UNLESS J<1, WHEN A QUADRATIC SEARCH IS DONE */
        !          3071:           /*      IN THE PLANE DEFINED BY Q0, Q1 AND X. */
        !          3072:           /*      D2 AN APPROXIMATION TO HALF F'' (OR ZERO), */
        !          3073:           /*      X1 AN ESTIMATE OF DISTANCE TO MINIMUM, */
        !          3074:           /*      RETURNED AS THE DISTANCE FOUND. */
        !          3075:           /*       IF FK = TRUE THEN F1 IS FLIN(X1), OTHERWISE */
        !          3076:           /*       X1 AND F1 ARE IGNORED ON ENTRY UNLESS FINAL */
        !          3077:           /*       FX > F1. NITS CONTROLS THE NUMBER OF TIMES */
        !          3078:           /*       AN ATTEMPT IS MADE TO HALVE THE INTERVAL. */
        !          3079:           /* SIDE EFFECTS: USES AND ALTERS X, FX, NF, NL. */
        !          3080:           /*       IF J < 1 USES VARIABLES Q... . */
        !          3081:          /*       USES H, N, T, M2, M4, LDT, DMIN, MACHEPS; */
        !          3082:    int k, i, dz;
        !          3083:    double x2, xm, f0, f2, fm, d1, t2, sf1, sx1;
        !          3084:    double s;
        !          3085:    double macheps;
        !          3086:    macheps=pow(16.0,-13.0);
        !          3087:    sf1 = f1; sx1 = *x1;
        !          3088:    k = 0; xm = 0.0; fm = f0 = fx; dz = *d2 < macheps;
        !          3089:    /* h=1.0;*/ /* To be revised */
        !          3090: #ifdef DEBUGPRAX
        !          3091:    /* printf("min macheps=%14g h=%14g step=%14g t=%14g fx=%14g\n",macheps,h, step,t, fx);  */
        !          3092:    /* Where is fx coming from */
        !          3093:    printf("   min macheps=%14g h=%14g  t=%14g fx=%.9lf dirj=%d\n",macheps, h, t, fx, j);
        !          3094:    matprint("  min vectors:",v,n,n);
        !          3095: #endif
        !          3096:    /* find step size */
        !          3097:    s = 0.;
        !          3098:    /* for (i=0; i<n; i++) s += x[i]*x[i]; */
        !          3099:    for (i=1; i<=n; i++) s += x[i]*x[i];
        !          3100:    s = sqrt(s);
        !          3101:    if (dz)
        !          3102:       t2 = m4*sqrt(fabs(fx)/dmin + s*ldt) + m2*ldt;
        !          3103:    else
        !          3104:       t2 = m4*sqrt(fabs(fx)/(*d2) + s*ldt) + m2*ldt;
        !          3105:    s = s*m4 + t;
        !          3106:    if (dz && t2 > s) t2 = s;
        !          3107:    if (t2 < small_windows) t2 = small_windows;
        !          3108:    if (t2 > 0.01*h) t2 = 0.01 * h;
        !          3109:    if (fk && f1 <= fm) {
        !          3110:       xm = *x1;
        !          3111:       fm = f1;
        !          3112:    }
        !          3113: #ifdef DEBUGPRAX
        !          3114:    printf("   additional flin X1=%14.7f t2=%14.7f *f1=%14.7f fm=%14.7f fk=%d\n",*x1,t2,f1,fm,fk);
        !          3115: #endif   
        !          3116:    if (!fk || fabs(*x1) < t2) {
        !          3117:      *x1 = (*x1 >= 0 ? t2 : -t2); 
        !          3118:       /* *x1 = (*x1 > 0 ? t2 : -t2); */ /* kind of error */
        !          3119: #ifdef DEBUGPRAX
        !          3120:      printf("    additional flin X1=%16.10e dirj=%d fk=%d\n",*x1, j, fk);
        !          3121: #endif
        !          3122:       f1 = flin(*x1, j);
        !          3123: #ifdef DEBUGPRAX
        !          3124:     printf("    after flin f1=%18.12e dirj=%d fk=%d\n",f1, j,fk);
        !          3125: #endif
        !          3126:    }
        !          3127:    if (f1 <= fm) {
        !          3128:       xm = *x1;
        !          3129:       fm = f1;
        !          3130:    }
        !          3131: L0: /*L0 loop or next */
        !          3132: /*
        !          3133:   Evaluate FLIN at another point and estimate the second derivative.
        !          3134: */
        !          3135:    if (dz) {
        !          3136:       x2 = (f0 < f1 ? -(*x1) : 2*(*x1));
        !          3137: #ifdef DEBUGPRAX
        !          3138:       printf("     additional second flin x2=%14.8e x1=%14.8e f0=%14.8e f1=%18.12e dirj=%d\n",x2,*x1,f0,f1,j);
        !          3139: #endif
        !          3140:       f2 = flin(x2, j);
        !          3141: #ifdef DEBUGPRAX
        !          3142:       printf("     additional second flin x2=%16.10e x1=%16.10e f1=%18.12e f0=%18.10e f2=%18.10e fm=%18.10e\n",x2, *x1, f1,f0,f2,fm);
        !          3143: #endif
        !          3144:       if (f2 <= fm) {
        !          3145:          xm = x2;
        !          3146:         fm = f2;
        !          3147:       }
        !          3148:       /* d2 is the curvature or double difference f1 doesn't seem to be accurately computed */
        !          3149:       *d2 = (x2*(f1-f0) - (*x1)*(f2-f0))/((*x1)*x2*((*x1)-x2));
        !          3150: #ifdef DEBUGPRAX
        !          3151:       double d11,d12;
        !          3152:       d11=(f1-f0)/(*x1);d12=(f2-f0)/x2;
        !          3153:       printf(" d11=%18.12e d12=%18.12e d11-d12=%18.12e x1-x2=%18.12e (d11-d12)/(x2-(*x1))=%18.12e\n", d11 ,d12, d11-d12, x2-(*x1), (d11-d12)/(x2-(*x1)));
        !          3154:       printf(" original computing f1=%18.12e *d2=%16.10e f0=%18.12e f1-f0=%16.10e f2-f0=%16.10e\n",f1,*d2,f0,f1-f0, f2-f0);
        !          3155:       double ff1=7.783920622852e+04;
        !          3156:       double f1mf0=9.0344736236e-05;
        !          3157:       *d2 = (f1mf0)/ (*x1)/((*x1)-x2) - (f2-f0)/x2/((*x1)-x2);
        !          3158:       /* *d2 = (ff1-f0)/ (*x1)/((*x1)-x2) - (f2-f0)/x2/((*x1)-x2); */
        !          3159:       printf(" simpliff computing *d2=%16.10e f1mf0=%18.12e,f1=f0+f1mf0=%18.12e\n",*d2,f1mf0,f0+f1mf0);
        !          3160:       *d2 = ((f1-f0)/ (*x1) - (f2-f0)/x2)/((*x1)-x2);
        !          3161:       printf(" overlifi computing *d2=%16.10e\n",*d2);
        !          3162: #endif
        !          3163:       *d2 = ((f1-f0)/ (*x1) - (f2-f0)/x2)/((*x1)-x2);      
        !          3164:    }
        !          3165: #ifdef DEBUGPRAX
        !          3166:       printf("    additional second flin xm=%14.8e fm=%14.8e *d2=%14.8e\n",xm, fm,*d2);
        !          3167: #endif
        !          3168:    /*
        !          3169:      Estimate the first derivative at 0.
        !          3170:    */
        !          3171:    d1 = (f1-f0)/(*x1) - *x1**d2; dz = 1;
        !          3172:    /*
        !          3173:       Predict the minimum.
        !          3174:     */
        !          3175:    if (*d2 <= small_windows) {
        !          3176:      x2 = (d1 < 0 ? h : -h);
        !          3177:    }
        !          3178:    else {
        !          3179:       x2 = - 0.5*d1/(*d2);
        !          3180:    }
        !          3181: #ifdef DEBUGPRAX
        !          3182:     printf("   AT d1=%14.8e d2=%14.8e small=%14.8e dz=%d x1=%14.8e x2=%14.8e\n",d1,*d2,small_windows,dz,*x1,x2);
        !          3183: #endif
        !          3184:     if (fabs(x2) > h)
        !          3185:       x2 = (x2 > 0 ? h : -h);
        !          3186: L1:  /* L1 or try loop */
        !          3187: #ifdef DEBUGPRAX
        !          3188:     printf("   AT predicted minimum flin x2=%14.8e x1=%14.8e K=%14d NITS=%14d dirj=%d\n",x2,*x1,k,nits,j);
        !          3189: #endif
        !          3190:    f2 = flin(x2, j); /* x[i]+x2*v[i][j] */
        !          3191: #ifdef DEBUGPRAX
        !          3192:    printf("   after flin f0=%14.8e f1=%14.8e f2=%14.8e fm=%14.8e\n",f0,f1,f2, fm);
        !          3193: #endif
        !          3194:    if ((k < nits) && (f2 > f0)) {
        !          3195: #ifdef DEBUGPRAX
        !          3196:      printf("  NO SUCCESS SO TRY AGAIN;\n");
        !          3197: #endif
        !          3198:      k++;
        !          3199:      if ((f0 < f1) && (*x1*x2 > 0.0))
        !          3200:        goto L0; /* or next */
        !          3201:      x2 *= 0.5;
        !          3202:      goto L1;
        !          3203:    }
        !          3204:    nl++;
        !          3205: #ifdef DEBUGPRAX
        !          3206:    printf(" bebeBE end of min x1=%14.8e x2=%14.8e f1=%14.8e f2=%14.8e f0=%14.8e fm=%14.8e d2=%14.8e\n",*x1, x2, f1, f2, f0, fm, *d2);
        !          3207: #endif
        !          3208:    if (f2 > fm) x2 = xm; else fm = f2;
        !          3209:    if (fabs(x2*(x2-*x1)) > small_windows) {
        !          3210:       *d2 = (x2*(f1-f0) - *x1*(fm-f0))/(*x1*x2*(*x1-x2));
        !          3211:    }
        !          3212:    else {
        !          3213:       if (k > 0) *d2 = 0;
        !          3214:    }
        !          3215: #ifdef DEBUGPRAX
        !          3216:    printf(" bebe end of min x1=%14.8e fx=%14.8e d2=%14.8e\n",*x1, fx, *d2);
        !          3217: #endif
        !          3218:    if (*d2 <= small_windows) *d2 = small_windows;
        !          3219:    *x1 = x2; fx = fm;
        !          3220:    if (sf1 < fx) {
        !          3221:       fx = sf1;
        !          3222:       *x1 = sx1;
        !          3223:    }
        !          3224:   /*
        !          3225:     Update X for linear search.
        !          3226:   */
        !          3227: #ifdef DEBUGPRAX
        !          3228:    printf("  end of min x1=%14.8e fx=%14.8e d2=%14.8e\n",*x1, fx, *d2);
        !          3229: #endif
        !          3230:    
        !          3231:    /* if (j != -1) */
        !          3232:    /*    for (i=0; i<n; i++) */
        !          3233:    /*        x[i] += (*x1)*v[i][j]; */
        !          3234:    if (j > 0)
        !          3235:       for (i=1; i<=n; i++)
        !          3236:           x[i] += (*x1)*v[i][j];
        !          3237: }
        !          3238: 
        !          3239: void quad()    /* look for a minimum along the curve q0, q1, q2        */
        !          3240: {
        !          3241:    int i;
        !          3242:    double l, s;
        !          3243: 
        !          3244:    s = fx; fx = qf1; qf1 = s; qd1 = 0.0;
        !          3245:    /* for (i=0; i<n; i++) { */
        !          3246:    for (i=1; i<=n; i++) {
        !          3247:        s = x[i]; l = q1[i]; x[i] = l; q1[i] = s;
        !          3248:        qd1 = qd1 + (s-l)*(s-l);
        !          3249:    }
        !          3250:    s = 0.0; qd1 = sqrt(qd1); l = qd1;
        !          3251: #ifdef DEBUGPRAX
        !          3252:   printf("  QUAD after sqrt qd1=%14.8e \n",qd1);
        !          3253: #endif
        !          3254:  
        !          3255:    if (qd0>0.0 && qd1>0.0 &&nl>=3*n*n) {
        !          3256: #ifdef DEBUGPRAX
        !          3257:      printf(" QUAD before min value=%14.8e \n",qf1);
        !          3258: #endif
        !          3259:       /* min(-1, 2, &s, &l, qf1, 1); */
        !          3260:       minny(0, 2, &s, &l, qf1, 1);
        !          3261:       qa = l*(l-qd1)/(qd0*(qd0+qd1));
        !          3262:       qb = (l+qd0)*(qd1-l)/(qd0*qd1);
        !          3263:       qc = l*(l+qd0)/(qd1*(qd0+qd1));
        !          3264:    }
        !          3265:    else {
        !          3266:       fx = qf1; qa = qb = 0.0; qc = 1.0;
        !          3267:    }
        !          3268: #ifdef DEBUGPRAX
        !          3269:   printf("after eventual min qd0=%14.8e qd1=%14.8e nl=%d\n",qd0, qd1,nl);
        !          3270: #endif
        !          3271:    qd0 = qd1;
        !          3272:    /* for (i=0; i<n; i++) { */
        !          3273:    for (i=1; i<=n; i++) {
        !          3274:        s = q0[i]; q0[i] = x[i];
        !          3275:        x[i] = qa*s + qb*x[i] + qc*q1[i];
        !          3276:    }
        !          3277: #ifdef DEBUGQUAD
        !          3278:    vecprint ( " X after QUAD:" , x, n );
        !          3279: #endif
        !          3280: }
        !          3281: 
        !          3282: /* void minfit(int n, double eps, double tol, double ab[N][N], double q[]) */
        !          3283: void minfit(int n, double eps, double tol, double **ab, double q[])
        !          3284: /* int n; */
        !          3285: /* double eps, tol, ab[N][N], q[N]; */
        !          3286: {
        !          3287:    int l, kt, l2, i, j, k;
        !          3288:    double c, f, g, h, s, x, y, z;
        !          3289:    /* double eps; */
        !          3290: /* #ifndef MSDOS */
        !          3291: /*    double e[N];             /\* plenty of stack on a vax *\/ */
        !          3292: /* #endif */
        !          3293:    /* double *e; */
        !          3294:    /* e=vector(0,n-1); /\* should be freed somewhere but gotos *\/ */
        !          3295:    
        !          3296:    /* householder's reduction to bidiagonal form */
        !          3297: 
        !          3298:    if(n==1){
        !          3299:      /* q[1-1]=ab[1-1][1-1]; */
        !          3300:      /* ab[1-1][1-1]=1.0; */
        !          3301:      q[1]=ab[1][1];
        !          3302:      ab[1][1]=1.0;
        !          3303:      return; /* added from hardt */
        !          3304:    }
        !          3305:    /* eps=macheps; */ /* added */
        !          3306:    x = g = 0.0;
        !          3307: #ifdef DEBUGPRAX
        !          3308:    matprint (" HOUSE holder:", ab, n, n);
        !          3309: #endif
        !          3310: 
        !          3311:    /* for (i=0; i<n; i++) {  /\* FOR I := 1 UNTIL N DO *\/ */
        !          3312:    for (i=1; i<=n; i++) {  /* FOR I := 1 UNTIL N DO */
        !          3313:      e[i] = g; s = 0.0; l = i+1;
        !          3314:      /* for (j=i; j<n; j++)  /\* FOR J := I UNTIL N DO S := S*AB(J,I)**2; *\/ /\* not correct *\/ */
        !          3315:      for (j=i; j<=n; j++)  /* FOR J := I UNTIL N DO S := S*AB(J,I)**2; */ /* not correct */
        !          3316:        s += ab[j][i] * ab[j][i];
        !          3317: #ifdef DEBUGPRAXFIN
        !          3318:      printf("i=%d s=%d %.7g tol=%.7g",i,s,tol);
        !          3319: #endif
        !          3320:      if (s < tol) {
        !          3321:        g = 0.0;
        !          3322:      }
        !          3323:      else {
        !          3324:        /* f = ab[i][i]; */
        !          3325:        f = ab[i][i];
        !          3326:        if (f < 0.0) 
        !          3327:         g = sqrt(s);
        !          3328:        else
        !          3329:         g = -sqrt(s);
        !          3330:        /* h = f*g - s; ab[i][i] = f - g; */
        !          3331:        h = f*g - s; ab[i][i] = f - g;
        !          3332:        /* for (j=l; j<n; j++) { */ /* FOR J := L UNTIL N DO */ /* wrong */
        !          3333:        for (j=l; j<=n; j++) {
        !          3334:         f = 0.0;
        !          3335:         /* for (k=i; k<n; k++) /\* FOR K := I UNTIL N DO *\/ /\* wrong *\/ */
        !          3336:         for (k=i; k<=n; k++) /* FOR K := I UNTIL N DO */
        !          3337:           /* f += ab[k][i] * ab[k][j]; */
        !          3338:           f += ab[k][i] * ab[k][j];
        !          3339:         f /= h;
        !          3340:         for (k=i; k<=n; k++) /* FOR K := I UNTIL N DO */
        !          3341:           /* for (k=i; k<n; k++)/\* FOR K := I UNTIL N DO *\/ /\* wrong *\/ */
        !          3342:           ab[k][j] += f * ab[k][i];
        !          3343:         /* ab[k][j] += f * ab[k][i]; */
        !          3344: #ifdef DEBUGPRAX
        !          3345:         printf("Holder J=%d F=%.7g",j,f);
        !          3346: #endif
        !          3347:        }
        !          3348:      } /* end s */
        !          3349:      /* q[i] = g; s = 0.0; */
        !          3350:      q[i] = g; s = 0.0;
        !          3351: #ifdef DEBUGPRAX
        !          3352:      printf(" I Q=%d %.7g",i,q[i]);
        !          3353: #endif   
        !          3354:        
        !          3355:      /* if (i < n) */
        !          3356:      /* if (i <= n)  /\* I is always lower or equal to n wasn't in golub reinsch*\/ */
        !          3357:      /* for (j=l; j<n; j++) */
        !          3358:      for (j=l; j<=n; j++)
        !          3359:        s += ab[i][j] * ab[i][j];
        !          3360:      /* s += ab[i][j] * ab[i][j]; */
        !          3361:      if (s < tol) {
        !          3362:        g = 0.0;
        !          3363:      }
        !          3364:      else {
        !          3365:        if(i<n)
        !          3366:         /* f = ab[i][i+1]; */ /* Brent golub overflow */
        !          3367:         f = ab[i][i+1];
        !          3368:        if (f < 0.0)
        !          3369:         g = sqrt(s);
        !          3370:        else 
        !          3371:         g = - sqrt(s);
        !          3372:        h = f*g - s;
        !          3373:        /* h = f*g - s; ab[i][i+1] = f - g; */ /* Overflow for i=n Error in Golub too but not Burkardt*/
        !          3374:        /* for (j=l; j<n; j++) */
        !          3375:        /*     e[j] = ab[i][j]/h; */
        !          3376:        if(i<n){
        !          3377:         ab[i][i+1] = f - g;
        !          3378:         for (j=l; j<=n; j++)
        !          3379:           e[j] = ab[i][j]/h;
        !          3380:         /* for (j=l; j<n; j++) { */
        !          3381:         for (j=l; j<=n; j++) {
        !          3382:           s = 0.0;
        !          3383:           /* for (k=l; k<n; k++) s += ab[j][k]*ab[i][k]; */
        !          3384:           for (k=l; k<=n; k++) s += ab[j][k]*ab[i][k];
        !          3385:           /* for (k=l; k<n; k++) ab[j][k] += s * e[k]; */
        !          3386:           for (k=l; k<=n; k++) ab[j][k] += s * e[k];
        !          3387:         } /* END J */
        !          3388:        } /* END i <n */
        !          3389:      } /* end s */
        !          3390:        /* y = fabs(q[i]) + fabs(e[i]); */
        !          3391:      y = fabs(q[i]) + fabs(e[i]);
        !          3392:      if (y > x) x = y;
        !          3393: #ifdef DEBUGPRAX
        !          3394:      printf(" I Y=%d %.7g",i,y);
        !          3395: #endif
        !          3396: #ifdef DEBUGPRAX
        !          3397:      printf(" i=%d e(i) %.7g",i,e[i]);
        !          3398: #endif
        !          3399:    } /* end i */
        !          3400:    /*
        !          3401:      Accumulation of right hand transformations */
        !          3402:    /* for (i=n-1; i >= 0; i--) { */ /* FOR I := N STEP -1 UNTIL 1 DO */
        !          3403:    /* We should avoid the overflow in Golub */
        !          3404:    /* ab[n-1][n-1] = 1.0; */
        !          3405:    /* g = e[n-1]; */
        !          3406:    ab[n][n] = 1.0;
        !          3407:    g = e[n];
        !          3408:    l = n;
        !          3409: 
        !          3410:    /* for (i=n; i >= 1; i--) { */
        !          3411:    for (i=n-1; i >= 1; i--) { /* n-1 loops, different from brent and golub*/
        !          3412:      if (g != 0.0) {
        !          3413:        /* h = ab[i-1][i]*g; */
        !          3414:        h = ab[i][i+1]*g;
        !          3415:        for (j=l; j<=n; j++) ab[j][i] = ab[i][j] / h;
        !          3416:        for (j=l; j<=n; j++) {
        !          3417:         /* h = ab[i][i+1]*g; */
        !          3418:         /* for (j=l; j<n; j++) ab[j][i] = ab[i][j] / h; */
        !          3419:         /* for (j=l; j<n; j++) { */
        !          3420:         s = 0.0;
        !          3421:         /* for (k=l; k<n; k++) s += ab[i][k] * ab[k][j]; */
        !          3422:         /* for (k=l; k<n; k++) ab[k][j] += s * ab[k][i]; */
        !          3423:         for (k=l; k<=n; k++) s += ab[i][k] * ab[k][j];
        !          3424:         for (k=l; k<=n; k++) ab[k][j] += s * ab[k][i];
        !          3425:        }/* END J */
        !          3426:      }/* END G */
        !          3427:      /* for (j=l; j<n; j++) */
        !          3428:      /*     ab[i][j] = ab[j][i] = 0.0; */
        !          3429:      /* ab[i][i] = 1.0; g = e[i]; l = i; */
        !          3430:      for (j=l; j<=n; j++)
        !          3431:        ab[i][j] = ab[j][i] = 0.0;
        !          3432:      ab[i][i] = 1.0; g = e[i]; l = i;
        !          3433:    }/* END I */
        !          3434: #ifdef DEBUGPRAX
        !          3435:    matprint (" HOUSE accumulation:",ab,n, n );
        !          3436: #endif
        !          3437: 
        !          3438:    /* diagonalization to bidiagonal form */
        !          3439:    eps *= x;
        !          3440:    /* for (k=n-1; k>= 0; k--) { */
        !          3441:    for (k=n; k>= 1; k--) {
        !          3442:      kt = 0;
        !          3443: TestFsplitting:
        !          3444: #ifdef DEBUGPRAX
        !          3445:      printf(" TestFsplitting: k=%d kt=%d\n",k,kt);
        !          3446:      /* for(i=1;i<=n;i++)printf(" e(%d)=%.14f",i,e[i]);printf("\n"); */
        !          3447: #endif     
        !          3448:      kt = kt+1; 
        !          3449: /* TestFsplitting: */
        !          3450:      /* if (++kt > 30) { */
        !          3451:      if (kt > 30) { 
        !          3452:        e[k] = 0.0;
        !          3453:        fprintf(stderr, "\n+++ MINFIT - Fatal error\n");
        !          3454:        fprintf ( stderr, "  The QR algorithm failed to converge.\n" );
        !          3455:      }
        !          3456:      /* for (l2=k; l2>=0; l2--) { */
        !          3457:      for (l2=k; l2>=1; l2--) {
        !          3458:        l = l2;
        !          3459: #ifdef DEBUGPRAX
        !          3460:        printf(" l e(l)< eps %d %.7g %.7g ",l,e[l], eps);
        !          3461: #endif
        !          3462:        /* if (fabs(e[l]) <= eps) */
        !          3463:        if (fabs(e[l]) <= eps)
        !          3464:         goto TestFconvergence;
        !          3465:        /* if (fabs(q[l-1]) <= eps)*/ /* missing if ( 1 < l ){ *//* printf(" q(l-1)< eps %d %.7g %.7g ",l-1,q[l-2], eps); */
        !          3466:        if (fabs(q[l-1]) <= eps)
        !          3467:         break; /* goto Cancellation; */
        !          3468:      }
        !          3469:    Cancellation:
        !          3470: #ifdef DEBUGPRAX
        !          3471:      printf(" Cancellation:\n");
        !          3472: #endif     
        !          3473:      c = 0.0; s = 1.0;
        !          3474:      for (i=l; i<=k; i++) {
        !          3475:        f = s * e[i]; e[i] *= c;
        !          3476:        /* f = s * e[i]; e[i] *= c; */
        !          3477:        if (fabs(f) <= eps)
        !          3478:         goto TestFconvergence;
        !          3479:        /* g = q[i]; */
        !          3480:        g = q[i];
        !          3481:        if (fabs(f) < fabs(g)) {
        !          3482:         double fg = f/g;
        !          3483:         h = fabs(g)*sqrt(1.0+fg*fg);
        !          3484:        }
        !          3485:        else {
        !          3486:         double gf = g/f;
        !          3487:         h = (f!=0.0 ? fabs(f)*sqrt(1.0+gf*gf) : 0.0);
        !          3488:        }
        !          3489:        /*    COMMENT: THE ABOVE REPLACES Q(I):=H:=LONGSQRT(G*G+F*F) */
        !          3490:        /* WHICH MAY GIVE INCORRECT RESULTS IF THE */
        !          3491:        /* SQUARES UNDERFLOW OR IF F = G = 0; */
        !          3492:        
        !          3493:        /* q[i] = h; */
        !          3494:        q[i] = h;
        !          3495:        if (h == 0.0) { h = 1.0; g = 1.0; }
        !          3496:        c = g/h; s = -f/h;
        !          3497:      }
        !          3498: TestFconvergence:
        !          3499:  #ifdef DEBUGPRAX
        !          3500:      printf(" TestFconvergence: l=%d k=%d\n",l,k);
        !          3501: #endif     
        !          3502:      /* z = q[k]; */
        !          3503:      z = q[k];
        !          3504:      if (l == k)
        !          3505:        goto Convergence;
        !          3506:      /* shift from bottom 2x2 minor */
        !          3507:      /* x = q[l]; y = q[k-l]; g = e[k-1]; h = e[k]; */ /* Error */
        !          3508:      x = q[l]; y = q[k-1]; g = e[k-1]; h = e[k];
        !          3509:      f = ((y-z)*(y+z) + (g-h)*(g+h)) / (2.0*h*y);
        !          3510:      g = sqrt(f*f+1.0);
        !          3511:      if (f <= 0.0)
        !          3512:        f = ((x-z)*(x+z) + h*(y/(f-g)-h))/x;
        !          3513:      else
        !          3514:        f = ((x-z)*(x+z) + h*(y/(f+g)-h))/x;
        !          3515:      /* next qr transformation */
        !          3516:      s = c = 1.0;
        !          3517:      for (i=l+1; i<=k; i++) {
        !          3518: #ifdef DEBUGPRAXQR
        !          3519:        printf(" Before Mid TestFconvergence: l+1=%d i=%d k=%d h=%.6e e(i)=%14.8f e(i-1)=%14.8f\n",l+1,i,k, h, e[i],e[i-1]);
        !          3520: #endif     
        !          3521:        /* g = e[i]; y = q[i]; h = s*g; g *= c; */
        !          3522:        g = e[i]; y = q[i]; h = s*g; g *= c;
        !          3523:        if (fabs(f) < fabs(h)) {
        !          3524:         double fh = f/h;
        !          3525:         z = fabs(h) * sqrt(1.0 + fh*fh);
        !          3526:        }
        !          3527:        else {
        !          3528:         double hf = h/f;
        !          3529:         z = (f!=0.0 ? fabs(f)*sqrt(1.0+hf*hf) : 0.0);
        !          3530:        }
        !          3531:        /* e[i-1] = z; */
        !          3532:        e[i-1] = z;
        !          3533: #ifdef DEBUGPRAXQR
        !          3534:        printf(" Mid TestFconvergence: l+1=%d i=%d k=%d h=%.6e e(i)=%14.8f e(i-1)=%14.8f\n",l+1,i,k, h, e[i],e[i-1]);
        !          3535: #endif     
        !          3536:        if (z == 0.0) 
        !          3537:         f = z = 1.0;
        !          3538:        c = f/z; s = h/z;
        !          3539:        f = x*c + g*s; g = - x*s + g*c; h = y*s;
        !          3540:        y *= c;
        !          3541:        /* for (j=0; j<n; j++) { */
        !          3542:        /*     x = ab[j][i-1]; z = ab[j][i]; */
        !          3543:        /*     ab[j][i-1] = x*c + z*s; */
        !          3544:        /*     ab[j][i] = - x*s + z*c; */
        !          3545:        /* } */
        !          3546:        for (j=1; j<=n; j++) {
        !          3547:         x = ab[j][i-1]; z = ab[j][i];
        !          3548:         ab[j][i-1] = x*c + z*s;
        !          3549:         ab[j][i] = - x*s + z*c;
        !          3550:        }
        !          3551:        if (fabs(f) < fabs(h)) {
        !          3552:         double fh = f/h;
        !          3553:         z = fabs(h) * sqrt(1.0 + fh*fh);
        !          3554:        }
        !          3555:        else {
        !          3556:         double hf = h/f;
        !          3557:         z = (f!=0.0 ? fabs(f)*sqrt(1.0+hf*hf) : 0.0);
        !          3558:        }
        !          3559: #ifdef DEBUGPRAXQR
        !          3560:        printf(" qr transformation z f h=%.7g %.7g %.7g i=%d k=%d\n",z,f,h, i, k);
        !          3561: #endif
        !          3562:        q[i-1] = z;
        !          3563:        if (z == 0.0)
        !          3564:         z = f = 1.0;
        !          3565:        c = f/z; s = h/z;
        !          3566:        f = c*g + s*y;  /* f can be very small */
        !          3567:        x = - s*g + c*y;
        !          3568:      }
        !          3569:      /* e[l] = 0.0; e[k] = f; q[k] = x; */
        !          3570:      e[l] = 0.0; e[k] = f; q[k] = x;
        !          3571: #ifdef DEBUGPRAXQR
        !          3572:      printf(" aftermid loop l=%d k=%d e(l)=%7g e(k)=%.7g q(k)=%.7g x=%.7g\n",l,k,e[l],e[k],q[k],x);
        !          3573: #endif
        !          3574:      goto TestFsplitting;
        !          3575:    Convergence:
        !          3576: #ifdef DEBUGPRAX
        !          3577:      printf(" Convergence:\n");
        !          3578: #endif     
        !          3579:      if (z < 0.0) {
        !          3580:        /* q[k] = - z; */
        !          3581:        /* for (j=0; j<n; j++) ab[j][k] = - ab[j][k]; */
        !          3582:        q[k] = - z;
        !          3583:        for (j=1; j<=n; j++) ab[j][k] = - ab[j][k];
        !          3584:      }/* END Z */
        !          3585:    }/* END K */
        !          3586: } /* END MINFIT */
        !          3587: 
        !          3588: 
        !          3589: double praxis(double tol, double macheps, double h0, int _n, int _prin, double *_x, double (*_fun)(double *_x))
        !          3590: /* double praxis(double tol, double macheps, double h0, int _n, int _prin, double *_x, double (*_fun)(double *_x, int _n)) */
        !          3591: /* double praxis(double (*_fun)(), double _x[], int _n) */
        !          3592: /* double (*_fun)(); */
        !          3593: /* double _x[N]; */
        !          3594: /* double (*_fun)(); */
        !          3595: /* double _x[N]; */
        !          3596: {
        !          3597:    /* init global extern variables and parameters */
        !          3598:    /* double *d, *y, *z, */
        !          3599:    /*   *q0, *q1, **v; */
        !          3600:    /* double *tflin; /\* used in flin: return (*fun)(tflin, n); *\/ */
        !          3601:    /* double *e; /\* used in minfit, don't konw how to free memory and thus made global *\/ */
        !          3602: 
        !          3603:   
        !          3604:   int seed; /* added */
        !          3605:   int biter=0;
        !          3606:   double r;
        !          3607:   double randbrent( int (*));
        !          3608:   double s, sf;
        !          3609:   
        !          3610:    h = h0; /* step; */
        !          3611:    t = tol;
        !          3612:    scbd = 1.0;
        !          3613:    illc = 0;
        !          3614:    ktm = 1;
        !          3615: 
        !          3616:    macheps = DBL_EPSILON;
        !          3617:    /* prin=4; */
        !          3618: #ifdef DEBUGPRAX
        !          3619:    printf("Praxis macheps=%14g h=%14g step=%14g tol=%14g\n",macheps,h, h0,tol); 
        !          3620: #endif
        !          3621:    n = _n;
        !          3622:    x = _x;
        !          3623:    prin = _prin;
        !          3624:    fun = _fun;
        !          3625:    d=vector(1, n);
        !          3626:    y=vector(1, n);
        !          3627:    z=vector(1, n);
        !          3628:    q0=vector(1, n);
        !          3629:    q1=vector(1, n);
        !          3630:    e=vector(1, n);
        !          3631:    tflin=vector(1, n);
        !          3632:    v=matrix(1, n, 1, n);
        !          3633:    for(i=1;i<=n;i++){d[i]=y[i]=z[i]=q0[0]=e[i]=tflin[i]=0.;}
        !          3634:    small_windows = (macheps) * (macheps); vsmall = small_windows*small_windows;
        !          3635:    large = 1.0/small_windows; vlarge = 1.0/vsmall;
        !          3636:    m2 = sqrt(macheps); m4 = sqrt(m2);
        !          3637:    seed = 123456789; /* added */
        !          3638:    ldfac = (illc ? 0.1 : 0.01);
        !          3639:    for(i=1;i<=n;i++) z[i]=0.; /* Was missing in Gegenfurtner as well as Brent's algol or fortran  */
        !          3640:    nl = kt = 0; nf = 1;
        !          3641: #ifdef NR_SHIFT
        !          3642:    fx = (*fun)((x-1), n);
        !          3643: #else
        !          3644:    fx = (*fun)(x);
        !          3645: #endif
        !          3646:    qf1 = fx;
        !          3647:    t2 = small_windows + fabs(t); t = t2; dmin = small_windows;
        !          3648: #ifdef DEBUGPRAX
        !          3649:    printf("praxis2 macheps=%14g h=%14g step=%14g small=%14g t=%14g\n",macheps,h, h0,small_windows, t); 
        !          3650: #endif
        !          3651:    if (h < 100.0*t) h = 100.0*t;
        !          3652: #ifdef DEBUGPRAX
        !          3653:    printf("praxis3 macheps=%14g h=%14g step=%14g small=%14g t=%14g\n",macheps,h, h0,small_windows, t); 
        !          3654: #endif
        !          3655:    ldt = h;
        !          3656:    /* for (i=0; i<n; i++) for (j=0; j<n; j++) */
        !          3657:    for (i=1; i<=n; i++) for (j=1; j<=n; j++)
        !          3658:        v[i][j] = (i == j ? 1.0 : 0.0);
        !          3659:    d[1] = 0.0; qd0 = 0.0;
        !          3660:    /* for (i=0; i<n; i++) q1[i] = x[i]; */
        !          3661:    for (i=1; i<=n; i++) q1[i] = x[i];
        !          3662:    if (prin > 1) {
        !          3663:       printf("\n------------- enter function praxis -----------\n");
        !          3664:       printf("... current parameter settings ...\n");
        !          3665:       printf("... scaling ... %20.10e\n", scbd);
        !          3666:       printf("...   tol   ... %20.10e\n", t);
        !          3667:       printf("... maxstep ... %20.10e\n", h);
        !          3668:       printf("...   illc  ... %20u\n", illc);
        !          3669:       printf("...   ktm   ... %20u\n", ktm);
        !          3670:       printf("... maxfun  ... %20u\n", maxfun);
        !          3671:    }
        !          3672:    if (prin) print2();
        !          3673: 
        !          3674: mloop:
        !          3675:     biter++;  /* Added to count the loops */
        !          3676:    /* sf = d[0]; */
        !          3677:    /* s = d[0] = 0.0; */
        !          3678:     printf("\n Big iteration %d \n",biter);
        !          3679:     fprintf(ficlog,"\n Big iteration %d \n",biter);
        !          3680:     sf = d[1];
        !          3681:    s = d[1] = 0.0;
        !          3682: 
        !          3683:    /* minimize along first direction V(*,1) */
        !          3684: #ifdef DEBUGPRAX
        !          3685:    printf("  Minimize along the first direction V(*,1). illc=%d\n",illc);
        !          3686:    /* fprintf(ficlog,"  Minimize along the first direction V(*,1).\n"); */
        !          3687: #endif
        !          3688: #ifdef DEBUGPRAX2
        !          3689:    printf("praxis4 macheps=%14g h=%14g step=%14g small=%14g t=%14g\n",macheps,h, h0,small_windows, t); 
        !          3690: #endif
        !          3691:    /* min(0, 2, &d[0], &s, fx, 0); /\* mac heps not global *\/ */
        !          3692:    minny(1, 2, &d[1], &s, fx, 0); /* mac heps not global */
        !          3693: #ifdef DEBUGPRAX
        !          3694:    printf("praxis5 macheps=%14g h=%14g looks at sign of s=%14g fx=%14g\n",macheps,h, s,fx); 
        !          3695: #endif
        !          3696:    if (s <= 0.0)
        !          3697:       /* for (i=0; i < n; i++) */
        !          3698:       for (i=1; i <= n; i++)
        !          3699:           v[i][1] = -v[i][1];
        !          3700:    /* if ((sf <= (0.9 * d[0])) || ((0.9 * sf) >= d[0])) */
        !          3701:    if ((sf <= (0.9 * d[1])) || ((0.9 * sf) >= d[1]))
        !          3702:       /* for (i=1; i<n; i++) */
        !          3703:       for (i=2; i<=n; i++)
        !          3704:           d[i] = 0.0;
        !          3705:    /* for (k=1; k<n; k++) { */
        !          3706:    for (k=2; k<=n; k++) {
        !          3707:     /*
        !          3708:       The inner loop starts here.
        !          3709:     */
        !          3710: #ifdef DEBUGPRAX
        !          3711:       printf("      The inner loop  here from k=%d to n=%d.\n",k,n);
        !          3712:       /* fprintf(ficlog,"      The inner loop  here from k=%d to n=%d.\n",k,n); */
        !          3713: #endif
        !          3714:        /* for (i=0; i<n; i++) */
        !          3715:        for (i=1; i<=n; i++)
        !          3716:            y[i] = x[i];
        !          3717:        sf = fx;
        !          3718: #ifdef DEBUGPRAX
        !          3719:        printf(" illc=%d and kt=%d and ktm=%d\n", illc, kt, ktm);
        !          3720: #endif
        !          3721:        illc = illc || (kt > 0);
        !          3722: next:
        !          3723:        kl = k;
        !          3724:        df = 0.0;
        !          3725:        if (illc) {        /* random step to get off resolution valley */
        !          3726: #ifdef DEBUGPRAX
        !          3727:          printf("  A random step follows, to avoid resolution valleys.\n");
        !          3728:          matprint("  before rand, vectors:",v,n,n);
        !          3729: #endif
        !          3730:           for (i=1; i<=n; i++) {
        !          3731: #ifdef NOBRENTRAND
        !          3732:            r = drandom();
        !          3733: #else
        !          3734:            seed=i;
        !          3735:            /* seed=i+1; */
        !          3736: #ifdef DEBUGRAND
        !          3737:            printf(" Random seed=%d, brent i=%d",seed,i); /* YYYY i=5 j=1 vji= -0.0001170073 */
        !          3738: #endif
        !          3739:            r = randbrent ( &seed );
        !          3740: #endif
        !          3741: #ifdef DEBUGRAND
        !          3742:            printf(" Random r=%.7g \n",r);
        !          3743: #endif     
        !          3744:             z[i] = (0.1 * ldt + t2 * pow(10.0,(double)kt)) * (r - 0.5);
        !          3745:            /* z[i] = (0.1 * ldt + t2 * pow(10.0,(double)kt)) * (drandom() - 0.5); */
        !          3746: 
        !          3747:            s = z[i];
        !          3748:               for (j=1; j <= n; j++)
        !          3749:                   x[j] += s * v[j][i];
        !          3750:          }
        !          3751: #ifdef DEBUGRAND
        !          3752:          matprint("  after rand, vectors:",v,n,n);
        !          3753: #endif
        !          3754: #ifdef NR_SHIFT
        !          3755:           fx = (*fun)((x-1), n);
        !          3756: #else
        !          3757:           fx = (*fun)(x, n);
        !          3758: #endif
        !          3759:           /* fx = (*func) ( (x-1) ); *//* This for func which is computed from x[1] and not from x[0] xm1=(x-1)*/
        !          3760:           nf++;
        !          3761:        }
        !          3762:        /* minimize along non-conjugate directions */
        !          3763: #ifdef DEBUGPRAX
        !          3764:        printf(" Minimize along the 'non-conjugate' directions (dots printed) V(*,%d),...,V(*,%d).\n",k,n);
        !          3765:        /* fprintf(ficlog," Minimize along the 'non-conjugate' directions  (dots printed) V(*,%d),...,V(*,%d).\n",k,n); */
        !          3766: #endif
        !          3767:        /* for (k2=k; k2<n; k2++) {  /\* Be careful here k2 <=n ? *\/ */
        !          3768:        for (k2=k; k2<=n; k2++) {  /* Be careful here k2 <=n ? */
        !          3769:            sl = fx;
        !          3770:            s = 0.0;
        !          3771: #ifdef DEBUGPRAX
        !          3772:           printf(" Minimize along the 'NON-CONJUGATE' true direction k2=%14d fx=%14.7f\n",k2, fx);
        !          3773:    matprint("  before min vectors:",v,n,n);
        !          3774: #endif
        !          3775:            /* min(k2, 2, &d[k2], &s, fx, 0); */
        !          3776:    /*    jsearch=k2-1; */
        !          3777:    /* min(jsearch, 2, &d[jsearch], &s, fx, 0); */
        !          3778:    minny(k2, 2, &d[k2], &s, fx, 0);
        !          3779: #ifdef DEBUGPRAX
        !          3780:           printf(" . D(%d)=%14.7f d[k2]=%14.7f z[k2]=%14.7f illc=%14d fx=%14.7f\n",k2,d[k2],d[k2],z[k2],illc,fx);
        !          3781: #endif
        !          3782:           if (illc) {
        !          3783:              /* double szk = s + z[k2]; */
        !          3784:               /* s = d[k2] * szk*szk; */
        !          3785:              double szk = s + z[k2];
        !          3786:               s = d[k2] * szk*szk;
        !          3787:           }
        !          3788:            else 
        !          3789:              s = sl - fx;
        !          3790:            /* if (df < s) { */
        !          3791:            if (df <= s) {
        !          3792:               df = s;
        !          3793:               kl = k2;
        !          3794: #ifdef DEBUGPRAX
        !          3795:            printf(" df=%.7g and choose kl=%d \n",df,kl); /* UUUU */
        !          3796: #endif
        !          3797:            }
        !          3798:        } /* end loop k2 */
        !          3799:         /*
        !          3800:          If there was not much improvement on the first try, set
        !          3801:          ILLC = true and start the inner loop again.
        !          3802:        */
        !          3803: #ifdef DEBUGPRAX
        !          3804:        printf(" If there was not much improvement on the first try, set ILLC = true and start the inner loop again. illc=%d\n",illc);
        !          3805:        /* fprintf(ficlog,"  If there was not much improvement on the first try, set ILLC = true and start the inner loop again.\n"); */
        !          3806: #endif
        !          3807:         if (!illc && (df < fabs(100.0 * (macheps) * fx))) {
        !          3808: #ifdef DEBUGPRAX
        !          3809:          printf("\n NO SUCCESS because DF is small, starts inner loop with same K(=%d), fabs(  100.0 * machep(=%.10e) * fx(=%.9e) )=%.9e > df(=%.9e) break illc=%d\n", k, macheps, fx, fabs ( 100.0 * macheps * fx ), df, illc);         
        !          3810: #endif
        !          3811:           illc = 1;
        !          3812:           goto next;
        !          3813:        }
        !          3814: #ifdef DEBUGPRAX
        !          3815:        printf("\n SUCCESS, BREAKS inner loop K(=%d) because DF is big, fabs(  100.0 * machep(=%.10e) * fx(=%.9e) )=%.9e <= df(=%.9e) break illc=%d\n", k, macheps, fx, fabs ( 100.0 * macheps * fx ), df, illc);
        !          3816: #endif
        !          3817:        
        !          3818:        /* if ((k == 1) && (prin > 1)){ /\* be careful k=2 *\/ */
        !          3819:        if ((k == 2) && (prin > 1)){ /* be careful k=2 */
        !          3820: #ifdef DEBUGPRAX
        !          3821:         printf("  NEW D The second difference array d:\n" );
        !          3822:         /* fprintf(ficlog, " NEW D The second difference array d:\n" ); */
        !          3823: #endif
        !          3824:         vecprint(" NEW D The second difference array d:",d,n);
        !          3825:        }
        !          3826:        /* minimize along conjugate directions */ 
        !          3827:        /*
        !          3828:         Minimize along the "conjugate" directions V(*,1),...,V(*,K-1).
        !          3829:        */
        !          3830: #ifdef DEBUGPRAX
        !          3831:       printf("Minimize along the 'conjugate' directions V(*,1),...,V(*,K-1=%d).\n",k-1);
        !          3832:       /* fprintf(ficlog,"Minimize along the 'conjugate' directions V(*,1),...,V(*,K-1=%d).\n",k-1); */
        !          3833: #endif
        !          3834:       /* for (k2=0; k2<=k-1; k2++) { */
        !          3835:       for (k2=1; k2<=k-1; k2++) {
        !          3836:            s = 0.0;
        !          3837:            /* min(k2-1, 2, &d[k2-1], &s, fx, 0); */
        !          3838:            minny(k2, 2, &d[k2], &s, fx, 0);
        !          3839:        }
        !          3840:        f1 = fx;
        !          3841:        fx = sf;
        !          3842:        lds = 0.0;
        !          3843:        /* for (i=0; i<n; i++) { */
        !          3844:        for (i=1; i<=n; i++) {
        !          3845:            sl = x[i];
        !          3846:            x[i] = y[i];
        !          3847:            y[i] = sl - y[i];
        !          3848:            sl = y[i];
        !          3849:            lds = lds + sl*sl;
        !          3850:        }
        !          3851:        lds = sqrt(lds);
        !          3852: #ifdef DEBUGPRAX
        !          3853:        printf("Minimization done 'conjugate', shifted all points, computed lds=%.8f\n",lds);
        !          3854: #endif      
        !          3855:       /*
        !          3856:        Discard direction V(*,kl).
        !          3857:        
        !          3858:        If no random step was taken, V(*,KL) is the "non-conjugate"
        !          3859:        direction along which the greatest improvement was made.
        !          3860:       */
        !          3861:        if (lds > small_windows) {
        !          3862: #ifdef DEBUGPRAX
        !          3863:        printf("lds big enough to throw direction  V(*,kl=%d). If no random step was taken, V(*,KL) is the 'non-conjugate' direction along which the greatest improvement was made.\n",kl);
        !          3864:         matprint("  before shift new conjugate vectors:",v,n,n);
        !          3865: #endif
        !          3866:         for (i=kl-1; i>=k; i--) {
        !          3867:           /* for (j=0; j < n; j++) */
        !          3868:           for (j=1; j <= n; j++)
        !          3869:             /* v[j][i+1] = v[j][i]; */ /* This is v[j][i+1]=v[j][i] i=kl-1 to k */
        !          3870:             v[j][i+1] = v[j][i]; /* This is v[j][i+1]=v[j][i] i=kl-1 to k */
        !          3871:           /* v[j][i+1] = v[j][i]; */
        !          3872:           /* d[i+1] = d[i];*/  /* last  is d[k+1]= d[k] */
        !          3873:           d[i+1] = d[i];  /* last  is d[k]= d[k-1] */
        !          3874:         }
        !          3875: #ifdef DEBUGPRAX
        !          3876:         matprint("  after shift new conjugate vectors:",v,n,n);         
        !          3877: #endif  /* d[k] = 0.0; */
        !          3878:         d[k] = 0.0;
        !          3879:         for (i=1; i <= n; i++)
        !          3880:           v[i][k] = y[i] / lds;
        !          3881:         /* v[i][k] = y[i] / lds; */
        !          3882: #ifdef DEBUGPRAX
        !          3883:         printf("Minimize along the new 'conjugate' direction V(*,k=%d), which is the normalized vector:  (new x) - (old x). d2=%14.7g lds=%.10f\n",k,d[k],lds);
        !          3884:         /* fprintf(ficlog,"Minimize along the new 'conjugate' direction V(*,k=%d), which is the normalized vector:  (new x) - (old x).\n",k); */
        !          3885:     matprint("  before min new conjugate vectors:",v,n,n);      
        !          3886: #endif
        !          3887:         /* min(k-1, 4, &d[k-1], &lds, f1, 1); */
        !          3888:         minny(k, 4, &d[k], &lds, f1, 1);
        !          3889: #ifdef DEBUGPRAX
        !          3890:         printf(" after min d(k)=%d %.7g lds=%14f\n",k,d[k],lds);
        !          3891:    matprint("  after min vectors:",v,n,n);
        !          3892: #endif
        !          3893:         if (lds <= 0.0) {
        !          3894:           lds = -lds;
        !          3895: #ifdef DEBUGPRAX
        !          3896:          printf(" lds changed sign lds=%.14f k=%d\n",lds,k);
        !          3897: #endif    
        !          3898:           /* for (i=0; i<n; i++) */
        !          3899:           /*   v[i][k] = -v[i][k]; */
        !          3900:           for (i=1; i<=n; i++)
        !          3901:             v[i][k] = -v[i][k];
        !          3902:         }
        !          3903:        }
        !          3904:        ldt = ldfac * ldt;
        !          3905:        if (ldt < lds)
        !          3906:           ldt = lds;
        !          3907:        if (prin > 0){
        !          3908: #ifdef DEBUGPRAX
        !          3909:        printf(" k=%d",k);
        !          3910:        /* fprintf(ficlog," k=%d",k); */
        !          3911: #endif
        !          3912:        print2();/* n, x, prin, fx, nf, nl ); */
        !          3913:        }
        !          3914:        t2 = 0.0;
        !          3915:        /* for (i=0; i<n; i++) */
        !          3916:        for (i=1; i<=n; i++)
        !          3917:            t2 += x[i]*x[i];
        !          3918:        t2 = m2 * sqrt(t2) + t;
        !          3919:        /*
        !          3920:        See whether the length of the step taken since starting the
        !          3921:        inner loop exceeds half the tolerance.
        !          3922:       */
        !          3923: #ifdef DEBUGPRAX
        !          3924:        printf("See if step length exceeds half the tolerance.\n"); /* ZZZZZ */
        !          3925:       /* fprintf(ficlog,"See if step length exceeds half the tolerance.\n"); */
        !          3926: #endif
        !          3927:        if (ldt > (0.5 * t2))
        !          3928:           kt = 0;
        !          3929:        else 
        !          3930:          kt++;
        !          3931: #ifdef DEBUGPRAX
        !          3932:        printf("if kt=%d >? ktm=%d gotoL2 loop\n",kt,ktm);
        !          3933: #endif
        !          3934:        if (kt > ktm){
        !          3935:          if ( 0 < prin ){
        !          3936:           /* printf("\nr8vec_print\n X:\n"); */
        !          3937:           /* fprintf(ficlog,"\nr8vec_print\n X:\n"); */
        !          3938:           vecprint ("END  X:", x, n );
        !          3939:         }
        !          3940:            goto fret;
        !          3941:        }
        !          3942: #ifdef DEBUGPRAX
        !          3943:    matprint("  end of L2 loop vectors:",v,n,n);
        !          3944: #endif
        !          3945:        
        !          3946:    }
        !          3947:    /* printf("The inner loop ends here.\n"); */
        !          3948:    /* fprintf(ficlog,"The inner loop ends here.\n"); */
        !          3949:    /*
        !          3950:      The inner loop ends here.
        !          3951:      
        !          3952:      Try quadratic extrapolation in case we are in a curved valley.
        !          3953:    */
        !          3954: #ifdef DEBUGPRAX
        !          3955:    printf("Try QUAD ratic extrapolation in case we are in a curved valley.\n");
        !          3956: #endif
        !          3957:    /*  try quadratic extrapolation in case    */
        !          3958:    /*  we are stuck in a curved valley        */
        !          3959:    quad();
        !          3960:    dn = 0.0;
        !          3961:    /* for (i=0; i<n; i++) { */
        !          3962:    for (i=1; i<=n; i++) {
        !          3963:        d[i] = 1.0 / sqrt(d[i]);
        !          3964:        if (dn < d[i])
        !          3965:           dn = d[i];
        !          3966:    }
        !          3967:    if (prin > 2)
        !          3968:      matprint("  NEW DIRECTIONS vectors:",v,n,n);
        !          3969:    /* for (j=0; j<n; j++) { */
        !          3970:    for (j=1; j<=n; j++) {
        !          3971:        s = d[j] / dn;
        !          3972:        /* for (i=0; i < n; i++) */
        !          3973:        for (i=1; i <= n; i++)
        !          3974:            v[i][j] *= s;
        !          3975:    }
        !          3976:    
        !          3977:    if (scbd > 1.0) {       /* scale axis to reduce condition number */
        !          3978: #ifdef DEBUGPRAX
        !          3979:      printf("Scale the axes to try to reduce the condition number.\n");
        !          3980: #endif
        !          3981:      /* fprintf(ficlog,"Scale the axes to try to reduce the condition number.\n"); */
        !          3982:       s = vlarge;
        !          3983:       /* for (i=0; i<n; i++) { */
        !          3984:       for (i=1; i<=n; i++) {
        !          3985:           sl = 0.0;
        !          3986:           /* for (j=0; j < n; j++) */
        !          3987:           for (j=1; j <= n; j++)
        !          3988:               sl += v[i][j]*v[i][j];
        !          3989:           z[i] = sqrt(sl);
        !          3990:           if (z[i] < m4)
        !          3991:              z[i] = m4;
        !          3992:           if (s > z[i])
        !          3993:              s = z[i];
        !          3994:       }
        !          3995:       /* for (i=0; i<n; i++) { */
        !          3996:       for (i=1; i<=n; i++) {
        !          3997:           sl = s / z[i];
        !          3998:           z[i] = 1.0 / sl;
        !          3999:           if (z[i] > scbd) {
        !          4000:              sl = 1.0 / scbd;
        !          4001:              z[i] = scbd;
        !          4002:           }
        !          4003:       }
        !          4004:    }
        !          4005:    for (i=1; i<=n; i++)
        !          4006:        /* for (j=0; j<=i-1; j++) { */
        !          4007:        /* for (j=1; j<=i; j++) { */
        !          4008:        for (j=1; j<=i-1; j++) {
        !          4009:            s = v[i][j];
        !          4010:            v[i][j] = v[j][i];
        !          4011:            v[j][i] = s;
        !          4012:        }
        !          4013: #ifdef DEBUGPRAX
        !          4014:     printf(" Calculate a new set of orthogonal directions before repeating  the main loop.\n  Transpose V for MINFIT:...\n");
        !          4015: #endif
        !          4016:       /*
        !          4017:       MINFIT finds the singular value decomposition of V.
        !          4018: 
        !          4019:       This gives the principal values and principal directions of the
        !          4020:       approximating quadratic form without squaring the condition number.
        !          4021:     */
        !          4022:  #ifdef DEBUGPRAX
        !          4023:     printf(" MINFIT finds the singular value decomposition of V. \n This gives the principal values and principal directions of the\n  approximating quadratic form without squaring the condition number...\n");
        !          4024: #endif
        !          4025: 
        !          4026:    minfit(n, macheps, vsmall, v, d);
        !          4027:     /* for(i=0; i<n;i++)printf(" %14.7g",d[i]); */
        !          4028:     /* v is overwritten with R. */
        !          4029:     /*
        !          4030:       Unscale the axes.
        !          4031:     */
        !          4032:    if (scbd > 1.0) {
        !          4033: #ifdef DEBUGPRAX
        !          4034:       printf(" Unscale the axes.\n");
        !          4035: #endif
        !          4036:       /* for (i=0; i<n; i++) { */
        !          4037:       for (i=1; i<=n; i++) {
        !          4038:           s = z[i];
        !          4039:           /* for (j=0; j<n; j++) */
        !          4040:           for (j=1; j<=n; j++)
        !          4041:               v[i][j] *= s;
        !          4042:       }
        !          4043:       /* for (i=0; i<n; i++) { */
        !          4044:       for (i=1; i<=n; i++) {
        !          4045:           s = 0.0;
        !          4046:           /* for (j=0; j<n; j++) */
        !          4047:           for (j=1; j<=n; j++)
        !          4048:               s += v[j][i]*v[j][i];
        !          4049:           s = sqrt(s);
        !          4050:           d[i] *= s;
        !          4051:           s = 1.0 / s;
        !          4052:           /* for (j=0; j<n; j++) */
        !          4053:           for (j=1; j<=n; j++)
        !          4054:               v[j][i] *= s;
        !          4055:       }
        !          4056:    }
        !          4057:    /* for (i=0; i<n; i++) { */
        !          4058:    double dni; /* added for compatibility with buckhardt but not brent */
        !          4059:    for (i=1; i<=n; i++) {
        !          4060:      dni=dn*d[i]; /* added for compatibility with buckhardt but not brent */
        !          4061:        if ((dn * d[i]) > large)
        !          4062:           d[i] = vsmall;
        !          4063:        else if ((dn * d[i]) < small_windows)
        !          4064:           d[i] = vlarge;
        !          4065:        else 
        !          4066:         d[i] = 1.0 / dni / dni; /* added for compatibility with buckhardt but not brent */
        !          4067:           /* d[i] = pow(dn * d[i],-2.0); */
        !          4068:    }
        !          4069: #ifdef DEBUGPRAX
        !          4070:    vecprint ("\n Before sort Eigenvalues of a:",d,n );
        !          4071: #endif
        !          4072:    
        !          4073:    sort();               /* the new eigenvalues and eigenvectors */
        !          4074: #ifdef DEBUGPRAX
        !          4075:    vecprint( " After sort the eigenvalues ....\n", d, n);
        !          4076:    matprint( " After sort the eigenvectors....\n", v, n,n);
        !          4077: #endif
        !          4078: #ifdef DEBUGPRAX
        !          4079:     printf("  Determine the smallest eigenvalue.\n");
        !          4080: #endif
        !          4081:    /* dmin = d[n-1]; */
        !          4082:    dmin = d[n];
        !          4083:    if (dmin < small_windows)
        !          4084:       dmin = small_windows;
        !          4085:     /*
        !          4086:      The ratio of the smallest to largest eigenvalue determines whether
        !          4087:      the system is ill conditioned.
        !          4088:    */
        !          4089:   
        !          4090:    /* illc = (m2 * d[0]) > dmin; */
        !          4091:    illc = (m2 * d[1]) > dmin;
        !          4092: #ifdef DEBUGPRAX
        !          4093:     printf("  The ratio of the smallest to largest eigenvalue determines whether\n  the system is ill conditioned=%d . dmin=%.10lf < m2=%.10lf * d[1]=%.10lf \n",illc, dmin,m2, d[1]);
        !          4094: #endif
        !          4095:    
        !          4096:    if ((prin > 2) && (scbd > 1.0))
        !          4097:       vecprint("\n The scale factors:",z,n);
        !          4098:    if (prin > 2)
        !          4099:       vecprint("  Principal values (EIGEN VALUES OF A) of the quadratic form:",d,n);
        !          4100:    if (prin > 2)
        !          4101:      matprint("  The principal axes (EIGEN VECTORS OF A:",v,n, n);
        !          4102: 
        !          4103:    if ((maxfun > 0) && (nf > maxfun)) {
        !          4104:       if (prin)
        !          4105:         printf("\n... maximum number of function calls reached ...\n");
        !          4106:       goto fret;
        !          4107:    }
        !          4108: #ifdef DEBUGPRAX
        !          4109:    printf("Goto main loop\n");
        !          4110: #endif
        !          4111:    goto mloop;          /* back to main loop */
        !          4112: 
        !          4113: fret:
        !          4114:    if (prin > 0) {
        !          4115:          vecprint("\n  X:", x, n);
        !          4116:          /* printf("\n... ChiSq reduced to %20.10e ...\n", fx); */
        !          4117:         /* printf("... after %20u function calls.\n", nf); */
        !          4118:    }
        !          4119:    free_vector(d, 1, n);
        !          4120:    free_vector(y, 1, n);
        !          4121:    free_vector(z, 1, n);
        !          4122:    free_vector(q0, 1, n);
        !          4123:    free_vector(q1, 1, n);
        !          4124:    free_matrix(v, 1, n, 1, n);
        !          4125:    /*   double *d, *y, *z, */
        !          4126:    /* *q0, *q1, **v; */
        !          4127:    free_vector(tflin, 1, n);
        !          4128:    /* double *tflin; /\* used in flin: return (*fun)(tflin, n); *\/ */
        !          4129:    free_vector(e, 1, n);
        !          4130:    /* double *e; /\* used in minfit, don't konw how to free memory and thus made global *\/ */
        !          4131:    
        !          4132:    return(fx);
        !          4133: }
        !          4134: 
        !          4135: /* end praxis gegen */
1.126     brouard  4136: 
                   4137: /*************** powell ************************/
1.162     brouard  4138: /*
1.317     brouard  4139: Minimization of a function func of n variables. Input consists in an initial starting point
                   4140: p[1..n] ; an initial matrix xi[1..n][1..n]  whose columns contain the initial set of di-
                   4141: rections (usually the n unit vectors); and ftol, the fractional tolerance in the function value
                   4142: such that failure to decrease by more than this amount in one iteration signals doneness. On
1.162     brouard  4143: output, p is set to the best point found, xi is the then-current direction set, fret is the returned
                   4144: function value at p , and iter is the number of iterations taken. The routine linmin is used.
                   4145:  */
1.224     brouard  4146: #ifdef LINMINORIGINAL
                   4147: #else
                   4148:        int *flatdir; /* Function is vanishing in that direction */
1.225     brouard  4149:        int flat=0, flatd=0; /* Function is vanishing in that direction */
1.224     brouard  4150: #endif
1.126     brouard  4151: void powell(double p[], double **xi, int n, double ftol, int *iter, double *fret, 
                   4152:            double (*func)(double [])) 
                   4153: { 
1.224     brouard  4154: #ifdef LINMINORIGINAL
                   4155:  void linmin(double p[], double xi[], int n, double *fret, 
1.126     brouard  4156:              double (*func)(double [])); 
1.224     brouard  4157: #else 
1.241     brouard  4158:  void linmin(double p[], double xi[], int n, double *fret,
                   4159:             double (*func)(double []),int *flat); 
1.224     brouard  4160: #endif
1.239     brouard  4161:  int i,ibig,j,jk,k; 
1.126     brouard  4162:   double del,t,*pt,*ptt,*xit;
1.181     brouard  4163:   double directest;
1.126     brouard  4164:   double fp,fptt;
                   4165:   double *xits;
                   4166:   int niterf, itmp;
1.349     brouard  4167:   int Bigter=0, nBigterf=1;
                   4168:   
1.126     brouard  4169:   pt=vector(1,n); 
                   4170:   ptt=vector(1,n); 
                   4171:   xit=vector(1,n); 
                   4172:   xits=vector(1,n); 
                   4173:   *fret=(*func)(p); 
                   4174:   for (j=1;j<=n;j++) pt[j]=p[j]; 
1.338     brouard  4175:   rcurr_time = time(NULL);
                   4176:   fp=(*fret); /* Initialisation */
1.126     brouard  4177:   for (*iter=1;;++(*iter)) { 
                   4178:     ibig=0; 
                   4179:     del=0.0; 
1.157     brouard  4180:     rlast_time=rcurr_time;
1.349     brouard  4181:     rlast_btime=rcurr_time;
1.157     brouard  4182:     /* (void) gettimeofday(&curr_time,&tzp); */
                   4183:     rcurr_time = time(NULL);  
                   4184:     curr_time = *localtime(&rcurr_time);
1.337     brouard  4185:     /* printf("\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout); */
                   4186:     /* fprintf(ficlog,"\nPowell iter=%d -2*LL=%.12f gain=%.12f=%.3g %ld sec. %ld sec.",*iter,*fret, fp-*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog); */
1.359   ! brouard  4187:     /* Bigter=(*iter - *iter % ncovmodel)/ncovmodel +1; /\* Big iteration, i.e on ncovmodel cycle *\/ */
        !          4188:     Bigter=(*iter - (*iter-1) % n)/n +1; /* Big iteration, i.e on ncovmodel cycle */
1.349     brouard  4189:     printf("\nPowell iter=%d Big Iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,Bigter,*fret,fp-*fret, rcurr_time-rlast_time, rcurr_time-rstart_time);fflush(stdout);
                   4190:     fprintf(ficlog,"\nPowell iter=%d Big Iter=%d -2*LL=%.12f gain=%.3lg %ld sec. %ld sec.",*iter,Bigter,*fret,fp-*fret,rcurr_time-rlast_time, rcurr_time-rstart_time); fflush(ficlog);
                   4191:     fprintf(ficrespow,"%d %d %.12f %d",*iter,Bigter, *fret,curr_time.tm_sec-start_time.tm_sec);
1.324     brouard  4192:     fp=(*fret); /* From former iteration or initial value */
1.192     brouard  4193:     for (i=1;i<=n;i++) {
1.126     brouard  4194:       fprintf(ficrespow," %.12lf", p[i]);
                   4195:     }
1.239     brouard  4196:     fprintf(ficrespow,"\n");fflush(ficrespow);
                   4197:     printf("\n#model=  1      +     age ");
                   4198:     fprintf(ficlog,"\n#model=  1      +     age ");
                   4199:     if(nagesqr==1){
1.241     brouard  4200:        printf("  + age*age  ");
                   4201:        fprintf(ficlog,"  + age*age  ");
1.239     brouard  4202:     }
                   4203:     for(j=1;j <=ncovmodel-2;j++){
                   4204:       if(Typevar[j]==0) {
                   4205:        printf("  +      V%d  ",Tvar[j]);
                   4206:        fprintf(ficlog,"  +      V%d  ",Tvar[j]);
                   4207:       }else if(Typevar[j]==1) {
                   4208:        printf("  +    V%d*age ",Tvar[j]);
                   4209:        fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
                   4210:       }else if(Typevar[j]==2) {
                   4211:        printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   4212:        fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.349     brouard  4213:       }else if(Typevar[j]==3) {
                   4214:        printf("  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   4215:        fprintf(ficlog,"  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.239     brouard  4216:       }
                   4217:     }
1.126     brouard  4218:     printf("\n");
1.239     brouard  4219: /*     printf("12   47.0114589    0.0154322   33.2424412    0.3279905    2.3731903  */
                   4220: /* 13  -21.5392400    0.1118147    1.2680506    1.2973408   -1.0663662  */
1.126     brouard  4221:     fprintf(ficlog,"\n");
1.239     brouard  4222:     for(i=1,jk=1; i <=nlstate; i++){
                   4223:       for(k=1; k <=(nlstate+ndeath); k++){
                   4224:        if (k != i) {
                   4225:          printf("%d%d ",i,k);
                   4226:          fprintf(ficlog,"%d%d ",i,k);
                   4227:          for(j=1; j <=ncovmodel; j++){
                   4228:            printf("%12.7f ",p[jk]);
                   4229:            fprintf(ficlog,"%12.7f ",p[jk]);
                   4230:            jk++; 
                   4231:          }
                   4232:          printf("\n");
                   4233:          fprintf(ficlog,"\n");
                   4234:        }
                   4235:       }
                   4236:     }
1.241     brouard  4237:     if(*iter <=3 && *iter >1){
1.157     brouard  4238:       tml = *localtime(&rcurr_time);
                   4239:       strcpy(strcurr,asctime(&tml));
                   4240:       rforecast_time=rcurr_time; 
1.126     brouard  4241:       itmp = strlen(strcurr);
                   4242:       if(strcurr[itmp-1]=='\n')  /* Windows outputs with a new line */
1.241     brouard  4243:        strcurr[itmp-1]='\0';
1.162     brouard  4244:       printf("\nConsidering the time needed for the last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.157     brouard  4245:       fprintf(ficlog,"\nConsidering the time needed for this last iteration #%d: %ld seconds,\n",*iter,rcurr_time-rlast_time);
1.349     brouard  4246:       for(nBigterf=1;nBigterf<=31;nBigterf+=10){
                   4247:        niterf=nBigterf*ncovmodel;
                   4248:        /* rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time); */
1.241     brouard  4249:        rforecast_time=rcurr_time+(niterf-*iter)*(rcurr_time-rlast_time);
                   4250:        forecast_time = *localtime(&rforecast_time);
                   4251:        strcpy(strfor,asctime(&forecast_time));
                   4252:        itmp = strlen(strfor);
                   4253:        if(strfor[itmp-1]=='\n')
                   4254:          strfor[itmp-1]='\0';
1.349     brouard  4255:        printf("   - if your program needs %d BIG iterations (%d iterations) to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",nBigterf, niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
                   4256:        fprintf(ficlog,"   - if your program needs %d BIG iterations  (%d iterations) to converge, convergence will be \n   reached in %s i.e.\n   on %s (current time is %s);\n",nBigterf, niterf, asc_diff_time(rforecast_time-rcurr_time,tmpout),strfor,strcurr);
1.126     brouard  4257:       }
                   4258:     }
1.359   ! brouard  4259:     for (i=1;i<=n;i++) { /* For each direction i, maximisation after loading directions */
        !          4260:       for (j=1;j<=n;j++) xit[j]=xi[j][i]; /* Directions stored from previous iteration with previous scales. xi is not changed but one dim xit  */
        !          4261: 
        !          4262:       fptt=(*fret); /* Computes likelihood for parameters xit */
1.126     brouard  4263: #ifdef DEBUG
1.203     brouard  4264:       printf("fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
                   4265:       fprintf(ficlog, "fret=%lf, %lf, %lf \n", *fret, *fret, *fret);
1.126     brouard  4266: #endif
1.203     brouard  4267:       printf("%d",i);fflush(stdout); /* print direction (parameter) i */
1.126     brouard  4268:       fprintf(ficlog,"%d",i);fflush(ficlog);
1.224     brouard  4269: #ifdef LINMINORIGINAL
1.359   ! brouard  4270:       linmin(p,xit,n,fret,func); /* New point i minimizing in direction xit, i has coordinates p[j].*/
1.357     brouard  4271:       /* xit[j] gives the n coordinates of direction i as input.*/
                   4272:       /* *fret gives the maximum value on direction xit */
1.224     brouard  4273: #else
                   4274:       linmin(p,xit,n,fret,func,&flat); /* Point p[n]. xit[n] has been loaded for direction i as input.*/
1.359   ! brouard  4275:       flatdir[i]=flat; /* Function is vanishing in that direction i */
1.224     brouard  4276: #endif
1.359   ! brouard  4277:       /* Outputs are fret(new point p) p is updated and xit rescaled */
1.188     brouard  4278:       if (fabs(fptt-(*fret)) > del) { /* We are keeping the max gain on each of the n directions */
1.359   ! brouard  4279:        /* because that direction will be replaced unless the gain del is small */
        !          4280:        /* in comparison with the 'probable' gain, mu^2, with the last average direction. */
        !          4281:        /* Unless the n directions are conjugate some gain in the determinant may be obtained */
        !          4282:        /* with the new direction. */
        !          4283:        del=fabs(fptt-(*fret)); 
        !          4284:        ibig=i; 
1.126     brouard  4285:       } 
                   4286: #ifdef DEBUG
                   4287:       printf("%d %.12e",i,(*fret));
                   4288:       fprintf(ficlog,"%d %.12e",i,(*fret));
                   4289:       for (j=1;j<=n;j++) {
1.359   ! brouard  4290:        xits[j]=FMAX(fabs(p[j]-pt[j]),1.e-5);
        !          4291:        printf(" x(%d)=%.12e",j,xit[j]);
        !          4292:        fprintf(ficlog," x(%d)=%.12e",j,xit[j]);
1.126     brouard  4293:       }
                   4294:       for(j=1;j<=n;j++) {
1.359   ! brouard  4295:        printf(" p(%d)=%.12e",j,p[j]);
        !          4296:        fprintf(ficlog," p(%d)=%.12e",j,p[j]);
1.126     brouard  4297:       }
                   4298:       printf("\n");
                   4299:       fprintf(ficlog,"\n");
                   4300: #endif
1.187     brouard  4301:     } /* end loop on each direction i */
1.357     brouard  4302:     /* Convergence test will use last linmin estimation (fret) and compare to former iteration (fp) */ 
1.188     brouard  4303:     /* But p and xit have been updated at the end of linmin, *fret corresponds to new p, xit  */
1.359   ! brouard  4304:     /* New value of last point Pn is not computed, P(n-1) */
1.319     brouard  4305:     for(j=1;j<=n;j++) {
                   4306:       if(flatdir[j] >0){
                   4307:         printf(" p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
                   4308:         fprintf(ficlog," p(%d)=%lf flat=%d ",j,p[j],flatdir[j]);
1.302     brouard  4309:       }
1.319     brouard  4310:       /* printf("\n"); */
                   4311:       /* fprintf(ficlog,"\n"); */
                   4312:     }
1.243     brouard  4313:     /* if (2.0*fabs(fp-(*fret)) <= ftol*(fabs(fp)+fabs(*fret))) { /\* Did we reach enough precision? *\/ */
                   4314:     if (2.0*fabs(fp-(*fret)) <= ftol) { /* Did we reach enough precision? */
1.188     brouard  4315:       /* We could compare with a chi^2. chisquare(0.95,ddl=1)=3.84 */
                   4316:       /* By adding age*age in a model, the new -2LL should be lower and the difference follows a */
                   4317:       /* a chisquare statistics with 1 degree. To be significant at the 95% level, it should have */
                   4318:       /* decreased of more than 3.84  */
                   4319:       /* By adding age*age and V1*age the gain (-2LL) should be more than 5.99 (ddl=2) */
                   4320:       /* By using V1+V2+V3, the gain should be  7.82, compared with basic 1+age. */
                   4321:       /* By adding 10 parameters more the gain should be 18.31 */
1.224     brouard  4322:                        
1.188     brouard  4323:       /* Starting the program with initial values given by a former maximization will simply change */
                   4324:       /* the scales of the directions and the directions, because the are reset to canonical directions */
                   4325:       /* Thus the first calls to linmin will give new points and better maximizations until fp-(*fret) is */
                   4326:       /* under the tolerance value. If the tolerance is very small 1.e-9, it could last long.  */
1.126     brouard  4327: #ifdef DEBUG
                   4328:       int k[2],l;
                   4329:       k[0]=1;
                   4330:       k[1]=-1;
                   4331:       printf("Max: %.12e",(*func)(p));
                   4332:       fprintf(ficlog,"Max: %.12e",(*func)(p));
                   4333:       for (j=1;j<=n;j++) {
                   4334:        printf(" %.12e",p[j]);
                   4335:        fprintf(ficlog," %.12e",p[j]);
                   4336:       }
                   4337:       printf("\n");
                   4338:       fprintf(ficlog,"\n");
                   4339:       for(l=0;l<=1;l++) {
                   4340:        for (j=1;j<=n;j++) {
                   4341:          ptt[j]=p[j]+(p[j]-pt[j])*k[l];
                   4342:          printf("l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   4343:          fprintf(ficlog,"l=%d j=%d ptt=%.12e, xits=%.12e, p=%.12e, xit=%.12e", l,j,ptt[j],xits[j],p[j],xit[j]);
                   4344:        }
                   4345:        printf("func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   4346:        fprintf(ficlog,"func(ptt)=%.12e, deriv=%.12e\n",(*func)(ptt),(ptt[j]-p[j])/((*func)(ptt)-(*func)(p)));
                   4347:       }
                   4348: #endif
                   4349: 
                   4350:       free_vector(xit,1,n); 
                   4351:       free_vector(xits,1,n); 
                   4352:       free_vector(ptt,1,n); 
                   4353:       free_vector(pt,1,n); 
                   4354:       return; 
1.192     brouard  4355:     } /* enough precision */ 
1.240     brouard  4356:     if (*iter == ITMAX*n) nrerror("powell exceeding maximum iterations."); 
1.359   ! brouard  4357:     for (j=1;j<=n;j++) { /* Computes the extrapolated point and value f3, P_0 + 2 (P_n-P_0)=2Pn-P0 and xit is direction Pn-P0 */
1.126     brouard  4358:       ptt[j]=2.0*p[j]-pt[j]; 
1.359   ! brouard  4359:       xit[j]=p[j]-pt[j]; /* Coordinate j of last direction xi_n=P_n-P_0 */
        !          4360: #ifdef DEBUG
        !          4361:       printf("\n %d xit=%12.7g p=%12.7g pt=%12.7g ",j,xit[j],p[j],pt[j]);
        !          4362: #endif
        !          4363:       pt[j]=p[j]; /* New P0 is Pn */
        !          4364:     }
        !          4365: #ifdef DEBUG
        !          4366:     printf("\n");
        !          4367: #endif
1.181     brouard  4368:     fptt=(*func)(ptt); /* f_3 */
1.359   ! brouard  4369: #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in directions until some iterations are done */
1.224     brouard  4370:                if (*iter <=4) {
1.225     brouard  4371: #else
                   4372: #endif
1.224     brouard  4373: #ifdef POWELLNOF3INFF1TEST    /* skips test F3 <F1 */
1.192     brouard  4374: #else
1.161     brouard  4375:     if (fptt < fp) { /* If extrapolated point is better, decide if we keep that new direction or not */
1.192     brouard  4376: #endif
1.162     brouard  4377:       /* (x1 f1=fp), (x2 f2=*fret), (x3 f3=fptt), (xm fm) */
1.161     brouard  4378:       /* From x1 (P0) distance of x2 is at h and x3 is 2h */
1.162     brouard  4379:       /* Let f"(x2) be the 2nd derivative equal everywhere.  */
                   4380:       /* Then the parabolic through (x1,f1), (x2,f2) and (x3,f3) */
                   4381:       /* will reach at f3 = fm + h^2/2 f"m  ; f" = (f1 -2f2 +f3 ) / h**2 */
1.224     brouard  4382:       /* Conditional for using this new direction is that mu^2 = (f1-2f2+f3)^2 /2 < del or directest <0 */
                   4383:       /* also  lamda^2=(f1-f2)^2/mu² is a parasite solution of powell */
                   4384:       /* For powell, inclusion of this average direction is only if t(del)<0 or del inbetween mu^2 and lambda^2 */
1.161     brouard  4385:       /* t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)-del*SQR(fp-fptt); */
1.224     brouard  4386:       /*  Even if f3 <f1, directest can be negative and t >0 */
                   4387:       /* mu² and del² are equal when f3=f1 */
1.359   ! brouard  4388:       /* f3 < f1 : mu² < del <= lambda^2 both test are equivalent */
        !          4389:       /* f3 < f1 : mu² < lambda^2 < del then directtest is negative and powell t is positive */
        !          4390:       /* f3 > f1 : lambda² < mu^2 < del then t is negative and directest >0  */
        !          4391:       /* f3 > f1 : lambda² < del < mu^2 then t is positive and directest >0  */
1.183     brouard  4392: #ifdef NRCORIGINAL
                   4393:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del)- del*SQR(fp-fptt); /* Original Numerical Recipes in C*/
                   4394: #else
                   4395:       t=2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del); /* Intel compiler doesn't work on one line; bug reported */
1.161     brouard  4396:       t= t- del*SQR(fp-fptt);
1.183     brouard  4397: #endif
1.202     brouard  4398:       directest = fp-2.0*(*fret)+fptt - 2.0 * del; /* If delta was big enough we change it for a new direction */
1.161     brouard  4399: #ifdef DEBUG
1.181     brouard  4400:       printf("t1= %.12lf, t2= %.12lf, t=%.12lf  directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
                   4401:       fprintf(ficlog,"t1= %.12lf, t2= %.12lf, t=%.12lf directest=%.12lf\n", 2.0*(fp-2.0*(*fret)+fptt)*SQR(fp-(*fret)-del),del*SQR(fp-fptt),t,directest);
1.161     brouard  4402:       printf("t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   4403:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   4404:       fprintf(ficlog,"t3= %.12lf, t4= %.12lf, t3*= %.12lf, t4*= %.12lf\n",SQR(fp-(*fret)-del),SQR(fp-fptt),
                   4405:             (fp-(*fret)-del)*(fp-(*fret)-del),(fp-fptt)*(fp-fptt));
                   4406:       printf("tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   4407:       fprintf(ficlog, "tt= %.12lf, t=%.12lf\n",2.0*(fp-2.0*(*fret)+fptt)*(fp-(*fret)-del)*(fp-(*fret)-del)-del*(fp-fptt)*(fp-fptt),t);
                   4408: #endif
1.183     brouard  4409: #ifdef POWELLORIGINAL
                   4410:       if (t < 0.0) { /* Then we use it for new direction */
                   4411: #else
1.182     brouard  4412:       if (directest*t < 0.0) { /* Contradiction between both tests */
1.359   ! brouard  4413:        printf("directest= %.12lf (if <0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt,del);
1.192     brouard  4414:         printf("f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
1.224     brouard  4415:         fprintf(ficlog,"directest= %.12lf (if directest<0 or t<0 we include P0 Pn as new direction), t= %.12lf, f1= %.12lf,f2= %.12lf,f3= %.12lf, del= %.12lf\n",directest, t, fp,(*fret),fptt, del);
1.192     brouard  4416:         fprintf(ficlog,"f1-2f2+f3= %.12lf, f1-f2-del= %.12lf, f1-f3= %.12lf\n",fp-2.0*(*fret)+fptt, fp -(*fret) -del, fp-fptt);
                   4417:       } 
1.181     brouard  4418:       if (directest < 0.0) { /* Then we use it for new direction */
                   4419: #endif
1.191     brouard  4420: #ifdef DEBUGLINMIN
1.234     brouard  4421:        printf("Before linmin in direction P%d-P0\n",n);
                   4422:        for (j=1;j<=n;j++) {
                   4423:          printf(" Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   4424:          fprintf(ficlog," Before xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   4425:          if(j % ncovmodel == 0){
                   4426:            printf("\n");
                   4427:            fprintf(ficlog,"\n");
                   4428:          }
                   4429:        }
1.224     brouard  4430: #endif
                   4431: #ifdef LINMINORIGINAL
1.234     brouard  4432:        linmin(p,xit,n,fret,func); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
1.224     brouard  4433: #else
1.234     brouard  4434:        linmin(p,xit,n,fret,func,&flat); /* computes minimum on the extrapolated direction: changes p and rescales xit.*/
                   4435:        flatdir[i]=flat; /* Function is vanishing in that direction i */
1.191     brouard  4436: #endif
1.234     brouard  4437:        
1.191     brouard  4438: #ifdef DEBUGLINMIN
1.234     brouard  4439:        for (j=1;j<=n;j++) { 
                   4440:          printf("After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   4441:          fprintf(ficlog,"After xit[%d]= %12.7f p[%d]= %12.7f",j,xit[j],j,p[j]);
                   4442:          if(j % ncovmodel == 0){
                   4443:            printf("\n");
                   4444:            fprintf(ficlog,"\n");
                   4445:          }
                   4446:        }
1.224     brouard  4447: #endif
1.234     brouard  4448:        for (j=1;j<=n;j++) { 
                   4449:          xi[j][ibig]=xi[j][n]; /* Replace direction with biggest decrease by last direction n */
                   4450:          xi[j][n]=xit[j];      /* and this nth direction by the by the average p_0 p_n */
                   4451:        }
1.224     brouard  4452: #ifdef LINMINORIGINAL
                   4453: #else
1.234     brouard  4454:        for (j=1, flatd=0;j<=n;j++) {
                   4455:          if(flatdir[j]>0)
                   4456:            flatd++;
                   4457:        }
                   4458:        if(flatd >0){
1.255     brouard  4459:          printf("%d flat directions: ",flatd);
                   4460:          fprintf(ficlog,"%d flat directions :",flatd);
1.234     brouard  4461:          for (j=1;j<=n;j++) { 
                   4462:            if(flatdir[j]>0){
                   4463:              printf("%d ",j);
                   4464:              fprintf(ficlog,"%d ",j);
                   4465:            }
                   4466:          }
                   4467:          printf("\n");
                   4468:          fprintf(ficlog,"\n");
1.319     brouard  4469: #ifdef FLATSUP
                   4470:           free_vector(xit,1,n); 
                   4471:           free_vector(xits,1,n); 
                   4472:           free_vector(ptt,1,n); 
                   4473:           free_vector(pt,1,n); 
                   4474:           return;
                   4475: #endif
1.234     brouard  4476:        }
1.191     brouard  4477: #endif
1.234     brouard  4478:        printf("Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   4479:        fprintf(ficlog,"Gaining to use new average direction of P0 P%d instead of biggest increase direction %d :\n",n,ibig);
                   4480:        
1.126     brouard  4481: #ifdef DEBUG
1.234     brouard  4482:        printf("Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   4483:        fprintf(ficlog,"Direction changed  last moved %d in place of ibig=%d, new last is the average:\n",n,ibig);
                   4484:        for(j=1;j<=n;j++){
                   4485:          printf(" %lf",xit[j]);
                   4486:          fprintf(ficlog," %lf",xit[j]);
                   4487:        }
                   4488:        printf("\n");
                   4489:        fprintf(ficlog,"\n");
1.126     brouard  4490: #endif
1.192     brouard  4491:       } /* end of t or directest negative */
1.359   ! brouard  4492:       printf(" Directest is positive, P_n-P_0 does not increase the conjugacy. n=%d\n",n);
        !          4493:       fprintf(ficlog," Directest is positive, P_n-P_0 does not increase the conjugacy. n=%d\n",n);
1.224     brouard  4494: #ifdef POWELLNOF3INFF1TEST
1.192     brouard  4495: #else
1.234     brouard  4496:       } /* end if (fptt < fp)  */
1.192     brouard  4497: #endif
1.225     brouard  4498: #ifdef NODIRECTIONCHANGEDUNTILNITER  /* No change in drections until some iterations are done */
1.234     brouard  4499:     } /*NODIRECTIONCHANGEDUNTILNITER  No change in drections until some iterations are done */
1.225     brouard  4500: #else
1.224     brouard  4501: #endif
1.234     brouard  4502:                } /* loop iteration */ 
1.126     brouard  4503: } 
1.234     brouard  4504:   
1.126     brouard  4505: /**** Prevalence limit (stable or period prevalence)  ****************/
1.234     brouard  4506:   
1.235     brouard  4507:   double **prevalim(double **prlim, int nlstate, double x[], double age, double **oldm, double **savm, double ftolpl, int *ncvyear, int ij, int nres)
1.234     brouard  4508:   {
1.338     brouard  4509:     /**< Computes the prevalence limit in each live state at age x and for covariate combination ij . Nicely done
1.279     brouard  4510:      *   (and selected quantitative values in nres)
                   4511:      *  by left multiplying the unit
                   4512:      *  matrix by transitions matrix until convergence is reached with precision ftolpl 
                   4513:      * Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I
                   4514:      * Wx is row vector: population in state 1, population in state 2, population dead
                   4515:      * or prevalence in state 1, prevalence in state 2, 0
                   4516:      * newm is the matrix after multiplications, its rows are identical at a factor.
                   4517:      * Inputs are the parameter, age, a tolerance for the prevalence limit ftolpl.
                   4518:      * Output is prlim.
                   4519:      * Initial matrix pimij 
                   4520:      */
1.206     brouard  4521:   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
                   4522:   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
                   4523:   /*  0,                   0                  , 1} */
                   4524:   /*
                   4525:    * and after some iteration: */
                   4526:   /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
                   4527:   /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
                   4528:   /*  0,                   0                  , 1} */
                   4529:   /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
                   4530:   /* {0.51571254859325999, 0.4842874514067399, */
                   4531:   /*  0.51326036147820708, 0.48673963852179264} */
                   4532:   /* If we start from prlim again, prlim tends to a constant matrix */
1.234     brouard  4533:     
1.332     brouard  4534:     int i, ii,j,k, k1;
1.209     brouard  4535:   double *min, *max, *meandiff, maxmax,sumnew=0.;
1.145     brouard  4536:   /* double **matprod2(); */ /* test */
1.218     brouard  4537:   double **out, cov[NCOVMAX+1], **pmij(); /* **pmmij is a global variable feeded with oldms etc */
1.126     brouard  4538:   double **newm;
1.209     brouard  4539:   double agefin, delaymax=200. ; /* 100 Max number of years to converge */
1.203     brouard  4540:   int ncvloop=0;
1.288     brouard  4541:   int first=0;
1.169     brouard  4542:   
1.209     brouard  4543:   min=vector(1,nlstate);
                   4544:   max=vector(1,nlstate);
                   4545:   meandiff=vector(1,nlstate);
                   4546: 
1.218     brouard  4547:        /* Starting with matrix unity */
1.126     brouard  4548:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   4549:     for (j=1;j<=nlstate+ndeath;j++){
                   4550:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4551:     }
1.169     brouard  4552:   
                   4553:   cov[1]=1.;
                   4554:   
                   4555:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
1.202     brouard  4556:   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
1.126     brouard  4557:   for(agefin=age-stepm/YEARM; agefin>=age-delaymax; agefin=agefin-stepm/YEARM){
1.202     brouard  4558:     ncvloop++;
1.126     brouard  4559:     newm=savm;
                   4560:     /* Covariates have to be included here again */
1.138     brouard  4561:     cov[2]=agefin;
1.319     brouard  4562:      if(nagesqr==1){
                   4563:       cov[3]= agefin*agefin;
                   4564:      }
1.332     brouard  4565:      /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
                   4566:      /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
                   4567:      for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  4568:        if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */
1.332     brouard  4569:         cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
                   4570:        }else{
                   4571:         cov[2+nagesqr+k1]=precov[nres][k1];
                   4572:        }
                   4573:      }/* End of loop on model equation */
                   4574:      
                   4575: /* Start of old code (replaced by a loop on position in the model equation */
                   4576:     /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only of the model *\/ */
                   4577:     /*                         /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
                   4578:     /*   /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; *\/ */
                   4579:     /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])]; */
                   4580:     /*   /\* model = 1 +age + V1*V3 + age*V1 + V2 + V1 + age*V2 + V3 + V3*age + V1*V2  */
                   4581:     /*    * k                  1        2      3    4      5      6     7        8 */
                   4582:     /*    *cov[]   1    2      3        4      5    6      7      8     9       10 */
                   4583:     /*    *TypeVar[k]          2        1      0    0      1      0     1        2 */
                   4584:     /*    *Dummy[k]            0        2      0    0      2      0     2        0 */
                   4585:     /*    *Tvar[k]             4        1      2    1      2      3     3        5 */
                   4586:     /*    *nsd=3                              (1)  (2)           (3) */
                   4587:     /*    *TvarsD[nsd]                      [1]=2    1             3 */
                   4588:     /*    *TnsdVar                          [2]=2 [1]=1         [3]=3 */
                   4589:     /*    *TvarsDind[nsd](=k)               [1]=3 [2]=4         [3]=6 */
                   4590:     /*    *Tage[]                  [1]=1                  [2]=2      [3]=3 */
                   4591:     /*    *Tvard[]       [1][1]=1                                           [2][1]=1 */
                   4592:     /*    *                   [1][2]=3                                           [2][2]=2 */
                   4593:     /*    *Tprod[](=k)     [1]=1                                              [2]=8 */
                   4594:     /*    *TvarsDp(=Tvar)   [1]=1            [2]=2             [3]=3          [4]=5 */
                   4595:     /*    *TvarD (=k)       [1]=1            [2]=3 [3]=4       [3]=6          [4]=6 */
                   4596:     /*    *TvarsDpType */
                   4597:     /*    *si model= 1 + age + V3 + V2*age + V2 + V3*age */
                   4598:     /*    * nsd=1              (1)           (2) */
                   4599:     /*    *TvarsD[nsd]          3             2 */
                   4600:     /*    *TnsdVar           (3)=1          (2)=2 */
                   4601:     /*    *TvarsDind[nsd](=k)  [1]=1        [2]=3 */
                   4602:     /*    *Tage[]                  [1]=2           [2]= 3    */
                   4603:     /*    *\/ */
                   4604:     /*   /\* cov[++k1]=nbcode[TvarsD[k]][codtabm(ij,k)]; *\/ */
                   4605:     /*   /\* printf("prevalim Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
                   4606:     /* } */
                   4607:     /* for (k=1; k<=nsq;k++) { /\* For single quantitative varying covariates only of the model *\/ */
                   4608:     /*                         /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
                   4609:     /*   /\* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 *\/ */
                   4610:     /*   /\* cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
                   4611:     /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][resultmodel[nres][k1]] */
                   4612:     /*   /\* cov[++k1]=Tqresult[nres][k];  *\/ */
                   4613:     /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
                   4614:     /* } */
                   4615:     /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
                   4616:     /*   if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
                   4617:     /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                   4618:     /*         /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
                   4619:     /*   } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
                   4620:     /*         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
                   4621:     /*         /\* cov[++k1]=Tqresult[nres][k];  *\/ */
                   4622:     /*   } */
                   4623:     /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   4624:     /* } */
                   4625:     /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
                   4626:     /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
                   4627:     /*   if(Dummy[Tvard[k][1]]==0){ */
                   4628:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   4629:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                   4630:     /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   4631:     /*         }else{ */
                   4632:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
                   4633:     /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
                   4634:     /*         } */
                   4635:     /*   }else{ */
                   4636:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   4637:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
                   4638:     /*           /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
                   4639:     /*         }else{ */
                   4640:     /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
                   4641:     /*           /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
                   4642:     /*         } */
                   4643:     /*   } */
                   4644:     /* } /\* End product without age *\/ */
                   4645: /* ENd of old code */
1.138     brouard  4646:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   4647:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   4648:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
1.145     brouard  4649:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   4650:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.319     brouard  4651:     /* age and covariate values of ij are in 'cov' */
1.142     brouard  4652:     out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /* Bug Valgrind */
1.138     brouard  4653:     
1.126     brouard  4654:     savm=oldm;
                   4655:     oldm=newm;
1.209     brouard  4656: 
                   4657:     for(j=1; j<=nlstate; j++){
                   4658:       max[j]=0.;
                   4659:       min[j]=1.;
                   4660:     }
                   4661:     for(i=1;i<=nlstate;i++){
                   4662:       sumnew=0;
                   4663:       for(k=1; k<=ndeath; k++) sumnew+=newm[i][nlstate+k];
                   4664:       for(j=1; j<=nlstate; j++){ 
                   4665:        prlim[i][j]= newm[i][j]/(1-sumnew);
                   4666:        max[j]=FMAX(max[j],prlim[i][j]);
                   4667:        min[j]=FMIN(min[j],prlim[i][j]);
                   4668:       }
                   4669:     }
                   4670: 
1.126     brouard  4671:     maxmax=0.;
1.209     brouard  4672:     for(j=1; j<=nlstate; j++){
                   4673:       meandiff[j]=(max[j]-min[j])/(max[j]+min[j])*2.; /* mean difference for each column */
                   4674:       maxmax=FMAX(maxmax,meandiff[j]);
                   4675:       /* printf(" age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, j, meandiff[j],(int)agefin, j, max[j], j, min[j],maxmax); */
1.169     brouard  4676:     } /* j loop */
1.203     brouard  4677:     *ncvyear= (int)age- (int)agefin;
1.208     brouard  4678:     /* printf("maxmax=%lf maxmin=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, maxmin, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.126     brouard  4679:     if(maxmax < ftolpl){
1.209     brouard  4680:       /* printf("maxmax=%lf ncvloop=%ld, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
                   4681:       free_vector(min,1,nlstate);
                   4682:       free_vector(max,1,nlstate);
                   4683:       free_vector(meandiff,1,nlstate);
1.126     brouard  4684:       return prlim;
                   4685:     }
1.288     brouard  4686:   } /* agefin loop */
1.208     brouard  4687:     /* After some age loop it doesn't converge */
1.288     brouard  4688:   if(!first){
                   4689:     first=1;
                   4690:     printf("Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d). Others in log file only...\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
1.317     brouard  4691:     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
                   4692:   }else if (first >=1 && first <10){
                   4693:     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
                   4694:     first++;
                   4695:   }else if (first ==10){
                   4696:     fprintf(ficlog, "Warning: the stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.d years and %d loops. Try to lower 'ftolpl'. Youngest age to start was %d=(%d-%d).\n", (int)age, maxmax, ftolpl, *ncvyear, ncvloop, (int)(agefin+stepm/YEARM),  (int)(age-stepm/YEARM), (int)delaymax);
                   4697:     printf("Warning: the stable prevalence dit not converge. This warning came too often, IMaCh will stop notifying, even in its log file. Look at the graphs to appreciate the non convergence.\n");
                   4698:     fprintf(ficlog,"Warning: the stable prevalence no convergence; too many cases, giving up noticing, even in log file\n");
                   4699:     first++;
1.288     brouard  4700:   }
                   4701: 
1.359   ! brouard  4702:   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl,
        !          4703:    * (int)age, (int)delaymax, (int)agefin, ncvloop,
        !          4704:    * (int)age-(int)agefin); */
1.209     brouard  4705:   free_vector(min,1,nlstate);
                   4706:   free_vector(max,1,nlstate);
                   4707:   free_vector(meandiff,1,nlstate);
1.208     brouard  4708:   
1.169     brouard  4709:   return prlim; /* should not reach here */
1.126     brouard  4710: }
                   4711: 
1.217     brouard  4712: 
                   4713:  /**** Back Prevalence limit (stable or period prevalence)  ****************/
                   4714: 
1.218     brouard  4715:  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ageminpar, double agemaxpar, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
                   4716:  /* double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, double ftolpl, int *ncvyear, int ij) */
1.242     brouard  4717:   double **bprevalim(double **bprlim, double ***prevacurrent, int nlstate, double x[], double age, double ftolpl, int *ncvyear, int ij, int nres)
1.217     brouard  4718: {
1.264     brouard  4719:   /* Computes the prevalence limit in each live state at age x and for covariate combination ij (<=2**cptcoveff) by left multiplying the unit
1.217     brouard  4720:      matrix by transitions matrix until convergence is reached with precision ftolpl */
                   4721:   /* Wx= Wx-1 Px-1= Wx-2 Px-2 Px-1  = Wx-n Px-n ... Px-2 Px-1 I */
                   4722:   /* Wx is row vector: population in state 1, population in state 2, population dead */
                   4723:   /* or prevalence in state 1, prevalence in state 2, 0 */
                   4724:   /* newm is the matrix after multiplications, its rows are identical at a factor */
                   4725:   /* Initial matrix pimij */
                   4726:   /* {0.85204250825084937, 0.13044499163996345, 0.017512500109187184, */
                   4727:   /* 0.090851990222114765, 0.88271245433047185, 0.026435555447413338, */
                   4728:   /*  0,                   0                  , 1} */
                   4729:   /*
                   4730:    * and after some iteration: */
                   4731:   /* {0.45504275246439968, 0.42731458730878791, 0.11764266022681241, */
                   4732:   /*  0.45201005341706885, 0.42865420071559901, 0.11933574586733192, */
                   4733:   /*  0,                   0                  , 1} */
                   4734:   /* And prevalence by suppressing the deaths are close to identical rows in prlim: */
                   4735:   /* {0.51571254859325999, 0.4842874514067399, */
                   4736:   /*  0.51326036147820708, 0.48673963852179264} */
                   4737:   /* If we start from prlim again, prlim tends to a constant matrix */
                   4738: 
1.359   ! brouard  4739:   int i, ii,j, k1;
1.247     brouard  4740:   int first=0;
1.217     brouard  4741:   double *min, *max, *meandiff, maxmax,sumnew=0.;
                   4742:   /* double **matprod2(); */ /* test */
                   4743:   double **out, cov[NCOVMAX+1], **bmij();
                   4744:   double **newm;
1.218     brouard  4745:   double        **dnewm, **doldm, **dsavm;  /* for use */
                   4746:   double        **oldm, **savm;  /* for use */
                   4747: 
1.217     brouard  4748:   double agefin, delaymax=200. ; /* 100 Max number of years to converge */
                   4749:   int ncvloop=0;
                   4750:   
                   4751:   min=vector(1,nlstate);
                   4752:   max=vector(1,nlstate);
                   4753:   meandiff=vector(1,nlstate);
                   4754: 
1.266     brouard  4755:   dnewm=ddnewms; doldm=ddoldms; dsavm=ddsavms;
                   4756:   oldm=oldms; savm=savms;
                   4757:   
                   4758:   /* Starting with matrix unity */
                   4759:   for (ii=1;ii<=nlstate+ndeath;ii++)
                   4760:     for (j=1;j<=nlstate+ndeath;j++){
1.217     brouard  4761:       oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   4762:     }
                   4763:   
                   4764:   cov[1]=1.;
                   4765:   
                   4766:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   4767:   /* Start at agefin= age, computes the matrix of passage and loops decreasing agefin until convergence is reached */
1.218     brouard  4768:   /* for(agefin=age+stepm/YEARM; agefin<=age+delaymax; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
1.288     brouard  4769:   /* for(agefin=age; agefin<AGESUP; agefin=agefin+stepm/YEARM){ /\* A changer en age *\/ */
                   4770:   for(agefin=age; agefin<FMIN(AGESUP,age+delaymax); agefin=agefin+stepm/YEARM){ /* A changer en age */
1.217     brouard  4771:     ncvloop++;
1.218     brouard  4772:     newm=savm; /* oldm should be kept from previous iteration or unity at start */
                   4773:                /* newm points to the allocated table savm passed by the function it can be written, savm could be reallocated */
1.217     brouard  4774:     /* Covariates have to be included here again */
                   4775:     cov[2]=agefin;
1.319     brouard  4776:     if(nagesqr==1){
1.217     brouard  4777:       cov[3]= agefin*agefin;;
1.319     brouard  4778:     }
1.332     brouard  4779:     for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  4780:       if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */
1.332     brouard  4781:        cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
1.242     brouard  4782:       }else{
1.332     brouard  4783:        cov[2+nagesqr+k1]=precov[nres][k1];
1.242     brouard  4784:       }
1.332     brouard  4785:     }/* End of loop on model equation */
                   4786: 
                   4787: /* Old code */ 
                   4788: 
                   4789:     /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
                   4790:     /*                         /\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\/ */
                   4791:     /*   cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])]; */
                   4792:     /*   /\* printf("bprevalim Dummy agefin=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agefin,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
                   4793:     /* } */
                   4794:     /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
                   4795:     /* /\*   /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
                   4796:     /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
                   4797:     /* /\*   /\\* printf("prevalim ij=%d k=%d Tvar[%d]=%d nbcode=%d cov=%lf codtabm(%d,Tvar[%d])=%d \n",ij,k, k, Tvar[k],nbcode[Tvar[k]][codtabm(ij,Tvar[k])],cov[2+k], ij, k, codtabm(ij,Tvar[k])]); *\\/ *\/ */
                   4798:     /* /\* } *\/ */
                   4799:     /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
                   4800:     /*                         /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
                   4801:     /*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
                   4802:     /*   /\* printf("prevalim Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
                   4803:     /* } */
                   4804:     /* /\* for (k=1; k<=cptcovage;k++) cov[2+nagesqr+Tage[k]]=nbcode[Tvar[k]][codtabm(ij,k)]*cov[2]; *\/ */
                   4805:     /* /\* for (k=1; k<=cptcovprod;k++) /\\* Useless *\\/ *\/ */
                   4806:     /* /\*   /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; *\\/ *\/ */
                   4807:     /* /\*   cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   4808:     /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
                   4809:     /*   /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age *\\/ ERROR ???*\/ */
                   4810:     /*   if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
                   4811:     /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                   4812:     /*   } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
                   4813:     /*         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; */
                   4814:     /*   } */
                   4815:     /*   /\* printf("prevalim Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   4816:     /* } */
                   4817:     /* for (k=1; k<=cptcovprod;k++){ /\* For product without age *\/ */
                   4818:     /*   /\* printf("prevalim Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2]); *\/ */
                   4819:     /*   if(Dummy[Tvard[k][1]]==0){ */
                   4820:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   4821:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                   4822:     /*         }else{ */
                   4823:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
                   4824:     /*         } */
                   4825:     /*   }else{ */
                   4826:     /*         if(Dummy[Tvard[k][2]]==0){ */
                   4827:     /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
                   4828:     /*         }else{ */
                   4829:     /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
                   4830:     /*         } */
                   4831:     /*   } */
                   4832:     /* } */
1.217     brouard  4833:     
                   4834:     /*printf("ij=%d cptcovprod=%d tvar=%d ", ij, cptcovprod, Tvar[1]);*/
                   4835:     /*printf("ij=%d cov[3]=%lf cov[4]=%lf \n",ij, cov[3],cov[4]);*/
                   4836:     /*printf("ij=%d cov[3]=%lf \n",ij, cov[3]);*/
                   4837:     /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   4838:     /* out=matprod2(newm, pmij(pmmij,cov,ncovmodel,x,nlstate),1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); /\* Bug Valgrind *\/ */
1.218     brouard  4839:                /* ij should be linked to the correct index of cov */
                   4840:                /* age and covariate values ij are in 'cov', but we need to pass
                   4841:                 * ij for the observed prevalence at age and status and covariate
                   4842:                 * number:  prevacurrent[(int)agefin][ii][ij]
                   4843:                 */
                   4844:     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, ageminpar, agemaxpar, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
                   4845:     /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij)); /\* Bug Valgrind *\/ */
                   4846:     out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij)); /* Bug Valgrind */
1.268     brouard  4847:     /* if((int)age == 86 || (int)age == 87){ */
1.266     brouard  4848:     /*   printf(" Backward prevalim age=%d agefin=%d \n", (int) age, (int) agefin); */
                   4849:     /*   for(i=1; i<=nlstate+ndeath; i++) { */
                   4850:     /*         printf("%d newm= ",i); */
                   4851:     /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   4852:     /*           printf("%f ",newm[i][j]); */
                   4853:     /*         } */
                   4854:     /*         printf("oldm * "); */
                   4855:     /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   4856:     /*           printf("%f ",oldm[i][j]); */
                   4857:     /*         } */
1.268     brouard  4858:     /*         printf(" bmmij "); */
1.266     brouard  4859:     /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   4860:     /*           printf("%f ",pmmij[i][j]); */
                   4861:     /*         } */
                   4862:     /*         printf("\n"); */
                   4863:     /*   } */
                   4864:     /* } */
1.217     brouard  4865:     savm=oldm;
                   4866:     oldm=newm;
1.266     brouard  4867: 
1.217     brouard  4868:     for(j=1; j<=nlstate; j++){
                   4869:       max[j]=0.;
                   4870:       min[j]=1.;
                   4871:     }
                   4872:     for(j=1; j<=nlstate; j++){ 
                   4873:       for(i=1;i<=nlstate;i++){
1.234     brouard  4874:        /* bprlim[i][j]= newm[i][j]/(1-sumnew); */
                   4875:        bprlim[i][j]= newm[i][j];
                   4876:        max[i]=FMAX(max[i],bprlim[i][j]); /* Max in line */
                   4877:        min[i]=FMIN(min[i],bprlim[i][j]);
1.217     brouard  4878:       }
                   4879:     }
1.218     brouard  4880:                
1.217     brouard  4881:     maxmax=0.;
                   4882:     for(i=1; i<=nlstate; i++){
1.318     brouard  4883:       meandiff[i]=(max[i]-min[i])/(max[i]+min[i])*2.; /* mean difference for each column, could be nan! */
1.217     brouard  4884:       maxmax=FMAX(maxmax,meandiff[i]);
                   4885:       /* printf("Back age= %d meandiff[%d]=%f, agefin=%d max[%d]=%f min[%d]=%f maxmax=%f\n", (int)age, i, meandiff[i],(int)agefin, i, max[i], i, min[i],maxmax); */
1.268     brouard  4886:     } /* i loop */
1.217     brouard  4887:     *ncvyear= -( (int)age- (int)agefin);
1.268     brouard  4888:     /* printf("Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.217     brouard  4889:     if(maxmax < ftolpl){
1.220     brouard  4890:       /* printf("OK Back maxmax=%lf ncvloop=%d, age=%d, agefin=%d ncvyear=%d \n", maxmax, ncvloop, (int)age, (int)agefin, *ncvyear); */
1.217     brouard  4891:       free_vector(min,1,nlstate);
                   4892:       free_vector(max,1,nlstate);
                   4893:       free_vector(meandiff,1,nlstate);
                   4894:       return bprlim;
                   4895:     }
1.288     brouard  4896:   } /* agefin loop */
1.217     brouard  4897:     /* After some age loop it doesn't converge */
1.288     brouard  4898:   if(!first){
1.247     brouard  4899:     first=1;
                   4900:     printf("Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. Others in log file only...\n\
                   4901: Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
                   4902:   }
                   4903:   fprintf(ficlog,"Warning: the back stable prevalence at age %d did not converge with the required precision (%g > ftolpl=%g) within %.0f years. Try to lower 'ftolpl'. \n\
1.217     brouard  4904: Oldest age to start was %d-%d=%d, ncvloop=%d, ncvyear=%d\n", (int)age, maxmax, ftolpl, delaymax, (int)age, (int)delaymax, (int)agefin, ncvloop, *ncvyear);
                   4905:   /* Try to lower 'ftol', for example from 1.e-8 to 6.e-9.\n", ftolpl, (int)age, (int)delaymax, (int)agefin, ncvloop, (int)age-(int)agefin); */
                   4906:   free_vector(min,1,nlstate);
                   4907:   free_vector(max,1,nlstate);
                   4908:   free_vector(meandiff,1,nlstate);
                   4909:   
                   4910:   return bprlim; /* should not reach here */
                   4911: }
                   4912: 
1.126     brouard  4913: /*************** transition probabilities ***************/ 
                   4914: 
                   4915: double **pmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
                   4916: {
1.138     brouard  4917:   /* According to parameters values stored in x and the covariate's values stored in cov,
1.266     brouard  4918:      computes the probability to be observed in state j (after stepm years) being in state i by appying the
1.138     brouard  4919:      model to the ncovmodel covariates (including constant and age).
                   4920:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   4921:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   4922:      ncth covariate in the global vector x is given by the formula:
                   4923:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   4924:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   4925:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   4926:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
1.266     brouard  4927:      Outputs ps[i][j] or probability to be observed in j being in i according to
1.138     brouard  4928:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
1.266     brouard  4929:      Sum on j ps[i][j] should equal to 1.
1.138     brouard  4930:   */
                   4931:   double s1, lnpijopii;
1.126     brouard  4932:   /*double t34;*/
1.164     brouard  4933:   int i,j, nc, ii, jj;
1.126     brouard  4934: 
1.223     brouard  4935:   for(i=1; i<= nlstate; i++){
                   4936:     for(j=1; j<i;j++){
                   4937:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   4938:        /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   4939:        lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   4940:        /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   4941:       }
                   4942:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
1.330     brouard  4943:       /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
1.223     brouard  4944:     }
                   4945:     for(j=i+1; j<=nlstate+ndeath;j++){
                   4946:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   4947:        /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   4948:        lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   4949:        /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                   4950:       }
                   4951:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
1.330     brouard  4952:       /* printf("Debug pmij() i=%d j=%d nc=%d s1=%.17f, lnpijopii=%.17f\n",i,j,nc, s1,lnpijopii); */
1.223     brouard  4953:     }
                   4954:   }
1.218     brouard  4955:   
1.223     brouard  4956:   for(i=1; i<= nlstate; i++){
                   4957:     s1=0;
                   4958:     for(j=1; j<i; j++){
1.339     brouard  4959:       /* printf("debug1 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */
1.223     brouard  4960:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   4961:     }
                   4962:     for(j=i+1; j<=nlstate+ndeath; j++){
1.339     brouard  4963:       /* printf("debug2 %d %d ps=%lf exp(ps)=%lf \n",i,j,ps[i][j],exp(ps[i][j])); */
1.223     brouard  4964:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   4965:     }
                   4966:     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   4967:     ps[i][i]=1./(s1+1.);
                   4968:     /* Computing other pijs */
                   4969:     for(j=1; j<i; j++)
1.325     brouard  4970:       ps[i][j]= exp(ps[i][j])*ps[i][i];/* Bug valgrind */
1.223     brouard  4971:     for(j=i+1; j<=nlstate+ndeath; j++)
                   4972:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   4973:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   4974:   } /* end i */
1.218     brouard  4975:   
1.223     brouard  4976:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   4977:     for(jj=1; jj<= nlstate+ndeath; jj++){
                   4978:       ps[ii][jj]=0;
                   4979:       ps[ii][ii]=1;
                   4980:     }
                   4981:   }
1.294     brouard  4982: 
                   4983: 
1.223     brouard  4984:   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   4985:   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   4986:   /*   printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   4987:   /*   } */
                   4988:   /*   printf("\n "); */
                   4989:   /* } */
                   4990:   /* printf("\n ");printf("%lf ",cov[2]);*/
                   4991:   /*
                   4992:     for(i=1; i<= npar; i++) printf("%f ",x[i]);
1.218     brouard  4993:                goto end;*/
1.266     brouard  4994:   return ps; /* Pointer is unchanged since its call */
1.126     brouard  4995: }
                   4996: 
1.218     brouard  4997: /*************** backward transition probabilities ***************/ 
                   4998: 
                   4999:  /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ageminpar, double agemaxpar, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   5000: /* double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, double ***dnewm, double **doldm, double **dsavm, int ij ) */
                   5001:  double **bmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate,  double ***prevacurrent, int ij )
                   5002: {
1.302     brouard  5003:   /* Computes the backward probability at age agefin, cov[2], and covariate combination 'ij'. In fact cov is already filled and x too.
1.266     brouard  5004:    * Call to pmij(cov and x), call to cross prevalence, sums and inverses, left multiply, and returns in **ps as well as **bmij.
1.222     brouard  5005:    */
1.359   ! brouard  5006:   int ii, j;
1.222     brouard  5007:   
1.359   ! brouard  5008:   double  **pmij();
1.222     brouard  5009:   double sumnew=0.;
1.218     brouard  5010:   double agefin;
1.292     brouard  5011:   double k3=0.; /* constant of the w_x diagonal matrix (in order for B to sum to 1 even for death state) */
1.222     brouard  5012:   double **dnewm, **dsavm, **doldm;
                   5013:   double **bbmij;
                   5014:   
1.218     brouard  5015:   doldm=ddoldms; /* global pointers */
1.222     brouard  5016:   dnewm=ddnewms;
                   5017:   dsavm=ddsavms;
1.318     brouard  5018: 
                   5019:   /* Debug */
                   5020:   /* printf("Bmij ij=%d, cov[2}=%f\n", ij, cov[2]); */
1.222     brouard  5021:   agefin=cov[2];
1.268     brouard  5022:   /* Bx = Diag(w_x) P_x Diag(Sum_i w^i_x p^ij_x */
1.222     brouard  5023:   /* bmij *//* age is cov[2], ij is included in cov, but we need for
1.266     brouard  5024:      the observed prevalence (with this covariate ij) at beginning of transition */
                   5025:   /* dsavm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
1.268     brouard  5026: 
                   5027:   /* P_x */
1.325     brouard  5028:   pmmij=pmij(pmmij,cov,ncovmodel,x,nlstate); /*This is forward probability from agefin to agefin + stepm *//* Bug valgrind */
1.268     brouard  5029:   /* outputs pmmij which is a stochastic matrix in row */
                   5030: 
                   5031:   /* Diag(w_x) */
1.292     brouard  5032:   /* Rescaling the cross-sectional prevalence: Problem with prevacurrent which can be zero */
1.268     brouard  5033:   sumnew=0.;
1.269     brouard  5034:   /*for (ii=1;ii<=nlstate+ndeath;ii++){*/
1.268     brouard  5035:   for (ii=1;ii<=nlstate;ii++){ /* Only on live states */
1.297     brouard  5036:     /* printf(" agefin=%d, ii=%d, ij=%d, prev=%f\n",(int)agefin,ii, ij, prevacurrent[(int)agefin][ii][ij]); */
1.268     brouard  5037:     sumnew+=prevacurrent[(int)agefin][ii][ij];
                   5038:   }
                   5039:   if(sumnew >0.01){  /* At least some value in the prevalence */
                   5040:     for (ii=1;ii<=nlstate+ndeath;ii++){
                   5041:       for (j=1;j<=nlstate+ndeath;j++)
1.269     brouard  5042:        doldm[ii][j]=(ii==j ? prevacurrent[(int)agefin][ii][ij]/sumnew : 0.0);
1.268     brouard  5043:     }
                   5044:   }else{
                   5045:     for (ii=1;ii<=nlstate+ndeath;ii++){
                   5046:       for (j=1;j<=nlstate+ndeath;j++)
                   5047:       doldm[ii][j]=(ii==j ? 1./nlstate : 0.0);
                   5048:     }
                   5049:     /* if(sumnew <0.9){ */
                   5050:     /*   printf("Problem internal bmij B: sum on i wi <0.9: j=%d, sum_i wi=%lf,agefin=%d\n",j,sumnew, (int)agefin); */
                   5051:     /* } */
                   5052:   }
                   5053:   k3=0.0;  /* We put the last diagonal to 0 */
                   5054:   for (ii=nlstate+1;ii<=nlstate+ndeath;ii++){
                   5055:       doldm[ii][ii]= k3;
                   5056:   }
                   5057:   /* End doldm, At the end doldm is diag[(w_i)] */
                   5058:   
1.292     brouard  5059:   /* Left product of this diag matrix by pmmij=Px (dnewm=dsavm*doldm): diag[(w_i)*Px */
                   5060:   bbmij=matprod2(dnewm, doldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, pmmij); /* was a Bug Valgrind */
1.268     brouard  5061: 
1.292     brouard  5062:   /* Diag(Sum_i w^i_x p^ij_x, should be the prevalence at age x+stepm */
1.268     brouard  5063:   /* w1 p11 + w2 p21 only on live states N1./N..*N11/N1. + N2./N..*N21/N2.=(N11+N21)/N..=N.1/N.. */
1.222     brouard  5064:   for (j=1;j<=nlstate+ndeath;j++){
1.268     brouard  5065:     sumnew=0.;
1.222     brouard  5066:     for (ii=1;ii<=nlstate;ii++){
1.266     brouard  5067:       /* sumnew+=dsavm[ii][j]*prevacurrent[(int)agefin][ii][ij]; */
1.268     brouard  5068:       sumnew+=pmmij[ii][j]*doldm[ii][ii]; /* Yes prevalence at beginning of transition */
1.222     brouard  5069:     } /* sumnew is (N11+N21)/N..= N.1/N.. = sum on i of w_i pij */
1.268     brouard  5070:     for (ii=1;ii<=nlstate+ndeath;ii++){
1.222     brouard  5071:        /* if(agefin >= agemaxpar && agefin <= agemaxpar+stepm/YEARM){ */
1.268     brouard  5072:        /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
1.222     brouard  5073:        /* }else if(agefin >= agemaxpar+stepm/YEARM){ */
1.268     brouard  5074:        /*      dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0); */
1.222     brouard  5075:        /* }else */
1.268     brouard  5076:       dsavm[ii][j]=(ii==j ? 1./sumnew : 0.0);
                   5077:     } /*End ii */
                   5078:   } /* End j, At the end dsavm is diag[1/(w_1p1i+w_2 p2i)] for ALL states even if the sum is only for live states */
                   5079: 
1.292     brouard  5080:   ps=matprod2(ps, dnewm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, dsavm); /* was a Bug Valgrind */
1.268     brouard  5081:   /* ps is now diag[w_i] * Px * diag [1/(w_1p1i+w_2 p2i)] */
1.222     brouard  5082:   /* end bmij */
1.266     brouard  5083:   return ps; /*pointer is unchanged */
1.218     brouard  5084: }
1.217     brouard  5085: /*************** transition probabilities ***************/ 
                   5086: 
1.218     brouard  5087: double **bpmij(double **ps, double *cov, int ncovmodel, double *x, int nlstate )
1.217     brouard  5088: {
                   5089:   /* According to parameters values stored in x and the covariate's values stored in cov,
                   5090:      computes the probability to be observed in state j being in state i by appying the
                   5091:      model to the ncovmodel covariates (including constant and age).
                   5092:      lnpijopii=ln(pij/pii)= aij+bij*age+cij*v1+dij*v2+... = sum_nc=1^ncovmodel xij(nc)*cov[nc]
                   5093:      and, according on how parameters are entered, the position of the coefficient xij(nc) of the
                   5094:      ncth covariate in the global vector x is given by the formula:
                   5095:      j<i nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel
                   5096:      j>=i nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel
                   5097:      Computes ln(pij/pii) (lnpijopii), deduces pij/pii by exponentiation,
                   5098:      sums on j different of i to get 1-pii/pii, deduces pii, and then all pij.
                   5099:      Outputs ps[i][j] the probability to be observed in j being in j according to
                   5100:      the values of the covariates cov[nc] and corresponding parameter values x[nc+shiftij]
                   5101:   */
                   5102:   double s1, lnpijopii;
                   5103:   /*double t34;*/
                   5104:   int i,j, nc, ii, jj;
                   5105: 
1.234     brouard  5106:   for(i=1; i<= nlstate; i++){
                   5107:     for(j=1; j<i;j++){
                   5108:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   5109:        /*lnpijopii += param[i][j][nc]*cov[nc];*/
                   5110:        lnpijopii += x[nc+((i-1)*(nlstate+ndeath-1)+j-1)*ncovmodel]*cov[nc];
                   5111:        /*       printf("Int j<i s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   5112:       }
                   5113:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   5114:       /*       printf("s1=%.17e, lnpijopii=%.17e\n",s1,lnpijopii); */
                   5115:     }
                   5116:     for(j=i+1; j<=nlstate+ndeath;j++){
                   5117:       for (nc=1, lnpijopii=0.;nc <=ncovmodel; nc++){
                   5118:        /*lnpijopii += x[(i-1)*nlstate*ncovmodel+(j-2)*ncovmodel+nc+(i-1)*(ndeath-1)*ncovmodel]*cov[nc];*/
                   5119:        lnpijopii += x[nc + ((i-1)*(nlstate+ndeath-1)+(j-2))*ncovmodel]*cov[nc];
                   5120:        /*        printf("Int j>i s1=%.17e, lnpijopii=%.17e %lx %lx\n",s1,lnpijopii,s1,lnpijopii); */
                   5121:       }
                   5122:       ps[i][j]=lnpijopii; /* In fact ln(pij/pii) */
                   5123:     }
                   5124:   }
                   5125:   
                   5126:   for(i=1; i<= nlstate; i++){
                   5127:     s1=0;
                   5128:     for(j=1; j<i; j++){
                   5129:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   5130:       /*printf("debug1 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   5131:     }
                   5132:     for(j=i+1; j<=nlstate+ndeath; j++){
                   5133:       s1+=exp(ps[i][j]); /* In fact sums pij/pii */
                   5134:       /*printf("debug2 %d %d ps=%lf exp(ps)=%lf s1+=%lf\n",i,j,ps[i][j],exp(ps[i][j]),s1); */
                   5135:     }
                   5136:     /* s1= sum_{j<>i} pij/pii=(1-pii)/pii and thus pii is known from s1 */
                   5137:     ps[i][i]=1./(s1+1.);
                   5138:     /* Computing other pijs */
                   5139:     for(j=1; j<i; j++)
                   5140:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   5141:     for(j=i+1; j<=nlstate+ndeath; j++)
                   5142:       ps[i][j]= exp(ps[i][j])*ps[i][i];
                   5143:     /* ps[i][nlstate+1]=1.-s1- ps[i][i];*/ /* Sum should be 1 */
                   5144:   } /* end i */
                   5145:   
                   5146:   for(ii=nlstate+1; ii<= nlstate+ndeath; ii++){
                   5147:     for(jj=1; jj<= nlstate+ndeath; jj++){
                   5148:       ps[ii][jj]=0;
                   5149:       ps[ii][ii]=1;
                   5150:     }
                   5151:   }
1.296     brouard  5152:   /* Added for prevbcast */ /* Transposed matrix too */
1.234     brouard  5153:   for(jj=1; jj<= nlstate+ndeath; jj++){
                   5154:     s1=0.;
                   5155:     for(ii=1; ii<= nlstate+ndeath; ii++){
                   5156:       s1+=ps[ii][jj];
                   5157:     }
                   5158:     for(ii=1; ii<= nlstate; ii++){
                   5159:       ps[ii][jj]=ps[ii][jj]/s1;
                   5160:     }
                   5161:   }
                   5162:   /* Transposition */
                   5163:   for(jj=1; jj<= nlstate+ndeath; jj++){
                   5164:     for(ii=jj; ii<= nlstate+ndeath; ii++){
                   5165:       s1=ps[ii][jj];
                   5166:       ps[ii][jj]=ps[jj][ii];
                   5167:       ps[jj][ii]=s1;
                   5168:     }
                   5169:   }
                   5170:   /* for(ii=1; ii<= nlstate+ndeath; ii++){ */
                   5171:   /*   for(jj=1; jj<= nlstate+ndeath; jj++){ */
                   5172:   /*   printf(" pmij  ps[%d][%d]=%lf ",ii,jj,ps[ii][jj]); */
                   5173:   /*   } */
                   5174:   /*   printf("\n "); */
                   5175:   /* } */
                   5176:   /* printf("\n ");printf("%lf ",cov[2]);*/
                   5177:   /*
                   5178:     for(i=1; i<= npar; i++) printf("%f ",x[i]);
                   5179:     goto end;*/
                   5180:   return ps;
1.217     brouard  5181: }
                   5182: 
                   5183: 
1.126     brouard  5184: /**************** Product of 2 matrices ******************/
                   5185: 
1.145     brouard  5186: double **matprod2(double **out, double **in,int nrl, int nrh, int ncl, int nch, int ncolol, int ncoloh, double **b)
1.126     brouard  5187: {
                   5188:   /* Computes the matrix product of in(1,nrh-nrl+1)(1,nch-ncl+1) times
                   5189:      b(1,nch-ncl+1)(1,ncoloh-ncolol+1) into out(...) */
                   5190:   /* in, b, out are matrice of pointers which should have been initialized 
                   5191:      before: only the contents of out is modified. The function returns
                   5192:      a pointer to pointers identical to out */
1.145     brouard  5193:   int i, j, k;
1.126     brouard  5194:   for(i=nrl; i<= nrh; i++)
1.145     brouard  5195:     for(k=ncolol; k<=ncoloh; k++){
                   5196:       out[i][k]=0.;
                   5197:       for(j=ncl; j<=nch; j++)
                   5198:        out[i][k] +=in[i][j]*b[j][k];
                   5199:     }
1.126     brouard  5200:   return out;
                   5201: }
                   5202: 
                   5203: 
                   5204: /************* Higher Matrix Product ***************/
                   5205: 
1.235     brouard  5206: double ***hpxij(double ***po, int nhstepm, double age, int hstepm, double *x, int nlstate, int stepm, double **oldm, double **savm, int ij, int nres )
1.126     brouard  5207: {
1.336     brouard  5208:   /* Already optimized with precov.
                   5209:      Computes the transition matrix starting at age 'age' and dummies values in each resultline (loop on ij to find the corresponding combination) to over 
1.126     brouard  5210:      'nhstepm*hstepm*stepm' months (i.e. until
                   5211:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying 
                   5212:      nhstepm*hstepm matrices. 
                   5213:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step 
                   5214:      (typically every 2 years instead of every month which is too big 
                   5215:      for the memory).
                   5216:      Model is determined by parameters x and covariates have to be 
                   5217:      included manually here. 
                   5218: 
                   5219:      */
                   5220: 
1.359   ! brouard  5221:   int i, j, d, h, k1;
1.131     brouard  5222:   double **out, cov[NCOVMAX+1];
1.126     brouard  5223:   double **newm;
1.187     brouard  5224:   double agexact;
1.359   ! brouard  5225:   /*double agebegin, ageend;*/
1.126     brouard  5226: 
                   5227:   /* Hstepm could be zero and should return the unit matrix */
                   5228:   for (i=1;i<=nlstate+ndeath;i++)
                   5229:     for (j=1;j<=nlstate+ndeath;j++){
                   5230:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   5231:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   5232:     }
                   5233:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   5234:   for(h=1; h <=nhstepm; h++){
                   5235:     for(d=1; d <=hstepm; d++){
                   5236:       newm=savm;
                   5237:       /* Covariates have to be included here again */
                   5238:       cov[1]=1.;
1.214     brouard  5239:       agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /* age just before transition */
1.187     brouard  5240:       cov[2]=agexact;
1.319     brouard  5241:       if(nagesqr==1){
1.227     brouard  5242:        cov[3]= agexact*agexact;
1.319     brouard  5243:       }
1.330     brouard  5244:       /* Model(2)  V1 + V2 + V3 + V8 + V7*V8 + V5*V6 + V8*age + V3*age + age*age */
                   5245:       /* total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age */
                   5246:       for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  5247:        if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */
1.332     brouard  5248:          cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
                   5249:        }else{
                   5250:          cov[2+nagesqr+k1]=precov[nres][k1];
                   5251:        }
                   5252:       }/* End of loop on model equation */
                   5253:        /* Old code */ 
                   5254: /*     if( Dummy[k1]==0 && Typevar[k1]==0 ){ /\* Single dummy  *\/ */
                   5255: /* /\*    V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) *\/ */
                   5256: /* /\*       for (k=1; k<=nsd;k++) { /\\* For single dummy covariates only *\\/ *\/ */
                   5257: /* /\* /\\* Here comes the value of the covariate 'ij' after renumbering k with single dummy covariates *\\/ *\/ */
                   5258: /*     /\* codtabm(ij,k)  (1 & (ij-1) >> (k-1))+1 *\/ */
                   5259: /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
                   5260: /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
                   5261: /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
                   5262: /* /\*    nsd         1   2                              3 *\/ /\* Counting single dummies covar fixed or tv *\/ */
                   5263: /* /\*TvarsD[nsd]     4   3                              1 *\/ /\* ID of single dummy cova fixed or timevary*\/ */
                   5264: /* /\*TvarsDind[k]    2   3                              9 *\/ /\* position K of single dummy cova *\/ */
                   5265: /*       /\* cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,k)];or [codtabm(ij,TnsdVar[TvarsD[k]] *\/ */
                   5266: /*       cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]]; */
                   5267: /*       /\* printf("hpxij Dummy combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov=%lf codtabm(%d,TnsdVar[TvarsD[%d])=%d \n",ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,TnsdVar[TvarsD[k]])],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,TnsdVar[TvarsD[k]])); *\/ */
                   5268: /*       printf("hpxij Dummy combi=%d k1=%d Tvar[%d]=V%d cov[2+%d+%d]=%lf resultmodel[nres][%d]=%d nres/nresult=%d/%d \n",ij,k1,k1, Tvar[k1],nagesqr,k1,cov[2+nagesqr+k1],k1,resultmodel[nres][k1],nres,nresult); */
                   5269: /*       printf("hpxij new Dummy precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
                   5270: /*     }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /\* Single quantitative variables  *\/ */
                   5271: /*       /\* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline *\/ */
                   5272: /*       cov[2+nagesqr+k1]=Tqresult[nres][resultmodel[nres][k1]];  */
                   5273: /*       /\* for (k=1; k<=nsq;k++) { /\\* For single varying covariates only *\\/ *\/ */
                   5274: /*       /\*   /\\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\\/ *\/ */
                   5275: /*       /\*   cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k]; *\/ */
                   5276: /*       printf("hPxij Quantitative k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
                   5277: /*       printf("hpxij new Quanti precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
                   5278: /*     }else if( Dummy[k1]==2 ){ /\* For dummy with age product *\/ */
                   5279: /*       /\* Tvar[k1] Variable in the age product age*V1 is 1 *\/ */
                   5280: /*       /\* [Tinvresult[nres][V1] is its value in the resultline nres *\/ */
                   5281: /*       cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvar[k1]]*cov[2]; */
                   5282: /*       printf("DhPxij Dummy with age k1=%d Tvar[%d]=%d TinvDoQresult[nres=%d][%d]=%.f age=%.2f,cov[2+%d+%d]=%.3f\n",k1,k1,Tvar[k1],nres,TinvDoQresult[nres][Tvar[k1]],cov[2],nagesqr,k1,cov[2+nagesqr+k1]); */
                   5283: /*       printf("hpxij new Dummy with age product precov[nres=%d][k1=%d]=%.4f * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
                   5284: 
                   5285: /*       /\* cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];    *\/ */
                   5286: /*       /\* for (k=1; k<=cptcovage;k++){ /\\* For product with age V1+V1*age +V4 +age*V3 *\\/ *\/ */
                   5287: /*       /\* 1+2 Tage[1]=2 TVar[2]=1 Dummy[2]=2, Tage[2]=4 TVar[4]=3 Dummy[4]=3 quant*\/ */
                   5288: /*       /\* *\/ */
1.330     brouard  5289: /* /\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\/ */
                   5290: /* /\*    k        1  2   3   4     5    6    7     8    9 *\/ */
                   5291: /* /\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\/ */
1.332     brouard  5292: /* /\*cptcovage=2                   1               2      *\/ */
                   5293: /* /\*Tage[k]=                      5               8      *\/  */
                   5294: /*     }else if( Dummy[k1]==3 ){ /\* For quant with age product *\/ */
                   5295: /*       cov[2+nagesqr+k1]=Tresult[nres][resultmodel[nres][k1]];        */
                   5296: /*       printf("QhPxij Quant with age k1=%d resultmodel[nres][%d]=%d,Tqresult[%d][%d]=%f\n",k1,k1,resultmodel[nres][k1],nres,resultmodel[nres][k1],Tqresult[nres][resultmodel[nres][k1]]); */
                   5297: /*       printf("hpxij new Quanti with age product precov[nres=%d][k1=%d] * age=%.2f\n", nres, k1, precov[nres][k1], cov[2]); */
                   5298: /*       /\* if(Dummy[Tage[k]]== 2){ /\\* dummy with age *\\/ *\/ */
                   5299: /*       /\* /\\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\\* dummy with age *\\\/ *\\/ *\/ */
                   5300: /*       /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\\/ *\/ */
                   5301: /*       /\*   /\\* cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\\/ *\/ */
                   5302: /*       /\*   cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[TvarsD[Tvar[Tage[k]]]])]*cov[2]; *\/ */
                   5303: /*       /\*   printf("hPxij Age combi=%d k=%d cptcovage=%d Tage[%d]=%d Tvar[Tage[%d]]=V%d nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]]])]=%d nres=%d\n",ij,k,cptcovage,k,Tage[k],k,Tvar[Tage[k]], nbcode[Tvar[Tage[k]]][codtabm(ij,TnsdVar[Tvar[Tage[k]]])],nres); *\/ */
                   5304: /*       /\* } else if(Dummy[Tage[k]]== 3){ /\\* quantitative with age *\\/ *\/ */
                   5305: /*       /\*   cov[2+nagesqr+Tage[k]]=Tqresult[nres][k]; *\/ */
                   5306: /*       /\* } *\/ */
                   5307: /*       /\* printf("hPxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   5308: /*     }else if(Typevar[k1]==2 ){ /\* For product (not with age) *\/ */
                   5309: /* /\*       for (k=1; k<=cptcovprod;k++){ /\\*  For product without age *\\/ *\/ */
                   5310: /* /\* /\\*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 *\\/ *\/ */
                   5311: /* /\* /\\*    k        1  2   3   4     5    6    7     8    9 *\\/ *\/ */
                   5312: /* /\* /\\*Tvar[k]=     5  4   3   6     5    2    7     1    1 *\\/ *\/ */
                   5313: /* /\* /\\*cptcovprod=1            1               2            *\\/ *\/ */
                   5314: /* /\* /\\*Tprod[]=                4               7            *\\/ *\/ */
                   5315: /* /\* /\\*Tvard[][1]             4               1             *\\/ *\/ */
                   5316: /* /\* /\\*Tvard[][2]               3               2           *\\/ *\/ */
1.330     brouard  5317:          
1.332     brouard  5318: /*       /\* printf("hPxij Prod ij=%d k=%d  Tprod[%d]=%d Tvard[%d][1]=V%d, Tvard[%d][2]=V%d nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]=%d nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]=%d\n",ij,k,k,Tprod[k], k,Tvard[k][1], k,Tvard[k][2],nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])],nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]); *\/ */
                   5319: /*       /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   5320: /*       cov[2+nagesqr+k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];     */
                   5321: /*       printf("hPxij Prod ij=%d k1=%d  cov[2+%d+%d]=%.5f Tvard[%d][1]=V%d * Tvard[%d][2]=V%d ; TinvDoQresult[nres][Tvardk[k1][1]]=%.4f * TinvDoQresult[nres][Tvardk[k1][1]]=%.4f\n",ij,k1,nagesqr,k1,cov[2+nagesqr+k1],k1,Tvardk[k1][1], k1,Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][1]], TinvDoQresult[nres][Tvardk[k1][2]]); */
                   5322: /*       printf("hpxij new Product no age product precov[nres=%d][k1=%d]=%.4f\n", nres, k1, precov[nres][k1]); */
                   5323: 
                   5324: /*       /\* if(Dummy[Tvardk[k1][1]]==0){ *\/ */
                   5325: /*       /\*   if(Dummy[Tvardk[k1][2]]==0){ /\\* Product of dummies *\\/ *\/ */
                   5326: /*           /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   5327: /*           /\* cov[2+nagesqr+k1]=Tinvresult[nres][Tvardk[k1][1]] * Tinvresult[nres][Tvardk[k1][2]];   *\/ */
                   5328: /*           /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])]; *\/ */
                   5329: /*         /\* }else{ /\\* Product of dummy by quantitative *\\/ *\/ */
                   5330: /*           /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,TnsdVar[Tvard[k][1]])] * Tqresult[nres][k]; *\/ */
                   5331: /*           /\* cov[2+nagesqr+k1]=Tresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]; *\/ */
                   5332: /*       /\*   } *\/ */
                   5333: /*       /\* }else{ /\\* Product of quantitative by...*\\/ *\/ */
                   5334: /*       /\*   if(Dummy[Tvard[k][2]]==0){  /\\* quant by dummy *\\/ *\/ */
                   5335: /*       /\*     /\\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][Tvard[k][1]]; *\\/ *\/ */
                   5336: /*       /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
                   5337: /*       /\*   }else{ /\\* Product of two quant *\\/ *\/ */
                   5338: /*       /\*     /\\* cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\\/ *\/ */
                   5339: /*       /\*     cov[2+nagesqr+k1]=Tqresult[nres][Tinvresult[nres][Tvardk[k1][1]]] * Tqresult[nres][Tinvresult[nres][Tvardk[k1][2]]]  ; *\/ */
                   5340: /*       /\*   } *\/ */
                   5341: /*       /\* }/\\*end of products quantitative *\\/ *\/ */
                   5342: /*     }/\*end of products *\/ */
                   5343:       /* } /\* End of loop on model equation *\/ */
1.235     brouard  5344:       /* for (k=1; k<=cptcovn;k++)  */
                   5345:       /*       cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; */
                   5346:       /* for (k=1; k<=cptcovage;k++) /\* Should start at cptcovn+1 *\/ */
                   5347:       /*       cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; */
                   5348:       /* for (k=1; k<=cptcovprod;k++) /\* Useless because included in cptcovn *\/ */
                   5349:       /*       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; */
1.227     brouard  5350:       
                   5351:       
1.126     brouard  5352:       /*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*/
                   5353:       /*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*/
1.319     brouard  5354:       /* right multiplication of oldm by the current matrix */
1.126     brouard  5355:       out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, 
                   5356:                   pmij(pmmij,cov,ncovmodel,x,nlstate));
1.217     brouard  5357:       /* if((int)age == 70){ */
                   5358:       /*       printf(" Forward hpxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
                   5359:       /*       for(i=1; i<=nlstate+ndeath; i++) { */
                   5360:       /*         printf("%d pmmij ",i); */
                   5361:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   5362:       /*           printf("%f ",pmmij[i][j]); */
                   5363:       /*         } */
                   5364:       /*         printf(" oldm "); */
                   5365:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   5366:       /*           printf("%f ",oldm[i][j]); */
                   5367:       /*         } */
                   5368:       /*         printf("\n"); */
                   5369:       /*       } */
                   5370:       /* } */
1.126     brouard  5371:       savm=oldm;
                   5372:       oldm=newm;
                   5373:     }
                   5374:     for(i=1; i<=nlstate+ndeath; i++)
                   5375:       for(j=1;j<=nlstate+ndeath;j++) {
1.267     brouard  5376:        po[i][j][h]=newm[i][j];
                   5377:        /*if(h==nhstepm) printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]);*/
1.126     brouard  5378:       }
1.128     brouard  5379:     /*printf("h=%d ",h);*/
1.126     brouard  5380:   } /* end h */
1.267     brouard  5381:   /*     printf("\n H=%d \n",h); */
1.126     brouard  5382:   return po;
                   5383: }
                   5384: 
1.217     brouard  5385: /************* Higher Back Matrix Product ***************/
1.218     brouard  5386: /* double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, double **oldm, double **savm, double **dnewm, double **doldm, double **dsavm, int ij ) */
1.267     brouard  5387: double ***hbxij(double ***po, int nhstepm, double age, int hstepm, double *x, double ***prevacurrent, int nlstate, int stepm, int ij, int nres )
1.217     brouard  5388: {
1.332     brouard  5389:   /* For dummy covariates given in each resultline (for historical, computes the corresponding combination ij),
                   5390:      computes the transition matrix starting at age 'age' over
1.217     brouard  5391:      'nhstepm*hstepm*stepm' months (i.e. until
1.218     brouard  5392:      age (in years)  age+nhstepm*hstepm*stepm/12) by multiplying
                   5393:      nhstepm*hstepm matrices.
                   5394:      Output is stored in matrix po[i][j][h] for h every 'hstepm' step
                   5395:      (typically every 2 years instead of every month which is too big
1.217     brouard  5396:      for the memory).
1.218     brouard  5397:      Model is determined by parameters x and covariates have to be
1.266     brouard  5398:      included manually here. Then we use a call to bmij(x and cov)
                   5399:      The addresss of po (p3mat allocated to the dimension of nhstepm) should be stored for output
1.222     brouard  5400:   */
1.217     brouard  5401: 
1.359   ! brouard  5402:   int i, j, d, h, k1;
1.266     brouard  5403:   double **out, cov[NCOVMAX+1], **bmij();
                   5404:   double **newm, ***newmm;
1.217     brouard  5405:   double agexact;
1.359   ! brouard  5406:   /*double agebegin, ageend;*/
1.222     brouard  5407:   double **oldm, **savm;
1.217     brouard  5408: 
1.266     brouard  5409:   newmm=po; /* To be saved */
                   5410:   oldm=oldms;savm=savms; /* Global pointers */
1.217     brouard  5411:   /* Hstepm could be zero and should return the unit matrix */
                   5412:   for (i=1;i<=nlstate+ndeath;i++)
                   5413:     for (j=1;j<=nlstate+ndeath;j++){
                   5414:       oldm[i][j]=(i==j ? 1.0 : 0.0);
                   5415:       po[i][j][0]=(i==j ? 1.0 : 0.0);
                   5416:     }
                   5417:   /* Even if hstepm = 1, at least one multiplication by the unit matrix */
                   5418:   for(h=1; h <=nhstepm; h++){
                   5419:     for(d=1; d <=hstepm; d++){
                   5420:       newm=savm;
                   5421:       /* Covariates have to be included here again */
                   5422:       cov[1]=1.;
1.271     brouard  5423:       agexact=age-( (h-1)*hstepm + (d)  )*stepm/YEARM; /* age just before transition, d or d-1? */
1.217     brouard  5424:       /* agexact=age+((h-1)*hstepm + (d-1))*stepm/YEARM; /\* age just before transition *\/ */
1.318     brouard  5425:         /* Debug */
                   5426:       /* printf("hBxij age=%lf, agexact=%lf\n", age, agexact); */
1.217     brouard  5427:       cov[2]=agexact;
1.332     brouard  5428:       if(nagesqr==1){
1.222     brouard  5429:        cov[3]= agexact*agexact;
1.332     brouard  5430:       }
                   5431:       /** New code */
                   5432:       for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  5433:        if(Typevar[k1]==1 || Typevar[k1]==3){ /* A product with age */
1.332     brouard  5434:          cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
1.325     brouard  5435:        }else{
1.332     brouard  5436:          cov[2+nagesqr+k1]=precov[nres][k1];
1.325     brouard  5437:        }
1.332     brouard  5438:       }/* End of loop on model equation */
                   5439:       /** End of new code */
                   5440:   /** This was old code */
                   5441:       /* for (k=1; k<=nsd;k++){ /\* For single dummy covariates only *\//\* cptcovn error *\/ */
                   5442:       /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,k)]; *\/ */
                   5443:       /* /\* /\\* cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; *\\/ *\/ */
                   5444:       /*       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(ij,TvarsD[k])];/\* Bug valgrind *\/ */
                   5445:       /*   /\* printf("hbxij Dummy agexact=%.0f combi=%d k=%d TvarsD[%d]=V%d TvarsDind[%d]=%d nbcode=%d cov[%d]=%lf codtabm(%d,Tvar[%d])=%d \n",agexact,ij,k, k, TvarsD[k],k,TvarsDind[k],nbcode[TvarsD[k]][codtabm(ij,k)],2+nagesqr+TvarsDind[k],cov[2+nagesqr+TvarsDind[k]], ij, k, codtabm(ij,k)); *\/ */
                   5446:       /* } */
                   5447:       /* for (k=1; k<=nsq;k++) { /\* For single varying covariates only *\/ */
                   5448:       /*       /\* Here comes the value of quantitative after renumbering k with single quantitative covariates *\/ */
                   5449:       /*       cov[2+nagesqr+TvarsQind[k]]=Tqresult[nres][k];  */
                   5450:       /*       /\* printf("hPxij Quantitative k=%d  TvarsQind[%d]=%d, TvarsQ[%d]=V%d,Tqresult[%d][%d]=%f\n",k,k,TvarsQind[k],k,TvarsQ[k],nres,k,Tqresult[nres][k]); *\/ */
                   5451:       /* } */
                   5452:       /* for (k=1; k<=cptcovage;k++){ /\* Should start at cptcovn+1 *\//\* For product with age *\/ */
                   5453:       /*       /\* if(Dummy[Tvar[Tage[k]]]== 2){ /\\* dummy with age error!!!*\\/ *\/ */
                   5454:       /*       if(Dummy[Tage[k]]== 2){ /\* dummy with age *\/ */
                   5455:       /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k]])]*cov[2]; */
                   5456:       /*       } else if(Dummy[Tage[k]]== 3){ /\* quantitative with age *\/ */
                   5457:       /*         cov[2+nagesqr+Tage[k]]=Tqresult[nres][k];  */
                   5458:       /*       } */
                   5459:       /*       /\* printf("hBxij Age combi=%d k=%d  Tage[%d]=V%d Tqresult[%d][%d]=%f\n",ij,k,k,Tage[k],nres,k,Tqresult[nres][k]); *\/ */
                   5460:       /* } */
                   5461:       /* for (k=1; k<=cptcovprod;k++){ /\* Useless because included in cptcovn *\/ */
                   5462:       /*       cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])]*nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])]; */
                   5463:       /*       if(Dummy[Tvard[k][1]]==0){ */
                   5464:       /*         if(Dummy[Tvard[k][2]]==0){ */
                   5465:       /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][1])]; */
                   5466:       /*         }else{ */
                   5467:       /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,Tvard[k][1])] * Tqresult[nres][k]; */
                   5468:       /*         } */
                   5469:       /*       }else{ */
                   5470:       /*         if(Dummy[Tvard[k][2]]==0){ */
                   5471:       /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(ij,Tvard[k][2])] * Tqinvresult[nres][Tvard[k][1]]; */
                   5472:       /*         }else{ */
                   5473:       /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; */
                   5474:       /*         } */
                   5475:       /*       } */
                   5476:       /* }                      */
                   5477:       /* /\*printf("hxi cptcov=%d cptcode=%d\n",cptcov,cptcode);*\/ */
                   5478:       /* /\*printf("h=%d d=%d age=%f cov=%f\n",h,d,age,cov[2]);*\/ */
                   5479: /** End of old code */
                   5480:       
1.218     brouard  5481:       /* Careful transposed matrix */
1.266     brouard  5482:       /* age is in cov[2], prevacurrent at beginning of transition. */
1.218     brouard  5483:       /* out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent, dnewm, doldm, dsavm,ij),\ */
1.222     brouard  5484:       /*                                                1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm); */
1.218     brouard  5485:       out=matprod2(newm, bmij(pmmij,cov,ncovmodel,x,nlstate,prevacurrent,ij),\
1.325     brouard  5486:                   1,nlstate+ndeath,1,nlstate+ndeath,1,nlstate+ndeath, oldm);/* Bug valgrind */
1.217     brouard  5487:       /* if((int)age == 70){ */
                   5488:       /*       printf(" Backward hbxij age=%d agexact=%f d=%d nhstepm=%d hstepm=%d\n", (int) age, agexact, d, nhstepm, hstepm); */
                   5489:       /*       for(i=1; i<=nlstate+ndeath; i++) { */
                   5490:       /*         printf("%d pmmij ",i); */
                   5491:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   5492:       /*           printf("%f ",pmmij[i][j]); */
                   5493:       /*         } */
                   5494:       /*         printf(" oldm "); */
                   5495:       /*         for(j=1;j<=nlstate+ndeath;j++) { */
                   5496:       /*           printf("%f ",oldm[i][j]); */
                   5497:       /*         } */
                   5498:       /*         printf("\n"); */
                   5499:       /*       } */
                   5500:       /* } */
                   5501:       savm=oldm;
                   5502:       oldm=newm;
                   5503:     }
                   5504:     for(i=1; i<=nlstate+ndeath; i++)
                   5505:       for(j=1;j<=nlstate+ndeath;j++) {
1.222     brouard  5506:        po[i][j][h]=newm[i][j];
1.268     brouard  5507:        /* if(h==nhstepm) */
                   5508:        /*   printf("po[%d][%d][%d]=%f ",i,j,h,po[i][j][h]); */
1.217     brouard  5509:       }
1.268     brouard  5510:     /* printf("h=%d %.1f ",h, agexact); */
1.217     brouard  5511:   } /* end h */
1.268     brouard  5512:   /* printf("\n H=%d nhs=%d \n",h, nhstepm); */
1.217     brouard  5513:   return po;
                   5514: }
                   5515: 
                   5516: 
1.162     brouard  5517: #ifdef NLOPT
                   5518:   double  myfunc(unsigned n, const double *p1, double *grad, void *pd){
                   5519:   double fret;
                   5520:   double *xt;
                   5521:   int j;
                   5522:   myfunc_data *d2 = (myfunc_data *) pd;
                   5523: /* xt = (p1-1); */
                   5524:   xt=vector(1,n); 
                   5525:   for (j=1;j<=n;j++)   xt[j]=p1[j-1]; /* xt[1]=p1[0] */
                   5526: 
                   5527:   fret=(d2->function)(xt); /*  p xt[1]@8 is fine */
                   5528:   /* fret=(*func)(xt); /\*  p xt[1]@8 is fine *\/ */
                   5529:   printf("Function = %.12lf ",fret);
                   5530:   for (j=1;j<=n;j++) printf(" %d %.8lf", j, xt[j]); 
                   5531:   printf("\n");
                   5532:  free_vector(xt,1,n);
                   5533:   return fret;
                   5534: }
                   5535: #endif
1.126     brouard  5536: 
                   5537: /*************** log-likelihood *************/
                   5538: double func( double *x)
                   5539: {
1.336     brouard  5540:   int i, ii, j, k, mi, d, kk, kf=0;
1.226     brouard  5541:   int ioffset=0;
1.339     brouard  5542:   int ipos=0,iposold=0,ncovv=0;
                   5543: 
1.340     brouard  5544:   double cotvarv, cotvarvold;
1.226     brouard  5545:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
                   5546:   double **out;
                   5547:   double lli; /* Individual log likelihood */
                   5548:   int s1, s2;
1.228     brouard  5549:   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
1.336     brouard  5550: 
1.226     brouard  5551:   double bbh, survp;
                   5552:   double agexact;
1.336     brouard  5553:   double agebegin, ageend;
1.226     brouard  5554:   /*extern weight */
                   5555:   /* We are differentiating ll according to initial status */
                   5556:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   5557:   /*for(i=1;i<imx;i++) 
                   5558:     printf(" %d\n",s[4][i]);
                   5559:   */
1.162     brouard  5560: 
1.226     brouard  5561:   ++countcallfunc;
1.162     brouard  5562: 
1.226     brouard  5563:   cov[1]=1.;
1.126     brouard  5564: 
1.226     brouard  5565:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.224     brouard  5566:   ioffset=0;
1.226     brouard  5567:   if(mle==1){
                   5568:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   5569:       /* Computes the values of the ncovmodel covariates of the model
                   5570:         depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
                   5571:         Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   5572:         to be observed in j being in i according to the model.
                   5573:       */
1.243     brouard  5574:       ioffset=2+nagesqr ;
1.233     brouard  5575:    /* Fixed */
1.345     brouard  5576:       for (kf=1; kf<=ncovf;kf++){ /* For each fixed covariate dummy or quant or prod */
1.319     brouard  5577:        /* # V1=sex, V2=raedyrs Quant Fixed, State=livarnb4..livarnb11, V3=iadl4..iald11, V4=adlw4..adlw11, V5=r4bmi..r11bmi */
                   5578:         /*             V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   5579:        /*  TvarF[1]=Tvar[6]=2,  TvarF[2]=Tvar[7]=7, TvarF[3]=Tvar[9]=1  ID of fixed covariates or product V2, V1*V2, V1 */
1.320     brouard  5580:         /* TvarFind;  TvarFind[1]=6,  TvarFind[2]=7, TvarFind[3]=9 *//* Inverse V2(6) is first fixed (single or prod)  */
1.336     brouard  5581:        cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (TvarFind[1]=6)*/
1.319     brouard  5582:        /* V1*V2 (7)  TvarFind[2]=7, TvarFind[3]=9 */
1.234     brouard  5583:       }
1.226     brouard  5584:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
1.319     brouard  5585:         is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
1.226     brouard  5586:         has been calculated etc */
                   5587:       /* For an individual i, wav[i] gives the number of effective waves */
                   5588:       /* We compute the contribution to Likelihood of each effective transition
                   5589:         mw[mi][i] is real wave of the mi th effectve wave */
                   5590:       /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
                   5591:         s2=s[mw[mi+1][i]][i];
1.341     brouard  5592:         And the iv th varying covariate is the cotvar[mw[mi+1][i]][iv][i] because now is moved after nvocol+nqv 
1.226     brouard  5593:         But if the variable is not in the model TTvar[iv] is the real variable effective in the model:
                   5594:         meaning that decodemodel should be used cotvar[mw[mi+1][i]][TTvar[iv]][i]
                   5595:       */
1.336     brouard  5596:       for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
                   5597:       /* Wave varying (but not age varying) */
1.339     brouard  5598:        /* for(k=1; k <= ncovv ; k++){ /\* Varying  covariates in the model (single and product but no age )"V5+V4+V3+V4*V3+V5*age+V1*age+V1" +TvarVind 1,2,3,4(V4*V3)  Tvar[1]@7{5, 4, 3, 6, 5, 1, 1 ; 6 because the created covar is after V5 and is 6, minus 1+1, 3,2,1,4 positions in cotvar*\/ */
                   5599:        /*   /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; but where is the crossproduct? *\/ */
                   5600:        /*   cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */
                   5601:        /* } */
1.340     brouard  5602:        for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying  covariates (single and product but no age )*/
                   5603:          itv=TvarVV[ncovv]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate */
                   5604:          ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
1.345     brouard  5605:          if(FixedV[itv]!=0){ /* Not a fixed covariate */
1.341     brouard  5606:            cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i];  /* cotvar[wav][ncovcol+nqv+iv][i] */
1.340     brouard  5607:          }else{ /* fixed covariate */
1.345     brouard  5608:            cotvarv=covar[itv][i];  /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */
1.340     brouard  5609:          }
1.339     brouard  5610:          if(ipos!=iposold){ /* Not a product or first of a product */
1.340     brouard  5611:            cotvarvold=cotvarv;
                   5612:          }else{ /* A second product */
                   5613:            cotvarv=cotvarv*cotvarvold;
1.339     brouard  5614:          }
                   5615:          iposold=ipos;
1.340     brouard  5616:          cov[ioffset+ipos]=cotvarv;
1.234     brouard  5617:        }
1.339     brouard  5618:        /* for products of time varying to be done */
1.234     brouard  5619:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   5620:          for (j=1;j<=nlstate+ndeath;j++){
                   5621:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5622:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5623:          }
1.336     brouard  5624: 
                   5625:        agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
                   5626:        ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
1.234     brouard  5627:        for(d=0; d<dh[mi][i]; d++){
                   5628:          newm=savm;
                   5629:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   5630:          cov[2]=agexact;
                   5631:          if(nagesqr==1)
                   5632:            cov[3]= agexact*agexact;  /* Should be changed here */
1.349     brouard  5633:          /* for (kk=1; kk<=cptcovage;kk++) { */
                   5634:          /*   if(!FixedV[Tvar[Tage[kk]]]) */
                   5635:          /*     cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /\* Tage[kk] gives the data-covariate associated with age *\/ */
                   5636:          /*   else */
                   5637:          /*     cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/  */
                   5638:          /* } */
                   5639:          for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying  covariates with age including individual from products, product is computed dynamically */
                   5640:            itv=TvarAVVA[ncovva]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm  */
                   5641:            ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
                   5642:            if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */
                   5643:              cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i];  /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ 
                   5644:            }else{ /* fixed covariate */
                   5645:              cotvarv=covar[itv][i];  /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */
                   5646:            }
                   5647:            if(ipos!=iposold){ /* Not a product or first of a product */
                   5648:              cotvarvold=cotvarv;
                   5649:            }else{ /* A second product */
                   5650:              cotvarv=cotvarv*cotvarvold;
                   5651:            }
                   5652:            iposold=ipos;
                   5653:            cov[ioffset+ipos]=cotvarv*agexact;
                   5654:            /* For products */
1.234     brouard  5655:          }
1.349     brouard  5656:          
1.234     brouard  5657:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   5658:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   5659:          savm=oldm;
                   5660:          oldm=newm;
                   5661:        } /* end mult */
                   5662:        
                   5663:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   5664:        /* But now since version 0.9 we anticipate for bias at large stepm.
                   5665:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   5666:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   5667:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   5668:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   5669:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   5670:         * probability in order to take into account the bias as a fraction of the way
1.231     brouard  5671:                                 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   5672:                                 * -stepm/2 to stepm/2 .
                   5673:                                 * For stepm=1 the results are the same as for previous versions of Imach.
                   5674:                                 * For stepm > 1 the results are less biased than in previous versions. 
                   5675:                                 */
1.234     brouard  5676:        s1=s[mw[mi][i]][i];
                   5677:        s2=s[mw[mi+1][i]][i];
                   5678:        bbh=(double)bh[mi][i]/(double)stepm; 
                   5679:        /* bias bh is positive if real duration
                   5680:         * is higher than the multiple of stepm and negative otherwise.
                   5681:         */
                   5682:        /* lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2]));*/
                   5683:        if( s2 > nlstate){ 
                   5684:          /* i.e. if s2 is a death state and if the date of death is known 
                   5685:             then the contribution to the likelihood is the probability to 
                   5686:             die between last step unit time and current  step unit time, 
                   5687:             which is also equal to probability to die before dh 
                   5688:             minus probability to die before dh-stepm . 
                   5689:             In version up to 0.92 likelihood was computed
                   5690:             as if date of death was unknown. Death was treated as any other
                   5691:             health state: the date of the interview describes the actual state
                   5692:             and not the date of a change in health state. The former idea was
                   5693:             to consider that at each interview the state was recorded
                   5694:             (healthy, disable or death) and IMaCh was corrected; but when we
                   5695:             introduced the exact date of death then we should have modified
                   5696:             the contribution of an exact death to the likelihood. This new
                   5697:             contribution is smaller and very dependent of the step unit
                   5698:             stepm. It is no more the probability to die between last interview
                   5699:             and month of death but the probability to survive from last
                   5700:             interview up to one month before death multiplied by the
                   5701:             probability to die within a month. Thanks to Chris
                   5702:             Jackson for correcting this bug.  Former versions increased
                   5703:             mortality artificially. The bad side is that we add another loop
                   5704:             which slows down the processing. The difference can be up to 10%
                   5705:             lower mortality.
                   5706:          */
                   5707:          /* If, at the beginning of the maximization mostly, the
                   5708:             cumulative probability or probability to be dead is
                   5709:             constant (ie = 1) over time d, the difference is equal to
                   5710:             0.  out[s1][3] = savm[s1][3]: probability, being at state
                   5711:             s1 at precedent wave, to be dead a month before current
                   5712:             wave is equal to probability, being at state s1 at
                   5713:             precedent wave, to be dead at mont of the current
                   5714:             wave. Then the observed probability (that this person died)
                   5715:             is null according to current estimated parameter. In fact,
                   5716:             it should be very low but not zero otherwise the log go to
                   5717:             infinity.
                   5718:          */
1.183     brouard  5719: /* #ifdef INFINITYORIGINAL */
                   5720: /*         lli=log(out[s1][s2] - savm[s1][s2]); */
                   5721: /* #else */
                   5722: /*       if ((out[s1][s2] - savm[s1][s2]) < mytinydouble)  */
                   5723: /*         lli=log(mytinydouble); */
                   5724: /*       else */
                   5725: /*         lli=log(out[s1][s2] - savm[s1][s2]); */
                   5726: /* #endif */
1.226     brouard  5727:          lli=log(out[s1][s2] - savm[s1][s2]);
1.216     brouard  5728:          
1.226     brouard  5729:        } else if  ( s2==-1 ) { /* alive */
                   5730:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   5731:            survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   5732:          /*survp += out[s1][j]; */
                   5733:          lli= log(survp);
                   5734:        }
1.336     brouard  5735:        /* else if  (s2==-4) {  */
                   5736:        /*   for (j=3,survp=0. ; j<=nlstate; j++)   */
                   5737:        /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
                   5738:        /*   lli= log(survp);  */
                   5739:        /* }  */
                   5740:        /* else if  (s2==-5) {  */
                   5741:        /*   for (j=1,survp=0. ; j<=2; j++)   */
                   5742:        /*     survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j]; */
                   5743:        /*   lli= log(survp);  */
                   5744:        /* }  */
1.226     brouard  5745:        else{
                   5746:          lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   5747:          /*  lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2]));*/ /* linear interpolation */
                   5748:        } 
                   5749:        /*lli=(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]);*/
                   5750:        /*if(lli ==000.0)*/
1.340     brouard  5751:        /* printf("num[i], i=%d, bbh= %f lli=%f savm=%f out=%f %d\n",bbh,lli,savm[s1][s2], out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]],i); */
1.226     brouard  5752:        ipmx +=1;
                   5753:        sw += weight[i];
                   5754:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   5755:        /* if (lli < log(mytinydouble)){ */
                   5756:        /*   printf("Close to inf lli = %.10lf <  %.10lf i= %d mi= %d, s[%d][i]=%d s1=%d s2=%d\n", lli,log(mytinydouble), i, mi,mw[mi][i], s[mw[mi][i]][i], s1,s2); */
                   5757:        /*   fprintf(ficlog,"Close to inf lli = %.10lf i= %d mi= %d, s[mw[mi][i]][i]=%d\n", lli, i, mi,s[mw[mi][i]][i]); */
                   5758:        /* } */
                   5759:       } /* end of wave */
                   5760:     } /* end of individual */
                   5761:   }  else if(mle==2){
                   5762:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.319     brouard  5763:       ioffset=2+nagesqr ;
                   5764:       for (k=1; k<=ncovf;k++)
                   5765:        cov[ioffset+TvarFind[k]]=covar[Tvar[TvarFind[k]]][i];
1.226     brouard  5766:       for(mi=1; mi<= wav[i]-1; mi++){
1.319     brouard  5767:        for(k=1; k <= ncovv ; k++){
1.341     brouard  5768:          cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
1.319     brouard  5769:        }
1.226     brouard  5770:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   5771:          for (j=1;j<=nlstate+ndeath;j++){
                   5772:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5773:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5774:          }
                   5775:        for(d=0; d<=dh[mi][i]; d++){
                   5776:          newm=savm;
                   5777:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   5778:          cov[2]=agexact;
                   5779:          if(nagesqr==1)
                   5780:            cov[3]= agexact*agexact;
                   5781:          for (kk=1; kk<=cptcovage;kk++) {
                   5782:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   5783:          }
                   5784:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   5785:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   5786:          savm=oldm;
                   5787:          oldm=newm;
                   5788:        } /* end mult */
                   5789:       
                   5790:        s1=s[mw[mi][i]][i];
                   5791:        s2=s[mw[mi+1][i]][i];
                   5792:        bbh=(double)bh[mi][i]/(double)stepm; 
                   5793:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*(savm[s1][s2])):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
                   5794:        ipmx +=1;
                   5795:        sw += weight[i];
                   5796:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   5797:       } /* end of wave */
                   5798:     } /* end of individual */
                   5799:   }  else if(mle==3){  /* exponential inter-extrapolation */
                   5800:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   5801:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   5802:       for(mi=1; mi<= wav[i]-1; mi++){
                   5803:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   5804:          for (j=1;j<=nlstate+ndeath;j++){
                   5805:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5806:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5807:          }
                   5808:        for(d=0; d<dh[mi][i]; d++){
                   5809:          newm=savm;
                   5810:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   5811:          cov[2]=agexact;
                   5812:          if(nagesqr==1)
                   5813:            cov[3]= agexact*agexact;
                   5814:          for (kk=1; kk<=cptcovage;kk++) {
1.340     brouard  5815:            if(!FixedV[Tvar[Tage[kk]]])
                   5816:              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
                   5817:            else
1.341     brouard  5818:              cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
1.226     brouard  5819:          }
                   5820:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   5821:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   5822:          savm=oldm;
                   5823:          oldm=newm;
                   5824:        } /* end mult */
                   5825:       
                   5826:        s1=s[mw[mi][i]][i];
                   5827:        s2=s[mw[mi+1][i]][i];
                   5828:        bbh=(double)bh[mi][i]/(double)stepm; 
                   5829:        lli= (savm[s1][s2]>1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
                   5830:        ipmx +=1;
                   5831:        sw += weight[i];
                   5832:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   5833:       } /* end of wave */
                   5834:     } /* end of individual */
                   5835:   }else if (mle==4){  /* ml=4 no inter-extrapolation */
                   5836:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   5837:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   5838:       for(mi=1; mi<= wav[i]-1; mi++){
                   5839:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   5840:          for (j=1;j<=nlstate+ndeath;j++){
                   5841:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5842:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5843:          }
                   5844:        for(d=0; d<dh[mi][i]; d++){
                   5845:          newm=savm;
                   5846:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   5847:          cov[2]=agexact;
                   5848:          if(nagesqr==1)
                   5849:            cov[3]= agexact*agexact;
                   5850:          for (kk=1; kk<=cptcovage;kk++) {
                   5851:            cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact;
                   5852:          }
1.126     brouard  5853:        
1.226     brouard  5854:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   5855:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   5856:          savm=oldm;
                   5857:          oldm=newm;
                   5858:        } /* end mult */
                   5859:       
                   5860:        s1=s[mw[mi][i]][i];
                   5861:        s2=s[mw[mi+1][i]][i];
                   5862:        if( s2 > nlstate){ 
                   5863:          lli=log(out[s1][s2] - savm[s1][s2]);
                   5864:        } else if  ( s2==-1 ) { /* alive */
                   5865:          for (j=1,survp=0. ; j<=nlstate; j++) 
                   5866:            survp += out[s1][j];
                   5867:          lli= log(survp);
                   5868:        }else{
                   5869:          lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   5870:        }
                   5871:        ipmx +=1;
                   5872:        sw += weight[i];
                   5873:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.343     brouard  5874:        /* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
1.226     brouard  5875:       } /* end of wave */
                   5876:     } /* end of individual */
                   5877:   }else{  /* ml=5 no inter-extrapolation no jackson =0.8a */
                   5878:     for (i=1,ipmx=0, sw=0.; i<=imx; i++){
                   5879:       for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i];
                   5880:       for(mi=1; mi<= wav[i]-1; mi++){
                   5881:        for (ii=1;ii<=nlstate+ndeath;ii++)
                   5882:          for (j=1;j<=nlstate+ndeath;j++){
                   5883:            oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5884:            savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   5885:          }
                   5886:        for(d=0; d<dh[mi][i]; d++){
                   5887:          newm=savm;
                   5888:          agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;
                   5889:          cov[2]=agexact;
                   5890:          if(nagesqr==1)
                   5891:            cov[3]= agexact*agexact;
                   5892:          for (kk=1; kk<=cptcovage;kk++) {
1.340     brouard  5893:            if(!FixedV[Tvar[Tage[kk]]])
                   5894:              cov[Tage[kk]+2+nagesqr]=covar[Tvar[Tage[kk]]][i]*agexact; /* Tage[kk] gives the data-covariate associated with age */
                   5895:            else
1.341     brouard  5896:              cov[Tage[kk]+2+nagesqr]=cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]*agexact; /* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
1.226     brouard  5897:          }
1.126     brouard  5898:        
1.226     brouard  5899:          out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   5900:                       1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   5901:          savm=oldm;
                   5902:          oldm=newm;
                   5903:        } /* end mult */
                   5904:       
                   5905:        s1=s[mw[mi][i]][i];
                   5906:        s2=s[mw[mi+1][i]][i];
                   5907:        lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]); /* Original formula */
                   5908:        ipmx +=1;
                   5909:        sw += weight[i];
                   5910:        ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
                   5911:        /*printf("i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],out[s1][s2],savm[s1][s2]);*/
                   5912:       } /* end of wave */
                   5913:     } /* end of individual */
                   5914:   } /* End of if */
                   5915:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
                   5916:   /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
                   5917:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   5918:   return -l;
1.126     brouard  5919: }
                   5920: 
                   5921: /*************** log-likelihood *************/
                   5922: double funcone( double *x)
                   5923: {
1.228     brouard  5924:   /* Same as func but slower because of a lot of printf and if */
1.359   ! brouard  5925:   int i, ii, j, k, mi, d, kv=0, kf=0;
1.228     brouard  5926:   int ioffset=0;
1.339     brouard  5927:   int ipos=0,iposold=0,ncovv=0;
                   5928: 
1.340     brouard  5929:   double cotvarv, cotvarvold;
1.131     brouard  5930:   double l, ll[NLSTATEMAX+1], cov[NCOVMAX+1];
1.126     brouard  5931:   double **out;
                   5932:   double lli; /* Individual log likelihood */
                   5933:   double llt;
                   5934:   int s1, s2;
1.228     brouard  5935:   int iv=0, iqv=0, itv=0, iqtv=0 ; /* Index of varying covariate, fixed quantitative cov, time varying covariate, quantitative time varying covariate */
                   5936: 
1.126     brouard  5937:   double bbh, survp;
1.187     brouard  5938:   double agexact;
1.214     brouard  5939:   double agebegin, ageend;
1.126     brouard  5940:   /*extern weight */
                   5941:   /* We are differentiating ll according to initial status */
                   5942:   /*  for (i=1;i<=npar;i++) printf("%f ", x[i]);*/
                   5943:   /*for(i=1;i<imx;i++) 
                   5944:     printf(" %d\n",s[4][i]);
                   5945:   */
                   5946:   cov[1]=1.;
                   5947: 
                   5948:   for(k=1; k<=nlstate; k++) ll[k]=0.;
1.224     brouard  5949:   ioffset=0;
                   5950:   for (i=1,ipmx=0, sw=0.; i<=imx; i++){
1.336     brouard  5951:     /* Computes the values of the ncovmodel covariates of the model
                   5952:        depending if the covariates are fixed or varying (age dependent) and stores them in cov[]
                   5953:        Then computes with function pmij which return a matrix p[i][j] giving the elementary probability
                   5954:        to be observed in j being in i according to the model.
                   5955:     */
1.243     brouard  5956:     /* ioffset=2+nagesqr+cptcovage; */
                   5957:     ioffset=2+nagesqr;
1.232     brouard  5958:     /* Fixed */
1.224     brouard  5959:     /* for (k=1; k<=cptcovn;k++) cov[2+nagesqr+k]=covar[Tvar[k]][i]; */
1.232     brouard  5960:     /* for (k=1; k<=ncoveff;k++){ /\* Simple and product fixed Dummy covariates without age* products *\/ */
1.349     brouard  5961:     for (kf=1; kf<=ncovf;kf++){ /*  V2  +  V3  +  V4  Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */
1.339     brouard  5962:       /* printf("Debug3 TvarFind[%d]=%d",kf, TvarFind[kf]); */
                   5963:       /* printf(" Tvar[TvarFind[kf]]=%d", Tvar[TvarFind[kf]]); */
                   5964:       /* printf(" i=%d covar[Tvar[TvarFind[kf]]][i]=%f\n",i,covar[Tvar[TvarFind[kf]]][i]); */
1.335     brouard  5965:       cov[ioffset+TvarFind[kf]]=covar[Tvar[TvarFind[kf]]][i];/* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V1 is fixed (k=6)*/
1.232     brouard  5966: /*    cov[ioffset+TvarFind[1]]=covar[Tvar[TvarFind[1]]][i];  */
                   5967: /*    cov[2+6]=covar[Tvar[6]][i];  */
                   5968: /*    cov[2+6]=covar[2][i]; V2  */
                   5969: /*    cov[TvarFind[2]]=covar[Tvar[TvarFind[2]]][i];  */
                   5970: /*    cov[2+7]=covar[Tvar[7]][i];  */
                   5971: /*    cov[2+7]=covar[7][i]; V7=V1*V2  */
                   5972: /*    cov[TvarFind[3]]=covar[Tvar[TvarFind[3]]][i];  */
                   5973: /*    cov[2+9]=covar[Tvar[9]][i];  */
                   5974: /*    cov[2+9]=covar[1][i]; V1  */
1.225     brouard  5975:     }
1.336     brouard  5976:       /* In model V2+V1*V4+age*V3+V3*V2 Tvar[1] is V2, Tvar[2=V1*V4] 
                   5977:         is 5, Tvar[3=age*V3] should not be computed because of age Tvar[4=V3*V2]=6 
                   5978:         has been calculated etc */
                   5979:       /* For an individual i, wav[i] gives the number of effective waves */
                   5980:       /* We compute the contribution to Likelihood of each effective transition
                   5981:         mw[mi][i] is real wave of the mi th effectve wave */
                   5982:       /* Then statuses are computed at each begin and end of an effective wave s1=s[ mw[mi][i] ][i];
                   5983:         s2=s[mw[mi+1][i]][i];
1.341     brouard  5984:         And the iv th varying covariate in the DATA is the cotvar[mw[mi+1][i]][ncovcol+nqv+iv][i]
1.336     brouard  5985:       */
                   5986:     /* This part may be useless now because everythin should be in covar */
1.232     brouard  5987:     /* for (k=1; k<=nqfveff;k++){ /\* Simple and product fixed Quantitative covariates without age* products *\/ */
                   5988:     /*   cov[++ioffset]=coqvar[TvarFQ[k]][i];/\* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, only V2 and V1*V2 is fixed (k=6 and 7?)*\/ */
                   5989:     /* } */
1.231     brouard  5990:     /* for(iqv=1; iqv <= nqfveff; iqv++){ /\* Quantitative fixed covariates *\/ */
                   5991:     /*   cov[++ioffset]=coqvar[Tvar[iqv]][i]; /\* Only V2 k=6 and V1*V2 7 *\/ */
                   5992:     /* } */
1.225     brouard  5993:     
1.233     brouard  5994: 
                   5995:     for(mi=1; mi<= wav[i]-1; mi++){  /* Varying with waves */
1.339     brouard  5996:       /* Wave varying (but not age varying) *//* V1+V3+age*V1+age*V3+V1*V3 with V4 tv and V5 tvq k= 1 to 5 and extra at V(5+1)=6 for V1*V3 */
                   5997:       /* for(k=1; k <= ncovv ; k++){ /\* Varying  covariates (single and product but no age )*\/ */
                   5998:       /*       /\* cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]][i]; *\/ */
                   5999:       /*       cov[ioffset+TvarVind[k]]=cotvar[mw[mi][i]][Tvar[TvarVind[k]]-ncovcol-nqv][i]; */
                   6000:       /* } */
                   6001:       
                   6002:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
                   6003:       /* model V1+V3+age*V1+age*V3+V1*V3 */
                   6004:       /*  Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   6005:       /*  TvarVV[1]=V3 (first time varying in the model equation, TvarVV[2]=V1 (in V1*V3) TvarVV[3]=3(V3)  */
                   6006:       /* We need the position of the time varying or product in the model */
                   6007:       /* TvarVVind={2,5,5}, for V3 at position 2 and then the product V1*V3 is decomposed into V1 and V3 but at same position 5 */            
                   6008:       /* TvarVV gives the variable name */
1.340     brouard  6009:       /* Other example V1 + V3 + V5 + age*V1  + age*V3 + age*V5 + V1*V3  + V3*V5  + V1*V5 
                   6010:       *      k=         1   2     3     4         5        6        7       8        9
                   6011:       *  varying            1     2                                 3       4        5
                   6012:       *  ncovv              1     2                                3 4     5 6      7 8
1.343     brouard  6013:       * TvarVV[ncovv]      V3     5                                1 3     3 5      1 5
1.340     brouard  6014:       * TvarVVind           2     3                                7 7     8 8      9 9
                   6015:       * TvarFind[k]     1   0     0     0         0        0        0       0        0
                   6016:       */
1.345     brouard  6017:       /* Other model ncovcol=5 nqv=0 ntv=3 nqtv=0 nlstate=3
1.349     brouard  6018:        * V2 V3 V4 are fixed V6 V7 are timevarying so V8 and V5 are not in the model and product column will start at 9 Tvar[(v6*V2)6]=9
1.345     brouard  6019:        * FixedV[ncovcol+qv+ntv+nqtv]       V5
1.349     brouard  6020:        * 3           V1  V2     V3    V4   V5 V6     V7  V8 V3*V2 V7*V2  V6*V3 V7*V3 V6*V4 V7*V4
                   6021:        *             0   0      0      0    0  1      1   1  0, 0, 1,1,   1, 0, 1, 0, 1, 0, 1, 0}
                   6022:        * 3           0   0      0      0    0  1      1   1  0,     1      1    1      1    1}
                   6023:        * model=          V2  +  V3  +  V4  +  V6  +  V7  +  V6*V2  +  V7*V2  +  V6*V3  +  V7*V3  +  V6*V4  +  V7*V4  
                   6024:         *                +age*V2 +age*V3 +age*V4 +age*V6 + age*V7
                   6025:         *                +age*V6*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   6026:        * model2=          V2  +  V3  +  V4  +  V6  +  V7  +  V3*V2  +  V7*V2  +  V6*V3  +  V7*V3  +  V6*V4  +  V7*V4  
                   6027:         *                +age*V2 +age*V3 +age*V4 +age*V6 + age*V7
                   6028:         *                +age*V3*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   6029:        * model3=          V2  +  V3  +  V4  +  V6  +  V7  + age*V3*V2  +  V7*V2  +  V6*V3  +  V7*V3  +  V6*V4  +  V7*V4  
                   6030:         *                +age*V2 +age*V3 +age*V4 +age*V6 + age*V7
                   6031:         *                +V3*V2 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   6032:        * kmodel           1     2      3      4      5        6         7         8         9        10        11    
                   6033:        *                  12       13      14      15       16
                   6034:        *                    17        18         19        20         21
                   6035:        * Tvar[kmodel]     2     3      4      6      7        9        10        11        12        13        14
                   6036:        *                   2       3        4       6        7
                   6037:        *                     9         11          12        13         14            
                   6038:        * cptcovage=5+5 total of covariates with age 
                   6039:        * Tage[cptcovage] age*V2=12      13      14      15       16
                   6040:        *1                   17            18         19        20         21 gives the position in model of covariates associated with age
                   6041:        *3 Tage[cptcovage] age*V3*V2=6  
                   6042:        *3                age*V2=12         13      14      15       16
                   6043:        *3                age*V6*V3=18      19    20   21
                   6044:        * Tvar[Tage[cptcovage]]    Tvar[12]=2      3      4       6         Tvar[16]=7(age*V7)
                   6045:        *     Tvar[17]age*V6*V2=9      Tvar[18]age*V6*V3=11  age*V7*V3=12         age*V6*V4=13        Tvar[21]age*V7*V4=14
                   6046:        * 2   Tvar[17]age*V3*V2=9      Tvar[18]age*V6*V3=11  age*V7*V3=12         age*V6*V4=13        Tvar[21]age*V7*V4=14
                   6047:        * 3 Tvar[Tage[cptcovage]]    Tvar[6]=9      Tvar[12]=2      3     4       6         Tvar[16]=7(age*V7)
                   6048:        * 3     Tvar[18]age*V6*V3=11  age*V7*V3=12         age*V6*V4=13        Tvar[21]age*V7*V4=14
                   6049:        * 3 Tage[cptcovage] age*V3*V2=6   age*V2=12 age*V3 13    14      15       16
                   6050:        *                    age*V6*V3=18         19        20         21 gives the position in model of covariates associated with age
                   6051:        * 3   Tvar[17]age*V3*V2=9      Tvar[18]age*V6*V3=11  age*V7*V3=12         age*V6*V4=13        Tvar[21]age*V7*V4=14
                   6052:        * Tvar=                {2, 3, 4, 6, 7,
                   6053:        *                       9, 10, 11, 12, 13, 14,
                   6054:        *              Tvar[12]=2, 3, 4, 6, 7,
                   6055:        *              Tvar[17]=9, 11, 12, 13, 14}
                   6056:        * Typevar[1]@21 = {0, 0, 0, 0, 0,
                   6057:        *                  2, 2, 2, 2, 2, 2,
                   6058:        * 3                3, 2, 2, 2, 2, 2,
                   6059:        *                  1, 1, 1, 1, 1, 
                   6060:        *                  3, 3, 3, 3, 3}
                   6061:        * 3                 2, 3, 3, 3, 3}
                   6062:        * p Tposprod[1]@21 {0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 1, 3, 4, 5, 6} Id of the prod at position k in the model
                   6063:        * p Tprod[1]@21 {6, 7, 8, 9, 10, 11, 0 <repeats 15 times>}
                   6064:        * 3 Tposprod[1]@21 {0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 1, 3, 4, 5, 6}
                   6065:        * 3 Tprod[1]@21 {17, 7, 8, 9, 10, 11, 0 <repeats 15 times>}
                   6066:        * cptcovprod=11 (6+5)
                   6067:        * FixedV[Tvar[Tage[cptcovage]]]]  FixedV[2]=0      FixedV[3]=0      0      1          (age*V7)Tvar[16]=1 FixedV[absolute] not [kmodel]
                   6068:        *   FixedV[Tvar[17]=FixedV[age*V6*V2]=FixedV[9]=1        1         1          1         1  
                   6069:        * 3 FixedV[Tvar[17]=FixedV[age*V3*V2]=FixedV[9]=0        [11]=1         1          1         1  
                   6070:        * FixedV[]          V1=0     V2=0   V3=0  v4=0    V5=0  V6=1    V7=1 v8=1  OK then model dependent
                   6071:        *                   9=1  [V7*V2]=[10]=1 11=1  12=1  13=1  14=1
                   6072:        * 3                 9=0  [V7*V2]=[10]=1 11=1  12=1  13=1  14=1
                   6073:        * cptcovdageprod=5  for gnuplot printing
                   6074:        * cptcovprodvage=6 
                   6075:        * ncova=15           1        2       3       4       5
                   6076:        *                      6 7        8 9      10 11        12 13     14 15
                   6077:        * TvarA              2        3       4       6       7
                   6078:        *                      6 2        6 7       7 3          6 4       7 4
                   6079:        * TvaAind             12 12      13 13     14 14      15 15       16 16        
1.345     brouard  6080:        * ncovf            1     2      3
1.349     brouard  6081:        *                                    V6       V7      V6*V2     V7*V2     V6*V3     V7*V3     V6*V4     V7*V4
                   6082:        * ncovvt=14                            1      2        3 4       5 6       7 8       9 10     11 12     13 14     
                   6083:        * TvarVV[1]@14 = itv               {V6=6,     7, V6*V2=6, 2,     7, 2,     6, 3,     7, 3,     6, 4,     7, 4}
                   6084:        * TvarVVind[1]@14=                    {4,     5,       6, 6,     7, 7,     8, 8,      9, 9,   10, 10,   11, 11}
                   6085:        * 3 ncovvt=12                        V6       V7      V7*V2     V6*V3     V7*V3     V6*V4     V7*V4
                   6086:        * 3 TvarVV[1]@12 = itv                {6,     7, V7*V2=7, 2,     6, 3,     7, 3,     6, 4,     7, 4}
                   6087:        * 3                                    1      2        3  4      5  6      7  8      9 10     11 12
                   6088:        * TvarVVind[1]@12=         {V6 is in k=4,     5,  7,(4isV2)=7,   8, 8,      9, 9,   10,10,    11,11}TvarVVind[12]=k=11
                   6089:        * TvarV              6, 7, 9, 10, 11, 12, 13, 14
                   6090:        * 3 cptcovprodvage=6
                   6091:        * 3 ncovta=15    +age*V3*V2+age*V2+agev3+ageV4 +age*V6 + age*V7 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   6092:        * 3 TvarAVVA[1]@15= itva 3 2    2      3    4        6       7        6 3         7 3         6 4         7 4 
                   6093:        * 3 ncovta             1 2      3      4    5        6       7        8 9       10 11       12 13        14 15
1.354     brouard  6094:        *?TvarAVVAind[1]@15= V3 is in k=2 1 1  2    3        4       5        4,2         5,2,      4,3           5 3}TvarVVAind[]
1.349     brouard  6095:        * TvarAVVAind[1]@15= V3 is in k=6 6 12  13   14      15      16       18 18       19,19,     20,20        21,21}TvarVVAind[]
                   6096:        * 3 ncovvta=10     +age*V6 + age*V7 + age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4
                   6097:        * 3 we want to compute =cotvar[mw[mi][i]][TvarVVA[ncovva]][i] at position TvarVVAind[ncovva]
                   6098:        * 3 TvarVVA[1]@10= itva   6       7        6 3         7 3         6 4         7 4 
                   6099:        * 3 ncovva                1       2        3 4         5 6         7 8         9 10
                   6100:        * TvarVVAind[1]@10= V6 is in k=4  5        8,8         9, 9,      10,10        11 11}TvarVVAind[]
                   6101:        * TvarVVAind[1]@10=       15       16     18,18        19,19,      20,20        21 21}TvarVVAind[]
                   6102:        * TvarVA              V3*V2=6 6 , 1, 2, 11, 12, 13, 14
1.345     brouard  6103:        * TvarFind[1]@14= {1,    2,     3,     0 <repeats 12 times>}
1.349     brouard  6104:        * Tvar[1]@21=     {2,    3,     4,    6,      7,      9,      10,        11,       12,      13,       14,
                   6105:        *                   2, 3, 4, 6, 7,
                   6106:        *                     6, 8, 9, 10, 11}
1.345     brouard  6107:        * TvarFind[itv]                        0      0       0
                   6108:        * FixedV[itv]                          1      1       1  0      1 0       1 0       1 0       0
1.354     brouard  6109:        *? FixedV[itv]                          1      1       1  0      1 0       1 0       1 0      1 0     1 0
1.345     brouard  6110:        * Tvar[TvarFind[ncovf]]=[1]=2 [2]=3 [4]=4
                   6111:        * Tvar[TvarFind[itv]]                [0]=?      ?ncovv 1 à ncovvt]
                   6112:        *   Not a fixed cotvar[mw][itv][i]     6       7      6  2      7, 2,     6, 3,     7, 3,     6, 4,     7, 4}
1.349     brouard  6113:        *   fixed covar[itv]                  [6]     [7]    [6][2] 
1.345     brouard  6114:        */
                   6115: 
1.349     brouard  6116:       for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /*  V6       V7      V7*V2     V6*V3     V7*V3     V6*V4     V7*V4 Time varying  covariates (single and extended product but no age) including individual from products, product is computed dynamically */
                   6117:        itv=TvarVV[ncovv]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate, or fixed covariate of a varying product after exploding product Vn*Vm into Vn and then Vm  */
1.340     brouard  6118:        ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
1.345     brouard  6119:        /* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */
                   6120:        if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */
1.354     brouard  6121:          /* printf("DEBUG ncovv=%d, Varying TvarVV[ncovv]=%d\n",ncovv, TvarVV[ncovv]); */
1.345     brouard  6122:          cotvarv=cotvar[mw[mi][i]][TvarVV[ncovv]][i];  /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ 
1.354     brouard  6123:          /* printf("DEBUG Varying cov[ioffset+ipos=%d]=%g \n",ioffset+ipos,cotvarv); */
1.340     brouard  6124:        }else{ /* fixed covariate */
1.345     brouard  6125:          /* cotvarv=covar[Tvar[TvarFind[itv]]][i];  /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */
1.354     brouard  6126:          /* printf("DEBUG ncovv=%d, Fixed TvarVV[ncovv]=%d\n",ncovv, TvarVV[ncovv]); */
1.349     brouard  6127:          cotvarv=covar[itv][i];  /* Good: In V6*V3, 3 is fixed at position of the data */
1.354     brouard  6128:          /* printf("DEBUG Fixed cov[ioffset+ipos=%d]=%g \n",ioffset+ipos,cotvarv); */
1.340     brouard  6129:        }
1.339     brouard  6130:        if(ipos!=iposold){ /* Not a product or first of a product */
1.340     brouard  6131:          cotvarvold=cotvarv;
                   6132:        }else{ /* A second product */
                   6133:          cotvarv=cotvarv*cotvarvold;
1.339     brouard  6134:        }
                   6135:        iposold=ipos;
1.340     brouard  6136:        cov[ioffset+ipos]=cotvarv;
1.354     brouard  6137:        /* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */
1.339     brouard  6138:        /* For products */
                   6139:       }
                   6140:       /* for(itv=1; itv <= ntveff; itv++){ /\* Varying dummy covariates single *\/ */
                   6141:       /*       iv=TvarVDind[itv]; /\* iv, position in the model equation of time varying covariate itv *\/ */
                   6142:       /*       /\*         "V1+V3+age*V1+age*V3+V1*V3" with V3 time varying *\/ */
                   6143:       /*       /\*           1  2   3      4      5                         *\/ */
                   6144:       /*       /\*itv           1                                           *\/ */
                   6145:       /*       /\* TvarVInd[1]= 2                                           *\/ */
                   6146:       /*       /\* iv= Tvar[Tmodelind[itv]]-ncovcol-nqv;  /\\* Counting the # varying covariate from 1 to ntveff *\\/ *\/ */
                   6147:       /*       /\* iv= Tvar[Tmodelind[ioffset-2-nagesqr-cptcovage+itv]]-ncovcol-nqv; *\/ */
                   6148:       /*       /\* cov[ioffset+iv]=cotvar[mw[mi][i]][iv][i]; *\/ */
                   6149:       /*       /\* k=ioffset-2-nagesqr-cptcovage+itv; /\\* position in simple model *\\/ *\/ */
                   6150:       /*       /\* cov[ioffset+iv]=cotvar[mw[mi][i]][TmodelInvind[itv]][i]; *\/ */
                   6151:       /*       cov[ioffset+iv]=cotvar[mw[mi][i]][itv][i]; */
                   6152:       /*       /\* printf(" i=%d,mi=%d,itv=%d,TmodelInvind[itv]=%d,cotvar[mw[mi][i]][itv][i]=%f\n", i, mi, itv, TvarVDind[itv],cotvar[mw[mi][i]][itv][i]); *\/ */
                   6153:       /* } */
1.232     brouard  6154:       /* for(iqtv=1; iqtv <= nqtveff; iqtv++){ /\* Varying quantitatives covariates *\/ */
1.242     brouard  6155:       /*       iv=TmodelInvQind[iqtv]; /\* Counting the # varying covariate from 1 to ntveff *\/ */
                   6156:       /*       /\* printf(" i=%d,mi=%d,iqtv=%d,TmodelInvQind[iqtv]=%d,cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]=%f\n", i, mi, iqtv, TmodelInvQind[iqtv],cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]); *\/ */
                   6157:       /*       cov[ioffset+ntveff+iqtv]=cotqvar[mw[mi][i]][TmodelInvQind[iqtv]][i]; */
1.232     brouard  6158:       /* } */
1.126     brouard  6159:       for (ii=1;ii<=nlstate+ndeath;ii++)
1.242     brouard  6160:        for (j=1;j<=nlstate+ndeath;j++){
                   6161:          oldm[ii][j]=(ii==j ? 1.0 : 0.0);
                   6162:          savm[ii][j]=(ii==j ? 1.0 : 0.0);
                   6163:        }
1.214     brouard  6164:       
                   6165:       agebegin=agev[mw[mi][i]][i]; /* Age at beginning of effective wave */
                   6166:       ageend=agev[mw[mi][i]][i] + (dh[mi][i])*stepm/YEARM; /* Age at end of effective wave and at the end of transition */
                   6167:       for(d=0; d<dh[mi][i]; d++){  /* Delay between two effective waves */
1.247     brouard  6168:       /* for(d=0; d<=0; d++){  /\* Delay between two effective waves Only one matrix to speed up*\/ */
1.242     brouard  6169:        /*dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   6170:          and mw[mi+1][i]. dh depends on stepm.*/
                   6171:        newm=savm;
1.247     brouard  6172:        agexact=agev[mw[mi][i]][i]+d*stepm/YEARM;  /* Here d is needed */
1.242     brouard  6173:        cov[2]=agexact;
                   6174:        if(nagesqr==1)
                   6175:          cov[3]= agexact*agexact;
1.349     brouard  6176:        for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying  covariates with age including individual from products, product is computed dynamically */
                   6177:          itv=TvarAVVA[ncovva]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm  */
                   6178:          ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
                   6179:          /* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */
                   6180:          if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */
                   6181:            /* printf("DEBUG  ncovva=%d, Varying TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */
                   6182:            cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i];  /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ 
                   6183:          }else{ /* fixed covariate */
                   6184:            /* cotvarv=covar[Tvar[TvarFind[itv]]][i];  /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */
                   6185:            /* printf("DEBUG ncovva=%d, Fixed TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */
                   6186:            cotvarv=covar[itv][i];  /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */
                   6187:          }
                   6188:          if(ipos!=iposold){ /* Not a product or first of a product */
                   6189:            cotvarvold=cotvarv;
                   6190:          }else{ /* A second product */
                   6191:            /* printf("DEBUG * \n"); */
                   6192:            cotvarv=cotvarv*cotvarvold;
                   6193:          }
                   6194:          iposold=ipos;
                   6195:          /* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */
                   6196:          cov[ioffset+ipos]=cotvarv*agexact;
                   6197:          /* For products */
1.242     brouard  6198:        }
1.349     brouard  6199: 
1.242     brouard  6200:        /* printf("i=%d,mi=%d,d=%d,mw[mi][i]=%d\n",i, mi,d,mw[mi][i]); */
                   6201:        /* savm=pmij(pmmij,cov,ncovmodel,x,nlstate); */
                   6202:        out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath,
                   6203:                     1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate));
                   6204:        /* out=matprod2(newm,oldm,1,nlstate+ndeath,1,nlstate+ndeath, */
                   6205:        /*           1,nlstate+ndeath,pmij(pmmij,cov,ncovmodel,x,nlstate)); */
                   6206:        savm=oldm;
                   6207:        oldm=newm;
1.126     brouard  6208:       } /* end mult */
1.336     brouard  6209:        /*lli=log(out[s[mw[mi][i]][i]][s[mw[mi+1][i]][i]]);*/ /* Original formula */
                   6210:        /* But now since version 0.9 we anticipate for bias at large stepm.
                   6211:         * If stepm is larger than one month (smallest stepm) and if the exact delay 
                   6212:         * (in months) between two waves is not a multiple of stepm, we rounded to 
                   6213:         * the nearest (and in case of equal distance, to the lowest) interval but now
                   6214:         * we keep into memory the bias bh[mi][i] and also the previous matrix product
                   6215:         * (i.e to dh[mi][i]-1) saved in 'savm'. Then we inter(extra)polate the
                   6216:         * probability in order to take into account the bias as a fraction of the way
                   6217:                                 * from savm to out if bh is negative or even beyond if bh is positive. bh varies
                   6218:                                 * -stepm/2 to stepm/2 .
                   6219:                                 * For stepm=1 the results are the same as for previous versions of Imach.
                   6220:                                 * For stepm > 1 the results are less biased than in previous versions. 
                   6221:                                 */
1.126     brouard  6222:       s1=s[mw[mi][i]][i];
                   6223:       s2=s[mw[mi+1][i]][i];
1.217     brouard  6224:       /* if(s2==-1){ */
1.268     brouard  6225:       /*       printf(" ERROR s1=%d, s2=%d i=%d \n", s1, s2, i); */
1.217     brouard  6226:       /*       /\* exit(1); *\/ */
                   6227:       /* } */
1.126     brouard  6228:       bbh=(double)bh[mi][i]/(double)stepm; 
                   6229:       /* bias is positive if real duration
                   6230:        * is higher than the multiple of stepm and negative otherwise.
                   6231:        */
                   6232:       if( s2 > nlstate && (mle <5) ){  /* Jackson */
1.242     brouard  6233:        lli=log(out[s1][s2] - savm[s1][s2]);
1.216     brouard  6234:       } else if  ( s2==-1 ) { /* alive */
1.242     brouard  6235:        for (j=1,survp=0. ; j<=nlstate; j++) 
                   6236:          survp += (1.+bbh)*out[s1][j]- bbh*savm[s1][j];
                   6237:        lli= log(survp);
1.126     brouard  6238:       }else if (mle==1){
1.242     brouard  6239:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
1.126     brouard  6240:       } else if(mle==2){
1.242     brouard  6241:        lli= (savm[s1][s2]>(double)1.e-8 ?log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* linear interpolation */
1.126     brouard  6242:       } else if(mle==3){  /* exponential inter-extrapolation */
1.242     brouard  6243:        lli= (savm[s1][s2]>(double)1.e-8 ?(1.+bbh)*log(out[s1][s2])- bbh*log(savm[s1][s2]):log((1.+bbh)*out[s1][s2])); /* exponential inter-extrapolation */
1.126     brouard  6244:       } else if (mle==4){  /* mle=4 no inter-extrapolation */
1.242     brouard  6245:        lli=log(out[s1][s2]); /* Original formula */
1.136     brouard  6246:       } else{  /* mle=0 back to 1 */
1.242     brouard  6247:        lli= log((1.+bbh)*out[s1][s2]- bbh*savm[s1][s2]); /* linear interpolation */
                   6248:        /*lli=log(out[s1][s2]); */ /* Original formula */
1.126     brouard  6249:       } /* End of if */
                   6250:       ipmx +=1;
                   6251:       sw += weight[i];
                   6252:       ll[s[mw[mi][i]][i]] += 2*weight[i]*lli;
1.342     brouard  6253:       /* Printing covariates values for each contribution for checking */
1.343     brouard  6254:       /* printf("num[i]=%09ld, i=%6d s1=%1d s2=%1d mi=%1d mw=%1d dh=%3d prob=%10.6f w=%6.4f out=%10.6f sav=%10.6f\n",num[i],i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
1.126     brouard  6255:       if(globpr){
1.246     brouard  6256:        fprintf(ficresilk,"%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\
1.126     brouard  6257:  %11.6f %11.6f %11.6f ", \
1.242     brouard  6258:                num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw,
1.268     brouard  6259:                2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2]));
1.343     brouard  6260:        /*      printf("%09ld %6.1f %6.1f %6d %2d %2d %2d %2d %3d %15.6f %8.4f %8.3f\ */
                   6261:        /* %11.6f %11.6f %11.6f ", \ */
                   6262:        /*              num[i], agebegin, ageend, i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],weight[i]*gipmx/gsw, */
                   6263:        /*              2*weight[i]*lli,(s2==-1? -1: out[s1][s2]),(s2==-1? -1: savm[s1][s2])); */
1.242     brouard  6264:        for(k=1,llt=0.,l=0.; k<=nlstate; k++){
                   6265:          llt +=ll[k]*gipmx/gsw;
                   6266:          fprintf(ficresilk," %10.6f",-ll[k]*gipmx/gsw);
1.335     brouard  6267:          /* printf(" %10.6f",-ll[k]*gipmx/gsw); */
1.242     brouard  6268:        }
1.343     brouard  6269:        fprintf(ficresilk," %10.6f ", -llt);
1.335     brouard  6270:        /* printf(" %10.6f\n", -llt); */
1.342     brouard  6271:        /* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */
1.343     brouard  6272:        /* fprintf(ficresilk,"%09ld ", num[i]); */ /* not necessary */
                   6273:        for (kf=1; kf<=ncovf;kf++){ /* Simple and product fixed covariates without age* products *//* Missing values are set to -1 but should be dropped */
                   6274:          fprintf(ficresilk," %g",covar[Tvar[TvarFind[kf]]][i]);
                   6275:        }
                   6276:        for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Varying  covariates (single and product but no age) including individual from products */
                   6277:          ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
                   6278:          if(ipos!=iposold){ /* Not a product or first of a product */
                   6279:            fprintf(ficresilk," %g",cov[ioffset+ipos]);
                   6280:            /* printf(" %g",cov[ioffset+ipos]); */
                   6281:          }else{
                   6282:            fprintf(ficresilk,"*");
                   6283:            /* printf("*"); */
1.342     brouard  6284:          }
1.343     brouard  6285:          iposold=ipos;
                   6286:        }
1.349     brouard  6287:        /* for (kk=1; kk<=cptcovage;kk++) { */
                   6288:        /*   if(!FixedV[Tvar[Tage[kk]]]){ */
                   6289:        /*     fprintf(ficresilk," %g*age",covar[Tvar[Tage[kk]]][i]); */
                   6290:        /*     /\* printf(" %g*age",covar[Tvar[Tage[kk]]][i]); *\/ */
                   6291:        /*   }else{ */
                   6292:        /*     fprintf(ficresilk," %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/  */
                   6293:        /*     /\* printf(" %g*age",cotvar[mw[mi][i]][Tvar[Tage[kk]]][i]);/\\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\\/  *\/ */
                   6294:        /*   } */
                   6295:        /* } */
                   6296:        for(ncovva=1, iposold=0; ncovva <= ncovta ; ncovva++){ /* Time varying  covariates with age including individual from products, product is computed dynamically */
                   6297:          itv=TvarAVVA[ncovva]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate, exploding product Vn*Vm into Vn and then Vm  */
                   6298:          ipos=TvarAVVAind[ncovva]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate*/
                   6299:          /* if(TvarFind[itv]==0){ /\* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv *\/ */
                   6300:          if(FixedV[itv]!=0){ /* Not a fixed covariate? Could be a fixed covariate of a product with a higher than ncovcol+nqv, itv */
                   6301:            /* printf("DEBUG  ncovva=%d, Varying TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */
                   6302:            cotvarv=cotvar[mw[mi][i]][TvarAVVA[ncovva]][i];  /* because cotvar starts now at first ncovcol+nqv+ntv+nqtv (1 to nqtv) */ 
                   6303:          }else{ /* fixed covariate */
                   6304:            /* cotvarv=covar[Tvar[TvarFind[itv]]][i];  /\* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model *\/ */
                   6305:            /* printf("DEBUG ncovva=%d, Fixed TvarAVVA[ncovva]=%d\n", ncovva, TvarAVVA[ncovva]); */
                   6306:            cotvarv=covar[itv][i];  /* Error: TvarFind gives the name, that is the true column of fixed covariates, but Tvar of the model */
                   6307:          }
                   6308:          if(ipos!=iposold){ /* Not a product or first of a product */
                   6309:            cotvarvold=cotvarv;
                   6310:          }else{ /* A second product */
                   6311:            /* printf("DEBUG * \n"); */
                   6312:            cotvarv=cotvarv*cotvarvold;
1.342     brouard  6313:          }
1.349     brouard  6314:          cotvarv=cotvarv*agexact;
                   6315:          fprintf(ficresilk," %g*age",cotvarv);
                   6316:          iposold=ipos;
                   6317:          /* printf("DEBUG Product cov[ioffset+ipos=%d] \n",ioffset+ipos); */
                   6318:          cov[ioffset+ipos]=cotvarv;
                   6319:          /* For products */
1.343     brouard  6320:        }
                   6321:        /* printf("\n"); */
1.342     brouard  6322:        /* } /\*  End debugILK *\/ */
                   6323:        fprintf(ficresilk,"\n");
                   6324:       } /* End if globpr */
1.335     brouard  6325:     } /* end of wave */
                   6326:   } /* end of individual */
                   6327:   for(k=1,l=0.; k<=nlstate; k++) l += ll[k];
1.232     brouard  6328: /* printf("l1=%f l2=%f ",ll[1],ll[2]); */
1.335     brouard  6329:   l= l*ipmx/sw; /* To get the same order of magnitude as if weight=1 for every body */
                   6330:   if(globpr==0){ /* First time we count the contributions and weights */
                   6331:     gipmx=ipmx;
                   6332:     gsw=sw;
                   6333:   }
1.343     brouard  6334:   return -l;
1.126     brouard  6335: }
                   6336: 
                   6337: 
                   6338: /*************** function likelione ***********/
1.292     brouard  6339: void likelione(FILE *ficres,double p[], int npar, int nlstate, int *globpri, long *ipmx, double *sw, double *fretone, double (*func)(double []))
1.126     brouard  6340: {
                   6341:   /* This routine should help understanding what is done with 
                   6342:      the selection of individuals/waves and
                   6343:      to check the exact contribution to the likelihood.
                   6344:      Plotting could be done.
1.342     brouard  6345:   */
                   6346:   void pstamp(FILE *ficres);
1.343     brouard  6347:   int k, kf, kk, kvar, ncovv, iposold, ipos;
1.126     brouard  6348: 
                   6349:   if(*globpri !=0){ /* Just counts and sums, no printings */
1.201     brouard  6350:     strcpy(fileresilk,"ILK_"); 
1.202     brouard  6351:     strcat(fileresilk,fileresu);
1.126     brouard  6352:     if((ficresilk=fopen(fileresilk,"w"))==NULL) {
                   6353:       printf("Problem with resultfile: %s\n", fileresilk);
                   6354:       fprintf(ficlog,"Problem with resultfile: %s\n", fileresilk);
                   6355:     }
1.342     brouard  6356:     pstamp(ficresilk);fprintf(ficresilk,"# model=1+age+%s\n",model);
1.214     brouard  6357:     fprintf(ficresilk, "#individual(line's_record) count ageb ageend s1 s2 wave# effective_wave# number_of_matrices_product pij weight weight/gpw -2ln(pij)*weight 0pij_x 0pij_(x-stepm) cumulating_loglikeli_by_health_state(reweighted=-2ll*weightXnumber_of_contribs/sum_of_weights) and_total\n");
                   6358:     fprintf(ficresilk, "#num_i ageb agend i s1 s2 mi mw dh likeli weight %%weight 2wlli out sav ");
1.126     brouard  6359:     /*         i,s1,s2,mi,mw[mi][i],dh[mi][i],exp(lli),weight[i],2*weight[i]*lli,out[s1][s2],savm[s1][s2]); */
                   6360:     for(k=1; k<=nlstate; k++) 
                   6361:       fprintf(ficresilk," -2*gipw/gsw*weight*ll[%d]++",k);
1.342     brouard  6362:     fprintf(ficresilk," -2*gipw/gsw*weight*ll(total) ");
                   6363: 
                   6364:     /* if(debugILK){ /\* debugILK is set by a #d in a comment line *\/ */
                   6365:       for(kf=1;kf <= ncovf; kf++){
                   6366:        fprintf(ficresilk,"V%d",Tvar[TvarFind[kf]]);
                   6367:        /* printf("V%d",Tvar[TvarFind[kf]]); */
                   6368:       }
                   6369:       for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){
1.343     brouard  6370:        ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */
1.342     brouard  6371:        if(ipos!=iposold){ /* Not a product or first of a product */
                   6372:          /* printf(" %d",ipos); */
                   6373:          fprintf(ficresilk," V%d",TvarVV[ncovv]);
                   6374:        }else{
                   6375:          /* printf("*"); */
                   6376:          fprintf(ficresilk,"*");
1.343     brouard  6377:        }
1.342     brouard  6378:        iposold=ipos;
                   6379:       }
                   6380:       for (kk=1; kk<=cptcovage;kk++) {
                   6381:        if(!FixedV[Tvar[Tage[kk]]]){
                   6382:          /* printf(" %d*age(Fixed)",Tvar[Tage[kk]]); */
                   6383:          fprintf(ficresilk," %d*age(Fixed)",Tvar[Tage[kk]]);
                   6384:        }else{
                   6385:          fprintf(ficresilk," %d*age(Varying)",Tvar[Tage[kk]]);/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
                   6386:          /* printf(" %d*age(Varying)",Tvar[Tage[kk]]);/\* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) *\/  */
                   6387:        }
                   6388:       }
                   6389:     /* } /\* End if debugILK *\/ */
                   6390:     /* printf("\n"); */
                   6391:     fprintf(ficresilk,"\n");
                   6392:   } /* End glogpri */
1.126     brouard  6393: 
1.292     brouard  6394:   *fretone=(*func)(p);
1.126     brouard  6395:   if(*globpri !=0){
                   6396:     fclose(ficresilk);
1.205     brouard  6397:     if (mle ==0)
                   6398:       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with initial parameters and mle = %d.",mle);
                   6399:     else if(mle >=1)
                   6400:       fprintf(fichtm,"\n<br>File of contributions to the likelihood computed with optimized parameters mle = %d.",mle);
                   6401:     fprintf(fichtm," You should at least run with mle >= 1 to get starting values corresponding to the optimized parameters in order to visualize the real contribution of each individual/wave: <a href=\"%s\">%s</a><br>\n",subdirf(fileresilk),subdirf(fileresilk));
1.274     brouard  6402:     fprintf(fichtm,"\n<br>Equation of the model: <b>model=1+age+%s</b><br>\n",model); 
1.208     brouard  6403:       
1.207     brouard  6404:     fprintf(fichtm,"<br>- The function drawn is -2Log(L) in Log scale: by state of origin <a href=\"%s-ori.png\">%s-ori.png</a><br> \
1.343     brouard  6405: <img src=\"%s-ori.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
1.207     brouard  6406:     fprintf(fichtm,"<br>- and by state of destination <a href=\"%s-dest.png\">%s-dest.png</a><br> \
1.343     brouard  6407: <img src=\"%s-dest.png\">\n",subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"),subdirf2(optionfilefiname,"ILK_"));
                   6408:     
                   6409:     for (k=1; k<= nlstate ; k++) {
                   6410:       fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Dot's sizes are related to corresponding weight: <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br>\n \
                   6411: <img src=\"%s-p%dj.png\">\n",k,k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k);
                   6412:       for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */
1.350     brouard  6413:         kvar=Tvar[TvarFind[kf]];  /* variable */
                   6414:         fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): ",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]]);
                   6415:         fprintf(fichtm,"<a href=\"%s-p%dj-%d.png\">%s-p%dj-%d.png</a><br>",subdirf2(optionfilefiname,"ILK_"),k,kvar,subdirf2(optionfilefiname,"ILK_"),k,kvar);
                   6416:         fprintf(fichtm,"<img src=\"%s-p%dj-%d.png\">",subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]);
1.343     brouard  6417:       }
                   6418:       for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /* Loop on the time varying extended covariates (with extension of Vn*Vm */
                   6419:        ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */
                   6420:        kvar=TvarVV[ncovv]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate */
                   6421:        /* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */
                   6422:        if(ipos!=iposold){ /* Not a product or first of a product */
                   6423:          /* fprintf(ficresilk," V%d",TvarVV[ncovv]); */
                   6424:          /* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); */
                   6425:          if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm)  */
                   6426:            fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored time varying dummy covariate V%d. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \
                   6427: <img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar);
                   6428:          } /* End only for dummies time varying (single?) */
                   6429:        }else{ /* Useless product */
                   6430:          /* printf("*"); */
                   6431:          /* fprintf(ficresilk,"*"); */ 
                   6432:        }
                   6433:        iposold=ipos;
                   6434:       } /* For each time varying covariate */
                   6435:     } /* End loop on states */
                   6436: 
                   6437: /*     if(debugILK){ */
                   6438: /*       for(kf=1; kf <= ncovf; kf++){ /\* For each simple dummy covariate of the model *\/ */
                   6439: /*     /\* kvar=Tvar[TvarFind[kf]]; *\/ /\* variable *\/ */
                   6440: /*     for (k=1; k<= nlstate ; k++) { */
                   6441: /*       fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j with colored covariate V%. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */
                   6442: /* <img src=\"%s-p%dj-%d.png\">",k,k,Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],Tvar[TvarFind[kf]],subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,Tvar[TvarFind[kf]]); */
                   6443: /*     } */
                   6444: /*       } */
                   6445: /*       for(ncovv=1, iposold=0; ncovv <= ncovvt ; ncovv++){ /\* Loop on the time varying extended covariates (with extension of Vn*Vm *\/ */
                   6446: /*     ipos=TvarVVind[ncovv]; /\* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate *\/ */
                   6447: /*     kvar=TvarVV[ncovv]; /\*  TvarVV={3, 1, 3} gives the name of each varying covariate *\/ */
                   6448: /*     /\* printf("DebugILK fichtm ncovv=%d, kvar=TvarVV[ncovv]=V%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); *\/ */
                   6449: /*     if(ipos!=iposold){ /\* Not a product or first of a product *\/ */
                   6450: /*       /\* fprintf(ficresilk," V%d",TvarVV[ncovv]); *\/ */
                   6451: /*       /\* printf(" DebugILK fichtm ipos=%d != iposold=%d\n", ipos, iposold); *\/ */
                   6452: /*       if(Dummy[ipos]==0 && Typevar[ipos]==0){ /\* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm)  *\/ */
                   6453: /*         for (k=1; k<= nlstate ; k++) { */
                   6454: /*           fprintf(fichtm,"<br>- Probability p<sub>%dj</sub> by origin %d and destination j. Same dot size of all points but with a different color for transitions with dummy variable V%d=1 at beginning of transition (keeping former color for V%d=0): <a href=\"%s-p%dj.png\">%s-p%dj.png</a><br> \ */
                   6455: /* <img src=\"%s-p%dj-%d.png\">",k,k,kvar,kvar,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,subdirf2(optionfilefiname,"ILK_"),k,kvar); */
                   6456: /*         } /\* End state *\/ */
                   6457: /*       } /\* End only for dummies time varying (single?) *\/ */
                   6458: /*     }else{ /\* Useless product *\/ */
                   6459: /*       /\* printf("*"); *\/ */
                   6460: /*       /\* fprintf(ficresilk,"*"); *\/  */
                   6461: /*     } */
                   6462: /*     iposold=ipos; */
                   6463: /*       } /\* For each time varying covariate *\/ */
                   6464: /*     }/\* End debugILK *\/ */
1.207     brouard  6465:     fflush(fichtm);
1.343     brouard  6466:   }/* End globpri */
1.126     brouard  6467:   return;
                   6468: }
                   6469: 
                   6470: 
                   6471: /*********** Maximum Likelihood Estimation ***************/
                   6472: 
                   6473: void mlikeli(FILE *ficres,double p[], int npar, int ncovmodel, int nlstate, double ftol, double (*func)(double []))
                   6474: {
1.359   ! brouard  6475:   int i,j,  jkk=0, iter=0;
1.126     brouard  6476:   double **xi;
1.359   ! brouard  6477:   /*double fret;*/
        !          6478:   /*double fretone;*/ /* Only one call to likelihood */
1.126     brouard  6479:   /*  char filerespow[FILENAMELENGTH];*/
1.354     brouard  6480:   
1.359   ! brouard  6481:   /*double * p1;*/ /* Shifted parameters from 0 instead of 1 */
1.162     brouard  6482: #ifdef NLOPT
                   6483:   int creturn;
                   6484:   nlopt_opt opt;
                   6485:   /* double lb[9] = { -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL, -HUGE_VAL }; /\* lower bounds *\/ */
                   6486:   double *lb;
                   6487:   double minf; /* the minimum objective value, upon return */
1.354     brouard  6488: 
1.162     brouard  6489:   myfunc_data dinst, *d = &dinst;
                   6490: #endif
                   6491: 
                   6492: 
1.126     brouard  6493:   xi=matrix(1,npar,1,npar);
1.357     brouard  6494:   for (i=1;i<=npar;i++)  /* Starting with canonical directions j=1,n xi[i=1,n][j] */
1.126     brouard  6495:     for (j=1;j<=npar;j++)
                   6496:       xi[i][j]=(i==j ? 1.0 : 0.0);
1.359   ! brouard  6497:   printf("Powell-prax\n");  fprintf(ficlog,"Powell-prax\n");
1.201     brouard  6498:   strcpy(filerespow,"POW_"); 
1.126     brouard  6499:   strcat(filerespow,fileres);
                   6500:   if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   6501:     printf("Problem with resultfile: %s\n", filerespow);
                   6502:     fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   6503:   }
                   6504:   fprintf(ficrespow,"# Powell\n# iter -2*LL");
                   6505:   for (i=1;i<=nlstate;i++)
                   6506:     for(j=1;j<=nlstate+ndeath;j++)
                   6507:       if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   6508:   fprintf(ficrespow,"\n");
1.162     brouard  6509: #ifdef POWELL
1.319     brouard  6510: #ifdef LINMINORIGINAL
                   6511: #else /* LINMINORIGINAL */
                   6512:   
                   6513:   flatdir=ivector(1,npar); 
                   6514:   for (j=1;j<=npar;j++) flatdir[j]=0; 
                   6515: #endif /*LINMINORIGINAL */
                   6516: 
                   6517: #ifdef FLATSUP
                   6518:   powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
                   6519:   /* reorganizing p by suppressing flat directions */
                   6520:   for(i=1, jk=1; i <=nlstate; i++){
                   6521:     for(k=1; k <=(nlstate+ndeath); k++){
                   6522:       if (k != i) {
                   6523:         printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
                   6524:         if(flatdir[jk]==1){
                   6525:           printf(" To be skipped %d%d flatdir[%d]=%d ",i,k,jk, flatdir[jk]);
                   6526:         }
                   6527:         for(j=1; j <=ncovmodel; j++){
                   6528:           printf("%12.7f ",p[jk]);
                   6529:           jk++; 
                   6530:         }
                   6531:         printf("\n");
                   6532:       }
                   6533:     }
                   6534:   }
                   6535: /* skipping */
                   6536:   /* for(i=1, jk=1, jkk=1;(flatdir[jk]==0)&& (i <=nlstate); i++){ */
                   6537:   for(i=1, jk=1, jkk=1;i <=nlstate; i++){
                   6538:     for(k=1; k <=(nlstate+ndeath); k++){
                   6539:       if (k != i) {
                   6540:         printf("%d%d flatdir[%d]=%d",i,k,jk, flatdir[jk]);
                   6541:         if(flatdir[jk]==1){
                   6542:           printf(" To be skipped %d%d flatdir[%d]=%d jk=%d p[%d] ",i,k,jk, flatdir[jk],jk, jk);
                   6543:           for(j=1; j <=ncovmodel;  jk++,j++){
                   6544:             printf(" p[%d]=%12.7f",jk, p[jk]);
                   6545:             /*q[jjk]=p[jk];*/
                   6546:           }
                   6547:         }else{
                   6548:           printf(" To be kept %d%d flatdir[%d]=%d jk=%d q[%d]=p[%d] ",i,k,jk, flatdir[jk],jk, jkk, jk);
                   6549:           for(j=1; j <=ncovmodel;  jk++,jkk++,j++){
                   6550:             printf(" p[%d]=%12.7f=q[%d]",jk, p[jk],jkk);
                   6551:             /*q[jjk]=p[jk];*/
                   6552:           }
                   6553:         }
                   6554:         printf("\n");
                   6555:       }
                   6556:       fflush(stdout);
                   6557:     }
                   6558:   }
                   6559:   powell(p,xi,npar,ftol,&iter,&fret,flatdir,func);
                   6560: #else  /* FLATSUP */
1.359   ! brouard  6561: /*  powell(p,xi,npar,ftol,&iter,&fret,func);*/
        !          6562: /*   praxis ( t0, h0, n, prin, x, beale_f ); */
        !          6563:   int prin=1;
        !          6564:   double h0=0.25;
        !          6565:   double macheps;
        !          6566:   double fmin;
        !          6567:   macheps=pow(16.0,-13.0);
        !          6568: /* #include "praxis.h" */
        !          6569:   /* Be careful that praxis start at x[0] and powell start at p[1] */
        !          6570:    /* praxis ( ftol, h0, npar, prin, p, func ); */
        !          6571: /* p1= (p+1); */ /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
        !          6572: printf("Praxis Gegenfurtner \n");
        !          6573: fprintf(ficlog, "Praxis  Gegenfurtner\n");fflush(ficlog);
        !          6574: /* praxis ( ftol, h0, npar, prin, p1, func ); */
        !          6575:   /* fmin = praxis(1.e-5,macheps, h, n, prin, x, func); */
        !          6576:   fmin = praxis(ftol,macheps, h0, npar, prin, p, func);
        !          6577: printf("End Praxis\n");
1.319     brouard  6578: #endif  /* FLATSUP */
                   6579: 
                   6580: #ifdef LINMINORIGINAL
                   6581: #else
                   6582:       free_ivector(flatdir,1,npar); 
                   6583: #endif  /* LINMINORIGINAL*/
                   6584: #endif /* POWELL */
1.126     brouard  6585: 
1.162     brouard  6586: #ifdef NLOPT
                   6587: #ifdef NEWUOA
                   6588:   opt = nlopt_create(NLOPT_LN_NEWUOA,npar);
                   6589: #else
                   6590:   opt = nlopt_create(NLOPT_LN_BOBYQA,npar);
                   6591: #endif
                   6592:   lb=vector(0,npar-1);
                   6593:   for (i=0;i<npar;i++) lb[i]= -HUGE_VAL;
                   6594:   nlopt_set_lower_bounds(opt, lb);
                   6595:   nlopt_set_initial_step1(opt, 0.1);
                   6596:   
                   6597:   p1= (p+1); /*  p *(p+1)@8 and p *(p1)@8 are equal p1[0]=p[1] */
                   6598:   d->function = func;
                   6599:   printf(" Func %.12lf \n",myfunc(npar,p1,NULL,d));
                   6600:   nlopt_set_min_objective(opt, myfunc, d);
                   6601:   nlopt_set_xtol_rel(opt, ftol);
                   6602:   if ((creturn=nlopt_optimize(opt, p1, &minf)) < 0) {
                   6603:     printf("nlopt failed! %d\n",creturn); 
                   6604:   }
                   6605:   else {
                   6606:     printf("found minimum after %d evaluations (NLOPT=%d)\n", countcallfunc ,NLOPT);
                   6607:     printf("found minimum at f(%g,%g) = %0.10g\n", p[0], p[1], minf);
                   6608:     iter=1; /* not equal */
                   6609:   }
                   6610:   nlopt_destroy(opt);
                   6611: #endif
1.319     brouard  6612: #ifdef FLATSUP
                   6613:   /* npared = npar -flatd/ncovmodel; */
                   6614:   /* xired= matrix(1,npared,1,npared); */
                   6615:   /* paramred= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */
                   6616:   /* powell(pred,xired,npared,ftol,&iter,&fret,flatdir,func); */
                   6617:   /* free_matrix(xire,1,npared,1,npared); */
                   6618: #else  /* FLATSUP */
                   6619: #endif /* FLATSUP */
1.126     brouard  6620:   free_matrix(xi,1,npar,1,npar);
                   6621:   fclose(ficrespow);
1.203     brouard  6622:   printf("\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
                   6623:   fprintf(ficlog,"\n#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.180     brouard  6624:   fprintf(ficres,"#Number of iterations & function calls = %d & %d, -2 Log likelihood = %.12f\n",iter, countcallfunc,func(p));
1.126     brouard  6625: 
                   6626: }
                   6627: 
                   6628: /**** Computes Hessian and covariance matrix ***/
1.203     brouard  6629: void hesscov(double **matcov, double **hess, double p[], int npar, double delti[], double ftolhess, double (*func)(double []))
1.126     brouard  6630: {
                   6631:   double  **a,**y,*x,pd;
1.203     brouard  6632:   /* double **hess; */
1.164     brouard  6633:   int i, j;
1.126     brouard  6634:   int *indx;
                   6635: 
                   6636:   double hessii(double p[], double delta, int theta, double delti[],double (*func)(double []),int npar);
1.203     brouard  6637:   double hessij(double p[], double **hess, double delti[], int i, int j,double (*func)(double []),int npar);
1.126     brouard  6638:   void lubksb(double **a, int npar, int *indx, double b[]) ;
                   6639:   void ludcmp(double **a, int npar, int *indx, double *d) ;
                   6640:   double gompertz(double p[]);
1.203     brouard  6641:   /* hess=matrix(1,npar,1,npar); */
1.126     brouard  6642: 
                   6643:   printf("\nCalculation of the hessian matrix. Wait...\n");
                   6644:   fprintf(ficlog,"\nCalculation of the hessian matrix. Wait...\n");
                   6645:   for (i=1;i<=npar;i++){
1.203     brouard  6646:     printf("%d-",i);fflush(stdout);
                   6647:     fprintf(ficlog,"%d-",i);fflush(ficlog);
1.126     brouard  6648:    
                   6649:      hess[i][i]=hessii(p,ftolhess,i,delti,func,npar);
                   6650:     
                   6651:     /*  printf(" %f ",p[i]);
                   6652:        printf(" %lf %lf %lf",hess[i][i],ftolhess,delti[i]);*/
                   6653:   }
                   6654:   
                   6655:   for (i=1;i<=npar;i++) {
                   6656:     for (j=1;j<=npar;j++)  {
                   6657:       if (j>i) { 
1.203     brouard  6658:        printf(".%d-%d",i,j);fflush(stdout);
                   6659:        fprintf(ficlog,".%d-%d",i,j);fflush(ficlog);
                   6660:        hess[i][j]=hessij(p,hess, delti,i,j,func,npar);
1.126     brouard  6661:        
                   6662:        hess[j][i]=hess[i][j];    
                   6663:        /*printf(" %lf ",hess[i][j]);*/
                   6664:       }
                   6665:     }
                   6666:   }
                   6667:   printf("\n");
                   6668:   fprintf(ficlog,"\n");
                   6669: 
                   6670:   printf("\nInverting the hessian to get the covariance matrix. Wait...\n");
                   6671:   fprintf(ficlog,"\nInverting the hessian to get the covariance matrix. Wait...\n");
                   6672:   
                   6673:   a=matrix(1,npar,1,npar);
                   6674:   y=matrix(1,npar,1,npar);
                   6675:   x=vector(1,npar);
                   6676:   indx=ivector(1,npar);
                   6677:   for (i=1;i<=npar;i++)
                   6678:     for (j=1;j<=npar;j++) a[i][j]=hess[i][j];
                   6679:   ludcmp(a,npar,indx,&pd);
                   6680: 
                   6681:   for (j=1;j<=npar;j++) {
                   6682:     for (i=1;i<=npar;i++) x[i]=0;
                   6683:     x[j]=1;
                   6684:     lubksb(a,npar,indx,x);
                   6685:     for (i=1;i<=npar;i++){ 
                   6686:       matcov[i][j]=x[i];
                   6687:     }
                   6688:   }
                   6689: 
                   6690:   printf("\n#Hessian matrix#\n");
                   6691:   fprintf(ficlog,"\n#Hessian matrix#\n");
                   6692:   for (i=1;i<=npar;i++) { 
                   6693:     for (j=1;j<=npar;j++) { 
1.203     brouard  6694:       printf("%.6e ",hess[i][j]);
                   6695:       fprintf(ficlog,"%.6e ",hess[i][j]);
1.126     brouard  6696:     }
                   6697:     printf("\n");
                   6698:     fprintf(ficlog,"\n");
                   6699:   }
                   6700: 
1.203     brouard  6701:   /* printf("\n#Covariance matrix#\n"); */
                   6702:   /* fprintf(ficlog,"\n#Covariance matrix#\n"); */
                   6703:   /* for (i=1;i<=npar;i++) {  */
                   6704:   /*   for (j=1;j<=npar;j++) {  */
                   6705:   /*     printf("%.6e ",matcov[i][j]); */
                   6706:   /*     fprintf(ficlog,"%.6e ",matcov[i][j]); */
                   6707:   /*   } */
                   6708:   /*   printf("\n"); */
                   6709:   /*   fprintf(ficlog,"\n"); */
                   6710:   /* } */
                   6711: 
1.126     brouard  6712:   /* Recompute Inverse */
1.203     brouard  6713:   /* for (i=1;i<=npar;i++) */
                   6714:   /*   for (j=1;j<=npar;j++) a[i][j]=matcov[i][j]; */
                   6715:   /* ludcmp(a,npar,indx,&pd); */
                   6716: 
                   6717:   /*  printf("\n#Hessian matrix recomputed#\n"); */
                   6718: 
                   6719:   /* for (j=1;j<=npar;j++) { */
                   6720:   /*   for (i=1;i<=npar;i++) x[i]=0; */
                   6721:   /*   x[j]=1; */
                   6722:   /*   lubksb(a,npar,indx,x); */
                   6723:   /*   for (i=1;i<=npar;i++){  */
                   6724:   /*     y[i][j]=x[i]; */
                   6725:   /*     printf("%.3e ",y[i][j]); */
                   6726:   /*     fprintf(ficlog,"%.3e ",y[i][j]); */
                   6727:   /*   } */
                   6728:   /*   printf("\n"); */
                   6729:   /*   fprintf(ficlog,"\n"); */
                   6730:   /* } */
                   6731: 
                   6732:   /* Verifying the inverse matrix */
                   6733: #ifdef DEBUGHESS
                   6734:   y=matprod2(y,hess,1,npar,1,npar,1,npar,matcov);
1.126     brouard  6735: 
1.203     brouard  6736:    printf("\n#Verification: multiplying the matrix of covariance by the Hessian matrix, should be unity:#\n");
                   6737:    fprintf(ficlog,"\n#Verification: multiplying the matrix of covariance by the Hessian matrix. Should be unity:#\n");
1.126     brouard  6738: 
                   6739:   for (j=1;j<=npar;j++) {
                   6740:     for (i=1;i<=npar;i++){ 
1.203     brouard  6741:       printf("%.2f ",y[i][j]);
                   6742:       fprintf(ficlog,"%.2f ",y[i][j]);
1.126     brouard  6743:     }
                   6744:     printf("\n");
                   6745:     fprintf(ficlog,"\n");
                   6746:   }
1.203     brouard  6747: #endif
1.126     brouard  6748: 
                   6749:   free_matrix(a,1,npar,1,npar);
                   6750:   free_matrix(y,1,npar,1,npar);
                   6751:   free_vector(x,1,npar);
                   6752:   free_ivector(indx,1,npar);
1.203     brouard  6753:   /* free_matrix(hess,1,npar,1,npar); */
1.126     brouard  6754: 
                   6755: 
                   6756: }
                   6757: 
                   6758: /*************** hessian matrix ****************/
                   6759: double hessii(double x[], double delta, int theta, double delti[], double (*func)(double []), int npar)
1.203     brouard  6760: { /* Around values of x, computes the function func and returns the scales delti and hessian */
1.126     brouard  6761:   int i;
                   6762:   int l=1, lmax=20;
1.203     brouard  6763:   double k1,k2, res, fx;
1.132     brouard  6764:   double p2[MAXPARM+1]; /* identical to x */
1.126     brouard  6765:   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4;
                   6766:   int k=0,kmax=10;
                   6767:   double l1;
                   6768: 
                   6769:   fx=func(x);
                   6770:   for (i=1;i<=npar;i++) p2[i]=x[i];
1.145     brouard  6771:   for(l=0 ; l <=lmax; l++){  /* Enlarging the zone around the Maximum */
1.126     brouard  6772:     l1=pow(10,l);
                   6773:     delts=delt;
                   6774:     for(k=1 ; k <kmax; k=k+1){
                   6775:       delt = delta*(l1*k);
                   6776:       p2[theta]=x[theta] +delt;
1.145     brouard  6777:       k1=func(p2)-fx;   /* Might be negative if too close to the theoretical maximum */
1.126     brouard  6778:       p2[theta]=x[theta]-delt;
                   6779:       k2=func(p2)-fx;
                   6780:       /*res= (k1-2.0*fx+k2)/delt/delt; */
1.203     brouard  6781:       res= (k1+k2)/delt/delt/2.; /* Divided by 2 because L and not 2*L */
1.126     brouard  6782:       
1.203     brouard  6783: #ifdef DEBUGHESSII
1.126     brouard  6784:       printf("%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   6785:       fprintf(ficlog,"%d %d k1=%.12e k2=%.12e xk1=%.12e xk2=%.12e delt=%.12e res=%.12e l=%d k=%d,fx=%.12e\n",theta,theta,k1,k2,x[theta]+delt,x[theta]-delt,delt,res, l, k,fx);
                   6786: #endif
                   6787:       /*if(fabs(k1-2.0*fx+k2) <1.e-13){ */
                   6788:       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)){
                   6789:        k=kmax;
                   6790:       }
                   6791:       else if((k1 >khi/nkhif) || (k2 >khi/nkhif)){ /* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. */
1.164     brouard  6792:        k=kmax; l=lmax*10;
1.126     brouard  6793:       }
                   6794:       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){ 
                   6795:        delts=delt;
                   6796:       }
1.203     brouard  6797:     } /* End loop k */
1.126     brouard  6798:   }
                   6799:   delti[theta]=delts;
                   6800:   return res; 
                   6801:   
                   6802: }
                   6803: 
1.203     brouard  6804: double hessij( double x[], double **hess, double delti[], int thetai,int thetaj,double (*func)(double []),int npar)
1.126     brouard  6805: {
                   6806:   int i;
1.164     brouard  6807:   int l=1, lmax=20;
1.126     brouard  6808:   double k1,k2,k3,k4,res,fx;
1.132     brouard  6809:   double p2[MAXPARM+1];
1.203     brouard  6810:   int k, kmax=1;
                   6811:   double v1, v2, cv12, lc1, lc2;
1.208     brouard  6812: 
                   6813:   int firstime=0;
1.203     brouard  6814:   
1.126     brouard  6815:   fx=func(x);
1.203     brouard  6816:   for (k=1; k<=kmax; k=k+10) {
1.126     brouard  6817:     for (i=1;i<=npar;i++) p2[i]=x[i];
1.203     brouard  6818:     p2[thetai]=x[thetai]+delti[thetai]*k;
                   6819:     p2[thetaj]=x[thetaj]+delti[thetaj]*k;
1.126     brouard  6820:     k1=func(p2)-fx;
                   6821:   
1.203     brouard  6822:     p2[thetai]=x[thetai]+delti[thetai]*k;
                   6823:     p2[thetaj]=x[thetaj]-delti[thetaj]*k;
1.126     brouard  6824:     k2=func(p2)-fx;
                   6825:   
1.203     brouard  6826:     p2[thetai]=x[thetai]-delti[thetai]*k;
                   6827:     p2[thetaj]=x[thetaj]+delti[thetaj]*k;
1.126     brouard  6828:     k3=func(p2)-fx;
                   6829:   
1.203     brouard  6830:     p2[thetai]=x[thetai]-delti[thetai]*k;
                   6831:     p2[thetaj]=x[thetaj]-delti[thetaj]*k;
1.126     brouard  6832:     k4=func(p2)-fx;
1.203     brouard  6833:     res=(k1-k2-k3+k4)/4.0/delti[thetai]/k/delti[thetaj]/k/2.; /* Because of L not 2*L */
                   6834:     if(k1*k2*k3*k4 <0.){
1.208     brouard  6835:       firstime=1;
1.203     brouard  6836:       kmax=kmax+10;
1.208     brouard  6837:     }
                   6838:     if(kmax >=10 || firstime ==1){
1.354     brouard  6839:       /* What are the thetai and thetaj? thetai/ncovmodel thetai=(thetai-thetai%ncovmodel)/ncovmodel +thetai%ncovmodel=(line,pos)  */
1.246     brouard  6840:       printf("Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
                   6841:       fprintf(ficlog,"Warning: directions %d-%d, you are not estimating the Hessian at the exact maximum likelihood; you could increase ftol=%.2e\n",thetai,thetaj, ftol);
1.203     brouard  6842:       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   6843:       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti*k=%.12e deltj*k=%.12e, xi-de*k=%.12e xj-de*k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   6844:     }
                   6845: #ifdef DEBUGHESSIJ
                   6846:     v1=hess[thetai][thetai];
                   6847:     v2=hess[thetaj][thetaj];
                   6848:     cv12=res;
                   6849:     /* Computing eigen value of Hessian matrix */
                   6850:     lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   6851:     lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   6852:     if ((lc2 <0) || (lc1 <0) ){
                   6853:       printf("Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                   6854:       fprintf(ficlog, "Warning: sub Hessian matrix '%d%d' does not have positive eigen values \n",thetai,thetaj);
                   6855:       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   6856:       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4);
                   6857:     }
1.126     brouard  6858: #endif
                   6859:   }
                   6860:   return res;
                   6861: }
                   6862: 
1.203     brouard  6863:     /* Not done yet: Was supposed to fix if not exactly at the maximum */
                   6864: /* double hessij( double x[], double delti[], int thetai,int thetaj,double (*func)(double []),int npar) */
                   6865: /* { */
                   6866: /*   int i; */
                   6867: /*   int l=1, lmax=20; */
                   6868: /*   double k1,k2,k3,k4,res,fx; */
                   6869: /*   double p2[MAXPARM+1]; */
                   6870: /*   double delt=0.0001, delts, nkhi=10.,nkhif=1., khi=1.e-4; */
                   6871: /*   int k=0,kmax=10; */
                   6872: /*   double l1; */
                   6873:   
                   6874: /*   fx=func(x); */
                   6875: /*   for(l=0 ; l <=lmax; l++){  /\* Enlarging the zone around the Maximum *\/ */
                   6876: /*     l1=pow(10,l); */
                   6877: /*     delts=delt; */
                   6878: /*     for(k=1 ; k <kmax; k=k+1){ */
                   6879: /*       delt = delti*(l1*k); */
                   6880: /*       for (i=1;i<=npar;i++) p2[i]=x[i]; */
                   6881: /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
                   6882: /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
                   6883: /*       k1=func(p2)-fx; */
                   6884:       
                   6885: /*       p2[thetai]=x[thetai]+delti[thetai]/k; */
                   6886: /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
                   6887: /*       k2=func(p2)-fx; */
                   6888:       
                   6889: /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
                   6890: /*       p2[thetaj]=x[thetaj]+delti[thetaj]/k; */
                   6891: /*       k3=func(p2)-fx; */
                   6892:       
                   6893: /*       p2[thetai]=x[thetai]-delti[thetai]/k; */
                   6894: /*       p2[thetaj]=x[thetaj]-delti[thetaj]/k; */
                   6895: /*       k4=func(p2)-fx; */
                   6896: /*       res=(k1-k2-k3+k4)/4.0/delti[thetai]*k/delti[thetaj]*k/2.; /\* Because of L not 2*L *\/ */
                   6897: /* #ifdef DEBUGHESSIJ */
                   6898: /*       printf("%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
                   6899: /*       fprintf(ficlog,"%d %d k=%d, k1=%.12e k2=%.12e k3=%.12e k4=%.12e delti/k=%.12e deltj/k=%.12e, xi-de/k=%.12e xj-de/k=%.12e  res=%.12e k1234=%.12e,k1-2=%.12e,k3-4=%.12e\n",thetai,thetaj,k,k1,k2,k3,k4,delti[thetai]/k,delti[thetaj]/k,x[thetai]-delti[thetai]/k,x[thetaj]-delti[thetaj]/k, res,k1-k2-k3+k4,k1-k2,k3-k4); */
                   6900: /* #endif */
                   6901: /*       if((k1 <khi/nkhi/2.) || (k2 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)|| (k4 <khi/nkhi/2.)){ */
                   6902: /*     k=kmax; */
                   6903: /*       } */
                   6904: /*       else if((k1 >khi/nkhif) || (k2 >khi/nkhif) || (k4 >khi/nkhif) || (k4 >khi/nkhif)){ /\* Keeps lastvalue before 3.84/2 KHI2 5% 1d.f. *\/ */
                   6905: /*     k=kmax; l=lmax*10; */
                   6906: /*       } */
                   6907: /*       else if((k1 >khi/nkhi) || (k2 >khi/nkhi)){  */
                   6908: /*     delts=delt; */
                   6909: /*       } */
                   6910: /*     } /\* End loop k *\/ */
                   6911: /*   } */
                   6912: /*   delti[theta]=delts; */
                   6913: /*   return res;  */
                   6914: /* } */
                   6915: 
                   6916: 
1.126     brouard  6917: /************** Inverse of matrix **************/
                   6918: void ludcmp(double **a, int n, int *indx, double *d) 
                   6919: { 
                   6920:   int i,imax,j,k; 
                   6921:   double big,dum,sum,temp; 
                   6922:   double *vv; 
                   6923:  
                   6924:   vv=vector(1,n); 
                   6925:   *d=1.0; 
                   6926:   for (i=1;i<=n;i++) { 
                   6927:     big=0.0; 
                   6928:     for (j=1;j<=n;j++) 
                   6929:       if ((temp=fabs(a[i][j])) > big) big=temp; 
1.256     brouard  6930:     if (big == 0.0){
                   6931:       printf(" Singular Hessian matrix at row %d:\n",i);
                   6932:       for (j=1;j<=n;j++) {
                   6933:        printf(" a[%d][%d]=%f,",i,j,a[i][j]);
                   6934:        fprintf(ficlog," a[%d][%d]=%f,",i,j,a[i][j]);
                   6935:       }
                   6936:       fflush(ficlog);
                   6937:       fclose(ficlog);
                   6938:       nrerror("Singular matrix in routine ludcmp"); 
                   6939:     }
1.126     brouard  6940:     vv[i]=1.0/big; 
                   6941:   } 
                   6942:   for (j=1;j<=n;j++) { 
                   6943:     for (i=1;i<j;i++) { 
                   6944:       sum=a[i][j]; 
                   6945:       for (k=1;k<i;k++) sum -= a[i][k]*a[k][j]; 
                   6946:       a[i][j]=sum; 
                   6947:     } 
                   6948:     big=0.0; 
                   6949:     for (i=j;i<=n;i++) { 
                   6950:       sum=a[i][j]; 
                   6951:       for (k=1;k<j;k++) 
                   6952:        sum -= a[i][k]*a[k][j]; 
                   6953:       a[i][j]=sum; 
                   6954:       if ( (dum=vv[i]*fabs(sum)) >= big) { 
                   6955:        big=dum; 
                   6956:        imax=i; 
                   6957:       } 
                   6958:     } 
                   6959:     if (j != imax) { 
                   6960:       for (k=1;k<=n;k++) { 
                   6961:        dum=a[imax][k]; 
                   6962:        a[imax][k]=a[j][k]; 
                   6963:        a[j][k]=dum; 
                   6964:       } 
                   6965:       *d = -(*d); 
                   6966:       vv[imax]=vv[j]; 
                   6967:     } 
                   6968:     indx[j]=imax; 
                   6969:     if (a[j][j] == 0.0) a[j][j]=TINY; 
                   6970:     if (j != n) { 
                   6971:       dum=1.0/(a[j][j]); 
                   6972:       for (i=j+1;i<=n;i++) a[i][j] *= dum; 
                   6973:     } 
                   6974:   } 
                   6975:   free_vector(vv,1,n);  /* Doesn't work */
                   6976: ;
                   6977: } 
                   6978: 
                   6979: void lubksb(double **a, int n, int *indx, double b[]) 
                   6980: { 
                   6981:   int i,ii=0,ip,j; 
                   6982:   double sum; 
                   6983:  
                   6984:   for (i=1;i<=n;i++) { 
                   6985:     ip=indx[i]; 
                   6986:     sum=b[ip]; 
                   6987:     b[ip]=b[i]; 
                   6988:     if (ii) 
                   6989:       for (j=ii;j<=i-1;j++) sum -= a[i][j]*b[j]; 
                   6990:     else if (sum) ii=i; 
                   6991:     b[i]=sum; 
                   6992:   } 
                   6993:   for (i=n;i>=1;i--) { 
                   6994:     sum=b[i]; 
                   6995:     for (j=i+1;j<=n;j++) sum -= a[i][j]*b[j]; 
                   6996:     b[i]=sum/a[i][i]; 
                   6997:   } 
                   6998: } 
                   6999: 
                   7000: void pstamp(FILE *fichier)
                   7001: {
1.196     brouard  7002:   fprintf(fichier,"# %s.%s\n#IMaCh version %s, %s\n#%s\n# %s", optionfilefiname,optionfilext,version,copyright, fullversion, strstart);
1.126     brouard  7003: }
                   7004: 
1.297     brouard  7005: void date2dmy(double date,double *day, double *month, double *year){
                   7006:   double yp=0., yp1=0., yp2=0.;
                   7007:   
                   7008:   yp1=modf(date,&yp);/* extracts integral of date in yp  and
                   7009:                        fractional in yp1 */
                   7010:   *year=yp;
                   7011:   yp2=modf((yp1*12),&yp);
                   7012:   *month=yp;
                   7013:   yp1=modf((yp2*30.5),&yp);
                   7014:   *day=yp;
                   7015:   if(*day==0) *day=1;
                   7016:   if(*month==0) *month=1;
                   7017: }
                   7018: 
1.253     brouard  7019: 
                   7020: 
1.126     brouard  7021: /************ Frequencies ********************/
1.251     brouard  7022: void  freqsummary(char fileres[], double p[], double pstart[], int iagemin, int iagemax, int **s, double **agev, int nlstate, int imx, \
1.226     brouard  7023:                  int *Tvaraff, int *invalidvarcomb, int **nbcode, int *ncodemax,double **mint,double **anint, char strstart[], \
                   7024:                  int firstpass,  int lastpass, int stepm, int weightopt, char model[])
1.250     brouard  7025: {  /* Some frequencies as well as proposing some starting values */
1.332     brouard  7026:   /* Frequencies of any combination of dummy covariate used in the model equation */ 
1.265     brouard  7027:   int i, m, jk, j1, bool, z1,j, nj, nl, k, iv, jj=0, s1=1, s2=1;
1.226     brouard  7028:   int iind=0, iage=0;
                   7029:   int mi; /* Effective wave */
                   7030:   int first;
                   7031:   double ***freq; /* Frequencies */
1.268     brouard  7032:   double *x, *y, a=0.,b=0.,r=1., sa=0., sb=0.; /* for regression, y=b+m*x and r is the correlation coefficient */
                   7033:   int no=0, linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb);
1.284     brouard  7034:   double *meanq, *stdq, *idq;
1.226     brouard  7035:   double **meanqt;
                   7036:   double *pp, **prop, *posprop, *pospropt;
                   7037:   double pos=0., posproptt=0., pospropta=0., k2, dateintsum=0,k2cpt=0;
                   7038:   char fileresp[FILENAMELENGTH], fileresphtm[FILENAMELENGTH], fileresphtmfr[FILENAMELENGTH];
                   7039:   double agebegin, ageend;
                   7040:     
                   7041:   pp=vector(1,nlstate);
1.251     brouard  7042:   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
1.226     brouard  7043:   posprop=vector(1,nlstate); /* Counting the number of transition starting from a live state per age */ 
                   7044:   pospropt=vector(1,nlstate); /* Counting the number of transition starting from a live state */ 
                   7045:   /* prop=matrix(1,nlstate,iagemin,iagemax+3); */
                   7046:   meanq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
1.284     brouard  7047:   stdq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
1.283     brouard  7048:   idq=vector(1,nqfveff); /* Number of Quantitative Fixed Variables Effective */
1.226     brouard  7049:   meanqt=matrix(1,lastpass,1,nqtveff);
                   7050:   strcpy(fileresp,"P_");
                   7051:   strcat(fileresp,fileresu);
                   7052:   /*strcat(fileresphtm,fileresu);*/
                   7053:   if((ficresp=fopen(fileresp,"w"))==NULL) {
                   7054:     printf("Problem with prevalence resultfile: %s\n", fileresp);
                   7055:     fprintf(ficlog,"Problem with prevalence resultfile: %s\n", fileresp);
                   7056:     exit(0);
                   7057:   }
1.240     brouard  7058:   
1.226     brouard  7059:   strcpy(fileresphtm,subdirfext(optionfilefiname,"PHTM_",".htm"));
                   7060:   if((ficresphtm=fopen(fileresphtm,"w"))==NULL) {
                   7061:     printf("Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                   7062:     fprintf(ficlog,"Problem with prevalence HTM resultfile '%s' with errno='%s'\n",fileresphtm,strerror(errno));
                   7063:     fflush(ficlog);
                   7064:     exit(70); 
                   7065:   }
                   7066:   else{
                   7067:     fprintf(ficresphtm,"<html><head>\n<title>IMaCh PHTM_ %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
1.240     brouard  7068: <hr size=\"2\" color=\"#EC5E5E\"> \n                                   \
1.214     brouard  7069: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.226     brouard  7070:            fileresphtm,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   7071:   }
1.319     brouard  7072:   fprintf(ficresphtm,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Frequencies (weight=%d) and prevalence by age at begin of transition and dummy covariate value at beginning of transition</h4>\n",fileresphtm, fileresphtm, weightopt);
1.240     brouard  7073:   
1.226     brouard  7074:   strcpy(fileresphtmfr,subdirfext(optionfilefiname,"PHTMFR_",".htm"));
                   7075:   if((ficresphtmfr=fopen(fileresphtmfr,"w"))==NULL) {
                   7076:     printf("Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                   7077:     fprintf(ficlog,"Problem with frequency table HTM resultfile '%s' with errno='%s'\n",fileresphtmfr,strerror(errno));
                   7078:     fflush(ficlog);
                   7079:     exit(70); 
1.240     brouard  7080:   } else{
1.226     brouard  7081:     fprintf(ficresphtmfr,"<html><head>\n<title>IMaCh PHTM_Frequency table %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
1.319     brouard  7082: ,<hr size=\"2\" color=\"#EC5E5E\"> \n                                  \
1.214     brouard  7083: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.226     brouard  7084:            fileresphtmfr,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   7085:   }
1.319     brouard  7086:   fprintf(ficresphtmfr,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>(weight=%d) frequencies of all effective transitions of the model, by age at begin of transition, and covariate value at the begin of transition (if the covariate is a varying covariate) </h4>Unknown status is -1<br/>\n",fileresphtmfr, fileresphtmfr,weightopt);
1.240     brouard  7087:   
1.253     brouard  7088:   y= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
                   7089:   x= vector(iagemin-AGEMARGE,iagemax+4+AGEMARGE);
1.251     brouard  7090:   freq= ma3x(-5,nlstate+ndeath,-5,nlstate+ndeath,iagemin-AGEMARGE,iagemax+4+AGEMARGE);
1.226     brouard  7091:   j1=0;
1.126     brouard  7092:   
1.227     brouard  7093:   /* j=ncoveff;  /\* Only fixed dummy covariates *\/ */
1.335     brouard  7094:   j=cptcoveff;  /* Only simple dummy covariates used in the model */
1.330     brouard  7095:   /* j=cptcovn;  /\* Only dummy covariates of the model *\/ */
1.226     brouard  7096:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
1.240     brouard  7097:   
                   7098:   
1.226     brouard  7099:   /* Detects if a combination j1 is empty: for a multinomial variable like 3 education levels:
                   7100:      reference=low_education V1=0,V2=0
                   7101:      med_educ                V1=1 V2=0, 
                   7102:      high_educ               V1=0 V2=1
1.330     brouard  7103:      Then V1=1 and V2=1 is a noisy combination that we want to exclude for the list 2**cptcovn 
1.226     brouard  7104:   */
1.249     brouard  7105:   dateintsum=0;
                   7106:   k2cpt=0;
                   7107: 
1.253     brouard  7108:   if(cptcoveff == 0 )
1.265     brouard  7109:     nl=1;  /* Constant and age model only */
1.253     brouard  7110:   else
                   7111:     nl=2;
1.265     brouard  7112: 
                   7113:   /* if a constant only model, one pass to compute frequency tables and to write it on ficresp */
                   7114:   /* Loop on nj=1 or 2 if dummy covariates j!=0
1.335     brouard  7115:    *   Loop on j1(1 to 2**cptcoveff) covariate combination
1.265     brouard  7116:    *     freq[s1][s2][iage] =0.
                   7117:    *     Loop on iind
                   7118:    *       ++freq[s1][s2][iage] weighted
                   7119:    *     end iind
                   7120:    *     if covariate and j!0
                   7121:    *       headers Variable on one line
                   7122:    *     endif cov j!=0
                   7123:    *     header of frequency table by age
                   7124:    *     Loop on age
                   7125:    *       pp[s1]+=freq[s1][s2][iage] weighted
                   7126:    *       pos+=freq[s1][s2][iage] weighted
                   7127:    *       Loop on s1 initial state
                   7128:    *         fprintf(ficresp
                   7129:    *       end s1
                   7130:    *     end age
                   7131:    *     if j!=0 computes starting values
                   7132:    *     end compute starting values
                   7133:    *   end j1
                   7134:    * end nl 
                   7135:    */
1.253     brouard  7136:   for (nj = 1; nj <= nl; nj++){   /* nj= 1 constant model, nl number of loops. */
                   7137:     if(nj==1)
                   7138:       j=0;  /* First pass for the constant */
1.265     brouard  7139:     else{
1.335     brouard  7140:       j=cptcoveff; /* Other passes for the covariate values number of simple covariates in the model V2+V1 =2 (simple dummy fixed or time varying) */
1.265     brouard  7141:     }
1.251     brouard  7142:     first=1;
1.332     brouard  7143:     for (j1 = 1; j1 <= (int) pow(2,j); j1++){ /* Loop on all dummy covariates combination of the model, ie excluding quantitatives, V4=0, V3=0 for example, fixed or varying covariates */
1.251     brouard  7144:       posproptt=0.;
1.330     brouard  7145:       /*printf("cptcovn=%d Tvaraff=%d", cptcovn,Tvaraff[1]);
1.251     brouard  7146:        scanf("%d", i);*/
                   7147:       for (i=-5; i<=nlstate+ndeath; i++)  
1.265     brouard  7148:        for (s2=-5; s2<=nlstate+ndeath; s2++)  
1.251     brouard  7149:          for(m=iagemin; m <= iagemax+3; m++)
1.265     brouard  7150:            freq[i][s2][m]=0;
1.251     brouard  7151:       
                   7152:       for (i=1; i<=nlstate; i++)  {
1.240     brouard  7153:        for(m=iagemin; m <= iagemax+3; m++)
1.251     brouard  7154:          prop[i][m]=0;
                   7155:        posprop[i]=0;
                   7156:        pospropt[i]=0;
                   7157:       }
1.283     brouard  7158:       for (z1=1; z1<= nqfveff; z1++) { /* zeroing for each combination j1 as well as for the total */
1.284     brouard  7159:         idq[z1]=0.;
                   7160:         meanq[z1]=0.;
                   7161:         stdq[z1]=0.;
1.283     brouard  7162:       }
                   7163:       /* for (z1=1; z1<= nqtveff; z1++) { */
1.251     brouard  7164:       /*   for(m=1;m<=lastpass;m++){ */
1.283     brouard  7165:       /*         meanqt[m][z1]=0.; */
                   7166:       /*       } */
                   7167:       /* }       */
1.251     brouard  7168:       /* dateintsum=0; */
                   7169:       /* k2cpt=0; */
                   7170:       
1.265     brouard  7171:       /* For that combination of covariates j1 (V4=1 V3=0 for example), we count and print the frequencies in one pass */
1.251     brouard  7172:       for (iind=1; iind<=imx; iind++) { /* For each individual iind */
                   7173:        bool=1;
                   7174:        if(j !=0){
                   7175:          if(anyvaryingduminmodel==0){ /* If All fixed covariates */
1.335     brouard  7176:            if (cptcoveff >0) { /* Filter is here: Must be looked at for model=V1+V2+V3+V4 */
                   7177:              for (z1=1; z1<=cptcoveff; z1++) { /* loops on covariates in the model */
1.251     brouard  7178:                /* if(Tvaraff[z1] ==-20){ */
                   7179:                /*       /\* sumnew+=cotvar[mw[mi][iind]][z1][iind]; *\/ */
                   7180:                /* }else  if(Tvaraff[z1] ==-10){ */
                   7181:                /*       /\* sumnew+=coqvar[z1][iind]; *\/ */
1.330     brouard  7182:                /* }else  */ /* TODO TODO codtabm(j1,z1) or codtabm(j1,Tvaraff[z1]]z1)*/
1.335     brouard  7183:                /* if( iind >=imx-3) printf("Searching error iind=%d Tvaraff[z1]=%d covar[Tvaraff[z1]][iind]=%.f TnsdVar[Tvaraff[z1]]=%d, cptcoveff=%d, cptcovs=%d \n",iind, Tvaraff[z1], covar[Tvaraff[z1]][iind],TnsdVar[Tvaraff[z1]],cptcoveff, cptcovs); */
                   7184:                if(Tvaraff[z1]<1 || Tvaraff[z1]>=NCOVMAX)
1.338     brouard  7185:                  printf("Error Tvaraff[z1]=%d<1 or >=%d, cptcoveff=%d model=1+age+%s\n",Tvaraff[z1],NCOVMAX, cptcoveff, model);
1.332     brouard  7186:                if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]){ /* for combination j1 of covariates */
1.265     brouard  7187:                  /* Tests if the value of the covariate z1 for this individual iind responded to combination j1 (V4=1 V3=0) */
1.251     brouard  7188:                  bool=0; /* bool should be equal to 1 to be selected, one covariate value failed */
1.332     brouard  7189:                  /* printf("bool=%d i=%d, z1=%d, Tvaraff[%d]=%d, covar[Tvarff][%d]=%2f, codtabm(%d,%d)=%d, nbcode[Tvaraff][codtabm(%d,%d)=%d, j1=%d\n", */
                   7190:                  /*   bool,i,z1, z1, Tvaraff[z1],i,covar[Tvaraff[z1]][i],j1,z1,codtabm(j1,z1),*/
                   7191:                   /*   j1,z1,nbcode[Tvaraff[z1]][codtabm(j1,z1)],j1);*/
1.251     brouard  7192:                  /* For j1=7 in V1+V2+V3+V4 = 0 1 1 0 and codtabm(7,3)=1 and nbcde[3][?]=1*/
                   7193:                } /* Onlyf fixed */
                   7194:              } /* end z1 */
1.335     brouard  7195:            } /* cptcoveff > 0 */
1.251     brouard  7196:          } /* end any */
                   7197:        }/* end j==0 */
1.265     brouard  7198:        if (bool==1){ /* We selected an individual iind satisfying combination j1 (V4=1 V3=0) or all fixed covariates */
1.251     brouard  7199:          /* for(m=firstpass; m<=lastpass; m++){ */
1.284     brouard  7200:          for(mi=1; mi<wav[iind];mi++){ /* For each wave */
1.251     brouard  7201:            m=mw[mi][iind];
                   7202:            if(j!=0){
                   7203:              if(anyvaryingduminmodel==1){ /* Some are varying covariates */
1.335     brouard  7204:                for (z1=1; z1<=cptcoveff; z1++) {
1.251     brouard  7205:                  if( Fixed[Tmodelind[z1]]==1){
1.341     brouard  7206:                    /* iv= Tvar[Tmodelind[z1]]-ncovcol-nqv; /\* Good *\/ */
                   7207:                    iv= Tvar[Tmodelind[z1]]; /* Good *//* because cotvar starts now at first at ncovcol+nqv+ntv */ 
1.332     brouard  7208:                    if (cotvar[m][iv][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality. If covariate's 
1.251     brouard  7209:                                                                                      value is -1, we don't select. It differs from the 
                   7210:                                                                                      constant and age model which counts them. */
                   7211:                      bool=0; /* not selected */
                   7212:                  }else if( Fixed[Tmodelind[z1]]== 0) { /* fixed */
1.334     brouard  7213:                    /* i1=Tvaraff[z1]; */
                   7214:                    /* i2=TnsdVar[i1]; */
                   7215:                    /* i3=nbcode[i1][i2]; */
                   7216:                    /* i4=covar[i1][iind]; */
                   7217:                    /* if(i4 != i3){ */
                   7218:                    if (covar[Tvaraff[z1]][iind]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) { /* Bug valgrind */
1.251     brouard  7219:                      bool=0;
                   7220:                    }
                   7221:                  }
                   7222:                }
                   7223:              }/* Some are varying covariates, we tried to speed up if all fixed covariates in the model, avoiding waves loop  */
                   7224:            } /* end j==0 */
                   7225:            /* bool =0 we keep that guy which corresponds to the combination of dummy values */
1.284     brouard  7226:            if(bool==1){ /*Selected */
1.251     brouard  7227:              /* dh[m][iind] or dh[mw[mi][iind]][iind] is the delay between two effective (mi) waves m=mw[mi][iind]
                   7228:                 and mw[mi+1][iind]. dh depends on stepm. */
                   7229:              agebegin=agev[m][iind]; /* Age at beginning of wave before transition*/
                   7230:              ageend=agev[m][iind]+(dh[m][iind])*stepm/YEARM; /* Age at end of wave and transition */
                   7231:              if(m >=firstpass && m <=lastpass){
                   7232:                k2=anint[m][iind]+(mint[m][iind]/12.);
                   7233:                /*if ((k2>=dateprev1) && (k2<=dateprev2)) {*/
                   7234:                if(agev[m][iind]==0) agev[m][iind]=iagemax+1;  /* All ages equal to 0 are in iagemax+1 */
                   7235:                if(agev[m][iind]==1) agev[m][iind]=iagemax+2;  /* All ages equal to 1 are in iagemax+2 */
                   7236:                if (s[m][iind]>0 && s[m][iind]<=nlstate)  /* If status at wave m is known and a live state */
                   7237:                  prop[s[m][iind]][(int)agev[m][iind]] += weight[iind];  /* At age of beginning of transition, where status is known */
                   7238:                if (m<lastpass) {
                   7239:                  /* if(s[m][iind]==4 && s[m+1][iind]==4) */
                   7240:                  /*   printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind]); */
                   7241:                  if(s[m][iind]==-1)
                   7242:                    printf(" num=%ld m=%d, iind=%d s1=%d s2=%d agev at m=%d agebegin=%.2f ageend=%.2f, agemed=%d\n", num[iind], m, iind,s[m][iind],s[m+1][iind], (int)agev[m][iind],agebegin, ageend, (int)((agebegin+ageend)/2.));
                   7243:                  freq[s[m][iind]][s[m+1][iind]][(int)agev[m][iind]] += weight[iind]; /* At age of beginning of transition, where status is known */
1.311     brouard  7244:                  for (z1=1; z1<= nqfveff; z1++) { /* Quantitative variables, calculating mean on known values only */
                   7245:                    if(!isnan(covar[ncovcol+z1][iind])){
1.332     brouard  7246:                      idq[z1]=idq[z1]+weight[iind];
                   7247:                      meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /* Computes mean of quantitative with selected filter */
                   7248:                      /* stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; *//*error*/
                   7249:                      stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]; /* *weight[iind];*/  /* Computes mean of quantitative with selected filter */
1.311     brouard  7250:                    }
1.284     brouard  7251:                  }
1.251     brouard  7252:                  /* if((int)agev[m][iind] == 55) */
                   7253:                  /*   printf("j=%d, j1=%d Age %d, iind=%d, num=%09ld m=%d\n",j,j1,(int)agev[m][iind],iind, num[iind],m); */
                   7254:                  /* freq[s[m][iind]][s[m+1][iind]][(int)((agebegin+ageend)/2.)] += weight[iind]; */
                   7255:                  freq[s[m][iind]][s[m+1][iind]][iagemax+3] += weight[iind]; /* Total is in iagemax+3 *//* At age of beginning of transition, where status is known */
1.234     brouard  7256:                }
1.251     brouard  7257:              } /* end if between passes */  
                   7258:              if ((agev[m][iind]>1) && (agev[m][iind]< (iagemax+3)) && (anint[m][iind]!=9999) && (mint[m][iind]!=99) && (j==0)) {
                   7259:                dateintsum=dateintsum+k2; /* on all covariates ?*/
                   7260:                k2cpt++;
                   7261:                /* printf("iind=%ld dateintmean = %lf dateintsum=%lf k2cpt=%lf k2=%lf\n",iind, dateintsum/k2cpt, dateintsum,k2cpt, k2); */
1.234     brouard  7262:              }
1.251     brouard  7263:            }else{
                   7264:              bool=1;
                   7265:            }/* end bool 2 */
                   7266:          } /* end m */
1.284     brouard  7267:          /* for (z1=1; z1<= nqfveff; z1++) { /\* Quantitative variables, calculating mean *\/ */
                   7268:          /*   idq[z1]=idq[z1]+weight[iind]; */
                   7269:          /*   meanq[z1]+=covar[ncovcol+z1][iind]*weight[iind];  /\* Computes mean of quantitative with selected filter *\/ */
                   7270:          /*   stdq[z1]+=covar[ncovcol+z1][iind]*covar[ncovcol+z1][iind]*weight[iind]*weight[iind]; /\* *weight[iind];*\/  /\* Computes mean of quantitative with selected filter *\/ */
                   7271:          /* } */
1.251     brouard  7272:        } /* end bool */
                   7273:       } /* end iind = 1 to imx */
1.319     brouard  7274:       /* prop[s][age] is fed for any initial and valid live state as well as
1.251     brouard  7275:         freq[s1][s2][age] at single age of beginning the transition, for a combination j1 */
                   7276:       
                   7277:       
                   7278:       /*      fprintf(ficresp, "#Count between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2);*/
1.335     brouard  7279:       if(cptcoveff==0 && nj==1) /* no covariate and first pass */
1.265     brouard  7280:         pstamp(ficresp);
1.335     brouard  7281:       if  (cptcoveff>0 && j!=0){
1.265     brouard  7282:         pstamp(ficresp);
1.251     brouard  7283:        printf( "\n#********** Variable "); 
                   7284:        fprintf(ficresp, "\n#********** Variable "); 
                   7285:        fprintf(ficresphtm, "\n<br/><br/><h3>********** Variable "); 
                   7286:        fprintf(ficresphtmfr, "\n<br/><br/><h3>********** Variable "); 
                   7287:        fprintf(ficlog, "\n#********** Variable "); 
1.340     brouard  7288:        for (z1=1; z1<=cptcoveff; z1++){
1.251     brouard  7289:          if(!FixedV[Tvaraff[z1]]){
1.330     brouard  7290:            printf( "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   7291:            fprintf(ficresp, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   7292:            fprintf(ficresphtm, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   7293:            fprintf(ficresphtmfr, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   7294:            fprintf(ficlog, "V%d(fixed)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
1.250     brouard  7295:          }else{
1.330     brouard  7296:            printf( "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   7297:            fprintf(ficresp, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   7298:            fprintf(ficresphtm, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   7299:            fprintf(ficresphtmfr, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   7300:            fprintf(ficlog, "V%d(varying)=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
1.251     brouard  7301:          }
                   7302:        }
                   7303:        printf( "**********\n#");
                   7304:        fprintf(ficresp, "**********\n#");
                   7305:        fprintf(ficresphtm, "**********</h3>\n");
                   7306:        fprintf(ficresphtmfr, "**********</h3>\n");
                   7307:        fprintf(ficlog, "**********\n");
                   7308:       }
1.284     brouard  7309:       /*
                   7310:        Printing means of quantitative variables if any
                   7311:       */
                   7312:       for (z1=1; z1<= nqfveff; z1++) {
1.311     brouard  7313:        fprintf(ficlog,"Mean of fixed quantitative variable V%d on %.3g (weighted) individuals sum=%f", ncovcol+z1, idq[z1], meanq[z1]);
1.312     brouard  7314:        fprintf(ficlog,", mean=%.3g\n",meanq[z1]/idq[z1]);
1.284     brouard  7315:        if(weightopt==1){
                   7316:          printf(" Weighted mean and standard deviation of");
                   7317:          fprintf(ficlog," Weighted mean and standard deviation of");
                   7318:          fprintf(ficresphtmfr," Weighted mean and standard deviation of");
                   7319:        }
1.311     brouard  7320:        /* mu = \frac{w x}{\sum w}
                   7321:            var = \frac{\sum w (x-mu)^2}{\sum w} = \frac{w x^2}{\sum w} - mu^2 
                   7322:        */
                   7323:        printf(" fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
                   7324:        fprintf(ficlog," fixed quantitative variable V%d on  %.3g (weighted) representatives of the population : %8.5g (%8.5g)\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
                   7325:        fprintf(ficresphtmfr," fixed quantitative variable V%d on %.3g (weighted) representatives of the population : %8.5g (%8.5g)<p>\n", ncovcol+z1, idq[z1],meanq[z1]/idq[z1], sqrt(stdq[z1]/idq[z1]-meanq[z1]*meanq[z1]/idq[z1]/idq[z1]));
1.284     brouard  7326:       }
                   7327:       /* for (z1=1; z1<= nqtveff; z1++) { */
                   7328:       /*       for(m=1;m<=lastpass;m++){ */
                   7329:       /*         fprintf(ficresphtmfr,"V quantitative id %d, pass id=%d, mean=%f<p>\n", z1, m, meanqt[m][z1]); */
                   7330:       /*   } */
                   7331:       /* } */
1.283     brouard  7332: 
1.251     brouard  7333:       fprintf(ficresphtm,"<table style=\"text-align:center; border: 1px solid\">");
1.335     brouard  7334:       if((cptcoveff==0 && nj==1)|| nj==2 ) /* no covariate and first pass */
1.265     brouard  7335:         fprintf(ficresp, " Age");
1.335     brouard  7336:       if(nj==2) for (z1=1; z1<=cptcoveff; z1++) {
                   7337:          printf(" V%d=%d, z1=%d, Tvaraff[z1]=%d, j1=%d, TnsdVar[Tvaraff[%d]]=%d |",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])], z1, Tvaraff[z1], j1,z1,TnsdVar[Tvaraff[z1]]);
                   7338:          fprintf(ficresp, " V%d=%d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
                   7339:        }
1.251     brouard  7340:       for(i=1; i<=nlstate;i++) {
1.335     brouard  7341:        if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," Prev(%d)  N(%d)  N  ",i,i);
1.251     brouard  7342:        fprintf(ficresphtm, "<th>Age</th><th>Prev(%d)</th><th>N(%d)</th><th>N</th>",i,i);
                   7343:       }
1.335     brouard  7344:       if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp, "\n");
1.251     brouard  7345:       fprintf(ficresphtm, "\n");
                   7346:       
                   7347:       /* Header of frequency table by age */
                   7348:       fprintf(ficresphtmfr,"<table style=\"text-align:center; border: 1px solid\">");
                   7349:       fprintf(ficresphtmfr,"<th>Age</th> ");
1.265     brouard  7350:       for(s2=-1; s2 <=nlstate+ndeath; s2++){
1.251     brouard  7351:        for(m=-1; m <=nlstate+ndeath; m++){
1.265     brouard  7352:          if(s2!=0 && m!=0)
                   7353:            fprintf(ficresphtmfr,"<th>%d%d</th> ",s2,m);
1.240     brouard  7354:        }
1.226     brouard  7355:       }
1.251     brouard  7356:       fprintf(ficresphtmfr, "\n");
                   7357:     
                   7358:       /* For each age */
                   7359:       for(iage=iagemin; iage <= iagemax+3; iage++){
                   7360:        fprintf(ficresphtm,"<tr>");
                   7361:        if(iage==iagemax+1){
                   7362:          fprintf(ficlog,"1");
                   7363:          fprintf(ficresphtmfr,"<tr><th>0</th> ");
                   7364:        }else if(iage==iagemax+2){
                   7365:          fprintf(ficlog,"0");
                   7366:          fprintf(ficresphtmfr,"<tr><th>Unknown</th> ");
                   7367:        }else if(iage==iagemax+3){
                   7368:          fprintf(ficlog,"Total");
                   7369:          fprintf(ficresphtmfr,"<tr><th>Total</th> ");
                   7370:        }else{
1.240     brouard  7371:          if(first==1){
1.251     brouard  7372:            first=0;
                   7373:            printf("See log file for details...\n");
                   7374:          }
                   7375:          fprintf(ficresphtmfr,"<tr><th>%d</th> ",iage);
                   7376:          fprintf(ficlog,"Age %d", iage);
                   7377:        }
1.265     brouard  7378:        for(s1=1; s1 <=nlstate ; s1++){
                   7379:          for(m=-1, pp[s1]=0; m <=nlstate+ndeath ; m++)
                   7380:            pp[s1] += freq[s1][m][iage]; 
1.251     brouard  7381:        }
1.265     brouard  7382:        for(s1=1; s1 <=nlstate ; s1++){
1.251     brouard  7383:          for(m=-1, pos=0; m <=0 ; m++)
1.265     brouard  7384:            pos += freq[s1][m][iage];
                   7385:          if(pp[s1]>=1.e-10){
1.251     brouard  7386:            if(first==1){
1.265     brouard  7387:              printf(" %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
1.251     brouard  7388:            }
1.265     brouard  7389:            fprintf(ficlog," %d.=%.0f loss[%d]=%.1f%%",s1,pp[s1],s1,100*pos/pp[s1]);
1.251     brouard  7390:          }else{
                   7391:            if(first==1)
1.265     brouard  7392:              printf(" %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
                   7393:            fprintf(ficlog," %d.=%.0f loss[%d]=NaNQ%%",s1,pp[s1],s1);
1.240     brouard  7394:          }
                   7395:        }
                   7396:       
1.265     brouard  7397:        for(s1=1; s1 <=nlstate ; s1++){ 
                   7398:          /* posprop[s1]=0; */
                   7399:          for(m=0, pp[s1]=0; m <=nlstate+ndeath; m++)/* Summing on all ages */
                   7400:            pp[s1] += freq[s1][m][iage];
                   7401:        }       /* pp[s1] is the total number of transitions starting from state s1 and any ending status until this age */
                   7402:       
                   7403:        for(s1=1,pos=0, pospropta=0.; s1 <=nlstate ; s1++){
                   7404:          pos += pp[s1]; /* pos is the total number of transitions until this age */
                   7405:          posprop[s1] += prop[s1][iage]; /* prop is the number of transitions from a live state
                   7406:                                            from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
                   7407:          pospropta += prop[s1][iage]; /* prop is the number of transitions from a live state
                   7408:                                          from s1 at age iage prop[s[m][iind]][(int)agev[m][iind]] += weight[iind] */
                   7409:        }
                   7410:        
                   7411:        /* Writing ficresp */
1.335     brouard  7412:        if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
1.265     brouard  7413:           if( iage <= iagemax){
                   7414:            fprintf(ficresp," %d",iage);
                   7415:           }
                   7416:         }else if( nj==2){
                   7417:           if( iage <= iagemax){
                   7418:            fprintf(ficresp," %d",iage);
1.335     brouard  7419:             for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresp, " %d %d",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]);
1.265     brouard  7420:           }
1.240     brouard  7421:        }
1.265     brouard  7422:        for(s1=1; s1 <=nlstate ; s1++){
1.240     brouard  7423:          if(pos>=1.e-5){
1.251     brouard  7424:            if(first==1)
1.265     brouard  7425:              printf(" %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
                   7426:            fprintf(ficlog," %d.=%.0f prev[%d]=%.1f%%",s1,pp[s1],s1,100*pp[s1]/pos);
1.251     brouard  7427:          }else{
                   7428:            if(first==1)
1.265     brouard  7429:              printf(" %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
                   7430:            fprintf(ficlog," %d.=%.0f prev[%d]=NaNQ%%",s1,pp[s1],s1);
1.251     brouard  7431:          }
                   7432:          if( iage <= iagemax){
                   7433:            if(pos>=1.e-5){
1.335     brouard  7434:              if(cptcoveff==0 && nj==1){ /* no covariate and first pass */
1.265     brouard  7435:                fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                   7436:               }else if( nj==2){
                   7437:                fprintf(ficresp," %.5f %.0f %.0f",prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                   7438:               }
                   7439:              fprintf(ficresphtm,"<th>%d</th><td>%.5f</td><td>%.0f</td><td>%.0f</td>",iage,prop[s1][iage]/pospropta, prop[s1][iage],pospropta);
                   7440:              /*probs[iage][s1][j1]= pp[s1]/pos;*/
                   7441:              /*printf("\niage=%d s1=%d j1=%d %.5f %.0f %.0f %f",iage,s1,j1,pp[s1]/pos, pp[s1],pos,probs[iage][s1][j1]);*/
                   7442:            } else{
1.335     brouard  7443:              if((cptcoveff==0 && nj==1)|| nj==2 ) fprintf(ficresp," NaNq %.0f %.0f",prop[s1][iage],pospropta);
1.265     brouard  7444:              fprintf(ficresphtm,"<th>%d</th><td>NaNq</td><td>%.0f</td><td>%.0f</td>",iage, prop[s1][iage],pospropta);
1.251     brouard  7445:            }
1.240     brouard  7446:          }
1.265     brouard  7447:          pospropt[s1] +=posprop[s1];
                   7448:        } /* end loop s1 */
1.251     brouard  7449:        /* pospropt=0.; */
1.265     brouard  7450:        for(s1=-1; s1 <=nlstate+ndeath; s1++){
1.251     brouard  7451:          for(m=-1; m <=nlstate+ndeath; m++){
1.265     brouard  7452:            if(freq[s1][m][iage] !=0 ) { /* minimizing output */
1.251     brouard  7453:              if(first==1){
1.265     brouard  7454:                printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]);
1.251     brouard  7455:              }
1.265     brouard  7456:              /* printf(" %d%d=%.0f",s1,m,freq[s1][m][iage]); */
                   7457:              fprintf(ficlog," %d%d=%.0f",s1,m,freq[s1][m][iage]);
1.251     brouard  7458:            }
1.265     brouard  7459:            if(s1!=0 && m!=0)
                   7460:              fprintf(ficresphtmfr,"<td>%.0f</td> ",freq[s1][m][iage]);
1.240     brouard  7461:          }
1.265     brouard  7462:        } /* end loop s1 */
1.251     brouard  7463:        posproptt=0.; 
1.265     brouard  7464:        for(s1=1; s1 <=nlstate; s1++){
                   7465:          posproptt += pospropt[s1];
1.251     brouard  7466:        }
                   7467:        fprintf(ficresphtmfr,"</tr>\n ");
1.265     brouard  7468:        fprintf(ficresphtm,"</tr>\n");
1.335     brouard  7469:        if((cptcoveff==0 && nj==1)|| nj==2 ) {
1.265     brouard  7470:          if(iage <= iagemax)
                   7471:            fprintf(ficresp,"\n");
1.240     brouard  7472:        }
1.251     brouard  7473:        if(first==1)
                   7474:          printf("Others in log...\n");
                   7475:        fprintf(ficlog,"\n");
                   7476:       } /* end loop age iage */
1.265     brouard  7477:       
1.251     brouard  7478:       fprintf(ficresphtm,"<tr><th>Tot</th>");
1.265     brouard  7479:       for(s1=1; s1 <=nlstate ; s1++){
1.251     brouard  7480:        if(posproptt < 1.e-5){
1.265     brouard  7481:          fprintf(ficresphtm,"<td>Nanq</td><td>%.0f</td><td>%.0f</td>",pospropt[s1],posproptt); 
1.251     brouard  7482:        }else{
1.265     brouard  7483:          fprintf(ficresphtm,"<td>%.5f</td><td>%.0f</td><td>%.0f</td>",pospropt[s1]/posproptt,pospropt[s1],posproptt);  
1.240     brouard  7484:        }
1.226     brouard  7485:       }
1.251     brouard  7486:       fprintf(ficresphtm,"</tr>\n");
                   7487:       fprintf(ficresphtm,"</table>\n");
                   7488:       fprintf(ficresphtmfr,"</table>\n");
1.226     brouard  7489:       if(posproptt < 1.e-5){
1.251     brouard  7490:        fprintf(ficresphtm,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
                   7491:        fprintf(ficresphtmfr,"\n <p><b> This combination (%d) is not valid and no result will be produced</b></p>",j1);
1.260     brouard  7492:        fprintf(ficlog,"#  This combination (%d) is not valid and no result will be produced\n",j1);
                   7493:        printf("#  This combination (%d) is not valid and no result will be produced\n",j1);
1.251     brouard  7494:        invalidvarcomb[j1]=1;
1.226     brouard  7495:       }else{
1.338     brouard  7496:        fprintf(ficresphtm,"\n <p> This combination (%d) is valid and result will be produced (or no resultline).</p>",j1);
1.251     brouard  7497:        invalidvarcomb[j1]=0;
1.226     brouard  7498:       }
1.251     brouard  7499:       fprintf(ficresphtmfr,"</table>\n");
                   7500:       fprintf(ficlog,"\n");
                   7501:       if(j!=0){
                   7502:        printf("#Freqsummary: Starting values for combination j1=%d:\n", j1);
1.265     brouard  7503:        for(i=1,s1=1; i <=nlstate; i++){
1.251     brouard  7504:          for(k=1; k <=(nlstate+ndeath); k++){
                   7505:            if (k != i) {
1.265     brouard  7506:              for(jj=1; jj <=ncovmodel; jj++){ /* For counting s1 */
1.253     brouard  7507:                if(jj==1){  /* Constant case (in fact cste + age) */
1.251     brouard  7508:                  if(j1==1){ /* All dummy covariates to zero */
                   7509:                    freq[i][k][iagemax+4]=freq[i][k][iagemax+3]; /* Stores case 0 0 0 */
                   7510:                    freq[i][i][iagemax+4]=freq[i][i][iagemax+3]; /* Stores case 0 0 0 */
1.252     brouard  7511:                    printf("%d%d ",i,k);
                   7512:                    fprintf(ficlog,"%d%d ",i,k);
1.265     brouard  7513:                    printf("%12.7f ln(%.0f/%.0f)= %f, OR=%f sd=%f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]),freq[i][k][iagemax+3]/freq[i][i][iagemax+3], sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]));
                   7514:                    fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f \n",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                   7515:                    pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
1.251     brouard  7516:                  }
1.253     brouard  7517:                }else if((j1==1) && (jj==2 || nagesqr==1)){ /* age or age*age parameter without covariate V4*age (to be done later) */
                   7518:                  for(iage=iagemin; iage <= iagemax+3; iage++){
                   7519:                    x[iage]= (double)iage;
                   7520:                    y[iage]= log(freq[i][k][iage]/freq[i][i][iage]);
1.265     brouard  7521:                    /* printf("i=%d, k=%d, s1=%d, j1=%d, jj=%d, y[%d]=%f\n",i,k,s1,j1,jj, iage, y[iage]); */
1.253     brouard  7522:                  }
1.268     brouard  7523:                  /* Some are not finite, but linreg will ignore these ages */
                   7524:                  no=0;
1.253     brouard  7525:                  linreg(iagemin,iagemax,&no,x,y,&a,&b,&r, &sa, &sb ); /* y= a+b*x with standard errors */
1.265     brouard  7526:                  pstart[s1]=b;
                   7527:                  pstart[s1-1]=a;
1.252     brouard  7528:                }else if( j1!=1 && (j1==2 || (log(j1-1.)/log(2.)-(int)(log(j1-1.)/log(2.))) <0.010) && ( TvarsDind[(int)(log(j1-1.)/log(2.))+1]+2+nagesqr == jj)  && Dummy[jj-2-nagesqr]==0){ /* We want only if the position, jj, in model corresponds to unique covariate equal to 1 in j1 combination */ 
                   7529:                  printf("j1=%d, jj=%d, (int)(log(j1-1.)/log(2.))+1=%d, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(int)(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
                   7530:                  printf("j1=%d, jj=%d, (log(j1-1.)/log(2.))+1=%f, TvarsDind[(int)(log(j1-1.)/log(2.))+1]=%d\n",j1, jj,(log(j1-1.)/log(2.))+1,TvarsDind[(int)(log(j1-1.)/log(2.))+1]);
1.265     brouard  7531:                  pstart[s1]= log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]));
1.252     brouard  7532:                  printf("%d%d ",i,k);
                   7533:                  fprintf(ficlog,"%d%d ",i,k);
1.265     brouard  7534:                  printf("s1=%d,i=%d,k=%d,p[%d]=%12.7f ln((%.0f/%.0f)/(%.0f/%.0f))= %f, OR=%f sd=%f \n",s1,i,k,s1,p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3],freq[i][k][iagemax+4],freq[i][i][iagemax+4], log((freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4])),(freq[i][k][iagemax+3]/freq[i][i][iagemax+3])/(freq[i][k][iagemax+4]/freq[i][i][iagemax+4]), sqrt(1/freq[i][k][iagemax+3]+1/freq[i][i][iagemax+3]+1/freq[i][k][iagemax+4]+1/freq[i][i][iagemax+4]));
1.251     brouard  7535:                }else{ /* Other cases, like quantitative fixed or varying covariates */
                   7536:                  ;
                   7537:                }
                   7538:                /* printf("%12.7f )", param[i][jj][k]); */
                   7539:                /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
1.265     brouard  7540:                s1++; 
1.251     brouard  7541:              } /* end jj */
                   7542:            } /* end k!= i */
                   7543:          } /* end k */
1.265     brouard  7544:        } /* end i, s1 */
1.251     brouard  7545:       } /* end j !=0 */
                   7546:     } /* end selected combination of covariate j1 */
                   7547:     if(j==0){ /* We can estimate starting values from the occurences in each case */
                   7548:       printf("#Freqsummary: Starting values for the constants:\n");
                   7549:       fprintf(ficlog,"\n");
1.265     brouard  7550:       for(i=1,s1=1; i <=nlstate; i++){
1.251     brouard  7551:        for(k=1; k <=(nlstate+ndeath); k++){
                   7552:          if (k != i) {
                   7553:            printf("%d%d ",i,k);
                   7554:            fprintf(ficlog,"%d%d ",i,k);
                   7555:            for(jj=1; jj <=ncovmodel; jj++){
1.265     brouard  7556:              pstart[s1]=p[s1]; /* Setting pstart to p values by default */
1.253     brouard  7557:              if(jj==1){ /* Age has to be done */
1.265     brouard  7558:                pstart[s1]= log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]);
                   7559:                printf("%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
                   7560:                fprintf(ficlog,"%12.7f ln(%.0f/%.0f)= %12.7f ",p[s1],freq[i][k][iagemax+3],freq[i][i][iagemax+3], log(freq[i][k][iagemax+3]/freq[i][i][iagemax+3]));
1.251     brouard  7561:              }
                   7562:              /* printf("%12.7f )", param[i][jj][k]); */
                   7563:              /* fprintf(ficlog,"%12.7f )", param[i][jj][k]); */
1.265     brouard  7564:              s1++; 
1.250     brouard  7565:            }
1.251     brouard  7566:            printf("\n");
                   7567:            fprintf(ficlog,"\n");
1.250     brouard  7568:          }
                   7569:        }
1.284     brouard  7570:       } /* end of state i */
1.251     brouard  7571:       printf("#Freqsummary\n");
                   7572:       fprintf(ficlog,"\n");
1.265     brouard  7573:       for(s1=-1; s1 <=nlstate+ndeath; s1++){
                   7574:        for(s2=-1; s2 <=nlstate+ndeath; s2++){
                   7575:          /* param[i]|j][k]= freq[s1][s2][iagemax+3] */
                   7576:          printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
                   7577:          fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]);
                   7578:          /* if(freq[s1][s2][iage] !=0 ) { /\* minimizing output *\/ */
                   7579:          /*   printf(" %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
                   7580:          /*   fprintf(ficlog," %d%d=%.0f",s1,s2,freq[s1][s2][iagemax+3]); */
1.251     brouard  7581:          /* } */
                   7582:        }
1.265     brouard  7583:       } /* end loop s1 */
1.251     brouard  7584:       
                   7585:       printf("\n");
                   7586:       fprintf(ficlog,"\n");
                   7587:     } /* end j=0 */
1.249     brouard  7588:   } /* end j */
1.252     brouard  7589: 
1.253     brouard  7590:   if(mle == -2){  /* We want to use these values as starting values */
1.252     brouard  7591:     for(i=1, jk=1; i <=nlstate; i++){
                   7592:       for(j=1; j <=nlstate+ndeath; j++){
                   7593:        if(j!=i){
                   7594:          /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   7595:          printf("%1d%1d",i,j);
                   7596:          fprintf(ficparo,"%1d%1d",i,j);
                   7597:          for(k=1; k<=ncovmodel;k++){
                   7598:            /*    printf(" %lf",param[i][j][k]); */
                   7599:            /*    fprintf(ficparo," %lf",param[i][j][k]); */
                   7600:            p[jk]=pstart[jk];
                   7601:            printf(" %f ",pstart[jk]);
                   7602:            fprintf(ficparo," %f ",pstart[jk]);
                   7603:            jk++;
                   7604:          }
                   7605:          printf("\n");
                   7606:          fprintf(ficparo,"\n");
                   7607:        }
                   7608:       }
                   7609:     }
                   7610:   } /* end mle=-2 */
1.226     brouard  7611:   dateintmean=dateintsum/k2cpt; 
1.296     brouard  7612:   date2dmy(dateintmean,&jintmean,&mintmean,&aintmean);
1.240     brouard  7613:   
1.226     brouard  7614:   fclose(ficresp);
                   7615:   fclose(ficresphtm);
                   7616:   fclose(ficresphtmfr);
1.283     brouard  7617:   free_vector(idq,1,nqfveff);
1.226     brouard  7618:   free_vector(meanq,1,nqfveff);
1.284     brouard  7619:   free_vector(stdq,1,nqfveff);
1.226     brouard  7620:   free_matrix(meanqt,1,lastpass,1,nqtveff);
1.253     brouard  7621:   free_vector(x, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
                   7622:   free_vector(y, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
1.251     brouard  7623:   free_ma3x(freq,-5,nlstate+ndeath,-5,nlstate+ndeath, iagemin-AGEMARGE, iagemax+4+AGEMARGE);
1.226     brouard  7624:   free_vector(pospropt,1,nlstate);
                   7625:   free_vector(posprop,1,nlstate);
1.251     brouard  7626:   free_matrix(prop,1,nlstate,iagemin-AGEMARGE, iagemax+4+AGEMARGE);
1.226     brouard  7627:   free_vector(pp,1,nlstate);
                   7628:   /* End of freqsummary */
                   7629: }
1.126     brouard  7630: 
1.268     brouard  7631: /* Simple linear regression */
                   7632: int linreg(int ifi, int ila, int *no, const double x[], const double y[], double* a, double* b, double* r, double* sa, double * sb) {
                   7633: 
                   7634:   /* y=a+bx regression */
                   7635:   double   sumx = 0.0;                        /* sum of x                      */
                   7636:   double   sumx2 = 0.0;                       /* sum of x**2                   */
                   7637:   double   sumxy = 0.0;                       /* sum of x * y                  */
                   7638:   double   sumy = 0.0;                        /* sum of y                      */
                   7639:   double   sumy2 = 0.0;                       /* sum of y**2                   */
                   7640:   double   sume2 = 0.0;                       /* sum of square or residuals */
                   7641:   double yhat;
                   7642:   
                   7643:   double denom=0;
                   7644:   int i;
                   7645:   int ne=*no;
                   7646:   
                   7647:   for ( i=ifi, ne=0;i<=ila;i++) {
                   7648:     if(!isfinite(x[i]) || !isfinite(y[i])){
                   7649:       /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
                   7650:       continue;
                   7651:     }
                   7652:     ne=ne+1;
                   7653:     sumx  += x[i];       
                   7654:     sumx2 += x[i]*x[i];  
                   7655:     sumxy += x[i] * y[i];
                   7656:     sumy  += y[i];      
                   7657:     sumy2 += y[i]*y[i]; 
                   7658:     denom = (ne * sumx2 - sumx*sumx);
                   7659:     /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
                   7660:   } 
                   7661:   
                   7662:   denom = (ne * sumx2 - sumx*sumx);
                   7663:   if (denom == 0) {
                   7664:     // vertical, slope m is infinity
                   7665:     *b = INFINITY;
                   7666:     *a = 0;
                   7667:     if (r) *r = 0;
                   7668:     return 1;
                   7669:   }
                   7670:   
                   7671:   *b = (ne * sumxy  -  sumx * sumy) / denom;
                   7672:   *a = (sumy * sumx2  -  sumx * sumxy) / denom;
                   7673:   if (r!=NULL) {
                   7674:     *r = (sumxy - sumx * sumy / ne) /          /* compute correlation coeff     */
                   7675:       sqrt((sumx2 - sumx*sumx/ne) *
                   7676:           (sumy2 - sumy*sumy/ne));
                   7677:   }
                   7678:   *no=ne;
                   7679:   for ( i=ifi, ne=0;i<=ila;i++) {
                   7680:     if(!isfinite(x[i]) || !isfinite(y[i])){
                   7681:       /* printf(" x[%d]=%f, y[%d]=%f\n",i,x[i],i,y[i]); */
                   7682:       continue;
                   7683:     }
                   7684:     ne=ne+1;
                   7685:     yhat = y[i] - *a -*b* x[i];
                   7686:     sume2  += yhat * yhat ;       
                   7687:     
                   7688:     denom = (ne * sumx2 - sumx*sumx);
                   7689:     /* printf("ne=%d, i=%d,x[%d]=%f, y[%d]=%f sumx=%f, sumx2=%f, sumxy=%f, sumy=%f, sumy2=%f, denom=%f\n",ne,i,i,x[i],i,y[i], sumx, sumx2,sumxy, sumy, sumy2,denom); */
                   7690:   } 
                   7691:   *sb = sqrt(sume2/(double)(ne-2)/(sumx2 - sumx * sumx /(double)ne));
                   7692:   *sa= *sb * sqrt(sumx2/ne);
                   7693:   
                   7694:   return 0; 
                   7695: }
                   7696: 
1.126     brouard  7697: /************ Prevalence ********************/
1.227     brouard  7698: void prevalence(double ***probs, double agemin, double agemax, int **s, double **agev, int nlstate, int imx, int *Tvar, int **nbcode, int *ncodemax,double **mint,double **anint, double dateprev1,double dateprev2, int firstpass, int lastpass)
                   7699: {  
                   7700:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   7701:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   7702:      We still use firstpass and lastpass as another selection.
                   7703:   */
1.126     brouard  7704:  
1.227     brouard  7705:   int i, m, jk, j1, bool, z1,j, iv;
                   7706:   int mi; /* Effective wave */
                   7707:   int iage;
1.359   ! brouard  7708:   double agebegin; /*, ageend;*/
1.227     brouard  7709: 
                   7710:   double **prop;
                   7711:   double posprop; 
                   7712:   double  y2; /* in fractional years */
                   7713:   int iagemin, iagemax;
                   7714:   int first; /** to stop verbosity which is redirected to log file */
                   7715: 
                   7716:   iagemin= (int) agemin;
                   7717:   iagemax= (int) agemax;
                   7718:   /*pp=vector(1,nlstate);*/
1.251     brouard  7719:   prop=matrix(1,nlstate,iagemin-AGEMARGE,iagemax+4+AGEMARGE); 
1.227     brouard  7720:   /*  freq=ma3x(-1,nlstate+ndeath,-1,nlstate+ndeath,iagemin,iagemax+3);*/
                   7721:   j1=0;
1.222     brouard  7722:   
1.227     brouard  7723:   /*j=cptcoveff;*/
                   7724:   if (cptcovn<1) {j=1;ncodemax[1]=1;}
1.222     brouard  7725:   
1.288     brouard  7726:   first=0;
1.335     brouard  7727:   for(j1=1; j1<= (int) pow(2,cptcoveff);j1++){ /* For each combination of simple dummy covariates */
1.227     brouard  7728:     for (i=1; i<=nlstate; i++)  
1.251     brouard  7729:       for(iage=iagemin-AGEMARGE; iage <= iagemax+4+AGEMARGE; iage++)
1.227     brouard  7730:        prop[i][iage]=0.0;
                   7731:     printf("Prevalence combination of varying and fixed dummies %d\n",j1);
                   7732:     /* fprintf(ficlog," V%d=%d ",Tvaraff[j1],nbcode[Tvaraff[j1]][codtabm(k,j1)]); */
                   7733:     fprintf(ficlog,"Prevalence combination of varying and fixed dummies %d\n",j1);
                   7734:     
                   7735:     for (i=1; i<=imx; i++) { /* Each individual */
                   7736:       bool=1;
                   7737:       /* for(m=firstpass; m<=lastpass; m++){/\* Other selection (we can limit to certain interviews*\/ */
                   7738:       for(mi=1; mi<wav[i];mi++){ /* For this wave too look where individual can be counted V4=0 V3=0 */
                   7739:        m=mw[mi][i];
                   7740:        /* Tmodelind[z1]=k is the position of the varying covariate in the model, but which # within 1 to ntv? */
                   7741:        /* Tvar[Tmodelind[z1]] is the n of Vn; n-ncovcol-nqv is the first time varying covariate or iv */
                   7742:        for (z1=1; z1<=cptcoveff; z1++){
                   7743:          if( Fixed[Tmodelind[z1]]==1){
1.341     brouard  7744:            iv= Tvar[Tmodelind[z1]];/* because cotvar starts now at first ncovcol+nqv+ (1 to nqtv) */ 
1.332     brouard  7745:            if (cotvar[m][iv][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) /* iv=1 to ntv, right modality */
1.227     brouard  7746:              bool=0;
                   7747:          }else if( Fixed[Tmodelind[z1]]== 0)  /* fixed */
1.332     brouard  7748:            if (covar[Tvaraff[z1]][i]!= nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]) {
1.227     brouard  7749:              bool=0;
                   7750:            }
                   7751:        }
                   7752:        if(bool==1){ /* Otherwise we skip that wave/person */
                   7753:          agebegin=agev[m][i]; /* Age at beginning of wave before transition*/
                   7754:          /* ageend=agev[m][i]+(dh[m][i])*stepm/YEARM; /\* Age at end of wave and transition *\/ */
                   7755:          if(m >=firstpass && m <=lastpass){
                   7756:            y2=anint[m][i]+(mint[m][i]/12.); /* Fractional date in year */
                   7757:            if ((y2>=dateprev1) && (y2<=dateprev2)) { /* Here is the main selection (fractional years) */
                   7758:              if(agev[m][i]==0) agev[m][i]=iagemax+1;
                   7759:              if(agev[m][i]==1) agev[m][i]=iagemax+2;
1.251     brouard  7760:              if((int)agev[m][i] <iagemin-AGEMARGE || (int)agev[m][i] >iagemax+4+AGEMARGE){
1.227     brouard  7761:                printf("Error on individual # %d agev[m][i]=%f <%d-%d or > %d+3+%d  m=%d; either change agemin or agemax or fix data\n",i, agev[m][i],iagemin,AGEMARGE, iagemax,AGEMARGE,m); 
                   7762:                exit(1);
                   7763:              }
                   7764:              if (s[m][i]>0 && s[m][i]<=nlstate) { 
                   7765:                /*if(i>4620) printf(" i=%d m=%d s[m][i]=%d (int)agev[m][i]=%d weight[i]=%f prop=%f\n",i,m,s[m][i],(int)agev[m][m],weight[i],prop[s[m][i]][(int)agev[m][i]]);*/
                   7766:                prop[s[m][i]][(int)agev[m][i]] += weight[i];/* At age of beginning of transition, where status is known */
                   7767:                prop[s[m][i]][iagemax+3] += weight[i]; 
                   7768:              } /* end valid statuses */ 
                   7769:            } /* end selection of dates */
                   7770:          } /* end selection of waves */
                   7771:        } /* end bool */
                   7772:       } /* end wave */
                   7773:     } /* end individual */
                   7774:     for(i=iagemin; i <= iagemax+3; i++){  
                   7775:       for(jk=1,posprop=0; jk <=nlstate ; jk++) { 
                   7776:        posprop += prop[jk][i]; 
                   7777:       } 
                   7778:       
                   7779:       for(jk=1; jk <=nlstate ; jk++){      
                   7780:        if( i <=  iagemax){ 
                   7781:          if(posprop>=1.e-5){ 
                   7782:            probs[i][jk][j1]= prop[jk][i]/posprop;
                   7783:          } else{
1.288     brouard  7784:            if(!first){
                   7785:              first=1;
1.266     brouard  7786:              printf("Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases\nSee others in log file...\n",jk,i,jk, j1,probs[i][jk][j1]);
                   7787:            }else{
1.288     brouard  7788:              fprintf(ficlog,"Warning Observed prevalence doesn't sum to 1 for state %d: probs[%d][%d][%d]=%lf because of lack of cases.\n",jk,i,jk, j1,probs[i][jk][j1]);
1.227     brouard  7789:            }
                   7790:          }
                   7791:        } 
                   7792:       }/* end jk */ 
                   7793:     }/* end i */ 
1.222     brouard  7794:      /*} *//* end i1 */
1.227     brouard  7795:   } /* end j1 */
1.222     brouard  7796:   
1.227     brouard  7797:   /*  free_ma3x(freq,-1,nlstate+ndeath,-1,nlstate+ndeath, iagemin, iagemax+3);*/
                   7798:   /*free_vector(pp,1,nlstate);*/
1.251     brouard  7799:   free_matrix(prop,1,nlstate, iagemin-AGEMARGE,iagemax+4+AGEMARGE);
1.227     brouard  7800: }  /* End of prevalence */
1.126     brouard  7801: 
                   7802: /************* Waves Concatenation ***************/
                   7803: 
                   7804: void  concatwav(int wav[], int **dh, int **bh,  int **mw, int **s, double *agedc, double **agev, int  firstpass, int lastpass, int imx, int nlstate, int stepm)
                   7805: {
1.298     brouard  7806:   /* Concatenates waves: wav[i] is the number of effective (useful waves in the sense that a non interview is useless) of individual i.
1.126     brouard  7807:      Death is a valid wave (if date is known).
                   7808:      mw[mi][i] is the mi (mi=1 to wav[i])  effective wave of individual i
                   7809:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
1.298     brouard  7810:      and mw[mi+1][i]. dh depends on stepm. s[m][i] exists for any wave from firstpass to lastpass
1.227     brouard  7811:   */
1.126     brouard  7812: 
1.224     brouard  7813:   int i=0, mi=0, m=0, mli=0;
1.126     brouard  7814:   /* int j, k=0,jk, ju, jl,jmin=1e+5, jmax=-1;
                   7815:      double sum=0., jmean=0.;*/
1.224     brouard  7816:   int first=0, firstwo=0, firsthree=0, firstfour=0, firstfiv=0;
1.126     brouard  7817:   int j, k=0,jk, ju, jl;
                   7818:   double sum=0.;
                   7819:   first=0;
1.214     brouard  7820:   firstwo=0;
1.217     brouard  7821:   firsthree=0;
1.218     brouard  7822:   firstfour=0;
1.164     brouard  7823:   jmin=100000;
1.126     brouard  7824:   jmax=-1;
                   7825:   jmean=0.;
1.224     brouard  7826: 
                   7827: /* Treating live states */
1.214     brouard  7828:   for(i=1; i<=imx; i++){  /* For simple cases and if state is death */
1.224     brouard  7829:     mi=0;  /* First valid wave */
1.227     brouard  7830:     mli=0; /* Last valid wave */
1.309     brouard  7831:     m=firstpass;  /* Loop on waves */
                   7832:     while(s[m][i] <= nlstate){  /* a live state or unknown state  */
1.227     brouard  7833:       if(m >firstpass && s[m][i]==s[m-1][i] && mint[m][i]==mint[m-1][i] && anint[m][i]==anint[m-1][i]){/* Two succesive identical information on wave m */
                   7834:        mli=m-1;/* mw[++mi][i]=m-1; */
                   7835:       }else if(s[m][i]>=1 || s[m][i]==-4 || s[m][i]==-5){ /* Since 0.98r4 if status=-2 vital status is really unknown, wave should be skipped */
1.309     brouard  7836:        mw[++mi][i]=m; /* Valid wave: incrementing mi and updating mi; mw[mi] is the wave number of mi_th valid transition   */
1.227     brouard  7837:        mli=m;
1.224     brouard  7838:       } /* else might be a useless wave  -1 and mi is not incremented and mw[mi] not updated */
                   7839:       if(m < lastpass){ /* m < lastpass, standard case */
1.227     brouard  7840:        m++; /* mi gives the "effective" current wave, m the current wave, go to next wave by incrementing m */
1.216     brouard  7841:       }
1.309     brouard  7842:       else{ /* m = lastpass, eventual special issue with warning */
1.224     brouard  7843: #ifdef UNKNOWNSTATUSNOTCONTRIBUTING
1.227     brouard  7844:        break;
1.224     brouard  7845: #else
1.317     brouard  7846:        if(s[m][i]==-1 && (int) andc[i] == 9999 && (int)anint[m][i] != 9999){ /* no death date and known date of interview, case -2 (vital status unknown is warned later */
1.227     brouard  7847:          if(firsthree == 0){
1.302     brouard  7848:            printf("Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
1.227     brouard  7849:            firsthree=1;
1.317     brouard  7850:          }else if(firsthree >=1 && firsthree < 10){
                   7851:            fprintf(ficlog,"Information! Unknown status for individual %ld line=%d occurred at last wave %d at known date %d/%d. Please, check if your unknown date of death %d/%d means a live state %d at wave %d. This case(%d)/wave(%d) contributes to the likelihood as 1-p_{%d%d} .\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], (int) moisdc[i], (int) andc[i], s[m][i], m, i, m, s[m][i], nlstate+ndeath);
                   7852:            firsthree++;
                   7853:          }else if(firsthree == 10){
                   7854:            printf("Information, too many Information flags: no more reported to log either\n");
                   7855:            fprintf(ficlog,"Information, too many Information flags: no more reported to log either\n");
                   7856:            firsthree++;
                   7857:          }else{
                   7858:            firsthree++;
1.227     brouard  7859:          }
1.309     brouard  7860:          mw[++mi][i]=m; /* Valid transition with unknown status */
1.227     brouard  7861:          mli=m;
                   7862:        }
                   7863:        if(s[m][i]==-2){ /* Vital status is really unknown */
                   7864:          nbwarn++;
1.309     brouard  7865:          if((int)anint[m][i] == 9999){  /*  Has the vital status really been verified?not a transition */
1.227     brouard  7866:            printf("Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                   7867:            fprintf(ficlog,"Warning! Vital status for individual %ld (line=%d) at last wave %d interviewed at date %d/%d is unknown %d. Please, check if the vital status and the date of death %d/%d are really unknown. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], (int) moisdc[i], (int) andc[i], i, m);
                   7868:          }
                   7869:          break;
                   7870:        }
                   7871:        break;
1.224     brouard  7872: #endif
1.227     brouard  7873:       }/* End m >= lastpass */
1.126     brouard  7874:     }/* end while */
1.224     brouard  7875: 
1.227     brouard  7876:     /* mi is the last effective wave, m is lastpass, mw[j][i] gives the # of j-th effective wave for individual i */
1.216     brouard  7877:     /* After last pass */
1.224     brouard  7878: /* Treating death states */
1.214     brouard  7879:     if (s[m][i] > nlstate){  /* In a death state */
1.227     brouard  7880:       /* if( mint[m][i]==mdc[m][i] && anint[m][i]==andc[m][i]){ /\* same date of death and date of interview *\/ */
                   7881:       /* } */
1.126     brouard  7882:       mi++;    /* Death is another wave */
                   7883:       /* if(mi==0)  never been interviewed correctly before death */
1.227     brouard  7884:       /* Only death is a correct wave */
1.126     brouard  7885:       mw[mi][i]=m;
1.257     brouard  7886:     } /* else not in a death state */
1.224     brouard  7887: #ifndef DISPATCHINGKNOWNDEATHAFTERLASTWAVE
1.257     brouard  7888:     else if ((int) andc[i] != 9999) {  /* Date of death is known */
1.218     brouard  7889:       if ((int)anint[m][i]!= 9999) { /* date of last interview is known */
1.309     brouard  7890:        if((andc[i]+moisdc[i]/12.) <=(anint[m][i]+mint[m][i]/12.)){ /* month of death occured before last wave month and status should have been death instead of -1 */
1.227     brouard  7891:          nbwarn++;
                   7892:          if(firstfiv==0){
1.309     brouard  7893:            printf("Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  7894:            firstfiv=1;
                   7895:          }else{
1.309     brouard  7896:            fprintf(ficlog,"Warning! Death for individual %ld line=%d occurred at %d/%d before last wave %d, interviewed on %d/%d and should have been coded as death instead of '%d'. This case (%d)/wave (%d) is contributing to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  7897:          }
1.309     brouard  7898:            s[m][i]=nlstate+1; /* Fixing the status as death. Be careful if multiple death states */
                   7899:        }else{ /* Month of Death occured afer last wave month, potential bias */
1.227     brouard  7900:          nberr++;
                   7901:          if(firstwo==0){
1.309     brouard  7902:            printf("Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  7903:            firstwo=1;
                   7904:          }
1.309     brouard  7905:          fprintf(ficlog,"Error! Death for individual %ld line=%d occurred at %d/%d after last wave %d interviewed at %d/%d with status %d. Potential bias if other individuals are still alive on this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood. Please add a new fictitious wave at the date of last vital status scan, with a dead status. See documentation\n\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  7906:        }
1.257     brouard  7907:       }else{ /* if date of interview is unknown */
1.227     brouard  7908:        /* death is known but not confirmed by death status at any wave */
                   7909:        if(firstfour==0){
1.309     brouard  7910:          printf("Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\nOthers in log file only\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.227     brouard  7911:          firstfour=1;
                   7912:        }
1.309     brouard  7913:        fprintf(ficlog,"Error! Death for individual %ld line=%d  occurred %d/%d but not confirmed by any death status for any wave, including last wave %d at unknown date %d/%d  with status %d. Potential bias if other individuals are still alive at this date but ignored. This case (%d)/wave (%d) is skipped, no contribution to likelihood.\n",num[i],i,(int) moisdc[i], (int) andc[i], lastpass,(int)mint[m][i],(int)anint[m][i], s[m][i], i,m );
1.214     brouard  7914:       }
1.224     brouard  7915:     } /* end if date of death is known */
                   7916: #endif
1.309     brouard  7917:     wav[i]=mi; /* mi should be the last effective wave (or mli),  */
                   7918:     /* wav[i]=mw[mi][i];   */
1.126     brouard  7919:     if(mi==0){
                   7920:       nbwarn++;
                   7921:       if(first==0){
1.227     brouard  7922:        printf("Warning! No valid information for individual %ld line=%d (skipped) and may be others, see log file\n",num[i],i);
                   7923:        first=1;
1.126     brouard  7924:       }
                   7925:       if(first==1){
1.227     brouard  7926:        fprintf(ficlog,"Warning! No valid information for individual %ld line=%d (skipped)\n",num[i],i);
1.126     brouard  7927:       }
                   7928:     } /* end mi==0 */
                   7929:   } /* End individuals */
1.214     brouard  7930:   /* wav and mw are no more changed */
1.223     brouard  7931:        
1.317     brouard  7932:   printf("Information, you have to check %d informations which haven't been logged!\n",firsthree);
                   7933:   fprintf(ficlog,"Information, you have to check %d informations which haven't been logged!\n",firsthree);
                   7934: 
                   7935: 
1.126     brouard  7936:   for(i=1; i<=imx; i++){
                   7937:     for(mi=1; mi<wav[i];mi++){
                   7938:       if (stepm <=0)
1.227     brouard  7939:        dh[mi][i]=1;
1.126     brouard  7940:       else{
1.260     brouard  7941:        if (s[mw[mi+1][i]][i] > nlstate) { /* A death, but what if date is unknown? */
1.227     brouard  7942:          if (agedc[i] < 2*AGESUP) {
                   7943:            j= rint(agedc[i]*12-agev[mw[mi][i]][i]*12); 
                   7944:            if(j==0) j=1;  /* Survives at least one month after exam */
                   7945:            else if(j<0){
                   7946:              nberr++;
1.359   ! brouard  7947:              printf("Error! Negative delay (%d to death) between waves %d and %d of individual %ld (around line %d) who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
1.227     brouard  7948:              j=1; /* Temporary Dangerous patch */
                   7949:              printf("   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
1.359   ! brouard  7950:              fprintf(ficlog,"Error! Negative delay (%d to death) between waves %d and %d of individual %ld (around line %d) who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
1.227     brouard  7951:              fprintf(ficlog,"   We assumed that the date of interview was correct (and not the date of death) and postponed the death %d month(s) (one stepm) after the interview. You MUST fix the contradiction between dates.\n",stepm);
                   7952:            }
                   7953:            k=k+1;
                   7954:            if (j >= jmax){
                   7955:              jmax=j;
                   7956:              ijmax=i;
                   7957:            }
                   7958:            if (j <= jmin){
                   7959:              jmin=j;
                   7960:              ijmin=i;
                   7961:            }
                   7962:            sum=sum+j;
                   7963:            /*if (j<0) printf("j=%d num=%d \n",j,i);*/
                   7964:            /*    printf("%d %d %d %d\n", s[mw[mi][i]][i] ,s[mw[mi+1][i]][i],j,i);*/
                   7965:          }
                   7966:        }
                   7967:        else{
                   7968:          j= rint( (agev[mw[mi+1][i]][i]*12 - agev[mw[mi][i]][i]*12));
1.126     brouard  7969: /*       if (j<0) printf("%d %lf %lf %d %d %d\n", i,agev[mw[mi+1][i]][i], agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]); */
1.223     brouard  7970:                                        
1.227     brouard  7971:          k=k+1;
                   7972:          if (j >= jmax) {
                   7973:            jmax=j;
                   7974:            ijmax=i;
                   7975:          }
                   7976:          else if (j <= jmin){
                   7977:            jmin=j;
                   7978:            ijmin=i;
                   7979:          }
                   7980:          /*        if (j<10) printf("j=%d jmin=%d num=%d ",j,jmin,i); */
                   7981:          /*printf("%d %lf %d %d %d\n", i,agev[mw[mi][i]][i],j,s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);*/
                   7982:          if(j<0){
                   7983:            nberr++;
1.359   ! brouard  7984:            printf("Error! Negative delay (%d) between waves %d and %d of individual %ld (around line %d) who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
        !          7985:            fprintf(ficlog,"Error! Negative delay (%d) between waves %d and %d of individual %ld (around line %d) who is aged %.1f with statuses from %d to %d\n ",j,mw[mi][i],mw[mi+1][i],num[i], i,agev[mw[mi][i]][i],s[mw[mi][i]][i] ,s[mw[mi+1][i]][i]);
1.227     brouard  7986:          }
                   7987:          sum=sum+j;
                   7988:        }
                   7989:        jk= j/stepm;
                   7990:        jl= j -jk*stepm;
                   7991:        ju= j -(jk+1)*stepm;
                   7992:        if(mle <=1){ /* only if we use a the linear-interpoloation pseudo-likelihood */
                   7993:          if(jl==0){
                   7994:            dh[mi][i]=jk;
                   7995:            bh[mi][i]=0;
                   7996:          }else{ /* We want a negative bias in order to only have interpolation ie
                   7997:                  * to avoid the price of an extra matrix product in likelihood */
                   7998:            dh[mi][i]=jk+1;
                   7999:            bh[mi][i]=ju;
                   8000:          }
                   8001:        }else{
                   8002:          if(jl <= -ju){
                   8003:            dh[mi][i]=jk;
                   8004:            bh[mi][i]=jl;       /* bias is positive if real duration
                   8005:                                 * is higher than the multiple of stepm and negative otherwise.
                   8006:                                 */
                   8007:          }
                   8008:          else{
                   8009:            dh[mi][i]=jk+1;
                   8010:            bh[mi][i]=ju;
                   8011:          }
                   8012:          if(dh[mi][i]==0){
                   8013:            dh[mi][i]=1; /* At least one step */
                   8014:            bh[mi][i]=ju; /* At least one step */
                   8015:            /*  printf(" bh=%d ju=%d jl=%d dh=%d jk=%d stepm=%d %d\n",bh[mi][i],ju,jl,dh[mi][i],jk,stepm,i);*/
                   8016:          }
                   8017:        } /* end if mle */
1.126     brouard  8018:       }
                   8019:     } /* end wave */
                   8020:   }
                   8021:   jmean=sum/k;
                   8022:   printf("Delay (in months) between two waves Min=%d (for indiviudal %ld) Max=%d (%ld) Mean=%f\n\n ",jmin, num[ijmin], jmax, num[ijmax], jmean);
1.141     brouard  8023:   fprintf(ficlog,"Delay (in months) between two waves Min=%d (for indiviudal %d) Max=%d (%d) Mean=%f\n\n ",jmin, ijmin, jmax, ijmax, jmean);
1.227     brouard  8024: }
1.126     brouard  8025: 
                   8026: /*********** Tricode ****************************/
1.220     brouard  8027:  void tricode(int *cptcov, int *Tvar, int **nbcode, int imx, int *Ndum)
1.242     brouard  8028:  {
                   8029:    /**< Uses cptcovn+2*cptcovprod as the number of covariates */
                   8030:    /*    Tvar[i]=atoi(stre);  find 'n' in Vn and stores in Tvar. If model=V2+V1 Tvar[1]=2 and Tvar[2]=1 
                   8031:     * Boring subroutine which should only output nbcode[Tvar[j]][k]
                   8032:     * Tvar[5] in V2+V1+V3*age+V2*V4 is 4 (V4) even it is a time varying or quantitative variable
                   8033:     * nbcode[Tvar[5]][1]= nbcode[4][1]=0, nbcode[4][2]=1 (usually);
                   8034:     */
1.130     brouard  8035: 
1.242     brouard  8036:    int ij=1, k=0, j=0, i=0, maxncov=NCOVMAX;
                   8037:    int modmaxcovj=0; /* Modality max of covariates j */
                   8038:    int cptcode=0; /* Modality max of covariates j */
                   8039:    int modmincovj=0; /* Modality min of covariates j */
1.145     brouard  8040: 
                   8041: 
1.242     brouard  8042:    /* cptcoveff=0;  */
                   8043:    /* *cptcov=0; */
1.126     brouard  8044:  
1.242     brouard  8045:    for (k=1; k <= maxncov; k++) ncodemax[k]=0; /* Horrible constant again replaced by NCOVMAX */
1.285     brouard  8046:    for (k=1; k <= maxncov; k++)
                   8047:      for(j=1; j<=2; j++)
                   8048:        nbcode[k][j]=0; /* Valgrind */
1.126     brouard  8049: 
1.242     brouard  8050:    /* Loop on covariates without age and products and no quantitative variable */
1.335     brouard  8051:    for (k=1; k<=cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
1.242     brouard  8052:      for (j=-1; (j < maxncov); j++) Ndum[j]=0;
1.343     brouard  8053:      /* printf("Testing k=%d, cptcovt=%d\n",k, cptcovt); */
1.349     brouard  8054:      if(Dummy[k]==0 && Typevar[k] !=1 && Typevar[k] != 3  && Typevar[k] != 2){ /* Dummy covariate and not age product nor fixed product */ 
1.242     brouard  8055:        switch(Fixed[k]) {
                   8056:        case 0: /* Testing on fixed dummy covariate, simple or product of fixed */
1.311     brouard  8057:         modmaxcovj=0;
                   8058:         modmincovj=0;
1.242     brouard  8059:         for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
1.339     brouard  8060:           /* printf("Waiting for error tricode Tvar[%d]=%d i=%d (int)(covar[Tvar[k]][i]=%d\n",k,Tvar[k], i, (int)(covar[Tvar[k]][i])); */
1.242     brouard  8061:           ij=(int)(covar[Tvar[k]][i]);
                   8062:           /* ij=0 or 1 or -1. Value of the covariate Tvar[j] for individual i
                   8063:            * If product of Vn*Vm, still boolean *:
                   8064:            * If it was coded 1, 2, 3, 4 should be splitted into 3 boolean variables
                   8065:            * 1 => 0 0 0, 2 => 0 0 1, 3 => 0 1 1, 4=1 0 0   */
                   8066:           /* Finds for covariate j, n=Tvar[j] of Vn . ij is the
                   8067:              modality of the nth covariate of individual i. */
                   8068:           if (ij > modmaxcovj)
                   8069:             modmaxcovj=ij; 
                   8070:           else if (ij < modmincovj) 
                   8071:             modmincovj=ij; 
1.287     brouard  8072:           if (ij <0 || ij >1 ){
1.311     brouard  8073:             printf("ERROR, IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
                   8074:             fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=-1, individual %d will be skipped.\n",Tvar[k],i);
                   8075:             fflush(ficlog);
                   8076:             exit(1);
1.287     brouard  8077:           }
                   8078:           if ((ij < -1) || (ij > NCOVMAX)){
1.242     brouard  8079:             printf( "Error: minimal is less than -1 or maximal is bigger than %d. Exiting. \n", NCOVMAX );
                   8080:             exit(1);
                   8081:           }else
                   8082:             Ndum[ij]++; /*counts and stores the occurence of this modality 0, 1, -1*/
                   8083:           /*  If coded 1, 2, 3 , counts the number of 1 Ndum[1], number of 2, Ndum[2], etc */
                   8084:           /*printf("i=%d ij=%d Ndum[ij]=%d imx=%d",i,ij,Ndum[ij],imx);*/
                   8085:           /* getting the maximum value of the modality of the covariate
                   8086:              (should be 0 or 1 now) Tvar[j]. If V=sex and male is coded 0 and
                   8087:              female ies 1, then modmaxcovj=1.
                   8088:           */
                   8089:         } /* end for loop on individuals i */
                   8090:         printf(" Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                   8091:         fprintf(ficlog," Minimal and maximal values of %d th (fixed) covariate V%d: min=%d max=%d \n", k, Tvar[k], modmincovj, modmaxcovj);
                   8092:         cptcode=modmaxcovj;
                   8093:         /* Ndum[0] = frequency of 0 for model-covariate j, Ndum[1] frequency of 1 etc. */
                   8094:         /*for (i=0; i<=cptcode; i++) {*/
                   8095:         for (j=modmincovj;  j<=modmaxcovj; j++) { /* j=-1 ? 0 and 1*//* For each value j of the modality of model-cov k */
                   8096:           printf("Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                   8097:           fprintf(ficlog, "Frequencies of (fixed) covariate %d ie V%d with value %d: %d\n", k, Tvar[k], j, Ndum[j]);
                   8098:           if( Ndum[j] != 0 ){ /* Counts if nobody answered modality j ie empty modality, we skip it and reorder */
                   8099:             if( j != -1){
                   8100:               ncodemax[k]++;  /* ncodemax[k]= Number of modalities of the k th
                   8101:                                  covariate for which somebody answered excluding 
                   8102:                                  undefined. Usually 2: 0 and 1. */
                   8103:             }
                   8104:             ncodemaxwundef[k]++; /* ncodemax[j]= Number of modalities of the k th
                   8105:                                     covariate for which somebody answered including 
                   8106:                                     undefined. Usually 3: -1, 0 and 1. */
                   8107:           }    /* In fact  ncodemax[k]=2 (dichotom. variables only) but it could be more for
                   8108:                 * historical reasons: 3 if coded 1, 2, 3 and 4 and Ndum[2]=0 */
                   8109:         } /* Ndum[-1] number of undefined modalities */
1.231     brouard  8110:                        
1.242     brouard  8111:         /* j is a covariate, n=Tvar[j] of Vn; Fills nbcode */
                   8112:         /* For covariate j, modalities could be 1, 2, 3, 4, 5, 6, 7. */
                   8113:         /* If Ndum[1]=0, Ndum[2]=0, Ndum[3]= 635, Ndum[4]=0, Ndum[5]=0, Ndum[6]=27, Ndum[7]=125; */
                   8114:         /* modmincovj=3; modmaxcovj = 7; */
                   8115:         /* There are only 3 modalities non empty 3, 6, 7 (or 2 if 27 is too few) : ncodemax[j]=3; */
                   8116:         /* which will be coded 0, 1, 2 which in binary on 2=3-1 digits are 0=00 1=01, 2=10; */
                   8117:         /*              defining two dummy variables: variables V1_1 and V1_2.*/
                   8118:         /* nbcode[Tvar[j]][ij]=k; */
                   8119:         /* nbcode[Tvar[j]][1]=0; */
                   8120:         /* nbcode[Tvar[j]][2]=1; */
                   8121:         /* nbcode[Tvar[j]][3]=2; */
                   8122:         /* To be continued (not working yet). */
                   8123:         ij=0; /* ij is similar to i but can jump over null modalities */
1.287     brouard  8124: 
                   8125:         /* for (i=modmincovj; i<=modmaxcovj; i++) { */ /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
                   8126:         /* Skipping the case of missing values by reducing nbcode to 0 and 1 and not -1, 0, 1 */
                   8127:         /* model=V1+V2+V3, if V2=-1, 0 or 1, then nbcode[2][1]=0 and nbcode[2][2]=1 instead of
                   8128:          * nbcode[2][1]=-1, nbcode[2][2]=0 and nbcode[2][3]=1 */
                   8129:         /*, could be restored in the future */
                   8130:         for (i=0; i<=1; i++) { /* i= 1 to 2 for dichotomous, or from 1 to 3 or from -1 or 0 to 1 currently*/
1.242     brouard  8131:           if (Ndum[i] == 0) { /* If nobody responded to this modality k */
                   8132:             break;
                   8133:           }
                   8134:           ij++;
1.287     brouard  8135:           nbcode[Tvar[k]][ij]=i;  /* stores the original value of modality i in an array nbcode, ij modality from 1 to last non-nul modality. nbcode[1][1]=0 nbcode[1][2]=1 . Could be -1*/
1.242     brouard  8136:           cptcode = ij; /* New max modality for covar j */
                   8137:         } /* end of loop on modality i=-1 to 1 or more */
                   8138:         break;
                   8139:        case 1: /* Testing on varying covariate, could be simple and
                   8140:                * should look at waves or product of fixed *
                   8141:                * varying. No time to test -1, assuming 0 and 1 only */
                   8142:         ij=0;
                   8143:         for(i=0; i<=1;i++){
                   8144:           nbcode[Tvar[k]][++ij]=i;
                   8145:         }
                   8146:         break;
                   8147:        default:
                   8148:         break;
                   8149:        } /* end switch */
                   8150:      } /* end dummy test */
1.349     brouard  8151:      if(Dummy[k]==1 && Typevar[k] !=1 && Typevar[k] !=3 && Fixed ==0){ /* Fixed Quantitative covariate and not age product */ 
1.311     brouard  8152:        for (i=1; i<=imx; i++) { /* Loop on individuals: reads the data file to get the maximum value of the  modality of this covariate Vj*/
1.335     brouard  8153:         if(Tvar[k]<=0 || Tvar[k]>=NCOVMAX){
                   8154:           printf("Error k=%d \n",k);
                   8155:           exit(1);
                   8156:         }
1.311     brouard  8157:         if(isnan(covar[Tvar[k]][i])){
                   8158:           printf("ERROR, IMaCh doesn't treat fixed quantitative covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
                   8159:           fprintf(ficlog,"ERROR, currently IMaCh doesn't treat covariate with missing values V%d=., individual %d will be skipped.\n",Tvar[k],i);
                   8160:           fflush(ficlog);
                   8161:           exit(1);
                   8162:          }
                   8163:        }
1.335     brouard  8164:      } /* end Quanti */
1.287     brouard  8165:    } /* end of loop on model-covariate k. nbcode[Tvark][1]=-1, nbcode[Tvark][1]=0 and nbcode[Tvark][2]=1 sets the value of covariate k*/  
1.242     brouard  8166:   
                   8167:    for (k=-1; k< maxncov; k++) Ndum[k]=0; 
                   8168:    /* Look at fixed dummy (single or product) covariates to check empty modalities */
                   8169:    for (i=1; i<=ncovmodel-2-nagesqr; i++) { /* -2, cste and age and eventually age*age */ 
                   8170:      /* Listing of all covariables in statement model to see if some covariates appear twice. For example, V1 appears twice in V1+V1*V2.*/ 
                   8171:      ij=Tvar[i]; /* Tvar 5,4,3,6,5,7,1,4 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V4*age */ 
                   8172:      Ndum[ij]++; /* Count the # of 1, 2 etc: {1,1,1,2,2,1,1} because V1 once, V2 once, two V4 and V5 in above */
                   8173:      /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1,  {2, 1, 1, 1, 2, 1, 1, 0, 0} */
                   8174:    } /* V4+V3+V5, Ndum[1]@5={0, 0, 1, 1, 1} */
                   8175:   
                   8176:    ij=0;
                   8177:    /* for (i=0; i<=  maxncov-1; i++) { /\* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) *\/ */
1.335     brouard  8178:    for (k=1; k<=  cptcovt; k++) { /* cptcovt: total number of covariates of the model (2) nbocc(+)+1 = 8 excepting constant and age and age*age */
                   8179:      /* modmaxcovj is unknown here. Only Ndum[2(V2),3(age*V3), 5(V3*V2) 6(V1*V4) */
1.242     brouard  8180:      /*printf("Ndum[%d]=%d\n",i, Ndum[i]);*/
                   8181:      /* if((Ndum[i]!=0) && (i<=ncovcol)){  /\* Tvar[i] <= ncovmodel ? *\/ */
1.335     brouard  8182:      if(Ndum[Tvar[k]]!=0 && Dummy[k] == 0 && Typevar[k]==0){  /* Only Dummy simple and non empty in the model */
                   8183:        /* Typevar[k] =0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for product */
                   8184:        /* Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product*/
1.242     brouard  8185:        /* If product not in single variable we don't print results */
                   8186:        /*printf("diff Ndum[%d]=%d\n",i, Ndum[i]);*/
1.335     brouard  8187:        ++ij;/*    V5 + V4 + V3 + V4*V3 + V5*age + V2 +  V1*V2 + V1*age + V1, *//* V5 quanti, V2 quanti, V4, V3, V1 dummies */
                   8188:        /* k=       1    2   3     4       5       6      7       8        9  */
                   8189:        /* Tvar[k]= 5    4    3    6       5       2      7       1        1  */
                   8190:        /* ij            1    2                                            3  */  
                   8191:        /* Tvaraff[ij]=  4    3                                            1  */
                   8192:        /* Tmodelind[ij]=2    3                                            9  */
                   8193:        /* TmodelInvind[ij]=2 1                                            1  */
1.242     brouard  8194:        Tvaraff[ij]=Tvar[k]; /* For printing combination *//* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, Tvar {5, 4, 3, 6, 5, 2, 7, 1, 1} Tvaraff={4, 3, 1} V4, V3, V1*/
                   8195:        Tmodelind[ij]=k; /* Tmodelind: index in model of dummies Tmodelind[1]=2 V4: pos=2; V3: pos=3, V1=9 {2, 3, 9, ?, ?,} */
                   8196:        TmodelInvind[ij]=Tvar[k]- ncovcol-nqv; /* Inverse TmodelInvind[2=V4]=2 second dummy varying cov (V4)4-1-1 {0, 2, 1, } TmodelInvind[3]=1 */
                   8197:        if(Fixed[k]!=0)
                   8198:         anyvaryingduminmodel=1;
                   8199:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv)){ */
                   8200:        /*   Tvaraff[++ij]=-10; /\* Dont'n know how to treat quantitative variables yet *\/ */
                   8201:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv)){ */
                   8202:        /*   Tvaraff[++ij]=i; /\*For printing (unclear) *\/ */
                   8203:        /* }else if((Ndum[i]!=0) && (i<=ncovcol+nqv+ntv+nqtv)){ */
                   8204:        /*   Tvaraff[++ij]=-20; /\* Dont'n know how to treat quantitative variables yet *\/ */
                   8205:      } 
                   8206:    } /* Tvaraff[1]@5 {3, 4, -20, 0, 0} Very strange */
                   8207:    /* ij--; */
                   8208:    /* cptcoveff=ij; /\*Number of total covariates*\/ */
1.335     brouard  8209:    *cptcov=ij; /* cptcov= Number of total real effective simple dummies (fixed or time  arying) effective (used as cptcoveff in other functions)
1.242     brouard  8210:                * because they can be excluded from the model and real
                   8211:                * if in the model but excluded because missing values, but how to get k from ij?*/
                   8212:    for(j=ij+1; j<= cptcovt; j++){
                   8213:      Tvaraff[j]=0;
                   8214:      Tmodelind[j]=0;
                   8215:    }
                   8216:    for(j=ntveff+1; j<= cptcovt; j++){
                   8217:      TmodelInvind[j]=0;
                   8218:    }
                   8219:    /* To be sorted */
                   8220:    ;
                   8221:  }
1.126     brouard  8222: 
1.145     brouard  8223: 
1.126     brouard  8224: /*********** Health Expectancies ****************/
                   8225: 
1.235     brouard  8226:  void evsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,char strstart[], int nres )
1.126     brouard  8227: 
                   8228: {
                   8229:   /* Health expectancies, no variances */
1.329     brouard  8230:   /* cij is the combination in the list of combination of dummy covariates */
                   8231:   /* strstart is a string of time at start of computing */
1.164     brouard  8232:   int i, j, nhstepm, hstepm, h, nstepm;
1.126     brouard  8233:   int nhstepma, nstepma; /* Decreasing with age */
                   8234:   double age, agelim, hf;
                   8235:   double ***p3mat;
                   8236:   double eip;
                   8237: 
1.238     brouard  8238:   /* pstamp(ficreseij); */
1.126     brouard  8239:   fprintf(ficreseij,"# (a) Life expectancies by health status at initial age and (b) health expectancies by health status at initial age\n");
                   8240:   fprintf(ficreseij,"# Age");
                   8241:   for(i=1; i<=nlstate;i++){
                   8242:     for(j=1; j<=nlstate;j++){
                   8243:       fprintf(ficreseij," e%1d%1d ",i,j);
                   8244:     }
                   8245:     fprintf(ficreseij," e%1d. ",i);
                   8246:   }
                   8247:   fprintf(ficreseij,"\n");
                   8248: 
                   8249:   
                   8250:   if(estepm < stepm){
                   8251:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   8252:   }
                   8253:   else  hstepm=estepm;   
                   8254:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   8255:    * This is mainly to measure the difference between two models: for example
                   8256:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   8257:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   8258:    * progression in between and thus overestimating or underestimating according
                   8259:    * to the curvature of the survival function. If, for the same date, we 
                   8260:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   8261:    * to compare the new estimate of Life expectancy with the same linear 
                   8262:    * hypothesis. A more precise result, taking into account a more precise
                   8263:    * curvature will be obtained if estepm is as small as stepm. */
                   8264: 
                   8265:   /* For example we decided to compute the life expectancy with the smallest unit */
                   8266:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   8267:      nhstepm is the number of hstepm from age to agelim 
                   8268:      nstepm is the number of stepm from age to agelin. 
1.270     brouard  8269:      Look at hpijx to understand the reason which relies in memory size consideration
1.126     brouard  8270:      and note for a fixed period like estepm months */
                   8271:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   8272:      survival function given by stepm (the optimization length). Unfortunately it
                   8273:      means that if the survival funtion is printed only each two years of age and if
                   8274:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   8275:      results. So we changed our mind and took the option of the best precision.
                   8276:   */
                   8277:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   8278: 
                   8279:   agelim=AGESUP;
                   8280:   /* If stepm=6 months */
                   8281:     /* Computed by stepm unit matrices, product of hstepm matrices, stored
                   8282:        in an array of nhstepm length: nhstepm=10, hstepm=4, stepm=6 months */
                   8283:     
                   8284: /* nhstepm age range expressed in number of stepm */
                   8285:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   8286:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   8287:   /* if (stepm >= YEARM) hstepm=1;*/
                   8288:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   8289:   p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   8290: 
                   8291:   for (age=bage; age<=fage; age ++){ 
                   8292:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   8293:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   8294:     /* if (stepm >= YEARM) hstepm=1;*/
                   8295:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
                   8296: 
                   8297:     /* If stepm=6 months */
                   8298:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   8299:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
1.330     brouard  8300:     /* printf("HELLO evsij Entering hpxij age=%d cij=%d hstepm=%d x[1]=%f nres=%d\n",(int) age, cij, hstepm, x[1], nres); */
1.235     brouard  8301:     hpxij(p3mat,nhstepma,age,hstepm,x,nlstate,stepm,oldm, savm, cij, nres);  
1.126     brouard  8302:     
                   8303:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   8304:     
                   8305:     printf("%d|",(int)age);fflush(stdout);
                   8306:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   8307:     
                   8308:     /* Computing expectancies */
                   8309:     for(i=1; i<=nlstate;i++)
                   8310:       for(j=1; j<=nlstate;j++)
                   8311:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   8312:          eij[i][j][(int)age] += (p3mat[i][j][h]+p3mat[i][j][h+1])/2.0*hf;
                   8313:          
                   8314:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
                   8315: 
                   8316:        }
                   8317: 
                   8318:     fprintf(ficreseij,"%3.0f",age );
                   8319:     for(i=1; i<=nlstate;i++){
                   8320:       eip=0;
                   8321:       for(j=1; j<=nlstate;j++){
                   8322:        eip +=eij[i][j][(int)age];
                   8323:        fprintf(ficreseij,"%9.4f", eij[i][j][(int)age] );
                   8324:       }
                   8325:       fprintf(ficreseij,"%9.4f", eip );
                   8326:     }
                   8327:     fprintf(ficreseij,"\n");
                   8328:     
                   8329:   }
                   8330:   free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   8331:   printf("\n");
                   8332:   fprintf(ficlog,"\n");
                   8333:   
                   8334: }
                   8335: 
1.235     brouard  8336:  void cvevsij(double ***eij, double x[], int nlstate, int stepm, int bage, int fage, double **oldm, double **savm, int cij, int estepm,double delti[],double **matcov,char strstart[], int nres )
1.126     brouard  8337: 
                   8338: {
                   8339:   /* Covariances of health expectancies eij and of total life expectancies according
1.222     brouard  8340:      to initial status i, ei. .
1.126     brouard  8341:   */
1.336     brouard  8342:   /* Very time consuming function, but already optimized with precov */
1.126     brouard  8343:   int i, j, nhstepm, hstepm, h, nstepm, k, cptj, cptj2, i2, j2, ij, ji;
                   8344:   int nhstepma, nstepma; /* Decreasing with age */
                   8345:   double age, agelim, hf;
                   8346:   double ***p3matp, ***p3matm, ***varhe;
                   8347:   double **dnewm,**doldm;
                   8348:   double *xp, *xm;
                   8349:   double **gp, **gm;
                   8350:   double ***gradg, ***trgradg;
                   8351:   int theta;
                   8352: 
                   8353:   double eip, vip;
                   8354: 
                   8355:   varhe=ma3x(1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int) fage);
                   8356:   xp=vector(1,npar);
                   8357:   xm=vector(1,npar);
                   8358:   dnewm=matrix(1,nlstate*nlstate,1,npar);
                   8359:   doldm=matrix(1,nlstate*nlstate,1,nlstate*nlstate);
                   8360:   
                   8361:   pstamp(ficresstdeij);
                   8362:   fprintf(ficresstdeij,"# Health expectancies with standard errors\n");
                   8363:   fprintf(ficresstdeij,"# Age");
                   8364:   for(i=1; i<=nlstate;i++){
                   8365:     for(j=1; j<=nlstate;j++)
                   8366:       fprintf(ficresstdeij," e%1d%1d (SE)",i,j);
                   8367:     fprintf(ficresstdeij," e%1d. ",i);
                   8368:   }
                   8369:   fprintf(ficresstdeij,"\n");
                   8370: 
                   8371:   pstamp(ficrescveij);
                   8372:   fprintf(ficrescveij,"# Subdiagonal matrix of covariances of health expectancies by age: cov(eij,ekl)\n");
                   8373:   fprintf(ficrescveij,"# Age");
                   8374:   for(i=1; i<=nlstate;i++)
                   8375:     for(j=1; j<=nlstate;j++){
                   8376:       cptj= (j-1)*nlstate+i;
                   8377:       for(i2=1; i2<=nlstate;i2++)
                   8378:        for(j2=1; j2<=nlstate;j2++){
                   8379:          cptj2= (j2-1)*nlstate+i2;
                   8380:          if(cptj2 <= cptj)
                   8381:            fprintf(ficrescveij,"  %1d%1d,%1d%1d",i,j,i2,j2);
                   8382:        }
                   8383:     }
                   8384:   fprintf(ficrescveij,"\n");
                   8385:   
                   8386:   if(estepm < stepm){
                   8387:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   8388:   }
                   8389:   else  hstepm=estepm;   
                   8390:   /* We compute the life expectancy from trapezoids spaced every estepm months
                   8391:    * This is mainly to measure the difference between two models: for example
                   8392:    * if stepm=24 months pijx are given only every 2 years and by summing them
                   8393:    * we are calculating an estimate of the Life Expectancy assuming a linear 
                   8394:    * progression in between and thus overestimating or underestimating according
                   8395:    * to the curvature of the survival function. If, for the same date, we 
                   8396:    * estimate the model with stepm=1 month, we can keep estepm to 24 months
                   8397:    * to compare the new estimate of Life expectancy with the same linear 
                   8398:    * hypothesis. A more precise result, taking into account a more precise
                   8399:    * curvature will be obtained if estepm is as small as stepm. */
                   8400: 
                   8401:   /* For example we decided to compute the life expectancy with the smallest unit */
                   8402:   /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   8403:      nhstepm is the number of hstepm from age to agelim 
                   8404:      nstepm is the number of stepm from age to agelin. 
                   8405:      Look at hpijx to understand the reason of that which relies in memory size
                   8406:      and note for a fixed period like estepm months */
                   8407:   /* We decided (b) to get a life expectancy respecting the most precise curvature of the
                   8408:      survival function given by stepm (the optimization length). Unfortunately it
                   8409:      means that if the survival funtion is printed only each two years of age and if
                   8410:      you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   8411:      results. So we changed our mind and took the option of the best precision.
                   8412:   */
                   8413:   hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   8414: 
                   8415:   /* If stepm=6 months */
                   8416:   /* nhstepm age range expressed in number of stepm */
                   8417:   agelim=AGESUP;
                   8418:   nstepm=(int) rint((agelim-bage)*YEARM/stepm); 
                   8419:   /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   8420:   /* if (stepm >= YEARM) hstepm=1;*/
                   8421:   nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   8422:   
                   8423:   p3matp=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   8424:   p3matm=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   8425:   gradg=ma3x(0,nhstepm,1,npar,1,nlstate*nlstate);
                   8426:   trgradg =ma3x(0,nhstepm,1,nlstate*nlstate,1,npar);
                   8427:   gp=matrix(0,nhstepm,1,nlstate*nlstate);
                   8428:   gm=matrix(0,nhstepm,1,nlstate*nlstate);
                   8429: 
                   8430:   for (age=bage; age<=fage; age ++){ 
                   8431:     nstepma=(int) rint((agelim-bage)*YEARM/stepm); /* Biggest nstepm */
                   8432:     /* Typically if 20 years nstepm = 20*12/6=40 stepm */ 
                   8433:     /* if (stepm >= YEARM) hstepm=1;*/
                   8434:     nhstepma = nstepma/hstepm;/* Expressed in hstepm, typically nhstepma=40/4=10 */
1.218     brouard  8435:                
1.126     brouard  8436:     /* If stepm=6 months */
                   8437:     /* Computed by stepm unit matrices, product of hstepma matrices, stored
                   8438:        in an array of nhstepma length: nhstepma=10, hstepm=4, stepm=6 months */
                   8439:     
                   8440:     hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
1.218     brouard  8441:                
1.126     brouard  8442:     /* Computing  Variances of health expectancies */
                   8443:     /* Gradient is computed with plus gp and minus gm. Code is duplicated in order to
                   8444:        decrease memory allocation */
                   8445:     for(theta=1; theta <=npar; theta++){
                   8446:       for(i=1; i<=npar; i++){ 
1.222     brouard  8447:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   8448:        xm[i] = x[i] - (i==theta ?delti[theta]:0);
1.126     brouard  8449:       }
1.235     brouard  8450:       hpxij(p3matp,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, cij, nres);  
                   8451:       hpxij(p3matm,nhstepm,age,hstepm,xm,nlstate,stepm,oldm,savm, cij, nres);  
1.218     brouard  8452:                        
1.126     brouard  8453:       for(j=1; j<= nlstate; j++){
1.222     brouard  8454:        for(i=1; i<=nlstate; i++){
                   8455:          for(h=0; h<=nhstepm-1; h++){
                   8456:            gp[h][(j-1)*nlstate + i] = (p3matp[i][j][h]+p3matp[i][j][h+1])/2.;
                   8457:            gm[h][(j-1)*nlstate + i] = (p3matm[i][j][h]+p3matm[i][j][h+1])/2.;
                   8458:          }
                   8459:        }
1.126     brouard  8460:       }
1.218     brouard  8461:                        
1.126     brouard  8462:       for(ij=1; ij<= nlstate*nlstate; ij++)
1.222     brouard  8463:        for(h=0; h<=nhstepm-1; h++){
                   8464:          gradg[h][theta][ij]= (gp[h][ij]-gm[h][ij])/2./delti[theta];
                   8465:        }
1.126     brouard  8466:     }/* End theta */
                   8467:     
                   8468:     
                   8469:     for(h=0; h<=nhstepm-1; h++)
                   8470:       for(j=1; j<=nlstate*nlstate;j++)
1.222     brouard  8471:        for(theta=1; theta <=npar; theta++)
                   8472:          trgradg[h][j][theta]=gradg[h][theta][j];
1.126     brouard  8473:     
1.218     brouard  8474:                
1.222     brouard  8475:     for(ij=1;ij<=nlstate*nlstate;ij++)
1.126     brouard  8476:       for(ji=1;ji<=nlstate*nlstate;ji++)
1.222     brouard  8477:        varhe[ij][ji][(int)age] =0.;
1.218     brouard  8478:                
1.222     brouard  8479:     printf("%d|",(int)age);fflush(stdout);
                   8480:     fprintf(ficlog,"%d|",(int)age);fflush(ficlog);
                   8481:     for(h=0;h<=nhstepm-1;h++){
1.126     brouard  8482:       for(k=0;k<=nhstepm-1;k++){
1.222     brouard  8483:        matprod2(dnewm,trgradg[h],1,nlstate*nlstate,1,npar,1,npar,matcov);
                   8484:        matprod2(doldm,dnewm,1,nlstate*nlstate,1,npar,1,nlstate*nlstate,gradg[k]);
                   8485:        for(ij=1;ij<=nlstate*nlstate;ij++)
                   8486:          for(ji=1;ji<=nlstate*nlstate;ji++)
                   8487:            varhe[ij][ji][(int)age] += doldm[ij][ji]*hf*hf;
1.126     brouard  8488:       }
                   8489:     }
1.320     brouard  8490:     /* if((int)age ==50){ */
                   8491:     /*   printf(" age=%d cij=%d nres=%d varhe[%d][%d]=%f ",(int)age, cij, nres, 1,2,varhe[1][2]); */
                   8492:     /* } */
1.126     brouard  8493:     /* Computing expectancies */
1.235     brouard  8494:     hpxij(p3matm,nhstepm,age,hstepm,x,nlstate,stepm,oldm, savm, cij,nres);  
1.126     brouard  8495:     for(i=1; i<=nlstate;i++)
                   8496:       for(j=1; j<=nlstate;j++)
1.222     brouard  8497:        for (h=0, eij[i][j][(int)age]=0; h<=nhstepm-1; h++){
                   8498:          eij[i][j][(int)age] += (p3matm[i][j][h]+p3matm[i][j][h+1])/2.0*hf;
1.218     brouard  8499:                                        
1.222     brouard  8500:          /* if((int)age==70)printf("i=%2d,j=%2d,h=%2d,age=%3d,%9.4f,%9.4f,%9.4f\n",i,j,h,(int)age,p3mat[i][j][h],hf,eij[i][j][(int)age]);*/
1.218     brouard  8501:                                        
1.222     brouard  8502:        }
1.269     brouard  8503: 
                   8504:     /* Standard deviation of expectancies ij */                
1.126     brouard  8505:     fprintf(ficresstdeij,"%3.0f",age );
                   8506:     for(i=1; i<=nlstate;i++){
                   8507:       eip=0.;
                   8508:       vip=0.;
                   8509:       for(j=1; j<=nlstate;j++){
1.222     brouard  8510:        eip += eij[i][j][(int)age];
                   8511:        for(k=1; k<=nlstate;k++) /* Sum on j and k of cov(eij,eik) */
                   8512:          vip += varhe[(j-1)*nlstate+i][(k-1)*nlstate+i][(int)age];
                   8513:        fprintf(ficresstdeij," %9.4f (%.4f)", eij[i][j][(int)age], sqrt(varhe[(j-1)*nlstate+i][(j-1)*nlstate+i][(int)age]) );
1.126     brouard  8514:       }
                   8515:       fprintf(ficresstdeij," %9.4f (%.4f)", eip, sqrt(vip));
                   8516:     }
                   8517:     fprintf(ficresstdeij,"\n");
1.218     brouard  8518:                
1.269     brouard  8519:     /* Variance of expectancies ij */          
1.126     brouard  8520:     fprintf(ficrescveij,"%3.0f",age );
                   8521:     for(i=1; i<=nlstate;i++)
                   8522:       for(j=1; j<=nlstate;j++){
1.222     brouard  8523:        cptj= (j-1)*nlstate+i;
                   8524:        for(i2=1; i2<=nlstate;i2++)
                   8525:          for(j2=1; j2<=nlstate;j2++){
                   8526:            cptj2= (j2-1)*nlstate+i2;
                   8527:            if(cptj2 <= cptj)
                   8528:              fprintf(ficrescveij," %.4f", varhe[cptj][cptj2][(int)age]);
                   8529:          }
1.126     brouard  8530:       }
                   8531:     fprintf(ficrescveij,"\n");
1.218     brouard  8532:                
1.126     brouard  8533:   }
                   8534:   free_matrix(gm,0,nhstepm,1,nlstate*nlstate);
                   8535:   free_matrix(gp,0,nhstepm,1,nlstate*nlstate);
                   8536:   free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate*nlstate);
                   8537:   free_ma3x(trgradg,0,nhstepm,1,nlstate*nlstate,1,npar);
                   8538:   free_ma3x(p3matm,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   8539:   free_ma3x(p3matp,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   8540:   printf("\n");
                   8541:   fprintf(ficlog,"\n");
1.218     brouard  8542:        
1.126     brouard  8543:   free_vector(xm,1,npar);
                   8544:   free_vector(xp,1,npar);
                   8545:   free_matrix(dnewm,1,nlstate*nlstate,1,npar);
                   8546:   free_matrix(doldm,1,nlstate*nlstate,1,nlstate*nlstate);
                   8547:   free_ma3x(varhe,1,nlstate*nlstate,1,nlstate*nlstate,(int) bage, (int)fage);
                   8548: }
1.218     brouard  8549:  
1.126     brouard  8550: /************ Variance ******************/
1.235     brouard  8551:  void varevsij(char optionfilefiname[], double ***vareij, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, int estepm, int cptcov, int cptcod, int popbased, int mobilav, char strstart[], int nres)
1.218     brouard  8552:  {
1.279     brouard  8553:    /** Variance of health expectancies 
                   8554:     *  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double ** savm,double ftolpl);
                   8555:     * double **newm;
                   8556:     * int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav) 
                   8557:     */
1.218     brouard  8558:   
                   8559:    /* int movingaverage(); */
                   8560:    double **dnewm,**doldm;
                   8561:    double **dnewmp,**doldmp;
                   8562:    int i, j, nhstepm, hstepm, h, nstepm ;
1.288     brouard  8563:    int first=0;
1.218     brouard  8564:    int k;
                   8565:    double *xp;
1.279     brouard  8566:    double **gp, **gm;  /**< for var eij */
                   8567:    double ***gradg, ***trgradg; /**< for var eij */
                   8568:    double **gradgp, **trgradgp; /**< for var p point j */
                   8569:    double *gpp, *gmp; /**< for var p point j */
                   8570:    double **varppt; /**< for var p point j nlstate to nlstate+ndeath */
1.218     brouard  8571:    double ***p3mat;
                   8572:    double age,agelim, hf;
                   8573:    /* double ***mobaverage; */
                   8574:    int theta;
                   8575:    char digit[4];
                   8576:    char digitp[25];
                   8577: 
                   8578:    char fileresprobmorprev[FILENAMELENGTH];
                   8579: 
                   8580:    if(popbased==1){
                   8581:      if(mobilav!=0)
                   8582:        strcpy(digitp,"-POPULBASED-MOBILAV_");
                   8583:      else strcpy(digitp,"-POPULBASED-NOMOBIL_");
                   8584:    }
                   8585:    else 
                   8586:      strcpy(digitp,"-STABLBASED_");
1.126     brouard  8587: 
1.218     brouard  8588:    /* if (mobilav!=0) { */
                   8589:    /*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   8590:    /*   if (movingaverage(probs, bage, fage, mobaverage,mobilav)!=0){ */
                   8591:    /*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); */
                   8592:    /*     printf(" Error in movingaverage mobilav=%d\n",mobilav); */
                   8593:    /*   } */
                   8594:    /* } */
                   8595: 
                   8596:    strcpy(fileresprobmorprev,"PRMORPREV-"); 
                   8597:    sprintf(digit,"%-d",ij);
                   8598:    /*printf("DIGIT=%s, ij=%d ijr=%-d|\n",digit, ij,ij);*/
                   8599:    strcat(fileresprobmorprev,digit); /* Tvar to be done */
                   8600:    strcat(fileresprobmorprev,digitp); /* Popbased or not, mobilav or not */
                   8601:    strcat(fileresprobmorprev,fileresu);
                   8602:    if((ficresprobmorprev=fopen(fileresprobmorprev,"w"))==NULL) {
                   8603:      printf("Problem with resultfile: %s\n", fileresprobmorprev);
                   8604:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobmorprev);
                   8605:    }
                   8606:    printf("Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   8607:    fprintf(ficlog,"Computing total mortality p.j=w1*p1j+w2*p2j+..: result on file '%s' \n",fileresprobmorprev);
                   8608:    pstamp(ficresprobmorprev);
                   8609:    fprintf(ficresprobmorprev,"# probabilities of dying before estepm=%d months for people of exact age and weighted probabilities w1*p1j+w2*p2j+... stand dev in()\n",estepm);
1.238     brouard  8610:    fprintf(ficresprobmorprev,"# Selected quantitative variables and dummies");
1.337     brouard  8611: 
                   8612:    /* We use TinvDoQresult[nres][resultmodel[nres][j] we sort according to the equation model and the resultline: it is a choice */
                   8613:    /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ /\* To be done*\/ */
                   8614:    /*   fprintf(ficresprobmorprev," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   8615:    /* } */
                   8616:    for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */ /* To be done*/
1.344     brouard  8617:      /* fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); */
1.337     brouard  8618:      fprintf(ficresprobmorprev," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  8619:    }
1.337     brouard  8620:    /* for(j=1;j<=cptcoveff;j++)  */
                   8621:    /*   fprintf(ficresprobmorprev," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(ij,TnsdVar[Tvaraff[j]])]); */
1.238     brouard  8622:    fprintf(ficresprobmorprev,"\n");
                   8623: 
1.218     brouard  8624:    fprintf(ficresprobmorprev,"# Age cov=%-d",ij);
                   8625:    for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   8626:      fprintf(ficresprobmorprev," p.%-d SE",j);
                   8627:      for(i=1; i<=nlstate;i++)
                   8628:        fprintf(ficresprobmorprev," w%1d p%-d%-d",i,i,j);
                   8629:    }  
                   8630:    fprintf(ficresprobmorprev,"\n");
                   8631:   
                   8632:    fprintf(ficgp,"\n# Routine varevsij");
                   8633:    fprintf(ficgp,"\nunset title \n");
                   8634:    /* fprintf(fichtm, "#Local time at start: %s", strstart);*/
                   8635:    fprintf(fichtm,"\n<li><h4> Computing probabilities of dying over estepm months as a weighted average (i.e global mortality independent of initial healh state)</h4></li>\n");
                   8636:    fprintf(fichtm,"\n<br>%s  <br>\n",digitp);
1.279     brouard  8637: 
1.218     brouard  8638:    varppt = matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   8639:    pstamp(ficresvij);
                   8640:    fprintf(ficresvij,"# Variance and covariance of health expectancies e.j \n#  (weighted average of eij where weights are ");
                   8641:    if(popbased==1)
                   8642:      fprintf(ficresvij,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d\n",mobilav);
                   8643:    else
                   8644:      fprintf(ficresvij,"the age specific period (stable) prevalences in each health state \n");
                   8645:    fprintf(ficresvij,"# Age");
                   8646:    for(i=1; i<=nlstate;i++)
                   8647:      for(j=1; j<=nlstate;j++)
                   8648:        fprintf(ficresvij," Cov(e.%1d, e.%1d)",i,j);
                   8649:    fprintf(ficresvij,"\n");
                   8650: 
                   8651:    xp=vector(1,npar);
                   8652:    dnewm=matrix(1,nlstate,1,npar);
                   8653:    doldm=matrix(1,nlstate,1,nlstate);
                   8654:    dnewmp= matrix(nlstate+1,nlstate+ndeath,1,npar);
                   8655:    doldmp= matrix(nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   8656: 
                   8657:    gradgp=matrix(1,npar,nlstate+1,nlstate+ndeath);
                   8658:    gpp=vector(nlstate+1,nlstate+ndeath);
                   8659:    gmp=vector(nlstate+1,nlstate+ndeath);
                   8660:    trgradgp =matrix(nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
1.126     brouard  8661:   
1.218     brouard  8662:    if(estepm < stepm){
                   8663:      printf ("Problem %d lower than %d\n",estepm, stepm);
                   8664:    }
                   8665:    else  hstepm=estepm;   
                   8666:    /* For example we decided to compute the life expectancy with the smallest unit */
                   8667:    /* hstepm beeing the number of stepms, if hstepm=1 the length of hstepm is stepm. 
                   8668:       nhstepm is the number of hstepm from age to agelim 
                   8669:       nstepm is the number of stepm from age to agelim. 
                   8670:       Look at function hpijx to understand why because of memory size limitations, 
                   8671:       we decided (b) to get a life expectancy respecting the most precise curvature of the
                   8672:       survival function given by stepm (the optimization length). Unfortunately it
                   8673:       means that if the survival funtion is printed every two years of age and if
                   8674:       you sum them up and add 1 year (area under the trapezoids) you won't get the same 
                   8675:       results. So we changed our mind and took the option of the best precision.
                   8676:    */
                   8677:    hstepm=hstepm/stepm; /* Typically in stepm units, if stepm=6 & estepm=24 , = 24/6 months = 4 */ 
                   8678:    agelim = AGESUP;
                   8679:    for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   8680:      nstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   8681:      nhstepm = nstepm/hstepm;/* Expressed in hstepm, typically nhstepm=40/4=10 */
                   8682:      p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   8683:      gradg=ma3x(0,nhstepm,1,npar,1,nlstate);
                   8684:      gp=matrix(0,nhstepm,1,nlstate);
                   8685:      gm=matrix(0,nhstepm,1,nlstate);
                   8686:                
                   8687:                
                   8688:      for(theta=1; theta <=npar; theta++){
                   8689:        for(i=1; i<=npar; i++){ /* Computes gradient x + delta*/
                   8690:         xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   8691:        }
1.279     brouard  8692:        /**< Computes the prevalence limit with parameter theta shifted of delta up to ftolpl precision and 
                   8693:        * returns into prlim .
1.288     brouard  8694:        */
1.242     brouard  8695:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
1.279     brouard  8696: 
                   8697:        /* If popbased = 1 we use crossection prevalences. Previous step is useless but prlim is created */
1.218     brouard  8698:        if (popbased==1) {
                   8699:         if(mobilav ==0){
                   8700:           for(i=1; i<=nlstate;i++)
                   8701:             prlim[i][i]=probs[(int)age][i][ij];
                   8702:         }else{ /* mobilav */ 
                   8703:           for(i=1; i<=nlstate;i++)
                   8704:             prlim[i][i]=mobaverage[(int)age][i][ij];
                   8705:         }
                   8706:        }
1.295     brouard  8707:        /**< Computes the shifted transition matrix \f$ {}{h}_p^{ij}x\f$ at horizon h.
1.279     brouard  8708:        */                      
                   8709:        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  /* Returns p3mat[i][j][h] for h=0 to nhstepm */
1.292     brouard  8710:        /**< And for each alive state j, sums over i \f$ w^i_x {}{h}_p^{ij}x\f$, which are the probability
1.279     brouard  8711:        * at horizon h in state j including mortality.
                   8712:        */
1.218     brouard  8713:        for(j=1; j<= nlstate; j++){
                   8714:         for(h=0; h<=nhstepm; h++){
                   8715:           for(i=1, gp[h][j]=0.;i<=nlstate;i++)
                   8716:             gp[h][j] += prlim[i][i]*p3mat[i][j][h];
                   8717:         }
                   8718:        }
1.279     brouard  8719:        /* Next for computing shifted+ probability of death (h=1 means
1.218     brouard  8720:          computed over hstepm matrices product = hstepm*stepm months) 
1.279     brouard  8721:          as a weighted average of prlim(i) * p(i,j) p.3=w1*p13 + w2*p23 .
1.218     brouard  8722:        */
                   8723:        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   8724:         for(i=1,gpp[j]=0.; i<= nlstate; i++)
                   8725:           gpp[j] += prlim[i][i]*p3mat[i][j][1];
1.279     brouard  8726:        }
                   8727:        
                   8728:        /* Again with minus shift */
1.218     brouard  8729:                        
                   8730:        for(i=1; i<=npar; i++) /* Computes gradient x - delta */
                   8731:         xp[i] = x[i] - (i==theta ?delti[theta]:0);
1.288     brouard  8732: 
1.242     brouard  8733:        prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp, ij, nres);
1.218     brouard  8734:                        
                   8735:        if (popbased==1) {
                   8736:         if(mobilav ==0){
                   8737:           for(i=1; i<=nlstate;i++)
                   8738:             prlim[i][i]=probs[(int)age][i][ij];
                   8739:         }else{ /* mobilav */ 
                   8740:           for(i=1; i<=nlstate;i++)
                   8741:             prlim[i][i]=mobaverage[(int)age][i][ij];
                   8742:         }
                   8743:        }
                   8744:                        
1.235     brouard  8745:        hpxij(p3mat,nhstepm,age,hstepm,xp,nlstate,stepm,oldm,savm, ij,nres);  
1.218     brouard  8746:                        
                   8747:        for(j=1; j<= nlstate; j++){  /* Sum of wi * eij = e.j */
                   8748:         for(h=0; h<=nhstepm; h++){
                   8749:           for(i=1, gm[h][j]=0.;i<=nlstate;i++)
                   8750:             gm[h][j] += prlim[i][i]*p3mat[i][j][h];
                   8751:         }
                   8752:        }
                   8753:        /* This for computing probability of death (h=1 means
                   8754:          computed over hstepm matrices product = hstepm*stepm months) 
                   8755:          as a weighted average of prlim.
                   8756:        */
                   8757:        for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   8758:         for(i=1,gmp[j]=0.; i<= nlstate; i++)
                   8759:           gmp[j] += prlim[i][i]*p3mat[i][j][1];
                   8760:        }    
1.279     brouard  8761:        /* end shifting computations */
                   8762: 
                   8763:        /**< Computing gradient matrix at horizon h 
                   8764:        */
1.218     brouard  8765:        for(j=1; j<= nlstate; j++) /* vareij */
                   8766:         for(h=0; h<=nhstepm; h++){
                   8767:           gradg[h][theta][j]= (gp[h][j]-gm[h][j])/2./delti[theta];
                   8768:         }
1.279     brouard  8769:        /**< Gradient of overall mortality p.3 (or p.j) 
                   8770:        */
                   8771:        for(j=nlstate+1; j<= nlstate+ndeath; j++){ /* var mu mortality from j */
1.218     brouard  8772:         gradgp[theta][j]= (gpp[j]-gmp[j])/2./delti[theta];
                   8773:        }
                   8774:                        
                   8775:      } /* End theta */
1.279     brouard  8776:      
                   8777:      /* We got the gradient matrix for each theta and state j */               
1.218     brouard  8778:      trgradg =ma3x(0,nhstepm,1,nlstate,1,npar); /* veij */
                   8779:                
                   8780:      for(h=0; h<=nhstepm; h++) /* veij */
                   8781:        for(j=1; j<=nlstate;j++)
                   8782:         for(theta=1; theta <=npar; theta++)
                   8783:           trgradg[h][j][theta]=gradg[h][theta][j];
                   8784:                
                   8785:      for(j=nlstate+1; j<=nlstate+ndeath;j++) /* mu */
                   8786:        for(theta=1; theta <=npar; theta++)
                   8787:         trgradgp[j][theta]=gradgp[theta][j];
1.279     brouard  8788:      /**< as well as its transposed matrix 
                   8789:       */               
1.218     brouard  8790:                
                   8791:      hf=hstepm*stepm/YEARM;  /* Duration of hstepm expressed in year unit. */
                   8792:      for(i=1;i<=nlstate;i++)
                   8793:        for(j=1;j<=nlstate;j++)
                   8794:         vareij[i][j][(int)age] =0.;
1.279     brouard  8795: 
                   8796:      /* Computing trgradg by matcov by gradg at age and summing over h
                   8797:       * and k (nhstepm) formula 15 of article
                   8798:       * Lievre-Brouard-Heathcote
                   8799:       */
                   8800:      
1.218     brouard  8801:      for(h=0;h<=nhstepm;h++){
                   8802:        for(k=0;k<=nhstepm;k++){
                   8803:         matprod2(dnewm,trgradg[h],1,nlstate,1,npar,1,npar,matcov);
                   8804:         matprod2(doldm,dnewm,1,nlstate,1,npar,1,nlstate,gradg[k]);
                   8805:         for(i=1;i<=nlstate;i++)
                   8806:           for(j=1;j<=nlstate;j++)
                   8807:             vareij[i][j][(int)age] += doldm[i][j]*hf*hf;
                   8808:        }
                   8809:      }
                   8810:                
1.279     brouard  8811:      /* pptj is p.3 or p.j = trgradgp by cov by gradgp, variance of
                   8812:       * p.j overall mortality formula 49 but computed directly because
                   8813:       * we compute the grad (wix pijx) instead of grad (pijx),even if
                   8814:       * wix is independent of theta.
                   8815:       */
1.218     brouard  8816:      matprod2(dnewmp,trgradgp,nlstate+1,nlstate+ndeath,1,npar,1,npar,matcov);
                   8817:      matprod2(doldmp,dnewmp,nlstate+1,nlstate+ndeath,1,npar,nlstate+1,nlstate+ndeath,gradgp);
                   8818:      for(j=nlstate+1;j<=nlstate+ndeath;j++)
                   8819:        for(i=nlstate+1;i<=nlstate+ndeath;i++)
                   8820:         varppt[j][i]=doldmp[j][i];
                   8821:      /* end ppptj */
                   8822:      /*  x centered again */
                   8823:                
1.242     brouard  8824:      prevalim(prlim,nlstate,x,age,oldm,savm,ftolpl,ncvyearp,ij, nres);
1.218     brouard  8825:                
                   8826:      if (popbased==1) {
                   8827:        if(mobilav ==0){
                   8828:         for(i=1; i<=nlstate;i++)
                   8829:           prlim[i][i]=probs[(int)age][i][ij];
                   8830:        }else{ /* mobilav */ 
                   8831:         for(i=1; i<=nlstate;i++)
                   8832:           prlim[i][i]=mobaverage[(int)age][i][ij];
                   8833:        }
                   8834:      }
                   8835:                
                   8836:      /* This for computing probability of death (h=1 means
                   8837:        computed over hstepm (estepm) matrices product = hstepm*stepm months) 
                   8838:        as a weighted average of prlim.
                   8839:      */
1.235     brouard  8840:      hpxij(p3mat,nhstepm,age,hstepm,x,nlstate,stepm,oldm,savm, ij, nres);  
1.218     brouard  8841:      for(j=nlstate+1;j<=nlstate+ndeath;j++){
                   8842:        for(i=1,gmp[j]=0.;i<= nlstate; i++) 
                   8843:         gmp[j] += prlim[i][i]*p3mat[i][j][1]; 
                   8844:      }    
                   8845:      /* end probability of death */
                   8846:                
                   8847:      fprintf(ficresprobmorprev,"%3d %d ",(int) age, ij);
                   8848:      for(j=nlstate+1; j<=(nlstate+ndeath);j++){
                   8849:        fprintf(ficresprobmorprev," %11.3e %11.3e",gmp[j], sqrt(varppt[j][j]));
                   8850:        for(i=1; i<=nlstate;i++){
                   8851:         fprintf(ficresprobmorprev," %11.3e %11.3e ",prlim[i][i],p3mat[i][j][1]);
                   8852:        }
                   8853:      } 
                   8854:      fprintf(ficresprobmorprev,"\n");
                   8855:                
                   8856:      fprintf(ficresvij,"%.0f ",age );
                   8857:      for(i=1; i<=nlstate;i++)
                   8858:        for(j=1; j<=nlstate;j++){
                   8859:         fprintf(ficresvij," %.4f", vareij[i][j][(int)age]);
                   8860:        }
                   8861:      fprintf(ficresvij,"\n");
                   8862:      free_matrix(gp,0,nhstepm,1,nlstate);
                   8863:      free_matrix(gm,0,nhstepm,1,nlstate);
                   8864:      free_ma3x(gradg,0,nhstepm,1,npar,1,nlstate);
                   8865:      free_ma3x(trgradg,0,nhstepm,1,nlstate,1,npar);
                   8866:      free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   8867:    } /* End age */
                   8868:    free_vector(gpp,nlstate+1,nlstate+ndeath);
                   8869:    free_vector(gmp,nlstate+1,nlstate+ndeath);
                   8870:    free_matrix(gradgp,1,npar,nlstate+1,nlstate+ndeath);
                   8871:    free_matrix(trgradgp,nlstate+1,nlstate+ndeath,1,npar); /* mu or p point j*/
                   8872:    /* fprintf(ficgp,"\nunset parametric;unset label; set ter png small size 320, 240"); */
                   8873:    fprintf(ficgp,"\nunset parametric;unset label; set ter svg size 640, 480");
                   8874:    /* for(j=nlstate+1; j<= nlstate+ndeath; j++){ *//* Only the first actually */
                   8875:    fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Force of mortality (year-1)\";");
                   8876:    fprintf(ficgp,"\nset out \"%s%s.svg\";",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                   8877:    /*   fprintf(ficgp,"\n plot \"%s\"  u 1:($3*%6.3f) not w l 1 ",fileresprobmorprev,YEARM/estepm); */
                   8878:    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)*%6.3f) t \"95\%% interval\" w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   8879:    /*   fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)*%6.3f) not w l 2 ",fileresprobmorprev,YEARM/estepm); */
                   8880:    fprintf(ficgp,"\n plot \"%s\"  u 1:($3) not w l lt 1 ",subdirf(fileresprobmorprev));
                   8881:    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3+1.96*$4)) t \"95%% interval\" w l lt 2 ",subdirf(fileresprobmorprev));
                   8882:    fprintf(ficgp,"\n replot \"%s\"  u 1:(($3-1.96*$4)) not w l lt 2 ",subdirf(fileresprobmorprev));
                   8883:    fprintf(fichtm,"\n<br> File (multiple files are possible if covariates are present): <A href=\"%s\">%s</a>\n",subdirf(fileresprobmorprev),subdirf(fileresprobmorprev));
                   8884:    fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months. <br> <img src=\"%s%s.svg\"> <br>\n", estepm,subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
                   8885:    /*  fprintf(fichtm,"\n<br> Probability is computed over estepm=%d months and then divided by estepm and multiplied by %.0f in order to have the probability to die over a year <br> <img src=\"varmuptjgr%s%s.svg\"> <br>\n", stepm,YEARM,digitp,digit);
1.126     brouard  8886:     */
1.218     brouard  8887:    /*   fprintf(ficgp,"\nset out \"varmuptjgr%s%s%s.svg\";replot;",digitp,optionfilefiname,digit); */
                   8888:    fprintf(ficgp,"\nset out;\nset out \"%s%s.svg\";replot;set out;\n",subdirf3(optionfilefiname,"VARMUPTJGR-",digitp),digit);
1.126     brouard  8889: 
1.218     brouard  8890:    free_vector(xp,1,npar);
                   8891:    free_matrix(doldm,1,nlstate,1,nlstate);
                   8892:    free_matrix(dnewm,1,nlstate,1,npar);
                   8893:    free_matrix(doldmp,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   8894:    free_matrix(dnewmp,nlstate+1,nlstate+ndeath,1,npar);
                   8895:    free_matrix(varppt,nlstate+1,nlstate+ndeath,nlstate+1,nlstate+ndeath);
                   8896:    /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   8897:    fclose(ficresprobmorprev);
                   8898:    fflush(ficgp);
                   8899:    fflush(fichtm); 
                   8900:  }  /* end varevsij */
1.126     brouard  8901: 
                   8902: /************ Variance of prevlim ******************/
1.269     brouard  8903:  void varprevlim(char fileresvpl[], FILE *ficresvpl, double **varpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **prlim, double ftolpl, int *ncvyearp, int ij, char strstart[], int nres)
1.126     brouard  8904: {
1.205     brouard  8905:   /* Variance of prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
1.126     brouard  8906:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
1.164     brouard  8907: 
1.268     brouard  8908:   double **dnewmpar,**doldm;
1.126     brouard  8909:   int i, j, nhstepm, hstepm;
                   8910:   double *xp;
                   8911:   double *gp, *gm;
                   8912:   double **gradg, **trgradg;
1.208     brouard  8913:   double **mgm, **mgp;
1.126     brouard  8914:   double age,agelim;
                   8915:   int theta;
                   8916:   
                   8917:   pstamp(ficresvpl);
1.288     brouard  8918:   fprintf(ficresvpl,"# Standard deviation of period (forward stable) prevalences \n");
1.241     brouard  8919:   fprintf(ficresvpl,"# Age ");
                   8920:   if(nresult >=1)
                   8921:     fprintf(ficresvpl," Result# ");
1.126     brouard  8922:   for(i=1; i<=nlstate;i++)
                   8923:       fprintf(ficresvpl," %1d-%1d",i,i);
                   8924:   fprintf(ficresvpl,"\n");
                   8925: 
                   8926:   xp=vector(1,npar);
1.268     brouard  8927:   dnewmpar=matrix(1,nlstate,1,npar);
1.126     brouard  8928:   doldm=matrix(1,nlstate,1,nlstate);
                   8929:   
                   8930:   hstepm=1*YEARM; /* Every year of age */
                   8931:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   8932:   agelim = AGESUP;
                   8933:   for (age=bage; age<=fage; age ++){ /* If stepm=6 months */
                   8934:     nhstepm=(int) rint((agelim-age)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   8935:     if (stepm >= YEARM) hstepm=1;
                   8936:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   8937:     gradg=matrix(1,npar,1,nlstate);
1.208     brouard  8938:     mgp=matrix(1,npar,1,nlstate);
                   8939:     mgm=matrix(1,npar,1,nlstate);
1.126     brouard  8940:     gp=vector(1,nlstate);
                   8941:     gm=vector(1,nlstate);
                   8942: 
                   8943:     for(theta=1; theta <=npar; theta++){
                   8944:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   8945:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   8946:       }
1.288     brouard  8947:       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
                   8948:       /*       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
                   8949:       /* else */
                   8950:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.208     brouard  8951:       for(i=1;i<=nlstate;i++){
1.126     brouard  8952:        gp[i] = prlim[i][i];
1.208     brouard  8953:        mgp[theta][i] = prlim[i][i];
                   8954:       }
1.126     brouard  8955:       for(i=1; i<=npar; i++) /* Computes gradient */
                   8956:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
1.288     brouard  8957:       /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ) */
                   8958:       /*       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres); */
                   8959:       /* else */
                   8960:       prevalim(prlim,nlstate,xp,age,oldm,savm,ftolpl,ncvyearp,ij,nres);
1.208     brouard  8961:       for(i=1;i<=nlstate;i++){
1.126     brouard  8962:        gm[i] = prlim[i][i];
1.208     brouard  8963:        mgm[theta][i] = prlim[i][i];
                   8964:       }
1.126     brouard  8965:       for(i=1;i<=nlstate;i++)
                   8966:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
1.209     brouard  8967:       /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
1.126     brouard  8968:     } /* End theta */
                   8969: 
                   8970:     trgradg =matrix(1,nlstate,1,npar);
                   8971: 
                   8972:     for(j=1; j<=nlstate;j++)
                   8973:       for(theta=1; theta <=npar; theta++)
                   8974:        trgradg[j][theta]=gradg[theta][j];
1.209     brouard  8975:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   8976:     /*   printf("\nmgm mgp %d ",(int)age); */
                   8977:     /*   for(j=1; j<=nlstate;j++){ */
                   8978:     /*         printf(" %d ",j); */
                   8979:     /*         for(theta=1; theta <=npar; theta++) */
                   8980:     /*           printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
                   8981:     /*         printf("\n "); */
                   8982:     /*   } */
                   8983:     /* } */
                   8984:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   8985:     /*   printf("\n gradg %d ",(int)age); */
                   8986:     /*   for(j=1; j<=nlstate;j++){ */
                   8987:     /*         printf("%d ",j); */
                   8988:     /*         for(theta=1; theta <=npar; theta++) */
                   8989:     /*           printf("%d %lf ",theta,gradg[theta][j]); */
                   8990:     /*         printf("\n "); */
                   8991:     /*   } */
                   8992:     /* } */
1.126     brouard  8993: 
                   8994:     for(i=1;i<=nlstate;i++)
                   8995:       varpl[i][(int)age] =0.;
1.209     brouard  8996:     if((int)age==79 ||(int)age== 80  ||(int)age== 81){
1.268     brouard  8997:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   8998:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
1.205     brouard  8999:     }else{
1.268     brouard  9000:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   9001:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
1.205     brouard  9002:     }
1.126     brouard  9003:     for(i=1;i<=nlstate;i++)
                   9004:       varpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   9005: 
                   9006:     fprintf(ficresvpl,"%.0f ",age );
1.241     brouard  9007:     if(nresult >=1)
                   9008:       fprintf(ficresvpl,"%d ",nres );
1.288     brouard  9009:     for(i=1; i<=nlstate;i++){
1.126     brouard  9010:       fprintf(ficresvpl," %.5f (%.5f)",prlim[i][i],sqrt(varpl[i][(int)age]));
1.288     brouard  9011:       /* for(j=1;j<=nlstate;j++) */
                   9012:       /*       fprintf(ficresvpl," %d %.5f ",j,prlim[j][i]); */
                   9013:     }
1.126     brouard  9014:     fprintf(ficresvpl,"\n");
                   9015:     free_vector(gp,1,nlstate);
                   9016:     free_vector(gm,1,nlstate);
1.208     brouard  9017:     free_matrix(mgm,1,npar,1,nlstate);
                   9018:     free_matrix(mgp,1,npar,1,nlstate);
1.126     brouard  9019:     free_matrix(gradg,1,npar,1,nlstate);
                   9020:     free_matrix(trgradg,1,nlstate,1,npar);
                   9021:   } /* End age */
                   9022: 
                   9023:   free_vector(xp,1,npar);
                   9024:   free_matrix(doldm,1,nlstate,1,npar);
1.268     brouard  9025:   free_matrix(dnewmpar,1,nlstate,1,nlstate);
                   9026: 
                   9027: }
                   9028: 
                   9029: 
                   9030: /************ Variance of backprevalence limit ******************/
1.269     brouard  9031:  void varbrevlim(char fileresvbl[], FILE  *ficresvbl, double **varbpl, double **matcov, double x[], double delti[], int nlstate, int stepm, double bage, double fage, double **oldm, double **savm, double **bprlim, double ftolpl, int mobilavproj, int *ncvyearp, int ij, char strstart[], int nres)
1.268     brouard  9032: {
                   9033:   /* Variance of backward prevalence limit  for each state ij using current parameters x[] and estimates of neighbourhood give by delti*/
                   9034:   /*  double **prevalim(double **prlim, int nlstate, double *xp, double age, double **oldm, double **savm,double ftolpl);*/
                   9035: 
                   9036:   double **dnewmpar,**doldm;
                   9037:   int i, j, nhstepm, hstepm;
                   9038:   double *xp;
                   9039:   double *gp, *gm;
                   9040:   double **gradg, **trgradg;
                   9041:   double **mgm, **mgp;
                   9042:   double age,agelim;
                   9043:   int theta;
                   9044:   
                   9045:   pstamp(ficresvbl);
                   9046:   fprintf(ficresvbl,"# Standard deviation of back (stable) prevalences \n");
                   9047:   fprintf(ficresvbl,"# Age ");
                   9048:   if(nresult >=1)
                   9049:     fprintf(ficresvbl," Result# ");
                   9050:   for(i=1; i<=nlstate;i++)
                   9051:       fprintf(ficresvbl," %1d-%1d",i,i);
                   9052:   fprintf(ficresvbl,"\n");
                   9053: 
                   9054:   xp=vector(1,npar);
                   9055:   dnewmpar=matrix(1,nlstate,1,npar);
                   9056:   doldm=matrix(1,nlstate,1,nlstate);
                   9057:   
                   9058:   hstepm=1*YEARM; /* Every year of age */
                   9059:   hstepm=hstepm/stepm; /* Typically in stepm units, if j= 2 years, = 2/6 months = 4 */ 
                   9060:   agelim = AGEINF;
                   9061:   for (age=fage; age>=bage; age --){ /* If stepm=6 months */
                   9062:     nhstepm=(int) rint((age-agelim)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   9063:     if (stepm >= YEARM) hstepm=1;
                   9064:     nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   9065:     gradg=matrix(1,npar,1,nlstate);
                   9066:     mgp=matrix(1,npar,1,nlstate);
                   9067:     mgm=matrix(1,npar,1,nlstate);
                   9068:     gp=vector(1,nlstate);
                   9069:     gm=vector(1,nlstate);
                   9070: 
                   9071:     for(theta=1; theta <=npar; theta++){
                   9072:       for(i=1; i<=npar; i++){ /* Computes gradient */
                   9073:        xp[i] = x[i] + (i==theta ?delti[theta]:0);
                   9074:       }
                   9075:       if(mobilavproj > 0 )
                   9076:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   9077:       else
                   9078:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   9079:       for(i=1;i<=nlstate;i++){
                   9080:        gp[i] = bprlim[i][i];
                   9081:        mgp[theta][i] = bprlim[i][i];
                   9082:       }
                   9083:      for(i=1; i<=npar; i++) /* Computes gradient */
                   9084:        xp[i] = x[i] - (i==theta ?delti[theta]:0);
                   9085:        if(mobilavproj > 0 )
                   9086:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   9087:        else
                   9088:        bprevalim(bprlim, mobaverage,nlstate,xp,age,ftolpl,ncvyearp,ij,nres);
                   9089:       for(i=1;i<=nlstate;i++){
                   9090:        gm[i] = bprlim[i][i];
                   9091:        mgm[theta][i] = bprlim[i][i];
                   9092:       }
                   9093:       for(i=1;i<=nlstate;i++)
                   9094:        gradg[theta][i]= (gp[i]-gm[i])/2./delti[theta];
                   9095:       /* gradg[theta][2]= -gradg[theta][1]; */ /* For testing if nlstate=2 */
                   9096:     } /* End theta */
                   9097: 
                   9098:     trgradg =matrix(1,nlstate,1,npar);
                   9099: 
                   9100:     for(j=1; j<=nlstate;j++)
                   9101:       for(theta=1; theta <=npar; theta++)
                   9102:        trgradg[j][theta]=gradg[theta][j];
                   9103:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   9104:     /*   printf("\nmgm mgp %d ",(int)age); */
                   9105:     /*   for(j=1; j<=nlstate;j++){ */
                   9106:     /*         printf(" %d ",j); */
                   9107:     /*         for(theta=1; theta <=npar; theta++) */
                   9108:     /*           printf(" %d %lf %lf",theta,mgm[theta][j],mgp[theta][j]); */
                   9109:     /*         printf("\n "); */
                   9110:     /*   } */
                   9111:     /* } */
                   9112:     /* if((int)age==79 ||(int)age== 80 ||(int)age== 81 ){ */
                   9113:     /*   printf("\n gradg %d ",(int)age); */
                   9114:     /*   for(j=1; j<=nlstate;j++){ */
                   9115:     /*         printf("%d ",j); */
                   9116:     /*         for(theta=1; theta <=npar; theta++) */
                   9117:     /*           printf("%d %lf ",theta,gradg[theta][j]); */
                   9118:     /*         printf("\n "); */
                   9119:     /*   } */
                   9120:     /* } */
                   9121: 
                   9122:     for(i=1;i<=nlstate;i++)
                   9123:       varbpl[i][(int)age] =0.;
                   9124:     if((int)age==79 ||(int)age== 80  ||(int)age== 81){
                   9125:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   9126:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
                   9127:     }else{
                   9128:     matprod2(dnewmpar,trgradg,1,nlstate,1,npar,1,npar,matcov);
                   9129:     matprod2(doldm,dnewmpar,1,nlstate,1,npar,1,nlstate,gradg);
                   9130:     }
                   9131:     for(i=1;i<=nlstate;i++)
                   9132:       varbpl[i][(int)age] = doldm[i][i]; /* Covariances are useless */
                   9133: 
                   9134:     fprintf(ficresvbl,"%.0f ",age );
                   9135:     if(nresult >=1)
                   9136:       fprintf(ficresvbl,"%d ",nres );
                   9137:     for(i=1; i<=nlstate;i++)
                   9138:       fprintf(ficresvbl," %.5f (%.5f)",bprlim[i][i],sqrt(varbpl[i][(int)age]));
                   9139:     fprintf(ficresvbl,"\n");
                   9140:     free_vector(gp,1,nlstate);
                   9141:     free_vector(gm,1,nlstate);
                   9142:     free_matrix(mgm,1,npar,1,nlstate);
                   9143:     free_matrix(mgp,1,npar,1,nlstate);
                   9144:     free_matrix(gradg,1,npar,1,nlstate);
                   9145:     free_matrix(trgradg,1,nlstate,1,npar);
                   9146:   } /* End age */
                   9147: 
                   9148:   free_vector(xp,1,npar);
                   9149:   free_matrix(doldm,1,nlstate,1,npar);
                   9150:   free_matrix(dnewmpar,1,nlstate,1,nlstate);
1.126     brouard  9151: 
                   9152: }
                   9153: 
                   9154: /************ Variance of one-step probabilities  ******************/
                   9155: void varprob(char optionfilefiname[], double **matcov, double x[], double delti[], int nlstate, double bage, double fage, int ij, int *Tvar, int **nbcode, int *ncodemax, char strstart[])
1.222     brouard  9156:  {
                   9157:    int i, j=0,  k1, l1, tj;
                   9158:    int k2, l2, j1,  z1;
                   9159:    int k=0, l;
                   9160:    int first=1, first1, first2;
1.326     brouard  9161:    int nres=0; /* New */
1.222     brouard  9162:    double cv12, mu1, mu2, lc1, lc2, v12, v21, v11, v22,v1,v2, c12, tnalp;
                   9163:    double **dnewm,**doldm;
                   9164:    double *xp;
                   9165:    double *gp, *gm;
                   9166:    double **gradg, **trgradg;
                   9167:    double **mu;
                   9168:    double age, cov[NCOVMAX+1];
                   9169:    double std=2.0; /* Number of standard deviation wide of confidence ellipsoids */
                   9170:    int theta;
                   9171:    char fileresprob[FILENAMELENGTH];
                   9172:    char fileresprobcov[FILENAMELENGTH];
                   9173:    char fileresprobcor[FILENAMELENGTH];
                   9174:    double ***varpij;
                   9175: 
                   9176:    strcpy(fileresprob,"PROB_"); 
1.356     brouard  9177:    strcat(fileresprob,fileresu);
1.222     brouard  9178:    if((ficresprob=fopen(fileresprob,"w"))==NULL) {
                   9179:      printf("Problem with resultfile: %s\n", fileresprob);
                   9180:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprob);
                   9181:    }
                   9182:    strcpy(fileresprobcov,"PROBCOV_"); 
                   9183:    strcat(fileresprobcov,fileresu);
                   9184:    if((ficresprobcov=fopen(fileresprobcov,"w"))==NULL) {
                   9185:      printf("Problem with resultfile: %s\n", fileresprobcov);
                   9186:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcov);
                   9187:    }
                   9188:    strcpy(fileresprobcor,"PROBCOR_"); 
                   9189:    strcat(fileresprobcor,fileresu);
                   9190:    if((ficresprobcor=fopen(fileresprobcor,"w"))==NULL) {
                   9191:      printf("Problem with resultfile: %s\n", fileresprobcor);
                   9192:      fprintf(ficlog,"Problem with resultfile: %s\n", fileresprobcor);
                   9193:    }
                   9194:    printf("Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   9195:    fprintf(ficlog,"Computing standard deviation of one-step probabilities: result on file '%s' \n",fileresprob);
                   9196:    printf("Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   9197:    fprintf(ficlog,"Computing matrix of variance covariance of one-step probabilities: result on file '%s' \n",fileresprobcov);
                   9198:    printf("and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   9199:    fprintf(ficlog,"and correlation matrix of one-step probabilities: result on file '%s' \n",fileresprobcor);
                   9200:    pstamp(ficresprob);
                   9201:    fprintf(ficresprob,"#One-step probabilities and stand. devi in ()\n");
                   9202:    fprintf(ficresprob,"# Age");
                   9203:    pstamp(ficresprobcov);
                   9204:    fprintf(ficresprobcov,"#One-step probabilities and covariance matrix\n");
                   9205:    fprintf(ficresprobcov,"# Age");
                   9206:    pstamp(ficresprobcor);
                   9207:    fprintf(ficresprobcor,"#One-step probabilities and correlation matrix\n");
                   9208:    fprintf(ficresprobcor,"# Age");
1.126     brouard  9209: 
                   9210: 
1.222     brouard  9211:    for(i=1; i<=nlstate;i++)
                   9212:      for(j=1; j<=(nlstate+ndeath);j++){
                   9213:        fprintf(ficresprob," p%1d-%1d (SE)",i,j);
                   9214:        fprintf(ficresprobcov," p%1d-%1d ",i,j);
                   9215:        fprintf(ficresprobcor," p%1d-%1d ",i,j);
                   9216:      }  
                   9217:    /* fprintf(ficresprob,"\n");
                   9218:       fprintf(ficresprobcov,"\n");
                   9219:       fprintf(ficresprobcor,"\n");
                   9220:    */
                   9221:    xp=vector(1,npar);
                   9222:    dnewm=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   9223:    doldm=matrix(1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   9224:    mu=matrix(1,(nlstate)*(nlstate+ndeath), (int) bage, (int)fage);
                   9225:    varpij=ma3x(1,nlstate*(nlstate+ndeath),1,nlstate*(nlstate+ndeath),(int) bage, (int) fage);
                   9226:    first=1;
                   9227:    fprintf(ficgp,"\n# Routine varprob");
                   9228:    fprintf(fichtm,"\n<li><h4> Computing and drawing one step probabilities with their confidence intervals</h4></li>\n");
                   9229:    fprintf(fichtm,"\n");
                   9230: 
1.288     brouard  9231:    fprintf(fichtm,"\n<li><h4> <a href=\"%s\">Matrix of variance-covariance of one-step probabilities (drawings)</a></h4> this page is important in order to visualize confidence intervals and especially correlation between disability and recovery, or more generally, way in and way back. File %s</li>\n",optionfilehtmcov,optionfilehtmcov);
1.222     brouard  9232:    fprintf(fichtmcov,"Current page is file <a href=\"%s\">%s</a><br>\n\n<h4>Matrix of variance-covariance of pairs of step probabilities</h4>\n",optionfilehtmcov, optionfilehtmcov);
                   9233:    fprintf(fichtmcov,"\nEllipsoids of confidence centered on point (p<inf>ij</inf>, p<inf>kl</inf>) are estimated \
1.126     brouard  9234: and drawn. It helps understanding how is the covariance between two incidences.\
                   9235:  They are expressed in year<sup>-1</sup> in order to be less dependent of stepm.<br>\n");
1.222     brouard  9236:    fprintf(fichtmcov,"\n<br> Contour plot corresponding to x'cov<sup>-1</sup>x = 4 (where x is the column vector (pij,pkl)) are drawn. \
1.126     brouard  9237: It can be understood this way: if pij and pkl where uncorrelated the (2x2) matrix of covariance \
                   9238: would have been (1/(var pij), 0 , 0, 1/(var pkl)), and the confidence interval would be 2 \
                   9239: standard deviations wide on each axis. <br>\
                   9240:  Now, if both incidences are correlated (usual case) we diagonalised the inverse of the covariance matrix\
                   9241:  and made the appropriate rotation to look at the uncorrelated principal directions.<br>\
                   9242: To be simple, these graphs help to understand the significativity of each parameter in relation to a second other one.<br> \n");
                   9243: 
1.222     brouard  9244:    cov[1]=1;
                   9245:    /* tj=cptcoveff; */
1.225     brouard  9246:    tj = (int) pow(2,cptcoveff);
1.222     brouard  9247:    if (cptcovn<1) {tj=1;ncodemax[1]=1;}
                   9248:    j1=0;
1.332     brouard  9249: 
                   9250:    for(nres=1;nres <=nresult; nres++){ /* For each resultline */
                   9251:    for(j1=1; j1<=tj;j1++){ /* For any combination of dummy covariates, fixed and varying */
1.342     brouard  9252:      /* printf("Varprob  TKresult[nres]=%d j1=%d, nres=%d, cptcovn=%d, cptcoveff=%d tj=%d cptcovs=%d\n",  TKresult[nres], j1, nres, cptcovn, cptcoveff, tj, cptcovs); */
1.332     brouard  9253:      if(tj != 1 && TKresult[nres]!= j1)
                   9254:        continue;
                   9255: 
                   9256:    /* for(j1=1; j1<=tj;j1++){  /\* For each valid combination of covariates or only once*\/ */
                   9257:      /* for(nres=1;nres <=1; nres++){ /\* For each resultline *\/ */
                   9258:      /* /\* for(nres=1;nres <=nresult; nres++){ /\\* For each resultline *\\/ *\/ */
1.222     brouard  9259:      if  (cptcovn>0) {
1.334     brouard  9260:        fprintf(ficresprob, "\n#********** Variable ");
                   9261:        fprintf(ficresprobcov, "\n#********** Variable "); 
                   9262:        fprintf(ficgp, "\n#********** Variable ");
                   9263:        fprintf(fichtmcov, "\n<hr  size=\"2\" color=\"#EC5E5E\">********** Variable "); 
                   9264:        fprintf(ficresprobcor, "\n#********** Variable ");    
                   9265: 
                   9266:        /* Including quantitative variables of the resultline to be done */
                   9267:        for (z1=1; z1<=cptcovs; z1++){ /* Loop on each variable of this resultline  */
1.343     brouard  9268:         /* printf("Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model); */
1.338     brouard  9269:         fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s \n",nres, z1, modelresult[nres][z1], model);
                   9270:         /* fprintf(ficlog,"Varprob modelresult[%d][%d]=%d model=1+age+%s resultline[%d]=%s \n",nres, z1, modelresult[nres][z1], model, nres, resultline[nres]); */
1.334     brouard  9271:         if(Dummy[modelresult[nres][z1]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to z1 in resultline  */
                   9272:           if(Fixed[modelresult[nres][z1]]==0){ /* Fixed referenced to model equation */
                   9273:             fprintf(ficresprob,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   9274:             fprintf(ficresprobcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   9275:             fprintf(ficgp,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   9276:             fprintf(fichtmcov,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   9277:             fprintf(ficresprobcor,"V%d=%d ",Tvresult[nres][z1],Tresult[nres][z1]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   9278:             fprintf(ficresprob,"fixed ");
                   9279:             fprintf(ficresprobcov,"fixed ");
                   9280:             fprintf(ficgp,"fixed ");
                   9281:             fprintf(fichtmcov,"fixed ");
                   9282:             fprintf(ficresprobcor,"fixed ");
                   9283:           }else{
                   9284:             fprintf(ficresprob,"varyi ");
                   9285:             fprintf(ficresprobcov,"varyi ");
                   9286:             fprintf(ficgp,"varyi ");
                   9287:             fprintf(fichtmcov,"varyi ");
                   9288:             fprintf(ficresprobcor,"varyi ");
                   9289:           }
                   9290:         }else if(Dummy[modelresult[nres][z1]]==1){ /* Quanti variable */
                   9291:           /* For each selected (single) quantitative value */
1.337     brouard  9292:           fprintf(ficresprob," V%d=%lg ",Tvqresult[nres][z1],Tqresult[nres][z1]);
1.334     brouard  9293:           if(Fixed[modelresult[nres][z1]]==0){ /* Fixed */
                   9294:             fprintf(ficresprob,"fixed ");
                   9295:             fprintf(ficresprobcov,"fixed ");
                   9296:             fprintf(ficgp,"fixed ");
                   9297:             fprintf(fichtmcov,"fixed ");
                   9298:             fprintf(ficresprobcor,"fixed ");
                   9299:           }else{
                   9300:             fprintf(ficresprob,"varyi ");
                   9301:             fprintf(ficresprobcov,"varyi ");
                   9302:             fprintf(ficgp,"varyi ");
                   9303:             fprintf(fichtmcov,"varyi ");
                   9304:             fprintf(ficresprobcor,"varyi ");
                   9305:           }
                   9306:         }else{
                   9307:           printf("Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   9308:           fprintf(ficlog,"Error in varprob() Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=V%d cptcovs=%d, cptcoveff=%d \n", nres, z1, Dummy[modelresult[nres][z1]],nres,z1,modelresult[nres][z1],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   9309:           exit(1);
                   9310:         }
                   9311:        } /* End loop on variable of this resultline */
                   9312:        /* for (z1=1; z1<=cptcoveff; z1++) fprintf(ficresprob, "V%d=%d ",Tvaraff[z1],nbcode[Tvaraff[z1]][codtabm(j1,TnsdVar[Tvaraff[z1]])]); */
1.222     brouard  9313:        fprintf(ficresprob, "**********\n#\n");
                   9314:        fprintf(ficresprobcov, "**********\n#\n");
                   9315:        fprintf(ficgp, "**********\n#\n");
                   9316:        fprintf(fichtmcov, "**********\n<hr size=\"2\" color=\"#EC5E5E\">");
                   9317:        fprintf(ficresprobcor, "**********\n#");    
                   9318:        if(invalidvarcomb[j1]){
                   9319:         fprintf(ficgp,"\n#Combination (%d) ignored because no cases \n",j1); 
                   9320:         fprintf(fichtmcov,"\n<h3>Combination (%d) ignored because no cases </h3>\n",j1); 
                   9321:         continue;
                   9322:        }
                   9323:      }
                   9324:      gradg=matrix(1,npar,1,(nlstate)*(nlstate+ndeath));
                   9325:      trgradg=matrix(1,(nlstate)*(nlstate+ndeath),1,npar);
                   9326:      gp=vector(1,(nlstate)*(nlstate+ndeath));
                   9327:      gm=vector(1,(nlstate)*(nlstate+ndeath));
1.334     brouard  9328:      for (age=bage; age<=fage; age ++){ /* Fo each age we feed the model equation with covariates, using precov as in hpxij() ? */
1.222     brouard  9329:        cov[2]=age;
                   9330:        if(nagesqr==1)
                   9331:         cov[3]= age*age;
1.334     brouard  9332:        /* New code end of combination but for each resultline */
                   9333:        for(k1=1;k1<=cptcovt;k1++){ /* loop on model equation (including products) */ 
1.349     brouard  9334:         if(Typevar[k1]==1 || Typevar[k1] ==3){ /* A product with age */
1.334     brouard  9335:           cov[2+nagesqr+k1]=precov[nres][k1]*cov[2];
1.326     brouard  9336:         }else{
1.334     brouard  9337:           cov[2+nagesqr+k1]=precov[nres][k1];
1.326     brouard  9338:         }
1.334     brouard  9339:        }/* End of loop on model equation */
                   9340: /* Old code */
                   9341:        /* /\* for (k=1; k<=cptcovn;k++) { *\/ */
                   9342:        /* /\*   cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,k)]; *\/ */
                   9343:        /* for (k=1; k<=nsd;k++) { /\* For single dummy covariates only *\/ */
                   9344:        /*       /\* Here comes the value of the covariate 'j1' after renumbering k with single dummy covariates *\/ */
                   9345:        /*       cov[2+nagesqr+TvarsDind[k]]=nbcode[TvarsD[k]][codtabm(j1,TnsdVar[TvarsD[k]])]; */
                   9346:        /*       /\*cov[2+nagesqr+k]=nbcode[Tvar[k]][codtabm(j1,Tvar[k])];*\//\* j1 1 2 3 4 */
                   9347:        /*                                                                  * 1  1 1 1 1 */
                   9348:        /*                                                                  * 2  2 1 1 1 */
                   9349:        /*                                                                  * 3  1 2 1 1 */
                   9350:        /*                                                                  *\/ */
                   9351:        /*       /\* nbcode[1][1]=0 nbcode[1][2]=1;*\/ */
                   9352:        /* } */
                   9353:        /* /\* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */
                   9354:        /* /\* ) p nbcode[Tvar[Tage[k]]][(1 & (ij-1) >> (k-1))+1] *\/ */
                   9355:        /* /\*for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=cov[2+Tage[k]]*cov[2]; *\/ */
                   9356:        /* for (k=1; k<=cptcovage;k++){  /\* For product with age *\/ */
                   9357:        /*       if(Dummy[Tage[k]]==2){ /\* dummy with age *\/ */
                   9358:        /*         cov[2+nagesqr+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(j1,TnsdVar[Tvar[Tage[k]]])]*cov[2]; */
                   9359:        /*         /\* cov[++k1]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
                   9360:        /*       } else if(Dummy[Tage[k]]==3){ /\* quantitative with age *\/ */
                   9361:        /*         printf("Internal IMaCh error, don't know which value for quantitative covariate with age, Tage[k]%d, k=%d, Tvar[Tage[k]]=V%d, age=%d\n",Tage[k],k ,Tvar[Tage[k]], (int)cov[2]); */
                   9362:        /*         /\* cov[2+nagesqr+Tage[k]]=meanq[k]/idq[k]*cov[2];/\\* Using the mean of quantitative variable Tvar[Tage[k]] /\\* Tqresult[nres][k]; *\\/ *\/ */
                   9363:        /*         /\* exit(1); *\/ */
                   9364:        /*         /\* cov[++k1]=Tqresult[nres][k];  *\/ */
                   9365:        /*       } */
                   9366:        /*       /\* cov[2+Tage[k]+nagesqr]=nbcode[Tvar[Tage[k]]][codtabm(ij,k)]*cov[2]; *\/ */
                   9367:        /* } */
                   9368:        /* for (k=1; k<=cptcovprod;k++){/\* For product without age *\/ */
                   9369:        /*       if(Dummy[Tvard[k][1]]==0){ */
                   9370:        /*         if(Dummy[Tvard[k][2]]==0){ */
                   9371:        /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])]; */
                   9372:        /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   9373:        /*         }else{ /\* Should we use the mean of the quantitative variables? *\/ */
                   9374:        /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(j1,TnsdVar[Tvard[k][1]])] * Tqresult[nres][resultmodel[nres][k]]; */
                   9375:        /*           /\* cov[++k1]=nbcode[Tvard[k][1]][codtabm(ij,k)] * Tqresult[nres][k]; *\/ */
                   9376:        /*         } */
                   9377:        /*       }else{ */
                   9378:        /*         if(Dummy[Tvard[k][2]]==0){ */
                   9379:        /*           cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][2]][codtabm(j1,TnsdVar[Tvard[k][2]])] * Tqinvresult[nres][TnsdVar[Tvard[k][1]]]; */
                   9380:        /*           /\* cov[++k1]=nbcode[Tvard[k][2]][codtabm(ij,k)] * Tqinvresult[nres][Tvard[k][1]]; *\/ */
                   9381:        /*         }else{ */
                   9382:        /*           cov[2+nagesqr+Tprod[k]]=Tqinvresult[nres][TnsdVar[Tvard[k][1]]]*  Tqinvresult[nres][TnsdVar[Tvard[k][2]]]; */
                   9383:        /*           /\* cov[++k1]=Tqinvresult[nres][Tvard[k][1]]*  Tqinvresult[nres][Tvard[k][2]]; *\/ */
                   9384:        /*         } */
                   9385:        /*       } */
                   9386:        /*       /\* cov[2+nagesqr+Tprod[k]]=nbcode[Tvard[k][1]][codtabm(ij,k)]*nbcode[Tvard[k][2]][codtabm(ij,k)]; *\/ */
                   9387:        /* } */                 
1.326     brouard  9388: /* For each age and combination of dummy covariates we slightly move the parameters of delti in order to get the gradient*/                    
1.222     brouard  9389:        for(theta=1; theta <=npar; theta++){
                   9390:         for(i=1; i<=npar; i++)
                   9391:           xp[i] = x[i] + (i==theta ?delti[theta]:(double)0);
1.220     brouard  9392:                                
1.222     brouard  9393:         pmij(pmmij,cov,ncovmodel,xp,nlstate);
1.220     brouard  9394:                                
1.222     brouard  9395:         k=0;
                   9396:         for(i=1; i<= (nlstate); i++){
                   9397:           for(j=1; j<=(nlstate+ndeath);j++){
                   9398:             k=k+1;
                   9399:             gp[k]=pmmij[i][j];
                   9400:           }
                   9401:         }
1.220     brouard  9402:                                
1.222     brouard  9403:         for(i=1; i<=npar; i++)
                   9404:           xp[i] = x[i] - (i==theta ?delti[theta]:(double)0);
1.220     brouard  9405:                                
1.222     brouard  9406:         pmij(pmmij,cov,ncovmodel,xp,nlstate);
                   9407:         k=0;
                   9408:         for(i=1; i<=(nlstate); i++){
                   9409:           for(j=1; j<=(nlstate+ndeath);j++){
                   9410:             k=k+1;
                   9411:             gm[k]=pmmij[i][j];
                   9412:           }
                   9413:         }
1.220     brouard  9414:                                
1.222     brouard  9415:         for(i=1; i<= (nlstate)*(nlstate+ndeath); i++) 
                   9416:           gradg[theta][i]=(gp[i]-gm[i])/(double)2./delti[theta];  
                   9417:        }
1.126     brouard  9418: 
1.222     brouard  9419:        for(j=1; j<=(nlstate)*(nlstate+ndeath);j++)
                   9420:         for(theta=1; theta <=npar; theta++)
                   9421:           trgradg[j][theta]=gradg[theta][j];
1.220     brouard  9422:                        
1.222     brouard  9423:        matprod2(dnewm,trgradg,1,(nlstate)*(nlstate+ndeath),1,npar,1,npar,matcov); 
                   9424:        matprod2(doldm,dnewm,1,(nlstate)*(nlstate+ndeath),1,npar,1,(nlstate)*(nlstate+ndeath),gradg);
1.220     brouard  9425:                        
1.222     brouard  9426:        pmij(pmmij,cov,ncovmodel,x,nlstate);
1.220     brouard  9427:                        
1.222     brouard  9428:        k=0;
                   9429:        for(i=1; i<=(nlstate); i++){
                   9430:         for(j=1; j<=(nlstate+ndeath);j++){
                   9431:           k=k+1;
                   9432:           mu[k][(int) age]=pmmij[i][j];
                   9433:         }
                   9434:        }
                   9435:        for(i=1;i<=(nlstate)*(nlstate+ndeath);i++)
                   9436:         for(j=1;j<=(nlstate)*(nlstate+ndeath);j++)
                   9437:           varpij[i][j][(int)age] = doldm[i][j];
1.220     brouard  9438:                        
1.222     brouard  9439:        /*printf("\n%d ",(int)age);
                   9440:         for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   9441:         printf("%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   9442:         fprintf(ficlog,"%e [%e ;%e] ",gm[i],gm[i]-2*sqrt(doldm[i][i]),gm[i]+2*sqrt(doldm[i][i]));
                   9443:         }*/
1.220     brouard  9444:                        
1.222     brouard  9445:        fprintf(ficresprob,"\n%d ",(int)age);
                   9446:        fprintf(ficresprobcov,"\n%d ",(int)age);
                   9447:        fprintf(ficresprobcor,"\n%d ",(int)age);
1.220     brouard  9448:                        
1.222     brouard  9449:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++)
                   9450:         fprintf(ficresprob,"%11.3e (%11.3e) ",mu[i][(int) age],sqrt(varpij[i][i][(int)age]));
                   9451:        for (i=1; i<=(nlstate)*(nlstate+ndeath);i++){
                   9452:         fprintf(ficresprobcov,"%11.3e ",mu[i][(int) age]);
                   9453:         fprintf(ficresprobcor,"%11.3e ",mu[i][(int) age]);
                   9454:        }
                   9455:        i=0;
                   9456:        for (k=1; k<=(nlstate);k++){
                   9457:         for (l=1; l<=(nlstate+ndeath);l++){ 
                   9458:           i++;
                   9459:           fprintf(ficresprobcov,"\n%d %d-%d",(int)age,k,l);
                   9460:           fprintf(ficresprobcor,"\n%d %d-%d",(int)age,k,l);
                   9461:           for (j=1; j<=i;j++){
                   9462:             /* printf(" k=%d l=%d i=%d j=%d\n",k,l,i,j);fflush(stdout); */
                   9463:             fprintf(ficresprobcov," %11.3e",varpij[i][j][(int)age]);
                   9464:             fprintf(ficresprobcor," %11.3e",varpij[i][j][(int) age]/sqrt(varpij[i][i][(int) age])/sqrt(varpij[j][j][(int)age]));
                   9465:           }
                   9466:         }
                   9467:        }/* end of loop for state */
                   9468:      } /* end of loop for age */
                   9469:      free_vector(gp,1,(nlstate+ndeath)*(nlstate+ndeath));
                   9470:      free_vector(gm,1,(nlstate+ndeath)*(nlstate+ndeath));
                   9471:      free_matrix(trgradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   9472:      free_matrix(gradg,1,(nlstate+ndeath)*(nlstate+ndeath),1,npar);
                   9473:     
                   9474:      /* Confidence intervalle of pij  */
                   9475:      /*
                   9476:        fprintf(ficgp,"\nunset parametric;unset label");
                   9477:        fprintf(ficgp,"\nset log y;unset log x; set xlabel \"Age\";set ylabel \"probability (year-1)\"");
                   9478:        fprintf(ficgp,"\nset ter png small\nset size 0.65,0.65");
                   9479:        fprintf(fichtm,"\n<br>Probability with  confidence intervals expressed in year<sup>-1</sup> :<a href=\"pijgr%s.png\">pijgr%s.png</A>, ",optionfilefiname,optionfilefiname);
                   9480:        fprintf(fichtm,"\n<br><img src=\"pijgr%s.png\"> ",optionfilefiname);
                   9481:        fprintf(ficgp,"\nset out \"pijgr%s.png\"",optionfilefiname);
                   9482:        fprintf(ficgp,"\nplot \"%s\" every :::%d::%d u 1:2 \"\%%lf",k1,k2,xfilevarprob);
                   9483:      */
                   9484:                
                   9485:      /* Drawing ellipsoids of confidence of two variables p(k1-l1,k2-l2)*/
                   9486:      first1=1;first2=2;
                   9487:      for (k2=1; k2<=(nlstate);k2++){
                   9488:        for (l2=1; l2<=(nlstate+ndeath);l2++){ 
                   9489:         if(l2==k2) continue;
                   9490:         j=(k2-1)*(nlstate+ndeath)+l2;
                   9491:         for (k1=1; k1<=(nlstate);k1++){
                   9492:           for (l1=1; l1<=(nlstate+ndeath);l1++){ 
                   9493:             if(l1==k1) continue;
                   9494:             i=(k1-1)*(nlstate+ndeath)+l1;
                   9495:             if(i<=j) continue;
                   9496:             for (age=bage; age<=fage; age ++){ 
                   9497:               if ((int)age %5==0){
                   9498:                 v1=varpij[i][i][(int)age]/stepm*YEARM/stepm*YEARM;
                   9499:                 v2=varpij[j][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   9500:                 cv12=varpij[i][j][(int)age]/stepm*YEARM/stepm*YEARM;
                   9501:                 mu1=mu[i][(int) age]/stepm*YEARM ;
                   9502:                 mu2=mu[j][(int) age]/stepm*YEARM;
                   9503:                 c12=cv12/sqrt(v1*v2);
                   9504:                 /* Computing eigen value of matrix of covariance */
                   9505:                 lc1=((v1+v2)+sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   9506:                 lc2=((v1+v2)-sqrt((v1+v2)*(v1+v2) - 4*(v1*v2-cv12*cv12)))/2.;
                   9507:                 if ((lc2 <0) || (lc1 <0) ){
                   9508:                   if(first2==1){
                   9509:                     first1=0;
                   9510:                     printf("Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS. See log file for details...\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);
                   9511:                   }
                   9512:                   fprintf(ficlog,"Strange: j1=%d One eigen value of 2x2 matrix of covariance is negative, lc1=%11.3e, lc2=%11.3e, v1=%11.3e, v2=%11.3e, cv12=%11.3e.\n It means that the matrix was not well estimated (varpij), for i=%2d, j=%2d, age=%4d .\n See files %s and %s. Probably WRONG RESULTS.\n", j1, lc1, lc2, v1, v2, cv12, i, j, (int)age,fileresprobcov, fileresprobcor);fflush(ficlog);
                   9513:                   /* lc1=fabs(lc1); */ /* If we want to have them positive */
                   9514:                   /* lc2=fabs(lc2); */
                   9515:                 }
1.220     brouard  9516:                                                                
1.222     brouard  9517:                 /* Eigen vectors */
1.280     brouard  9518:                 if(1+(v1-lc1)*(v1-lc1)/cv12/cv12 <1.e-5){
                   9519:                   printf(" Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                   9520:                   fprintf(ficlog," Error sqrt of a negative number: %lf\n",1+(v1-lc1)*(v1-lc1)/cv12/cv12);
                   9521:                   v11=(1./sqrt(fabs(1+(v1-lc1)*(v1-lc1)/cv12/cv12)));
                   9522:                 }else
                   9523:                   v11=(1./sqrt(1+(v1-lc1)*(v1-lc1)/cv12/cv12));
1.222     brouard  9524:                 /*v21=sqrt(1.-v11*v11); *//* error */
                   9525:                 v21=(lc1-v1)/cv12*v11;
                   9526:                 v12=-v21;
                   9527:                 v22=v11;
                   9528:                 tnalp=v21/v11;
                   9529:                 if(first1==1){
                   9530:                   first1=0;
                   9531:                   printf("%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tang %.3f\nOthers in log...\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   9532:                 }
                   9533:                 fprintf(ficlog,"%d %d%d-%d%d mu %.4e %.4e Var %.4e %.4e cor %.3f cov %.4e Eig %.3e %.3e 1stv %.3f %.3f tan %.3f\n",(int) age,k1,l1,k2,l2,mu1,mu2,v1,v2,c12,cv12,lc1,lc2,v11,v21,tnalp);
                   9534:                 /*printf(fignu*/
                   9535:                 /* mu1+ v11*lc1*cost + v12*lc2*sin(t) */
                   9536:                 /* mu2+ v21*lc1*cost + v22*lc2*sin(t) */
                   9537:                 if(first==1){
                   9538:                   first=0;
                   9539:                   fprintf(ficgp,"\n# Ellipsoids of confidence\n#\n");
                   9540:                   fprintf(ficgp,"\nset parametric;unset label");
                   9541:                   fprintf(ficgp,"\nset log y;set log x; set xlabel \"p%1d%1d (year-1)\";set ylabel \"p%1d%1d (year-1)\"",k1,l1,k2,l2);
                   9542:                   fprintf(ficgp,"\nset ter svg size 640, 480");
1.266     brouard  9543:                   fprintf(fichtmcov,"\n<p><br>Ellipsoids of confidence cov(p%1d%1d,p%1d%1d) expressed in year<sup>-1</sup>\
1.220     brouard  9544:  :<a href=\"%s_%d%1d%1d-%1d%1d.svg\">                                                                                                                                          \
1.201     brouard  9545: %s_%d%1d%1d-%1d%1d.svg</A>, ",k1,l1,k2,l2,\
1.222     brouard  9546:                           subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2,      \
                   9547:                           subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   9548:                   fprintf(fichtmcov,"\n<br><img src=\"%s_%d%1d%1d-%1d%1d.svg\"> ",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   9549:                   fprintf(fichtmcov,"\n<br> Correlation at age %d (%.3f),",(int) age, c12);
                   9550:                   fprintf(ficgp,"\nset out \"%s_%d%1d%1d-%1d%1d.svg\"",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   9551:                   fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   9552:                   fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   9553:                   fprintf(ficgp,"\nplot [-pi:pi] %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not",      \
1.280     brouard  9554:                           mu1,std,v11,sqrt(fabs(lc1)),v12,sqrt(fabs(lc2)), \
                   9555:                           mu2,std,v21,sqrt(fabs(lc1)),v22,sqrt(fabs(lc2))); /* For gnuplot only */
1.222     brouard  9556:                 }else{
                   9557:                   first=0;
                   9558:                   fprintf(fichtmcov," %d (%.3f),",(int) age, c12);
                   9559:                   fprintf(ficgp,"\n# Age %d, p%1d%1d - p%1d%1d",(int) age, k1,l1,k2,l2);
                   9560:                   fprintf(ficgp,"\nset label \"%d\" at %11.3e,%11.3e center",(int) age, mu1,mu2);
                   9561:                   fprintf(ficgp,"\nreplot %11.3e+ %.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)), %11.3e +%.3f*(%11.3e*%11.3e*cos(t)+%11.3e*%11.3e*sin(t)) not", \
1.266     brouard  9562:                           mu1,std,v11,sqrt(lc1),v12,sqrt(fabs(lc2)),   \
                   9563:                           mu2,std,v21,sqrt(lc1),v22,sqrt(fabs(lc2)));
1.222     brouard  9564:                 }/* if first */
                   9565:               } /* age mod 5 */
                   9566:             } /* end loop age */
                   9567:             fprintf(ficgp,"\nset out;\nset out \"%s_%d%1d%1d-%1d%1d.svg\";replot;set out;",subdirf2(optionfilefiname,"VARPIJGR_"), j1,k1,l1,k2,l2);
                   9568:             first=1;
                   9569:           } /*l12 */
                   9570:         } /* k12 */
                   9571:        } /*l1 */
                   9572:      }/* k1 */
1.332     brouard  9573:    }  /* loop on combination of covariates j1 */
1.326     brouard  9574:    } /* loop on nres */
1.222     brouard  9575:    free_ma3x(varpij,1,nlstate,1,nlstate+ndeath,(int) bage, (int)fage);
                   9576:    free_matrix(mu,1,(nlstate+ndeath)*(nlstate+ndeath),(int) bage, (int)fage);
                   9577:    free_matrix(doldm,1,(nlstate)*(nlstate+ndeath),1,(nlstate)*(nlstate+ndeath));
                   9578:    free_matrix(dnewm,1,(nlstate)*(nlstate+ndeath),1,npar);
                   9579:    free_vector(xp,1,npar);
                   9580:    fclose(ficresprob);
                   9581:    fclose(ficresprobcov);
                   9582:    fclose(ficresprobcor);
                   9583:    fflush(ficgp);
                   9584:    fflush(fichtmcov);
                   9585:  }
1.126     brouard  9586: 
                   9587: 
                   9588: /******************* Printing html file ***********/
1.201     brouard  9589: void printinghtml(char fileresu[], char title[], char datafile[], int firstpass, \
1.126     brouard  9590:                  int lastpass, int stepm, int weightopt, char model[],\
                   9591:                  int imx,int jmin, int jmax, double jmeanint,char rfileres[],\
1.296     brouard  9592:                  int popforecast, int mobilav, int prevfcast, int mobilavproj, int prevbcast, int estepm , \
                   9593:                  double jprev1, double mprev1,double anprev1, double dateprev1, double dateprojd, double dateback1, \
                   9594:                  double jprev2, double mprev2,double anprev2, double dateprev2, double dateprojf, double dateback2){
1.359   ! brouard  9595:   int jj1, k1, cpt, nres;
1.319     brouard  9596:   /* In fact some results are already printed in fichtm which is open */
1.126     brouard  9597:    fprintf(fichtm,"<ul><li><a href='#firstorder'>Result files (first order: no variance)</a>\n \
                   9598:    <li><a href='#secondorder'>Result files (second order (variance)</a>\n \
                   9599: </ul>");
1.319     brouard  9600: /*    fprintf(fichtm,"<ul><li> model=1+age+%s\n \ */
                   9601: /* </ul>", model); */
1.214     brouard  9602:    fprintf(fichtm,"<ul><li><h4><a name='firstorder'>Result files (first order: no variance)</a></h4>\n");
                   9603:    fprintf(fichtm,"<li>- Observed frequency between two states (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file)<br/>\n",
                   9604:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTMFR_",".htm"),subdirfext3(optionfilefiname,"PHTMFR_",".htm"));
1.332     brouard  9605:    fprintf(fichtm,"<li> - Observed prevalence (cross-sectional prevalence) in each state (during the period defined between %.lf/%.lf/%.lf and %.lf/%.lf/%.lf): <a href=\"%s\">%s</a> (html file) ",
1.213     brouard  9606:           jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,subdirfext3(optionfilefiname,"PHTM_",".htm"),subdirfext3(optionfilefiname,"PHTM_",".htm"));
                   9607:    fprintf(fichtm,",  <a href=\"%s\">%s</a> (text file) <br>\n",subdirf2(fileresu,"P_"),subdirf2(fileresu,"P_"));
1.126     brouard  9608:    fprintf(fichtm,"\
                   9609:  - Estimated transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
1.201     brouard  9610:           stepm,subdirf2(fileresu,"PIJ_"),subdirf2(fileresu,"PIJ_"));
1.126     brouard  9611:    fprintf(fichtm,"\
1.217     brouard  9612:  - Estimated back transition probabilities over %d (stepm) months: <a href=\"%s\">%s</a><br>\n ",
                   9613:           stepm,subdirf2(fileresu,"PIJB_"),subdirf2(fileresu,"PIJB_"));
                   9614:    fprintf(fichtm,"\
1.288     brouard  9615:  - Period (forward) prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
1.201     brouard  9616:           subdirf2(fileresu,"PL_"),subdirf2(fileresu,"PL_"));
1.126     brouard  9617:    fprintf(fichtm,"\
1.288     brouard  9618:  - Backward prevalence in each health state: <a href=\"%s\">%s</a> <br>\n",
1.217     brouard  9619:           subdirf2(fileresu,"PLB_"),subdirf2(fileresu,"PLB_"));
                   9620:    fprintf(fichtm,"\
1.211     brouard  9621:  - (a) Life expectancies by health status at initial age, e<sub>i.</sub> (b) health expectancies by health status at initial age, e<sub>ij</sub> . If one or more covariates are included, specific tables for each value of the covariate are output in sequences within the same file (estepm=%2d months): \
1.126     brouard  9622:    <a href=\"%s\">%s</a> <br>\n",
1.201     brouard  9623:           estepm,subdirf2(fileresu,"E_"),subdirf2(fileresu,"E_"));
1.211     brouard  9624:    if(prevfcast==1){
                   9625:      fprintf(fichtm,"\
                   9626:  - Prevalence projections by age and states:                           \
1.201     brouard  9627:    <a href=\"%s\">%s</a> <br>\n</li>", subdirf2(fileresu,"F_"),subdirf2(fileresu,"F_"));
1.211     brouard  9628:    }
1.126     brouard  9629: 
                   9630: 
1.225     brouard  9631:    m=pow(2,cptcoveff);
1.222     brouard  9632:    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
1.126     brouard  9633: 
1.317     brouard  9634:    fprintf(fichtm," \n<ul><li><b>Graphs (first order)</b></li><p>");
1.264     brouard  9635: 
                   9636:    jj1=0;
                   9637: 
                   9638:    fprintf(fichtm," \n<ul>");
1.337     brouard  9639:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   9640:      /* k1=nres; */
1.338     brouard  9641:      k1=TKresult[nres];
                   9642:      if(TKresult[nres]==0)k1=1; /* To be checked for no result */
1.337     brouard  9643:    /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
                   9644:    /*   if(m != 1 && TKresult[nres]!= k1) */
                   9645:    /*     continue; */
1.264     brouard  9646:      jj1++;
                   9647:      if (cptcovn > 0) {
                   9648:        fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescov");
1.337     brouard  9649:        for (cpt=1; cpt<=cptcovs;cpt++){ /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
                   9650:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.264     brouard  9651:        }
1.337     brouard  9652:        /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
                   9653:        /*       fprintf(fichtm,"_V%d=%d_",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
                   9654:        /* } */
                   9655:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   9656:        /*       fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   9657:        /* } */
1.264     brouard  9658:        fprintf(fichtm,"\">");
                   9659:        
                   9660:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
                   9661:        fprintf(fichtm,"************ Results for covariates");
1.337     brouard  9662:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   9663:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.264     brouard  9664:        }
1.337     brouard  9665:        /* fprintf(fichtm,"************ Results for covariates"); */
                   9666:        /* for (cpt=1; cpt<=cptcoveff;cpt++){  */
                   9667:        /*       fprintf(fichtm," V%d=%d ",Tvresult[nres][cpt],(int)Tresult[nres][cpt]); */
                   9668:        /* } */
                   9669:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   9670:        /*       fprintf(fichtm," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   9671:        /* } */
1.264     brouard  9672:        if(invalidvarcomb[k1]){
                   9673:         fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
                   9674:         continue;
                   9675:        }
                   9676:        fprintf(fichtm,"</a></li>");
                   9677:      } /* cptcovn >0 */
                   9678:    }
1.317     brouard  9679:    fprintf(fichtm," \n</ul>");
1.264     brouard  9680: 
1.222     brouard  9681:    jj1=0;
1.237     brouard  9682: 
1.337     brouard  9683:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   9684:      /* k1=nres; */
1.338     brouard  9685:      k1=TKresult[nres];
                   9686:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  9687:    /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
                   9688:    /*   if(m != 1 && TKresult[nres]!= k1) */
                   9689:    /*     continue; */
1.220     brouard  9690: 
1.222     brouard  9691:      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
                   9692:      jj1++;
                   9693:      if (cptcovn > 0) {
1.264     brouard  9694:        fprintf(fichtm,"\n<p><a name=\"rescov");
1.337     brouard  9695:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   9696:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.264     brouard  9697:        }
1.337     brouard  9698:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   9699:        /*       fprintf(fichtm,"_V%d=%f_",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   9700:        /* } */
1.264     brouard  9701:        fprintf(fichtm,"\"</a>");
                   9702:  
1.222     brouard  9703:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
1.337     brouard  9704:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   9705:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
                   9706:         printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.237     brouard  9707:         /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
                   9708:         /* printf(" V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]);fflush(stdout); */
1.222     brouard  9709:        }
1.230     brouard  9710:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
1.338     brouard  9711:        fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
1.222     brouard  9712:        if(invalidvarcomb[k1]){
                   9713:         fprintf(fichtm,"\n<h3>Combination (%d) ignored because no cases </h3>\n",k1); 
                   9714:         printf("\nCombination (%d) ignored because no cases \n",k1); 
                   9715:         continue;
                   9716:        }
                   9717:      }
                   9718:      /* aij, bij */
1.259     brouard  9719:      fprintf(fichtm,"<br>- Logit model (yours is: logit(pij)=log(pij/pii)= aij+ bij age+%s) as a function of age: <a href=\"%s_%d-1-%d.svg\">%s_%d-1-%d.svg</a><br> \
1.241     brouard  9720: <img src=\"%s_%d-1-%d.svg\">",model,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);
1.222     brouard  9721:      /* Pij */
1.241     brouard  9722:      fprintf(fichtm,"<br>\n- P<sub>ij</sub> or conditional probabilities to be observed in state j being in state i, %d (stepm) months before: <a href=\"%s_%d-2-%d.svg\">%s_%d-2-%d.svg</a><br> \
                   9723: <img src=\"%s_%d-2-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres);     
1.222     brouard  9724:      /* Quasi-incidences */
                   9725:      fprintf(fichtm,"<br>\n- I<sub>ij</sub> or Conditional probabilities to be observed in state j being in state i %d (stepm) months\
1.220     brouard  9726:  before but expressed in per year i.e. quasi incidences if stepm is small and probabilities too, \
1.211     brouard  9727:  incidence (rates) are the limit when h tends to zero of the ratio of the probability  <sub>h</sub>P<sub>ij</sub> \
1.241     brouard  9728: divided by h: <sub>h</sub>P<sub>ij</sub>/h : <a href=\"%s_%d-3-%d.svg\">%s_%d-3-%d.svg</a><br> \
                   9729: <img src=\"%s_%d-3-%d.svg\">",stepm,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres,subdirf2(optionfilefiname,"PE_"),k1,nres); 
1.222     brouard  9730:      /* Survival functions (period) in state j */
                   9731:      for(cpt=1; cpt<=nlstate;cpt++){
1.359   ! brouard  9732:        fprintf(fichtm,"<br>\n- Survival functions in state %d. And probability to be observed in state %d being in state (1 to %d) at different ages. Mean times spent in state (or Life Expectancy or Health Expectancy etc.) are the areas under each curve. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
1.329     brouard  9733:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
                   9734:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
1.222     brouard  9735:      }
                   9736:      /* State specific survival functions (period) */
                   9737:      for(cpt=1; cpt<=nlstate;cpt++){
1.292     brouard  9738:        fprintf(fichtm,"<br>\n- Survival functions in state %d and in any other live state (total).\
1.359   ! brouard  9739:  And probability to be observed in various states (up to %d) being in state %d at different ages.  Mean times spent in state (or Life Expectancy or Health Expectancy etc.) are the areas under each curve. \
1.329     brouard  9740:  <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br> ", cpt, nlstate, cpt, subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres,subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
                   9741:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
                   9742:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
1.222     brouard  9743:      }
1.288     brouard  9744:      /* Period (forward stable) prevalence in each health state */
1.222     brouard  9745:      for(cpt=1; cpt<=nlstate;cpt++){
1.359   ! brouard  9746:        fprintf(fichtm,"<br>\n- Convergence to period (stable) prevalence in state %d. Or probability for a person being in state (1 to %d) at different ages, to be alive in state %d some years after. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, nlstate, cpt, subdirf2(optionfilefiname,"P_"),cpt,k1,nres,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.338     brouard  9747:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJ_"),subdirf2(optionfilefiname,"PIJ_"));
1.329     brouard  9748:       fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.222     brouard  9749:      }
1.296     brouard  9750:      if(prevbcast==1){
1.288     brouard  9751:        /* Backward prevalence in each health state */
1.222     brouard  9752:        for(cpt=1; cpt<=nlstate;cpt++){
1.338     brouard  9753:         fprintf(fichtm,"<br>\n- Convergence to mixed (stable) back prevalence in state %d. Or probability for a person to be in state %d at a younger age, knowing that she/he was in state (1 to %d) at different older ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a><br>", cpt, cpt, nlstate, subdirf2(optionfilefiname,"PB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
                   9754:         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"PIJB_"),subdirf2(optionfilefiname,"PIJB_"));
                   9755:         fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">" ,subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
1.222     brouard  9756:        }
1.217     brouard  9757:      }
1.222     brouard  9758:      if(prevfcast==1){
1.288     brouard  9759:        /* Projection of prevalence up to period (forward stable) prevalence in each health state */
1.222     brouard  9760:        for(cpt=1; cpt<=nlstate;cpt++){
1.314     brouard  9761:         fprintf(fichtm,"<br>\n- Projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), from year %.1f up to year %.1f tending to period (stable) forward prevalence in state %d. Or probability to be in state %d being in an observed weighted state (from 1 to %d). <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateprojd, dateprojf, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
                   9762:         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"F_"),subdirf2(optionfilefiname,"F_"));
                   9763:         fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",
                   9764:                 subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
1.222     brouard  9765:        }
                   9766:      }
1.296     brouard  9767:      if(prevbcast==1){
1.268     brouard  9768:       /* Back projection of prevalence up to stable (mixed) back-prevalence in each health state */
                   9769:        for(cpt=1; cpt<=nlstate;cpt++){
1.273     brouard  9770:         fprintf(fichtm,"<br>\n- Back projection of cross-sectional prevalence (estimated with cases observed from %.1f to %.1f and mobil_average=%d), \
1.359   ! brouard  9771:  from year %.1f up to year %.1f (probably close to stable [mixed] back prevalence in state %d). Randomness in cross-sectional prevalence is not taken into \
        !          9772:  account but can visually be appreciated. Or probability to have been in an state %d, knowing that the person was in either state (1 or %d) \
1.314     brouard  9773: with weights corresponding to observed prevalence at different ages. <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>", dateprev1, dateprev2, mobilavproj, dateback1, dateback2, cpt, cpt, nlstate, subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres,subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
                   9774:         fprintf(fichtm," (data from text file  <a href=\"%s.txt\">%s.txt</a>)\n<br>",subdirf2(optionfilefiname,"FB_"),subdirf2(optionfilefiname,"FB_"));
                   9775:         fprintf(fichtm," <img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
1.268     brouard  9776:        }
                   9777:      }
1.220     brouard  9778:         
1.222     brouard  9779:      for(cpt=1; cpt<=nlstate;cpt++) {
1.314     brouard  9780:        fprintf(fichtm,"\n<br>- Life expectancy by health state (%d) at initial age and its decomposition into health expectancies in each alive state (1 to %d) (or area under each survival functions): <a href=\"%s_%d-%d-%d.svg\">%s_%d-%d-%d.svg</a>",cpt,nlstate,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres,subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
                   9781:        fprintf(fichtm," (data from text file  <a href=\"%s.txt\"> %s.txt</a>)\n<br>",subdirf2(optionfilefiname,"E_"),subdirf2(optionfilefiname,"E_"));
                   9782:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">", subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres );
1.222     brouard  9783:      }
                   9784:      /* } /\* end i1 *\/ */
1.337     brouard  9785:    }/* End k1=nres */
1.222     brouard  9786:    fprintf(fichtm,"</ul>");
1.126     brouard  9787: 
1.222     brouard  9788:    fprintf(fichtm,"\
1.126     brouard  9789: \n<br><li><h4> <a name='secondorder'>Result files (second order: variances)</a></h4>\n\
1.193     brouard  9790:  - Parameter file with estimated parameters and covariance matrix: <a href=\"%s\">%s</a> <br> \
1.203     brouard  9791:  - 95%% confidence intervals and Wald tests of the estimated parameters are in the log file if optimization has been done (mle != 0).<br> \
1.197     brouard  9792: But because parameters are usually highly correlated (a higher incidence of disability \
                   9793: and a higher incidence of recovery can give very close observed transition) it might \
                   9794: be very useful to look not only at linear confidence intervals estimated from the \
                   9795: variances but at the covariance matrix. And instead of looking at the estimated coefficients \
                   9796: (parameters) of the logistic regression, it might be more meaningful to visualize the \
                   9797: covariance matrix of the one-step probabilities. \
                   9798: See page 'Matrix of variance-covariance of one-step probabilities' below. \n", rfileres,rfileres);
1.126     brouard  9799: 
1.222     brouard  9800:    fprintf(fichtm," - Standard deviation of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
                   9801:           subdirf2(fileresu,"PROB_"),subdirf2(fileresu,"PROB_"));
                   9802:    fprintf(fichtm,"\
1.126     brouard  9803:  - Variance-covariance of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  9804:           subdirf2(fileresu,"PROBCOV_"),subdirf2(fileresu,"PROBCOV_"));
1.126     brouard  9805: 
1.222     brouard  9806:    fprintf(fichtm,"\
1.126     brouard  9807:  - Correlation matrix of one-step probabilities: <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  9808:           subdirf2(fileresu,"PROBCOR_"),subdirf2(fileresu,"PROBCOR_"));
                   9809:    fprintf(fichtm,"\
1.126     brouard  9810:  - Variances and covariances of health expectancies by age and <b>initial health status</b> (cov(e<sup>ij</sup>,e<sup>kl</sup>)(estepm=%2d months): \
                   9811:    <a href=\"%s\">%s</a> <br>\n</li>",
1.201     brouard  9812:           estepm,subdirf2(fileresu,"CVE_"),subdirf2(fileresu,"CVE_"));
1.222     brouard  9813:    fprintf(fichtm,"\
1.126     brouard  9814:  - (a) Health expectancies by health status at initial age (e<sup>ij</sup>) and standard errors (in parentheses) (b) life expectancies and standard errors (e<sup>i.</sup>=e<sup>i1</sup>+e<sup>i2</sup>+...)(estepm=%2d months): \
                   9815:    <a href=\"%s\">%s</a> <br>\n</li>",
1.201     brouard  9816:           estepm,subdirf2(fileresu,"STDE_"),subdirf2(fileresu,"STDE_"));
1.222     brouard  9817:    fprintf(fichtm,"\
1.288     brouard  9818:  - Variances and covariances of health expectancies by age. Status (i) based health expectancies (in state j), e<sup>ij</sup> are weighted by the forward (period) prevalences in each state i (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a><br>\n",
1.222     brouard  9819:           estepm, subdirf2(fileresu,"V_"),subdirf2(fileresu,"V_"));
                   9820:    fprintf(fichtm,"\
1.128     brouard  9821:  - Total life expectancy and total health expectancies to be spent in each health state e<sup>.j</sup> with their standard errors (if popbased=1, an additional computation is done using the cross-sectional prevalences, i.e population based) (estepm=%d months): <a href=\"%s\">%s</a> <br>\n",
1.222     brouard  9822:           estepm, subdirf2(fileresu,"T_"),subdirf2(fileresu,"T_"));
                   9823:    fprintf(fichtm,"\
1.288     brouard  9824:  - Standard deviation of forward (period) prevalences: <a href=\"%s\">%s</a> <br>\n",\
1.222     brouard  9825:           subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
1.126     brouard  9826: 
                   9827: /*  if(popforecast==1) fprintf(fichtm,"\n */
                   9828: /*  - Prevalences forecasting: <a href=\"f%s\">f%s</a> <br>\n */
                   9829: /*  - Population forecasting (if popforecast=1): <a href=\"pop%s\">pop%s</a> <br>\n */
                   9830: /*     <br>",fileres,fileres,fileres,fileres); */
                   9831: /*  else  */
1.338     brouard  9832: /*    fprintf(fichtm,"\n No population forecast: popforecast = %d (instead of 1) or stepm = %d (instead of 1) or model=1+age+%s (instead of .)<br><br></li>\n",popforecast, stepm, model); */
1.222     brouard  9833:    fflush(fichtm);
1.126     brouard  9834: 
1.225     brouard  9835:    m=pow(2,cptcoveff);
1.222     brouard  9836:    if (cptcovn < 1) {m=1;ncodemax[1]=1;}
1.126     brouard  9837: 
1.317     brouard  9838:    fprintf(fichtm," <ul><li><b>Graphs (second order)</b></li><p>");
                   9839: 
                   9840:   jj1=0;
                   9841: 
                   9842:    fprintf(fichtm," \n<ul>");
1.337     brouard  9843:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   9844:      /* k1=nres; */
1.338     brouard  9845:      k1=TKresult[nres];
1.337     brouard  9846:      /* for(k1=1; k1<=m;k1++){ /\* For each combination of covariate *\/ */
                   9847:      /* if(m != 1 && TKresult[nres]!= k1) */
                   9848:      /*   continue; */
1.317     brouard  9849:      jj1++;
                   9850:      if (cptcovn > 0) {
                   9851:        fprintf(fichtm,"\n<li><a  size=\"1\" color=\"#EC5E5E\" href=\"#rescovsecond");
1.337     brouard  9852:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   9853:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.317     brouard  9854:        }
                   9855:        fprintf(fichtm,"\">");
                   9856:        
                   9857:        /* if(nqfveff+nqtveff 0) */ /* Test to be done */
                   9858:        fprintf(fichtm,"************ Results for covariates");
1.337     brouard  9859:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   9860:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.317     brouard  9861:        }
                   9862:        if(invalidvarcomb[k1]){
                   9863:         fprintf(fichtm," Warning Combination (%d) ignored because no cases ",k1); 
                   9864:         continue;
                   9865:        }
                   9866:        fprintf(fichtm,"</a></li>");
                   9867:      } /* cptcovn >0 */
1.337     brouard  9868:    } /* End nres */
1.317     brouard  9869:    fprintf(fichtm," \n</ul>");
                   9870: 
1.222     brouard  9871:    jj1=0;
1.237     brouard  9872: 
1.241     brouard  9873:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  9874:      /* k1=nres; */
1.338     brouard  9875:      k1=TKresult[nres];
                   9876:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  9877:      /* for(k1=1; k1<=m;k1++){ */
                   9878:      /* if(m != 1 && TKresult[nres]!= k1) */
                   9879:      /*   continue; */
1.222     brouard  9880:      /* for(i1=1; i1<=ncodemax[k1];i1++){ */
                   9881:      jj1++;
1.126     brouard  9882:      if (cptcovn > 0) {
1.317     brouard  9883:        fprintf(fichtm,"\n<p><a name=\"rescovsecond");
1.337     brouard  9884:        for (cpt=1; cpt<=cptcovs;cpt++){ 
                   9885:         fprintf(fichtm,"_V%d=%lg_",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.317     brouard  9886:        }
                   9887:        fprintf(fichtm,"\"</a>");
                   9888:        
1.126     brouard  9889:        fprintf(fichtm,"<hr  size=\"2\" color=\"#EC5E5E\">************ Results for covariates");
1.337     brouard  9890:        for (cpt=1; cpt<=cptcovs;cpt++){  /**< cptcoveff number of variables */
                   9891:         fprintf(fichtm," V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
                   9892:         printf(" V%d=%lg ",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);
1.237     brouard  9893:         /* fprintf(fichtm," V%d=%d ",Tvaraff[cpt],nbcode[Tvaraff[cpt]][codtabm(jj1,cpt)]); */
1.317     brouard  9894:        }
1.237     brouard  9895: 
1.338     brouard  9896:        fprintf(fichtm," (model=1+age+%s) ************\n<hr size=\"2\" color=\"#EC5E5E\">",model);
1.220     brouard  9897: 
1.222     brouard  9898:        if(invalidvarcomb[k1]){
                   9899:         fprintf(fichtm,"\n<h4>Combination (%d) ignored because no cases </h4>\n",k1); 
                   9900:         continue;
                   9901:        }
1.337     brouard  9902:      } /* If cptcovn >0 */
1.126     brouard  9903:      for(cpt=1; cpt<=nlstate;cpt++) {
1.258     brouard  9904:        fprintf(fichtm,"\n<br>- Observed (cross-sectional with mov_average=%d) and period (incidence based) \
1.314     brouard  9905: prevalence (with 95%% confidence interval) in state (%d): <a href=\"%s_%d-%d-%d.svg\"> %s_%d-%d-%d.svg</a>",mobilav,cpt,subdirf2(optionfilefiname,"V_"),cpt,k1,nres,subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
                   9906:        fprintf(fichtm," (data from text file  <a href=\"%s\">%s</a>)\n <br>",subdirf2(fileresu,"VPL_"),subdirf2(fileresu,"VPL_"));
                   9907:        fprintf(fichtm,"<img src=\"%s_%d-%d-%d.svg\">",subdirf2(optionfilefiname,"V_"), cpt,k1,nres);
1.126     brouard  9908:      }
                   9909:      fprintf(fichtm,"\n<br>- Total life expectancy by age and \
1.314     brouard  9910: health expectancies in each live states (1 to %d). If popbased=1 the smooth (due to the model) \
1.128     brouard  9911: true period expectancies (those weighted with period prevalences are also\
                   9912:  drawn in addition to the population based expectancies computed using\
1.314     brouard  9913:  observed and cahotic prevalences:  <a href=\"%s_%d-%d.svg\">%s_%d-%d.svg</a>",nlstate, subdirf2(optionfilefiname,"E_"),k1,nres,subdirf2(optionfilefiname,"E_"),k1,nres);
                   9914:      fprintf(fichtm," (data from text file <a href=\"%s.txt\">%s.txt</a>) \n<br>",subdirf2(optionfilefiname,"T_"),subdirf2(optionfilefiname,"T_"));
                   9915:      fprintf(fichtm,"<img src=\"%s_%d-%d.svg\">",subdirf2(optionfilefiname,"E_"),k1,nres);
1.222     brouard  9916:      /* } /\* end i1 *\/ */
1.241     brouard  9917:   }/* End nres */
1.222     brouard  9918:    fprintf(fichtm,"</ul>");
                   9919:    fflush(fichtm);
1.126     brouard  9920: }
                   9921: 
                   9922: /******************* Gnuplot file **************/
1.296     brouard  9923: void printinggnuplot(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double bage, double fage , int prevfcast, int prevbcast, char pathc[], double p[], int offyear, int offbyear){
1.126     brouard  9924: 
1.354     brouard  9925:   char dirfileres[256],optfileres[256];
                   9926:   char gplotcondition[256], gplotlabel[256];
1.343     brouard  9927:   int cpt=0,k1=0,i=0,k=0,j=0,jk=0,k2=0,k3=0,k4=0,kf=0,kvar=0,kk=0,ipos=0,iposold=0,ij=0, ijp=0, l=0;
1.211     brouard  9928:   int lv=0, vlv=0, kl=0;
1.130     brouard  9929:   int ng=0;
1.201     brouard  9930:   int vpopbased;
1.223     brouard  9931:   int ioffset; /* variable offset for columns */
1.270     brouard  9932:   int iyearc=1; /* variable column for year of projection  */
                   9933:   int iagec=1; /* variable column for age of projection  */
1.235     brouard  9934:   int nres=0; /* Index of resultline */
1.266     brouard  9935:   int istart=1; /* For starting graphs in projections */
1.219     brouard  9936: 
1.126     brouard  9937: /*   if((ficgp=fopen(optionfilegnuplot,"a"))==NULL) { */
                   9938: /*     printf("Problem with file %s",optionfilegnuplot); */
                   9939: /*     fprintf(ficlog,"Problem with file %s",optionfilegnuplot); */
                   9940: /*   } */
                   9941: 
                   9942:   /*#ifdef windows */
                   9943:   fprintf(ficgp,"cd \"%s\" \n",pathc);
1.223     brouard  9944:   /*#endif */
1.225     brouard  9945:   m=pow(2,cptcoveff);
1.126     brouard  9946: 
1.274     brouard  9947:   /* diagram of the model */
                   9948:   fprintf(ficgp,"\n#Diagram of the model \n");
                   9949:   fprintf(ficgp,"\ndelta=0.03;delta2=0.07;unset arrow;\n");
                   9950:   fprintf(ficgp,"yoff=(%d > 2? 0:1);\n",nlstate);
                   9951:   fprintf(ficgp,"\n#Peripheral arrows\nset for [i=1:%d] for [j=1:%d] arrow i*10+j from cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.95*(cos(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0) - cos(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta2:0)), -0.95*(sin(pi*((1-(%d/2)*2./%d)/2+(i-1)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) - sin(pi*((1-(%d/2)*2./%d)/2+(j-1)*2./%d))+( i!=j?(i-j)/abs(i-j)*delta2:0)) ls (i < j? 1:2)\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
                   9952: 
1.343     brouard  9953:   fprintf(ficgp,"\n#Centripete arrows (turning in other direction (1-i) instead of (i-1)) \nset for [i=1:%d] for [j=1:%d] arrow (%d+1)*10+i from cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))-(i!=j?(i-j)/abs(i-j)*delta:0), yoff +sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) rto -0.80*(cos(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d))+(i!=j?(i-j)/abs(i-j)*delta:0)  ), -0.80*(sin(pi*((1-(%d/2)*2./%d)/2+(1-i)*2./%d)) + (i!=j?(i-j)/abs(i-j)*delta:0) + yoff ) ls 4\n",nlstate, nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
1.274     brouard  9954:   fprintf(ficgp,"\n#show arrow\nunset label\n");
                   9955:   fprintf(ficgp,"\n#States labels, starting from 2 (2-i) instead of (1-i), was (i-1)\nset for [i=1:%d] label i sprintf(\"State %%d\",i) center at cos(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)), yoff+sin(pi*((1-(%d/2)*2./%d)/2+(2-i)*2./%d)) font \"helvetica, 16\" tc rgbcolor \"blue\"\n",nlstate,nlstate,nlstate,nlstate,nlstate,nlstate,nlstate);
                   9956:   fprintf(ficgp,"\nset label %d+1 sprintf(\"State %%d\",%d+1) center at 0.,0.  font \"helvetica, 16\" tc rgbcolor \"red\"\n",nlstate,nlstate);
                   9957:   fprintf(ficgp,"\n#show label\nunset border;unset xtics; unset ytics;\n");
                   9958:   fprintf(ficgp,"\n\nset ter svg size 640, 480;set out \"%s_.svg\" \n",subdirf2(optionfilefiname,"D_"));
                   9959:   fprintf(ficgp,"unset log y; plot [-1.2:1.2][yoff-1.2:1.2] 1/0 not; set out;reset;\n");
                   9960: 
1.202     brouard  9961:   /* Contribution to likelihood */
                   9962:   /* Plot the probability implied in the likelihood */
1.223     brouard  9963:   fprintf(ficgp,"\n# Contributions to the Likelihood, mle >=1. For mle=4 no interpolation, pure matrix products.\n#\n");
                   9964:   fprintf(ficgp,"\n set log y; unset log x;set xlabel \"Age\"; set ylabel \"Likelihood (-2Log(L))\";");
                   9965:   /* fprintf(ficgp,"\nset ter svg size 640, 480"); */ /* Too big for svg */
                   9966:   fprintf(ficgp,"\nset ter pngcairo size 640, 480");
1.204     brouard  9967: /* nice for mle=4 plot by number of matrix products.
1.202     brouard  9968:    replot  "rrtest1/toto.txt" u 2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with point lc 1 */
                   9969: /* replot exp(p1+p2*x)/(1+exp(p1+p2*x)+exp(p3+p4*x)+exp(p5+p6*x)) t "p12(x)"  */
1.223     brouard  9970:   /* fprintf(ficgp,"\nset out \"%s.svg\";",subdirf2(optionfilefiname,"ILK_")); */
                   9971:   fprintf(ficgp,"\nset out \"%s-dest.png\";",subdirf2(optionfilefiname,"ILK_"));
                   9972:   fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):6 t \"All sample, transitions colored by destination\" with dots lc variable; set out;\n",subdirf(fileresilk));
                   9973:   fprintf(ficgp,"\nset out \"%s-ori.png\";",subdirf2(optionfilefiname,"ILK_"));
                   9974:   fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$13):5 t \"All sample, transitions colored by origin\" with dots lc variable; set out;\n\n",subdirf(fileresilk));
                   9975:   for (i=1; i<= nlstate ; i ++) {
                   9976:     fprintf(ficgp,"\nset out \"%s-p%dj.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i);
                   9977:     fprintf(ficgp,"unset log;\n# plot weighted, mean weight should have point size of 0.5\n plot  \"%s\"",subdirf(fileresilk));
                   9978:     fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable \\\n",i,1,i,1);
                   9979:     for (j=2; j<= nlstate+ndeath ; j ++) {
                   9980:       fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($12/4.):6 t \"p%d%d\" with points pointtype 7 ps variable lc variable ",i,j,i,j);
                   9981:     }
                   9982:     fprintf(ficgp,";\nset out; unset ylabel;\n"); 
                   9983:   }
                   9984:   /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */               
                   9985:   /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
                   9986:   /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
                   9987:   fprintf(ficgp,"\nset out;unset log\n");
                   9988:   /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
1.202     brouard  9989: 
1.343     brouard  9990:   /* Plot the probability implied in the likelihood by covariate value */
                   9991:   fprintf(ficgp,"\nset ter pngcairo size 640, 480");
                   9992:   /* if(debugILK==1){ */
                   9993:   for(kf=1; kf <= ncovf; kf++){ /* For each simple dummy covariate of the model */
1.347     brouard  9994:     kvar=Tvar[TvarFind[kf]]; /* variable name */
                   9995:     /* k=18+Tvar[TvarFind[kf]];/\*offset because there are 18 columns in the ILK_ file but could be placed else where *\/ */
1.350     brouard  9996:     /* k=18+kf;/\*offset because there are 18 columns in the ILK_ file *\/ */
1.356     brouard  9997:     /* k=19+kf;/\*offset because there are 19 columns in the ILK_ file *\/ */
1.355     brouard  9998:     k=16+nlstate+kf;/*offset because there are 19 columns in the ILK_ file, first cov Vn on col 21 with 4 living states */
1.343     brouard  9999:     for (i=1; i<= nlstate ; i ++) {
                   10000:       fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar);
                   10001:       fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot  \"%s\"",subdirf(fileresilk));
1.348     brouard  10002:       if(gnuplotversion >=5.2){ /* Former gnuplot versions do not have variable pointsize!! */
                   10003:        fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar);
                   10004:        for (j=2; j<= nlstate+ndeath ; j ++) {
                   10005:          fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar);
                   10006:        }
                   10007:       }else{
                   10008:        fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable \\\n",i,1,k,i,1,kvar);
                   10009:        for (j=2; j<= nlstate+ndeath ; j ++) {
                   10010:          fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable ",i,j,k,i,j,kvar);
                   10011:        }
1.343     brouard  10012:       }
                   10013:       fprintf(ficgp,";\nset out; unset ylabel;\n"); 
                   10014:     }
                   10015:   } /* End of each covariate dummy */
                   10016:   for(ncovv=1, iposold=0, kk=0; ncovv <= ncovvt ; ncovv++){
                   10017:     /* Other example        V1 + V3 + V5 + age*V1  + age*V3 + age*V5 + V1*V3  + V3*V5  + V1*V5 
                   10018:      *     kmodel       =     1   2     3     4         5        6        7       8        9
                   10019:      *  varying                   1     2                                 3       4        5
                   10020:      *  ncovv                     1     2                                3 4     5 6      7 8
                   10021:      * TvarVV[ncovv]             V3     5                                1 3     3 5      1 5
                   10022:      * TvarVVind[ncovv]=kmodel    2     3                                7 7     8 8      9 9
                   10023:      * TvarFind[kmodel]       1   0     0     0         0        0        0       0        0
                   10024:      * kdata     ncovcol=[V1 V2] nqv=0 ntv=[V3 V4] nqtv=V5
                   10025:      * Dummy[kmodel]          0   0     1     2         2        3        1       1        1
                   10026:      */
                   10027:     ipos=TvarVVind[ncovv]; /* TvarVVind={2, 5, 5] gives the position in the model of the ncovv th varying covariate */
                   10028:     kvar=TvarVV[ncovv]; /*  TvarVV={3, 1, 3} gives the name of each varying covariate */
                   10029:     /* printf("DebugILK ficgp ncovv=%d, kvar=TvarVV[ncovv]=%d, ipos=TvarVVind[ncovv]=%d, Dummy[ipos]=%d, Typevar[ipos]=%d\n", ncovv,kvar,ipos,Dummy[ipos],Typevar[ipos]); */
                   10030:     if(ipos!=iposold){ /* Not a product or first of a product */
                   10031:       /* printf(" %d",ipos); */
                   10032:       /* fprintf(ficresilk," V%d",TvarVV[ncovv]); */
                   10033:       /* printf(" DebugILK ficgp suite ipos=%d != iposold=%d\n", ipos, iposold); */
                   10034:       kk++; /* Position of the ncovv column in ILK_ */
                   10035:       k=18+ncovf+kk; /*offset because there are 18 columns in the ILK_ file plus ncovf fixed covariate */
                   10036:       if(Dummy[ipos]==0 && Typevar[ipos]==0){ /* Only if dummy time varying: Dummy(0, 1=quant singor prod without age,2 dummy*age, 3quant*age) Typevar (0 single, 1=*age,2=Vn*vm)  */
                   10037:        for (i=1; i<= nlstate ; i ++) {
                   10038:          fprintf(ficgp,"\nset out \"%s-p%dj-%d.png\";set ylabel \"Probability for each individual/wave\";",subdirf2(optionfilefiname,"ILK_"),i,kvar);
                   10039:          fprintf(ficgp,"unset log;\n# For each simple dummy covariate of the model \n plot  \"%s\"",subdirf(fileresilk));
                   10040: 
1.348     brouard  10041:            /* printf("Before DebugILK gnuplotversion=%g >=5.2\n",gnuplotversion); */
1.343     brouard  10042:          if(gnuplotversion >=5.2){ /* Former gnuplot versions do not have variable pointsize!! */
                   10043:            /* printf("DebugILK gnuplotversion=%g >=5.2\n",gnuplotversion); */
                   10044:            fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable \\\n",i,1,k,k,i,1,kvar);
                   10045:            for (j=2; j<= nlstate+ndeath ; j ++) {
                   10046:              fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? 7 : 9):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt variable ps 0.4 lc variable ",i,j,k,k,i,j,kvar);
                   10047:            }
                   10048:          }else{
                   10049:            /* printf("DebugILK gnuplotversion=%g <5.2\n",gnuplotversion); */
                   10050:            fprintf(ficgp,"  u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable \\\n",i,1,k,i,1,kvar);
                   10051:            for (j=2; j<= nlstate+ndeath ; j ++) {
                   10052:              fprintf(ficgp,",\\\n \"\" u  2:($5 == %d && $6==%d ? $10 : 1/0):($%d==0 ? $6 : $6+4) t \"p%d%d V%d\" with points pt 7 ps 0.4 lc variable ",i,j,k,i,j,kvar);
                   10053:            }
                   10054:          }
                   10055:          fprintf(ficgp,";\nset out; unset ylabel;\n"); 
                   10056:        }
                   10057:       }/* End if dummy varying */
                   10058:     }else{ /*Product */
                   10059:       /* printf("*"); */
                   10060:       /* fprintf(ficresilk,"*"); */
                   10061:     }
                   10062:     iposold=ipos;
                   10063:   } /* For each time varying covariate */
                   10064:   /* } /\* debugILK==1 *\/ */
                   10065:   /* unset log; plot  "rrtest1_sorted_4/ILK_rrtest1_sorted_4.txt" u  2:($4 == 1 && $5==2 ? $9 : 1/0):5 t "p12" with points lc variable */               
                   10066:   /* fprintf(ficgp,"\nset log y;plot  \"%s\" u 2:(-$11):3 t \"All sample, all transitions\" with dots lc variable",subdirf(fileresilk)); */
                   10067:   /* fprintf(ficgp,"\nreplot  \"%s\" u 2:($3 <= 3 ? -$11 : 1/0):3 t \"First 3 individuals\" with line lc variable", subdirf(fileresilk)); */
                   10068:   fprintf(ficgp,"\nset out;unset log\n");
                   10069:   /* fprintf(ficgp,"\nset out \"%s.svg\"; replot; set out; # bug gnuplot",subdirf2(optionfilefiname,"ILK_")); */
                   10070: 
                   10071: 
                   10072:   
1.126     brouard  10073:   strcpy(dirfileres,optionfilefiname);
                   10074:   strcpy(optfileres,"vpl");
1.223     brouard  10075:   /* 1eme*/
1.238     brouard  10076:   for (cpt=1; cpt<= nlstate ; cpt ++){ /* For each live state */
1.337     brouard  10077:     /* for (k1=1; k1<= m ; k1 ++){ /\* For each valid combination of covariate *\/ */
1.236     brouard  10078:       for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10079:        k1=TKresult[nres];
1.338     brouard  10080:        if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.238     brouard  10081:        /* plot [100000000000000000000:-100000000000000000000] "mysbiaspar/vplrmysbiaspar.txt to check */
1.337     brouard  10082:        /* if(m != 1 && TKresult[nres]!= k1) */
                   10083:        /*   continue; */
1.238     brouard  10084:        /* We are interested in selected combination by the resultline */
1.246     brouard  10085:        /* printf("\n# 1st: Period (stable) prevalence with CI: 'VPL_' files and live state =%d ", cpt); */
1.288     brouard  10086:        fprintf(ficgp,"\n# 1st: Forward (stable period) prevalence with CI: 'VPL_' files  and live state =%d ", cpt);
1.264     brouard  10087:        strcpy(gplotlabel,"(");
1.337     brouard  10088:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10089:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10090:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10091: 
                   10092:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate k get corresponding value lv for combination k1 *\/ */
                   10093:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the value of the covariate corresponding to k1 combination *\\/ *\/ */
                   10094:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   10095:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10096:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10097:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10098:        /*   vlv= nbcode[Tvaraff[k]][lv]; /\* vlv is the value of the covariate lv, 0 or 1 *\/ */
                   10099:        /*   /\* For each combination of covariate k1 (V1=1, V3=0), we printed the current covariate k and its value vlv *\/ */
                   10100:        /*   /\* printf(" V%d=%d ",Tvaraff[k],vlv); *\/ */
                   10101:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10102:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10103:        /* } */
                   10104:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10105:        /*   /\* printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); *\/ */
                   10106:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   10107:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
1.264     brouard  10108:        }
                   10109:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.246     brouard  10110:        /* printf("\n#\n"); */
1.238     brouard  10111:        fprintf(ficgp,"\n#\n");
                   10112:        if(invalidvarcomb[k1]){
1.260     brouard  10113:           /*k1=k1-1;*/ /* To be checked */
1.238     brouard  10114:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   10115:          continue;
                   10116:        }
1.235     brouard  10117:       
1.241     brouard  10118:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"V_"),cpt,k1,nres);
                   10119:        fprintf(ficgp,"\n#set out \"V_%s_%d-%d-%d.svg\" \n",optionfilefiname,cpt,k1,nres);
1.276     brouard  10120:        /* fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel); */
1.338     brouard  10121:        fprintf(ficgp,"set title \"Alive state %d %s model=1+age+%s\" font \"Helvetica,12\"\n",cpt,gplotlabel,model);
1.260     brouard  10122:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
                   10123:        /* fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \nset ter svg size 640, 480\nplot [%.f:%.f] \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",ageminpar,fage,subdirf2(fileresu,"VPL_"),k1-1,k1-1,nres); */
                   10124:       /* k1-1 error should be nres-1*/
1.238     brouard  10125:        for (i=1; i<= nlstate ; i ++) {
                   10126:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   10127:          else        fprintf(ficgp," %%*lf (%%*lf)");
                   10128:        }
1.288     brouard  10129:        fprintf(ficgp,"\" t\"Forward prevalence\" w l lt 0,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres);
1.238     brouard  10130:        for (i=1; i<= nlstate ; i ++) {
                   10131:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   10132:          else fprintf(ficgp," %%*lf (%%*lf)");
                   10133:        } 
1.260     brouard  10134:        fprintf(ficgp,"\" t\"95%% CI\" w l lt 1,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VPL_"),nres-1,nres-1,nres); 
1.238     brouard  10135:        for (i=1; i<= nlstate ; i ++) {
                   10136:          if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   10137:          else fprintf(ficgp," %%*lf (%%*lf)");
                   10138:        }  
1.265     brouard  10139:        /* fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" every :::%d::%d u 1:($%d) t\"Observed prevalence\" w l lt 2",subdirf2(fileresu,"P_"),k1-1,k1-1,2+4*(cpt-1)); */
                   10140:        
                   10141:        fprintf(ficgp,"\" t\"\" w l lt 1,\"%s\" u 1:((",subdirf2(fileresu,"P_"));
                   10142:         if(cptcoveff ==0){
1.271     brouard  10143:          fprintf(ficgp,"$%d)) t 'Observed prevalence in state %d' with line lt 3",      2+3*(cpt-1),  cpt );
1.265     brouard  10144:        }else{
                   10145:          kl=0;
                   10146:          for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
1.332     brouard  10147:            /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
                   10148:            lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
1.265     brouard  10149:            /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   10150:            /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   10151:            /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   10152:            vlv= nbcode[Tvaraff[k]][lv];
                   10153:            kl++;
                   10154:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   10155:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   10156:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   10157:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   10158:            if(k==cptcoveff){
                   10159:              fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Observed prevalence in state %d' w l lt 2",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
                   10160:                      2+cptcoveff*2+3*(cpt-1),  cpt );  /* 4 or 6 ?*/
                   10161:            }else{
                   10162:              fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv]);
                   10163:              kl++;
                   10164:            }
                   10165:          } /* end covariate */
                   10166:        } /* end if no covariate */
                   10167: 
1.296     brouard  10168:        if(prevbcast==1){ /* We need to get the corresponding values of the covariates involved in this combination k1 */
1.238     brouard  10169:          /* fprintf(ficgp,",\"%s\" every :::%d::%d u 1:($%d) t\"Backward stable prevalence\" w l lt 3",subdirf2(fileresu,"PLB_"),k1-1,k1-1,1+cpt); */
1.242     brouard  10170:          fprintf(ficgp,",\"%s\" u 1:((",subdirf2(fileresu,"PLB_")); /* Age is in 1, nres in 2 to be fixed */
1.238     brouard  10171:          if(cptcoveff ==0){
1.245     brouard  10172:            fprintf(ficgp,"$%d)) t 'Backward prevalence in state %d' with line lt 3",    2+(cpt-1),  cpt );
1.238     brouard  10173:          }else{
                   10174:            kl=0;
                   10175:            for (k=1; k<=cptcoveff; k++){    /* For each combination of covariate  */
1.332     brouard  10176:              /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to k1 combination and kth covariate *\/ */
                   10177:              lv=codtabm(k1,TnsdVar[Tvaraff[k]]);
1.238     brouard  10178:              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   10179:              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   10180:              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
1.332     brouard  10181:              /* vlv= nbcode[Tvaraff[k]][lv]; */
                   10182:              vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])];
1.223     brouard  10183:              kl++;
1.238     brouard  10184:              /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   10185:              /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   10186:              /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   10187:              /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   10188:              if(k==cptcoveff){
1.245     brouard  10189:                fprintf(ficgp,"$%d==%d && $%d==%d)? $%d : 1/0) t 'Backward prevalence in state %d' w l lt 3",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][lv], \
1.242     brouard  10190:                        2+cptcoveff*2+(cpt-1),  cpt );  /* 4 or 6 ?*/
1.238     brouard  10191:              }else{
1.332     brouard  10192:                fprintf(ficgp,"$%d==%d && $%d==%d && ",kl+1, Tvaraff[k],kl+1+1,nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]);
1.238     brouard  10193:                kl++;
                   10194:              }
                   10195:            } /* end covariate */
                   10196:          } /* end if no covariate */
1.296     brouard  10197:          if(prevbcast == 1){
1.268     brouard  10198:            fprintf(ficgp,", \"%s\" every :::%d::%d u 1:($2==%d ? $3:1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
                   10199:            /* k1-1 error should be nres-1*/
                   10200:            for (i=1; i<= nlstate ; i ++) {
                   10201:              if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   10202:              else        fprintf(ficgp," %%*lf (%%*lf)");
                   10203:            }
1.271     brouard  10204:            fprintf(ficgp,"\" t\"Backward (stable) prevalence\" w l lt 6 dt 3,\"%s\" every :::%d::%d u 1:($2==%d ? $3+1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres);
1.268     brouard  10205:            for (i=1; i<= nlstate ; i ++) {
                   10206:              if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   10207:              else fprintf(ficgp," %%*lf (%%*lf)");
                   10208:            } 
1.276     brouard  10209:            fprintf(ficgp,"\" t\"95%% CI\" w l lt 4,\"%s\" every :::%d::%d u 1:($2==%d ? $3-1.96*$4 : 1/0) \"%%lf %%lf",subdirf2(fileresu,"VBL_"),nres-1,nres-1,nres); 
1.268     brouard  10210:            for (i=1; i<= nlstate ; i ++) {
                   10211:              if (i==cpt) fprintf(ficgp," %%lf (%%lf)");
                   10212:              else fprintf(ficgp," %%*lf (%%*lf)");
                   10213:            } 
1.274     brouard  10214:            fprintf(ficgp,"\" t\"\" w l lt 4");
1.268     brouard  10215:          } /* end if backprojcast */
1.296     brouard  10216:        } /* end if prevbcast */
1.276     brouard  10217:        /* fprintf(ficgp,"\nset out ;unset label;\n"); */
                   10218:        fprintf(ficgp,"\nset out ;unset title;\n");
1.238     brouard  10219:       } /* nres */
1.337     brouard  10220:     /* } /\* k1 *\/ */
1.201     brouard  10221:   } /* cpt */
1.235     brouard  10222: 
                   10223:   
1.126     brouard  10224:   /*2 eme*/
1.337     brouard  10225:   /* for (k1=1; k1<= m ; k1 ++){   */
1.238     brouard  10226:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10227:       k1=TKresult[nres];
1.338     brouard  10228:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  10229:       /* if(m != 1 && TKresult[nres]!= k1) */
                   10230:       /*       continue; */
1.238     brouard  10231:       fprintf(ficgp,"\n# 2nd: Total life expectancy with CI: 't' files ");
1.264     brouard  10232:       strcpy(gplotlabel,"(");
1.337     brouard  10233:       for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10234:        fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10235:        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10236:       /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   10237:       /*       /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   10238:       /*       lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   10239:       /*       /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10240:       /*       /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10241:       /*       /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10242:       /*       /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   10243:       /*       vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10244:       /*       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10245:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10246:       /* } */
                   10247:       /* /\* for(k=1; k <= ncovds; k++){ *\/ */
                   10248:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10249:       /*       printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   10250:       /*       fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   10251:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
1.238     brouard  10252:       }
1.264     brouard  10253:       strcpy(gplotlabel+strlen(gplotlabel),")");
1.211     brouard  10254:       fprintf(ficgp,"\n#\n");
1.223     brouard  10255:       if(invalidvarcomb[k1]){
                   10256:        fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   10257:        continue;
                   10258:       }
1.219     brouard  10259:                        
1.241     brouard  10260:       fprintf(ficgp,"\nset out \"%s_%d-%d.svg\" \n",subdirf2(optionfilefiname,"E_"),k1,nres);
1.238     brouard  10261:       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
1.264     brouard  10262:        fprintf(ficgp,"\nset label \"popbased %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",vpopbased,gplotlabel);
                   10263:        if(vpopbased==0){
1.238     brouard  10264:          fprintf(ficgp,"set ylabel \"Years\" \nset ter svg size 640, 480\nplot [%.f:%.f] ",ageminpar,fage);
1.264     brouard  10265:        }else
1.238     brouard  10266:          fprintf(ficgp,"\nreplot ");
                   10267:        for (i=1; i<= nlstate+1 ; i ++) {
                   10268:          k=2*i;
1.261     brouard  10269:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ?$4 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1, vpopbased);
1.238     brouard  10270:          for (j=1; j<= nlstate+1 ; j ++) {
                   10271:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   10272:            else fprintf(ficgp," %%*lf (%%*lf)");
                   10273:          }   
                   10274:          if (i== 1) fprintf(ficgp,"\" t\"TLE\" w l lt %d, \\\n",i);
                   10275:          else fprintf(ficgp,"\" t\"LE in state (%d)\" w l lt %d, \\\n",i-1,i+1);
1.261     brouard  10276:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4-$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
1.238     brouard  10277:          for (j=1; j<= nlstate+1 ; j ++) {
                   10278:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   10279:            else fprintf(ficgp," %%*lf (%%*lf)");
                   10280:          }   
                   10281:          fprintf(ficgp,"\" t\"\" w l lt 0,");
1.261     brouard  10282:          fprintf(ficgp,"\"%s\" every :::%d::%d u 1:($2==%d && $4!=0 ? $4+$5*2 : 1/0) \"%%lf %%lf %%lf",subdirf2(fileresu,"T_"),nres-1,nres-1,vpopbased);
1.238     brouard  10283:          for (j=1; j<= nlstate+1 ; j ++) {
                   10284:            if (j==i) fprintf(ficgp," %%lf (%%lf)");
                   10285:            else fprintf(ficgp," %%*lf (%%*lf)");
                   10286:          }   
                   10287:          if (i== (nlstate+1)) fprintf(ficgp,"\" t\"\" w l lt 0");
                   10288:          else fprintf(ficgp,"\" t\"\" w l lt 0,\\\n");
                   10289:        } /* state */
                   10290:       } /* vpopbased */
1.264     brouard  10291:       fprintf(ficgp,"\nset out;set out \"%s_%d-%d.svg\"; replot; set out; unset label;\n",subdirf2(optionfilefiname,"E_"),k1,nres); /* Buggy gnuplot */
1.238     brouard  10292:     } /* end nres */
1.337     brouard  10293:   /* } /\* k1 end 2 eme*\/ */
1.238     brouard  10294:        
                   10295:        
                   10296:   /*3eme*/
1.337     brouard  10297:   /* for (k1=1; k1<= m ; k1 ++){ */
1.238     brouard  10298:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10299:       k1=TKresult[nres];
1.338     brouard  10300:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  10301:       /* if(m != 1 && TKresult[nres]!= k1) */
                   10302:       /*       continue; */
1.238     brouard  10303: 
1.332     brouard  10304:       for (cpt=1; cpt<= nlstate ; cpt ++) { /* Fragile no verification of covariate values */
1.261     brouard  10305:        fprintf(ficgp,"\n\n# 3d: Life expectancy with EXP_ files:  combination=%d state=%d",k1, cpt);
1.264     brouard  10306:        strcpy(gplotlabel,"(");
1.337     brouard  10307:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10308:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10309:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10310:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   10311:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   10312:        /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   10313:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10314:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10315:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10316:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   10317:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10318:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10319:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10320:        /* } */
                   10321:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10322:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
                   10323:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][resultmodel[nres][k4]]); */
                   10324:        }
1.264     brouard  10325:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.238     brouard  10326:        fprintf(ficgp,"\n#\n");
                   10327:        if(invalidvarcomb[k1]){
                   10328:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   10329:          continue;
                   10330:        }
                   10331:                        
                   10332:        /*       k=2+nlstate*(2*cpt-2); */
                   10333:        k=2+(nlstate+1)*(cpt-1);
1.241     brouard  10334:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"EXP_"),cpt,k1,nres);
1.264     brouard  10335:        fprintf(ficgp,"set label \"%s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel);
1.238     brouard  10336:        fprintf(ficgp,"set ter svg size 640, 480\n\
1.261     brouard  10337: plot [%.f:%.f] \"%s\" every :::%d::%d u 1:%d t \"e%d1\" w l",ageminpar,fage,subdirf2(fileresu,"E_"),nres-1,nres-1,k,cpt);
1.238     brouard  10338:        /*fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d-2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   10339:          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   10340:          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
                   10341:          fprintf(ficgp,",\"e%s\" every :::%d::%d u 1:($%d+2*$%d) \"\%%lf ",fileres,k1-1,k1-1,k,k+1);
                   10342:          for (i=1; i<= nlstate*2 ; i ++) fprintf(ficgp,"\%%lf (\%%lf) ");
                   10343:          fprintf(ficgp,"\" t \"e%d1\" w l",cpt);
1.219     brouard  10344:                                
1.238     brouard  10345:        */
                   10346:        for (i=1; i< nlstate ; i ++) {
1.261     brouard  10347:          fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+i,cpt,i+1);
1.238     brouard  10348:          /*    fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d%d\" w l",subdirf2(fileres,"e"),k1-1,k1-1,k+2*i,cpt,i+1);*/
1.219     brouard  10349:                                
1.238     brouard  10350:        } 
1.261     brouard  10351:        fprintf(ficgp," ,\"%s\" every :::%d::%d u 1:%d t \"e%d.\" w l",subdirf2(fileresu,"E_"),nres-1,nres-1,k+nlstate,cpt);
1.238     brouard  10352:       }
1.264     brouard  10353:       fprintf(ficgp,"\nunset label;\n");
1.238     brouard  10354:     } /* end nres */
1.337     brouard  10355:   /* } /\* end kl 3eme *\/ */
1.126     brouard  10356:   
1.223     brouard  10357:   /* 4eme */
1.201     brouard  10358:   /* Survival functions (period) from state i in state j by initial state i */
1.337     brouard  10359:   /* for (k1=1; k1<=m; k1++){    /\* For each covariate and each value *\/ */
1.238     brouard  10360:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10361:       k1=TKresult[nres];
1.338     brouard  10362:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  10363:       /* if(m != 1 && TKresult[nres]!= k1) */
                   10364:       /*       continue; */
1.238     brouard  10365:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state cpt*/
1.264     brouard  10366:        strcpy(gplotlabel,"(");
1.337     brouard  10367:        fprintf(ficgp,"\n#\n#\n# Survival functions in state %d : 'LIJ_' files, cov=%d state=%d", cpt, k1, cpt);
                   10368:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10369:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10370:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10371:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   10372:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   10373:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   10374:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10375:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10376:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10377:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   10378:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10379:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10380:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10381:        /* } */
                   10382:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10383:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   10384:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.238     brouard  10385:        }       
1.264     brouard  10386:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.238     brouard  10387:        fprintf(ficgp,"\n#\n");
                   10388:        if(invalidvarcomb[k1]){
                   10389:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   10390:          continue;
1.223     brouard  10391:        }
1.238     brouard  10392:       
1.241     brouard  10393:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJ_"),cpt,k1,nres);
1.264     brouard  10394:        fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.238     brouard  10395:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
                   10396: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   10397:        k=3;
                   10398:        for (i=1; i<= nlstate ; i ++){
                   10399:          if(i==1){
                   10400:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   10401:          }else{
                   10402:            fprintf(ficgp,", '' ");
                   10403:          }
                   10404:          l=(nlstate+ndeath)*(i-1)+1;
                   10405:          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
                   10406:          for (j=2; j<= nlstate+ndeath ; j ++)
                   10407:            fprintf(ficgp,"+$%d",k+l+j-1);
                   10408:          fprintf(ficgp,")) t \"l(%d,%d)\" w l",i,cpt);
                   10409:        } /* nlstate */
1.264     brouard  10410:        fprintf(ficgp,"\nset out; unset label;\n");
1.238     brouard  10411:       } /* end cpt state*/ 
                   10412:     } /* end nres */
1.337     brouard  10413:   /* } /\* end covariate k1 *\/   */
1.238     brouard  10414: 
1.220     brouard  10415: /* 5eme */
1.201     brouard  10416:   /* Survival functions (period) from state i in state j by final state j */
1.337     brouard  10417:   /* for (k1=1; k1<= m ; k1++){ /\* For each covariate combination if any *\/ */
1.238     brouard  10418:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10419:       k1=TKresult[nres];
1.338     brouard  10420:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  10421:       /* if(m != 1 && TKresult[nres]!= k1) */
                   10422:       /*       continue; */
1.238     brouard  10423:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each inital state  */
1.264     brouard  10424:        strcpy(gplotlabel,"(");
1.238     brouard  10425:        fprintf(ficgp,"\n#\n#\n# Survival functions in state j and all livestates from state i by final state j: 'lij' files, cov=%d state=%d",k1, cpt);
1.337     brouard  10426:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10427:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10428:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10429:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   10430:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   10431:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   10432:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10433:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10434:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10435:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   10436:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10437:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10438:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10439:        /* } */
                   10440:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10441:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   10442:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.238     brouard  10443:        }       
1.264     brouard  10444:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.238     brouard  10445:        fprintf(ficgp,"\n#\n");
                   10446:        if(invalidvarcomb[k1]){
                   10447:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   10448:          continue;
                   10449:        }
1.227     brouard  10450:       
1.241     brouard  10451:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"LIJT_"),cpt,k1,nres);
1.264     brouard  10452:        fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.238     brouard  10453:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability to be alive\" \n\
                   10454: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   10455:        k=3;
                   10456:        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
                   10457:          if(j==1)
                   10458:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   10459:          else
                   10460:            fprintf(ficgp,", '' ");
                   10461:          l=(nlstate+ndeath)*(cpt-1) +j;
                   10462:          fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):($%d",k1,k+l);
                   10463:          /* for (i=2; i<= nlstate+ndeath ; i ++) */
                   10464:          /*   fprintf(ficgp,"+$%d",k+l+i-1); */
                   10465:          fprintf(ficgp,") t \"l(%d,%d)\" w l",cpt,j);
                   10466:        } /* nlstate */
                   10467:        fprintf(ficgp,", '' ");
                   10468:        fprintf(ficgp," u (($1==%d && (floor($2)%%5 == 0)) ? ($3):1/0):(",k1);
                   10469:        for (j=1; j<= nlstate ; j ++){ /* Lived in state j */
                   10470:          l=(nlstate+ndeath)*(cpt-1) +j;
                   10471:          if(j < nlstate)
                   10472:            fprintf(ficgp,"$%d +",k+l);
                   10473:          else
                   10474:            fprintf(ficgp,"$%d) t\"l(%d,.)\" w l",k+l,cpt);
                   10475:        }
1.264     brouard  10476:        fprintf(ficgp,"\nset out; unset label;\n");
1.238     brouard  10477:       } /* end cpt state*/ 
1.337     brouard  10478:     /* } /\* end covariate *\/   */
1.238     brouard  10479:   } /* end nres */
1.227     brouard  10480:   
1.220     brouard  10481: /* 6eme */
1.202     brouard  10482:   /* CV preval stable (period) for each covariate */
1.337     brouard  10483:   /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.237     brouard  10484:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10485:      k1=TKresult[nres];
1.338     brouard  10486:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  10487:      /* if(m != 1 && TKresult[nres]!= k1) */
                   10488:      /*  continue; */
1.255     brouard  10489:     for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state of arrival */
1.264     brouard  10490:       strcpy(gplotlabel,"(");      
1.288     brouard  10491:       fprintf(ficgp,"\n#\n#\n#CV preval stable (forward): 'pij' files, covariatecombination#=%d state=%d",k1, cpt);
1.337     brouard  10492:       for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10493:        fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10494:        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10495:       /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   10496:       /*       /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   10497:       /*       lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   10498:       /*       /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10499:       /*       /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10500:       /*       /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10501:       /*       /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   10502:       /*       vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10503:       /*       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10504:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10505:       /* } */
                   10506:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10507:       /*       fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   10508:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.237     brouard  10509:       }        
1.264     brouard  10510:       strcpy(gplotlabel+strlen(gplotlabel),")");
1.211     brouard  10511:       fprintf(ficgp,"\n#\n");
1.223     brouard  10512:       if(invalidvarcomb[k1]){
1.227     brouard  10513:        fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   10514:        continue;
1.223     brouard  10515:       }
1.227     brouard  10516:       
1.241     brouard  10517:       fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"P_"),cpt,k1,nres);
1.264     brouard  10518:       fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.126     brouard  10519:       fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.238     brouard  10520: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.211     brouard  10521:       k=3; /* Offset */
1.255     brouard  10522:       for (i=1; i<= nlstate ; i ++){ /* State of origin */
1.227     brouard  10523:        if(i==1)
                   10524:          fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJ_"));
                   10525:        else
                   10526:          fprintf(ficgp,", '' ");
1.255     brouard  10527:        l=(nlstate+ndeath)*(i-1)+1; /* 1, 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
1.227     brouard  10528:        fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l);
                   10529:        for (j=2; j<= nlstate ; j ++)
                   10530:          fprintf(ficgp,"+$%d",k+l+j-1);
                   10531:        fprintf(ficgp,")) t \"prev(%d,%d)\" w l",i,cpt);
1.153     brouard  10532:       } /* nlstate */
1.264     brouard  10533:       fprintf(ficgp,"\nset out; unset label;\n");
1.153     brouard  10534:     } /* end cpt state*/ 
                   10535:   } /* end covariate */  
1.227     brouard  10536:   
                   10537:   
1.220     brouard  10538: /* 7eme */
1.296     brouard  10539:   if(prevbcast == 1){
1.288     brouard  10540:     /* CV backward prevalence  for each covariate */
1.337     brouard  10541:     /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.237     brouard  10542:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10543:       k1=TKresult[nres];
1.338     brouard  10544:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  10545:       /* if(m != 1 && TKresult[nres]!= k1) */
                   10546:       /*       continue; */
1.268     brouard  10547:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life origin state */
1.264     brouard  10548:        strcpy(gplotlabel,"(");      
1.288     brouard  10549:        fprintf(ficgp,"\n#\n#\n#CV Backward stable prevalence: 'pijb' files, covariatecombination#=%d state=%d",k1, cpt);
1.337     brouard  10550:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10551:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10552:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10553:        /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate and each value *\/ */
                   10554:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate number corresponding to k1 combination *\\/ *\/ */
                   10555:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   10556:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10557:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10558:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10559:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   10560:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10561:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10562:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10563:        /* } */
                   10564:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10565:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   10566:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.237     brouard  10567:        }       
1.264     brouard  10568:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.227     brouard  10569:        fprintf(ficgp,"\n#\n");
                   10570:        if(invalidvarcomb[k1]){
                   10571:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   10572:          continue;
                   10573:        }
                   10574:        
1.241     brouard  10575:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PB_"),cpt,k1,nres);
1.268     brouard  10576:        fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.227     brouard  10577:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Probability\" \n\
1.238     brouard  10578: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.227     brouard  10579:        k=3; /* Offset */
1.268     brouard  10580:        for (i=1; i<= nlstate ; i ++){ /* State of arrival */
1.227     brouard  10581:          if(i==1)
                   10582:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"PIJB_"));
                   10583:          else
                   10584:            fprintf(ficgp,", '' ");
                   10585:          /* l=(nlstate+ndeath)*(i-1)+1; */
1.255     brouard  10586:          l=(nlstate+ndeath)*(cpt-1)+1; /* fixed for i; cpt=1 1, cpt=2 1+ nlstate+ndeath, 1+2*(nlstate+ndeath) */
1.324     brouard  10587:          /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l); /\* a vérifier *\/ */
                   10588:          /* fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d/($%d",k1,k+l+(cpt-1),k+l+(cpt-1)+i-1); /\* a vérifier *\/ */
1.255     brouard  10589:          fprintf(ficgp," u ($1==%d ? ($3):1/0):($%d",k1,k+l+i-1); /* To be verified */
1.227     brouard  10590:          /* for (j=2; j<= nlstate ; j ++) */
                   10591:          /*    fprintf(ficgp,"+$%d",k+l+j-1); */
                   10592:          /*    /\* fprintf(ficgp,"+$%d",k+l+j-1); *\/ */
1.268     brouard  10593:          fprintf(ficgp,") t \"bprev(%d,%d)\" w l",cpt,i);
1.227     brouard  10594:        } /* nlstate */
1.264     brouard  10595:        fprintf(ficgp,"\nset out; unset label;\n");
1.218     brouard  10596:       } /* end cpt state*/ 
                   10597:     } /* end covariate */  
1.296     brouard  10598:   } /* End if prevbcast */
1.218     brouard  10599:   
1.223     brouard  10600:   /* 8eme */
1.218     brouard  10601:   if(prevfcast==1){
1.288     brouard  10602:     /* Projection from cross-sectional to forward stable (period) prevalence for each covariate */
1.218     brouard  10603:     
1.337     brouard  10604:     /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.237     brouard  10605:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10606:       k1=TKresult[nres];
1.338     brouard  10607:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  10608:       /* if(m != 1 && TKresult[nres]!= k1) */
                   10609:       /*       continue; */
1.211     brouard  10610:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
1.264     brouard  10611:        strcpy(gplotlabel,"(");      
1.288     brouard  10612:        fprintf(ficgp,"\n#\n#\n#Projection of prevalence to forward stable prevalence (period): 'PROJ_' files, covariatecombination#=%d state=%d",k1, cpt);
1.337     brouard  10613:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10614:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10615:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10616:        /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
                   10617:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
                   10618:        /*   lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   10619:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10620:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10621:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10622:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   10623:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10624:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10625:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10626:        /* } */
                   10627:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10628:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   10629:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.237     brouard  10630:        }       
1.264     brouard  10631:        strcpy(gplotlabel+strlen(gplotlabel),")");
1.227     brouard  10632:        fprintf(ficgp,"\n#\n");
                   10633:        if(invalidvarcomb[k1]){
                   10634:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   10635:          continue;
                   10636:        }
                   10637:        
                   10638:        fprintf(ficgp,"# hpijx=probability over h years, hp.jx is weighted by observed prev\n ");
1.241     brouard  10639:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJ_"),cpt,k1,nres);
1.264     brouard  10640:        fprintf(ficgp,"set label \"Alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
1.227     brouard  10641:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
1.238     brouard  10642: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
1.266     brouard  10643: 
                   10644:        /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
                   10645:        istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
                   10646:        /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
                   10647:        for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
1.227     brouard  10648:          /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   10649:          /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   10650:          /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   10651:          /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
1.266     brouard  10652:          if(i==istart){
1.227     brouard  10653:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"F_"));
                   10654:          }else{
                   10655:            fprintf(ficgp,",\\\n '' ");
                   10656:          }
                   10657:          if(cptcoveff ==0){ /* No covariate */
                   10658:            ioffset=2; /* Age is in 2 */
                   10659:            /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   10660:            /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   10661:            /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   10662:            /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   10663:            fprintf(ficgp," u %d:(", ioffset); 
1.266     brouard  10664:            if(i==nlstate+1){
1.270     brouard  10665:              fprintf(ficgp," $%d/(1.-$%d)):1 t 'pw.%d' with line lc variable ",        \
1.266     brouard  10666:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   10667:              fprintf(ficgp,",\\\n '' ");
                   10668:              fprintf(ficgp," u %d:(",ioffset); 
1.270     brouard  10669:              fprintf(ficgp," (($1-$2) == %d ) ? $%d/(1.-$%d) : 1/0):1 with labels center not ", \
1.266     brouard  10670:                     offyear,                           \
1.268     brouard  10671:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate );
1.266     brouard  10672:            }else
1.227     brouard  10673:              fprintf(ficgp," $%d/(1.-$%d)) t 'p%d%d' with line ",      \
                   10674:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                   10675:          }else{ /* more than 2 covariates */
1.270     brouard  10676:            ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
                   10677:            /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   10678:            /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
                   10679:            iyearc=ioffset-1;
                   10680:            iagec=ioffset;
1.227     brouard  10681:            fprintf(ficgp," u %d:(",ioffset); 
                   10682:            kl=0;
                   10683:            strcpy(gplotcondition,"(");
1.351     brouard  10684:            /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate writing the chain of conditions *\/ */
1.332     brouard  10685:              /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
1.351     brouard  10686:            for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10687:              /* lv=codtabm(k1,TnsdVar[Tvaraff[k]]); */
                   10688:              lv=Tvresult[nres][k];
                   10689:              vlv=TinvDoQresult[nres][Tvresult[nres][k]];
1.227     brouard  10690:              /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   10691:              /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   10692:              /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
1.332     brouard  10693:              /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
1.351     brouard  10694:              /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
1.227     brouard  10695:              kl++;
1.351     brouard  10696:              /* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */
                   10697:              sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,lv, kl+1, vlv );
1.227     brouard  10698:              kl++;
1.351     brouard  10699:              if(k <cptcovs && cptcovs>1)
1.227     brouard  10700:                sprintf(gplotcondition+strlen(gplotcondition)," && ");
                   10701:            }
                   10702:            strcpy(gplotcondition+strlen(gplotcondition),")");
                   10703:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   10704:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   10705:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   10706:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   10707:            if(i==nlstate+1){
1.270     brouard  10708:              fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0):%d t 'p.%d' with line lc variable", gplotcondition, \
                   10709:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,iyearc, cpt );
1.266     brouard  10710:              fprintf(ficgp,",\\\n '' ");
1.270     brouard  10711:              fprintf(ficgp," u %d:(",iagec); 
                   10712:              fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d/(1.-$%d) : 1/0):%d with labels center not ", gplotcondition, \
                   10713:                      iyearc, iagec, offyear,                           \
                   10714:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate, iyearc );
1.266     brouard  10715: /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
1.227     brouard  10716:            }else{
                   10717:              fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \
                   10718:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), ioffset +1+(i-1)+(nlstate+1)*nlstate,i,cpt );
                   10719:            }
                   10720:          } /* end if covariate */
                   10721:        } /* nlstate */
1.264     brouard  10722:        fprintf(ficgp,"\nset out; unset label;\n");
1.223     brouard  10723:       } /* end cpt state*/
                   10724:     } /* end covariate */
                   10725:   } /* End if prevfcast */
1.227     brouard  10726:   
1.296     brouard  10727:   if(prevbcast==1){
1.268     brouard  10728:     /* Back projection from cross-sectional to stable (mixed) for each covariate */
                   10729:     
1.337     brouard  10730:     /* for (k1=1; k1<= m ; k1 ++) /\* For each covariate combination if any *\/ */
1.268     brouard  10731:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10732:      k1=TKresult[nres];
1.338     brouard  10733:      if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  10734:        /* if(m != 1 && TKresult[nres]!= k1) */
                   10735:        /*      continue; */
1.268     brouard  10736:       for (cpt=1; cpt<=nlstate ; cpt ++) { /* For each life state */
                   10737:        strcpy(gplotlabel,"(");      
                   10738:        fprintf(ficgp,"\n#\n#\n#Back projection of prevalence to stable (mixed) back prevalence: 'BPROJ_' files, covariatecombination#=%d originstate=%d",k1, cpt);
1.337     brouard  10739:        for (k=1; k<=cptcovs; k++){    /* For each covariate k get corresponding value lv for combination k1 */
                   10740:          fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10741:          sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10742:        /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
                   10743:        /*   /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
                   10744:        /*   lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   10745:        /*   /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10746:        /*   /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10747:        /*   /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10748:        /*   /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   10749:        /*   vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10750:        /*   fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10751:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10752:        /* } */
                   10753:        /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10754:        /*   fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   10755:        /*   sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
1.268     brouard  10756:        }       
                   10757:        strcpy(gplotlabel+strlen(gplotlabel),")");
                   10758:        fprintf(ficgp,"\n#\n");
                   10759:        if(invalidvarcomb[k1]){
                   10760:          fprintf(ficgp,"#Combination (%d) ignored because no cases \n",k1); 
                   10761:          continue;
                   10762:        }
                   10763:        
                   10764:        fprintf(ficgp,"# hbijx=backprobability over h years, hb.jx is weighted by observed prev at destination state\n ");
                   10765:        fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" \n",subdirf2(optionfilefiname,"PROJB_"),cpt,k1,nres);
                   10766:        fprintf(ficgp,"set label \"Origin alive state %d %s\" at graph 0.98,0.5 center rotate font \"Helvetica,12\"\n",cpt,gplotlabel);
                   10767:        fprintf(ficgp,"set xlabel \"Age\" \nset ylabel \"Prevalence\" \n\
                   10768: set ter svg size 640, 480\nunset log y\nplot [%.f:%.f]  ", ageminpar, agemaxpar);
                   10769: 
                   10770:        /* for (i=1; i<= nlstate+1 ; i ++){  /\* nlstate +1 p11 p21 p.1 *\/ */
                   10771:        istart=nlstate+1; /* Could be one if by state, but nlstate+1 is w.i projection only */
                   10772:        /*istart=1;*/ /* Could be one if by state, but nlstate+1 is w.i projection only */
                   10773:        for (i=istart; i<= nlstate+1 ; i ++){  /* nlstate +1 p11 p21 p.1 */
                   10774:          /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   10775:          /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   10776:          /*# yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   10777:          /*#   1       2   3    4    5      6  7   8   9   10   11 12  13   14  15 */   
                   10778:          if(i==istart){
                   10779:            fprintf(ficgp,"\"%s\"",subdirf2(fileresu,"FB_"));
                   10780:          }else{
                   10781:            fprintf(ficgp,",\\\n '' ");
                   10782:          }
1.351     brouard  10783:          /* if(cptcoveff ==0){ /\* No covariate *\/ */
                   10784:          if(cptcovs ==0){ /* No covariate */
1.268     brouard  10785:            ioffset=2; /* Age is in 2 */
                   10786:            /*# yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   10787:            /*#   1       2   3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   10788:            /*# V1  = 1 yearproj age p11 p21 p31 p.1 p12 p22 p32 p.2 p13 p23 p33 p.3 p14 p24 p34 p.4*/
                   10789:            /*#  1    2        3   4   5  6    7  8   9   10  11  12  13  14  15  16  17  18 */
                   10790:            fprintf(ficgp," u %d:(", ioffset); 
                   10791:            if(i==nlstate+1){
1.270     brouard  10792:              fprintf(ficgp," $%d/(1.-$%d)):1 t 'bw%d' with line lc variable ", \
1.268     brouard  10793:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt );
                   10794:              fprintf(ficgp,",\\\n '' ");
                   10795:              fprintf(ficgp," u %d:(",ioffset); 
1.270     brouard  10796:              fprintf(ficgp," (($1-$2) == %d ) ? $%d : 1/0):1 with labels center not ", \
1.268     brouard  10797:                     offbyear,                          \
                   10798:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1) );
                   10799:            }else
                   10800:              fprintf(ficgp," $%d/(1.-$%d)) t 'b%d%d' with line ",      \
                   10801:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),  ioffset+1+(i-1)+(nlstate+1)*nlstate,cpt,i );
                   10802:          }else{ /* more than 2 covariates */
1.270     brouard  10803:            ioffset=2*cptcoveff+2; /* Age is in 4 or 6 or etc.*/
                   10804:            /*#  V1  = 1  V2 =  0 yearproj age p11 p21 p.1 p12 p22 p.2 p13 p23 p.3*/
                   10805:            /*#   1    2   3    4    5      6  7   8   9   10   11 12  13   14  15 */
                   10806:            iyearc=ioffset-1;
                   10807:            iagec=ioffset;
1.268     brouard  10808:            fprintf(ficgp," u %d:(",ioffset); 
                   10809:            kl=0;
                   10810:            strcpy(gplotcondition,"(");
1.337     brouard  10811:            for (k=1; k<=cptcovs; k++){    /* For each covariate k of the resultline, get corresponding value lv for combination k1 */
1.338     brouard  10812:              if(Dummy[modelresult[nres][k]]==0){  /* To be verified */
1.337     brouard  10813:                /* for (k=1; k<=cptcoveff; k++){    /\* For each covariate writing the chain of conditions *\/ */
                   10814:                /* lv= decodtabm(k1,k,cptcoveff); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   10815:                /* lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   10816:                lv=Tvresult[nres][k];
                   10817:                vlv=TinvDoQresult[nres][Tvresult[nres][k]];
                   10818:                /* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 */
                   10819:                /* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 */
                   10820:                /* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 */
                   10821:                /* vlv= nbcode[Tvaraff[k]][lv]; /\* Value of the modality of Tvaraff[k] *\/ */
                   10822:                /* vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10823:                kl++;
                   10824:                /* sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%d " ,kl,Tvaraff[k], kl+1, nbcode[Tvaraff[k]][lv]); */
                   10825:                sprintf(gplotcondition+strlen(gplotcondition),"$%d==%d && $%d==%lg " ,kl,Tvresult[nres][k], kl+1,TinvDoQresult[nres][Tvresult[nres][k]]);
                   10826:                kl++;
1.338     brouard  10827:                if(k <cptcovs && cptcovs>1)
1.337     brouard  10828:                  sprintf(gplotcondition+strlen(gplotcondition)," && ");
                   10829:              }
1.268     brouard  10830:            }
                   10831:            strcpy(gplotcondition+strlen(gplotcondition),")");
                   10832:            /* kl=6+(cpt-1)*(nlstate+1)+1+(i-1); /\* 6+(1-1)*(2+1)+1+(1-1)=7, 6+(2-1)(2+1)+1+(1-1)=10 *\/ */
                   10833:            /*6+(cpt-1)*(nlstate+1)+1+(i-1)+(nlstate+1)*nlstate; 6+(1-1)*(2+1)+1+(1-1) +(2+1)*2=13 */ 
                   10834:            /*6+1+(i-1)+(nlstate+1)*nlstate; 6+1+(1-1) +(2+1)*2=13 */ 
                   10835:            /* ''  u 6:(($1==1 && $2==0 && $3==2 && $4==0)? $9/(1.-$15) : 1/0):($5==2000? 3:2) t 'p.1' with line lc variable*/
                   10836:            if(i==nlstate+1){
1.270     brouard  10837:              fprintf(ficgp,"%s ? $%d : 1/0):%d t 'bw%d' with line lc variable", gplotcondition, \
                   10838:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1),iyearc,cpt );
1.268     brouard  10839:              fprintf(ficgp,",\\\n '' ");
1.270     brouard  10840:              fprintf(ficgp," u %d:(",iagec); 
1.268     brouard  10841:              /* fprintf(ficgp,"%s && (($5-$6) == %d ) ? $%d/(1.-$%d) : 1/0):5 with labels center not ", gplotcondition, \ */
1.270     brouard  10842:              fprintf(ficgp,"%s && (($%d-$%d) == %d ) ? $%d : 1/0):%d with labels center not ", gplotcondition, \
                   10843:                      iyearc,iagec,offbyear,                            \
                   10844:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), iyearc );
1.268     brouard  10845: /*  '' u 6:(($1==1 && $2==0  && $3==2 && $4==0) && (($5-$6) == 1947) ? $10/(1.-$22) : 1/0):5 with labels center boxed not*/
                   10846:            }else{
                   10847:              /* fprintf(ficgp,"%s ? $%d/(1.-$%d) : 1/0) t 'p%d%d' with line ", gplotcondition, \ */
                   10848:              fprintf(ficgp,"%s ? $%d : 1/0) t 'b%d%d' with line ", gplotcondition, \
                   10849:                      ioffset+(cpt-1)*(nlstate+1)+1+(i-1), cpt,i );
                   10850:            }
                   10851:          } /* end if covariate */
                   10852:        } /* nlstate */
                   10853:        fprintf(ficgp,"\nset out; unset label;\n");
                   10854:       } /* end cpt state*/
                   10855:     } /* end covariate */
1.296     brouard  10856:   } /* End if prevbcast */
1.268     brouard  10857:   
1.227     brouard  10858:   
1.238     brouard  10859:   /* 9eme writing MLE parameters */
                   10860:   fprintf(ficgp,"\n##############\n#9eme MLE estimated parameters\n#############\n");
1.126     brouard  10861:   for(i=1,jk=1; i <=nlstate; i++){
1.187     brouard  10862:     fprintf(ficgp,"# initial state %d\n",i);
1.126     brouard  10863:     for(k=1; k <=(nlstate+ndeath); k++){
                   10864:       if (k != i) {
1.227     brouard  10865:        fprintf(ficgp,"#   current state %d\n",k);
                   10866:        for(j=1; j <=ncovmodel; j++){
                   10867:          fprintf(ficgp,"p%d=%f; ",jk,p[jk]);
                   10868:          jk++; 
                   10869:        }
                   10870:        fprintf(ficgp,"\n");
1.126     brouard  10871:       }
                   10872:     }
1.223     brouard  10873:   }
1.187     brouard  10874:   fprintf(ficgp,"##############\n#\n");
1.227     brouard  10875:   
1.145     brouard  10876:   /*goto avoid;*/
1.238     brouard  10877:   /* 10eme Graphics of probabilities or incidences using written MLE parameters */
                   10878:   fprintf(ficgp,"\n##############\n#10eme Graphics of probabilities or incidences\n#############\n");
1.187     brouard  10879:   fprintf(ficgp,"# logi(p12/p11)=a12+b12*age+c12age*age+d12*V1+e12*V1*age\n");
                   10880:   fprintf(ficgp,"# logi(p12/p11)=p1 +p2*age +p3*age*age+ p4*V1+ p5*V1*age\n");
                   10881:   fprintf(ficgp,"# logi(p13/p11)=a13+b13*age+c13age*age+d13*V1+e13*V1*age\n");
                   10882:   fprintf(ficgp,"# logi(p13/p11)=p6 +p7*age +p8*age*age+ p9*V1+ p10*V1*age\n");
                   10883:   fprintf(ficgp,"# p12+p13+p14+p11=1=p11(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   10884:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
                   10885:   fprintf(ficgp,"# p11=1/(1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   10886:   fprintf(ficgp,"#                      +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age)+...)\n");
                   10887:   fprintf(ficgp,"# p12=exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)/\n");
                   10888:   fprintf(ficgp,"#     (1+exp(a12+b12*age+c12age*age+d12*V1+e12*V1*age)\n");
                   10889:   fprintf(ficgp,"#       +exp(a13+b13*age+c13age*age+d13*V1+e13*V1*age))\n");
                   10890:   fprintf(ficgp,"#       +exp(a14+b14*age+c14age*age+d14*V1+e14*V1*age)+...)\n");
                   10891:   fprintf(ficgp,"#\n");
1.223     brouard  10892:   for(ng=1; ng<=3;ng++){ /* Number of graphics: first is logit, 2nd is probabilities, third is incidences per year*/
1.238     brouard  10893:     fprintf(ficgp,"#Number of graphics: first is logit, 2nd is probabilities, third is incidences per year\n");
1.338     brouard  10894:     fprintf(ficgp,"#model=1+age+%s \n",model);
1.238     brouard  10895:     fprintf(ficgp,"# Type of graphic ng=%d\n",ng);
1.351     brouard  10896:     /* fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcoveff,m);/\* to be checked *\/ */
                   10897:     fprintf(ficgp,"#   k1=1 to 2^%d=%d\n",cptcovs,m);/* to be checked */
1.337     brouard  10898:     /* for(k1=1; k1 <=m; k1++)  /\* For each combination of covariate *\/ */
1.237     brouard  10899:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  10900:      /* k1=nres; */
1.338     brouard  10901:       k1=TKresult[nres];
                   10902:       if(TKresult[nres]==0) k1=1; /* To be checked for noresult */
1.337     brouard  10903:       fprintf(ficgp,"\n\n# Resultline k1=%d ",k1);
1.264     brouard  10904:       strcpy(gplotlabel,"(");
1.276     brouard  10905:       /*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*/
1.337     brouard  10906:       for (k=1; k<=cptcovs; k++){  /**< cptcovs number of SIMPLE covariates in the model V2+V1 =2 (dummy or quantit or time varying) */
                   10907:        /* for each resultline nres, and position k, Tvresult[nres][k] gives the name of the variable and
                   10908:           TinvDoQresult[nres][Tvresult[nres][k]] gives its value double or integer) */
                   10909:        fprintf(ficgp," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10910:        sprintf(gplotlabel+strlen(gplotlabel)," V%d=%lg ",Tvresult[nres][k],TinvDoQresult[nres][Tvresult[nres][k]]);
                   10911:       }
                   10912:       /* if(m != 1 && TKresult[nres]!= k1) */
                   10913:       /*       continue; */
                   10914:       /* fprintf(ficgp,"\n\n# Combination of dummy  k1=%d which is ",k1); */
                   10915:       /* strcpy(gplotlabel,"("); */
                   10916:       /* /\*sprintf(gplotlabel+strlen(gplotlabel)," Dummy combination %d ",k1);*\/ */
                   10917:       /* for (k=1; k<=cptcoveff; k++){    /\* For each correspondig covariate value  *\/ */
                   10918:       /*       /\* lv= decodtabm(k1,k,cptcoveff); /\\* Should be the covariate value corresponding to k1 combination and kth covariate *\\/ *\/ */
                   10919:       /*       lv= codtabm(k1,TnsdVar[Tvaraff[k]]); /\* Should be the covariate value corresponding to combination k1 and covariate k *\/ */
                   10920:       /*       /\* decodtabm(1,1,4) = 1 because h=1  k= (1) 1  1  1 *\/ */
                   10921:       /*       /\* decodtabm(1,2,4) = 1 because h=1  k=  1 (1) 1  1 *\/ */
                   10922:       /*       /\* decodtabm(13,3,4)= 2 because h=13 k=  1  1 (2) 2 *\/ */
                   10923:       /*       /\* vlv= nbcode[Tvaraff[k]][lv]; *\/ */
                   10924:       /*       vlv= nbcode[Tvaraff[k]][codtabm(k1,TnsdVar[Tvaraff[k]])]; */
                   10925:       /*       fprintf(ficgp," V%d=%d ",Tvaraff[k],vlv); */
                   10926:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%d ",Tvaraff[k],vlv); */
                   10927:       /* } */
                   10928:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   10929:       /*       fprintf(ficgp," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   10930:       /*       sprintf(gplotlabel+strlen(gplotlabel)," V%d=%f ",Tvqresult[nres][resultmodel[nres][k4]],Tqresult[nres][resultmodel[nres][k4]]); */
                   10931:       /* }      */
1.264     brouard  10932:       strcpy(gplotlabel+strlen(gplotlabel),")");
1.237     brouard  10933:       fprintf(ficgp,"\n#\n");
1.264     brouard  10934:       fprintf(ficgp,"\nset out \"%s_%d-%d-%d.svg\" ",subdirf2(optionfilefiname,"PE_"),k1,ng,nres);
1.276     brouard  10935:       fprintf(ficgp,"\nset key outside ");
                   10936:       /* fprintf(ficgp,"\nset label \"%s\" at graph 1.2,0.5 center rotate font \"Helvetica,12\"\n",gplotlabel); */
                   10937:       fprintf(ficgp,"\nset title \"%s\" font \"Helvetica,12\"\n",gplotlabel);
1.223     brouard  10938:       fprintf(ficgp,"\nset ter svg size 640, 480 ");
                   10939:       if (ng==1){
                   10940:        fprintf(ficgp,"\nset ylabel \"Value of the logit of the model\"\n"); /* exp(a12+b12*x) could be nice */
                   10941:        fprintf(ficgp,"\nunset log y");
                   10942:       }else if (ng==2){
                   10943:        fprintf(ficgp,"\nset ylabel \"Probability\"\n");
                   10944:        fprintf(ficgp,"\nset log y");
                   10945:       }else if (ng==3){
                   10946:        fprintf(ficgp,"\nset ylabel \"Quasi-incidence per year\"\n");
                   10947:        fprintf(ficgp,"\nset log y");
                   10948:       }else
                   10949:        fprintf(ficgp,"\nunset title ");
                   10950:       fprintf(ficgp,"\nplot  [%.f:%.f] ",ageminpar,agemaxpar);
                   10951:       i=1;
                   10952:       for(k2=1; k2<=nlstate; k2++) {
                   10953:        k3=i;
                   10954:        for(k=1; k<=(nlstate+ndeath); k++) {
                   10955:          if (k != k2){
                   10956:            switch( ng) {
                   10957:            case 1:
                   10958:              if(nagesqr==0)
                   10959:                fprintf(ficgp," p%d+p%d*x",i,i+1);
                   10960:              else /* nagesqr =1 */
                   10961:                fprintf(ficgp," p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                   10962:              break;
                   10963:            case 2: /* ng=2 */
                   10964:              if(nagesqr==0)
                   10965:                fprintf(ficgp," exp(p%d+p%d*x",i,i+1);
                   10966:              else /* nagesqr =1 */
                   10967:                fprintf(ficgp," exp(p%d+p%d*x+p%d*x*x",i,i+1,i+1+nagesqr);
                   10968:              break;
                   10969:            case 3:
                   10970:              if(nagesqr==0)
                   10971:                fprintf(ficgp," %f*exp(p%d+p%d*x",YEARM/stepm,i,i+1);
                   10972:              else /* nagesqr =1 */
                   10973:                fprintf(ficgp," %f*exp(p%d+p%d*x+p%d*x*x",YEARM/stepm,i,i+1,i+1+nagesqr);
                   10974:              break;
                   10975:            }
                   10976:            ij=1;/* To be checked else nbcode[0][0] wrong */
1.237     brouard  10977:            ijp=1; /* product no age */
                   10978:            /* for(j=3; j <=ncovmodel-nagesqr; j++) { */
                   10979:            for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
1.223     brouard  10980:              /* printf("Tage[%d]=%d, j=%d\n", ij, Tage[ij], j); */
1.329     brouard  10981:              switch(Typevar[j]){
                   10982:              case 1:
                   10983:                if(cptcovage >0){ /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                   10984:                  if(j==Tage[ij]) { /* Product by age  To be looked at!!*//* Bug valgrind */
                   10985:                    if(ij <=cptcovage) { /* V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1, 2 V5 and V1 */
                   10986:                      if(DummyV[j]==0){/* Bug valgrind */
                   10987:                        fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);;
                   10988:                      }else{ /* quantitative */
                   10989:                        fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                   10990:                        /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   10991:                      }
                   10992:                      ij++;
1.268     brouard  10993:                    }
1.237     brouard  10994:                  }
1.329     brouard  10995:                }
                   10996:                break;
                   10997:              case 2:
                   10998:                if(cptcovprod >0){
                   10999:                  if(j==Tprod[ijp]) { /* */ 
                   11000:                    /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   11001:                    if(ijp <=cptcovprod) { /* Product */
                   11002:                      if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                   11003:                        if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                   11004:                          /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                   11005:                          fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                   11006:                        }else{ /* Vn is dummy and Vm is quanti */
                   11007:                          /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                   11008:                          fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   11009:                        }
                   11010:                      }else{ /* Vn*Vm Vn is quanti */
                   11011:                        if(DummyV[Tvard[ijp][2]]==0){
                   11012:                          fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                   11013:                        }else{ /* Both quanti */
                   11014:                          fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   11015:                        }
1.268     brouard  11016:                      }
1.329     brouard  11017:                      ijp++;
1.237     brouard  11018:                    }
1.329     brouard  11019:                  } /* end Tprod */
                   11020:                }
                   11021:                break;
1.349     brouard  11022:              case 3:
                   11023:                if(cptcovdageprod >0){
                   11024:                  /* if(j==Tprod[ijp]) { */ /* not necessary */ 
                   11025:                    /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
1.350     brouard  11026:                    if(ijp <=cptcovprod) { /* Product Vn*Vm and age*VN*Vm*/
                   11027:                      if(DummyV[Tvardk[ijp][1]]==0){/* Vn is dummy */
                   11028:                        if(DummyV[Tvardk[ijp][2]]==0){/* Vn and Vm are dummy */
1.349     brouard  11029:                          /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                   11030:                          fprintf(ficgp,"+p%d*%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                   11031:                        }else{ /* Vn is dummy and Vm is quanti */
                   11032:                          /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
1.350     brouard  11033:                          fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  11034:                        }
1.350     brouard  11035:                      }else{ /* age* Vn*Vm Vn is quanti HERE */
1.349     brouard  11036:                        if(DummyV[Tvard[ijp][2]]==0){
1.350     brouard  11037:                          fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvardk[ijp][2]],Tqinvresult[nres][Tvardk[ijp][1]]);
1.349     brouard  11038:                        }else{ /* Both quanti */
1.350     brouard  11039:                          fprintf(ficgp,"+p%d*%f*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  11040:                        }
                   11041:                      }
                   11042:                      ijp++;
                   11043:                    }
                   11044:                    /* } */ /* end Tprod */
                   11045:                }
                   11046:                break;
1.329     brouard  11047:              case 0:
                   11048:                /* simple covariate */
1.264     brouard  11049:                /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
1.237     brouard  11050:                if(Dummy[j]==0){
                   11051:                  fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /*  */
                   11052:                }else{ /* quantitative */
                   11053:                  fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /* */
1.264     brouard  11054:                  /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
1.223     brouard  11055:                }
1.329     brouard  11056:               /* end simple */
                   11057:                break;
                   11058:              default:
                   11059:                break;
                   11060:              } /* end switch */
1.237     brouard  11061:            } /* end j */
1.329     brouard  11062:          }else{ /* k=k2 */
                   11063:            if(ng !=1 ){ /* For logit formula of log p11 is more difficult to get */
                   11064:              fprintf(ficgp," (1.");i=i-ncovmodel;
                   11065:            }else
                   11066:              i=i-ncovmodel;
1.223     brouard  11067:          }
1.227     brouard  11068:          
1.223     brouard  11069:          if(ng != 1){
                   11070:            fprintf(ficgp,")/(1");
1.227     brouard  11071:            
1.264     brouard  11072:            for(cpt=1; cpt <=nlstate; cpt++){ 
1.223     brouard  11073:              if(nagesqr==0)
1.264     brouard  11074:                fprintf(ficgp,"+exp(p%d+p%d*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1);
1.223     brouard  11075:              else /* nagesqr =1 */
1.264     brouard  11076:                fprintf(ficgp,"+exp(p%d+p%d*x+p%d*x*x",k3+(cpt-1)*ncovmodel,k3+(cpt-1)*ncovmodel+1,k3+(cpt-1)*ncovmodel+1+nagesqr);
1.217     brouard  11077:               
1.223     brouard  11078:              ij=1;
1.329     brouard  11079:              ijp=1;
                   11080:              /* for(j=3; j <=ncovmodel-nagesqr; j++){ */
                   11081:              for(j=1; j <=cptcovt; j++) { /* For each covariate of the simplified model */
                   11082:                switch(Typevar[j]){
                   11083:                case 1:
                   11084:                  if(cptcovage >0){ 
                   11085:                    if(j==Tage[ij]) { /* Bug valgrind */
                   11086:                      if(ij <=cptcovage) { /* Bug valgrind */
                   11087:                        if(DummyV[j]==0){/* Bug valgrind */
                   11088:                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]); */
                   11089:                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,nbcode[Tvar[j]][codtabm(k1,j)]); */
                   11090:                          fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]);
                   11091:                          /* fprintf(ficgp,"+p%d*%d*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]);; */
                   11092:                          /* fprintf(ficgp,"+p%d*%d*x",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   11093:                        }else{ /* quantitative */
                   11094:                          /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                   11095:                          fprintf(ficgp,"+p%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* Tqinvresult in decoderesult */
                   11096:                          /* fprintf(ficgp,"+p%d*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* Tqinvresult in decoderesult *\/ */
                   11097:                          /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   11098:                        }
                   11099:                        ij++;
                   11100:                      }
                   11101:                    }
                   11102:                  }
                   11103:                  break;
                   11104:                case 2:
                   11105:                  if(cptcovprod >0){
                   11106:                    if(j==Tprod[ijp]) { /* */ 
                   11107:                      /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   11108:                      if(ijp <=cptcovprod) { /* Product */
                   11109:                        if(DummyV[Tvard[ijp][1]]==0){/* Vn is dummy */
                   11110:                          if(DummyV[Tvard[ijp][2]]==0){/* Vn and Vm are dummy */
                   11111:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
                   11112:                            fprintf(ficgp,"+p%d*%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]);
                   11113:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */
                   11114:                          }else{ /* Vn is dummy and Vm is quanti */
                   11115:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
                   11116:                            fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   11117:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   11118:                          }
                   11119:                        }else{ /* Vn*Vm Vn is quanti */
                   11120:                          if(DummyV[Tvard[ijp][2]]==0){
                   11121:                            fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]);
                   11122:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */
                   11123:                          }else{ /* Both quanti */
                   11124:                            fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]);
                   11125:                            /* fprintf(ficgp,"+p%d*%f*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   11126:                          } 
                   11127:                        }
                   11128:                        ijp++;
                   11129:                      }
                   11130:                    } /* end Tprod */
                   11131:                  } /* end if */
                   11132:                  break;
1.349     brouard  11133:                case 3:
                   11134:                  if(cptcovdageprod >0){
                   11135:                    /* if(j==Tprod[ijp]) { /\* *\/  */
                   11136:                      /* printf("Tprod[%d]=%d, j=%d\n", ij, Tprod[ijp], j); */
                   11137:                      if(ijp <=cptcovprod) { /* Product */
1.350     brouard  11138:                        if(DummyV[Tvardk[ijp][1]]==0){/* Vn is dummy */
                   11139:                          if(DummyV[Tvardk[ijp][2]]==0){/* Vn and Vm are dummy */
1.349     brouard  11140:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],nbcode[Tvard[ijp][2]][codtabm(k1,j)]); */
1.350     brouard  11141:                            fprintf(ficgp,"+p%d*%d*%d*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][1]],Tinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  11142:                            /* fprintf(ficgp,"+p%d*%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tinvresult[nres][Tvard[ijp][2]]); */
                   11143:                          }else{ /* Vn is dummy and Vm is quanti */
                   11144:                            /* fprintf(ficgp,"+p%d*%d*%f",i+j+2+nagesqr-1,nbcode[Tvard[ijp][1]][codtabm(k1,j)],Tqinvresult[nres][Tvard[ijp][2]]); */
1.350     brouard  11145:                            fprintf(ficgp,"+p%d*%d*%f*x",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  11146:                            /* fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   11147:                          }
                   11148:                        }else{ /* Vn*Vm Vn is quanti */
1.350     brouard  11149:                          if(DummyV[Tvardk[ijp][2]]==0){
                   11150:                            fprintf(ficgp,"+p%d*%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvardk[ijp][2]],Tqinvresult[nres][Tvardk[ijp][1]]);
1.349     brouard  11151:                            /* fprintf(ficgp,"+p%d*%d*%f*x",i+j+2+nagesqr-1,Tinvresult[nres][Tvard[ijp][2]],Tqinvresult[nres][Tvard[ijp][1]]); */
                   11152:                          }else{ /* Both quanti */
1.350     brouard  11153:                            fprintf(ficgp,"+p%d*%f*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvardk[ijp][1]],Tqinvresult[nres][Tvardk[ijp][2]]);
1.349     brouard  11154:                            /* fprintf(ficgp,"+p%d*%f*%f*x",i+j+2+nagesqr-1,Tqinvresult[nres][Tvard[ijp][1]],Tqinvresult[nres][Tvard[ijp][2]]); */
                   11155:                          } 
                   11156:                        }
                   11157:                        ijp++;
                   11158:                      }
                   11159:                    /* } /\* end Tprod *\/ */
                   11160:                  } /* end if */
                   11161:                  break;
1.329     brouard  11162:                case 0: 
                   11163:                  /* simple covariate */
                   11164:                  /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,nbcode[Tvar[j]][codtabm(k1,j)]); /\* Valgrind bug nbcode *\/ */
                   11165:                  if(Dummy[j]==0){
                   11166:                    /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                   11167:                    fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tinvresult[nres][Tvar[j]]); /*  */
                   11168:                    /* fprintf(ficgp,"+p%d*%d",i+j+2+nagesqr-1,Tinvresult[nres][Tvar[j]]); /\*  *\/ */
                   11169:                  }else{ /* quantitative */
                   11170:                    fprintf(ficgp,"+p%d*%f",k3+(cpt-1)*ncovmodel+1+j+nagesqr,Tqinvresult[nres][Tvar[j]]); /* */
                   11171:                    /* fprintf(ficgp,"+p%d*%f",i+j+2+nagesqr-1,Tqinvresult[nres][Tvar[j]]); /\* *\/ */
                   11172:                    /* fprintf(ficgp,"+p%d*%d*x",i+j+nagesqr-1,nbcode[Tvar[j-2]][codtabm(k1,Tvar[j-2])]); */
                   11173:                  }
                   11174:                  /* end simple */
                   11175:                  /* fprintf(ficgp,"+p%d*%d",k3+(cpt-1)*ncovmodel+1+j-2+nagesqr,nbcode[Tvar[j-2]][codtabm(k1,j-2)]);/\* Valgrind bug nbcode *\/ */
                   11176:                  break;
                   11177:                default:
                   11178:                  break;
                   11179:                } /* end switch */
1.223     brouard  11180:              }
                   11181:              fprintf(ficgp,")");
                   11182:            }
                   11183:            fprintf(ficgp,")");
                   11184:            if(ng ==2)
1.276     brouard  11185:              fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"p%d%d\" ", nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
1.223     brouard  11186:            else /* ng= 3 */
1.276     brouard  11187:              fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"i%d%d\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
1.329     brouard  11188:           }else{ /* end ng <> 1 */
1.223     brouard  11189:            if( k !=k2) /* logit p11 is hard to draw */
1.276     brouard  11190:              fprintf(ficgp," w l lw 2 lt (%d*%d+%d)%%%d+1 dt %d t \"logit(p%d%d)\" ",  nlstate+ndeath, k2, k, nlstate+ndeath, k2, k2,k);
1.223     brouard  11191:          }
                   11192:          if ((k+k2)!= (nlstate*2+ndeath) && ng != 1)
                   11193:            fprintf(ficgp,",");
                   11194:          if (ng == 1 && k!=k2 && (k+k2)!= (nlstate*2+ndeath))
                   11195:            fprintf(ficgp,",");
                   11196:          i=i+ncovmodel;
                   11197:        } /* end k */
                   11198:       } /* end k2 */
1.276     brouard  11199:       /* fprintf(ficgp,"\n set out; unset label;set key default;\n"); */
                   11200:       fprintf(ficgp,"\n set out; unset title;set key default;\n");
1.337     brouard  11201:     } /* end resultline */
1.223     brouard  11202:   } /* end ng */
                   11203:   /* avoid: */
                   11204:   fflush(ficgp); 
1.126     brouard  11205: }  /* end gnuplot */
                   11206: 
                   11207: 
                   11208: /*************** Moving average **************/
1.219     brouard  11209: /* int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav, double bageout, double fageout){ */
1.222     brouard  11210:  int movingaverage(double ***probs, double bage, double fage, double ***mobaverage, int mobilav){
1.218     brouard  11211:    
1.222     brouard  11212:    int i, cpt, cptcod;
                   11213:    int modcovmax =1;
                   11214:    int mobilavrange, mob;
                   11215:    int iage=0;
1.288     brouard  11216:    int firstA1=0, firstA2=0;
1.222     brouard  11217: 
1.266     brouard  11218:    double sum=0., sumr=0.;
1.222     brouard  11219:    double age;
1.266     brouard  11220:    double *sumnewp, *sumnewm, *sumnewmr;
                   11221:    double *agemingood, *agemaxgood; 
                   11222:    double *agemingoodr, *agemaxgoodr; 
1.222     brouard  11223:   
                   11224:   
1.278     brouard  11225:    /* modcovmax=2*cptcoveff;  Max number of modalities. We suppose  */
                   11226:    /*             a covariate has 2 modalities, should be equal to ncovcombmax   */
1.222     brouard  11227: 
                   11228:    sumnewp = vector(1,ncovcombmax);
                   11229:    sumnewm = vector(1,ncovcombmax);
1.266     brouard  11230:    sumnewmr = vector(1,ncovcombmax);
1.222     brouard  11231:    agemingood = vector(1,ncovcombmax); 
1.266     brouard  11232:    agemingoodr = vector(1,ncovcombmax);        
1.222     brouard  11233:    agemaxgood = vector(1,ncovcombmax);
1.266     brouard  11234:    agemaxgoodr = vector(1,ncovcombmax);
1.222     brouard  11235: 
                   11236:    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
1.266     brouard  11237:      sumnewm[cptcod]=0.; sumnewmr[cptcod]=0.;
1.222     brouard  11238:      sumnewp[cptcod]=0.;
1.266     brouard  11239:      agemingood[cptcod]=0, agemingoodr[cptcod]=0;
                   11240:      agemaxgood[cptcod]=0, agemaxgoodr[cptcod]=0;
1.222     brouard  11241:    }
                   11242:    if (cptcovn<1) ncovcombmax=1; /* At least 1 pass */
                   11243:   
1.266     brouard  11244:    if(mobilav==-1 || mobilav==1||mobilav ==3 ||mobilav==5 ||mobilav== 7){
                   11245:      if(mobilav==1 || mobilav==-1) mobilavrange=5; /* default */
1.222     brouard  11246:      else mobilavrange=mobilav;
                   11247:      for (age=bage; age<=fage; age++)
                   11248:        for (i=1; i<=nlstate;i++)
                   11249:         for (cptcod=1;cptcod<=ncovcombmax;cptcod++)
                   11250:           mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   11251:      /* We keep the original values on the extreme ages bage, fage and for 
                   11252:        fage+1 and bage-1 we use a 3 terms moving average; for fage+2 bage+2
                   11253:        we use a 5 terms etc. until the borders are no more concerned. 
                   11254:      */ 
                   11255:      for (mob=3;mob <=mobilavrange;mob=mob+2){
                   11256:        for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){
1.266     brouard  11257:         for (cptcod=1;cptcod<=ncovcombmax;cptcod++){
                   11258:           sumnewm[cptcod]=0.;
                   11259:           for (i=1; i<=nlstate;i++){
1.222     brouard  11260:             mobaverage[(int)age][i][cptcod] =probs[(int)age][i][cptcod];
                   11261:             for (cpt=1;cpt<=(mob-1)/2;cpt++){
                   11262:               mobaverage[(int)age][i][cptcod] +=probs[(int)age-cpt][i][cptcod];
                   11263:               mobaverage[(int)age][i][cptcod] +=probs[(int)age+cpt][i][cptcod];
                   11264:             }
                   11265:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/mob;
1.266     brouard  11266:             sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   11267:           } /* end i */
                   11268:           if(sumnewm[cptcod] >1.e-3) mobaverage[(int)age][i][cptcod]=mobaverage[(int)age][i][cptcod]/sumnewm[cptcod]; /* Rescaling to sum one */
                   11269:         } /* end cptcod */
1.222     brouard  11270:        }/* end age */
                   11271:      }/* end mob */
1.266     brouard  11272:    }else{
                   11273:      printf("Error internal in movingaverage, mobilav=%d.\n",mobilav);
1.222     brouard  11274:      return -1;
1.266     brouard  11275:    }
                   11276: 
                   11277:    for (cptcod=1;cptcod<=ncovcombmax;cptcod++){ /* for each combination */
1.222     brouard  11278:      /* for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ */
                   11279:      if(invalidvarcomb[cptcod]){
                   11280:        printf("\nCombination (%d) ignored because no cases \n",cptcod); 
                   11281:        continue;
                   11282:      }
1.219     brouard  11283: 
1.266     brouard  11284:      for (age=fage-(mob-1)/2; age>=bage+(mob-1)/2; age--){ /*looking for the youngest and oldest good age */
                   11285:        sumnewm[cptcod]=0.;
                   11286:        sumnewmr[cptcod]=0.;
                   11287:        for (i=1; i<=nlstate;i++){
                   11288:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   11289:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   11290:        }
                   11291:        if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
                   11292:         agemingoodr[cptcod]=age;
                   11293:        }
                   11294:        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   11295:           agemingood[cptcod]=age;
                   11296:        }
                   11297:      } /* age */
                   11298:      for (age=bage+(mob-1)/2; age<=fage-(mob-1)/2; age++){ /*looking for the youngest and oldest good age */
1.222     brouard  11299:        sumnewm[cptcod]=0.;
1.266     brouard  11300:        sumnewmr[cptcod]=0.;
1.222     brouard  11301:        for (i=1; i<=nlstate;i++){
                   11302:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
1.266     brouard  11303:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   11304:        }
                   11305:        if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
                   11306:         agemaxgoodr[cptcod]=age;
1.222     brouard  11307:        }
                   11308:        if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
1.266     brouard  11309:         agemaxgood[cptcod]=age;
                   11310:        }
                   11311:      } /* age */
                   11312:      /* Thus we have agemingood and agemaxgood as well as goodr for raw (preobs) */
                   11313:      /* but they will change */
1.288     brouard  11314:      firstA1=0;firstA2=0;
1.266     brouard  11315:      for (age=fage-(mob-1)/2; age>=bage; age--){/* From oldest to youngest, filling up to the youngest */
                   11316:        sumnewm[cptcod]=0.;
                   11317:        sumnewmr[cptcod]=0.;
                   11318:        for (i=1; i<=nlstate;i++){
                   11319:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   11320:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   11321:        }
                   11322:        if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
                   11323:         if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good without smoothing */
                   11324:           agemaxgoodr[cptcod]=age;  /* age min */
                   11325:           for (i=1; i<=nlstate;i++)
                   11326:             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   11327:         }else{ /* bad we change the value with the values of good ages */
                   11328:           for (i=1; i<=nlstate;i++){
                   11329:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgoodr[cptcod]][i][cptcod];
                   11330:           } /* i */
                   11331:         } /* end bad */
                   11332:        }else{
                   11333:         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   11334:           agemaxgood[cptcod]=age;
                   11335:         }else{ /* bad we change the value with the values of good ages */
                   11336:           for (i=1; i<=nlstate;i++){
                   11337:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod];
                   11338:           } /* i */
                   11339:         } /* end bad */
                   11340:        }/* end else */
                   11341:        sum=0.;sumr=0.;
                   11342:        for (i=1; i<=nlstate;i++){
                   11343:         sum+=mobaverage[(int)age][i][cptcod];
                   11344:         sumr+=probs[(int)age][i][cptcod];
                   11345:        }
                   11346:        if(fabs(sum - 1.) > 1.e-3) { /* bad */
1.288     brouard  11347:         if(!firstA1){
                   11348:           firstA1=1;
                   11349:           printf("Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
                   11350:         }
                   11351:         fprintf(ficlog,"Moving average A1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
1.266     brouard  11352:        } /* end bad */
                   11353:        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
                   11354:        if(fabs(sumr - 1.) > 1.e-3) { /* bad */
1.288     brouard  11355:         if(!firstA2){
                   11356:           firstA2=1;
                   11357:           printf("Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d. Others in log file...\n",cptcod,sumr, (int)age, (int)bage);
                   11358:         }
                   11359:         fprintf(ficlog,"Moving average A2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase bage=%d\n",cptcod,sumr, (int)age, (int)bage);
1.222     brouard  11360:        } /* end bad */
                   11361:      }/* age */
1.266     brouard  11362: 
                   11363:      for (age=bage+(mob-1)/2; age<=fage; age++){/* From youngest, finding the oldest wrong */
1.222     brouard  11364:        sumnewm[cptcod]=0.;
1.266     brouard  11365:        sumnewmr[cptcod]=0.;
1.222     brouard  11366:        for (i=1; i<=nlstate;i++){
                   11367:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
1.266     brouard  11368:         sumnewmr[cptcod]+=probs[(int)age][i][cptcod];
                   11369:        } 
                   11370:        if(mobilav==-1){ /* Forcing raw ages if good else agemingood */
                   11371:         if(fabs(sumnewmr[cptcod] - 1.) <= 1.e-3) { /* good */
                   11372:           agemingoodr[cptcod]=age;
                   11373:           for (i=1; i<=nlstate;i++)
                   11374:             mobaverage[(int)age][i][cptcod]=probs[(int)age][i][cptcod];
                   11375:         }else{ /* bad we change the value with the values of good ages */
                   11376:           for (i=1; i<=nlstate;i++){
                   11377:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingoodr[cptcod]][i][cptcod];
                   11378:           } /* i */
                   11379:         } /* end bad */
                   11380:        }else{
                   11381:         if(fabs(sumnewm[cptcod] - 1.) <= 1.e-3) { /* good */
                   11382:           agemingood[cptcod]=age;
                   11383:         }else{ /* bad */
                   11384:           for (i=1; i<=nlstate;i++){
                   11385:             mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod];
                   11386:           } /* i */
                   11387:         } /* end bad */
                   11388:        }/* end else */
                   11389:        sum=0.;sumr=0.;
                   11390:        for (i=1; i<=nlstate;i++){
                   11391:         sum+=mobaverage[(int)age][i][cptcod];
                   11392:         sumr+=mobaverage[(int)age][i][cptcod];
1.222     brouard  11393:        }
1.266     brouard  11394:        if(fabs(sum - 1.) > 1.e-3) { /* bad */
1.268     brouard  11395:         printf("Moving average B1: For this combination of covariate cptcod=%d, we can't get a smoothed prevalence which sums to one (%f) at any descending age! age=%d, could you decrease fage=%d?\n",cptcod, sum, (int) age, (int)fage);
1.266     brouard  11396:        } /* end bad */
                   11397:        /* else{ /\* We found some ages summing to one, we will smooth the oldest *\/ */
                   11398:        if(fabs(sumr - 1.) > 1.e-3) { /* bad */
1.268     brouard  11399:         printf("Moving average B2: For this combination of covariate cptcod=%d, the raw prevalence doesn't sums to one (%f) even with smoothed values at young ages! age=%d, could you increase fage=%d\n",cptcod,sumr, (int)age, (int)fage);
1.222     brouard  11400:        } /* end bad */
                   11401:      }/* age */
1.266     brouard  11402: 
1.222     brouard  11403:                
                   11404:      for (age=bage; age<=fage; age++){
1.235     brouard  11405:        /* printf("%d %d ", cptcod, (int)age); */
1.222     brouard  11406:        sumnewp[cptcod]=0.;
                   11407:        sumnewm[cptcod]=0.;
                   11408:        for (i=1; i<=nlstate;i++){
                   11409:         sumnewp[cptcod]+=probs[(int)age][i][cptcod];
                   11410:         sumnewm[cptcod]+=mobaverage[(int)age][i][cptcod];
                   11411:         /* printf("%.4f %.4f ",probs[(int)age][i][cptcod], mobaverage[(int)age][i][cptcod]); */
                   11412:        }
                   11413:        /* printf("%.4f %.4f \n",sumnewp[cptcod], sumnewm[cptcod]); */
                   11414:      }
                   11415:      /* printf("\n"); */
                   11416:      /* } */
1.266     brouard  11417: 
1.222     brouard  11418:      /* brutal averaging */
1.266     brouard  11419:      /* for (i=1; i<=nlstate;i++){ */
                   11420:      /*   for (age=1; age<=bage; age++){ */
                   11421:      /*         mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemingood[cptcod]][i][cptcod]; */
                   11422:      /*         /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
                   11423:      /*   }     */
                   11424:      /*   for (age=fage; age<=AGESUP; age++){ */
                   11425:      /*         mobaverage[(int)age][i][cptcod]=mobaverage[(int)agemaxgood[cptcod]][i][cptcod]; */
                   11426:      /*         /\* printf("age=%d i=%d cptcod=%d mobaverage=%.4f \n",(int)age,i, cptcod, mobaverage[(int)age][i][cptcod]); *\/ */
                   11427:      /*   } */
                   11428:      /* } /\* end i status *\/ */
                   11429:      /* for (i=nlstate+1; i<=nlstate+ndeath;i++){ */
                   11430:      /*   for (age=1; age<=AGESUP; age++){ */
                   11431:      /*         /\*printf("i=%d, age=%d, cptcod=%d\n",i, (int)age, cptcod);*\/ */
                   11432:      /*         mobaverage[(int)age][i][cptcod]=0.; */
                   11433:      /*   } */
                   11434:      /* } */
1.222     brouard  11435:    }/* end cptcod */
1.266     brouard  11436:    free_vector(agemaxgoodr,1, ncovcombmax);
                   11437:    free_vector(agemaxgood,1, ncovcombmax);
                   11438:    free_vector(agemingood,1, ncovcombmax);
                   11439:    free_vector(agemingoodr,1, ncovcombmax);
                   11440:    free_vector(sumnewmr,1, ncovcombmax);
1.222     brouard  11441:    free_vector(sumnewm,1, ncovcombmax);
                   11442:    free_vector(sumnewp,1, ncovcombmax);
                   11443:    return 0;
                   11444:  }/* End movingaverage */
1.218     brouard  11445:  
1.126     brouard  11446: 
1.296     brouard  11447:  
1.126     brouard  11448: /************** Forecasting ******************/
1.296     brouard  11449: /* void prevforecast(char fileres[], double dateintmean, double anprojd, double mprojd, double jprojd, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double anprojf, double p[], int cptcoveff)*/
                   11450: void prevforecast(char fileres[], double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double ***prev, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
                   11451:   /* dateintemean, mean date of interviews
                   11452:      dateprojd, year, month, day of starting projection 
                   11453:      dateprojf date of end of projection;year of end of projection (same day and month as proj1).
1.126     brouard  11454:      agemin, agemax range of age
                   11455:      dateprev1 dateprev2 range of dates during which prevalence is computed
                   11456:   */
1.296     brouard  11457:   /* double anprojd, mprojd, jprojd; */
                   11458:   /* double anprojf, mprojf, jprojf; */
1.359   ! brouard  11459:   int yearp, stepsize, hstepm, nhstepm, j, k, i, h,  nres=0;
1.126     brouard  11460:   double agec; /* generic age */
1.359   ! brouard  11461:   double agelim, ppij;
        !          11462:   /*double *popcount;*/
1.126     brouard  11463:   double ***p3mat;
1.218     brouard  11464:   /* double ***mobaverage; */
1.126     brouard  11465:   char fileresf[FILENAMELENGTH];
                   11466: 
                   11467:   agelim=AGESUP;
1.211     brouard  11468:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   11469:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   11470:      We still use firstpass and lastpass as another selection.
                   11471:   */
1.214     brouard  11472:   /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
                   11473:   /*         firstpass, lastpass,  stepm,  weightopt, model); */
1.126     brouard  11474:  
1.201     brouard  11475:   strcpy(fileresf,"F_"); 
                   11476:   strcat(fileresf,fileresu);
1.126     brouard  11477:   if((ficresf=fopen(fileresf,"w"))==NULL) {
                   11478:     printf("Problem with forecast resultfile: %s\n", fileresf);
                   11479:     fprintf(ficlog,"Problem with forecast resultfile: %s\n", fileresf);
                   11480:   }
1.235     brouard  11481:   printf("\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
                   11482:   fprintf(ficlog,"\nComputing forecasting: result on file '%s', please wait... \n", fileresf);
1.126     brouard  11483: 
1.225     brouard  11484:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
1.126     brouard  11485: 
                   11486: 
                   11487:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   11488:   if (stepm<=12) stepsize=1;
                   11489:   if(estepm < stepm){
                   11490:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   11491:   }
1.270     brouard  11492:   else{
                   11493:     hstepm=estepm;   
                   11494:   }
                   11495:   if(estepm > stepm){ /* Yes every two year */
                   11496:     stepsize=2;
                   11497:   }
1.296     brouard  11498:   hstepm=hstepm/stepm;
1.126     brouard  11499: 
1.296     brouard  11500:   
                   11501:   /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                   11502:   /*                              fractional in yp1 *\/ */
                   11503:   /* aintmean=yp; */
                   11504:   /* yp2=modf((yp1*12),&yp); */
                   11505:   /* mintmean=yp; */
                   11506:   /* yp1=modf((yp2*30.5),&yp); */
                   11507:   /* jintmean=yp; */
                   11508:   /* if(jintmean==0) jintmean=1; */
                   11509:   /* if(mintmean==0) mintmean=1; */
1.126     brouard  11510: 
1.296     brouard  11511: 
                   11512:   /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */
                   11513:   /* date2dmy(dateprojd,&jprojd, &mprojd, &anprojd); */
                   11514:   /* date2dmy(dateprojf,&jprojf, &mprojf, &anprojf); */
1.351     brouard  11515:   /* i1=pow(2,cptcoveff); */
                   11516:   /* if (cptcovn < 1){i1=1;} */
1.126     brouard  11517:   
1.296     brouard  11518:   fprintf(ficresf,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2); 
1.126     brouard  11519:   
                   11520:   fprintf(ficresf,"#****** Routine prevforecast **\n");
1.227     brouard  11521:   
1.126     brouard  11522: /*           if (h==(int)(YEARM*yearp)){ */
1.351     brouard  11523:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   11524:     k=TKresult[nres];
                   11525:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
                   11526:     /*  for(k=1; k<=i1;k++){ /\* We want to find the combination k corresponding to the values of the dummies given in this resut line (to be cleaned one day) *\/ */
                   11527:     /* if(i1 != 1 && TKresult[nres]!= k) */
                   11528:     /*   continue; */
                   11529:     /* if(invalidvarcomb[k]){ */
                   11530:     /*   printf("\nCombination (%d) projection ignored because no cases \n",k);  */
                   11531:     /*   continue; */
                   11532:     /* } */
1.227     brouard  11533:     fprintf(ficresf,"\n#****** hpijx=probability over h years, hp.jx is weighted by observed prev \n#");
1.351     brouard  11534:     for(j=1;j<=cptcovs;j++){
                   11535:       /* for(j=1;j<=cptcoveff;j++) { */
                   11536:     /*   /\* fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); *\/ */
                   11537:     /*   fprintf(ficresf," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11538:     /* } */
                   11539:     /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   11540:     /*   fprintf(ficresf," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   11541:     /* } */
                   11542:       fprintf(ficresf," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.235     brouard  11543:     }
1.351     brouard  11544:  
1.227     brouard  11545:     fprintf(ficresf," yearproj age");
                   11546:     for(j=1; j<=nlstate+ndeath;j++){ 
                   11547:       for(i=1; i<=nlstate;i++)               
                   11548:        fprintf(ficresf," p%d%d",i,j);
                   11549:       fprintf(ficresf," wp.%d",j);
                   11550:     }
1.296     brouard  11551:     for (yearp=0; yearp<=(anprojf-anprojd);yearp +=stepsize) {
1.227     brouard  11552:       fprintf(ficresf,"\n");
1.296     brouard  11553:       fprintf(ficresf,"\n# Forecasting at date %.lf/%.lf/%.lf ",jprojd,mprojd,anprojd+yearp);   
1.270     brouard  11554:       /* for (agec=fage; agec>=(ageminpar-1); agec--){  */
                   11555:       for (agec=fage; agec>=(bage); agec--){ 
1.227     brouard  11556:        nhstepm=(int) rint((agelim-agec)*YEARM/stepm); 
                   11557:        nhstepm = nhstepm/hstepm; 
                   11558:        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   11559:        oldm=oldms;savm=savms;
1.268     brouard  11560:        /* We compute pii at age agec over nhstepm);*/
1.235     brouard  11561:        hpxij(p3mat,nhstepm,agec,hstepm,p,nlstate,stepm,oldm,savm, k,nres);
1.268     brouard  11562:        /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
1.227     brouard  11563:        for (h=0; h<=nhstepm; h++){
                   11564:          if (h*hstepm/YEARM*stepm ==yearp) {
1.268     brouard  11565:            break;
                   11566:          }
                   11567:        }
                   11568:        fprintf(ficresf,"\n");
1.351     brouard  11569:        /* for(j=1;j<=cptcoveff;j++)  */
                   11570:        for(j=1;j<=cptcovs;j++) 
                   11571:          fprintf(ficresf,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.332     brouard  11572:          /* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Tvaraff not correct *\/ */
1.351     brouard  11573:          /* fprintf(ficresf,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* TnsdVar[Tvaraff]  correct *\/ */
1.296     brouard  11574:        fprintf(ficresf,"%.f %.f ",anprojd+yearp,agec+h*hstepm/YEARM*stepm);
1.268     brouard  11575:        
                   11576:        for(j=1; j<=nlstate+ndeath;j++) {
                   11577:          ppij=0.;
                   11578:          for(i=1; i<=nlstate;i++) {
1.278     brouard  11579:            if (mobilav>=1)
                   11580:             ppij=ppij+p3mat[i][j][h]*prev[(int)agec][i][k];
                   11581:            else { /* even if mobilav==-1 we use mobaverage, probs may not sums to 1 */
                   11582:                ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k];
                   11583:            }
1.268     brouard  11584:            fprintf(ficresf," %.3f", p3mat[i][j][h]);
                   11585:          } /* end i */
                   11586:          fprintf(ficresf," %.3f", ppij);
                   11587:        }/* end j */
1.227     brouard  11588:        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   11589:       } /* end agec */
1.266     brouard  11590:       /* diffyear=(int) anproj1+yearp-ageminpar-1; */
                   11591:       /*printf("Prevforecast %d+%d-%d=diffyear=%d\n",(int) anproj1, (int)yearp,(int)ageminpar,(int) anproj1-(int)ageminpar);*/
1.227     brouard  11592:     } /* end yearp */
                   11593:   } /* end  k */
1.219     brouard  11594:        
1.126     brouard  11595:   fclose(ficresf);
1.215     brouard  11596:   printf("End of Computing forecasting \n");
                   11597:   fprintf(ficlog,"End of Computing forecasting\n");
                   11598: 
1.126     brouard  11599: }
                   11600: 
1.269     brouard  11601: /************** Back Forecasting ******************/
1.296     brouard  11602:  /* void prevbackforecast(char fileres[], double ***prevacurrent, double anback1, double mback1, double jback1, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double anback2, double p[], int cptcoveff){ */
                   11603:  void prevbackforecast(char fileres[], double ***prevacurrent, double dateintmean, double dateprojd, double dateprojf, double ageminpar, double agemax, double dateprev1, double dateprev2, int mobilav, double bage, double fage, int firstpass, int lastpass, double p[], int cptcoveff){
                   11604:   /* back1, year, month, day of starting backprojection
1.267     brouard  11605:      agemin, agemax range of age
                   11606:      dateprev1 dateprev2 range of dates during which prevalence is computed
1.269     brouard  11607:      anback2 year of end of backprojection (same day and month as back1).
                   11608:      prevacurrent and prev are prevalences.
1.267     brouard  11609:   */
1.359   ! brouard  11610:   int yearp, stepsize, hstepm, nhstepm, j, k,  i, h, nres=0;
1.267     brouard  11611:   double agec; /* generic age */
1.359   ! brouard  11612:   double agelim, ppij, ppi; /* ,jintmean,mintmean,aintmean;*/
        !          11613:   /*double *popcount;*/
1.267     brouard  11614:   double ***p3mat;
                   11615:   /* double ***mobaverage; */
                   11616:   char fileresfb[FILENAMELENGTH];
                   11617:  
1.268     brouard  11618:   agelim=AGEINF;
1.267     brouard  11619:   /* Compute observed prevalence between dateprev1 and dateprev2 by counting the number of people
                   11620:      in each health status at the date of interview (if between dateprev1 and dateprev2).
                   11621:      We still use firstpass and lastpass as another selection.
                   11622:   */
                   11623:   /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint,strstart,\ */
                   11624:   /*         firstpass, lastpass,  stepm,  weightopt, model); */
                   11625: 
                   11626:   /*Do we need to compute prevalence again?*/
                   11627: 
                   11628:   /* prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
                   11629:   
                   11630:   strcpy(fileresfb,"FB_");
                   11631:   strcat(fileresfb,fileresu);
                   11632:   if((ficresfb=fopen(fileresfb,"w"))==NULL) {
                   11633:     printf("Problem with back forecast resultfile: %s\n", fileresfb);
                   11634:     fprintf(ficlog,"Problem with back forecast resultfile: %s\n", fileresfb);
                   11635:   }
                   11636:   printf("\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
                   11637:   fprintf(ficlog,"\nComputing back forecasting: result on file '%s', please wait... \n", fileresfb);
                   11638:   
                   11639:   if (cptcoveff==0) ncodemax[cptcoveff]=1;
                   11640:   
                   11641:    
                   11642:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   11643:   if (stepm<=12) stepsize=1;
                   11644:   if(estepm < stepm){
                   11645:     printf ("Problem %d lower than %d\n",estepm, stepm);
                   11646:   }
1.270     brouard  11647:   else{
                   11648:     hstepm=estepm;   
                   11649:   }
                   11650:   if(estepm >= stepm){ /* Yes every two year */
                   11651:     stepsize=2;
                   11652:   }
1.267     brouard  11653:   
                   11654:   hstepm=hstepm/stepm;
1.296     brouard  11655:   /* yp1=modf(dateintmean,&yp);/\* extracts integral of datemean in yp  and */
                   11656:   /*                              fractional in yp1 *\/ */
                   11657:   /* aintmean=yp; */
                   11658:   /* yp2=modf((yp1*12),&yp); */
                   11659:   /* mintmean=yp; */
                   11660:   /* yp1=modf((yp2*30.5),&yp); */
                   11661:   /* jintmean=yp; */
                   11662:   /* if(jintmean==0) jintmean=1; */
                   11663:   /* if(mintmean==0) jintmean=1; */
1.267     brouard  11664:   
1.351     brouard  11665:   /* i1=pow(2,cptcoveff); */
                   11666:   /* if (cptcovn < 1){i1=1;} */
1.267     brouard  11667:   
1.296     brouard  11668:   fprintf(ficresfb,"# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
                   11669:   printf("# Mean day of interviews %.lf/%.lf/%.lf (%.2f) between %.2f and %.2f \n",jintmean,mintmean,aintmean,dateintmean,dateprev1,dateprev2);
1.267     brouard  11670:   
                   11671:   fprintf(ficresfb,"#****** Routine prevbackforecast **\n");
                   11672:   
1.351     brouard  11673:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   11674:     k=TKresult[nres];
                   11675:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
                   11676:   /* for(k=1; k<=i1;k++){ */
                   11677:   /*   if(i1 != 1 && TKresult[nres]!= k) */
                   11678:   /*     continue; */
                   11679:   /*   if(invalidvarcomb[k]){ */
                   11680:   /*     printf("\nCombination (%d) projection ignored because no cases \n",k);  */
                   11681:   /*     continue; */
                   11682:   /*   } */
1.268     brouard  11683:     fprintf(ficresfb,"\n#****** hbijx=probability over h years, hb.jx is weighted by observed prev \n#");
1.351     brouard  11684:     for(j=1;j<=cptcovs;j++){
                   11685:     /* for(j=1;j<=cptcoveff;j++) { */
                   11686:     /*   fprintf(ficresfb," V%d (=) %d",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11687:     /* } */
                   11688:       fprintf(ficresfb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.267     brouard  11689:     }
1.351     brouard  11690:    /*  fprintf(ficrespij,"******\n"); */
                   11691:    /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   11692:    /*    fprintf(ficresfb," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   11693:    /*  } */
1.267     brouard  11694:     fprintf(ficresfb," yearbproj age");
                   11695:     for(j=1; j<=nlstate+ndeath;j++){
                   11696:       for(i=1; i<=nlstate;i++)
1.268     brouard  11697:        fprintf(ficresfb," b%d%d",i,j);
                   11698:       fprintf(ficresfb," b.%d",j);
1.267     brouard  11699:     }
1.296     brouard  11700:     for (yearp=0; yearp>=(anbackf-anbackd);yearp -=stepsize) {
1.267     brouard  11701:       /* for (yearp=0; yearp<=(anproj2-anproj1);yearp +=stepsize) {  */
                   11702:       fprintf(ficresfb,"\n");
1.296     brouard  11703:       fprintf(ficresfb,"\n# Back Forecasting at date %.lf/%.lf/%.lf ",jbackd,mbackd,anbackd+yearp);
1.273     brouard  11704:       /* printf("\n# Back Forecasting at date %.lf/%.lf/%.lf ",jback1,mback1,anback1+yearp); */
1.270     brouard  11705:       /* for (agec=bage; agec<=agemax-1; agec++){  /\* testing *\/ */
                   11706:       for (agec=bage; agec<=fage; agec++){  /* testing */
1.268     brouard  11707:        /* We compute bij at age agec over nhstepm, nhstepm decreases when agec increases because of agemax;*/
1.271     brouard  11708:        nhstepm=(int) (agec-agelim) *YEARM/stepm;/*     nhstepm=(int) rint((agec-agelim)*YEARM/stepm);*/
1.267     brouard  11709:        nhstepm = nhstepm/hstepm;
                   11710:        p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   11711:        oldm=oldms;savm=savms;
1.268     brouard  11712:        /* computes hbxij at age agec over 1 to nhstepm */
1.271     brouard  11713:        /* printf("####prevbackforecast debug  agec=%.2f nhstepm=%d\n",agec, nhstepm);fflush(stdout); */
1.267     brouard  11714:        hbxij(p3mat,nhstepm,agec,hstepm,p,prevacurrent,nlstate,stepm, k, nres);
1.268     brouard  11715:        /* hpxij(p3mat,nhstepm,agec,hstepm,p,             nlstate,stepm,oldm,savm, k,nres); */
                   11716:        /* Then we print p3mat for h corresponding to the right agec+h*stepms=yearp */
                   11717:        /* printf(" agec=%.2f\n",agec);fflush(stdout); */
1.267     brouard  11718:        for (h=0; h<=nhstepm; h++){
1.268     brouard  11719:          if (h*hstepm/YEARM*stepm ==-yearp) {
                   11720:            break;
                   11721:          }
                   11722:        }
                   11723:        fprintf(ficresfb,"\n");
1.351     brouard  11724:        /* for(j=1;j<=cptcoveff;j++) */
                   11725:        for(j=1;j<=cptcovs;j++)
                   11726:          fprintf(ficresfb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   11727:          /* fprintf(ficresfb,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
1.296     brouard  11728:        fprintf(ficresfb,"%.f %.f ",anbackd+yearp,agec-h*hstepm/YEARM*stepm);
1.268     brouard  11729:        for(i=1; i<=nlstate+ndeath;i++) {
                   11730:          ppij=0.;ppi=0.;
                   11731:          for(j=1; j<=nlstate;j++) {
                   11732:            /* if (mobilav==1) */
1.269     brouard  11733:            ppij=ppij+p3mat[i][j][h]*prevacurrent[(int)agec][j][k];
                   11734:            ppi=ppi+prevacurrent[(int)agec][j][k];
                   11735:            /* ppij=ppij+p3mat[i][j][h]*mobaverage[(int)agec][j][k]; */
                   11736:            /* ppi=ppi+mobaverage[(int)agec][j][k]; */
1.267     brouard  11737:              /* else { */
                   11738:              /*        ppij=ppij+p3mat[i][j][h]*probs[(int)(agec)][i][k]; */
                   11739:              /* } */
1.268     brouard  11740:            fprintf(ficresfb," %.3f", p3mat[i][j][h]);
                   11741:          } /* end j */
                   11742:          if(ppi <0.99){
                   11743:            printf("Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
                   11744:            fprintf(ficlog,"Error in prevbackforecast, prevalence doesn't sum to 1 for state %d: %3f\n",i, ppi);
                   11745:          }
                   11746:          fprintf(ficresfb," %.3f", ppij);
                   11747:        }/* end j */
1.267     brouard  11748:        free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   11749:       } /* end agec */
                   11750:     } /* end yearp */
                   11751:   } /* end k */
1.217     brouard  11752:   
1.267     brouard  11753:   /* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
1.217     brouard  11754:   
1.267     brouard  11755:   fclose(ficresfb);
                   11756:   printf("End of Computing Back forecasting \n");
                   11757:   fprintf(ficlog,"End of Computing Back forecasting\n");
1.218     brouard  11758:        
1.267     brouard  11759: }
1.217     brouard  11760: 
1.269     brouard  11761: /* Variance of prevalence limit: varprlim */
                   11762:  void varprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **prlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
1.288     brouard  11763:     /*------- Variance of forward period (stable) prevalence------*/   
1.269     brouard  11764:  
                   11765:    char fileresvpl[FILENAMELENGTH];  
                   11766:    FILE *ficresvpl;
                   11767:    double **oldm, **savm;
                   11768:    double **varpl; /* Variances of prevalence limits by age */   
                   11769:    int i1, k, nres, j ;
                   11770:    
                   11771:     strcpy(fileresvpl,"VPL_");
                   11772:     strcat(fileresvpl,fileresu);
                   11773:     if((ficresvpl=fopen(fileresvpl,"w"))==NULL) {
1.288     brouard  11774:       printf("Problem with variance of forward period (stable) prevalence  resultfile: %s\n", fileresvpl);
1.269     brouard  11775:       exit(0);
                   11776:     }
1.288     brouard  11777:     printf("Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(stdout);
                   11778:     fprintf(ficlog, "Computing Variance-covariance of forward period (stable) prevalence: file '%s' ...", fileresvpl);fflush(ficlog);
1.269     brouard  11779:     
                   11780:     /*for(cptcov=1,k=0;cptcov<=i1;cptcov++){
                   11781:       for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*/
                   11782:     
                   11783:     i1=pow(2,cptcoveff);
                   11784:     if (cptcovn < 1){i1=1;}
                   11785: 
1.337     brouard  11786:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   11787:        k=TKresult[nres];
1.338     brouard  11788:        if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  11789:      /* for(k=1; k<=i1;k++){ /\* We find the combination equivalent to result line values of dummies *\/ */
1.269     brouard  11790:       if(i1 != 1 && TKresult[nres]!= k)
                   11791:        continue;
                   11792:       fprintf(ficresvpl,"\n#****** ");
                   11793:       printf("\n#****** ");
                   11794:       fprintf(ficlog,"\n#****** ");
1.337     brouard  11795:       for(j=1;j<=cptcovs;j++) {
                   11796:        fprintf(ficresvpl,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   11797:        fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   11798:        printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   11799:        /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11800:        /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
1.269     brouard  11801:       }
1.337     brouard  11802:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   11803:       /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   11804:       /*       fprintf(ficresvpl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   11805:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   11806:       /* }      */
1.269     brouard  11807:       fprintf(ficresvpl,"******\n");
                   11808:       printf("******\n");
                   11809:       fprintf(ficlog,"******\n");
                   11810:       
                   11811:       varpl=matrix(1,nlstate,(int) bage, (int) fage);
                   11812:       oldm=oldms;savm=savms;
                   11813:       varprevlim(fileresvpl, ficresvpl, varpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, ncvyearp, k, strstart, nres);
                   11814:       free_matrix(varpl,1,nlstate,(int) bage, (int)fage);
                   11815:       /*}*/
                   11816:     }
                   11817:     
                   11818:     fclose(ficresvpl);
1.288     brouard  11819:     printf("done variance-covariance of forward period prevalence\n");fflush(stdout);
                   11820:     fprintf(ficlog,"done variance-covariance of forward period prevalence\n");fflush(ficlog);
1.269     brouard  11821: 
                   11822:  }
                   11823: /* Variance of back prevalence: varbprlim */
                   11824:  void varbprlim(char fileresu[], int nresult, double ***prevacurrent, int mobilavproj, double bage, double fage, double **bprlim, int *ncvyearp, double ftolpl, double p[], double **matcov, double *delti, int stepm, int cptcoveff){
                   11825:       /*------- Variance of back (stable) prevalence------*/
                   11826: 
                   11827:    char fileresvbl[FILENAMELENGTH];  
                   11828:    FILE  *ficresvbl;
                   11829: 
                   11830:    double **oldm, **savm;
                   11831:    double **varbpl; /* Variances of back prevalence limits by age */   
                   11832:    int i1, k, nres, j ;
                   11833: 
                   11834:    strcpy(fileresvbl,"VBL_");
                   11835:    strcat(fileresvbl,fileresu);
                   11836:    if((ficresvbl=fopen(fileresvbl,"w"))==NULL) {
                   11837:      printf("Problem with variance of back (stable) prevalence  resultfile: %s\n", fileresvbl);
                   11838:      exit(0);
                   11839:    }
                   11840:    printf("Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(stdout);
                   11841:    fprintf(ficlog, "Computing Variance-covariance of back (stable) prevalence: file '%s' ...", fileresvbl);fflush(ficlog);
                   11842:    
                   11843:    
                   11844:    i1=pow(2,cptcoveff);
                   11845:    if (cptcovn < 1){i1=1;}
                   11846:    
1.337     brouard  11847:    for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   11848:      k=TKresult[nres];
1.338     brouard  11849:      if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  11850:     /* for(k=1; k<=i1;k++){ */
                   11851:     /*    if(i1 != 1 && TKresult[nres]!= k) */
                   11852:     /*          continue; */
1.269     brouard  11853:        fprintf(ficresvbl,"\n#****** ");
                   11854:        printf("\n#****** ");
                   11855:        fprintf(ficlog,"\n#****** ");
1.337     brouard  11856:        for (j=1; j<= cptcovs; j++){ /* For each selected (single) quantitative value */
1.338     brouard  11857:         printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
                   11858:         fprintf(ficresvbl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
                   11859:         fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][resultmodel[nres][j]]);
1.337     brouard  11860:        /* for(j=1;j<=cptcoveff;j++) { */
                   11861:        /*       fprintf(ficresvbl,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11862:        /*       fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11863:        /*       printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   11864:        /* } */
                   11865:        /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   11866:        /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   11867:        /*       fprintf(ficresvbl," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   11868:        /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
1.269     brouard  11869:        }
                   11870:        fprintf(ficresvbl,"******\n");
                   11871:        printf("******\n");
                   11872:        fprintf(ficlog,"******\n");
                   11873:        
                   11874:        varbpl=matrix(1,nlstate,(int) bage, (int) fage);
                   11875:        oldm=oldms;savm=savms;
                   11876:        
                   11877:        varbrevlim(fileresvbl, ficresvbl, varbpl, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, bprlim, ftolpl, mobilavproj, ncvyearp, k, strstart, nres);
                   11878:        free_matrix(varbpl,1,nlstate,(int) bage, (int)fage);
                   11879:        /*}*/
                   11880:      }
                   11881:    
                   11882:    fclose(ficresvbl);
                   11883:    printf("done variance-covariance of back prevalence\n");fflush(stdout);
                   11884:    fprintf(ficlog,"done variance-covariance of back prevalence\n");fflush(ficlog);
                   11885: 
                   11886:  } /* End of varbprlim */
                   11887: 
1.126     brouard  11888: /************** Forecasting *****not tested NB*************/
1.227     brouard  11889: /* void populforecast(char fileres[], double anpyram,double mpyram,double jpyram,double ageminpar, double agemax,double dateprev1, double dateprev2s, int mobilav, double agedeb, double fage, int popforecast, char popfile[], double anpyram1,double p[], int i2){ */
1.126     brouard  11890:   
1.227     brouard  11891: /*   int cpt, stepsize, hstepm, nhstepm, j,k,c, cptcod, i,h; */
                   11892: /*   int *popage; */
                   11893: /*   double calagedatem, agelim, kk1, kk2; */
                   11894: /*   double *popeffectif,*popcount; */
                   11895: /*   double ***p3mat,***tabpop,***tabpopprev; */
                   11896: /*   /\* double ***mobaverage; *\/ */
                   11897: /*   char filerespop[FILENAMELENGTH]; */
1.126     brouard  11898: 
1.227     brouard  11899: /*   tabpop= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   11900: /*   tabpopprev= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   11901: /*   agelim=AGESUP; */
                   11902: /*   calagedatem=(anpyram+mpyram/12.+jpyram/365.-dateintmean)*YEARM; */
1.126     brouard  11903:   
1.227     brouard  11904: /*   prevalence(probs, ageminpar, agemax, s, agev, nlstate, imx, Tvar, nbcode, ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass); */
1.126     brouard  11905:   
                   11906:   
1.227     brouard  11907: /*   strcpy(filerespop,"POP_");  */
                   11908: /*   strcat(filerespop,fileresu); */
                   11909: /*   if((ficrespop=fopen(filerespop,"w"))==NULL) { */
                   11910: /*     printf("Problem with forecast resultfile: %s\n", filerespop); */
                   11911: /*     fprintf(ficlog,"Problem with forecast resultfile: %s\n", filerespop); */
                   11912: /*   } */
                   11913: /*   printf("Computing forecasting: result on file '%s' \n", filerespop); */
                   11914: /*   fprintf(ficlog,"Computing forecasting: result on file '%s' \n", filerespop); */
1.126     brouard  11915: 
1.227     brouard  11916: /*   if (cptcoveff==0) ncodemax[cptcoveff]=1; */
1.126     brouard  11917: 
1.227     brouard  11918: /*   /\* if (mobilav!=0) { *\/ */
                   11919: /*   /\*   mobaverage= ma3x(1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
                   11920: /*   /\*   if (movingaverage(probs, ageminpar, fage, mobaverage,mobilav)!=0){ *\/ */
                   11921: /*   /\*     fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   11922: /*   /\*     printf(" Error in movingaverage mobilav=%d\n",mobilav); *\/ */
                   11923: /*   /\*   } *\/ */
                   11924: /*   /\* } *\/ */
1.126     brouard  11925: 
1.227     brouard  11926: /*   stepsize=(int) (stepm+YEARM-1)/YEARM; */
                   11927: /*   if (stepm<=12) stepsize=1; */
1.126     brouard  11928:   
1.227     brouard  11929: /*   agelim=AGESUP; */
1.126     brouard  11930:   
1.227     brouard  11931: /*   hstepm=1; */
                   11932: /*   hstepm=hstepm/stepm;  */
1.218     brouard  11933:        
1.227     brouard  11934: /*   if (popforecast==1) { */
                   11935: /*     if((ficpop=fopen(popfile,"r"))==NULL) { */
                   11936: /*       printf("Problem with population file : %s\n",popfile);exit(0); */
                   11937: /*       fprintf(ficlog,"Problem with population file : %s\n",popfile);exit(0); */
                   11938: /*     }  */
                   11939: /*     popage=ivector(0,AGESUP); */
                   11940: /*     popeffectif=vector(0,AGESUP); */
                   11941: /*     popcount=vector(0,AGESUP); */
1.126     brouard  11942:     
1.227     brouard  11943: /*     i=1;    */
                   11944: /*     while ((c=fscanf(ficpop,"%d %lf\n",&popage[i],&popcount[i])) != EOF) i=i+1; */
1.218     brouard  11945:     
1.227     brouard  11946: /*     imx=i; */
                   11947: /*     for (i=1; i<imx;i++) popeffectif[popage[i]]=popcount[i]; */
                   11948: /*   } */
1.218     brouard  11949:   
1.227     brouard  11950: /*   for(cptcov=1,k=0;cptcov<=i2;cptcov++){ */
                   11951: /*     for(cptcod=1;cptcod<=ncodemax[cptcoveff];cptcod++){ */
                   11952: /*       k=k+1; */
                   11953: /*       fprintf(ficrespop,"\n#******"); */
                   11954: /*       for(j=1;j<=cptcoveff;j++) { */
                   11955: /*     fprintf(ficrespop," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */
                   11956: /*       } */
                   11957: /*       fprintf(ficrespop,"******\n"); */
                   11958: /*       fprintf(ficrespop,"# Age"); */
                   11959: /*       for(j=1; j<=nlstate+ndeath;j++) fprintf(ficrespop," P.%d",j); */
                   11960: /*       if (popforecast==1)  fprintf(ficrespop," [Population]"); */
1.126     brouard  11961:       
1.227     brouard  11962: /*       for (cpt=0; cpt<=0;cpt++) {  */
                   11963: /*     fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
1.126     brouard  11964:        
1.227     brouard  11965: /*     for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
                   11966: /*       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
                   11967: /*       nhstepm = nhstepm/hstepm;  */
1.126     brouard  11968:          
1.227     brouard  11969: /*       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   11970: /*       oldm=oldms;savm=savms; */
                   11971: /*       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
1.218     brouard  11972:          
1.227     brouard  11973: /*       for (h=0; h<=nhstepm; h++){ */
                   11974: /*         if (h==(int) (calagedatem+YEARM*cpt)) { */
                   11975: /*           fprintf(ficrespop,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
                   11976: /*         }  */
                   11977: /*         for(j=1; j<=nlstate+ndeath;j++) { */
                   11978: /*           kk1=0.;kk2=0; */
                   11979: /*           for(i=1; i<=nlstate;i++) {               */
                   11980: /*             if (mobilav==1)  */
                   11981: /*               kk1=kk1+p3mat[i][j][h]*mobaverage[(int)agedeb+1][i][cptcod]; */
                   11982: /*             else { */
                   11983: /*               kk1=kk1+p3mat[i][j][h]*probs[(int)(agedeb+1)][i][cptcod]; */
                   11984: /*             } */
                   11985: /*           } */
                   11986: /*           if (h==(int)(calagedatem+12*cpt)){ */
                   11987: /*             tabpop[(int)(agedeb)][j][cptcod]=kk1; */
                   11988: /*             /\*fprintf(ficrespop," %.3f", kk1); */
                   11989: /*               if (popforecast==1) fprintf(ficrespop," [%.f]", kk1*popeffectif[(int)agedeb+1]);*\/ */
                   11990: /*           } */
                   11991: /*         } */
                   11992: /*         for(i=1; i<=nlstate;i++){ */
                   11993: /*           kk1=0.; */
                   11994: /*           for(j=1; j<=nlstate;j++){ */
                   11995: /*             kk1= kk1+tabpop[(int)(agedeb)][j][cptcod];  */
                   11996: /*           } */
                   11997: /*           tabpopprev[(int)(agedeb)][i][cptcod]=tabpop[(int)(agedeb)][i][cptcod]/kk1*popeffectif[(int)(agedeb+(calagedatem+12*cpt)*hstepm/YEARM*stepm-1)]; */
                   11998: /*         } */
1.218     brouard  11999:            
1.227     brouard  12000: /*         if (h==(int)(calagedatem+12*cpt)) */
                   12001: /*           for(j=1; j<=nlstate;j++)  */
                   12002: /*             fprintf(ficrespop," %15.2f",tabpopprev[(int)(agedeb+1)][j][cptcod]); */
                   12003: /*       } */
                   12004: /*       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   12005: /*     } */
                   12006: /*       } */
1.218     brouard  12007:       
1.227     brouard  12008: /*       /\******\/ */
1.218     brouard  12009:       
1.227     brouard  12010: /*       for (cpt=1; cpt<=(anpyram1-anpyram);cpt++) {  */
                   12011: /*     fprintf(ficrespop,"\n\n# Forecasting at date %.lf/%.lf/%.lf ",jpyram,mpyram,anpyram+cpt);    */
                   12012: /*     for (agedeb=(fage-((int)calagedatem %12/12.)); agedeb>=(ageminpar-((int)calagedatem %12)/12.); agedeb--){  */
                   12013: /*       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm);  */
                   12014: /*       nhstepm = nhstepm/hstepm;  */
1.126     brouard  12015:          
1.227     brouard  12016: /*       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   12017: /*       oldm=oldms;savm=savms; */
                   12018: /*       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
                   12019: /*       for (h=0; h<=nhstepm; h++){ */
                   12020: /*         if (h==(int) (calagedatem+YEARM*cpt)) { */
                   12021: /*           fprintf(ficresf,"\n %3.f ",agedeb+h*hstepm/YEARM*stepm); */
                   12022: /*         }  */
                   12023: /*         for(j=1; j<=nlstate+ndeath;j++) { */
                   12024: /*           kk1=0.;kk2=0; */
                   12025: /*           for(i=1; i<=nlstate;i++) {               */
                   12026: /*             kk1=kk1+p3mat[i][j][h]*tabpopprev[(int)agedeb+1][i][cptcod];     */
                   12027: /*           } */
                   12028: /*           if (h==(int)(calagedatem+12*cpt)) fprintf(ficresf," %15.2f", kk1);         */
                   12029: /*         } */
                   12030: /*       } */
                   12031: /*       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); */
                   12032: /*     } */
                   12033: /*       } */
                   12034: /*     }  */
                   12035: /*   } */
1.218     brouard  12036:   
1.227     brouard  12037: /*   /\* if (mobilav!=0) free_ma3x(mobaverage,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); *\/ */
1.218     brouard  12038:   
1.227     brouard  12039: /*   if (popforecast==1) { */
                   12040: /*     free_ivector(popage,0,AGESUP); */
                   12041: /*     free_vector(popeffectif,0,AGESUP); */
                   12042: /*     free_vector(popcount,0,AGESUP); */
                   12043: /*   } */
                   12044: /*   free_ma3x(tabpop,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   12045: /*   free_ma3x(tabpopprev,1, AGESUP,1,NCOVMAX, 1,NCOVMAX); */
                   12046: /*   fclose(ficrespop); */
                   12047: /* } /\* End of popforecast *\/ */
1.218     brouard  12048:  
1.126     brouard  12049: int fileappend(FILE *fichier, char *optionfich)
                   12050: {
                   12051:   if((fichier=fopen(optionfich,"a"))==NULL) {
                   12052:     printf("Problem with file: %s\n", optionfich);
                   12053:     fprintf(ficlog,"Problem with file: %s\n", optionfich);
                   12054:     return (0);
                   12055:   }
                   12056:   fflush(fichier);
                   12057:   return (1);
                   12058: }
                   12059: 
                   12060: 
                   12061: /**************** function prwizard **********************/
                   12062: void prwizard(int ncovmodel, int nlstate, int ndeath,  char model[], FILE *ficparo)
                   12063: {
                   12064: 
                   12065:   /* Wizard to print covariance matrix template */
                   12066: 
1.164     brouard  12067:   char ca[32], cb[32];
                   12068:   int i,j, k, li, lj, lk, ll, jj, npar, itimes;
1.126     brouard  12069:   int numlinepar;
                   12070: 
                   12071:   printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   12072:   fprintf(ficparo,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
                   12073:   for(i=1; i <=nlstate; i++){
                   12074:     jj=0;
                   12075:     for(j=1; j <=nlstate+ndeath; j++){
                   12076:       if(j==i) continue;
                   12077:       jj++;
                   12078:       /*ca[0]= k+'a'-1;ca[1]='\0';*/
                   12079:       printf("%1d%1d",i,j);
                   12080:       fprintf(ficparo,"%1d%1d",i,j);
                   12081:       for(k=1; k<=ncovmodel;k++){
                   12082:        /*        printf(" %lf",param[i][j][k]); */
                   12083:        /*        fprintf(ficparo," %lf",param[i][j][k]); */
                   12084:        printf(" 0.");
                   12085:        fprintf(ficparo," 0.");
                   12086:       }
                   12087:       printf("\n");
                   12088:       fprintf(ficparo,"\n");
                   12089:     }
                   12090:   }
                   12091:   printf("# Scales (for hessian or gradient estimation)\n");
                   12092:   fprintf(ficparo,"# Scales (for hessian or gradient estimation)\n");
                   12093:   npar= (nlstate+ndeath-1)*nlstate*ncovmodel; /* Number of parameters*/ 
                   12094:   for(i=1; i <=nlstate; i++){
                   12095:     jj=0;
                   12096:     for(j=1; j <=nlstate+ndeath; j++){
                   12097:       if(j==i) continue;
                   12098:       jj++;
                   12099:       fprintf(ficparo,"%1d%1d",i,j);
                   12100:       printf("%1d%1d",i,j);
                   12101:       fflush(stdout);
                   12102:       for(k=1; k<=ncovmodel;k++){
                   12103:        /*      printf(" %le",delti3[i][j][k]); */
                   12104:        /*      fprintf(ficparo," %le",delti3[i][j][k]); */
                   12105:        printf(" 0.");
                   12106:        fprintf(ficparo," 0.");
                   12107:       }
                   12108:       numlinepar++;
                   12109:       printf("\n");
                   12110:       fprintf(ficparo,"\n");
                   12111:     }
                   12112:   }
                   12113:   printf("# Covariance matrix\n");
                   12114: /* # 121 Var(a12)\n\ */
                   12115: /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   12116: /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   12117: /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   12118: /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   12119: /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   12120: /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   12121: /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   12122:   fflush(stdout);
                   12123:   fprintf(ficparo,"# Covariance matrix\n");
                   12124:   /* # 121 Var(a12)\n\ */
                   12125:   /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   12126:   /* #   ...\n\ */
                   12127:   /* # 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n" */
                   12128:   
                   12129:   for(itimes=1;itimes<=2;itimes++){
                   12130:     jj=0;
                   12131:     for(i=1; i <=nlstate; i++){
                   12132:       for(j=1; j <=nlstate+ndeath; j++){
                   12133:        if(j==i) continue;
                   12134:        for(k=1; k<=ncovmodel;k++){
                   12135:          jj++;
                   12136:          ca[0]= k+'a'-1;ca[1]='\0';
                   12137:          if(itimes==1){
                   12138:            printf("#%1d%1d%d",i,j,k);
                   12139:            fprintf(ficparo,"#%1d%1d%d",i,j,k);
                   12140:          }else{
                   12141:            printf("%1d%1d%d",i,j,k);
                   12142:            fprintf(ficparo,"%1d%1d%d",i,j,k);
                   12143:            /*  printf(" %.5le",matcov[i][j]); */
                   12144:          }
                   12145:          ll=0;
                   12146:          for(li=1;li <=nlstate; li++){
                   12147:            for(lj=1;lj <=nlstate+ndeath; lj++){
                   12148:              if(lj==li) continue;
                   12149:              for(lk=1;lk<=ncovmodel;lk++){
                   12150:                ll++;
                   12151:                if(ll<=jj){
                   12152:                  cb[0]= lk +'a'-1;cb[1]='\0';
                   12153:                  if(ll<jj){
                   12154:                    if(itimes==1){
                   12155:                      printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   12156:                      fprintf(ficparo," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   12157:                    }else{
                   12158:                      printf(" 0.");
                   12159:                      fprintf(ficparo," 0.");
                   12160:                    }
                   12161:                  }else{
                   12162:                    if(itimes==1){
                   12163:                      printf(" Var(%s%1d%1d)",ca,i,j);
                   12164:                      fprintf(ficparo," Var(%s%1d%1d)",ca,i,j);
                   12165:                    }else{
                   12166:                      printf(" 0.");
                   12167:                      fprintf(ficparo," 0.");
                   12168:                    }
                   12169:                  }
                   12170:                }
                   12171:              } /* end lk */
                   12172:            } /* end lj */
                   12173:          } /* end li */
                   12174:          printf("\n");
                   12175:          fprintf(ficparo,"\n");
                   12176:          numlinepar++;
                   12177:        } /* end k*/
                   12178:       } /*end j */
                   12179:     } /* end i */
                   12180:   } /* end itimes */
                   12181: 
                   12182: } /* end of prwizard */
                   12183: /******************* Gompertz Likelihood ******************************/
                   12184: double gompertz(double x[])
                   12185: { 
1.302     brouard  12186:   double A=0.0,B=0.,L=0.0,sump=0.,num=0.;
1.126     brouard  12187:   int i,n=0; /* n is the size of the sample */
                   12188: 
1.220     brouard  12189:   for (i=1;i<=imx ; i++) {
1.126     brouard  12190:     sump=sump+weight[i];
                   12191:     /*    sump=sump+1;*/
                   12192:     num=num+1;
                   12193:   }
1.302     brouard  12194:   L=0.0;
                   12195:   /* agegomp=AGEGOMP; */
1.126     brouard  12196:   /* for (i=0; i<=imx; i++) 
                   12197:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   12198: 
1.302     brouard  12199:   for (i=1;i<=imx ; i++) {
                   12200:     /* mu(a)=mu(agecomp)*exp(teta*(age-agegomp))
                   12201:        mu(a)=x[1]*exp(x[2]*(age-agegomp)); x[1] and x[2] are per year.
                   12202:      * L= Product mu(agedeces)exp(-\int_ageexam^agedc mu(u) du ) for a death between agedc (in month) 
                   12203:      *   and agedc +1 month, cens[i]=0: log(x[1]/YEARM)
                   12204:      * +
                   12205:      * exp(-\int_ageexam^agecens mu(u) du ) when censored, cens[i]=1
                   12206:      */
                   12207:      if (wav[i] > 1 || agedc[i] < AGESUP) {
                   12208:        if (cens[i] == 1){
                   12209:         A=-x[1]/(x[2])*(exp(x[2]*(agecens[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)));
                   12210:        } else if (cens[i] == 0){
1.126     brouard  12211:        A=-x[1]/(x[2])*(exp(x[2]*(agedc[i]-agegomp))-exp(x[2]*(ageexmed[i]-agegomp)))
1.302     brouard  12212:          +log(x[1]/YEARM) +x[2]*(agedc[i]-agegomp)+log(YEARM);
                   12213:       } else
                   12214:         printf("Gompertz cens[%d] neither 1 nor 0\n",i);
1.126     brouard  12215:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
1.302     brouard  12216:        L=L+A*weight[i];
1.126     brouard  12217:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
1.302     brouard  12218:      }
                   12219:   }
1.126     brouard  12220: 
1.302     brouard  12221:   /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
1.126     brouard  12222:  
                   12223:   return -2*L*num/sump;
                   12224: }
                   12225: 
1.136     brouard  12226: #ifdef GSL
                   12227: /******************* Gompertz_f Likelihood ******************************/
                   12228: double gompertz_f(const gsl_vector *v, void *params)
                   12229: { 
1.302     brouard  12230:   double A=0.,B=0.,LL=0.0,sump=0.,num=0.;
1.136     brouard  12231:   double *x= (double *) v->data;
                   12232:   int i,n=0; /* n is the size of the sample */
                   12233: 
                   12234:   for (i=0;i<=imx-1 ; i++) {
                   12235:     sump=sump+weight[i];
                   12236:     /*    sump=sump+1;*/
                   12237:     num=num+1;
                   12238:   }
                   12239:  
                   12240:  
                   12241:   /* for (i=0; i<=imx; i++) 
                   12242:      if (wav[i]>0) printf("i=%d ageex=%lf agecens=%lf agedc=%lf cens=%d %d\n" ,i,ageexmed[i],agecens[i],agedc[i],cens[i],wav[i]);*/
                   12243:   printf("x[0]=%lf x[1]=%lf\n",x[0],x[1]);
                   12244:   for (i=1;i<=imx ; i++)
                   12245:     {
                   12246:       if (cens[i] == 1 && wav[i]>1)
                   12247:        A=-x[0]/(x[1])*(exp(x[1]*(agecens[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)));
                   12248:       
                   12249:       if (cens[i] == 0 && wav[i]>1)
                   12250:        A=-x[0]/(x[1])*(exp(x[1]*(agedc[i]-agegomp))-exp(x[1]*(ageexmed[i]-agegomp)))
                   12251:             +log(x[0]/YEARM)+x[1]*(agedc[i]-agegomp)+log(YEARM);  
                   12252:       
                   12253:       /*if (wav[i] > 1 && agecens[i] > 15) {*/ /* ??? */
                   12254:       if (wav[i] > 1 ) { /* ??? */
                   12255:        LL=LL+A*weight[i];
                   12256:        /*      printf("\ni=%d A=%f L=%lf x[1]=%lf x[2]=%lf ageex=%lf agecens=%lf cens=%d agedc=%lf weight=%lf\n",i,A,L,x[1],x[2],ageexmed[i]*12,agecens[i]*12,cens[i],agedc[i]*12,weight[i]);*/
                   12257:       }
                   12258:     }
                   12259: 
                   12260:  /*printf("x1=%2.9f x2=%2.9f x3=%2.9f L=%f\n",x[1],x[2],x[3],L);*/
                   12261:   printf("x[0]=%lf x[1]=%lf -2*LL*num/sump=%lf\n",x[0],x[1],-2*LL*num/sump);
                   12262:  
                   12263:   return -2*LL*num/sump;
                   12264: }
                   12265: #endif
                   12266: 
1.126     brouard  12267: /******************* Printing html file ***********/
1.201     brouard  12268: void printinghtmlmort(char fileresu[], char title[], char datafile[], int firstpass, \
1.126     brouard  12269:                  int lastpass, int stepm, int weightopt, char model[],\
                   12270:                  int imx,  double p[],double **matcov,double agemortsup){
                   12271:   int i,k;
                   12272: 
                   12273:   fprintf(fichtm,"<ul><li><h4>Result files </h4>\n Force of mortality. Parameters of the Gompertz fit (with confidence interval in brackets):<br>");
                   12274:   fprintf(fichtm,"  mu(age) =%lf*exp(%lf*(age-%d)) per year<br><br>",p[1],p[2],agegomp);
                   12275:   for (i=1;i<=2;i++) 
                   12276:     fprintf(fichtm," p[%d] = %lf [%f ; %f]<br>\n",i,p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
1.199     brouard  12277:   fprintf(fichtm,"<br><br><img src=\"graphmort.svg\">");
1.126     brouard  12278:   fprintf(fichtm,"</ul>");
                   12279: 
                   12280: fprintf(fichtm,"<ul><li><h4>Life table</h4>\n <br>");
                   12281: 
                   12282:  fprintf(fichtm,"\nAge   l<inf>x</inf>     q<inf>x</inf> d(x,x+1)    L<inf>x</inf>     T<inf>x</inf>     e<infx</inf><br>");
                   12283: 
                   12284:  for (k=agegomp;k<(agemortsup-2);k++) 
                   12285:    fprintf(fichtm,"%d %.0lf %lf %.0lf %.0lf %.0lf %lf<br>\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   12286: 
                   12287:  
                   12288:   fflush(fichtm);
                   12289: }
                   12290: 
                   12291: /******************* Gnuplot file **************/
1.201     brouard  12292: void printinggnuplotmort(char fileresu[], char optionfilefiname[], double ageminpar, double agemaxpar, double fage , char pathc[], double p[]){
1.126     brouard  12293: 
                   12294:   char dirfileres[132],optfileres[132];
1.164     brouard  12295: 
1.359   ! brouard  12296:   /*int ng;*/
1.126     brouard  12297: 
                   12298: 
                   12299:   /*#ifdef windows */
                   12300:   fprintf(ficgp,"cd \"%s\" \n",pathc);
                   12301:     /*#endif */
                   12302: 
                   12303: 
                   12304:   strcpy(dirfileres,optionfilefiname);
                   12305:   strcpy(optfileres,"vpl");
1.199     brouard  12306:   fprintf(ficgp,"set out \"graphmort.svg\"\n "); 
1.126     brouard  12307:   fprintf(ficgp,"set xlabel \"Age\"\n set ylabel \"Force of mortality (per year)\" \n "); 
1.199     brouard  12308:   fprintf(ficgp, "set ter svg size 640, 480\n set log y\n"); 
1.145     brouard  12309:   /* fprintf(ficgp, "set size 0.65,0.65\n"); */
1.126     brouard  12310:   fprintf(ficgp,"plot [%d:100] %lf*exp(%lf*(x-%d))",agegomp,p[1],p[2],agegomp);
                   12311: 
                   12312: } 
                   12313: 
1.136     brouard  12314: int readdata(char datafile[], int firstobs, int lastobs, int *imax)
                   12315: {
1.126     brouard  12316: 
1.136     brouard  12317:   /*-------- data file ----------*/
                   12318:   FILE *fic;
                   12319:   char dummy[]="                         ";
1.359   ! brouard  12320:   int i = 0, j = 0, n = 0, iv = 0;/* , v;*/
1.223     brouard  12321:   int lstra;
1.136     brouard  12322:   int linei, month, year,iout;
1.302     brouard  12323:   int noffset=0; /* This is the offset if BOM data file */
1.136     brouard  12324:   char line[MAXLINE], linetmp[MAXLINE];
1.164     brouard  12325:   char stra[MAXLINE], strb[MAXLINE];
1.136     brouard  12326:   char *stratrunc;
1.223     brouard  12327: 
1.349     brouard  12328:   /* DummyV=ivector(-1,NCOVMAX); /\* 1 to 3 *\/ */
                   12329:   /* FixedV=ivector(-1,NCOVMAX); /\* 1 to 3 *\/ */
1.339     brouard  12330:   
                   12331:   ncovcolt=ncovcol+nqv+ntv+nqtv; /* total of covariates in the data, not in the model equation */
                   12332:   
1.136     brouard  12333:   if((fic=fopen(datafile,"r"))==NULL)    {
1.218     brouard  12334:     printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
                   12335:     fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
1.136     brouard  12336:   }
1.126     brouard  12337: 
1.302     brouard  12338:     /* Is it a BOM UTF-8 Windows file? */
                   12339:   /* First data line */
                   12340:   linei=0;
                   12341:   while(fgets(line, MAXLINE, fic)) {
                   12342:     noffset=0;
                   12343:     if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
                   12344:     {
                   12345:       noffset=noffset+3;
                   12346:       printf("# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);fflush(stdout);
                   12347:       fprintf(ficlog,"# Data file '%s'  is an UTF8 BOM file, please convert to UTF8 or ascii file and rerun.\n",datafile);
                   12348:       fflush(ficlog); return 1;
                   12349:     }
                   12350:     /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
                   12351:     else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
                   12352:     {
                   12353:       noffset=noffset+2;
1.304     brouard  12354:       printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
                   12355:       fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
1.302     brouard  12356:       fflush(ficlog); return 1;
                   12357:     }
                   12358:     else if( line[0] == 0 && line[1] == 0)
                   12359:     {
                   12360:       if( line[2] == (char)0xFE && line[3] == (char)0xFF){
                   12361:        noffset=noffset+4;
1.304     brouard  12362:        printf("# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);fflush(stdout);
                   12363:        fprintf(ficlog,"# Error Data file '%s'  is a huge UTF16BE BOM file, please convert to UTF8 or ascii file (for example with dos2unix) and rerun.\n",datafile);
1.302     brouard  12364:        fflush(ficlog); return 1;
                   12365:       }
                   12366:     } else{
                   12367:       ;/*printf(" Not a BOM file\n");*/
                   12368:     }
                   12369:         /* If line starts with a # it is a comment */
                   12370:     if (line[noffset] == '#') {
                   12371:       linei=linei+1;
                   12372:       break;
                   12373:     }else{
                   12374:       break;
                   12375:     }
                   12376:   }
                   12377:   fclose(fic);
                   12378:   if((fic=fopen(datafile,"r"))==NULL)    {
                   12379:     printf("Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(stdout);
                   12380:     fprintf(ficlog,"Problem while opening datafile: %s with errno='%s'\n", datafile,strerror(errno));fflush(ficlog);return 1;
                   12381:   }
                   12382:   /* Not a Bom file */
                   12383:   
1.136     brouard  12384:   i=1;
                   12385:   while ((fgets(line, MAXLINE, fic) != NULL) &&((i >= firstobs) && (i <=lastobs))) {
                   12386:     linei=linei+1;
                   12387:     for(j=strlen(line); j>=0;j--){  /* Untabifies line */
                   12388:       if(line[j] == '\t')
                   12389:        line[j] = ' ';
                   12390:     }
                   12391:     for(j=strlen(line)-1; (line[j]==' ')||(line[j]==10)||(line[j]==13);j--){
                   12392:       ;
                   12393:     };
                   12394:     line[j+1]=0;  /* Trims blanks at end of line */
                   12395:     if(line[0]=='#'){
                   12396:       fprintf(ficlog,"Comment line\n%s\n",line);
                   12397:       printf("Comment line\n%s\n",line);
                   12398:       continue;
                   12399:     }
                   12400:     trimbb(linetmp,line); /* Trims multiple blanks in line */
1.164     brouard  12401:     strcpy(line, linetmp);
1.223     brouard  12402:     
                   12403:     /* Loops on waves */
                   12404:     for (j=maxwav;j>=1;j--){
                   12405:       for (iv=nqtv;iv>=1;iv--){  /* Loop  on time varying quantitative variables */
1.238     brouard  12406:        cutv(stra, strb, line, ' '); 
                   12407:        if(strb[0]=='.') { /* Missing value */
                   12408:          lval=-1;
                   12409:          cotqvar[j][iv][i]=-1; /* 0.0/0.0 */
1.341     brouard  12410:          cotvar[j][ncovcol+nqv+ntv+iv][i]=-1; /* For performance reasons */
1.238     brouard  12411:          if(isalpha(strb[1])) { /* .m or .d Really Missing value */
                   12412:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);
                   12413:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. If missing, you should remove this individual or impute a value.  Exiting.\n", strb, linei,i,line,iv, nqtv, j);fflush(ficlog);
                   12414:            return 1;
                   12415:          }
                   12416:        }else{
                   12417:          errno=0;
                   12418:          /* what_kind_of_number(strb); */
                   12419:          dval=strtod(strb,&endptr); 
                   12420:          /* if( strb[0]=='\0' || (*endptr != '\0')){ */
                   12421:          /* if(strb != endptr && *endptr == '\0') */
                   12422:          /*    dval=dlval; */
                   12423:          /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                   12424:          if( strb[0]=='\0' || (*endptr != '\0')){
                   12425:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, nqtv, j,maxwav);
                   12426:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqtv, j,maxwav);fflush(ficlog);
                   12427:            return 1;
                   12428:          }
                   12429:          cotqvar[j][iv][i]=dval; 
1.341     brouard  12430:          cotvar[j][ncovcol+nqv+ntv+iv][i]=dval; /* because cotvar starts now at first ntv */ 
1.238     brouard  12431:        }
                   12432:        strcpy(line,stra);
1.223     brouard  12433:       }/* end loop ntqv */
1.225     brouard  12434:       
1.223     brouard  12435:       for (iv=ntv;iv>=1;iv--){  /* Loop  on time varying dummies */
1.238     brouard  12436:        cutv(stra, strb, line, ' '); 
                   12437:        if(strb[0]=='.') { /* Missing value */
                   12438:          lval=-1;
                   12439:        }else{
                   12440:          errno=0;
                   12441:          lval=strtol(strb,&endptr,10); 
                   12442:          /*    if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
                   12443:          if( strb[0]=='\0' || (*endptr != '\0')){
                   12444:            printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th dummy covariate out of %d measured at wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv, j,maxwav);
                   12445:            fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d dummy covariate out of %d measured wave %d. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line,iv, ntv,j,maxwav);fflush(ficlog);
                   12446:            return 1;
                   12447:          }
                   12448:        }
                   12449:        if(lval <-1 || lval >1){
                   12450:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.319     brouard  12451:  Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
1.223     brouard  12452:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.238     brouard  12453:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   12454:  build V1=0 V2=0 for the reference value (1),\n                                \
                   12455:         V1=1 V2=0 for (2) \n                                           \
1.223     brouard  12456:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.238     brouard  12457:  output of IMaCh is often meaningless.\n                               \
1.319     brouard  12458:  Exiting.\n",lval,linei, i,line,iv,j);
1.238     brouard  12459:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.319     brouard  12460:  Should be a value of %d(nth) covariate of wave %d (0 should be the value for the reference and 1\n \
1.223     brouard  12461:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.238     brouard  12462:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   12463:  build V1=0 V2=0 for the reference value (1),\n                                \
                   12464:         V1=1 V2=0 for (2) \n                                           \
1.223     brouard  12465:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.238     brouard  12466:  output of IMaCh is often meaningless.\n                               \
1.319     brouard  12467:  Exiting.\n",lval,linei, i,line,iv,j);fflush(ficlog);
1.238     brouard  12468:          return 1;
                   12469:        }
1.341     brouard  12470:        cotvar[j][ncovcol+nqv+iv][i]=(double)(lval);
1.238     brouard  12471:        strcpy(line,stra);
1.223     brouard  12472:       }/* end loop ntv */
1.225     brouard  12473:       
1.223     brouard  12474:       /* Statuses  at wave */
1.137     brouard  12475:       cutv(stra, strb, line, ' '); 
1.223     brouard  12476:       if(strb[0]=='.') { /* Missing value */
1.238     brouard  12477:        lval=-1;
1.136     brouard  12478:       }else{
1.238     brouard  12479:        errno=0;
                   12480:        lval=strtol(strb,&endptr,10); 
                   12481:        /*      if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN))*/
1.347     brouard  12482:        if( strb[0]=='\0' || (*endptr != '\0' )){
                   12483:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);
                   12484:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a status of wave %d. Setting maxwav=%d might be wrong. Exiting.\n", strb, linei,i,line,j,maxwav);fflush(ficlog);
                   12485:          return 1;
                   12486:        }else if( lval==0 || lval > nlstate+ndeath){
1.348     brouard  12487:          printf("Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %ld.\n Fix your data file '%s'!  Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile);fflush(stdout);
                   12488:          fprintf(ficlog,"Error in data around '%s' at line number %d for individual %d, '%s'\n Should be a state at wave %d. A state should be 1 to %d and not %ld.\n Fix your data file '%s'!  Exiting.\n", strb, linei,i,line,j,nlstate+ndeath, lval, datafile); fflush(ficlog);
1.238     brouard  12489:          return 1;
                   12490:        }
1.136     brouard  12491:       }
1.225     brouard  12492:       
1.136     brouard  12493:       s[j][i]=lval;
1.225     brouard  12494:       
1.223     brouard  12495:       /* Date of Interview */
1.136     brouard  12496:       strcpy(line,stra);
                   12497:       cutv(stra, strb,line,' ');
1.169     brouard  12498:       if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  12499:       }
1.169     brouard  12500:       else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
1.225     brouard  12501:        month=99;
                   12502:        year=9999;
1.136     brouard  12503:       }else{
1.225     brouard  12504:        printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);
                   12505:        fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of interview (mm/yyyy or .) at wave %d.  Exiting.\n",strb, linei,i, line,j);fflush(ficlog);
                   12506:        return 1;
1.136     brouard  12507:       }
                   12508:       anint[j][i]= (double) year; 
1.302     brouard  12509:       mint[j][i]= (double)month;
                   12510:       /* if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){ */
                   12511:       /*       printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
                   12512:       /*       fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, mint[j][i],anint[j][i], moisnais[i],annais[i]); */
                   12513:       /* } */
1.136     brouard  12514:       strcpy(line,stra);
1.223     brouard  12515:     } /* End loop on waves */
1.225     brouard  12516:     
1.223     brouard  12517:     /* Date of death */
1.136     brouard  12518:     cutv(stra, strb,line,' '); 
1.169     brouard  12519:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  12520:     }
1.169     brouard  12521:     else  if( (iout=sscanf(strb,"%s.",dummy)) != 0){
1.136     brouard  12522:       month=99;
                   12523:       year=9999;
                   12524:     }else{
1.141     brouard  12525:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
1.225     brouard  12526:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of death (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
                   12527:       return 1;
1.136     brouard  12528:     }
                   12529:     andc[i]=(double) year; 
                   12530:     moisdc[i]=(double) month; 
                   12531:     strcpy(line,stra);
                   12532:     
1.223     brouard  12533:     /* Date of birth */
1.136     brouard  12534:     cutv(stra, strb,line,' '); 
1.169     brouard  12535:     if( (iout=sscanf(strb,"%d/%d",&month, &year)) != 0){
1.136     brouard  12536:     }
1.169     brouard  12537:     else  if( (iout=sscanf(strb,"%s.", dummy)) != 0){
1.136     brouard  12538:       month=99;
                   12539:       year=9999;
                   12540:     }else{
1.141     brouard  12541:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);
                   12542:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy or .).  Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.225     brouard  12543:       return 1;
1.136     brouard  12544:     }
                   12545:     if (year==9999) {
1.141     brouard  12546:       printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given.  Exiting.\n",strb, linei,i,line);
                   12547:       fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be a date of birth (mm/yyyy) but at least the year of birth should be given. Exiting.\n",strb, linei,i,line);fflush(ficlog);
1.225     brouard  12548:       return 1;
                   12549:       
1.136     brouard  12550:     }
                   12551:     annais[i]=(double)(year);
1.302     brouard  12552:     moisnais[i]=(double)(month);
                   12553:     for (j=1;j<=maxwav;j++){
                   12554:       if( (int)anint[j][i]+ (int)(mint[j][i])/12. < (int) (moisnais[i]/12.+annais[i])){
                   12555:        printf("Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j,(int)moisnais[i],(int)annais[i]);
                   12556:        fprintf(ficlog,"Warning reading data around '%s' at line number %d for individual %d, '%s'\nThe date of interview (%2d/%4d) at wave %d occurred before the date of birth (%2d/%4d).\n",strb, linei,i, line, (int)mint[j][i],(int)anint[j][i], j, (int)moisnais[i],(int)annais[i]);
                   12557:       }
                   12558:     }
                   12559: 
1.136     brouard  12560:     strcpy(line,stra);
1.225     brouard  12561:     
1.223     brouard  12562:     /* Sample weight */
1.136     brouard  12563:     cutv(stra, strb,line,' '); 
                   12564:     errno=0;
                   12565:     dval=strtod(strb,&endptr); 
                   12566:     if( strb[0]=='\0' || (*endptr != '\0')){
1.141     brouard  12567:       printf("Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
                   12568:       fprintf(ficlog,"Error reading data around '%f' at line number %d, \"%s\" for individual %d\nShould be a weight.  Exiting.\n",dval, i,line,linei);
1.136     brouard  12569:       fflush(ficlog);
                   12570:       return 1;
                   12571:     }
                   12572:     weight[i]=dval; 
                   12573:     strcpy(line,stra);
1.225     brouard  12574:     
1.223     brouard  12575:     for (iv=nqv;iv>=1;iv--){  /* Loop  on fixed quantitative variables */
                   12576:       cutv(stra, strb, line, ' '); 
                   12577:       if(strb[0]=='.') { /* Missing value */
1.225     brouard  12578:        lval=-1;
1.311     brouard  12579:        coqvar[iv][i]=NAN; 
                   12580:        covar[ncovcol+iv][i]=NAN; /* including qvar in standard covar for performance reasons */ 
1.223     brouard  12581:       }else{
1.225     brouard  12582:        errno=0;
                   12583:        /* what_kind_of_number(strb); */
                   12584:        dval=strtod(strb,&endptr);
                   12585:        /* if(strb != endptr && *endptr == '\0') */
                   12586:        /*   dval=dlval; */
                   12587:        /* if (errno == ERANGE && (lval == LONG_MAX || lval == LONG_MIN)) */
                   12588:        if( strb[0]=='\0' || (*endptr != '\0')){
                   12589:          printf("Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);
                   12590:          fprintf(ficlog,"Error reading data around '%s' at line number %d for individual %d, '%s'\nShould be the %d th quantitative value (out of %d) constant for all waves. Setting maxwav=%d might be wrong.  Exiting.\n", strb, linei,i,line, iv, nqv, maxwav);fflush(ficlog);
                   12591:          return 1;
                   12592:        }
                   12593:        coqvar[iv][i]=dval; 
1.226     brouard  12594:        covar[ncovcol+iv][i]=dval; /* including qvar in standard covar for performance reasons */ 
1.223     brouard  12595:       }
                   12596:       strcpy(line,stra);
                   12597:     }/* end loop nqv */
1.136     brouard  12598:     
1.223     brouard  12599:     /* Covariate values */
1.136     brouard  12600:     for (j=ncovcol;j>=1;j--){
                   12601:       cutv(stra, strb,line,' '); 
1.223     brouard  12602:       if(strb[0]=='.') { /* Missing covariate value */
1.225     brouard  12603:        lval=-1;
1.136     brouard  12604:       }else{
1.225     brouard  12605:        errno=0;
                   12606:        lval=strtol(strb,&endptr,10); 
                   12607:        if( strb[0]=='\0' || (*endptr != '\0')){
                   12608:          printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);
                   12609:          fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\nShould be a covariate value (=0 for the reference or 1 for alternative).  Exiting.\n",lval, linei,i, line);fflush(ficlog);
                   12610:          return 1;
                   12611:        }
1.136     brouard  12612:       }
                   12613:       if(lval <-1 || lval >1){
1.225     brouard  12614:        printf("Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  12615:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   12616:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.225     brouard  12617:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   12618:  build V1=0 V2=0 for the reference value (1),\n                                \
                   12619:         V1=1 V2=0 for (2) \n                                           \
1.136     brouard  12620:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.225     brouard  12621:  output of IMaCh is often meaningless.\n                               \
1.136     brouard  12622:  Exiting.\n",lval,linei, i,line,j);
1.225     brouard  12623:        fprintf(ficlog,"Error reading data around '%ld' at line number %d for individual %d, '%s'\n \
1.136     brouard  12624:  Should be a value of %d(nth) covariate (0 should be the value for the reference and 1\n \
                   12625:  for the alternative. IMaCh does not build design variables automatically, do it yourself.\n \
1.225     brouard  12626:  For example, for multinomial values like 1, 2 and 3,\n                        \
                   12627:  build V1=0 V2=0 for the reference value (1),\n                                \
                   12628:         V1=1 V2=0 for (2) \n                                           \
1.136     brouard  12629:  and V1=0 V2=1 for (3). V1=1 V2=1 should not exist and the corresponding\n \
1.225     brouard  12630:  output of IMaCh is often meaningless.\n                               \
1.136     brouard  12631:  Exiting.\n",lval,linei, i,line,j);fflush(ficlog);
1.225     brouard  12632:        return 1;
1.136     brouard  12633:       }
                   12634:       covar[j][i]=(double)(lval);
                   12635:       strcpy(line,stra);
                   12636:     }  
                   12637:     lstra=strlen(stra);
1.225     brouard  12638:     
1.136     brouard  12639:     if(lstra > 9){ /* More than 2**32 or max of what printf can write with %ld */
                   12640:       stratrunc = &(stra[lstra-9]);
                   12641:       num[i]=atol(stratrunc);
                   12642:     }
                   12643:     else
                   12644:       num[i]=atol(stra);
                   12645:     /*if((s[2][i]==2) && (s[3][i]==-1)&&(s[4][i]==9)){
                   12646:       printf("%ld %.lf %.lf %.lf %.lf/%.lf %.lf/%.lf %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d %.lf/%.lf %d\n",num[i],(covar[1][i]), (covar[2][i]),weight[i], (moisnais[i]), (annais[i]), (moisdc[i]), (andc[i]), (mint[1][i]), (anint[1][i]), (s[1][i]),  (mint[2][i]), (anint[2][i]), (s[2][i]),  (mint[3][i]), (anint[3][i]), (s[3][i]),  (mint[4][i]), (anint[4][i]), (s[4][i])); ij=ij+1;}*/
                   12647:     
                   12648:     i=i+1;
                   12649:   } /* End loop reading  data */
1.225     brouard  12650:   
1.136     brouard  12651:   *imax=i-1; /* Number of individuals */
                   12652:   fclose(fic);
1.225     brouard  12653:   
1.136     brouard  12654:   return (0);
1.164     brouard  12655:   /* endread: */
1.225     brouard  12656:   printf("Exiting readdata: ");
                   12657:   fclose(fic);
                   12658:   return (1);
1.223     brouard  12659: }
1.126     brouard  12660: 
1.234     brouard  12661: void removefirstspace(char **stri){/*, char stro[]) {*/
1.230     brouard  12662:   char *p1 = *stri, *p2 = *stri;
1.235     brouard  12663:   while (*p2 == ' ')
1.234     brouard  12664:     p2++; 
                   12665:   /* while ((*p1++ = *p2++) !=0) */
                   12666:   /*   ; */
                   12667:   /* do */
                   12668:   /*   while (*p2 == ' ') */
                   12669:   /*     p2++; */
                   12670:   /* while (*p1++ == *p2++); */
                   12671:   *stri=p2; 
1.145     brouard  12672: }
                   12673: 
1.330     brouard  12674: int decoderesult( char resultline[], int nres)
1.230     brouard  12675: /**< This routine decode one result line and returns the combination # of dummy covariates only **/
                   12676: {
1.235     brouard  12677:   int j=0, k=0, k1=0, k2=0, k3=0, k4=0, match=0, k2q=0, k3q=0, k4q=0;
1.230     brouard  12678:   char resultsav[MAXLINE];
1.330     brouard  12679:   /* int resultmodel[MAXLINE]; */
1.334     brouard  12680:   /* int modelresult[MAXLINE]; */
1.230     brouard  12681:   char stra[80], strb[80], strc[80], strd[80],stre[80];
                   12682: 
1.234     brouard  12683:   removefirstspace(&resultline);
1.332     brouard  12684:   printf("decoderesult:%s\n",resultline);
1.230     brouard  12685: 
1.332     brouard  12686:   strcpy(resultsav,resultline);
1.342     brouard  12687:   /* printf("Decoderesult resultsav=\"%s\" resultline=\"%s\"\n", resultsav, resultline); */
1.230     brouard  12688:   if (strlen(resultsav) >1){
1.334     brouard  12689:     j=nbocc(resultsav,'='); /**< j=Number of covariate values'=' in this resultline */
1.230     brouard  12690:   }
1.353     brouard  12691:   if(j == 0 && cptcovs== 0){ /* Resultline but no =  and no covariate in the model */
1.253     brouard  12692:     TKresult[nres]=0; /* Combination for the nresult and the model */
                   12693:     return (0);
                   12694:   }
1.234     brouard  12695:   if( j != cptcovs ){ /* Be careful if a variable is in a product but not single */
1.353     brouard  12696:     fprintf(ficlog,"ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, 1+age+%s.\n",j, cptcovs, model);fflush(ficlog);
                   12697:     printf("ERROR: the number of variables in the resultline which is %d, differs from the number %d of single variables used in the model line, 1+age+%s.\n",j, cptcovs, model);fflush(stdout);
                   12698:     if(j==0)
                   12699:       return 1;
1.234     brouard  12700:   }
1.334     brouard  12701:   for(k=1; k<=j;k++){ /* Loop on any covariate of the RESULT LINE */
1.234     brouard  12702:     if(nbocc(resultsav,'=') >1){
1.318     brouard  12703:       cutl(stra,strb,resultsav,' '); /* keeps in strb after the first ' ' (stra is the rest of the resultline to be analyzed in the next loop *//*     resultsav= "V4=1 V5=25.1 V3=0" stra= "V5=25.1 V3=0" strb= "V4=1" */
1.332     brouard  12704:       /* If resultsav= "V4= 1 V5=25.1 V3=0" with a blank then strb="V4=" and stra="1 V5=25.1 V3=0" */
1.318     brouard  12705:       cutl(strc,strd,strb,'=');  /* strb:"V4=1" strc="1" strd="V4" */
1.332     brouard  12706:       /* If a blank, then strc="V4=" and strd='\0' */
                   12707:       if(strc[0]=='\0'){
                   12708:       printf("Error in resultline, probably a blank after the \"%s\", \"result:%s\", stra=\"%s\" resultsav=\"%s\"\n",strb,resultline, stra, resultsav);
                   12709:        fprintf(ficlog,"Error in resultline, probably a blank after the \"V%s=\", resultline=%s\n",strb,resultline);
                   12710:        return 1;
                   12711:       }
1.234     brouard  12712:     }else
                   12713:       cutl(strc,strd,resultsav,'=');
1.318     brouard  12714:     Tvalsel[k]=atof(strc); /* 1 */ /* Tvalsel of k is the float value of the kth covariate appearing in this result line */
1.234     brouard  12715:     
1.230     brouard  12716:     cutl(strc,stre,strd,'V'); /* strd='V4' strc=4 stre='V' */;
1.318     brouard  12717:     Tvarsel[k]=atoi(strc);  /* 4 */ /* Tvarsel is the id of the kth covariate in the result line Tvarsel[1] in "V4=1.." is 4.*/
1.230     brouard  12718:     /* Typevarsel[k]=1;  /\* 1 for age product *\/ */
                   12719:     /* cptcovsel++;     */
                   12720:     if (nbocc(stra,'=') >0)
                   12721:       strcpy(resultsav,stra); /* and analyzes it */
                   12722:   }
1.235     brouard  12723:   /* Checking for missing or useless values in comparison of current model needs */
1.332     brouard  12724:   /* Feeds resultmodel[nres][k1]=k2 for k1th product covariate with age in the model equation fed by the index k2 of the resutline*/
1.334     brouard  12725:   for(k1=1; k1<= cptcovt ;k1++){ /* Loop on MODEL LINE V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.332     brouard  12726:     if(Typevar[k1]==0){ /* Single covariate in model */
                   12727:       /* 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product */
1.234     brouard  12728:       match=0;
1.318     brouard  12729:       for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   12730:        if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
1.334     brouard  12731:          modelresult[nres][k2]=k1;/* modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
1.318     brouard  12732:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
1.234     brouard  12733:          break;
                   12734:        }
                   12735:       }
                   12736:       if(match == 0){
1.338     brouard  12737:        printf("Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s. Tvar[k1=%d]=%d is different from Tvarsel[k2=%d]=%d.\n",Tvar[k1], resultline, model,k1, Tvar[k1], k2, Tvarsel[k2]);
                   12738:        fprintf(ficlog,"Error in result line (Dummy single): V%d is missing in result: %s according to model=1+age+%s\n",Tvar[k1], resultline, model);
1.310     brouard  12739:        return 1;
1.234     brouard  12740:       }
1.332     brouard  12741:     }else if(Typevar[k1]==1){ /* Product with age We want to get the position k2 in the resultline of the product k1 in the model line*/
                   12742:       /* We feed resultmodel[k1]=k2; */
                   12743:       match=0;
                   12744:       for(k2=1; k2 <=j;k2++){/* Loop on resultline.  jth occurence of = signs in the result line. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   12745:        if(Tvar[k1]==Tvarsel[k2]) {/* Tvar is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
1.334     brouard  12746:          modelresult[nres][k2]=k1;/* we found a Vn=1 corrresponding to Vn*age in the model modelresult[2]=1 modelresult[1]=2  modelresult[3]=3  modelresult[6]=4 modelresult[9]=5 */
1.332     brouard  12747:          resultmodel[nres][k1]=k2; /* Added here */
1.342     brouard  12748:          /* printf("Decoderesult first modelresult[k2=%d]=%d (k1) V%d*AGE\n",k2,k1,Tvar[k1]); */
1.332     brouard  12749:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
                   12750:          break;
                   12751:        }
                   12752:       }
                   12753:       if(match == 0){
1.338     brouard  12754:        printf("Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
                   12755:        fprintf(ficlog,"Error in result line (Product with age): V%d is missing in result: %s according to model=1+age+%s (Tvarsel[k2=%d]=%d)\n",Tvar[k1], resultline, model, k2, Tvarsel[k2]);
1.332     brouard  12756:       return 1;
                   12757:       }
1.349     brouard  12758:     }else if(Typevar[k1]==2 || Typevar[k1]==3){ /* Product with or without age. We want to get the position in the resultline of the product in the model line*/
1.332     brouard  12759:       /* resultmodel[nres][of such a Vn * Vm product k1] is not unique, so can't exist, we feed Tvard[k1][1] and [2] */ 
                   12760:       match=0;
1.342     brouard  12761:       /* printf("Decoderesult very first Product Tvardk[k1=%d][1]=%d Tvardk[k1=%d][2]=%d V%d * V%d\n",k1,Tvardk[k1][1],k1,Tvardk[k1][2],Tvardk[k1][1],Tvardk[k1][2]); */
1.332     brouard  12762:       for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   12763:        if(Tvardk[k1][1]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
                   12764:          /* modelresult[k2]=k1; */
1.342     brouard  12765:          /* printf("Decoderesult first Product modelresult[k2=%d]=%d (k1) V%d * \n",k2,k1,Tvarsel[k2]); */
1.332     brouard  12766:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
                   12767:        }
                   12768:       }
                   12769:       if(match == 0){
1.349     brouard  12770:        printf("Error in result line (Product without age first variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
                   12771:        fprintf(ficlog,"Error in result line (Product without age first variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][1], resultline, model);
1.332     brouard  12772:        return 1;
                   12773:       }
                   12774:       match=0;
                   12775:       for(k2=1; k2 <=j;k2++){/* Loop on resultline. In result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
                   12776:        if(Tvardk[k1][2]==Tvarsel[k2]) {/* Tvardk is coming from the model, Tvarsel from the result. Tvar[1]=5 == Tvarsel[2]=5   */
                   12777:          /* modelresult[k2]=k1;*/
1.342     brouard  12778:          /* printf("Decoderesult second Product modelresult[k2=%d]=%d (k1) * V%d \n ",k2,k1,Tvarsel[k2]); */
1.332     brouard  12779:          match=1; /* modelresult of k2 variable of resultline is identical to k1 variable of the model good */
                   12780:          break;
                   12781:        }
                   12782:       }
                   12783:       if(match == 0){
1.349     brouard  12784:        printf("Error in result line (Product without age second variable or double product with age): V%d is missing in result: %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
                   12785:        fprintf(ficlog,"Error in result line (Product without age second variable or double product with age): V%d is missing in result : %s according to model=1+age+%s\n",Tvardk[k1][2], resultline, model);
1.332     brouard  12786:        return 1;
                   12787:       }
                   12788:     }/* End of testing */
1.333     brouard  12789:   }/* End loop cptcovt */
1.235     brouard  12790:   /* Checking for missing or useless values in comparison of current model needs */
1.332     brouard  12791:   /* Feeds resultmodel[nres][k1]=k2 for single covariate (k1) in the model equation */
1.334     brouard  12792:   for(k2=1; k2 <=j;k2++){ /* j or cptcovs is the number of single covariates used either in the model line as well as in the result line (dummy or quantitative)
                   12793:                           * Loop on resultline variables: result line V4=1 V5=24.1 V3=1  V2=8 V1=0 */
1.234     brouard  12794:     match=0;
1.318     brouard  12795:     for(k1=1; k1<= cptcovt ;k1++){ /* loop on model: model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.332     brouard  12796:       if(Typevar[k1]==0){ /* Single only */
1.349     brouard  12797:        if(Tvar[k1]==Tvarsel[k2]) { /* Tvar[2]=4 == Tvarsel[1]=4  What if a product?  */
1.330     brouard  12798:          resultmodel[nres][k1]=k2;  /* k1th position in the model equation corresponds to k2th position in the result line. resultmodel[2]=1 resultmodel[1]=2  resultmodel[3]=3  resultmodel[6]=4 resultmodel[9]=5 */
1.334     brouard  12799:          modelresult[nres][k2]=k1; /* k1th position in the model equation corresponds to k2th position in the result line. modelresult[1]=2 modelresult[2]=1  modelresult[3]=3  remodelresult[4]=6 modelresult[5]=9 */
1.234     brouard  12800:          ++match;
                   12801:        }
                   12802:       }
                   12803:     }
                   12804:     if(match == 0){
1.338     brouard  12805:       printf("Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
                   12806:       fprintf(ficlog,"Error in result line: variable V%d is missing in model; result: %s, model=1+age+%s\n",Tvarsel[k2], resultline, model);
1.310     brouard  12807:       return 1;
1.234     brouard  12808:     }else if(match > 1){
1.338     brouard  12809:       printf("Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
                   12810:       fprintf(ficlog,"Error in result line: %d doubled; result: %s, model=1+age+%s\n",k2, resultline, model);
1.310     brouard  12811:       return 1;
1.234     brouard  12812:     }
                   12813:   }
1.334     brouard  12814:   /* cptcovres=j /\* Number of variables in the resultline is equal to cptcovs and thus useless *\/     */
1.234     brouard  12815:   /* We need to deduce which combination number is chosen and save quantitative values */
1.235     brouard  12816:   /* model line V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.330     brouard  12817:   /* nres=1st result line: V4=1 V5=25.1 V3=0  V2=8 V1=1 */
                   12818:   /* should correspond to the combination 6 of dummy: V4=1, V3=0, V1=1 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 1*1 + 0*2 + 1*4 = 5 + (1offset) = 6*/
                   12819:   /* nres=2nd result line: V4=1 V5=24.1 V3=1  V2=8 V1=0 */
1.235     brouard  12820:   /* should give a combination of dummy V4=1, V3=1, V1=0 => V4*2**(0) + V3*2**(1) + V1*2**(2) = 3 + (1offset) = 4*/
                   12821:   /*    1 0 0 0 */
                   12822:   /*    2 1 0 0 */
                   12823:   /*    3 0 1 0 */ 
1.330     brouard  12824:   /*    4 1 1 0 */ /* V4=1, V3=1, V1=0 (nres=2)*/
1.235     brouard  12825:   /*    5 0 0 1 */
1.330     brouard  12826:   /*    6 1 0 1 */ /* V4=1, V3=0, V1=1 (nres=1)*/
1.235     brouard  12827:   /*    7 0 1 1 */
                   12828:   /*    8 1 1 1 */
1.237     brouard  12829:   /* V(Tvresult)=Tresult V4=1 V3=0 V1=1 Tresult[nres=1][2]=0 */
                   12830:   /* V(Tvqresult)=Tqresult V5=25.1 V2=8 Tqresult[nres=1][1]=25.1 */
                   12831:   /* V5*age V5 known which value for nres?  */
                   12832:   /* Tqinvresult[2]=8 Tqinvresult[1]=25.1  */
1.334     brouard  12833:   for(k1=1, k=0, k4=0, k4q=0; k1 <=cptcovt;k1++){ /* cptcovt number of covariates (excluding 1 and age or age*age) in the MODEL equation.
                   12834:                                                   * loop on position k1 in the MODEL LINE */
1.331     brouard  12835:     /* k counting number of combination of single dummies in the equation model */
                   12836:     /* k4 counting single dummies in the equation model */
                   12837:     /* k4q counting single quantitatives in the equation model */
1.344     brouard  12838:     if( Dummy[k1]==0 && Typevar[k1]==0 ){ /* Dummy and Single, fixed or timevarying, k1 is sorting according to MODEL, but k3 to resultline */
1.334     brouard  12839:        /* k4+1= (not always if quant in model) position in the resultline V(Tvarsel)=Tvalsel=Tresult[nres][pos](value); V(Tvresult[nres][pos] (variable): V(variable)=value) */
1.332     brouard  12840:       /* modelresult[k3]=k1: k3th position in the result line corresponds to the k1 position in the model line (doesn't work with products)*/
1.330     brouard  12841:       /* Value in the (current nres) resultline of the variable at the k1th position in the model equation resultmodel[nres][k1]= k3 */
1.332     brouard  12842:       /* resultmodel[nres][k1]=k3: k1th position in the model correspond to the k3 position in the resultline                        */
                   12843:       /*      k3 is the position in the nres result line of the k1th variable of the model equation                                  */
                   12844:       /* Tvarsel[k3]: Name of the variable at the k3th position in the result line.                                                  */
                   12845:       /* Tvalsel[k3]: Value of the variable at the k3th position in the result line.                                                 */
                   12846:       /* Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline                   */
1.334     brouard  12847:       /* Tvresult[nres][result_position]= name of the dummy variable at the result_position in the nres resultline                     */
1.332     brouard  12848:       /* Tinvresult[nres][Name of a dummy variable]= value of the variable in the result line                                        */
1.330     brouard  12849:       /* TinvDoQresult[nres][Name of a Dummy or Q variable]= value of the variable in the result line                                                      */
1.332     brouard  12850:       k3= resultmodel[nres][k1]; /* From position k1 in model get position k3 in result line */
                   12851:       /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
                   12852:       k2=(int)Tvarsel[k3]; /* from position k3 in resultline get name k2: nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
1.330     brouard  12853:       k+=Tvalsel[k3]*pow(2,k4);  /* nres=1 k1=2 Tvalsel[1]=1 (V4=1); k1=3 k3=2 Tvalsel[2]=0 (V3=0) */
1.334     brouard  12854:       TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][Name]=Value; stores the value into the name of the variable. */
1.332     brouard  12855:       /* Tinvresult[nres][4]=1 */
1.334     brouard  12856:       /* Tresult[nres][k4+1]=Tvalsel[k3];/\* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) *\/ */
                   12857:       Tresult[nres][k3]=Tvalsel[k3];/* Tresult[nres=2][1]=1(V4=1)  Tresult[nres=2][2]=0(V3=0) */
                   12858:       /* Tvresult[nres][k4+1]=(int)Tvarsel[k3];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
                   12859:       Tvresult[nres][k3]=(int)Tvarsel[k3];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
1.237     brouard  12860:       Tinvresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* Tinvresult[nres][4]=1 */
1.334     brouard  12861:       precov[nres][k1]=Tvalsel[k3]; /* Value from resultline of the variable at the k1 position in the model */
1.342     brouard  12862:       /* printf("Decoderesult Dummy k=%d, k1=%d precov[nres=%d][k1=%d]=%.f V(k2=V%d)= Tvalsel[%d]=%d, 2**(%d)\n",k, k1, nres, k1,precov[nres][k1], k2, k3, (int)Tvalsel[k3], k4); */
1.235     brouard  12863:       k4++;;
1.331     brouard  12864:     }else if( Dummy[k1]==1 && Typevar[k1]==0 ){ /* Quantitative and single */
1.330     brouard  12865:       /* Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline                                 */
1.332     brouard  12866:       /* Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline                                 */
1.330     brouard  12867:       /* Tqinvresult[nres][Name of a quantitative variable]= value of the variable in the result line                                                      */
1.332     brouard  12868:       k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 5 =k3q */
                   12869:       k2q=(int)Tvarsel[k3q]; /*  Name of variable at k3q th position in the resultline */
                   12870:       /* Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
1.334     brouard  12871:       /* Tqresult[nres][k4q+1]=Tvalsel[k3q]; /\* Tqresult[nres][1]=25.1 *\/ */
                   12872:       /* Tvresult[nres][k4q+1]=(int)Tvarsel[k3q];/\* Tvresult[nres][1]=4 Tvresult[nres][3]=1 *\/ */
                   12873:       /* Tvqresult[nres][k4q+1]=(int)Tvarsel[k3q]; /\* Tvqresult[nres][1]=5 *\/ */
                   12874:       Tqresult[nres][k3q]=Tvalsel[k3q]; /* Tqresult[nres][1]=25.1 */
                   12875:       Tvresult[nres][k3q]=(int)Tvarsel[k3q];/* Tvresult[nres][1]=4 Tvresult[nres][3]=1 */
                   12876:       Tvqresult[nres][k3q]=(int)Tvarsel[k3q]; /* Tvqresult[nres][1]=5 */
1.237     brouard  12877:       Tqinvresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
1.330     brouard  12878:       TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* Tqinvresult[nres][5]=25.1 */
1.332     brouard  12879:       precov[nres][k1]=Tvalsel[k3q];
1.342     brouard  12880:       /* printf("Decoderesult Quantitative nres=%d,precov[nres=%d][k1=%d]=%.f V(k2q=V%d)= Tvalsel[%d]=%d, Tvarsel[%d]=%f\n",nres, nres, k1,precov[nres][k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */
1.235     brouard  12881:       k4q++;;
1.350     brouard  12882:     }else if( Dummy[k1]==2 ){ /* For dummy with age product "V2+V3+V4+V6+V7+V6*V2+V7*V2+V6*V3+V7*V3+V6*V4+V7*V4+age*V2+age*V3+age*V4+age*V6+age*V7+age*V6*V2+age*V6*V3+age*V7*V3+age*V6*V4+age*V7*V4\r"*/
                   12883:       /* Tvar[k1]; */ /* Age variable */ /* 17 age*V6*V2 ?*/
1.332     brouard  12884:       /* Wrong we want the value of variable name Tvar[k1] */
1.350     brouard  12885:       if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */
                   12886:        precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];      
                   12887:       /* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */
                   12888:       }else{
                   12889:        k3= resultmodel[nres][k1]; /* nres=1 k1=2 resultmodel[2(V4)] = 1=k3 ; k1=3 resultmodel[3(V3)] = 2=k3*/
                   12890:        k2=(int)Tvarsel[k3]; /* nres=1 k1=2=>k3=1 Tvarsel[resultmodel[2]]= Tvarsel[1] = 4=k2 (V4); k1=3=>k3=2 Tvarsel[2]=3 (V3)*/
                   12891:        TinvDoQresult[nres][(int)Tvarsel[k3]]=Tvalsel[k3]; /* TinvDoQresult[nres][4]=1 */
                   12892:        precov[nres][k1]=Tvalsel[k3];
                   12893:       }
1.342     brouard  12894:       /* printf("Decoderesult Dummy with age k=%d, k1=%d precov[nres=%d][k1=%d]=%.f Tvar[%d]=V%d k2=Tvarsel[%d]=%d Tvalsel[%d]=%d\n",k, k1, nres, k1,precov[nres][k1], k1, Tvar[k1], k3,(int)Tvarsel[k3], k3, (int)Tvalsel[k3]); */
1.331     brouard  12895:     }else if( Dummy[k1]==3 ){ /* For quant with age product */
1.350     brouard  12896:       if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */
                   12897:        precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];      
                   12898:       /* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */
                   12899:       }else{
                   12900:        k3q= resultmodel[nres][k1]; /* resultmodel[1(V5)] = 25.1=k3q */
                   12901:        k2q=(int)Tvarsel[k3q]; /*  Tvarsel[resultmodel[1]]= Tvarsel[1] = 4=k2 */
                   12902:        TinvDoQresult[nres][(int)Tvarsel[k3q]]=Tvalsel[k3q]; /* TinvDoQresult[nres][5]=25.1 */
                   12903:        precov[nres][k1]=Tvalsel[k3q];
                   12904:       }
1.342     brouard  12905:       /* printf("Decoderesult Quantitative with age nres=%d, k1=%d, precov[nres=%d][k1=%d]=%f Tvar[%d]=V%d V(k2q=%d)= Tvarsel[%d]=%d, Tvalsel[%d]=%f\n",nres, k1, nres, k1,precov[nres][k1], k1,  Tvar[k1], k2q, k3q, Tvarsel[k3q], k3q, Tvalsel[k3q]); */
1.349     brouard  12906:     }else if(Typevar[k1]==2 || Typevar[k1]==3 ){ /* For product quant or dummy (with or without age) */
1.332     brouard  12907:       precov[nres][k1]=TinvDoQresult[nres][Tvardk[k1][1]] * TinvDoQresult[nres][Tvardk[k1][2]];      
1.342     brouard  12908:       /* printf("Decoderesult Quantitative or Dummy (not with age) nres=%d k1=%d precov[nres=%d][k1=%d]=%.f V%d(=%.f) * V%d(=%.f) \n",nres, k1, nres, k1,precov[nres][k1], Tvardk[k1][1], TinvDoQresult[nres][Tvardk[k1][1]], Tvardk[k1][2], TinvDoQresult[nres][Tvardk[k1][2]]); */
1.330     brouard  12909:     }else{
1.332     brouard  12910:       printf("Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
                   12911:       fprintf(ficlog,"Error Decoderesult probably a product  Dummy[%d]==%d && Typevar[%d]==%d\n", k1, Dummy[k1], k1, Typevar[k1]);
1.235     brouard  12912:     }
                   12913:   }
1.234     brouard  12914:   
1.334     brouard  12915:   TKresult[nres]=++k; /* Number of combinations of dummies for the nresult and the model =Tvalsel[k3]*pow(2,k4) + 1*/
1.230     brouard  12916:   return (0);
                   12917: }
1.235     brouard  12918: 
1.230     brouard  12919: int decodemodel( char model[], int lastobs)
                   12920:  /**< This routine decodes the model and returns:
1.224     brouard  12921:        * Model  V1+V2+V3+V8+V7*V8+V5*V6+V8*age+V3*age+age*age
                   12922:        * - nagesqr = 1 if age*age in the model, otherwise 0.
                   12923:        * - cptcovt total number of covariates of the model nbocc(+)+1 = 8 excepting constant and age and age*age
                   12924:        * - cptcovn or number of covariates k of the models excluding age*products =6 and age*age
                   12925:        * - cptcovage number of covariates with age*products =2
                   12926:        * - cptcovs number of simple covariates
1.339     brouard  12927:        * ncovcolt=ncovcol+nqv+ntv+nqtv total of covariates in the data, not in the model equation
1.224     brouard  12928:        * - Tvar[k] is the id of the kth covariate Tvar[1]@12 {1, 2, 3, 8, 10, 11, 8, 3, 7, 8, 5, 6}, thus Tvar[5=V7*V8]=10
1.339     brouard  12929:        *     which is a new column after the 9 (ncovcol+nqv+ntv+nqtv) variables. 
1.319     brouard  12930:        * - if k is a product Vn*Vm, covar[k][i] is filled with correct values for each individual
1.224     brouard  12931:        * - Tprod[l] gives the kth covariates of the product Vn*Vm l=1 to cptcovprod-cptcovage
                   12932:        *    Tprod[1]@2 {5, 6}: position of first product V7*V8 is 5, and second V5*V6 is 6.
                   12933:        * - Tvard[k]  p Tvard[1][1]@4 {7, 8, 5, 6} for V7*V8 and V5*V6 .
                   12934:        */
1.319     brouard  12935: /* V2+V1+V4+V3*age Tvar[4]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1, Tage[1]=2 */
1.136     brouard  12936: {
1.359   ! brouard  12937:   int i, j, k, ks;/* , v;*/
1.349     brouard  12938:   int n,m;
                   12939:   int  j1, k1, k11, k12, k2, k3, k4;
                   12940:   char modelsav[300];
                   12941:   char stra[300], strb[300], strc[300], strd[300],stre[300],strf[300];
1.187     brouard  12942:   char *strpt;
1.349     brouard  12943:   int  **existcomb;
                   12944:   
                   12945:   existcomb=imatrix(1,NCOVMAX,1,NCOVMAX);
                   12946:   for(i=1;i<=NCOVMAX;i++)
                   12947:     for(j=1;j<=NCOVMAX;j++)
                   12948:       existcomb[i][j]=0;
                   12949:     
1.145     brouard  12950:   /*removespace(model);*/
1.136     brouard  12951:   if (strlen(model) >1){ /* If there is at least 1 covariate */
1.349     brouard  12952:     j=0, j1=0, k1=0, k12=0, k2=-1, ks=0, cptcovn=0;
1.137     brouard  12953:     if (strstr(model,"AGE") !=0){
1.192     brouard  12954:       printf("Error. AGE must be in lower case 'age' model=1+age+%s. ",model);
                   12955:       fprintf(ficlog,"Error. AGE must be in lower case model=1+age+%s. ",model);fflush(ficlog);
1.136     brouard  12956:       return 1;
                   12957:     }
1.141     brouard  12958:     if (strstr(model,"v") !=0){
1.338     brouard  12959:       printf("Error. 'v' must be in upper case 'V' model=1+age+%s ",model);
                   12960:       fprintf(ficlog,"Error. 'v' must be in upper case model=1+age+%s ",model);fflush(ficlog);
1.141     brouard  12961:       return 1;
                   12962:     }
1.187     brouard  12963:     strcpy(modelsav,model); 
                   12964:     if ((strpt=strstr(model,"age*age")) !=0){
1.338     brouard  12965:       printf(" strpt=%s, model=1+age+%s\n",strpt, model);
1.187     brouard  12966:       if(strpt != model){
1.338     brouard  12967:        printf("Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
1.192     brouard  12968:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
1.187     brouard  12969:  corresponding column of parameters.\n",model);
1.338     brouard  12970:        fprintf(ficlog,"Error in model: 'model=1+age+%s'; 'age*age' should in first place before other covariates\n \
1.192     brouard  12971:  'model=1+age+age*age+V1.' or 'model=1+age+age*age+V1+V1*age.', please swap as well as \n \
1.187     brouard  12972:  corresponding column of parameters.\n",model); fflush(ficlog);
1.234     brouard  12973:        return 1;
1.225     brouard  12974:       }
1.187     brouard  12975:       nagesqr=1;
                   12976:       if (strstr(model,"+age*age") !=0)
1.234     brouard  12977:        substrchaine(modelsav, model, "+age*age");
1.187     brouard  12978:       else if (strstr(model,"age*age+") !=0)
1.234     brouard  12979:        substrchaine(modelsav, model, "age*age+");
1.187     brouard  12980:       else 
1.234     brouard  12981:        substrchaine(modelsav, model, "age*age");
1.187     brouard  12982:     }else
                   12983:       nagesqr=0;
1.349     brouard  12984:     if (strlen(modelsav) >1){ /* V2 +V3 +V4 +V6 +V7 +V6*V2 +V7*V2 +V6*V3 +V7*V3 +V6*V4 +V7*V4 +age*V2 +age*V3 +age*V4 +age*V6 +age*V7 +age*V6*V2 +V7*V2 +age*V6*V3 +age*V7*V3 +age*V6*V4 +age*V7*V4 */
1.187     brouard  12985:       j=nbocc(modelsav,'+'); /**< j=Number of '+' */
                   12986:       j1=nbocc(modelsav,'*'); /**< j1=Number of '*' */
1.351     brouard  12987:       cptcovs=0; /**<  Number of simple covariates V1 +V1*age +V3 +V3*V4 +age*age => V1 + V3 =4+1-3=2  Wrong */
1.187     brouard  12988:       cptcovt= j+1; /* Number of total covariates in the model, not including
1.225     brouard  12989:                     * cst, age and age*age 
                   12990:                     * V1+V1*age+ V3 + V3*V4+age*age=> 3+1=4*/
                   12991:       /* including age products which are counted in cptcovage.
                   12992:        * but the covariates which are products must be treated 
                   12993:        * separately: ncovn=4- 2=2 (V1+V3). */
1.349     brouard  12994:       cptcovprod=0; /**< Number of products  V1*V2 +v3*age = 2 */
                   12995:       cptcovdageprod=0; /* Number of doouble products with age age*Vn*VM or Vn*age*Vm or Vn*Vm*age */
1.187     brouard  12996:       cptcovprodnoage=0; /**< Number of covariate products without age: V3*V4 =1  */
1.349     brouard  12997:       cptcovprodage=0;
                   12998:       /* cptcovprodage=nboccstr(modelsav,"age");*/
1.225     brouard  12999:       
1.187     brouard  13000:       /*   Design
                   13001:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9 Weight
                   13002:        *  <          ncovcol=8                >
                   13003:        * Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8
                   13004:        *   k=  1    2      3       4     5       6      7        8
                   13005:        *  cptcovn number of covariates (not including constant and age ) = # of + plus 1 = 7+1=8
1.345     brouard  13006:        *  covar[k,i], are for fixed covariates, value of kth covariate if not including age for individual i:
1.224     brouard  13007:        *       covar[1][i]= (V1), covar[4][i]=(V4), covar[8][i]=(V8)
                   13008:        *  Tvar[k] # of the kth covariate:  Tvar[1]=2  Tvar[2]=1 Tvar[4]=3 Tvar[8]=8
1.187     brouard  13009:        *       if multiplied by age: V3*age Tvar[3=V3*age]=3 (V3) Tvar[7]=8 and 
                   13010:        *  Tage[++cptcovage]=k
1.345     brouard  13011:        *       if products, new covar are created after ncovcol + nqv (quanti fixed) with k1
1.187     brouard  13012:        *  Tvar[k]=ncovcol+k1; # of the kth covariate product:  Tvar[5]=ncovcol+1=10  Tvar[6]=ncovcol+1=11
                   13013:        *  Tprod[k1]=k; Tprod[1]=5 Tprod[2]= 6; gives the position of the k1th product
                   13014:        *  Tvard[k1][1]=m Tvard[k1][2]=m; Tvard[1][1]=5 (V5) Tvard[1][2]=6 Tvard[2][1]=7 (V7) Tvard[2][2]=8
                   13015:        *  Tvar[cptcovn+k2]=Tvard[k1][1];Tvar[cptcovn+k2+1]=Tvard[k1][2];
                   13016:        *  Tvar[8+1]=5;Tvar[8+2]=6;Tvar[8+3]=7;Tvar[8+4]=8 inverted
                   13017:        *  V1   V2   V3   V4  V5  V6  V7  V8  V9  V10  V11
1.345     brouard  13018:        *  <          ncovcol=8  8 fixed covariate. Additional starts at 9 (V5*V6) and 10(V7*V8)              >
1.187     brouard  13019:        *       Model V2 + V1 + V3*age + V3 + V5*V6 + V7*V8 + V8*age + V8    d1   d1   d2  d2
                   13020:        *          k=  1    2      3       4     5       6      7        8    9   10   11  12
1.345     brouard  13021:        *     Tvard[k]= 2    1      3       3    10      11      8        8    5    6    7   8
                   13022:        * p Tvar[1]@12={2,   1,     3,      3,   9,     10,     8,       8}
1.187     brouard  13023:        * p Tprod[1]@2={                         6, 5}
                   13024:        *p Tvard[1][1]@4= {7, 8, 5, 6}
                   13025:        * covar[k][i]= V2   V1      ?      V3    V5*V6?   V7*V8?  ?       V8   
                   13026:        *  cov[Tage[kk]+2]=covar[Tvar[Tage[kk]]][i]*cov[2];
1.319     brouard  13027:        *How to reorganize? Tvars(orted)
1.187     brouard  13028:        * Model V1 + V2 + V3 + V8 + V5*V6 + V7*V8 + V3*age + V8*age
                   13029:        * Tvars {2,   1,     3,      3,   11,     10,     8,       8,   7,   8,   5,  6}
                   13030:        *       {2,   1,     4,      8,    5,      6,     3,       7}
                   13031:        * Struct []
                   13032:        */
1.225     brouard  13033:       
1.187     brouard  13034:       /* This loop fills the array Tvar from the string 'model'.*/
                   13035:       /* j is the number of + signs in the model V1+V2+V3 j=2 i=3 to 1 */
                   13036:       /*   modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4  */
                   13037:       /*       k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tage[cptcovage=1]=4 */
                   13038:       /*       k=3 V4 Tvar[k=3]= 4 (from V4) */
                   13039:       /*       k=2 V1 Tvar[k=2]= 1 (from V1) */
                   13040:       /*       k=1 Tvar[1]=2 (from V2) */
                   13041:       /*       k=5 Tvar[5] */
                   13042:       /* for (k=1; k<=cptcovn;k++) { */
1.198     brouard  13043:       /*       cov[2+k]=nbcode[Tvar[k]][codtabm(ij,Tvar[k])]; */
1.187     brouard  13044:       /*       } */
1.198     brouard  13045:       /* for (k=1; k<=cptcovage;k++) cov[2+Tage[k]]=nbcode[Tvar[Tage[k]]][codtabm(ij,Tvar[Tage[k])]]*cov[2]; */
1.187     brouard  13046:       /*
                   13047:        * Treating invertedly V2+V1+V3*age+V2*V4 is as if written V2*V4 +V3*age + V1 + V2 */
1.227     brouard  13048:       for(k=cptcovt; k>=1;k--){ /**< Number of covariates not including constant and age, neither age*age*/
                   13049:         Tvar[k]=0; Tprod[k]=0; Tposprod[k]=0;
                   13050:       }
1.187     brouard  13051:       cptcovage=0;
1.351     brouard  13052: 
                   13053:       /* First loop in order to calculate */
                   13054:       /* for age*VN*Vm
                   13055:        * Provides, Typevar[k], Tage[cptcovage], existcomb[n][m], FixedV[ncovcolt+k12]
                   13056:        * Tprod[k1]=k  Tposprod[k]=k1;    Tvard[k1][1] =m;
                   13057:       */
                   13058:       /* Needs  FixedV[Tvardk[k][1]] */
                   13059:       /* For others:
                   13060:        * Sets  Typevar[k];
                   13061:        * Tvar[k]=ncovcol+nqv+ntv+nqtv+k11;
                   13062:        *       Tposprod[k]=k11;
                   13063:        *       Tprod[k11]=k;
                   13064:        *       Tvardk[k][1] =m;
                   13065:        * Needs FixedV[Tvardk[k][1]] == 0
                   13066:       */
                   13067:       
1.319     brouard  13068:       for(k=1; k<=cptcovt;k++){ /* Loop on total covariates of the model line */
                   13069:        cutl(stra,strb,modelsav,'+'); /* keeps in strb after the first '+' cutl from left to right
                   13070:                                         modelsav==V2+V1+V5*age+V4+V3*age strb=V3*age stra=V2+V1V5*age+V4 */    /* <model> "V5+V4+V3+V4*V3+V5*age+V1*age+V1" strb="V5" stra="V4+V3+V4*V3+V5*age+V1*age+V1" */
                   13071:        if (nbocc(modelsav,'+')==0)
                   13072:          strcpy(strb,modelsav); /* and analyzes it */
1.234     brouard  13073:        /*      printf("i=%d a=%s b=%s sav=%s\n",i, stra,strb,modelsav);*/
                   13074:        /*scanf("%d",i);*/
1.349     brouard  13075:        if (strchr(strb,'*')) {  /**< Model includes a product V2+V1+V5*age+ V4+V3*age strb=V3*age OR double product with age strb=age*V6*V2 or V6*V2*age or V6*age*V2 */
                   13076:          cutl(strc,strd,strb,'*'); /**< k=1 strd*strc  Vm*Vn: strb=V3*age(input) strc=age strd=V3 ; V3*V2 strc=V2, strd=V3 OR strb=age*V6*V2 strc=V6*V2 strd=age OR c=V2*age OR c=age*V2  */
                   13077:          if(strchr(strc,'*')) { /**< Model with age and DOUBLE product: allowed since 0.99r44, strc=V6*V2 or V2*age or age*V2, strd=age or V6 or V6   */
                   13078:            Typevar[k]=3;  /* 3 for age and double product age*Vn*Vm varying of fixed */
                   13079:             if(strstr(strc,"age")!=0) { /* It means that strc=V2*age or age*V2 and thus that strd=Vn */
                   13080:               cutl(stre,strf,strc,'*') ; /* strf=age or Vm, stre=Vm or age. If strc=V6*V2 then strf=V6 and stre=V2 */
                   13081:              strcpy(strc,strb); /* save strb(=age*Vn*Vm) into strc */
                   13082:              /* We want strb=Vn*Vm */
                   13083:               if(strcmp(strf,"age")==0){ /* strf is "age" so that stre=Vm =V2 . */
                   13084:                 strcpy(strb,strd);
                   13085:                 strcat(strb,"*");
                   13086:                 strcat(strb,stre);
                   13087:               }else{  /* strf=Vm  If strf=V6 then stre=V2 */
                   13088:                 strcpy(strb,strf);
                   13089:                 strcat(strb,"*");
                   13090:                 strcat(strb,stre);
                   13091:                 strcpy(strd,strb); /* in order for strd to not be "age"  for next test (will be Vn*Vm */
                   13092:               }
1.351     brouard  13093:              /* printf("DEBUG FIXED k=%d, Tage[k]=%d, Tvar[Tage[k]=%d,FixedV[Tvar[Tage[k]]]=%d\n",k,Tage[k],Tvar[Tage[k]],FixedV[Tvar[Tage[k]]]); */
                   13094:              /* FixedV[Tvar[Tage[k]]]=0; /\* HERY not sure if V7*V4*age Fixed might not exist  yet*\/ */
1.349     brouard  13095:             }else{  /* strc=Vn*Vm (and strd=age) and should be strb=Vn*Vm but want to keep original strb double product  */
                   13096:              strcpy(stre,strb); /* save full b in stre */
                   13097:              strcpy(strb,strc); /* save short c in new short b for next block strb=Vn*Vm*/
                   13098:              strcpy(strf,strc); /* save short c in new short f */
                   13099:               cutl(strc,strd,strf,'*'); /* We get strd=Vn and strc=Vm for next block (strb=Vn*Vm)*/
                   13100:              /* strcpy(strc,stre);*/ /* save full e in c for future */
                   13101:             }
                   13102:             cptcovdageprod++; /* double product with age  Which product is it? */
                   13103:             /* strcpy(strb,strc);  /\* strb was age*V6*V2 or V6*V2*age or V6*age*V2 IS now V6*V2 or V2*age or age*V2 *\/ */
                   13104:             /* cutl(strc,strd,strb,'*'); /\* strd=  V6    or   V2     or    age and  strc=  V2 or    age or    V2 *\/ */
1.234     brouard  13105:            cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
1.349     brouard  13106:            n=atoi(stre);
1.234     brouard  13107:            cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
1.349     brouard  13108:            m=atoi(strc);
                   13109:            cptcovage++; /* Counts the number of covariates which include age as a product */
                   13110:            Tage[cptcovage]=k; /* For age*V3*V2 gives the position in model of covariates associated with age Tage[1]=6 HERY too*/
                   13111:            if(existcomb[n][m] == 0){
                   13112:              /*  r /home/brouard/Documents/Recherches/REVES/Zachary/Zach-2022/Feinuo_Sun/Feinuo-threeway/femV12V15_3wayintNBe.imach */
                   13113:              printf("Warning in model combination V%d*V%d should exist in the model before adding V%d*V%d*age !\n",n,m,n,m);
                   13114:              fprintf(ficlog,"Warning in model combination V%d*V%d should exist in the model before adding V%d*V%d*age !\n",n,m,n,m);
                   13115:              fflush(ficlog);
                   13116:              k1++;  /* The combination Vn*Vm will be in the model so we create it at k1 */
                   13117:              k12++;
                   13118:              existcomb[n][m]=k1;
                   13119:              existcomb[m][n]=k1;
                   13120:              Tvar[k]=ncovcol+nqv+ntv+nqtv+k1;
                   13121:              Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2+ age*V6*V3 Gives the k position of the k1 double product Vn*Vm or age*Vn*Vm*/
                   13122:              Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 Gives the k1 double product  Vn*Vm or age*Vn*Vm at the k position */
                   13123:              Tvard[k1][1] =m; /* m 1 for V1*/
                   13124:              Tvardk[k][1] =m; /* m 1 for V1*/
                   13125:              Tvard[k1][2] =n; /* n 4 for V4*/
                   13126:              Tvardk[k][2] =n; /* n 4 for V4*/
1.351     brouard  13127: /*           Tvar[Tage[cptcovage]]=k1;*/ /* Tvar[6=age*V3*V2]=9 (new fixed covariate) */ /* We don't know about Fixed yet HERE */
1.349     brouard  13128:              if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */
                   13129:                for (i=1; i<=lastobs;i++){/* For fixed product */
                   13130:                  /* Computes the new covariate which is a product of
                   13131:                     covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                   13132:                  covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
                   13133:                }
                   13134:                cptcovprodage++; /* Counting the number of fixed covariate with age */
                   13135:                FixedV[ncovcolt+k12]=0; /* We expand Vn*Vm */
                   13136:                k12++;
                   13137:                FixedV[ncovcolt+k12]=0;
                   13138:              }else{ /*End of FixedV */
                   13139:                cptcovprodvage++; /* Counting the number of varying covariate with age */
                   13140:                FixedV[ncovcolt+k12]=1; /* We expand Vn*Vm */
                   13141:                k12++;
                   13142:                FixedV[ncovcolt+k12]=1;
                   13143:              }
                   13144:            }else{  /* k1 Vn*Vm already exists */
                   13145:              k11=existcomb[n][m];
                   13146:              Tposprod[k]=k11; /* OK */
                   13147:              Tvar[k]=Tvar[Tprod[k11]]; /* HERY */
                   13148:              Tvardk[k][1]=m;
                   13149:              Tvardk[k][2]=n;
                   13150:              if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */
                   13151:                /*cptcovage++;*/ /* Counts the number of covariates which include age as a product */
                   13152:                cptcovprodage++; /* Counting the number of fixed covariate with age */
                   13153:                /*Tage[cptcovage]=k;*/ /* For age*V3*V2 Tage[1]=V3*V3=9 HERY too*/
                   13154:                Tvar[Tage[cptcovage]]=k1;
                   13155:                FixedV[ncovcolt+k12]=0; /* We expand Vn*Vm */
                   13156:                k12++;
                   13157:                FixedV[ncovcolt+k12]=0;
                   13158:              }else{ /* Already exists but time varying (and age) */
                   13159:                /*cptcovage++;*/ /* Counts the number of covariates which include age as a product */
                   13160:                /*Tage[cptcovage]=k;*/ /* For age*V3*V2 Tage[1]=V3*V3=9 HERY too*/
                   13161:                /* Tvar[Tage[cptcovage]]=k1; */
                   13162:                cptcovprodvage++;
                   13163:                FixedV[ncovcolt+k12]=1; /* We expand Vn*Vm */
                   13164:                k12++;
                   13165:                FixedV[ncovcolt+k12]=1;
                   13166:              }
                   13167:            }
                   13168:            /* Tage[cptcovage]=k;  /\*  V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 *\/ */
                   13169:            /* Tvar[k]=k11; /\* HERY *\/ */
                   13170:          } else {/* simple product strb=age*Vn so that c=Vn and d=age, or strb=Vn*age so that c=age and d=Vn, or b=Vn*Vm so that c=Vm and d=Vn */
                   13171:             cptcovprod++;
                   13172:             if (strcmp(strc,"age")==0) { /**< Model includes age: strb= Vn*age c=age d=Vn*/
                   13173:               /* covar is not filled and then is empty */
                   13174:               cutl(stre,strb,strd,'V'); /* strd=V3(input): stre="3" */
                   13175:               Tvar[k]=atoi(stre);  /* V2+V1+V5*age+V4+V3*age Tvar[5]=3 ; V1+V2*age Tvar[2]=2; V1+V1*age Tvar[2]=1 */
                   13176:               Typevar[k]=1;  /* 1 for age product */
                   13177:               cptcovage++; /* Counts the number of covariates which include age as a product */
                   13178:               Tage[cptcovage]=k;  /*  V2+V1+V4+V3*age Tvar[4]=3, Tage[1] = 4 or V1+V1*age Tvar[2]=1, Tage[1]=2 */
                   13179:              if( FixedV[Tvar[k]] == 0){
                   13180:                cptcovprodage++; /* Counting the number of fixed covariate with age */
                   13181:              }else{
                   13182:                cptcovprodvage++; /* Counting the number of fixedvarying covariate with age */
                   13183:              }
                   13184:               /*printf("stre=%s ", stre);*/
                   13185:             } else if (strcmp(strd,"age")==0) { /* strb= age*Vn c=Vn */
                   13186:               cutl(stre,strb,strc,'V');
                   13187:               Tvar[k]=atoi(stre);
                   13188:               Typevar[k]=1;  /* 1 for age product */
                   13189:               cptcovage++;
                   13190:               Tage[cptcovage]=k;
                   13191:              if( FixedV[Tvar[k]] == 0){
                   13192:                cptcovprodage++; /* Counting the number of fixed covariate with age */
                   13193:              }else{
                   13194:                cptcovprodvage++; /* Counting the number of fixedvarying covariate with age */
1.339     brouard  13195:              }
1.349     brouard  13196:             }else{ /*  for product Vn*Vm */
                   13197:              Typevar[k]=2;  /* 2 for product Vn*Vm */
                   13198:              cutl(stre,strb,strc,'V'); /* strc= Vn, stre is n; strb=V3*V2 stre=3 strc=*/
                   13199:              n=atoi(stre);
                   13200:              cutl(strc,strb,strd,'V'); /* strd was Vm, strc is m */
                   13201:              m=atoi(strc);
                   13202:              k1++;
                   13203:              cptcovprodnoage++;
                   13204:              if(existcomb[n][m] != 0 || existcomb[m][n] != 0){
                   13205:                printf("Warning in model combination V%d*V%d already exists in the model in position k1=%d!\n",n,m,existcomb[n][m]);
                   13206:                fprintf(ficlog,"Warning in model combination V%d*V%d already exists in the model in position k1=%d!\n",n,m,existcomb[n][m]);
                   13207:                fflush(ficlog);
                   13208:                k11=existcomb[n][m];
                   13209:                Tvar[k]=ncovcol+nqv+ntv+nqtv+k11;
                   13210:                Tposprod[k]=k11;
                   13211:                Tprod[k11]=k;
                   13212:                Tvardk[k][1] =m; /* m 1 for V1*/
                   13213:                /* Tvard[k11][1] =m; /\* n 4 for V4*\/ */
                   13214:                Tvardk[k][2] =n; /* n 4 for V4*/                
                   13215:                /* Tvard[k11][2] =n; /\* n 4 for V4*\/ */
                   13216:              }else{ /* combination Vn*Vm doesn't exist we create it (no age)*/
                   13217:                existcomb[n][m]=k1;
                   13218:                existcomb[m][n]=k1;
                   13219:                Tvar[k]=ncovcol+nqv+ntv+nqtv+k1; /* ncovcolt+k1; For model-covariate k tells which data-covariate to use but
                   13220:                                                    because this model-covariate is a construction we invent a new column
                   13221:                                                    which is after existing variables ncovcol+nqv+ntv+nqtv + k1
                   13222:                                                    If already ncovcol=4 and model= V2 + V1 + V1*V4 + age*V3 + V3*V2
                   13223:                                                    thus after V4 we invent V5 and V6 because age*V3 will be computed in 4
                   13224:                                                    Tvar[3=V1*V4]=4+1=5 Tvar[5=V3*V2]=4 + 2= 6, Tvar[4=age*V3]=3 etc */
                   13225:                /* Please remark that the new variables are model dependent */
                   13226:                /* If we have 4 variable but the model uses only 3, like in
                   13227:                 * model= V1 + age*V1 + V2 + V3 + age*V2 + age*V3 + V1*V2 + V1*V3
                   13228:                 *  k=     1     2      3   4     5        6        7       8
                   13229:                 * Tvar[k]=1     1       2   3     2        3       (5       6) (and not 4 5 because of V4 missing)
                   13230:                 * Tage[kk]    [1]= 2           [2]=5      [3]=6                  kk=1 to cptcovage=3
                   13231:                 * Tvar[Tage[kk]][1]=2          [2]=2      [3]=3
                   13232:                 */
                   13233:                /* We need to feed some variables like TvarVV, but later on next loop because of ncovv (k2) is not correct */
                   13234:                Tprod[k1]=k;  /* Tprod[1]=3(=V1*V4) for V2+V1+V1*V4+age*V3+V3*V2 +V6*V2*age  */
                   13235:                Tposprod[k]=k1; /* Tposprod[3]=1, Tposprod[2]=5 */
                   13236:                Tvard[k1][1] =m; /* m 1 for V1*/
                   13237:                Tvardk[k][1] =m; /* m 1 for V1*/
                   13238:                Tvard[k1][2] =n; /* n 4 for V4*/
                   13239:                Tvardk[k][2] =n; /* n 4 for V4*/
                   13240:                k2=k2+2;  /* k2 is initialize to -1, We want to store the n and m in Vn*Vm at the end of Tvar */
                   13241:                /* Tvar[cptcovt+k2]=Tvard[k1][1]; /\* Tvar[(cptcovt=4+k2=1)=5]= 1 (V1) *\/ */
                   13242:                /* Tvar[cptcovt+k2+1]=Tvard[k1][2];  /\* Tvar[(cptcovt=4+(k2=1)+1)=6]= 4 (V4) *\/ */
                   13243:                /*ncovcol=4 and model=V2+V1+V1*V4+age*V3+V3*V2, Tvar[3]=5, Tvar[4]=6, cptcovt=5 */
                   13244:                /*                     1  2   3      4     5 | Tvar[5+1)=1, Tvar[7]=2   */
                   13245:                if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* If the product is a fixed covariate then we feed the new column with Vn*Vm */
                   13246:                  for (i=1; i<=lastobs;i++){/* For fixed product */
                   13247:                    /* Computes the new covariate which is a product of
                   13248:                       covar[n][i]* covar[m][i] and stores it at ncovol+k1 May not be defined */
                   13249:                    covar[ncovcolt+k1][i]=covar[atoi(stre)][i]*covar[atoi(strc)][i];
                   13250:                  }
                   13251:                  /* TvarVV[k2]=n; */
                   13252:                  /* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   13253:                  /* TvarVV[k2+1]=m; */
                   13254:                  /* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   13255:                }else{ /* not FixedV */
                   13256:                  /* TvarVV[k2]=n; */
                   13257:                  /* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   13258:                  /* TvarVV[k2+1]=m; */
                   13259:                  /* FixedV[ncovcolt+k2]=0; /\* or FixedV[Tvar[k]]=0; FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   13260:                }                 
                   13261:              }  /* End of creation of Vn*Vm if not created by age*Vn*Vm earlier  */
                   13262:            } /*  End of product Vn*Vm */
                   13263:           } /* End of age*double product or simple product */
                   13264:        }else { /* not a product */
1.234     brouard  13265:          /*printf("d=%s c=%s b=%s\n", strd,strc,strb);*/
                   13266:          /*  scanf("%d",i);*/
                   13267:          cutl(strd,strc,strb,'V');
                   13268:          ks++; /**< Number of simple covariates dummy or quantitative, fixe or varying */
                   13269:          cptcovn++; /** V4+V3+V5: V4 and V3 timevarying dummy covariates, V5 timevarying quantitative */
                   13270:          Tvar[k]=atoi(strd);
                   13271:          Typevar[k]=0;  /* 0 for simple covariates */
                   13272:        }
                   13273:        strcpy(modelsav,stra);  /* modelsav=V2+V1+V4 stra=V2+V1+V4 */ 
1.223     brouard  13274:                                /*printf("a=%s b=%s sav=%s\n", stra,strb,modelsav);
1.225     brouard  13275:                                  scanf("%d",i);*/
1.187     brouard  13276:       } /* end of loop + on total covariates */
1.351     brouard  13277: 
                   13278:       
1.187     brouard  13279:     } /* end if strlen(modelsave == 0) age*age might exist */
                   13280:   } /* end if strlen(model == 0) */
1.349     brouard  13281:   cptcovs=cptcovt - cptcovdageprod - cptcovprod;/**<  Number of simple covariates V1 +V1*age +V3 +V3*V4 +age*age + age*v4*V3=> V1 + V3 =4+1-3=2  */
                   13282: 
1.136     brouard  13283:   /*The number n of Vn is stored in Tvar. cptcovage =number of age covariate. Tage gives the position of age. cptcovprod= number of products.
                   13284:     If model=V1+V1*age then Tvar[1]=1 Tvar[2]=1 cptcovage=1 Tage[1]=2 cptcovprod=0*/
1.225     brouard  13285:   
1.136     brouard  13286:   /* printf("tvar1=%d tvar2=%d tvar3=%d cptcovage=%d Tage=%d",Tvar[1],Tvar[2],Tvar[3],cptcovage,Tage[1]);
1.225     brouard  13287:      printf("cptcovprod=%d ", cptcovprod);
                   13288:      fprintf(ficlog,"cptcovprod=%d ", cptcovprod);
                   13289:      scanf("%d ",i);*/
                   13290: 
                   13291: 
1.230     brouard  13292: /* Until here, decodemodel knows only the grammar (simple, product, age*) of the model but not what kind
                   13293:    of variable (dummy vs quantitative, fixed vs time varying) is behind. But we know the # of each. */
1.226     brouard  13294: /* ncovcol= 1, nqv=1 | ntv=2, nqtv= 1  = 5 possible variables data: 2 fixed 3, varying
                   13295:    model=        V5 + V4 +V3 + V4*V3 + V5*age + V2 + V1*V2 + V1*age + V5*age, V1 is not used saving its place
                   13296:    k =           1    2   3     4       5       6      7      8        9
                   13297:    Tvar[k]=      5    4   3 1+1+2+1+1=6 5       2      7      1        5
1.319     brouard  13298:    Typevar[k]=   0    0   0     2       1       0      2      1        0
1.227     brouard  13299:    Fixed[k]      1    1   1     1       3       0    0 or 2   2        3
                   13300:    Dummy[k]      1    0   0     0       3       1      1      2        3
                   13301:          Tmodelind[combination of covar]=k;
1.225     brouard  13302: */  
                   13303: /* Dispatching between quantitative and time varying covariates */
1.226     brouard  13304:   /* If Tvar[k] >ncovcol it is a product */
1.225     brouard  13305:   /* Tvar[k] is the value n of Vn with n varying for 1 to nvcol, or p  Vp=Vn*Vm for product */
1.226     brouard  13306:        /* Computing effective variables, ie used by the model, that is from the cptcovt variables */
1.318     brouard  13307:   printf("Model=1+age+%s\n\
1.349     brouard  13308: Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product, 3 for double product with age \n\
1.227     brouard  13309: Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
                   13310: Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
1.318     brouard  13311:   fprintf(ficlog,"Model=1+age+%s\n\
1.349     brouard  13312: Typevar: 0 for simple covariate (dummy, quantitative, fixed or varying), 1 for age product, 2 for  product, 3 for double product with age  \n\
1.227     brouard  13313: Fixed[k] 0=fixed (product or simple), 1 varying, 2 fixed with age product, 3 varying with age product \n\
                   13314: Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product\n",model);
1.342     brouard  13315:   for(k=-1;k<=NCOVMAX; k++){ Fixed[k]=0; Dummy[k]=0;}
                   13316:   for(k=1;k<=NCOVMAX; k++){TvarFind[k]=0; TvarVind[k]=0;}
1.351     brouard  13317: 
                   13318: 
                   13319:   /* Second loop for calculating  Fixed[k], Dummy[k]*/
                   13320: 
                   13321:   
1.349     brouard  13322:   for(k=1, ncovf=0, nsd=0, nsq=0, ncovv=0,ncovva=0,ncovvta=0, ncova=0, ncoveff=0, nqfveff=0, ntveff=0, nqtveff=0, ncovvt=0;k<=cptcovt; k++){ /* or cptocvt loop on k from model */
1.234     brouard  13323:     if (Tvar[k] <=ncovcol && Typevar[k]==0 ){ /* Simple fixed dummy (<=ncovcol) covariates */
1.227     brouard  13324:       Fixed[k]= 0;
                   13325:       Dummy[k]= 0;
1.225     brouard  13326:       ncoveff++;
1.232     brouard  13327:       ncovf++;
1.234     brouard  13328:       nsd++;
                   13329:       modell[k].maintype= FTYPE;
                   13330:       TvarsD[nsd]=Tvar[k];
                   13331:       TvarsDind[nsd]=k;
1.330     brouard  13332:       TnsdVar[Tvar[k]]=nsd;
1.234     brouard  13333:       TvarF[ncovf]=Tvar[k];
                   13334:       TvarFind[ncovf]=k;
                   13335:       TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   13336:       TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
1.339     brouard  13337:     /* }else if( Tvar[k] <=ncovcol &&  Typevar[k]==2){ /\* Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol *\/ */
1.240     brouard  13338:     }else if( Tvar[k] <=ncovcol+nqv && Typevar[k]==0){/* Remind that product Vn*Vm are added in k Only simple fixed quantitative variable */
1.227     brouard  13339:       Fixed[k]= 0;
                   13340:       Dummy[k]= 1;
1.230     brouard  13341:       nqfveff++;
1.234     brouard  13342:       modell[k].maintype= FTYPE;
                   13343:       modell[k].subtype= FQ;
                   13344:       nsq++;
1.334     brouard  13345:       TvarsQ[nsq]=Tvar[k]; /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary see below */
                   13346:       TvarsQind[nsq]=k;    /* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
1.232     brouard  13347:       ncovf++;
1.234     brouard  13348:       TvarF[ncovf]=Tvar[k];
                   13349:       TvarFind[ncovf]=k;
1.231     brouard  13350:       TvarFQ[nqfveff]=Tvar[k]-ncovcol; /* TvarFQ[1]=V2-1=1st in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
1.230     brouard  13351:       TvarFQind[nqfveff]=k; /* TvarFQind[1]=6 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple fixed quantitative variable */
1.242     brouard  13352:     }else if( Tvar[k] <=ncovcol+nqv+ntv && Typevar[k]==0){/* Only simple time varying dummy variables */
1.339     brouard  13353:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
                   13354:       /* model V1+V3+age*V1+age*V3+V1*V3 */
                   13355:       /*  Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   13356:       ncovvt++;
                   13357:       TvarVV[ncovvt]=Tvar[k];  /*  TvarVV[1]=V3 (first time varying in the model equation  */
                   13358:       TvarVVind[ncovvt]=k;    /*  TvarVVind[1]=2 (second position in the model equation  */
                   13359: 
1.227     brouard  13360:       Fixed[k]= 1;
                   13361:       Dummy[k]= 0;
1.225     brouard  13362:       ntveff++; /* Only simple time varying dummy variable */
1.234     brouard  13363:       modell[k].maintype= VTYPE;
                   13364:       modell[k].subtype= VD;
                   13365:       nsd++;
                   13366:       TvarsD[nsd]=Tvar[k];
                   13367:       TvarsDind[nsd]=k;
1.330     brouard  13368:       TnsdVar[Tvar[k]]=nsd; /* To be verified */
1.234     brouard  13369:       ncovv++; /* Only simple time varying variables */
                   13370:       TvarV[ncovv]=Tvar[k];
1.242     brouard  13371:       TvarVind[ncovv]=k; /* TvarVind[2]=2  TvarVind[3]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
1.231     brouard  13372:       TvarVD[ntveff]=Tvar[k]; /* TvarVD[1]=V4  TvarVD[2]=V3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
                   13373:       TvarVDind[ntveff]=k; /* TvarVDind[1]=2 TvarVDind[2]=3 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying dummy variable */
1.228     brouard  13374:       printf("Quasi Tmodelind[%d]=%d,Tvar[Tmodelind[%d]]=V%d, ncovcol=%d, nqv=%d,Tvar[k]- ncovcol-nqv=%d\n",ntveff,k,ntveff,Tvar[k], ncovcol, nqv,Tvar[k]- ncovcol-nqv);
                   13375:       printf("Quasi TmodelInvind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv);
1.231     brouard  13376:     }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv  && Typevar[k]==0){ /* Only simple time varying quantitative variable V5*/
1.339     brouard  13377:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
                   13378:       /* model V1+V3+age*V1+age*V3+V1*V3 */
                   13379:       /*  Tvar={1, 3, 1, 3, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   13380:       ncovvt++;
                   13381:       TvarVV[ncovvt]=Tvar[k];  /*  TvarVV[1]=V3 (first time varying in the model equation  */
                   13382:       TvarVVind[ncovvt]=k;  /*  TvarVV[1]=V3 (first time varying in the model equation  */
                   13383:       
1.234     brouard  13384:       Fixed[k]= 1;
                   13385:       Dummy[k]= 1;
                   13386:       nqtveff++;
                   13387:       modell[k].maintype= VTYPE;
                   13388:       modell[k].subtype= VQ;
                   13389:       ncovv++; /* Only simple time varying variables */
                   13390:       nsq++;
1.334     brouard  13391:       TvarsQ[nsq]=Tvar[k]; /* k=1 Tvar=5 nsq=1 TvarsQ[1]=5 */ /* Gives the variable name (extended to products) of first nsq simple quantitative covariates (fixed or time vary here) */
                   13392:       TvarsQind[nsq]=k; /* For single quantitative covariate gives the model position of each single quantitative covariate *//* Gives the position in the model equation of the first nsq simple quantitative covariates (fixed or time vary) */
1.234     brouard  13393:       TvarV[ncovv]=Tvar[k];
1.242     brouard  13394:       TvarVind[ncovv]=k; /* TvarVind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Any time varying singele */
1.231     brouard  13395:       TvarVQ[nqtveff]=Tvar[k]; /* TvarVQ[1]=V5 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
                   13396:       TvarVQind[nqtveff]=k; /* TvarVQind[1]=1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */ /* Only simple time varying quantitative variable */
1.234     brouard  13397:       TmodelInvQind[nqtveff]=Tvar[k]- ncovcol-nqv-ntv;/* Only simple time varying quantitative variable */
                   13398:       /* Tmodeliqind[k]=nqtveff;/\* Only simple time varying quantitative variable *\/ */
1.349     brouard  13399:       /* printf("Quasi TmodelQind[%d]=%d,Tvar[TmodelQind[%d]]=V%d, ncovcol=%d, nqv=%d, ntv=%Ad,Tvar[k]- ncovcol-nqv-ntv=%d\n",nqtveff,k,nqtveff,Tvar[k], ncovcol, nqv, ntv, Tvar[k]- ncovcol-nqv-ntv); */
1.342     brouard  13400:       /* printf("Quasi TmodelInvQind[%d]=%d\n",k,Tvar[k]- ncovcol-nqv-ntv); */
1.227     brouard  13401:     }else if (Typevar[k] == 1) {  /* product with age */
1.234     brouard  13402:       ncova++;
                   13403:       TvarA[ncova]=Tvar[k];
                   13404:       TvarAind[ncova]=k;
1.349     brouard  13405:       /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */
                   13406:       /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
1.231     brouard  13407:       if (Tvar[k] <=ncovcol ){ /* Product age with fixed dummy covariatee */
1.240     brouard  13408:        Fixed[k]= 2;
                   13409:        Dummy[k]= 2;
                   13410:        modell[k].maintype= ATYPE;
                   13411:        modell[k].subtype= APFD;
1.349     brouard  13412:        ncovta++;
                   13413:        TvarAVVA[ncovta]=Tvar[k]; /*  (2)age*V3 */
                   13414:        TvarAVVAind[ncovta]=k;
1.240     brouard  13415:        /* ncoveff++; */
1.227     brouard  13416:       }else if( Tvar[k] <=ncovcol+nqv) { /* Remind that product Vn*Vm are added in k*/
1.240     brouard  13417:        Fixed[k]= 2;
                   13418:        Dummy[k]= 3;
                   13419:        modell[k].maintype= ATYPE;
                   13420:        modell[k].subtype= APFQ;                /*      Product age * fixed quantitative */
1.349     brouard  13421:        ncovta++;
                   13422:        TvarAVVA[ncovta]=Tvar[k]; /*   */
                   13423:        TvarAVVAind[ncovta]=k;
1.240     brouard  13424:        /* nqfveff++;  /\* Only simple fixed quantitative variable *\/ */
1.227     brouard  13425:       }else if( Tvar[k] <=ncovcol+nqv+ntv ){
1.240     brouard  13426:        Fixed[k]= 3;
                   13427:        Dummy[k]= 2;
                   13428:        modell[k].maintype= ATYPE;
                   13429:        modell[k].subtype= APVD;                /*      Product age * varying dummy */
1.349     brouard  13430:        ncovva++;
                   13431:        TvarVVA[ncovva]=Tvar[k]; /*  (1)+age*V6 + (2)age*V7 */
                   13432:        TvarVVAind[ncovva]=k;
                   13433:        ncovta++;
                   13434:        TvarAVVA[ncovta]=Tvar[k]; /*   */
                   13435:        TvarAVVAind[ncovta]=k;
1.240     brouard  13436:        /* ntveff++; /\* Only simple time varying dummy variable *\/ */
1.227     brouard  13437:       }else if( Tvar[k] <=ncovcol+nqv+ntv+nqtv){
1.240     brouard  13438:        Fixed[k]= 3;
                   13439:        Dummy[k]= 3;
                   13440:        modell[k].maintype= ATYPE;
                   13441:        modell[k].subtype= APVQ;                /*      Product age * varying quantitative */
1.349     brouard  13442:        ncovva++;
                   13443:        TvarVVA[ncovva]=Tvar[k]; /*   */
                   13444:        TvarVVAind[ncovva]=k;
                   13445:        ncovta++;
                   13446:        TvarAVVA[ncovta]=Tvar[k]; /*  (1)+age*V6 + (2)age*V7 */
                   13447:        TvarAVVAind[ncovta]=k;
1.240     brouard  13448:        /* nqtveff++;/\* Only simple time varying quantitative variable *\/ */
1.227     brouard  13449:       }
1.349     brouard  13450:     }else if( Tposprod[k]>0  &&  Typevar[k]==2){  /* Detects if fixed product no age Vm*Vn */
                   13451:       printf("MEMORY ERRORR k=%d  Tposprod[k]=%d, Typevar[k]=%d\n ",k, Tposprod[k], Typevar[k]);
                   13452:       if(FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){ /* Needs a fixed product Product of fixed dummy (<=ncovcol) covariates For a fixed product k is higher than ncovcol V3*V2 */
                   13453:       printf("MEMORY ERRORR k=%d Tvardk[k][1]=%d, Tvardk[k][2]=%d, FixedV[Tvardk[k][1]]=%d,FixedV[Tvardk[k][2]]=%d\n ",k,Tvardk[k][1],Tvardk[k][2],FixedV[Tvardk[k][1]],FixedV[Tvardk[k][2]]);
                   13454:        Fixed[k]= 0;
                   13455:        Dummy[k]= 0;
                   13456:        ncoveff++;
                   13457:        ncovf++;
                   13458:        /* ncovv++; */
                   13459:        /* TvarVV[ncovv]=Tvardk[k][1]; */
                   13460:        /* FixedV[ncovcolt+ncovv]=0; /\* or FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   13461:        /* ncovv++; */
                   13462:        /* TvarVV[ncovv]=Tvardk[k][2]; */
                   13463:        /* FixedV[ncovcolt+ncovv]=0; /\* or FixedV[TvarVV[ncovv]]=0 HERE *\/ */
                   13464:        modell[k].maintype= FTYPE;
                   13465:        TvarF[ncovf]=Tvar[k];
                   13466:        /* TnsdVar[Tvar[k]]=nsd; */ /* To be done */
                   13467:        TvarFind[ncovf]=k;
                   13468:        TvarFD[ncoveff]=Tvar[k]; /* TvarFD[1]=V1 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   13469:        TvarFDind[ncoveff]=k; /* TvarFDind[1]=9 in V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 */
                   13470:       }else{/* product varying Vn * Vm without age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product  */
                   13471:        /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
                   13472:        /* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age*/
                   13473:        /*  Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   13474:        k1=Tposprod[k];  /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1, 1} k1=1 first product but second time varying because of V3 */
                   13475:        ncovvt++;
                   13476:        TvarVV[ncovvt]=Tvard[k1][1];  /*  TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */
                   13477:        TvarVVind[ncovvt]=k;  /*  TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */
                   13478:        ncovvt++;
                   13479:        TvarVV[ncovvt]=Tvard[k1][2];  /*  TvarVV[3]=V3 */
                   13480:        TvarVVind[ncovvt]=k;  /*  TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */
                   13481:        
                   13482:        /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */
                   13483:        /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
                   13484:        
                   13485:        if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */
                   13486:          if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */
                   13487:            Fixed[k]= 1;
                   13488:            Dummy[k]= 0;
                   13489:            modell[k].maintype= FTYPE;
                   13490:            modell[k].subtype= FPDD;            /*      Product fixed dummy * fixed dummy */
                   13491:            ncovf++; /* Fixed variables without age */
                   13492:            TvarF[ncovf]=Tvar[k];
                   13493:            TvarFind[ncovf]=k;
                   13494:          }else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */
                   13495:            Fixed[k]= 0;  /* Fixed product */
                   13496:            Dummy[k]= 1;
                   13497:            modell[k].maintype= FTYPE;
                   13498:            modell[k].subtype= FPDQ;            /*      Product fixed dummy * fixed quantitative */
                   13499:            ncovf++; /* Varying variables without age */
                   13500:            TvarF[ncovf]=Tvar[k];
                   13501:            TvarFind[ncovf]=k;
                   13502:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */
                   13503:            Fixed[k]= 1;
                   13504:            Dummy[k]= 0;
                   13505:            modell[k].maintype= VTYPE;
                   13506:            modell[k].subtype= VPDD;            /*      Product fixed dummy * varying dummy */
                   13507:            ncovv++; /* Varying variables without age */
                   13508:            TvarV[ncovv]=Tvar[k];  /* TvarV[1]=Tvar[5]=5 because there is a V4 */
                   13509:            TvarVind[ncovv]=k;/* TvarVind[1]=5 */ 
                   13510:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */
                   13511:            Fixed[k]= 1;
                   13512:            Dummy[k]= 1;
                   13513:            modell[k].maintype= VTYPE;
                   13514:            modell[k].subtype= VPDQ;            /*      Product fixed dummy * varying quantitative */
                   13515:            ncovv++; /* Varying variables without age */
                   13516:            TvarV[ncovv]=Tvar[k];
                   13517:            TvarVind[ncovv]=k;
                   13518:          }
                   13519:        }else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti  */
                   13520:          if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */
                   13521:            Fixed[k]= 0;  /*  Fixed product */
                   13522:            Dummy[k]= 1;
                   13523:            modell[k].maintype= FTYPE;
                   13524:            modell[k].subtype= FPDQ;            /*      Product fixed quantitative * fixed dummy */
                   13525:            ncovf++; /* Fixed variables without age */
                   13526:            TvarF[ncovf]=Tvar[k];
                   13527:            TvarFind[ncovf]=k;
                   13528:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */
                   13529:            Fixed[k]= 1;
                   13530:            Dummy[k]= 1;
                   13531:            modell[k].maintype= VTYPE;
                   13532:            modell[k].subtype= VPDQ;            /*      Product fixed quantitative * varying dummy */
                   13533:            ncovv++; /* Varying variables without age */
                   13534:            TvarV[ncovv]=Tvar[k];
                   13535:            TvarVind[ncovv]=k;
                   13536:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */
                   13537:            Fixed[k]= 1;
                   13538:            Dummy[k]= 1;
                   13539:            modell[k].maintype= VTYPE;
                   13540:            modell[k].subtype= VPQQ;            /*      Product fixed quantitative * varying quantitative */
                   13541:            ncovv++; /* Varying variables without age */
                   13542:            TvarV[ncovv]=Tvar[k];
                   13543:            TvarVind[ncovv]=k;
                   13544:            ncovv++; /* Varying variables without age */
                   13545:            TvarV[ncovv]=Tvar[k];
                   13546:            TvarVind[ncovv]=k;
                   13547:          }
                   13548:        }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */
                   13549:          if(Tvard[k1][2] <=ncovcol){
                   13550:            Fixed[k]= 1;
                   13551:            Dummy[k]= 1;
                   13552:            modell[k].maintype= VTYPE;
                   13553:            modell[k].subtype= VPDD;            /*      Product time varying dummy * fixed dummy */
                   13554:            ncovv++; /* Varying variables without age */
                   13555:            TvarV[ncovv]=Tvar[k];
                   13556:            TvarVind[ncovv]=k;
                   13557:          }else if(Tvard[k1][2] <=ncovcol+nqv){
                   13558:            Fixed[k]= 1;
                   13559:            Dummy[k]= 1;
                   13560:            modell[k].maintype= VTYPE;
                   13561:            modell[k].subtype= VPDQ;            /*      Product time varying dummy * fixed quantitative */
                   13562:            ncovv++; /* Varying variables without age */
                   13563:            TvarV[ncovv]=Tvar[k];
                   13564:            TvarVind[ncovv]=k;
                   13565:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   13566:            Fixed[k]= 1;
                   13567:            Dummy[k]= 0;
                   13568:            modell[k].maintype= VTYPE;
                   13569:            modell[k].subtype= VPDD;            /*      Product time varying dummy * time varying dummy */
                   13570:            ncovv++; /* Varying variables without age */
                   13571:            TvarV[ncovv]=Tvar[k];
                   13572:            TvarVind[ncovv]=k;
                   13573:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   13574:            Fixed[k]= 1;
                   13575:            Dummy[k]= 1;
                   13576:            modell[k].maintype= VTYPE;
                   13577:            modell[k].subtype= VPDQ;            /*      Product time varying dummy * time varying quantitative */
                   13578:            ncovv++; /* Varying variables without age */
                   13579:            TvarV[ncovv]=Tvar[k];
                   13580:            TvarVind[ncovv]=k;
                   13581:          }
                   13582:        }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */
                   13583:          if(Tvard[k1][2] <=ncovcol){
                   13584:            Fixed[k]= 1;
                   13585:            Dummy[k]= 1;
                   13586:            modell[k].maintype= VTYPE;
                   13587:            modell[k].subtype= VPDQ;            /*      Product time varying quantitative * fixed dummy */
                   13588:            ncovv++; /* Varying variables without age */
                   13589:            TvarV[ncovv]=Tvar[k];
                   13590:            TvarVind[ncovv]=k;
                   13591:          }else if(Tvard[k1][2] <=ncovcol+nqv){
                   13592:            Fixed[k]= 1;
                   13593:            Dummy[k]= 1;
                   13594:            modell[k].maintype= VTYPE;
                   13595:            modell[k].subtype= VPQQ;            /*      Product time varying quantitative * fixed quantitative */
                   13596:            ncovv++; /* Varying variables without age */
                   13597:            TvarV[ncovv]=Tvar[k];
                   13598:            TvarVind[ncovv]=k;
                   13599:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
                   13600:            Fixed[k]= 1;
                   13601:            Dummy[k]= 1;
                   13602:            modell[k].maintype= VTYPE;
                   13603:            modell[k].subtype= VPDQ;            /*      Product time varying quantitative * time varying dummy */
                   13604:            ncovv++; /* Varying variables without age */
                   13605:            TvarV[ncovv]=Tvar[k];
                   13606:            TvarVind[ncovv]=k;
                   13607:          }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
                   13608:            Fixed[k]= 1;
                   13609:            Dummy[k]= 1;
                   13610:            modell[k].maintype= VTYPE;
                   13611:            modell[k].subtype= VPQQ;            /*      Product time varying quantitative * time varying quantitative */
                   13612:            ncovv++; /* Varying variables without age */
                   13613:            TvarV[ncovv]=Tvar[k];
                   13614:            TvarVind[ncovv]=k;
                   13615:          }
                   13616:        }else{
                   13617:          printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   13618:          fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   13619:        } /*end k1*/
                   13620:       }
                   13621:     }else if(Typevar[k] == 3){  /* product Vn * Vm with age, V1+V3+age*V1+age*V3+V1*V3 looking at V1*V3, Typevar={0, 0, 1, 1, 2}, k=5, V1 is fixed, V3 is timevary, V5 is a product  */
1.339     brouard  13622:       /*#  ID           V1     V2          weight               birth   death   1st    s1      V3      V4      V5       2nd  s2 */
1.349     brouard  13623:       /* model V1+V3+age*V1+age*V3+V1*V3 + V1*V3*age*/
                   13624:       /*  Tvar={1, 3, 1, 3, 6, 6}, the 6 comes from the fact that there are already V1, V2, V3, V4, V5 native covariates */
                   13625:       k1=Tposprod[k];  /* Position in the products of product k, Tposprod={0, 0, 0, 0, 1, 1} k1=1 first product but second time varying because of V3 */
                   13626:       ncova++;
                   13627:       TvarA[ncova]=Tvard[k1][1];  /*  TvarVV[2]=V1 (because TvarVV[1] was V3, first time varying covariates */
                   13628:       TvarAind[ncova]=k;  /*  TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */
                   13629:       ncova++;
                   13630:       TvarA[ncova]=Tvard[k1][2];  /*  TvarVV[3]=V3 */
                   13631:       TvarAind[ncova]=k;  /*  TvarVVind[2]=5 (because TvarVVind[2] was V1*V3 at position 5 */
1.339     brouard  13632: 
1.349     brouard  13633:       /** Fixed[k] 0=fixed, 1 varying, 2 fixed with age product, 3 varying with age product */
                   13634:       /** Dummy[k] 0=dummy (0 1), 1 quantitative (single or product without age), 2 dummy with age product, 3 quant with age product */ 
                   13635:       if( FixedV[Tvardk[k][1]] == 0 && FixedV[Tvardk[k][2]] == 0){
                   13636:        ncovta++;
                   13637:        TvarAVVA[ncovta]=Tvard[k1][1]; /*   age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */
                   13638:        TvarAVVAind[ncovta]=k;
                   13639:        ncovta++;
                   13640:        TvarAVVA[ncovta]=Tvard[k1][2]; /*   age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */
                   13641:        TvarAVVAind[ncovta]=k;
                   13642:       }else{
                   13643:        ncovva++;  /* HERY  reached */
                   13644:        TvarVVA[ncovva]=Tvard[k1][1]; /*  age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4  */
                   13645:        TvarVVAind[ncovva]=k;
                   13646:        ncovva++;
                   13647:        TvarVVA[ncovva]=Tvard[k1][2]; /*   */
                   13648:        TvarVVAind[ncovva]=k;
                   13649:        ncovta++;
                   13650:        TvarAVVA[ncovta]=Tvard[k1][1]; /*   age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */
                   13651:        TvarAVVAind[ncovta]=k;
                   13652:        ncovta++;
                   13653:        TvarAVVA[ncovta]=Tvard[k1][2]; /*   age*V6*V3 +age*V7*V3 + age*V6*V4 +age*V7*V4 */
                   13654:        TvarAVVAind[ncovta]=k;
                   13655:       }
1.339     brouard  13656:       if(Tvard[k1][1] <=ncovcol){ /* Vn is dummy fixed, (Tvard[1][1]=V1), (Tvard[1][1]=V3 time varying) */
                   13657:        if(Tvard[k1][2] <=ncovcol){ /* Vm is dummy fixed */
1.349     brouard  13658:          Fixed[k]= 2;
                   13659:          Dummy[k]= 2;
1.240     brouard  13660:          modell[k].maintype= FTYPE;
                   13661:          modell[k].subtype= FPDD;              /*      Product fixed dummy * fixed dummy */
1.349     brouard  13662:          /* TvarF[ncova]=Tvar[k];   /\* Problem to solve *\/ */
                   13663:          /* TvarFind[ncova]=k; */
1.339     brouard  13664:        }else if(Tvard[k1][2] <=ncovcol+nqv){ /* Vm is quanti fixed */
1.349     brouard  13665:          Fixed[k]= 2;  /* Fixed product */
                   13666:          Dummy[k]= 3;
1.240     brouard  13667:          modell[k].maintype= FTYPE;
                   13668:          modell[k].subtype= FPDQ;              /*      Product fixed dummy * fixed quantitative */
1.349     brouard  13669:          /* TvarF[ncova]=Tvar[k]; */
                   13670:          /* TvarFind[ncova]=k; */
1.339     brouard  13671:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is a time varying dummy covariate */
1.349     brouard  13672:          Fixed[k]= 3;
                   13673:          Dummy[k]= 2;
1.240     brouard  13674:          modell[k].maintype= VTYPE;
                   13675:          modell[k].subtype= VPDD;              /*      Product fixed dummy * varying dummy */
1.349     brouard  13676:          TvarV[ncova]=Tvar[k];  /* TvarV[1]=Tvar[5]=5 because there is a V4 */
                   13677:          TvarVind[ncova]=k;/* TvarVind[1]=5 */ 
1.339     brouard  13678:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is a time varying quantitative covariate */
1.349     brouard  13679:          Fixed[k]= 3;
                   13680:          Dummy[k]= 3;
1.240     brouard  13681:          modell[k].maintype= VTYPE;
                   13682:          modell[k].subtype= VPDQ;              /*      Product fixed dummy * varying quantitative */
1.349     brouard  13683:          /* ncovv++; /\* Varying variables without age *\/ */
                   13684:          /* TvarV[ncovv]=Tvar[k]; */
                   13685:          /* TvarVind[ncovv]=k; */
1.240     brouard  13686:        }
1.339     brouard  13687:       }else if(Tvard[k1][1] <=ncovcol+nqv){ /* Vn is fixed quanti  */
                   13688:        if(Tvard[k1][2] <=ncovcol){ /* Vm is fixed dummy */
1.349     brouard  13689:          Fixed[k]= 2;  /*  Fixed product */
                   13690:          Dummy[k]= 2;
1.240     brouard  13691:          modell[k].maintype= FTYPE;
                   13692:          modell[k].subtype= FPDQ;              /*      Product fixed quantitative * fixed dummy */
1.349     brouard  13693:          /* ncova++; /\* Fixed variables with age *\/ */
                   13694:          /* TvarF[ncovf]=Tvar[k]; */
                   13695:          /* TvarFind[ncovf]=k; */
1.339     brouard  13696:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){ /* Vm is time varying */
1.349     brouard  13697:          Fixed[k]= 2;
                   13698:          Dummy[k]= 3;
1.240     brouard  13699:          modell[k].maintype= VTYPE;
                   13700:          modell[k].subtype= VPDQ;              /*      Product fixed quantitative * varying dummy */
1.349     brouard  13701:          /* ncova++; /\* Varying variables with age *\/ */
                   13702:          /* TvarV[ncova]=Tvar[k]; */
                   13703:          /* TvarVind[ncova]=k; */
1.339     brouard  13704:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){ /* Vm is time varying quanti */
1.349     brouard  13705:          Fixed[k]= 3;
                   13706:          Dummy[k]= 2;
1.240     brouard  13707:          modell[k].maintype= VTYPE;
                   13708:          modell[k].subtype= VPQQ;              /*      Product fixed quantitative * varying quantitative */
1.349     brouard  13709:          ncova++; /* Varying variables without age */
                   13710:          TvarV[ncova]=Tvar[k];
                   13711:          TvarVind[ncova]=k;
                   13712:          /* ncova++; /\* Varying variables without age *\/ */
                   13713:          /* TvarV[ncova]=Tvar[k]; */
                   13714:          /* TvarVind[ncova]=k; */
1.240     brouard  13715:        }
1.339     brouard  13716:       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv){ /* Vn is time varying dummy */
1.240     brouard  13717:        if(Tvard[k1][2] <=ncovcol){
1.349     brouard  13718:          Fixed[k]= 2;
                   13719:          Dummy[k]= 2;
1.240     brouard  13720:          modell[k].maintype= VTYPE;
                   13721:          modell[k].subtype= VPDD;              /*      Product time varying dummy * fixed dummy */
1.349     brouard  13722:          /* ncova++; /\* Varying variables with age *\/ */
                   13723:          /* TvarV[ncova]=Tvar[k]; */
                   13724:          /* TvarVind[ncova]=k; */
1.240     brouard  13725:        }else if(Tvard[k1][2] <=ncovcol+nqv){
1.349     brouard  13726:          Fixed[k]= 2;
                   13727:          Dummy[k]= 3;
1.240     brouard  13728:          modell[k].maintype= VTYPE;
                   13729:          modell[k].subtype= VPDQ;              /*      Product time varying dummy * fixed quantitative */
1.349     brouard  13730:          /* ncova++; /\* Varying variables with age *\/ */
                   13731:          /* TvarV[ncova]=Tvar[k]; */
                   13732:          /* TvarVind[ncova]=k; */
1.240     brouard  13733:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
1.349     brouard  13734:          Fixed[k]= 3;
                   13735:          Dummy[k]= 2;
1.240     brouard  13736:          modell[k].maintype= VTYPE;
                   13737:          modell[k].subtype= VPDD;              /*      Product time varying dummy * time varying dummy */
1.349     brouard  13738:          /* ncova++; /\* Varying variables with age *\/ */
                   13739:          /* TvarV[ncova]=Tvar[k]; */
                   13740:          /* TvarVind[ncova]=k; */
1.240     brouard  13741:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
1.349     brouard  13742:          Fixed[k]= 3;
                   13743:          Dummy[k]= 3;
1.240     brouard  13744:          modell[k].maintype= VTYPE;
                   13745:          modell[k].subtype= VPDQ;              /*      Product time varying dummy * time varying quantitative */
1.349     brouard  13746:          /* ncova++; /\* Varying variables with age *\/ */
                   13747:          /* TvarV[ncova]=Tvar[k]; */
                   13748:          /* TvarVind[ncova]=k; */
1.240     brouard  13749:        }
1.339     brouard  13750:       }else if(Tvard[k1][1] <=ncovcol+nqv+ntv+nqtv){ /* Vn is time varying quanti */
1.240     brouard  13751:        if(Tvard[k1][2] <=ncovcol){
1.349     brouard  13752:          Fixed[k]= 2;
                   13753:          Dummy[k]= 2;
1.240     brouard  13754:          modell[k].maintype= VTYPE;
                   13755:          modell[k].subtype= VPDQ;              /*      Product time varying quantitative * fixed dummy */
1.349     brouard  13756:          /* ncova++; /\* Varying variables with age *\/ */
                   13757:          /* TvarV[ncova]=Tvar[k]; */
                   13758:          /* TvarVind[ncova]=k; */
1.240     brouard  13759:        }else if(Tvard[k1][2] <=ncovcol+nqv){
1.349     brouard  13760:          Fixed[k]= 2;
                   13761:          Dummy[k]= 3;
1.240     brouard  13762:          modell[k].maintype= VTYPE;
                   13763:          modell[k].subtype= VPQQ;              /*      Product time varying quantitative * fixed quantitative */
1.349     brouard  13764:          /* ncova++; /\* Varying variables with age *\/ */
                   13765:          /* TvarV[ncova]=Tvar[k]; */
                   13766:          /* TvarVind[ncova]=k; */
1.240     brouard  13767:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv){
1.349     brouard  13768:          Fixed[k]= 3;
                   13769:          Dummy[k]= 2;
1.240     brouard  13770:          modell[k].maintype= VTYPE;
                   13771:          modell[k].subtype= VPDQ;              /*      Product time varying quantitative * time varying dummy */
1.349     brouard  13772:          /* ncova++; /\* Varying variables with age *\/ */
                   13773:          /* TvarV[ncova]=Tvar[k]; */
                   13774:          /* TvarVind[ncova]=k; */
1.240     brouard  13775:        }else if(Tvard[k1][2] <=ncovcol+nqv+ntv+nqtv){
1.349     brouard  13776:          Fixed[k]= 3;
                   13777:          Dummy[k]= 3;
1.240     brouard  13778:          modell[k].maintype= VTYPE;
                   13779:          modell[k].subtype= VPQQ;              /*      Product time varying quantitative * time varying quantitative */
1.349     brouard  13780:          /* ncova++; /\* Varying variables with age *\/ */
                   13781:          /* TvarV[ncova]=Tvar[k]; */
                   13782:          /* TvarVind[ncova]=k; */
1.240     brouard  13783:        }
1.227     brouard  13784:       }else{
1.240     brouard  13785:        printf("Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   13786:        fprintf(ficlog,"Error unknown type of covariate: Tvard[%d][1]=%d,Tvard[%d][2]=%d\n",k1,Tvard[k1][1],k1,Tvard[k1][2]);
                   13787:       } /*end k1*/
1.349     brouard  13788:     } else{
1.226     brouard  13789:       printf("Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
                   13790:       fprintf(ficlog,"Error, current version can't treat for performance reasons, Tvar[%d]=%d, Typevar[%d]=%d\n", k, Tvar[k], k, Typevar[k]);
1.225     brouard  13791:     }
1.342     brouard  13792:     /* printf("Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]); */
                   13793:     /* printf("           modell[%d].maintype=%d, modell[%d].subtype=%d\n",k,modell[k].maintype,k,modell[k].subtype); */
1.227     brouard  13794:     fprintf(ficlog,"Decodemodel, k=%d, Tvar[%d]=V%d,Typevar=%d, Fixed=%d, Dummy=%d\n",k, k,Tvar[k],Typevar[k],Fixed[k],Dummy[k]);
                   13795:   }
1.349     brouard  13796:   ncovvta=ncovva;
1.227     brouard  13797:   /* Searching for doublons in the model */
                   13798:   for(k1=1; k1<= cptcovt;k1++){
                   13799:     for(k2=1; k2 <k1;k2++){
1.285     brouard  13800:       /* if((Typevar[k1]==Typevar[k2]) && (Fixed[Tvar[k1]]==Fixed[Tvar[k2]]) && (Dummy[Tvar[k1]]==Dummy[Tvar[k2]] )){ */
                   13801:       if((Typevar[k1]==Typevar[k2]) && (Fixed[k1]==Fixed[k2]) && (Dummy[k1]==Dummy[k2] )){
1.234     brouard  13802:        if((Typevar[k1] == 0 || Typevar[k1] == 1)){ /* Simple or age product */
                   13803:          if(Tvar[k1]==Tvar[k2]){
1.338     brouard  13804:            printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]);
                   13805:            fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, Tvar[%d]=V%d, Tvar[%d]=V%d, Typevar=%d, Fixed=%d, Dummy=%d\n", model, k1,k2, k1, Tvar[k1], k2, Tvar[k2],Typevar[k1],Fixed[k1],Dummy[k1]); fflush(ficlog);
1.234     brouard  13806:            return(1);
                   13807:          }
                   13808:        }else if (Typevar[k1] ==2){
                   13809:          k3=Tposprod[k1];
                   13810:          k4=Tposprod[k2];
                   13811:          if( ((Tvard[k3][1]== Tvard[k4][1])&&(Tvard[k3][2]== Tvard[k4][2])) || ((Tvard[k3][1]== Tvard[k4][2])&&(Tvard[k3][2]== Tvard[k4][1])) ){
1.338     brouard  13812:            printf("Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]);
                   13813:            fprintf(ficlog,"Error duplication in the model=1+age+%s at positions (+) %d and %d, V%d*V%d, Typevar=%d, Fixed=%d, Dummy=%d\n",model, k1,k2, Tvard[k3][1], Tvard[k3][2],Typevar[k1],Fixed[Tvar[k1]],Dummy[Tvar[k1]]); fflush(ficlog);
1.234     brouard  13814:            return(1);
                   13815:          }
                   13816:        }
1.227     brouard  13817:       }
                   13818:     }
1.225     brouard  13819:   }
                   13820:   printf("ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
                   13821:   fprintf(ficlog,"ncoveff=%d, nqfveff=%d, ntveff=%d, nqtveff=%d, cptcovn=%d\n",ncoveff,nqfveff,ntveff,nqtveff,cptcovn);
1.234     brouard  13822:   printf("ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd,nsq);
                   13823:   fprintf(ficlog,"ncovf=%d, ncovv=%d, ncova=%d, nsd=%d, nsq=%d\n",ncovf,ncovv,ncova,nsd, nsq);
1.349     brouard  13824: 
                   13825:   free_imatrix(existcomb,1,NCOVMAX,1,NCOVMAX);
1.137     brouard  13826:   return (0); /* with covar[new additional covariate if product] and Tage if age */ 
1.164     brouard  13827:   /*endread:*/
1.225     brouard  13828:   printf("Exiting decodemodel: ");
                   13829:   return (1);
1.136     brouard  13830: }
                   13831: 
1.169     brouard  13832: int calandcheckages(int imx, int maxwav, double *agemin, double *agemax, int *nberr, int *nbwarn )
1.248     brouard  13833: {/* Check ages at death */
1.136     brouard  13834:   int i, m;
1.218     brouard  13835:   int firstone=0;
                   13836:   
1.136     brouard  13837:   for (i=1; i<=imx; i++) {
                   13838:     for(m=2; (m<= maxwav); m++) {
                   13839:       if (((int)mint[m][i]== 99) && (s[m][i] <= nlstate)){
                   13840:        anint[m][i]=9999;
1.216     brouard  13841:        if (s[m][i] != -2) /* Keeping initial status of unknown vital status */
                   13842:          s[m][i]=-1;
1.136     brouard  13843:       }
                   13844:       if((int)moisdc[i]==99 && (int)andc[i]==9999 && s[m][i]>nlstate){
1.260     brouard  13845:        *nberr = *nberr + 1;
1.218     brouard  13846:        if(firstone == 0){
                   13847:          firstone=1;
1.260     brouard  13848:        printf("Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\nOther similar cases in log file\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
1.218     brouard  13849:        }
1.262     brouard  13850:        fprintf(ficlog,"Warning (#%d)! Date of death (month %2d and year %4d) of individual %ld on line %d was unknown but status is a death state %d at wave %d. If you don't know the vital status, please enter -2. If he/she is still alive but don't know the state, please code with '-1 or '.'. Here, we do not believe in a death, skipped.\n", *nberr,(int)moisdc[i],(int)andc[i],num[i],i,s[m][i],m);
1.260     brouard  13851:        s[m][i]=-1;  /* Droping the death status */
1.136     brouard  13852:       }
                   13853:       if((int)moisdc[i]==99 && (int)andc[i]!=9999 && s[m][i]>nlstate){
1.169     brouard  13854:        (*nberr)++;
1.259     brouard  13855:        printf("Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\nOther similar cases in log file\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
1.262     brouard  13856:        fprintf(ficlog,"Error (#%d)! Month of death of individual %ld on line %d was unknown (%2d) (year of death is %4d) and status is a death state %d at wave %d. Please impute an arbitrary (or not) month and rerun. Currently this transition to death will be skipped (status is set to -2).\n", *nberr, num[i],i,(int)moisdc[i],(int)andc[i],s[m][i],m);
1.259     brouard  13857:        s[m][i]=-2; /* We prefer to skip it (and to skip it in version 0.8a1 too */
1.136     brouard  13858:       }
                   13859:     }
                   13860:   }
                   13861: 
                   13862:   for (i=1; i<=imx; i++)  {
                   13863:     agedc[i]=(moisdc[i]/12.+andc[i])-(moisnais[i]/12.+annais[i]);
                   13864:     for(m=firstpass; (m<= lastpass); m++){
1.214     brouard  13865:       if(s[m][i] >0  || s[m][i]==-1 || s[m][i]==-2 || s[m][i]==-4 || s[m][i]==-5){ /* What if s[m][i]=-1 */
1.136     brouard  13866:        if (s[m][i] >= nlstate+1) {
1.169     brouard  13867:          if(agedc[i]>0){
                   13868:            if((int)moisdc[i]!=99 && (int)andc[i]!=9999){
1.136     brouard  13869:              agev[m][i]=agedc[i];
1.214     brouard  13870:              /*if(moisdc[i]==99 && andc[i]==9999) s[m][i]=-1;*/
1.169     brouard  13871:            }else {
1.136     brouard  13872:              if ((int)andc[i]!=9999){
                   13873:                nbwarn++;
                   13874:                printf("Warning negative age at death: %ld line:%d\n",num[i],i);
                   13875:                fprintf(ficlog,"Warning negative age at death: %ld line:%d\n",num[i],i);
                   13876:                agev[m][i]=-1;
                   13877:              }
                   13878:            }
1.169     brouard  13879:          } /* agedc > 0 */
1.214     brouard  13880:        } /* end if */
1.136     brouard  13881:        else if(s[m][i] !=9){ /* Standard case, age in fractional
                   13882:                                 years but with the precision of a month */
                   13883:          agev[m][i]=(mint[m][i]/12.+1./24.+anint[m][i])-(moisnais[i]/12.+1./24.+annais[i]);
                   13884:          if((int)mint[m][i]==99 || (int)anint[m][i]==9999)
                   13885:            agev[m][i]=1;
                   13886:          else if(agev[m][i] < *agemin){ 
                   13887:            *agemin=agev[m][i];
                   13888:            printf(" Min anint[%d][%d]=%.2f annais[%d]=%.2f, agemin=%.2f\n",m,i,anint[m][i], i,annais[i], *agemin);
                   13889:          }
                   13890:          else if(agev[m][i] >*agemax){
                   13891:            *agemax=agev[m][i];
1.156     brouard  13892:            /* printf(" Max anint[%d][%d]=%.0f annais[%d]=%.0f, agemax=%.2f\n",m,i,anint[m][i], i,annais[i], *agemax);*/
1.136     brouard  13893:          }
                   13894:          /*agev[m][i]=anint[m][i]-annais[i];*/
                   13895:          /*     agev[m][i] = age[i]+2*m;*/
1.214     brouard  13896:        } /* en if 9*/
1.136     brouard  13897:        else { /* =9 */
1.214     brouard  13898:          /* printf("Debug num[%d]=%ld s[%d][%d]=%d\n",i,num[i], m,i, s[m][i]); */
1.136     brouard  13899:          agev[m][i]=1;
                   13900:          s[m][i]=-1;
                   13901:        }
                   13902:       }
1.214     brouard  13903:       else if(s[m][i]==0) /*= 0 Unknown */
1.136     brouard  13904:        agev[m][i]=1;
1.214     brouard  13905:       else{
                   13906:        printf("Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
                   13907:        fprintf(ficlog, "Warning, num[%d]=%ld, s[%d][%d]=%d\n", i, num[i], m, i,s[m][i]); 
                   13908:        agev[m][i]=0;
                   13909:       }
                   13910:     } /* End for lastpass */
                   13911:   }
1.136     brouard  13912:     
                   13913:   for (i=1; i<=imx; i++)  {
                   13914:     for(m=firstpass; (m<=lastpass); m++){
                   13915:       if (s[m][i] > (nlstate+ndeath)) {
1.169     brouard  13916:        (*nberr)++;
1.136     brouard  13917:        printf("Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   13918:        fprintf(ficlog,"Error: on wave %d of individual %d status %d > (nlstate+ndeath)=(%d+%d)=%d\n",m,i,s[m][i],nlstate, ndeath, nlstate+ndeath);     
                   13919:        return 1;
                   13920:       }
                   13921:     }
                   13922:   }
                   13923: 
                   13924:   /*for (i=1; i<=imx; i++){
                   13925:   for (m=firstpass; (m<lastpass); m++){
                   13926:      printf("%ld %d %.lf %d %d\n", num[i],(covar[1][i]),agev[m][i],s[m][i],s[m+1][i]);
                   13927: }
                   13928: 
                   13929: }*/
                   13930: 
                   13931: 
1.139     brouard  13932:   printf("Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax);
                   13933:   fprintf(ficlog,"Total number of individuals= %d, Agemin = %.2f, Agemax= %.2f\n\n", imx, *agemin, *agemax); 
1.136     brouard  13934: 
                   13935:   return (0);
1.164     brouard  13936:  /* endread:*/
1.136     brouard  13937:     printf("Exiting calandcheckages: ");
                   13938:     return (1);
                   13939: }
                   13940: 
1.172     brouard  13941: #if defined(_MSC_VER)
                   13942: /*printf("Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
                   13943: /*fprintf(ficlog, "Visual C++ compiler: %s \n;", _MSC_FULL_VER);*/
                   13944: //#include "stdafx.h"
                   13945: //#include <stdio.h>
                   13946: //#include <tchar.h>
                   13947: //#include <windows.h>
                   13948: //#include <iostream>
                   13949: typedef BOOL(WINAPI *LPFN_ISWOW64PROCESS) (HANDLE, PBOOL);
                   13950: 
                   13951: LPFN_ISWOW64PROCESS fnIsWow64Process;
                   13952: 
                   13953: BOOL IsWow64()
                   13954: {
                   13955:        BOOL bIsWow64 = FALSE;
                   13956: 
                   13957:        //typedef BOOL (APIENTRY *LPFN_ISWOW64PROCESS)
                   13958:        //  (HANDLE, PBOOL);
                   13959: 
                   13960:        //LPFN_ISWOW64PROCESS fnIsWow64Process;
                   13961: 
                   13962:        HMODULE module = GetModuleHandle(_T("kernel32"));
                   13963:        const char funcName[] = "IsWow64Process";
                   13964:        fnIsWow64Process = (LPFN_ISWOW64PROCESS)
                   13965:                GetProcAddress(module, funcName);
                   13966: 
                   13967:        if (NULL != fnIsWow64Process)
                   13968:        {
                   13969:                if (!fnIsWow64Process(GetCurrentProcess(),
                   13970:                        &bIsWow64))
                   13971:                        //throw std::exception("Unknown error");
                   13972:                        printf("Unknown error\n");
                   13973:        }
                   13974:        return bIsWow64 != FALSE;
                   13975: }
                   13976: #endif
1.177     brouard  13977: 
1.191     brouard  13978: void syscompilerinfo(int logged)
1.292     brouard  13979: {
                   13980: #include <stdint.h>
                   13981: 
                   13982:   /* #include "syscompilerinfo.h"*/
1.185     brouard  13983:    /* command line Intel compiler 32bit windows, XP compatible:*/
                   13984:    /* /GS /W3 /Gy
                   13985:       /Zc:wchar_t /Zi /O2 /Fd"Release\vc120.pdb" /D "WIN32" /D "NDEBUG" /D
                   13986:       "_CONSOLE" /D "_LIB" /D "_USING_V110_SDK71_" /D "_UNICODE" /D
                   13987:       "UNICODE" /Qipo /Zc:forScope /Gd /Oi /MT /Fa"Release\" /EHsc /nologo
1.186     brouard  13988:       /Fo"Release\" /Qprof-dir "Release\" /Fp"Release\IMaCh.pch"
                   13989:    */ 
                   13990:    /* 64 bits */
1.185     brouard  13991:    /*
                   13992:      /GS /W3 /Gy
                   13993:      /Zc:wchar_t /Zi /O2 /Fd"x64\Release\vc120.pdb" /D "WIN32" /D "NDEBUG"
                   13994:      /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo /Zc:forScope
                   13995:      /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Fo"x64\Release\" /Qprof-dir
                   13996:      "x64\Release\" /Fp"x64\Release\IMaCh.pch" */
                   13997:    /* Optimization are useless and O3 is slower than O2 */
                   13998:    /*
                   13999:      /GS /W3 /Gy /Zc:wchar_t /Zi /O3 /Fd"x64\Release\vc120.pdb" /D "WIN32" 
                   14000:      /D "NDEBUG" /D "_CONSOLE" /D "_LIB" /D "_UNICODE" /D "UNICODE" /Qipo 
                   14001:      /Zc:forScope /Oi /MD /Fa"x64\Release\" /EHsc /nologo /Qparallel 
                   14002:      /Fo"x64\Release\" /Qprof-dir "x64\Release\" /Fp"x64\Release\IMaCh.pch" 
                   14003:    */
1.186     brouard  14004:    /* Link is */ /* /OUT:"visual studio
1.185     brouard  14005:       2013\Projects\IMaCh\Release\IMaCh.exe" /MANIFEST /NXCOMPAT
                   14006:       /PDB:"visual studio
                   14007:       2013\Projects\IMaCh\Release\IMaCh.pdb" /DYNAMICBASE
                   14008:       "kernel32.lib" "user32.lib" "gdi32.lib" "winspool.lib"
                   14009:       "comdlg32.lib" "advapi32.lib" "shell32.lib" "ole32.lib"
                   14010:       "oleaut32.lib" "uuid.lib" "odbc32.lib" "odbccp32.lib"
                   14011:       /MACHINE:X86 /OPT:REF /SAFESEH /INCREMENTAL:NO
                   14012:       /SUBSYSTEM:CONSOLE",5.01" /MANIFESTUAC:"level='asInvoker'
                   14013:       uiAccess='false'"
                   14014:       /ManifestFile:"Release\IMaCh.exe.intermediate.manifest" /OPT:ICF
                   14015:       /NOLOGO /TLBID:1
                   14016:    */
1.292     brouard  14017: 
                   14018: 
1.177     brouard  14019: #if defined __INTEL_COMPILER
1.178     brouard  14020: #if defined(__GNUC__)
                   14021:        struct utsname sysInfo;  /* For Intel on Linux and OS/X */
                   14022: #endif
1.177     brouard  14023: #elif defined(__GNUC__) 
1.179     brouard  14024: #ifndef  __APPLE__
1.174     brouard  14025: #include <gnu/libc-version.h>  /* Only on gnu */
1.179     brouard  14026: #endif
1.177     brouard  14027:    struct utsname sysInfo;
1.178     brouard  14028:    int cross = CROSS;
                   14029:    if (cross){
                   14030:           printf("Cross-");
1.191     brouard  14031:           if(logged) fprintf(ficlog, "Cross-");
1.178     brouard  14032:    }
1.174     brouard  14033: #endif
                   14034: 
1.191     brouard  14035:    printf("Compiled with:");if(logged)fprintf(ficlog,"Compiled with:");
1.169     brouard  14036: #if defined(__clang__)
1.191     brouard  14037:    printf(" Clang/LLVM");if(logged)fprintf(ficlog," Clang/LLVM");      /* Clang/LLVM. ---------------------------------------------- */
1.169     brouard  14038: #endif
                   14039: #if defined(__ICC) || defined(__INTEL_COMPILER)
1.191     brouard  14040:    printf(" Intel ICC/ICPC");if(logged)fprintf(ficlog," Intel ICC/ICPC");/* Intel ICC/ICPC. ------------------------------------------ */
1.169     brouard  14041: #endif
                   14042: #if defined(__GNUC__) || defined(__GNUG__)
1.191     brouard  14043:    printf(" GNU GCC/G++");if(logged)fprintf(ficlog," GNU GCC/G++");/* GNU GCC/G++. --------------------------------------------- */
1.169     brouard  14044: #endif
                   14045: #if defined(__HP_cc) || defined(__HP_aCC)
1.191     brouard  14046:    printf(" Hewlett-Packard C/aC++");if(logged)fprintf(fcilog," Hewlett-Packard C/aC++"); /* Hewlett-Packard C/aC++. ---------------------------------- */
1.169     brouard  14047: #endif
                   14048: #if defined(__IBMC__) || defined(__IBMCPP__)
1.191     brouard  14049:    printf(" IBM XL C/C++"); if(logged) fprintf(ficlog," IBM XL C/C++");/* IBM XL C/C++. -------------------------------------------- */
1.169     brouard  14050: #endif
                   14051: #if defined(_MSC_VER)
1.191     brouard  14052:    printf(" Microsoft Visual Studio");if(logged)fprintf(ficlog," Microsoft Visual Studio");/* Microsoft Visual Studio. --------------------------------- */
1.169     brouard  14053: #endif
                   14054: #if defined(__PGI)
1.191     brouard  14055:    printf(" Portland Group PGCC/PGCPP");if(logged) fprintf(ficlog," Portland Group PGCC/PGCPP");/* Portland Group PGCC/PGCPP. ------------------------------- */
1.169     brouard  14056: #endif
                   14057: #if defined(__SUNPRO_C) || defined(__SUNPRO_CC)
1.191     brouard  14058:    printf(" Oracle Solaris Studio");if(logged)fprintf(ficlog," Oracle Solaris Studio\n");/* Oracle Solaris Studio. ----------------------------------- */
1.167     brouard  14059: #endif
1.191     brouard  14060:    printf(" for "); if (logged) fprintf(ficlog, " for ");
1.169     brouard  14061:    
1.167     brouard  14062: // http://stackoverflow.com/questions/4605842/how-to-identify-platform-compiler-from-preprocessor-macros
                   14063: #ifdef _WIN32 // note the underscore: without it, it's not msdn official!
                   14064:     // Windows (x64 and x86)
1.191     brouard  14065:    printf("Windows (x64 and x86) ");if(logged) fprintf(ficlog,"Windows (x64 and x86) ");
1.167     brouard  14066: #elif __unix__ // all unices, not all compilers
                   14067:     // Unix
1.191     brouard  14068:    printf("Unix ");if(logged) fprintf(ficlog,"Unix ");
1.167     brouard  14069: #elif __linux__
                   14070:     // linux
1.191     brouard  14071:    printf("linux ");if(logged) fprintf(ficlog,"linux ");
1.167     brouard  14072: #elif __APPLE__
1.174     brouard  14073:     // Mac OS, not sure if this is covered by __posix__ and/or __unix__ though..
1.191     brouard  14074:    printf("Mac OS ");if(logged) fprintf(ficlog,"Mac OS ");
1.167     brouard  14075: #endif
                   14076: 
                   14077: /*  __MINGW32__          */
                   14078: /*  __CYGWIN__  */
                   14079: /* __MINGW64__  */
                   14080: // http://msdn.microsoft.com/en-us/library/b0084kay.aspx
                   14081: /* _MSC_VER  //the Visual C++ compiler is 17.00.51106.1, the _MSC_VER macro evaluates to 1700. Type cl /?  */
                   14082: /* _MSC_FULL_VER //the Visual C++ compiler is 15.00.20706.01, the _MSC_FULL_VER macro evaluates to 150020706 */
                   14083: /* _WIN64  // Defined for applications for Win64. */
                   14084: /* _M_X64 // Defined for compilations that target x64 processors. */
                   14085: /* _DEBUG // Defined when you compile with /LDd, /MDd, and /MTd. */
1.171     brouard  14086: 
1.167     brouard  14087: #if UINTPTR_MAX == 0xffffffff
1.191     brouard  14088:    printf(" 32-bit"); if(logged) fprintf(ficlog," 32-bit");/* 32-bit */
1.167     brouard  14089: #elif UINTPTR_MAX == 0xffffffffffffffff
1.191     brouard  14090:    printf(" 64-bit"); if(logged) fprintf(ficlog," 64-bit");/* 64-bit */
1.167     brouard  14091: #else
1.191     brouard  14092:    printf(" wtf-bit"); if(logged) fprintf(ficlog," wtf-bit");/* wtf */
1.167     brouard  14093: #endif
                   14094: 
1.169     brouard  14095: #if defined(__GNUC__)
                   14096: # if defined(__GNUC_PATCHLEVEL__)
                   14097: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   14098:                             + __GNUC_MINOR__ * 100 \
                   14099:                             + __GNUC_PATCHLEVEL__)
                   14100: # else
                   14101: #  define __GNUC_VERSION__ (__GNUC__ * 10000 \
                   14102:                             + __GNUC_MINOR__ * 100)
                   14103: # endif
1.174     brouard  14104:    printf(" using GNU C version %d.\n", __GNUC_VERSION__);
1.191     brouard  14105:    if(logged) fprintf(ficlog, " using GNU C version %d.\n", __GNUC_VERSION__);
1.176     brouard  14106: 
                   14107:    if (uname(&sysInfo) != -1) {
                   14108:      printf("Running on: %s %s %s %s %s\n",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
1.191     brouard  14109:         if(logged) fprintf(ficlog,"Running on: %s %s %s %s %s\n ",sysInfo.sysname, sysInfo.nodename, sysInfo.release, sysInfo.version, sysInfo.machine);
1.176     brouard  14110:    }
                   14111:    else
                   14112:       perror("uname() error");
1.179     brouard  14113:    //#ifndef __INTEL_COMPILER 
                   14114: #if !defined (__INTEL_COMPILER) && !defined(__APPLE__)
1.174     brouard  14115:    printf("GNU libc version: %s\n", gnu_get_libc_version()); 
1.191     brouard  14116:    if(logged) fprintf(ficlog,"GNU libc version: %s\n", gnu_get_libc_version());
1.177     brouard  14117: #endif
1.169     brouard  14118: #endif
1.172     brouard  14119: 
1.286     brouard  14120:    //   void main ()
1.172     brouard  14121:    //   {
1.169     brouard  14122: #if defined(_MSC_VER)
1.174     brouard  14123:    if (IsWow64()){
1.191     brouard  14124:           printf("\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
                   14125:           if (logged) fprintf(ficlog, "\nThe program (probably compiled for 32bit) is running under WOW64 (64bit) emulation.\n");
1.174     brouard  14126:    }
                   14127:    else{
1.191     brouard  14128:           printf("\nThe program is not running under WOW64 (i.e probably on a 64bit Windows).\n");
                   14129:           if (logged) fprintf(ficlog, "\nThe programm is not running under WOW64 (i.e probably on a 64bit Windows).\n");
1.174     brouard  14130:    }
1.172     brouard  14131:    //     printf("\nPress Enter to continue...");
                   14132:    //     getchar();
                   14133:    //   }
                   14134: 
1.169     brouard  14135: #endif
                   14136:    
1.167     brouard  14137: 
1.219     brouard  14138: }
1.136     brouard  14139: 
1.219     brouard  14140: int prevalence_limit(double *p, double **prlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp){
1.288     brouard  14141:   /*--------------- Prevalence limit  (forward period or forward stable prevalence) --------------*/
1.332     brouard  14142:   /* Computes the prevalence limit for each combination of the dummy covariates */
1.235     brouard  14143:   int i, j, k, i1, k4=0, nres=0 ;
1.202     brouard  14144:   /* double ftolpl = 1.e-10; */
1.180     brouard  14145:   double age, agebase, agelim;
1.203     brouard  14146:   double tot;
1.180     brouard  14147: 
1.202     brouard  14148:   strcpy(filerespl,"PL_");
                   14149:   strcat(filerespl,fileresu);
                   14150:   if((ficrespl=fopen(filerespl,"w"))==NULL) {
1.288     brouard  14151:     printf("Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
                   14152:     fprintf(ficlog,"Problem with forward period (stable) prevalence resultfile: %s\n", filerespl);return 1;
1.202     brouard  14153:   }
1.288     brouard  14154:   printf("\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
                   14155:   fprintf(ficlog,"\nComputing forward period (stable) prevalence: result on file '%s' \n", filerespl);
1.202     brouard  14156:   pstamp(ficrespl);
1.288     brouard  14157:   fprintf(ficrespl,"# Forward period (stable) prevalence. Precision given by ftolpl=%g \n", ftolpl);
1.202     brouard  14158:   fprintf(ficrespl,"#Age ");
                   14159:   for(i=1; i<=nlstate;i++) fprintf(ficrespl,"%d-%d ",i,i);
                   14160:   fprintf(ficrespl,"\n");
1.180     brouard  14161:   
1.219     brouard  14162:   /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
1.180     brouard  14163: 
1.219     brouard  14164:   agebase=ageminpar;
                   14165:   agelim=agemaxpar;
1.180     brouard  14166: 
1.227     brouard  14167:   /* i1=pow(2,ncoveff); */
1.234     brouard  14168:   i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
1.219     brouard  14169:   if (cptcovn < 1){i1=1;}
1.180     brouard  14170: 
1.337     brouard  14171:   /* for(k=1; k<=i1;k++){ /\* For each combination k of dummy covariates in the model *\/ */
1.238     brouard  14172:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  14173:       k=TKresult[nres];
1.338     brouard  14174:       if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  14175:       /* if(i1 != 1 && TKresult[nres]!= k) /\* We found the combination k corresponding to the resultline value of dummies *\/ */
                   14176:       /*       continue; */
1.235     brouard  14177: 
1.238     brouard  14178:       /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   14179:       /* for(cptcov=1,k=0;cptcov<=1;cptcov++){ */
                   14180:       //for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){
                   14181:       /* k=k+1; */
                   14182:       /* to clean */
1.332     brouard  14183:       /*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*/
1.238     brouard  14184:       fprintf(ficrespl,"#******");
                   14185:       printf("#******");
                   14186:       fprintf(ficlog,"#******");
1.337     brouard  14187:       for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
1.332     brouard  14188:        /* fprintf(ficrespl," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,Tvaraff[j])]); /\* Here problem for varying dummy*\/ */
1.337     brouard  14189:        /* printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14190:        /* fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14191:        fprintf(ficrespl," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   14192:        printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   14193:        fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   14194:       }
                   14195:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   14196:       /*       printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   14197:       /*       fprintf(ficrespl," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   14198:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   14199:       /* } */
1.238     brouard  14200:       fprintf(ficrespl,"******\n");
                   14201:       printf("******\n");
                   14202:       fprintf(ficlog,"******\n");
                   14203:       if(invalidvarcomb[k]){
                   14204:        printf("\nCombination (%d) ignored because no case \n",k); 
                   14205:        fprintf(ficrespl,"#Combination (%d) ignored because no case \n",k); 
                   14206:        fprintf(ficlog,"\nCombination (%d) ignored because no case \n",k); 
                   14207:        continue;
                   14208:       }
1.219     brouard  14209: 
1.238     brouard  14210:       fprintf(ficrespl,"#Age ");
1.337     brouard  14211:       /* for(j=1;j<=cptcoveff;j++) { */
                   14212:       /*       fprintf(ficrespl,"V%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14213:       /* } */
                   14214:       for(j=1;j<=cptcovs;j++) { /* New the quanti variable is added */
                   14215:        fprintf(ficrespl,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  14216:       }
                   14217:       for(i=1; i<=nlstate;i++) fprintf(ficrespl,"  %d-%d   ",i,i);
                   14218:       fprintf(ficrespl,"Total Years_to_converge\n");
1.227     brouard  14219:     
1.238     brouard  14220:       for (age=agebase; age<=agelim; age++){
                   14221:        /* for (age=agebase; age<=agebase; age++){ */
1.337     brouard  14222:        /**< Computes the prevalence limit in each live state at age x and for covariate combination (k and) nres */
                   14223:        prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, ncvyearp, k, nres); /* Nicely done */
1.238     brouard  14224:        fprintf(ficrespl,"%.0f ",age );
1.337     brouard  14225:        /* for(j=1;j<=cptcoveff;j++) */
                   14226:        /*   fprintf(ficrespl,"%d %d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14227:        for(j=1;j<=cptcovs;j++)
                   14228:          fprintf(ficrespl,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  14229:        tot=0.;
                   14230:        for(i=1; i<=nlstate;i++){
                   14231:          tot +=  prlim[i][i];
                   14232:          fprintf(ficrespl," %.5f", prlim[i][i]);
                   14233:        }
                   14234:        fprintf(ficrespl," %.3f %d\n", tot, *ncvyearp);
                   14235:       } /* Age */
                   14236:       /* was end of cptcod */
1.337     brouard  14237:     } /* nres */
                   14238:   /* } /\* for each combination *\/ */
1.219     brouard  14239:   return 0;
1.180     brouard  14240: }
                   14241: 
1.218     brouard  14242: int back_prevalence_limit(double *p, double **bprlim, double ageminpar, double agemaxpar, double ftolpl, int *ncvyearp, double dateprev1,double dateprev2, int firstpass, int lastpass, int mobilavproj){
1.288     brouard  14243:        /*--------------- Back Prevalence limit  (backward stable prevalence) --------------*/
1.218     brouard  14244:        
                   14245:        /* Computes the back prevalence limit  for any combination      of covariate values 
                   14246:    * at any age between ageminpar and agemaxpar
                   14247:         */
1.235     brouard  14248:   int i, j, k, i1, nres=0 ;
1.217     brouard  14249:   /* double ftolpl = 1.e-10; */
                   14250:   double age, agebase, agelim;
                   14251:   double tot;
1.218     brouard  14252:   /* double ***mobaverage; */
                   14253:   /* double     **dnewm, **doldm, **dsavm;  /\* for use *\/ */
1.217     brouard  14254: 
                   14255:   strcpy(fileresplb,"PLB_");
                   14256:   strcat(fileresplb,fileresu);
                   14257:   if((ficresplb=fopen(fileresplb,"w"))==NULL) {
1.288     brouard  14258:     printf("Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
                   14259:     fprintf(ficlog,"Problem with backward prevalence resultfile: %s\n", fileresplb);return 1;
1.217     brouard  14260:   }
1.288     brouard  14261:   printf("Computing backward prevalence: result on file '%s' \n", fileresplb);
                   14262:   fprintf(ficlog,"Computing backward prevalence: result on file '%s' \n", fileresplb);
1.217     brouard  14263:   pstamp(ficresplb);
1.288     brouard  14264:   fprintf(ficresplb,"# Backward prevalence. Precision given by ftolpl=%g \n", ftolpl);
1.217     brouard  14265:   fprintf(ficresplb,"#Age ");
                   14266:   for(i=1; i<=nlstate;i++) fprintf(ficresplb,"%d-%d ",i,i);
                   14267:   fprintf(ficresplb,"\n");
                   14268:   
1.218     brouard  14269:   
                   14270:   /* prlim=matrix(1,nlstate,1,nlstate);*/ /* back in main */
                   14271:   
                   14272:   agebase=ageminpar;
                   14273:   agelim=agemaxpar;
                   14274:   
                   14275:   
1.227     brouard  14276:   i1=pow(2,cptcoveff);
1.218     brouard  14277:   if (cptcovn < 1){i1=1;}
1.227     brouard  14278:   
1.238     brouard  14279:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.338     brouard  14280:     /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
                   14281:       k=TKresult[nres];
                   14282:       if(TKresult[nres]==0) k=1; /* To be checked for noresult */
                   14283:      /* if(i1 != 1 && TKresult[nres]!= k) */
                   14284:      /*        continue; */
                   14285:      /* /\*printf("cptcov=%d cptcod=%d codtab=%d\n",cptcov, cptcod,codtabm(cptcod,cptcov));*\/ */
1.238     brouard  14286:       fprintf(ficresplb,"#******");
                   14287:       printf("#******");
                   14288:       fprintf(ficlog,"#******");
1.338     brouard  14289:       for(j=1;j<=cptcovs ;j++) {/**< cptcovs number of SIMPLE covariates in the model or resultline V2+V1 =2 (dummy or quantit or time varying) */
                   14290:        printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   14291:        fprintf(ficresplb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   14292:        fprintf(ficlog," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  14293:       }
1.338     brouard  14294:       /* for(j=1;j<=cptcoveff ;j++) {/\* all covariates *\/ */
                   14295:       /*       fprintf(ficresplb," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14296:       /*       printf(" V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14297:       /*       fprintf(ficlog," V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14298:       /* } */
                   14299:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   14300:       /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   14301:       /*       fprintf(ficresplb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   14302:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   14303:       /* } */
1.238     brouard  14304:       fprintf(ficresplb,"******\n");
                   14305:       printf("******\n");
                   14306:       fprintf(ficlog,"******\n");
                   14307:       if(invalidvarcomb[k]){
                   14308:        printf("\nCombination (%d) ignored because no cases \n",k); 
                   14309:        fprintf(ficresplb,"#Combination (%d) ignored because no cases \n",k); 
                   14310:        fprintf(ficlog,"\nCombination (%d) ignored because no cases \n",k); 
                   14311:        continue;
                   14312:       }
1.218     brouard  14313:     
1.238     brouard  14314:       fprintf(ficresplb,"#Age ");
1.338     brouard  14315:       for(j=1;j<=cptcovs;j++) {
                   14316:        fprintf(ficresplb,"V%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  14317:       }
                   14318:       for(i=1; i<=nlstate;i++) fprintf(ficresplb,"  %d-%d   ",i,i);
                   14319:       fprintf(ficresplb,"Total Years_to_converge\n");
1.218     brouard  14320:     
                   14321:     
1.238     brouard  14322:       for (age=agebase; age<=agelim; age++){
                   14323:        /* for (age=agebase; age<=agebase; age++){ */
                   14324:        if(mobilavproj > 0){
                   14325:          /* bprevalim(bprlim, mobaverage, nlstate, p, age, ageminpar, agemaxpar, oldm, savm, doldm, dsavm, ftolpl, ncvyearp, k); */
                   14326:          /* bprevalim(bprlim, mobaverage, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
1.242     brouard  14327:          bprevalim(bprlim, mobaverage, nlstate, p, age, ftolpl, ncvyearp, k, nres);
1.238     brouard  14328:        }else if (mobilavproj == 0){
                   14329:          printf("There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
                   14330:          fprintf(ficlog,"There is no chance to get back prevalence limit if data aren't non zero and summing to 1, please try a non null mobil_average(=%d) parameter or mobil_average=-1 if you want to try at your own risk.\n",mobilavproj);
                   14331:          exit(1);
                   14332:        }else{
                   14333:          /* bprevalim(bprlim, probs, nlstate, p, age, oldm, savm, dnewm, doldm, dsavm, ftolpl, ncvyearp, k); */
1.242     brouard  14334:          bprevalim(bprlim, probs, nlstate, p, age, ftolpl, ncvyearp, k,nres);
1.266     brouard  14335:          /* printf("TOTOT\n"); */
                   14336:           /* exit(1); */
1.238     brouard  14337:        }
                   14338:        fprintf(ficresplb,"%.0f ",age );
1.338     brouard  14339:        for(j=1;j<=cptcovs;j++)
                   14340:          fprintf(ficresplb,"%d %lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.238     brouard  14341:        tot=0.;
                   14342:        for(i=1; i<=nlstate;i++){
                   14343:          tot +=  bprlim[i][i];
                   14344:          fprintf(ficresplb," %.5f", bprlim[i][i]);
                   14345:        }
                   14346:        fprintf(ficresplb," %.3f %d\n", tot, *ncvyearp);
                   14347:       } /* Age */
                   14348:       /* was end of cptcod */
1.255     brouard  14349:       /*fprintf(ficresplb,"\n");*/ /* Seems to be necessary for gnuplot only if two result lines and no covariate. */
1.338     brouard  14350:     /* } /\* end of any combination *\/ */
1.238     brouard  14351:   } /* end of nres */  
1.218     brouard  14352:   /* hBijx(p, bage, fage); */
                   14353:   /* fclose(ficrespijb); */
                   14354:   
                   14355:   return 0;
1.217     brouard  14356: }
1.218     brouard  14357:  
1.180     brouard  14358: int hPijx(double *p, int bage, int fage){
                   14359:     /*------------- h Pij x at various ages ------------*/
1.336     brouard  14360:   /* to be optimized with precov */
1.180     brouard  14361:   int stepsize;
                   14362:   int agelim;
                   14363:   int hstepm;
                   14364:   int nhstepm;
1.359   ! brouard  14365:   int h, i, i1, j, k, nres=0;
1.180     brouard  14366: 
                   14367:   double agedeb;
                   14368:   double ***p3mat;
                   14369: 
1.337     brouard  14370:   strcpy(filerespij,"PIJ_");  strcat(filerespij,fileresu);
                   14371:   if((ficrespij=fopen(filerespij,"w"))==NULL) {
                   14372:     printf("Problem with Pij resultfile: %s\n", filerespij); return 1;
                   14373:     fprintf(ficlog,"Problem with Pij resultfile: %s\n", filerespij); return 1;
                   14374:   }
                   14375:   printf("Computing pij: result on file '%s' \n", filerespij);
                   14376:   fprintf(ficlog,"Computing pij: result on file '%s' \n", filerespij);
                   14377:   
                   14378:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   14379:   /*if (stepm<=24) stepsize=2;*/
                   14380:   
                   14381:   agelim=AGESUP;
                   14382:   hstepm=stepsize*YEARM; /* Every year of age */
                   14383:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */ 
                   14384:   
                   14385:   /* hstepm=1;   aff par mois*/
                   14386:   pstamp(ficrespij);
                   14387:   fprintf(ficrespij,"#****** h Pij x Probability to be in state j at age x+h being in i at x ");
                   14388:   i1= pow(2,cptcoveff);
                   14389:   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   14390:   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   14391:   /*   k=k+1;  */
                   14392:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   14393:     k=TKresult[nres];
1.338     brouard  14394:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  14395:     /* for(k=1; k<=i1;k++){ */
                   14396:     /* if(i1 != 1 && TKresult[nres]!= k) */
                   14397:     /*         continue; */
                   14398:     fprintf(ficrespij,"\n#****** ");
                   14399:     for(j=1;j<=cptcovs;j++){
                   14400:       fprintf(ficrespij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   14401:       /* fprintf(ficrespij,"@wV%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14402:       /* for (k4=1; k4<= nsq; k4++){ /\* For each selected (single) quantitative value *\/ */
                   14403:       /*       printf(" V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   14404:       /*       fprintf(ficrespij," V%d=%f ",Tvqresult[nres][k4],Tqresult[nres][k4]); */
                   14405:     }
                   14406:     fprintf(ficrespij,"******\n");
                   14407:     
                   14408:     for (agedeb=fage; agedeb>=bage; agedeb--){ /* If stepm=6 months */
                   14409:       nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /* Typically 20 years = 20*12/6=40 */ 
                   14410:       nhstepm = nhstepm/hstepm; /* Typically 40/4=10 */
                   14411:       
                   14412:       /*         nhstepm=nhstepm*YEARM; aff par mois*/
                   14413:       
                   14414:       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   14415:       oldm=oldms;savm=savms;
                   14416:       hpxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k, nres);  
                   14417:       fprintf(ficrespij,"# Cov Agex agex+h hpijx with i,j=");
                   14418:       for(i=1; i<=nlstate;i++)
                   14419:        for(j=1; j<=nlstate+ndeath;j++)
                   14420:          fprintf(ficrespij," %1d-%1d",i,j);
                   14421:       fprintf(ficrespij,"\n");
                   14422:       for (h=0; h<=nhstepm; h++){
                   14423:        /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
                   14424:        fprintf(ficrespij,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm );
1.183     brouard  14425:        for(i=1; i<=nlstate;i++)
                   14426:          for(j=1; j<=nlstate+ndeath;j++)
1.337     brouard  14427:            fprintf(ficrespij," %.5f", p3mat[i][j][h]);
1.183     brouard  14428:        fprintf(ficrespij,"\n");
                   14429:       }
1.337     brouard  14430:       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   14431:       fprintf(ficrespij,"\n");
1.180     brouard  14432:     }
1.337     brouard  14433:   }
                   14434:   /*}*/
                   14435:   return 0;
1.180     brouard  14436: }
1.218     brouard  14437:  
                   14438:  int hBijx(double *p, int bage, int fage, double ***prevacurrent){
1.217     brouard  14439:     /*------------- h Bij x at various ages ------------*/
1.336     brouard  14440:     /* To be optimized with precov */
1.217     brouard  14441:   int stepsize;
1.218     brouard  14442:   /* int agelim; */
                   14443:        int ageminl;
1.217     brouard  14444:   int hstepm;
                   14445:   int nhstepm;
1.238     brouard  14446:   int h, i, i1, j, k, nres;
1.218     brouard  14447:        
1.217     brouard  14448:   double agedeb;
                   14449:   double ***p3mat;
1.218     brouard  14450:        
                   14451:   strcpy(filerespijb,"PIJB_");  strcat(filerespijb,fileresu);
                   14452:   if((ficrespijb=fopen(filerespijb,"w"))==NULL) {
                   14453:     printf("Problem with Pij back resultfile: %s\n", filerespijb); return 1;
                   14454:     fprintf(ficlog,"Problem with Pij back resultfile: %s\n", filerespijb); return 1;
                   14455:   }
                   14456:   printf("Computing pij back: result on file '%s' \n", filerespijb);
                   14457:   fprintf(ficlog,"Computing pij back: result on file '%s' \n", filerespijb);
                   14458:   
                   14459:   stepsize=(int) (stepm+YEARM-1)/YEARM;
                   14460:   /*if (stepm<=24) stepsize=2;*/
1.217     brouard  14461:   
1.218     brouard  14462:   /* agelim=AGESUP; */
1.289     brouard  14463:   ageminl=AGEINF; /* was 30 */
1.218     brouard  14464:   hstepm=stepsize*YEARM; /* Every year of age */
                   14465:   hstepm=hstepm/stepm; /* Typically 2 years, = 2/6 months = 4 */
                   14466:   
                   14467:   /* hstepm=1;   aff par mois*/
                   14468:   pstamp(ficrespijb);
1.255     brouard  14469:   fprintf(ficrespijb,"#****** h Bij x Back probability to be in state i at age x-h being in j at x: B1j+B2j+...=1 ");
1.227     brouard  14470:   i1= pow(2,cptcoveff);
1.218     brouard  14471:   /* for(cptcov=1,k=0;cptcov<=i1;cptcov++){ */
                   14472:   /*    /\*for(cptcod=1;cptcod<=ncodemax[cptcov];cptcod++){*\/ */
                   14473:   /*   k=k+1;  */
1.238     brouard  14474:   for(nres=1; nres <= nresult; nres++){ /* For each resultline */
1.337     brouard  14475:     k=TKresult[nres];
1.338     brouard  14476:     if(TKresult[nres]==0) k=1; /* To be checked for noresult */
1.337     brouard  14477:     /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
                   14478:     /*    if(i1 != 1 && TKresult[nres]!= k) */
                   14479:     /*         continue; */
                   14480:     fprintf(ficrespijb,"\n#****** ");
                   14481:     for(j=1;j<=cptcovs;j++){
1.338     brouard  14482:       fprintf(ficrespijb," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
1.337     brouard  14483:       /* for(j=1;j<=cptcoveff;j++) */
                   14484:       /*       fprintf(ficrespijb,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   14485:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   14486:       /*       fprintf(ficrespijb," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   14487:     }
                   14488:     fprintf(ficrespijb,"******\n");
                   14489:     if(invalidvarcomb[k]){  /* Is it necessary here? */
                   14490:       fprintf(ficrespijb,"\n#Combination (%d) ignored because no cases \n",k); 
                   14491:       continue;
                   14492:     }
                   14493:     
                   14494:     /* for (agedeb=fage; agedeb>=bage; agedeb--){ /\* If stepm=6 months *\/ */
                   14495:     for (agedeb=bage; agedeb<=fage; agedeb++){ /* If stepm=6 months and estepm=24 (2 years) */
                   14496:       /* nhstepm=(int) rint((agelim-agedeb)*YEARM/stepm); /\* Typically 20 years = 20*12/6=40 *\/ */
                   14497:       nhstepm=(int) rint((agedeb-ageminl)*YEARM/stepm+0.1)-1; /* Typically 20 years = 20*12/6=40 or 55*12/24=27.5-1.1=>27 */
                   14498:       nhstepm = nhstepm/hstepm; /* Typically 40/4=10, because estepm=24 stepm=6 => hstepm=24/6=4 or 28*/
                   14499:       
                   14500:       /*         nhstepm=nhstepm*YEARM; aff par mois*/
                   14501:       
                   14502:       p3mat=ma3x(1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm); /* We can't have it at an upper level because of nhstepm */
                   14503:       /* and memory limitations if stepm is small */
                   14504:       
                   14505:       /* oldm=oldms;savm=savms; */
                   14506:       /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,nlstate,stepm,oldm,savm, k);   */
                   14507:       hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm, k, nres);/* Bug valgrind */
                   14508:       /* hbxij(p3mat,nhstepm,agedeb,hstepm,p,prevacurrent,nlstate,stepm,oldm,savm, dnewm, doldm, dsavm, k); */
                   14509:       fprintf(ficrespijb,"# Cov Agex agex-h hbijx with i,j=");
                   14510:       for(i=1; i<=nlstate;i++)
                   14511:        for(j=1; j<=nlstate+ndeath;j++)
                   14512:          fprintf(ficrespijb," %1d-%1d",i,j);
                   14513:       fprintf(ficrespijb,"\n");
                   14514:       for (h=0; h<=nhstepm; h++){
                   14515:        /*agedebphstep = agedeb + h*hstepm/YEARM*stepm;*/
                   14516:        fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb - h*hstepm/YEARM*stepm );
                   14517:        /* fprintf(ficrespijb,"%d %3.f %3.f",k, agedeb, agedeb + h*hstepm/YEARM*stepm ); */
1.217     brouard  14518:        for(i=1; i<=nlstate;i++)
                   14519:          for(j=1; j<=nlstate+ndeath;j++)
1.337     brouard  14520:            fprintf(ficrespijb," %.5f", p3mat[i][j][h]);/* Bug valgrind */
1.217     brouard  14521:        fprintf(ficrespijb,"\n");
1.337     brouard  14522:       }
                   14523:       free_ma3x(p3mat,1,nlstate+ndeath,1, nlstate+ndeath, 0,nhstepm);
                   14524:       fprintf(ficrespijb,"\n");
                   14525:     } /* end age deb */
                   14526:     /* } /\* end combination *\/ */
1.238     brouard  14527:   } /* end nres */
1.218     brouard  14528:   return 0;
                   14529:  } /*  hBijx */
1.217     brouard  14530: 
1.180     brouard  14531: 
1.136     brouard  14532: /***********************************************/
                   14533: /**************** Main Program *****************/
                   14534: /***********************************************/
                   14535: 
                   14536: int main(int argc, char *argv[])
                   14537: {
                   14538: #ifdef GSL
                   14539:   const gsl_multimin_fminimizer_type *T;
                   14540:   size_t iteri = 0, it;
                   14541:   int rval = GSL_CONTINUE;
                   14542:   int status = GSL_SUCCESS;
                   14543:   double ssval;
                   14544: #endif
                   14545:   int movingaverage(double ***probs, double bage,double fage, double ***mobaverage, int mobilav);
1.290     brouard  14546:   int i,j, k, iter=0,m,size=100, cptcod; /* Suppressing because nobs */
                   14547:   /* int i,j, k, n=MAXN,iter=0,m,size=100, cptcod; */
1.209     brouard  14548:   int ncvyear=0; /* Number of years needed for the period prevalence to converge */
1.164     brouard  14549:   int jj, ll, li, lj, lk;
1.136     brouard  14550:   int numlinepar=0; /* Current linenumber of parameter file */
1.197     brouard  14551:   int num_filled;
1.136     brouard  14552:   int itimes;
                   14553:   int NDIM=2;
                   14554:   int vpopbased=0;
1.235     brouard  14555:   int nres=0;
1.258     brouard  14556:   int endishere=0;
1.277     brouard  14557:   int noffset=0;
1.274     brouard  14558:   int ncurrv=0; /* Temporary variable */
                   14559:   
1.164     brouard  14560:   char ca[32], cb[32];
1.136     brouard  14561:   /*  FILE *fichtm; *//* Html File */
                   14562:   /* FILE *ficgp;*/ /*Gnuplot File */
                   14563:   struct stat info;
1.191     brouard  14564:   double agedeb=0.;
1.194     brouard  14565: 
                   14566:   double ageminpar=AGEOVERFLOW,agemin=AGEOVERFLOW, agemaxpar=-AGEOVERFLOW, agemax=-AGEOVERFLOW;
1.219     brouard  14567:   double ageminout=-AGEOVERFLOW,agemaxout=AGEOVERFLOW; /* Smaller Age range redefined after movingaverage */
1.136     brouard  14568: 
1.165     brouard  14569:   double fret;
1.191     brouard  14570:   double dum=0.; /* Dummy variable */
1.359   ! brouard  14571:   /* double*** p3mat;*/
1.218     brouard  14572:   /* double ***mobaverage; */
1.319     brouard  14573:   double wald;
1.164     brouard  14574: 
1.351     brouard  14575:   char line[MAXLINE], linetmp[MAXLINE];
1.197     brouard  14576:   char path[MAXLINE],pathc[MAXLINE],pathcd[MAXLINE],pathtot[MAXLINE];
                   14577: 
1.234     brouard  14578:   char  modeltemp[MAXLINE];
1.332     brouard  14579:   char resultline[MAXLINE], resultlineori[MAXLINE];
1.230     brouard  14580:   
1.136     brouard  14581:   char pathr[MAXLINE], pathimach[MAXLINE]; 
1.164     brouard  14582:   char *tok, *val; /* pathtot */
1.334     brouard  14583:   /* int firstobs=1, lastobs=10; /\* nobs = lastobs-firstobs declared globally ;*\/ */
1.359   ! brouard  14584:   int c, h; /* c2; */
1.191     brouard  14585:   int jl=0;
                   14586:   int i1, j1, jk, stepsize=0;
1.194     brouard  14587:   int count=0;
                   14588: 
1.164     brouard  14589:   int *tab; 
1.136     brouard  14590:   int mobilavproj=0 , prevfcast=0 ; /* moving average of prev, If prevfcast=1 prevalence projection */
1.296     brouard  14591:   /* double anprojd, mprojd, jprojd; /\* For eventual projections *\/ */
                   14592:   /* double anprojf, mprojf, jprojf; */
                   14593:   /* double jintmean,mintmean,aintmean;   */
                   14594:   int prvforecast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
                   14595:   int prvbackcast = 0; /* Might be 1 (date of beginning of projection is a choice or 2 is the dateintmean */
                   14596:   double yrfproj= 10.0; /* Number of years of forward projections */
                   14597:   double yrbproj= 10.0; /* Number of years of backward projections */
                   14598:   int prevbcast=0; /* defined as global for mlikeli and mle, replacing backcast */
1.136     brouard  14599:   int mobilav=0,popforecast=0;
1.191     brouard  14600:   int hstepm=0, nhstepm=0;
1.136     brouard  14601:   int agemortsup;
                   14602:   float  sumlpop=0.;
                   14603:   double jprev1=1, mprev1=1,anprev1=2000,jprev2=1, mprev2=1,anprev2=2000;
                   14604:   double jpyram=1, mpyram=1,anpyram=2000,jpyram1=1, mpyram1=1,anpyram1=2000;
                   14605: 
1.191     brouard  14606:   double bage=0, fage=110., age, agelim=0., agebase=0.;
1.136     brouard  14607:   double ftolpl=FTOL;
                   14608:   double **prlim;
1.217     brouard  14609:   double **bprlim;
1.317     brouard  14610:   double ***param; /* Matrix of parameters, param[i][j][k] param=ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel) 
                   14611:                     state of origin, state of destination including death, for each covariate: constante, age, and V1 V2 etc. */
1.251     brouard  14612:   double ***paramstart; /* Matrix of starting parameter values */
                   14613:   double  *p, *pstart; /* p=param[1][1] pstart is for starting values guessed by freqsummary */
1.136     brouard  14614:   double **matcov; /* Matrix of covariance */
1.203     brouard  14615:   double **hess; /* Hessian matrix */
1.136     brouard  14616:   double ***delti3; /* Scale */
                   14617:   double *delti; /* Scale */
                   14618:   double ***eij, ***vareij;
1.359   ! brouard  14619:   //double **varpl; /* Variances of prevalence limits by age */
1.269     brouard  14620: 
1.136     brouard  14621:   double *epj, vepp;
1.164     brouard  14622: 
1.273     brouard  14623:   double dateprev1, dateprev2;
1.296     brouard  14624:   double jproj1=1,mproj1=1,anproj1=2000,jproj2=1,mproj2=1,anproj2=2000, dateproj1=0, dateproj2=0, dateprojd=0, dateprojf=0;
                   14625:   double jback1=1,mback1=1,anback1=2000,jback2=1,mback2=1,anback2=2000, dateback1=0, dateback2=0, datebackd=0, datebackf=0;
                   14626: 
1.217     brouard  14627: 
1.136     brouard  14628:   double **ximort;
1.145     brouard  14629:   char *alph[]={"a","a","b","c","d","e"}, str[4]="1234";
1.136     brouard  14630:   int *dcwave;
                   14631: 
1.164     brouard  14632:   char z[1]="c";
1.136     brouard  14633: 
                   14634:   /*char  *strt;*/
                   14635:   char strtend[80];
1.126     brouard  14636: 
1.164     brouard  14637: 
1.126     brouard  14638: /*   setlocale (LC_ALL, ""); */
                   14639: /*   bindtextdomain (PACKAGE, LOCALEDIR); */
                   14640: /*   textdomain (PACKAGE); */
                   14641: /*   setlocale (LC_CTYPE, ""); */
                   14642: /*   setlocale (LC_MESSAGES, ""); */
                   14643: 
                   14644:   /*   gettimeofday(&start_time, (struct timezone*)0); */ /* at first time */
1.157     brouard  14645:   rstart_time = time(NULL);  
                   14646:   /*  (void) gettimeofday(&start_time,&tzp);*/
                   14647:   start_time = *localtime(&rstart_time);
1.126     brouard  14648:   curr_time=start_time;
1.157     brouard  14649:   /*tml = *localtime(&start_time.tm_sec);*/
                   14650:   /* strcpy(strstart,asctime(&tml)); */
                   14651:   strcpy(strstart,asctime(&start_time));
1.126     brouard  14652: 
                   14653: /*  printf("Localtime (at start)=%s",strstart); */
1.157     brouard  14654: /*  tp.tm_sec = tp.tm_sec +86400; */
                   14655: /*  tm = *localtime(&start_time.tm_sec); */
1.126     brouard  14656: /*   tmg.tm_year=tmg.tm_year +dsign*dyear; */
                   14657: /*   tmg.tm_mon=tmg.tm_mon +dsign*dmonth; */
                   14658: /*   tmg.tm_hour=tmg.tm_hour + 1; */
1.157     brouard  14659: /*   tp.tm_sec = mktime(&tmg); */
1.126     brouard  14660: /*   strt=asctime(&tmg); */
                   14661: /*   printf("Time(after) =%s",strstart);  */
                   14662: /*  (void) time (&time_value);
                   14663: *  printf("time=%d,t-=%d\n",time_value,time_value-86400);
                   14664: *  tm = *localtime(&time_value);
                   14665: *  strstart=asctime(&tm);
                   14666: *  printf("tim_value=%d,asctime=%s\n",time_value,strstart); 
                   14667: */
                   14668: 
                   14669:   nberr=0; /* Number of errors and warnings */
                   14670:   nbwarn=0;
1.184     brouard  14671: #ifdef WIN32
                   14672:   _getcwd(pathcd, size);
                   14673: #else
1.126     brouard  14674:   getcwd(pathcd, size);
1.184     brouard  14675: #endif
1.191     brouard  14676:   syscompilerinfo(0);
1.359   ! brouard  14677:   printf("\nIMaCh prax version %s, %s\n%s",version, copyright, fullversion);
1.126     brouard  14678:   if(argc <=1){
                   14679:     printf("\nEnter the parameter file name: ");
1.205     brouard  14680:     if(!fgets(pathr,FILENAMELENGTH,stdin)){
                   14681:       printf("ERROR Empty parameter file name\n");
                   14682:       goto end;
                   14683:     }
1.126     brouard  14684:     i=strlen(pathr);
                   14685:     if(pathr[i-1]=='\n')
                   14686:       pathr[i-1]='\0';
1.156     brouard  14687:     i=strlen(pathr);
1.205     brouard  14688:     if(i >= 1 && pathr[i-1]==' ') {/* This may happen when dragging on oS/X! */
1.156     brouard  14689:       pathr[i-1]='\0';
1.205     brouard  14690:     }
                   14691:     i=strlen(pathr);
                   14692:     if( i==0 ){
                   14693:       printf("ERROR Empty parameter file name\n");
                   14694:       goto end;
                   14695:     }
                   14696:     for (tok = pathr; tok != NULL; ){
1.126     brouard  14697:       printf("Pathr |%s|\n",pathr);
                   14698:       while ((val = strsep(&tok, "\"" )) != NULL && *val == '\0');
                   14699:       printf("val= |%s| pathr=%s\n",val,pathr);
                   14700:       strcpy (pathtot, val);
                   14701:       if(pathr[0] == '\0') break; /* Dirty */
                   14702:     }
                   14703:   }
1.281     brouard  14704:   else if (argc<=2){
                   14705:     strcpy(pathtot,argv[1]);
                   14706:   }
1.126     brouard  14707:   else{
                   14708:     strcpy(pathtot,argv[1]);
1.281     brouard  14709:     strcpy(z,argv[2]);
                   14710:     printf("\nargv[2]=%s z=%c\n",argv[2],z[0]);
1.126     brouard  14711:   }
                   14712:   /*if(getcwd(pathcd, MAXLINE)!= NULL)printf ("Error pathcd\n");*/
                   14713:   /*cygwin_split_path(pathtot,path,optionfile);
                   14714:     printf("pathtot=%s, path=%s, optionfile=%s\n",pathtot,path,optionfile);*/
                   14715:   /* cutv(path,optionfile,pathtot,'\\');*/
                   14716: 
                   14717:   /* Split argv[0], imach program to get pathimach */
                   14718:   printf("\nargv[0]=%s argv[1]=%s, \n",argv[0],argv[1]);
                   14719:   split(argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   14720:   printf("\nargv[0]=%s pathimach=%s, \noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",argv[0],pathimach,optionfile,optionfilext,optionfilefiname);
                   14721:  /*   strcpy(pathimach,argv[0]); */
                   14722:   /* Split argv[1]=pathtot, parameter file name to get path, optionfile, extension and name */
                   14723:   split(pathtot,path,optionfile,optionfilext,optionfilefiname);
                   14724:   printf("\npathtot=%s,\npath=%s,\noptionfile=%s \noptionfilext=%s \noptionfilefiname=%s\n",pathtot,path,optionfile,optionfilext,optionfilefiname);
1.184     brouard  14725: #ifdef WIN32
                   14726:   _chdir(path); /* Can be a relative path */
                   14727:   if(_getcwd(pathcd,MAXLINE) > 0) /* So pathcd is the full path */
                   14728: #else
1.126     brouard  14729:   chdir(path); /* Can be a relative path */
1.184     brouard  14730:   if (getcwd(pathcd, MAXLINE) > 0) /* So pathcd is the full path */
                   14731: #endif
                   14732:   printf("Current directory %s!\n",pathcd);
1.126     brouard  14733:   strcpy(command,"mkdir ");
                   14734:   strcat(command,optionfilefiname);
                   14735:   if((outcmd=system(command)) != 0){
1.169     brouard  14736:     printf("Directory already exists (or can't create it) %s%s, err=%d\n",path,optionfilefiname,outcmd);
1.126     brouard  14737:     /* fprintf(ficlog,"Problem creating directory %s%s\n",path,optionfilefiname); */
                   14738:     /* fclose(ficlog); */
                   14739: /*     exit(1); */
                   14740:   }
                   14741: /*   if((imk=mkdir(optionfilefiname))<0){ */
                   14742: /*     perror("mkdir"); */
                   14743: /*   } */
                   14744: 
                   14745:   /*-------- arguments in the command line --------*/
                   14746: 
1.186     brouard  14747:   /* Main Log file */
1.126     brouard  14748:   strcat(filelog, optionfilefiname);
                   14749:   strcat(filelog,".log");    /* */
                   14750:   if((ficlog=fopen(filelog,"w"))==NULL)    {
                   14751:     printf("Problem with logfile %s\n",filelog);
                   14752:     goto end;
                   14753:   }
                   14754:   fprintf(ficlog,"Log filename:%s\n",filelog);
1.197     brouard  14755:   fprintf(ficlog,"Version %s %s",version,fullversion);
1.126     brouard  14756:   fprintf(ficlog,"\nEnter the parameter file name: \n");
                   14757:   fprintf(ficlog,"pathimach=%s\npathtot=%s\n\
                   14758:  path=%s \n\
                   14759:  optionfile=%s\n\
                   14760:  optionfilext=%s\n\
1.156     brouard  14761:  optionfilefiname='%s'\n",pathimach,pathtot,path,optionfile,optionfilext,optionfilefiname);
1.126     brouard  14762: 
1.197     brouard  14763:   syscompilerinfo(1);
1.167     brouard  14764: 
1.126     brouard  14765:   printf("Local time (at start):%s",strstart);
                   14766:   fprintf(ficlog,"Local time (at start): %s",strstart);
                   14767:   fflush(ficlog);
                   14768: /*   (void) gettimeofday(&curr_time,&tzp); */
1.157     brouard  14769: /*   printf("Elapsed time %d\n", asc_diff_time(curr_time.tm_sec-start_time.tm_sec,tmpout)); */
1.126     brouard  14770: 
                   14771:   /* */
                   14772:   strcpy(fileres,"r");
                   14773:   strcat(fileres, optionfilefiname);
1.201     brouard  14774:   strcat(fileresu, optionfilefiname); /* Without r in front */
1.126     brouard  14775:   strcat(fileres,".txt");    /* Other files have txt extension */
1.201     brouard  14776:   strcat(fileresu,".txt");    /* Other files have txt extension */
1.126     brouard  14777: 
1.186     brouard  14778:   /* Main ---------arguments file --------*/
1.126     brouard  14779: 
                   14780:   if((ficpar=fopen(optionfile,"r"))==NULL)    {
1.155     brouard  14781:     printf("Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
                   14782:     fprintf(ficlog,"Problem with optionfile '%s' with errno='%s'\n",optionfile,strerror(errno));
1.126     brouard  14783:     fflush(ficlog);
1.149     brouard  14784:     /* goto end; */
                   14785:     exit(70); 
1.126     brouard  14786:   }
                   14787: 
                   14788:   strcpy(filereso,"o");
1.201     brouard  14789:   strcat(filereso,fileresu);
1.126     brouard  14790:   if((ficparo=fopen(filereso,"w"))==NULL) { /* opened on subdirectory */
                   14791:     printf("Problem with Output resultfile: %s\n", filereso);
                   14792:     fprintf(ficlog,"Problem with Output resultfile: %s\n", filereso);
                   14793:     fflush(ficlog);
                   14794:     goto end;
                   14795:   }
1.278     brouard  14796:       /*-------- Rewriting parameter file ----------*/
                   14797:   strcpy(rfileres,"r");    /* "Rparameterfile */
                   14798:   strcat(rfileres,optionfilefiname);    /* Parameter file first name */
                   14799:   strcat(rfileres,".");    /* */
                   14800:   strcat(rfileres,optionfilext);    /* Other files have txt extension */
                   14801:   if((ficres =fopen(rfileres,"w"))==NULL) {
                   14802:     printf("Problem writing new parameter file: %s\n", rfileres);goto end;
                   14803:     fprintf(ficlog,"Problem writing new parameter file: %s\n", rfileres);goto end;
                   14804:     fflush(ficlog);
                   14805:     goto end;
                   14806:   }
                   14807:   fprintf(ficres,"#IMaCh %s\n",version);
1.126     brouard  14808: 
1.278     brouard  14809:                                      
1.126     brouard  14810:   /* Reads comments: lines beginning with '#' */
                   14811:   numlinepar=0;
1.277     brouard  14812:   /* Is it a BOM UTF-8 Windows file? */
                   14813:   /* First parameter line */
1.197     brouard  14814:   while(fgets(line, MAXLINE, ficpar)) {
1.277     brouard  14815:     noffset=0;
                   14816:     if( line[0] == (char)0xEF && line[1] == (char)0xBB) /* EF BB BF */
                   14817:     {
                   14818:       noffset=noffset+3;
                   14819:       printf("# File is an UTF8 Bom.\n"); // 0xBF
                   14820:     }
1.302     brouard  14821: /*    else if( line[0] == (char)0xFE && line[1] == (char)0xFF)*/
                   14822:     else if( line[0] == (char)0xFF && line[1] == (char)0xFE)
1.277     brouard  14823:     {
                   14824:       noffset=noffset+2;
                   14825:       printf("# File is an UTF16BE BOM file\n");
                   14826:     }
                   14827:     else if( line[0] == 0 && line[1] == 0)
                   14828:     {
                   14829:       if( line[2] == (char)0xFE && line[3] == (char)0xFF){
                   14830:        noffset=noffset+4;
                   14831:        printf("# File is an UTF16BE BOM file\n");
                   14832:       }
                   14833:     } else{
                   14834:       ;/*printf(" Not a BOM file\n");*/
                   14835:     }
                   14836:   
1.197     brouard  14837:     /* If line starts with a # it is a comment */
1.277     brouard  14838:     if (line[noffset] == '#') {
1.197     brouard  14839:       numlinepar++;
                   14840:       fputs(line,stdout);
                   14841:       fputs(line,ficparo);
1.278     brouard  14842:       fputs(line,ficres);
1.197     brouard  14843:       fputs(line,ficlog);
                   14844:       continue;
                   14845:     }else
                   14846:       break;
                   14847:   }
                   14848:   if((num_filled=sscanf(line,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", \
                   14849:                        title, datafile, &lastobs, &firstpass,&lastpass)) !=EOF){
                   14850:     if (num_filled != 5) {
                   14851:       printf("Should be 5 parameters\n");
1.283     brouard  14852:       fprintf(ficlog,"Should be 5 parameters\n");
1.197     brouard  14853:     }
1.126     brouard  14854:     numlinepar++;
1.197     brouard  14855:     printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
1.283     brouard  14856:     fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
                   14857:     fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
                   14858:     fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\n", title, datafile, lastobs, firstpass,lastpass);
1.197     brouard  14859:   }
                   14860:   /* Second parameter line */
                   14861:   while(fgets(line, MAXLINE, ficpar)) {
1.283     brouard  14862:     /* while(fscanf(ficpar,"%[^\n]", line)) { */
                   14863:     /* If line starts with a # it is a comment. Strangely fgets reads the EOL and fputs doesn't */
1.197     brouard  14864:     if (line[0] == '#') {
                   14865:       numlinepar++;
1.283     brouard  14866:       printf("%s",line);
                   14867:       fprintf(ficres,"%s",line);
                   14868:       fprintf(ficparo,"%s",line);
                   14869:       fprintf(ficlog,"%s",line);
1.197     brouard  14870:       continue;
                   14871:     }else
                   14872:       break;
                   14873:   }
1.223     brouard  14874:   if((num_filled=sscanf(line,"ftol=%lf stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n", \
                   14875:                        &ftol, &stepm, &ncovcol, &nqv, &ntv, &nqtv, &nlstate, &ndeath, &maxwav, &mle, &weightopt)) !=EOF){
                   14876:     if (num_filled != 11) {
                   14877:       printf("Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
1.209     brouard  14878:       printf("but line=%s\n",line);
1.283     brouard  14879:       fprintf(ficlog,"Not 11 parameters, for example:ftol=1.e-8 stepm=12 ncovcol=2 nqv=1 ntv=2 nqtv=1  nlstate=2 ndeath=1 maxwav=3 mle=1 weight=1\n");
                   14880:       fprintf(ficlog,"but line=%s\n",line);
1.197     brouard  14881:     }
1.286     brouard  14882:     if( lastpass > maxwav){
                   14883:       printf("Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
                   14884:       fprintf(ficlog,"Error (lastpass = %d) > (maxwav = %d)\n",lastpass, maxwav);
                   14885:       fflush(ficlog);
                   14886:       goto end;
                   14887:     }
                   14888:       printf("ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.283     brouard  14889:     fprintf(ficparo,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.286     brouard  14890:     fprintf(ficres,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, 0, weightopt);
1.283     brouard  14891:     fprintf(ficlog,"ftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\n",ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, mle, weightopt);
1.126     brouard  14892:   }
1.203     brouard  14893:   /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
1.209     brouard  14894:   /*ftolpl=6.e-4; *//* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
1.197     brouard  14895:   /* Third parameter line */
                   14896:   while(fgets(line, MAXLINE, ficpar)) {
                   14897:     /* If line starts with a # it is a comment */
                   14898:     if (line[0] == '#') {
                   14899:       numlinepar++;
1.283     brouard  14900:       printf("%s",line);
                   14901:       fprintf(ficres,"%s",line);
                   14902:       fprintf(ficparo,"%s",line);
                   14903:       fprintf(ficlog,"%s",line);
1.197     brouard  14904:       continue;
                   14905:     }else
                   14906:       break;
                   14907:   }
1.351     brouard  14908:   if((num_filled=sscanf(line,"model=%[^.\n]", model)) !=EOF){ /* Every character after model but dot and  return */
                   14909:     if (num_filled != 1){
                   14910:       printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
                   14911:       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
                   14912:       model[0]='\0';
                   14913:       goto end;
                   14914:     }else{
                   14915:       trimbtab(linetmp,line); /* Trims multiple blanks in line */
                   14916:       strcpy(line, linetmp);
                   14917:     }
                   14918:   }
                   14919:   if((num_filled=sscanf(line,"model=1+age%[^.\n]", model)) !=EOF){ /* Every character after 1+age but dot and  return */
1.279     brouard  14920:     if (num_filled != 1){
1.302     brouard  14921:       printf("ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
                   14922:       fprintf(ficlog,"ERROR %d: Model should be at minimum 'model=1+age+' instead of '%s'\n",num_filled, line);
1.197     brouard  14923:       model[0]='\0';
                   14924:       goto end;
                   14925:     }
                   14926:     else{
                   14927:       if (model[0]=='+'){
                   14928:        for(i=1; i<=strlen(model);i++)
                   14929:          modeltemp[i-1]=model[i];
1.201     brouard  14930:        strcpy(model,modeltemp); 
1.197     brouard  14931:       }
                   14932:     }
1.338     brouard  14933:     /* printf(" model=1+age%s modeltemp= %s, model=1+age+%s\n",model, modeltemp, model);fflush(stdout); */
1.203     brouard  14934:     printf("model=1+age+%s\n",model);fflush(stdout);
1.283     brouard  14935:     fprintf(ficparo,"model=1+age+%s\n",model);fflush(stdout);
                   14936:     fprintf(ficres,"model=1+age+%s\n",model);fflush(stdout);
                   14937:     fprintf(ficlog,"model=1+age+%s\n",model);fflush(stdout);
1.197     brouard  14938:   }
                   14939:   /* fscanf(ficpar,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%lf stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d model=1+age+%s\n",title, datafile, &lastobs, &firstpass,&lastpass,&ftol, &stepm, &ncovcol, &nlstate,&ndeath, &maxwav, &mle, &weightopt,model); */
                   14940:   /* numlinepar=numlinepar+3; /\* In general *\/ */
                   14941:   /* printf("title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nlstate,ndeath, maxwav, mle, weightopt,model); */
1.283     brouard  14942:   /* fprintf(ficparo,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
                   14943:   /* fprintf(ficlog,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle=%d weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol,stepm,ncovcol, nqv, ntv, nqtv, nlstate,ndeath,maxwav, mle, weightopt,model); */
1.126     brouard  14944:   fflush(ficlog);
1.190     brouard  14945:   /* if(model[0]=='#'|| model[0]== '\0'){ */
                   14946:   if(model[0]=='#'){
1.279     brouard  14947:     printf("Error in 'model' line: model should start with 'model=1+age+' and end without space \n \
                   14948:  'model=1+age+' or 'model=1+age+V1.' or 'model=1+age+age*age+V1+V1*age' or \n \
                   14949:  'model=1+age+V1+V2' or 'model=1+age+V1+V2+V1*V2' etc. \n");           \
1.187     brouard  14950:     if(mle != -1){
1.279     brouard  14951:       printf("Fix the model line and run imach with mle=-1 to get a correct template of the parameter vectors and subdiagonal covariance matrix.\n");
1.187     brouard  14952:       exit(1);
                   14953:     }
                   14954:   }
1.126     brouard  14955:   while((c=getc(ficpar))=='#' && c!= EOF){
                   14956:     ungetc(c,ficpar);
                   14957:     fgets(line, MAXLINE, ficpar);
                   14958:     numlinepar++;
1.195     brouard  14959:     if(line[1]=='q'){ /* This #q will quit imach (the answer is q) */
                   14960:       z[0]=line[1];
1.342     brouard  14961:     }else if(line[1]=='d'){ /* For debugging individual values of covariates in ficresilk */
1.343     brouard  14962:       debugILK=1;printf("DebugILK\n");
1.195     brouard  14963:     }
                   14964:     /* printf("****line [1] = %c \n",line[1]); */
1.141     brouard  14965:     fputs(line, stdout);
                   14966:     //puts(line);
1.126     brouard  14967:     fputs(line,ficparo);
                   14968:     fputs(line,ficlog);
                   14969:   }
                   14970:   ungetc(c,ficpar);
                   14971: 
                   14972:    
1.290     brouard  14973:   covar=matrix(0,NCOVMAX,firstobs,lastobs);  /**< used in readdata */
                   14974:   if(nqv>=1)coqvar=matrix(1,nqv,firstobs,lastobs);  /**< Fixed quantitative covariate */
                   14975:   if(nqtv>=1)cotqvar=ma3x(1,maxwav,1,nqtv,firstobs,lastobs);  /**< Time varying quantitative covariate */
1.341     brouard  14976:   /* if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,1,ntv+nqtv,firstobs,lastobs);  /\**< Time varying covariate (dummy and quantitative)*\/ */
                   14977:   if(ntv+nqtv>=1)cotvar=ma3x(1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs);  /**< Might be better */
1.136     brouard  14978:   cptcovn=0; /*Number of covariates, i.e. number of '+' in model statement plus one, indepently of n in Vn*/
                   14979:   /* v1+v2+v3+v2*v4+v5*age makes cptcovn = 5
                   14980:      v1+v2*age+v2*v3 makes cptcovn = 3
                   14981:   */
                   14982:   if (strlen(model)>1) 
1.187     brouard  14983:     ncovmodel=2+nbocc(model,'+')+1; /*Number of variables including intercept and age = cptcovn + intercept + age : v1+v2+v3+v2*v4+v5*age makes 5+2=7,age*age makes 3*/
1.145     brouard  14984:   else
1.187     brouard  14985:     ncovmodel=2; /* Constant and age */
1.133     brouard  14986:   nforce= (nlstate+ndeath-1)*nlstate; /* Number of forces ij from state i to j */
                   14987:   npar= nforce*ncovmodel; /* Number of parameters like aij*/
1.131     brouard  14988:   if(npar >MAXPARM || nlstate >NLSTATEMAX || ndeath >NDEATHMAX || ncovmodel>NCOVMAX){
                   14989:     printf("Too complex model for current IMaCh: npar=(nlstate+ndeath-1)*nlstate*ncovmodel=%d >= %d(MAXPARM) or nlstate=%d >= %d(NLSTATEMAX) or ndeath=%d >= %d(NDEATHMAX) or ncovmodel=(k+age+#of+signs)=%d(NCOVMAX) >= %d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   14990:     fprintf(ficlog,"Too complex model for current IMaCh: %d >=%d(MAXPARM) or %d >=%d(NLSTATEMAX) or %d >=%d(NDEATHMAX) or %d(NCOVMAX) >=%d\n",npar, MAXPARM, nlstate, NLSTATEMAX, ndeath, NDEATHMAX, ncovmodel, NCOVMAX);
                   14991:     fflush(stdout);
                   14992:     fclose (ficlog);
                   14993:     goto end;
                   14994:   }
1.126     brouard  14995:   delti3= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   14996:   delti=delti3[1][1];
                   14997:   /*delti=vector(1,npar); *//* Scale of each paramater (output from hesscov)*/
                   14998:   if(mle==-1){ /* Print a wizard for help writing covariance matrix */
1.247     brouard  14999: /* We could also provide initial parameters values giving by simple logistic regression 
                   15000:  * only one way, that is without matrix product. We will have nlstate maximizations */
                   15001:       /* for(i=1;i<nlstate;i++){ */
                   15002:       /*       /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
                   15003:       /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
                   15004:       /* } */
1.126     brouard  15005:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
1.191     brouard  15006:     printf(" You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
                   15007:     fprintf(ficlog," You chose mle=-1, look at file %s for a template of covariance matrix \n",filereso);
1.126     brouard  15008:     free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   15009:     fclose (ficparo);
                   15010:     fclose (ficlog);
                   15011:     goto end;
                   15012:     exit(0);
1.220     brouard  15013:   }  else if(mle==-5) { /* Main Wizard */
1.126     brouard  15014:     prwizard(ncovmodel, nlstate, ndeath, model, ficparo);
1.192     brouard  15015:     printf(" You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
                   15016:     fprintf(ficlog," You chose mle=-3, look at file %s for a template of covariance matrix \n",filereso);
1.126     brouard  15017:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
                   15018:     matcov=matrix(1,npar,1,npar);
1.203     brouard  15019:     hess=matrix(1,npar,1,npar);
1.220     brouard  15020:   }  else{ /* Begin of mle != -1 or -5 */
1.145     brouard  15021:     /* Read guessed parameters */
1.126     brouard  15022:     /* Reads comments: lines beginning with '#' */
                   15023:     while((c=getc(ficpar))=='#' && c!= EOF){
                   15024:       ungetc(c,ficpar);
                   15025:       fgets(line, MAXLINE, ficpar);
                   15026:       numlinepar++;
1.141     brouard  15027:       fputs(line,stdout);
1.126     brouard  15028:       fputs(line,ficparo);
                   15029:       fputs(line,ficlog);
                   15030:     }
                   15031:     ungetc(c,ficpar);
                   15032:     
                   15033:     param= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
1.251     brouard  15034:     paramstart= ma3x(1,nlstate,1,nlstate+ndeath-1,1,ncovmodel);
1.126     brouard  15035:     for(i=1; i <=nlstate; i++){
1.234     brouard  15036:       j=0;
1.126     brouard  15037:       for(jj=1; jj <=nlstate+ndeath; jj++){
1.234     brouard  15038:        if(jj==i) continue;
                   15039:        j++;
1.292     brouard  15040:        while((c=getc(ficpar))=='#' && c!= EOF){
                   15041:          ungetc(c,ficpar);
                   15042:          fgets(line, MAXLINE, ficpar);
                   15043:          numlinepar++;
                   15044:          fputs(line,stdout);
                   15045:          fputs(line,ficparo);
                   15046:          fputs(line,ficlog);
                   15047:        }
                   15048:        ungetc(c,ficpar);
1.234     brouard  15049:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   15050:        if ((i1 != i) || (j1 != jj)){
                   15051:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n \
1.126     brouard  15052: It might be a problem of design; if ncovcol and the model are correct\n \
                   15053: run imach with mle=-1 to get a correct template of the parameter file.\n",numlinepar, i,j, i1, j1);
1.234     brouard  15054:          exit(1);
                   15055:        }
                   15056:        fprintf(ficparo,"%1d%1d",i1,j1);
                   15057:        if(mle==1)
                   15058:          printf("%1d%1d",i,jj);
                   15059:        fprintf(ficlog,"%1d%1d",i,jj);
                   15060:        for(k=1; k<=ncovmodel;k++){
                   15061:          fscanf(ficpar," %lf",&param[i][j][k]);
                   15062:          if(mle==1){
                   15063:            printf(" %lf",param[i][j][k]);
                   15064:            fprintf(ficlog," %lf",param[i][j][k]);
                   15065:          }
                   15066:          else
                   15067:            fprintf(ficlog," %lf",param[i][j][k]);
                   15068:          fprintf(ficparo," %lf",param[i][j][k]);
                   15069:        }
                   15070:        fscanf(ficpar,"\n");
                   15071:        numlinepar++;
                   15072:        if(mle==1)
                   15073:          printf("\n");
                   15074:        fprintf(ficlog,"\n");
                   15075:        fprintf(ficparo,"\n");
1.126     brouard  15076:       }
                   15077:     }  
                   15078:     fflush(ficlog);
1.234     brouard  15079:     
1.251     brouard  15080:     /* Reads parameters values */
1.126     brouard  15081:     p=param[1][1];
1.251     brouard  15082:     pstart=paramstart[1][1];
1.126     brouard  15083:     
                   15084:     /* Reads comments: lines beginning with '#' */
                   15085:     while((c=getc(ficpar))=='#' && c!= EOF){
                   15086:       ungetc(c,ficpar);
                   15087:       fgets(line, MAXLINE, ficpar);
                   15088:       numlinepar++;
1.141     brouard  15089:       fputs(line,stdout);
1.126     brouard  15090:       fputs(line,ficparo);
                   15091:       fputs(line,ficlog);
                   15092:     }
                   15093:     ungetc(c,ficpar);
                   15094: 
                   15095:     for(i=1; i <=nlstate; i++){
                   15096:       for(j=1; j <=nlstate+ndeath-1; j++){
1.234     brouard  15097:        fscanf(ficpar,"%1d%1d",&i1,&j1);
                   15098:        if ( (i1-i) * (j1-j) != 0){
                   15099:          printf("Error in line parameters number %d, %1d%1d instead of %1d%1d \n",numlinepar, i,j, i1, j1);
                   15100:          exit(1);
                   15101:        }
                   15102:        printf("%1d%1d",i,j);
                   15103:        fprintf(ficparo,"%1d%1d",i1,j1);
                   15104:        fprintf(ficlog,"%1d%1d",i1,j1);
                   15105:        for(k=1; k<=ncovmodel;k++){
                   15106:          fscanf(ficpar,"%le",&delti3[i][j][k]);
                   15107:          printf(" %le",delti3[i][j][k]);
                   15108:          fprintf(ficparo," %le",delti3[i][j][k]);
                   15109:          fprintf(ficlog," %le",delti3[i][j][k]);
                   15110:        }
                   15111:        fscanf(ficpar,"\n");
                   15112:        numlinepar++;
                   15113:        printf("\n");
                   15114:        fprintf(ficparo,"\n");
                   15115:        fprintf(ficlog,"\n");
1.126     brouard  15116:       }
                   15117:     }
                   15118:     fflush(ficlog);
1.234     brouard  15119:     
1.145     brouard  15120:     /* Reads covariance matrix */
1.126     brouard  15121:     delti=delti3[1][1];
1.220     brouard  15122:                
                   15123:                
1.126     brouard  15124:     /* free_ma3x(delti3,1,nlstate,1,nlstate+ndeath-1,1,ncovmodel); */ /* Hasn't to to freed here otherwise delti is no more allocated */
1.220     brouard  15125:                
1.126     brouard  15126:     /* Reads comments: lines beginning with '#' */
                   15127:     while((c=getc(ficpar))=='#' && c!= EOF){
                   15128:       ungetc(c,ficpar);
                   15129:       fgets(line, MAXLINE, ficpar);
                   15130:       numlinepar++;
1.141     brouard  15131:       fputs(line,stdout);
1.126     brouard  15132:       fputs(line,ficparo);
                   15133:       fputs(line,ficlog);
                   15134:     }
                   15135:     ungetc(c,ficpar);
1.220     brouard  15136:                
1.126     brouard  15137:     matcov=matrix(1,npar,1,npar);
1.203     brouard  15138:     hess=matrix(1,npar,1,npar);
1.131     brouard  15139:     for(i=1; i <=npar; i++)
                   15140:       for(j=1; j <=npar; j++) matcov[i][j]=0.;
1.220     brouard  15141:                
1.194     brouard  15142:     /* Scans npar lines */
1.126     brouard  15143:     for(i=1; i <=npar; i++){
1.226     brouard  15144:       count=fscanf(ficpar,"%1d%1d%d",&i1,&j1,&jk);
1.194     brouard  15145:       if(count != 3){
1.226     brouard  15146:        printf("Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
1.194     brouard  15147: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
                   15148: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
1.226     brouard  15149:        fprintf(ficlog,"Error! Error in parameter file %s at line %d after line starting with %1d%1d%1d\n\
1.194     brouard  15150: This is probably because your covariance matrix doesn't \n  contain exactly %d lines corresponding to your model line '1+age+%s'.\n\
                   15151: Please run with mle=-1 to get a correct covariance matrix.\n",optionfile,numlinepar, i1,j1,jk, npar, model);
1.226     brouard  15152:        exit(1);
1.220     brouard  15153:       }else{
1.226     brouard  15154:        if(mle==1)
                   15155:          printf("%1d%1d%d",i1,j1,jk);
                   15156:       }
                   15157:       fprintf(ficlog,"%1d%1d%d",i1,j1,jk);
                   15158:       fprintf(ficparo,"%1d%1d%d",i1,j1,jk);
1.126     brouard  15159:       for(j=1; j <=i; j++){
1.226     brouard  15160:        fscanf(ficpar," %le",&matcov[i][j]);
                   15161:        if(mle==1){
                   15162:          printf(" %.5le",matcov[i][j]);
                   15163:        }
                   15164:        fprintf(ficlog," %.5le",matcov[i][j]);
                   15165:        fprintf(ficparo," %.5le",matcov[i][j]);
1.126     brouard  15166:       }
                   15167:       fscanf(ficpar,"\n");
                   15168:       numlinepar++;
                   15169:       if(mle==1)
1.220     brouard  15170:                                printf("\n");
1.126     brouard  15171:       fprintf(ficlog,"\n");
                   15172:       fprintf(ficparo,"\n");
                   15173:     }
1.194     brouard  15174:     /* End of read covariance matrix npar lines */
1.126     brouard  15175:     for(i=1; i <=npar; i++)
                   15176:       for(j=i+1;j<=npar;j++)
1.226     brouard  15177:        matcov[i][j]=matcov[j][i];
1.126     brouard  15178:     
                   15179:     if(mle==1)
                   15180:       printf("\n");
                   15181:     fprintf(ficlog,"\n");
                   15182:     
                   15183:     fflush(ficlog);
                   15184:     
                   15185:   }    /* End of mle != -3 */
1.218     brouard  15186:   
1.186     brouard  15187:   /*  Main data
                   15188:    */
1.290     brouard  15189:   nobs=lastobs-firstobs+1; /* was = lastobs;*/
                   15190:   /* num=lvector(1,n); */
                   15191:   /* moisnais=vector(1,n); */
                   15192:   /* annais=vector(1,n); */
                   15193:   /* moisdc=vector(1,n); */
                   15194:   /* andc=vector(1,n); */
                   15195:   /* weight=vector(1,n); */
                   15196:   /* agedc=vector(1,n); */
                   15197:   /* cod=ivector(1,n); */
                   15198:   /* for(i=1;i<=n;i++){ */
                   15199:   num=lvector(firstobs,lastobs);
                   15200:   moisnais=vector(firstobs,lastobs);
                   15201:   annais=vector(firstobs,lastobs);
                   15202:   moisdc=vector(firstobs,lastobs);
                   15203:   andc=vector(firstobs,lastobs);
                   15204:   weight=vector(firstobs,lastobs);
                   15205:   agedc=vector(firstobs,lastobs);
                   15206:   cod=ivector(firstobs,lastobs);
                   15207:   for(i=firstobs;i<=lastobs;i++){
1.234     brouard  15208:     num[i]=0;
                   15209:     moisnais[i]=0;
                   15210:     annais[i]=0;
                   15211:     moisdc[i]=0;
                   15212:     andc[i]=0;
                   15213:     agedc[i]=0;
                   15214:     cod[i]=0;
                   15215:     weight[i]=1.0; /* Equal weights, 1 by default */
                   15216:   }
1.290     brouard  15217:   mint=matrix(1,maxwav,firstobs,lastobs);
                   15218:   anint=matrix(1,maxwav,firstobs,lastobs);
1.325     brouard  15219:   s=imatrix(1,maxwav+1,firstobs,lastobs); /* s[i][j] health state for wave i and individual j */
1.336     brouard  15220:   /* printf("BUG ncovmodel=%d NCOVMAX=%d 2**ncovmodel=%f BUG\n",ncovmodel,NCOVMAX,pow(2,ncovmodel)); */
1.126     brouard  15221:   tab=ivector(1,NCOVMAX);
1.144     brouard  15222:   ncodemax=ivector(1,NCOVMAX); /* Number of code per covariate; if O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.192     brouard  15223:   ncodemaxwundef=ivector(1,NCOVMAX); /* Number of code per covariate; if - 1 O and 1 only, 2**ncov; V1+V2+V3+V4=>16 */
1.126     brouard  15224: 
1.136     brouard  15225:   /* Reads data from file datafile */
                   15226:   if (readdata(datafile, firstobs, lastobs, &imx)==1)
                   15227:     goto end;
                   15228: 
                   15229:   /* Calculation of the number of parameters from char model */
1.234     brouard  15230:   /*    modelsav=V2+V1+V4+age*V3 strb=age*V3 stra=V2+V1+V4 
1.137     brouard  15231:        k=4 (age*V3) Tvar[k=4]= 3 (from V3) Tag[cptcovage=1]=4
                   15232:        k=3 V4 Tvar[k=3]= 4 (from V4)
                   15233:        k=2 V1 Tvar[k=2]= 1 (from V1)
                   15234:        k=1 Tvar[1]=2 (from V2)
1.234     brouard  15235:   */
                   15236:   
                   15237:   Tvar=ivector(1,NCOVMAX); /* Was 15 changed to NCOVMAX. */
                   15238:   TvarsDind=ivector(1,NCOVMAX); /*  */
1.330     brouard  15239:   TnsdVar=ivector(1,NCOVMAX); /*  */
1.335     brouard  15240:     /* for(i=1; i<=NCOVMAX;i++) TnsdVar[i]=3; */
1.234     brouard  15241:   TvarsD=ivector(1,NCOVMAX); /*  */
                   15242:   TvarsQind=ivector(1,NCOVMAX); /*  */
                   15243:   TvarsQ=ivector(1,NCOVMAX); /*  */
1.232     brouard  15244:   TvarF=ivector(1,NCOVMAX); /*  */
                   15245:   TvarFind=ivector(1,NCOVMAX); /*  */
                   15246:   TvarV=ivector(1,NCOVMAX); /*  */
                   15247:   TvarVind=ivector(1,NCOVMAX); /*  */
                   15248:   TvarA=ivector(1,NCOVMAX); /*  */
                   15249:   TvarAind=ivector(1,NCOVMAX); /*  */
1.231     brouard  15250:   TvarFD=ivector(1,NCOVMAX); /*  */
                   15251:   TvarFDind=ivector(1,NCOVMAX); /*  */
                   15252:   TvarFQ=ivector(1,NCOVMAX); /*  */
                   15253:   TvarFQind=ivector(1,NCOVMAX); /*  */
                   15254:   TvarVD=ivector(1,NCOVMAX); /*  */
                   15255:   TvarVDind=ivector(1,NCOVMAX); /*  */
                   15256:   TvarVQ=ivector(1,NCOVMAX); /*  */
                   15257:   TvarVQind=ivector(1,NCOVMAX); /*  */
1.339     brouard  15258:   TvarVV=ivector(1,NCOVMAX); /*  */
                   15259:   TvarVVind=ivector(1,NCOVMAX); /*  */
1.349     brouard  15260:   TvarVVA=ivector(1,NCOVMAX); /*  */
                   15261:   TvarVVAind=ivector(1,NCOVMAX); /*  */
                   15262:   TvarAVVA=ivector(1,NCOVMAX); /*  */
                   15263:   TvarAVVAind=ivector(1,NCOVMAX); /*  */
1.231     brouard  15264: 
1.230     brouard  15265:   Tvalsel=vector(1,NCOVMAX); /*  */
1.233     brouard  15266:   Tvarsel=ivector(1,NCOVMAX); /*  */
1.226     brouard  15267:   Typevar=ivector(-1,NCOVMAX); /* -1 to 2 */
                   15268:   Fixed=ivector(-1,NCOVMAX); /* -1 to 3 */
                   15269:   Dummy=ivector(-1,NCOVMAX); /* -1 to 3 */
1.349     brouard  15270:   DummyV=ivector(-1,NCOVMAX); /* 1 to 3 */
                   15271:   FixedV=ivector(-1,NCOVMAX); /* 1 to 3 */
                   15272: 
1.137     brouard  15273:   /*  V2+V1+V4+age*V3 is a model with 4 covariates (3 plus signs). 
                   15274:       For each model-covariate stores the data-covariate id. Tvar[1]=2, Tvar[2]=1, Tvar[3]=4, 
                   15275:       Tvar[4=age*V3] is 3 and 'age' is recorded in Tage.
                   15276:   */
                   15277:   /* For model-covariate k tells which data-covariate to use but
                   15278:     because this model-covariate is a construction we invent a new column
                   15279:     ncovcol + k1
                   15280:     If already ncovcol=4 and model=V2+V1+V1*V4+age*V3
                   15281:     Tvar[3=V1*V4]=4+1 etc */
1.227     brouard  15282:   Tprod=ivector(1,NCOVMAX); /* Gives the k position of the k1 product */
                   15283:   Tposprod=ivector(1,NCOVMAX); /* Gives the k1 product from the k position */
1.137     brouard  15284:   /* Tprod[k1=1]=3(=V1*V4) for V2+V1+V1*V4+age*V3
                   15285:      if  V2+V1+V1*V4+age*V3+V3*V2   TProd[k1=2]=5 (V3*V2)
1.227     brouard  15286:      Tposprod[k]=k1 , Tposprod[3]=1, Tposprod[5]=2 
1.137     brouard  15287:   */
1.145     brouard  15288:   Tvaraff=ivector(1,NCOVMAX); /* Unclear */
                   15289:   Tvard=imatrix(1,NCOVMAX,1,2); /* n=Tvard[k1][1]  and m=Tvard[k1][2] gives the couple n,m of the k1 th product Vn*Vm
1.141     brouard  15290:                            * For V3*V2 (in V2+V1+V1*V4+age*V3+V3*V2), V3*V2 position is 2nd. 
                   15291:                            * Tvard[k1=2][1]=3 (V3) Tvard[k1=2][2]=2(V2) */
1.351     brouard  15292:   Tvardk=imatrix(0,NCOVMAX,1,2);
1.145     brouard  15293:   Tage=ivector(1,NCOVMAX); /* Gives the covariate id of covariates associated with age: V2 + V1 + age*V4 + V3*age
1.137     brouard  15294:                         4 covariates (3 plus signs)
                   15295:                         Tage[1=V3*age]= 4; Tage[2=age*V4] = 3
1.328     brouard  15296:                           */  
                   15297:   for(i=1;i<NCOVMAX;i++)
                   15298:     Tage[i]=0;
1.230     brouard  15299:   Tmodelind=ivector(1,NCOVMAX);/** gives the k model position of an
1.227     brouard  15300:                                * individual dummy, fixed or varying:
                   15301:                                * Tmodelind[Tvaraff[3]]=9,Tvaraff[1]@9={4,
                   15302:                                * 3, 1, 0, 0, 0, 0, 0, 0},
1.230     brouard  15303:                                * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1 , 
                   15304:                                * V1 df, V2 qf, V3 & V4 dv, V5 qv
                   15305:                                * Tmodelind[1]@9={9,0,3,2,}*/
                   15306:   TmodelInvind=ivector(1,NCOVMAX); /* TmodelInvind=Tvar[k]- ncovcol-nqv={5-2-1=2,*/
                   15307:   TmodelInvQind=ivector(1,NCOVMAX);/** gives the k model position of an
1.228     brouard  15308:                                * individual quantitative, fixed or varying:
                   15309:                                * Tmodelqind[1]=1,Tvaraff[1]@9={4,
                   15310:                                * 3, 1, 0, 0, 0, 0, 0, 0},
                   15311:                                * model=V5+V4+V3+V4*V3+V5*age+V2+V1*V2+V1*age+V1*/
1.349     brouard  15312: 
                   15313: /* Probably useless zeroes */
                   15314:   for(i=1;i<NCOVMAX;i++){
                   15315:     DummyV[i]=0;
                   15316:     FixedV[i]=0;
                   15317:   }
                   15318: 
                   15319:   for(i=1; i <=ncovcol;i++){
                   15320:     DummyV[i]=0;
                   15321:     FixedV[i]=0;
                   15322:   }
                   15323:   for(i=ncovcol+1; i <=ncovcol+nqv;i++){
                   15324:     DummyV[i]=1;
                   15325:     FixedV[i]=0;
                   15326:   }
                   15327:   for(i=ncovcol+nqv+1; i <=ncovcol+nqv+ntv;i++){
                   15328:     DummyV[i]=0;
                   15329:     FixedV[i]=1;
                   15330:   }
                   15331:   for(i=ncovcol+nqv+ntv+1; i <=ncovcol+nqv+ntv+nqtv;i++){
                   15332:     DummyV[i]=1;
                   15333:     FixedV[i]=1;
                   15334:   }
                   15335:   for(i=1; i <=ncovcol+nqv+ntv+nqtv;i++){
                   15336:     printf("Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",i,i,DummyV[i],i,FixedV[i]);
                   15337:     fprintf(ficlog,"Covariate type in the data: V%d, DummyV(V%d)=%d, FixedV(V%d)=%d\n",i,i,DummyV[i],i,FixedV[i]);
                   15338:   }
                   15339: 
                   15340: 
                   15341: 
1.186     brouard  15342: /* Main decodemodel */
                   15343: 
1.187     brouard  15344: 
1.223     brouard  15345:   if(decodemodel(model, lastobs) == 1) /* In order to get Tvar[k] V4+V3+V5 p Tvar[1]@3  = {4, 3, 5}*/
1.136     brouard  15346:     goto end;
                   15347: 
1.137     brouard  15348:   if((double)(lastobs-imx)/(double)imx > 1.10){
                   15349:     nbwarn++;
                   15350:     printf("Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   15351:     fprintf(ficlog,"Warning: The value of parameter lastobs=%d is big compared to the \n  effective number of cases imx=%d, please adjust, \n  otherwise you are allocating more memory than necessary.\n",lastobs, imx); 
                   15352:   }
1.136     brouard  15353:     /*  if(mle==1){*/
1.137     brouard  15354:   if (weightopt != 1) { /* Maximisation without weights. We can have weights different from 1 but want no weight*/
                   15355:     for(i=1;i<=imx;i++) weight[i]=1.0; /* changed to imx */
1.136     brouard  15356:   }
                   15357: 
                   15358:     /*-calculation of age at interview from date of interview and age at death -*/
                   15359:   agev=matrix(1,maxwav,1,imx);
                   15360: 
                   15361:   if(calandcheckages(imx, maxwav, &agemin, &agemax, &nberr, &nbwarn) == 1)
                   15362:     goto end;
                   15363: 
1.126     brouard  15364: 
1.136     brouard  15365:   agegomp=(int)agemin;
1.290     brouard  15366:   free_vector(moisnais,firstobs,lastobs);
                   15367:   free_vector(annais,firstobs,lastobs);
1.126     brouard  15368:   /* free_matrix(mint,1,maxwav,1,n);
                   15369:      free_matrix(anint,1,maxwav,1,n);*/
1.215     brouard  15370:   /* free_vector(moisdc,1,n); */
                   15371:   /* free_vector(andc,1,n); */
1.145     brouard  15372:   /* */
                   15373:   
1.126     brouard  15374:   wav=ivector(1,imx);
1.214     brouard  15375:   /* dh=imatrix(1,lastpass-firstpass+1,1,imx); */
                   15376:   /* bh=imatrix(1,lastpass-firstpass+1,1,imx); */
                   15377:   /* mw=imatrix(1,lastpass-firstpass+1,1,imx); */
                   15378:   dh=imatrix(1,lastpass-firstpass+2,1,imx); /* We are adding a wave if status is unknown at last wave but death occurs after last wave.*/
                   15379:   bh=imatrix(1,lastpass-firstpass+2,1,imx);
                   15380:   mw=imatrix(1,lastpass-firstpass+2,1,imx);
1.126     brouard  15381:    
                   15382:   /* Concatenates waves */
1.214     brouard  15383:   /* Concatenates waves: wav[i] is the number of effective (useful waves) of individual i.
                   15384:      Death is a valid wave (if date is known).
                   15385:      mw[mi][i] is the number of (mi=1 to wav[i]) effective wave out of mi of individual i
                   15386:      dh[m][i] or dh[mw[mi][i]][i] is the delay between two effective waves m=mw[mi][i]
                   15387:      and mw[mi+1][i]. dh depends on stepm.
                   15388:   */
                   15389: 
1.126     brouard  15390:   concatwav(wav, dh, bh, mw, s, agedc, agev,  firstpass, lastpass, imx, nlstate, stepm);
1.248     brouard  15391:   /* Concatenates waves */
1.145     brouard  15392:  
1.290     brouard  15393:   free_vector(moisdc,firstobs,lastobs);
                   15394:   free_vector(andc,firstobs,lastobs);
1.215     brouard  15395: 
1.126     brouard  15396:   /* Routine tricode is to calculate cptcoveff (real number of unique covariates) and to associate covariable number and modality */
                   15397:   nbcode=imatrix(0,NCOVMAX,0,NCOVMAX); 
                   15398:   ncodemax[1]=1;
1.145     brouard  15399:   Ndum =ivector(-1,NCOVMAX);  
1.225     brouard  15400:   cptcoveff=0;
1.220     brouard  15401:   if (ncovmodel-nagesqr > 2 ){ /* That is if covariate other than cst, age and age*age */
1.335     brouard  15402:     tricode(&cptcoveff,Tvar,nbcode,imx, Ndum); /**< Fills nbcode[Tvar[j]][l]; as well as calculate cptcoveff or number of total effective dummy covariates*/
1.227     brouard  15403:   }
                   15404:   
                   15405:   ncovcombmax=pow(2,cptcoveff);
1.338     brouard  15406:   invalidvarcomb=ivector(0, ncovcombmax); 
                   15407:   for(i=0;i<ncovcombmax;i++)
1.227     brouard  15408:     invalidvarcomb[i]=0;
                   15409:   
1.211     brouard  15410:   /* Nbcode gives the value of the lth modality (currently 1 to 2) of jth covariate, in
1.186     brouard  15411:      V2+V1*age, there are 3 covariates Tvar[2]=1 (V1).*/
1.211     brouard  15412:   /* 1 to ncodemax[j] which is the maximum value of this jth covariate */
1.227     brouard  15413:   
1.200     brouard  15414:   /*  codtab=imatrix(1,100,1,10);*/ /* codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) */
1.198     brouard  15415:   /*printf(" codtab[1,1],codtab[100,10]=%d,%d\n", codtab[1][1],codtabm(100,10));*/
1.186     brouard  15416:   /* codtab gives the value 1 or 2 of the hth combination of k covariates (1 or 2).*/
1.211     brouard  15417:   /* nbcode[Tvaraff[j]][codtabm(h,j)]) : if there are only 2 modalities for a covariate j, 
                   15418:    * codtabm(h,j) gives its value classified at position h and nbcode gives how it is coded 
                   15419:    * (currently 0 or 1) in the data.
                   15420:    * In a loop on h=1 to 2**k, and a loop on j (=1 to k), we get the value of 
                   15421:    * corresponding modality (h,j).
                   15422:    */
                   15423: 
1.145     brouard  15424:   h=0;
                   15425:   /*if (cptcovn > 0) */
1.126     brouard  15426:   m=pow(2,cptcoveff);
                   15427:  
1.144     brouard  15428:          /**< codtab(h,k)  k   = codtab[h,k]=( (h-1) - mod(k-1,2**(k-1) )/2**(k-1) + 1
1.211     brouard  15429:           * For k=4 covariates, h goes from 1 to m=2**k
                   15430:           * codtabm(h,k)=  (1 & (h-1) >> (k-1)) + 1;
                   15431:            * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
1.329     brouard  15432:           *     h\k   1     2     3     4   *  h-1\k-1  4  3  2  1          
                   15433:           *______________________________   *______________________
                   15434:           *     1 i=1 1 i=1 1 i=1 1 i=1 1   *     0     0  0  0  0 
                   15435:           *     2     2     1     1     1   *     1     0  0  0  1 
                   15436:           *     3 i=2 1     2     1     1   *     2     0  0  1  0 
                   15437:           *     4     2     2     1     1   *     3     0  0  1  1 
                   15438:           *     5 i=3 1 i=2 1     2     1   *     4     0  1  0  0 
                   15439:           *     6     2     1     2     1   *     5     0  1  0  1 
                   15440:           *     7 i=4 1     2     2     1   *     6     0  1  1  0 
                   15441:           *     8     2     2     2     1   *     7     0  1  1  1 
                   15442:           *     9 i=5 1 i=3 1 i=2 1     2   *     8     1  0  0  0 
                   15443:           *    10     2     1     1     2   *     9     1  0  0  1 
                   15444:           *    11 i=6 1     2     1     2   *    10     1  0  1  0 
                   15445:           *    12     2     2     1     2   *    11     1  0  1  1 
                   15446:           *    13 i=7 1 i=4 1     2     2   *    12     1  1  0  0  
                   15447:           *    14     2     1     2     2   *    13     1  1  0  1 
                   15448:           *    15 i=8 1     2     2     2   *    14     1  1  1  0 
                   15449:           *    16     2     2     2     2   *    15     1  1  1  1          
                   15450:           */                                     
1.212     brouard  15451:   /* How to do the opposite? From combination h (=1 to 2**k) how to get the value on the covariates? */
1.211     brouard  15452:      /* from h=5 and m, we get then number of covariates k=log(m)/log(2)=4
                   15453:      * and the value of each covariate?
                   15454:      * V1=1, V2=1, V3=2, V4=1 ?
                   15455:      * h-1=4 and 4 is 0100 or reverse 0010, and +1 is 1121 ok.
                   15456:      * h=6, 6-1=5, 5 is 0101, 1010, 2121, V1=2nd, V2=1st, V3=2nd, V4=1st.
                   15457:      * In order to get the real value in the data, we use nbcode
                   15458:      * nbcode[Tvar[3][2nd]]=1 and nbcode[Tvar[4][1]]=0
                   15459:      * We are keeping this crazy system in order to be able (in the future?) 
                   15460:      * to have more than 2 values (0 or 1) for a covariate.
                   15461:      * #define codtabm(h,k)  (1 & (h-1) >> (k-1))+1
                   15462:      * h=6, k=2? h-1=5=0101, reverse 1010, +1=2121, k=2nd position: value is 1: codtabm(6,2)=1
                   15463:      *              bbbbbbbb
                   15464:      *              76543210     
                   15465:      *   h-1        00000101 (6-1=5)
1.219     brouard  15466:      *(h-1)>>(k-1)= 00000010 >> (2-1) = 1 right shift
1.211     brouard  15467:      *           &
                   15468:      *     1        00000001 (1)
1.219     brouard  15469:      *              00000000        = 1 & ((h-1) >> (k-1))
                   15470:      *          +1= 00000001 =1 
1.211     brouard  15471:      *
                   15472:      * h=14, k=3 => h'=h-1=13, k'=k-1=2
                   15473:      *          h'      1101 =2^3+2^2+0x2^1+2^0
                   15474:      *    >>k'            11
                   15475:      *          &   00000001
                   15476:      *            = 00000001
                   15477:      *      +1    = 00000010=2    =  codtabm(14,3)   
                   15478:      * Reverse h=6 and m=16?
                   15479:      * cptcoveff=log(16)/log(2)=4 covariate: 6-1=5=0101 reversed=1010 +1=2121 =>V1=2, V2=1, V3=2, V4=1.
                   15480:      * for (j=1 to cptcoveff) Vj=decodtabm(j,h,cptcoveff)
                   15481:      * decodtabm(h,j,cptcoveff)= (((h-1) >> (j-1)) & 1) +1 
                   15482:      * decodtabm(h,j,cptcoveff)= (h <= (1<<cptcoveff)?(((h-1) >> (j-1)) & 1) +1 : -1)
                   15483:      * V3=decodtabm(14,3,2**4)=2
                   15484:      *          h'=13   1101 =2^3+2^2+0x2^1+2^0
                   15485:      *(h-1) >> (j-1)    0011 =13 >> 2
                   15486:      *          &1 000000001
                   15487:      *           = 000000001
                   15488:      *         +1= 000000010 =2
                   15489:      *                  2211
                   15490:      *                  V1=1+1, V2=0+1, V3=1+1, V4=1+1
                   15491:      *                  V3=2
1.220     brouard  15492:                 * codtabm and decodtabm are identical
1.211     brouard  15493:      */
                   15494: 
1.145     brouard  15495: 
                   15496:  free_ivector(Ndum,-1,NCOVMAX);
                   15497: 
                   15498: 
1.126     brouard  15499:     
1.186     brouard  15500:   /* Initialisation of ----------- gnuplot -------------*/
1.126     brouard  15501:   strcpy(optionfilegnuplot,optionfilefiname);
                   15502:   if(mle==-3)
1.201     brouard  15503:     strcat(optionfilegnuplot,"-MORT_");
1.126     brouard  15504:   strcat(optionfilegnuplot,".gp");
                   15505: 
                   15506:   if((ficgp=fopen(optionfilegnuplot,"w"))==NULL) {
                   15507:     printf("Problem with file %s",optionfilegnuplot);
                   15508:   }
                   15509:   else{
1.204     brouard  15510:     fprintf(ficgp,"\n# IMaCh-%s\n", version); 
1.126     brouard  15511:     fprintf(ficgp,"# %s\n", optionfilegnuplot); 
1.141     brouard  15512:     //fprintf(ficgp,"set missing 'NaNq'\n");
                   15513:     fprintf(ficgp,"set datafile missing 'NaNq'\n");
1.126     brouard  15514:   }
                   15515:   /*  fclose(ficgp);*/
1.186     brouard  15516: 
                   15517: 
                   15518:   /* Initialisation of --------- index.htm --------*/
1.126     brouard  15519: 
                   15520:   strcpy(optionfilehtm,optionfilefiname); /* Main html file */
                   15521:   if(mle==-3)
1.201     brouard  15522:     strcat(optionfilehtm,"-MORT_");
1.126     brouard  15523:   strcat(optionfilehtm,".htm");
                   15524:   if((fichtm=fopen(optionfilehtm,"w"))==NULL)    {
1.131     brouard  15525:     printf("Problem with %s \n",optionfilehtm);
                   15526:     exit(0);
1.126     brouard  15527:   }
                   15528: 
                   15529:   strcpy(optionfilehtmcov,optionfilefiname); /* Only for matrix of covariance */
                   15530:   strcat(optionfilehtmcov,"-cov.htm");
                   15531:   if((fichtmcov=fopen(optionfilehtmcov,"w"))==NULL)    {
                   15532:     printf("Problem with %s \n",optionfilehtmcov), exit(0);
                   15533:   }
                   15534:   else{
                   15535:   fprintf(fichtmcov,"<html><head>\n<title>IMaCh Cov %s</title></head>\n <body><font size=\"2\">%s <br> %s</font> \
                   15536: <hr size=\"2\" color=\"#EC5E5E\"> \n\
1.204     brouard  15537: Title=%s <br>Datafile=%s Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n",\
1.126     brouard  15538:          optionfilehtmcov,version,fullversion,title,datafile,firstpass,lastpass,stepm, weightopt, model);
                   15539:   }
                   15540: 
1.335     brouard  15541:   fprintf(fichtm,"<html><head>\n<meta charset=\"utf-8\"/><meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\" />\n\
                   15542: <title>IMaCh %s</title></head>\n\
                   15543:  <body><font size=\"7\"><a href=http:/euroreves.ined.fr/imach>IMaCh for Interpolated Markov Chain</a> </font><br>\n\
                   15544: <font size=\"3\">Sponsored by Copyright (C)  2002-2015 <a href=http://www.ined.fr>INED</a>\
                   15545: -EUROREVES-Institut de longévité-2013-2022-Japan Society for the Promotion of Sciences 日本学術振興会 \
                   15546: (<a href=https://www.jsps.go.jp/english/e-grants/>Grant-in-Aid for Scientific Research 25293121</a>) - \
                   15547: <a href=https://software.intel.com/en-us>Intel Software 2015-2018</a></font><br> \n", optionfilehtm);
                   15548:   
                   15549:   fprintf(fichtm,"<hr size=\"2\" color=\"#EC5E5E\"> \n\
1.204     brouard  15550: <font size=\"2\">IMaCh-%s <br> %s</font> \
1.126     brouard  15551: <hr size=\"2\" color=\"#EC5E5E\"> \n\
1.337     brouard  15552: This file: <a href=\"%s\">%s</a></br>Title=%s <br>Datafile=<a href=\"%s\">%s</a> Firstpass=%d Lastpass=%d Stepm=%d Weight=%d Model=1+age+%s<br>\n\
1.126     brouard  15553: \n\
                   15554: <hr  size=\"2\" color=\"#EC5E5E\">\
                   15555:  <ul><li><h4>Parameter files</h4>\n\
                   15556:  - Parameter file: <a href=\"%s.%s\">%s.%s</a><br>\n\
                   15557:  - Copy of the parameter file: <a href=\"o%s\">o%s</a><br>\n\
                   15558:  - Log file of the run: <a href=\"%s\">%s</a><br>\n\
                   15559:  - Gnuplot file name: <a href=\"%s\">%s</a><br>\n\
                   15560:  - Date and time at start: %s</ul>\n",\
1.335     brouard  15561:          version,fullversion,optionfilehtm,optionfilehtm,title,datafile,datafile,firstpass,lastpass,stepm, weightopt, model, \
1.126     brouard  15562:          optionfilefiname,optionfilext,optionfilefiname,optionfilext,\
                   15563:          fileres,fileres,\
                   15564:          filelog,filelog,optionfilegnuplot,optionfilegnuplot,strstart);
                   15565:   fflush(fichtm);
                   15566: 
                   15567:   strcpy(pathr,path);
                   15568:   strcat(pathr,optionfilefiname);
1.184     brouard  15569: #ifdef WIN32
                   15570:   _chdir(optionfilefiname); /* Move to directory named optionfile */
                   15571: #else
1.126     brouard  15572:   chdir(optionfilefiname); /* Move to directory named optionfile */
1.184     brouard  15573: #endif
                   15574:          
1.126     brouard  15575:   
1.220     brouard  15576:   /* Calculates basic frequencies. Computes observed prevalence at single age 
                   15577:                 and for any valid combination of covariates
1.126     brouard  15578:      and prints on file fileres'p'. */
1.359   ! brouard  15579:   freqsummary(fileres, p, pstart, (double)agemin, agemax, s, agev, nlstate, imx, Tvaraff, invalidvarcomb, nbcode, ncodemax,mint,anint,strstart, \
1.227     brouard  15580:              firstpass, lastpass,  stepm,  weightopt, model);
1.126     brouard  15581: 
                   15582:   fprintf(fichtm,"\n");
1.286     brouard  15583:   fprintf(fichtm,"<h4>Parameter line 2</h4><ul><li>Tolerance for the convergence of the likelihood: ftol=%g \n<li>Interval for the elementary matrix (in month): stepm=%d",\
1.274     brouard  15584:          ftol, stepm);
                   15585:   fprintf(fichtm,"\n<li>Number of fixed dummy covariates: ncovcol=%d ", ncovcol);
                   15586:   ncurrv=1;
                   15587:   for(i=ncurrv; i <=ncovcol; i++) fprintf(fichtm,"V%d ", i);
                   15588:   fprintf(fichtm,"\n<li> Number of fixed quantitative variables: nqv=%d ", nqv); 
                   15589:   ncurrv=i;
                   15590:   for(i=ncurrv; i <=ncurrv-1+nqv; i++) fprintf(fichtm,"V%d ", i);
1.290     brouard  15591:   fprintf(fichtm,"\n<li> Number of time varying (wave varying) dummy covariates: ntv=%d ", ntv);
1.274     brouard  15592:   ncurrv=i;
                   15593:   for(i=ncurrv; i <=ncurrv-1+ntv; i++) fprintf(fichtm,"V%d ", i);
1.290     brouard  15594:   fprintf(fichtm,"\n<li>Number of time varying  quantitative covariates: nqtv=%d ", nqtv);
1.274     brouard  15595:   ncurrv=i;
                   15596:   for(i=ncurrv; i <=ncurrv-1+nqtv; i++) fprintf(fichtm,"V%d ", i);
                   15597:   fprintf(fichtm,"\n<li>Weights column \n<br>Number of alive states: nlstate=%d <br>Number of death states (not really implemented): ndeath=%d \n<li>Number of waves: maxwav=%d \n<li>Parameter for maximization (1), using parameter values (0), for design of parameters and variance-covariance matrix: mle=%d \n<li>Does the weight column be taken into account (1), or not (0): weight=%d</ul>\n", \
                   15598:           nlstate, ndeath, maxwav, mle, weightopt);
                   15599: 
                   15600:   fprintf(fichtm,"<h4> Diagram of states <a href=\"%s_.svg\">%s_.svg</a></h4> \n\
                   15601: <img src=\"%s_.svg\">", subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"),subdirf2(optionfilefiname,"D_"));
                   15602: 
                   15603:   
1.317     brouard  15604:   fprintf(fichtm,"\n<h4>Some descriptive statistics </h4>\n<br>Number of (used) observations=%d <br>\n\
1.126     brouard  15605: Youngest age at first (selected) pass %.2f, oldest age %.2f<br>\n\
                   15606: Interval (in months) between two waves: Min=%d Max=%d Mean=%.2lf<br>\n",\
1.274     brouard  15607:   imx,agemin,agemax,jmin,jmax,jmean);
1.126     brouard  15608:   pmmij= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
1.268     brouard  15609:   oldms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   15610:   newms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   15611:   savms= matrix(1,nlstate+ndeath,1,nlstate+ndeath); /* creation */
                   15612:   oldm=oldms; newm=newms; savm=savms; /* Keeps fixed addresses to free */
1.218     brouard  15613: 
1.126     brouard  15614:   /* For Powell, parameters are in a vector p[] starting at p[1]
                   15615:      so we point p on param[1][1] so that p[1] maps on param[1][1][1] */
                   15616:   p=param[1][1]; /* *(*(*(param +1)+1)+0) */
                   15617: 
                   15618:   globpr=0; /* To get the number ipmx of contributions and the sum of weights*/
1.186     brouard  15619:   /* For mortality only */
1.126     brouard  15620:   if (mle==-3){
1.136     brouard  15621:     ximort=matrix(1,NDIM,1,NDIM); 
1.248     brouard  15622:     for(i=1;i<=NDIM;i++)
                   15623:       for(j=1;j<=NDIM;j++)
                   15624:        ximort[i][j]=0.;
1.186     brouard  15625:     /*     ximort=gsl_matrix_alloc(1,NDIM,1,NDIM); */
1.290     brouard  15626:     cens=ivector(firstobs,lastobs);
                   15627:     ageexmed=vector(firstobs,lastobs);
                   15628:     agecens=vector(firstobs,lastobs);
                   15629:     dcwave=ivector(firstobs,lastobs);
1.223     brouard  15630:                
1.126     brouard  15631:     for (i=1; i<=imx; i++){
                   15632:       dcwave[i]=-1;
                   15633:       for (m=firstpass; m<=lastpass; m++)
1.226     brouard  15634:        if (s[m][i]>nlstate) {
                   15635:          dcwave[i]=m;
                   15636:          /*    printf("i=%d j=%d s=%d dcwave=%d\n",i,j, s[j][i],dcwave[i]);*/
                   15637:          break;
                   15638:        }
1.126     brouard  15639:     }
1.226     brouard  15640:     
1.126     brouard  15641:     for (i=1; i<=imx; i++) {
                   15642:       if (wav[i]>0){
1.226     brouard  15643:        ageexmed[i]=agev[mw[1][i]][i];
                   15644:        j=wav[i];
                   15645:        agecens[i]=1.; 
                   15646:        
                   15647:        if (ageexmed[i]> 1 && wav[i] > 0){
                   15648:          agecens[i]=agev[mw[j][i]][i];
                   15649:          cens[i]= 1;
                   15650:        }else if (ageexmed[i]< 1) 
                   15651:          cens[i]= -1;
                   15652:        if (agedc[i]< AGESUP && agedc[i]>1 && dcwave[i]>firstpass && dcwave[i]<=lastpass)
                   15653:          cens[i]=0 ;
1.126     brouard  15654:       }
                   15655:       else cens[i]=-1;
                   15656:     }
                   15657:     
                   15658:     for (i=1;i<=NDIM;i++) {
                   15659:       for (j=1;j<=NDIM;j++)
1.226     brouard  15660:        ximort[i][j]=(i == j ? 1.0 : 0.0);
1.126     brouard  15661:     }
                   15662:     
1.302     brouard  15663:     p[1]=0.0268; p[NDIM]=0.083;
                   15664:     /* printf("%lf %lf", p[1], p[2]); */
1.126     brouard  15665:     
                   15666:     
1.136     brouard  15667: #ifdef GSL
                   15668:     printf("GSL optimization\n");  fprintf(ficlog,"Powell\n");
1.162     brouard  15669: #else
1.359   ! brouard  15670:     printf("Powell-mort\n");  fprintf(ficlog,"Powell-mort\n");
1.136     brouard  15671: #endif
1.201     brouard  15672:     strcpy(filerespow,"POW-MORT_"); 
                   15673:     strcat(filerespow,fileresu);
1.126     brouard  15674:     if((ficrespow=fopen(filerespow,"w"))==NULL) {
                   15675:       printf("Problem with resultfile: %s\n", filerespow);
                   15676:       fprintf(ficlog,"Problem with resultfile: %s\n", filerespow);
                   15677:     }
1.136     brouard  15678: #ifdef GSL
                   15679:     fprintf(ficrespow,"# GSL optimization\n# iter -2*LL");
1.162     brouard  15680: #else
1.126     brouard  15681:     fprintf(ficrespow,"# Powell\n# iter -2*LL");
1.136     brouard  15682: #endif
1.126     brouard  15683:     /*  for (i=1;i<=nlstate;i++)
                   15684:        for(j=1;j<=nlstate+ndeath;j++)
                   15685:        if(j!=i)fprintf(ficrespow," p%1d%1d",i,j);
                   15686:     */
                   15687:     fprintf(ficrespow,"\n");
1.136     brouard  15688: #ifdef GSL
                   15689:     /* gsl starts here */ 
                   15690:     T = gsl_multimin_fminimizer_nmsimplex;
                   15691:     gsl_multimin_fminimizer *sfm = NULL;
                   15692:     gsl_vector *ss, *x;
                   15693:     gsl_multimin_function minex_func;
                   15694: 
                   15695:     /* Initial vertex size vector */
                   15696:     ss = gsl_vector_alloc (NDIM);
                   15697:     
                   15698:     if (ss == NULL){
                   15699:       GSL_ERROR_VAL ("failed to allocate space for ss", GSL_ENOMEM, 0);
                   15700:     }
                   15701:     /* Set all step sizes to 1 */
                   15702:     gsl_vector_set_all (ss, 0.001);
                   15703: 
                   15704:     /* Starting point */
1.126     brouard  15705:     
1.136     brouard  15706:     x = gsl_vector_alloc (NDIM);
                   15707:     
                   15708:     if (x == NULL){
                   15709:       gsl_vector_free(ss);
                   15710:       GSL_ERROR_VAL ("failed to allocate space for x", GSL_ENOMEM, 0);
                   15711:     }
                   15712:   
                   15713:     /* Initialize method and iterate */
                   15714:     /*     p[1]=0.0268; p[NDIM]=0.083; */
1.186     brouard  15715:     /*     gsl_vector_set(x, 0, 0.0268); */
                   15716:     /*     gsl_vector_set(x, 1, 0.083); */
1.136     brouard  15717:     gsl_vector_set(x, 0, p[1]);
                   15718:     gsl_vector_set(x, 1, p[2]);
                   15719: 
                   15720:     minex_func.f = &gompertz_f;
                   15721:     minex_func.n = NDIM;
                   15722:     minex_func.params = (void *)&p; /* ??? */
                   15723:     
                   15724:     sfm = gsl_multimin_fminimizer_alloc (T, NDIM);
                   15725:     gsl_multimin_fminimizer_set (sfm, &minex_func, x, ss);
                   15726:     
                   15727:     printf("Iterations beginning .....\n\n");
                   15728:     printf("Iter. #    Intercept       Slope     -Log Likelihood     Simplex size\n");
                   15729: 
                   15730:     iteri=0;
                   15731:     while (rval == GSL_CONTINUE){
                   15732:       iteri++;
                   15733:       status = gsl_multimin_fminimizer_iterate(sfm);
                   15734:       
                   15735:       if (status) printf("error: %s\n", gsl_strerror (status));
                   15736:       fflush(0);
                   15737:       
                   15738:       if (status) 
                   15739:         break;
                   15740:       
                   15741:       rval = gsl_multimin_test_size (gsl_multimin_fminimizer_size (sfm), 1e-6);
                   15742:       ssval = gsl_multimin_fminimizer_size (sfm);
                   15743:       
                   15744:       if (rval == GSL_SUCCESS)
                   15745:         printf ("converged to a local maximum at\n");
                   15746:       
                   15747:       printf("%5d ", iteri);
                   15748:       for (it = 0; it < NDIM; it++){
                   15749:        printf ("%10.5f ", gsl_vector_get (sfm->x, it));
                   15750:       }
                   15751:       printf("f() = %-10.5f ssize = %.7f\n", sfm->fval, ssval);
                   15752:     }
                   15753:     
                   15754:     printf("\n\n Please note: Program should be run many times with varying starting points to detemine global maximum\n\n");
                   15755:     
                   15756:     gsl_vector_free(x); /* initial values */
                   15757:     gsl_vector_free(ss); /* inital step size */
                   15758:     for (it=0; it<NDIM; it++){
                   15759:       p[it+1]=gsl_vector_get(sfm->x,it);
                   15760:       fprintf(ficrespow," %.12lf", p[it]);
                   15761:     }
                   15762:     gsl_multimin_fminimizer_free (sfm); /* p *(sfm.x.data) et p *(sfm.x.data+1)  */
                   15763: #endif
                   15764: #ifdef POWELL
                   15765:      powell(p,ximort,NDIM,ftol,&iter,&fret,gompertz);
                   15766: #endif  
1.126     brouard  15767:     fclose(ficrespow);
                   15768:     
1.203     brouard  15769:     hesscov(matcov, hess, p, NDIM, delti, 1e-4, gompertz); 
1.126     brouard  15770: 
                   15771:     for(i=1; i <=NDIM; i++)
                   15772:       for(j=i+1;j<=NDIM;j++)
1.359   ! brouard  15773:        matcov[i][j]=matcov[j][i];
1.126     brouard  15774:     
                   15775:     printf("\nCovariance matrix\n ");
1.203     brouard  15776:     fprintf(ficlog,"\nCovariance matrix\n ");
1.126     brouard  15777:     for(i=1; i <=NDIM; i++) {
                   15778:       for(j=1;j<=NDIM;j++){ 
1.220     brouard  15779:                                printf("%f ",matcov[i][j]);
                   15780:                                fprintf(ficlog,"%f ",matcov[i][j]);
1.126     brouard  15781:       }
1.203     brouard  15782:       printf("\n ");  fprintf(ficlog,"\n ");
1.126     brouard  15783:     }
                   15784:     
                   15785:     printf("iter=%d MLE=%f Eq=%lf*exp(%lf*(age-%d))\n",iter,-gompertz(p),p[1],p[2],agegomp);
1.193     brouard  15786:     for (i=1;i<=NDIM;i++) {
1.126     brouard  15787:       printf("%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
1.193     brouard  15788:       fprintf(ficlog,"%f [%f ; %f]\n",p[i],p[i]-2*sqrt(matcov[i][i]),p[i]+2*sqrt(matcov[i][i]));
                   15789:     }
1.302     brouard  15790:     lsurv=vector(agegomp,AGESUP);
                   15791:     lpop=vector(agegomp,AGESUP);
                   15792:     tpop=vector(agegomp,AGESUP);
1.126     brouard  15793:     lsurv[agegomp]=100000;
                   15794:     
                   15795:     for (k=agegomp;k<=AGESUP;k++) {
                   15796:       agemortsup=k;
                   15797:       if (p[1]*exp(p[2]*(k-agegomp))>1) break;
                   15798:     }
                   15799:     
                   15800:     for (k=agegomp;k<agemortsup;k++)
                   15801:       lsurv[k+1]=lsurv[k]-lsurv[k]*(p[1]*exp(p[2]*(k-agegomp)));
                   15802:     
                   15803:     for (k=agegomp;k<agemortsup;k++){
                   15804:       lpop[k]=(lsurv[k]+lsurv[k+1])/2.;
                   15805:       sumlpop=sumlpop+lpop[k];
                   15806:     }
                   15807:     
                   15808:     tpop[agegomp]=sumlpop;
                   15809:     for (k=agegomp;k<(agemortsup-3);k++){
                   15810:       /*  tpop[k+1]=2;*/
                   15811:       tpop[k+1]=tpop[k]-lpop[k];
                   15812:     }
                   15813:     
                   15814:     
                   15815:     printf("\nAge   lx     qx    dx    Lx     Tx     e(x)\n");
                   15816:     for (k=agegomp;k<(agemortsup-2);k++) 
                   15817:       printf("%d %.0lf %lf %.0lf %.0lf %.0lf %lf\n",k,lsurv[k],p[1]*exp(p[2]*(k-agegomp)),(p[1]*exp(p[2]*(k-agegomp)))*lsurv[k],lpop[k],tpop[k],tpop[k]/lsurv[k]);
                   15818:     
                   15819:     
                   15820:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
1.220     brouard  15821:                ageminpar=50;
                   15822:                agemaxpar=100;
1.194     brouard  15823:     if(ageminpar == AGEOVERFLOW ||agemaxpar == AGEOVERFLOW){
                   15824:        printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
                   15825: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   15826: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
                   15827:        fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
                   15828: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   15829: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.220     brouard  15830:     }else{
                   15831:                        printf("Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
                   15832:                        fprintf(ficlog,"Warning! ageminpar %f and agemaxpar %f have been fixed because for simplification until it is fixed...\n\n",ageminpar,agemaxpar);
1.201     brouard  15833:       printinggnuplotmort(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, pathc,p);
1.220     brouard  15834:                }
1.201     brouard  15835:     printinghtmlmort(fileresu,title,datafile, firstpass, lastpass, \
1.126     brouard  15836:                     stepm, weightopt,\
                   15837:                     model,imx,p,matcov,agemortsup);
                   15838:     
1.302     brouard  15839:     free_vector(lsurv,agegomp,AGESUP);
                   15840:     free_vector(lpop,agegomp,AGESUP);
                   15841:     free_vector(tpop,agegomp,AGESUP);
1.220     brouard  15842:     free_matrix(ximort,1,NDIM,1,NDIM);
1.290     brouard  15843:     free_ivector(dcwave,firstobs,lastobs);
                   15844:     free_vector(agecens,firstobs,lastobs);
                   15845:     free_vector(ageexmed,firstobs,lastobs);
                   15846:     free_ivector(cens,firstobs,lastobs);
1.220     brouard  15847: #ifdef GSL
1.136     brouard  15848: #endif
1.186     brouard  15849:   } /* Endof if mle==-3 mortality only */
1.205     brouard  15850:   /* Standard  */
                   15851:   else{ /* For mle !=- 3, could be 0 or 1 or 4 etc. */
                   15852:     globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
                   15853:     /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
1.132     brouard  15854:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
1.126     brouard  15855:     printf("First Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
                   15856:     for (k=1; k<=npar;k++)
                   15857:       printf(" %d %8.5f",k,p[k]);
                   15858:     printf("\n");
1.205     brouard  15859:     if(mle>=1){ /* Could be 1 or 2, Real Maximization */
                   15860:       /* mlikeli uses func not funcone */
1.247     brouard  15861:       /* for(i=1;i<nlstate;i++){ */
                   15862:       /*       /\*reducing xi for 1 to npar to 1 to ncovmodel; *\/ */
                   15863:       /*    mlikeli(ficres,p, ncovmodel, ncovmodel, nlstate, ftol, funcnoprod); */
                   15864:       /* } */
1.205     brouard  15865:       mlikeli(ficres,p, npar, ncovmodel, nlstate, ftol, func);
                   15866:     }
                   15867:     if(mle==0) {/* No optimization, will print the likelihoods for the datafile */
                   15868:       globpr=0;/* Computes sum of likelihood for globpr=1 and funcone */
                   15869:       /* Computes likelihood for initial parameters, uses funcone to compute gpimx and gsw */
                   15870:       likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   15871:     }
                   15872:     globpr=1; /* again, to print the individual contributions using computed gpimx and gsw */
1.126     brouard  15873:     likelione(ficres, p, npar, nlstate, &globpr, &ipmx, &sw, &fretone, funcone); /* Prints the contributions to the likelihood */
                   15874:     printf("Second Likeli=%12.6f ipmx=%ld sw=%12.6f",fretone,ipmx,sw);
1.335     brouard  15875:           /* exit(0); */
1.126     brouard  15876:     for (k=1; k<=npar;k++)
                   15877:       printf(" %d %8.5f",k,p[k]);
                   15878:     printf("\n");
                   15879:     
                   15880:     /*--------- results files --------------*/
1.283     brouard  15881:     /* fprintf(ficres,"title=%s datafile=%s lastobs=%d firstpass=%d lastpass=%d\nftol=%e stepm=%d ncovcol=%d nqv=%d ntv=%d nqtv=%d nlstate=%d ndeath=%d maxwav=%d mle= 0 weight=%d\nmodel=1+age+%s.\n", title, datafile, lastobs, firstpass,lastpass,ftol, stepm, ncovcol, nqv, ntv, nqtv, nlstate, ndeath, maxwav, weightopt,model); */
1.126     brouard  15882:     
                   15883:     
                   15884:     fprintf(ficres,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
1.319     brouard  15885:     printf("# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n"); /* Printing model equation */
1.126     brouard  15886:     fprintf(ficlog,"# Parameters nlstate*nlstate*ncov a12*1 + b12 * age + ...\n");
1.319     brouard  15887: 
                   15888:     printf("#model=  1      +     age ");
                   15889:     fprintf(ficres,"#model=  1      +     age ");
                   15890:     fprintf(ficlog,"#model=  1      +     age ");
                   15891:     fprintf(fichtm,"\n<ul><li> model=1+age+%s\n \
                   15892: </ul>", model);
                   15893: 
                   15894:     fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">\n");
                   15895:     fprintf(fichtm, "<tr><th>Model=</th><th>1</th><th>+ age</th>");
                   15896:     if(nagesqr==1){
                   15897:       printf("  + age*age  ");
                   15898:       fprintf(ficres,"  + age*age  ");
                   15899:       fprintf(ficlog,"  + age*age  ");
                   15900:       fprintf(fichtm, "<th>+ age*age</th>");
                   15901:     }
                   15902:     for(j=1;j <=ncovmodel-2;j++){
                   15903:       if(Typevar[j]==0) {
                   15904:        printf("  +      V%d  ",Tvar[j]);
                   15905:        fprintf(ficres,"  +      V%d  ",Tvar[j]);
                   15906:        fprintf(ficlog,"  +      V%d  ",Tvar[j]);
                   15907:        fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
                   15908:       }else if(Typevar[j]==1) {
                   15909:        printf("  +    V%d*age ",Tvar[j]);
                   15910:        fprintf(ficres,"  +    V%d*age ",Tvar[j]);
                   15911:        fprintf(ficlog,"  +    V%d*age ",Tvar[j]);
                   15912:        fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
                   15913:       }else if(Typevar[j]==2) {
                   15914:        printf("  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   15915:        fprintf(ficres,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   15916:        fprintf(ficlog,"  +    V%d*V%d ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   15917:        fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.349     brouard  15918:       }else if(Typevar[j]==3) { /* TO VERIFY */
                   15919:        printf("  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   15920:        fprintf(ficres,"  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   15921:        fprintf(ficlog,"  +    V%d*V%d*age ",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
                   15922:        fprintf(fichtm, "<th>+  V%d*V%d*age</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.319     brouard  15923:       }
                   15924:     }
                   15925:     printf("\n");
                   15926:     fprintf(ficres,"\n");
                   15927:     fprintf(ficlog,"\n");
                   15928:     fprintf(fichtm, "</tr>");
                   15929:     fprintf(fichtm, "\n");
                   15930:     
                   15931:     
1.126     brouard  15932:     for(i=1,jk=1; i <=nlstate; i++){
                   15933:       for(k=1; k <=(nlstate+ndeath); k++){
1.225     brouard  15934:        if (k != i) {
1.319     brouard  15935:          fprintf(fichtm, "<tr>");
1.225     brouard  15936:          printf("%d%d ",i,k);
                   15937:          fprintf(ficlog,"%d%d ",i,k);
                   15938:          fprintf(ficres,"%1d%1d ",i,k);
1.319     brouard  15939:          fprintf(fichtm, "<td>%1d%1d</td>",i,k);
1.225     brouard  15940:          for(j=1; j <=ncovmodel; j++){
                   15941:            printf("%12.7f ",p[jk]);
                   15942:            fprintf(ficlog,"%12.7f ",p[jk]);
                   15943:            fprintf(ficres,"%12.7f ",p[jk]);
1.319     brouard  15944:            fprintf(fichtm, "<td>%12.7f</td>",p[jk]);
1.225     brouard  15945:            jk++; 
                   15946:          }
                   15947:          printf("\n");
                   15948:          fprintf(ficlog,"\n");
                   15949:          fprintf(ficres,"\n");
1.319     brouard  15950:          fprintf(fichtm, "</tr>\n");
1.225     brouard  15951:        }
1.126     brouard  15952:       }
                   15953:     }
1.319     brouard  15954:     /* fprintf(fichtm,"</tr>\n"); */
                   15955:     fprintf(fichtm,"</table>\n");
                   15956:     fprintf(fichtm, "\n");
                   15957: 
1.203     brouard  15958:     if(mle != 0){
                   15959:       /* Computing hessian and covariance matrix only at a peak of the Likelihood, that is after optimization */
1.126     brouard  15960:       ftolhess=ftol; /* Usually correct */
1.203     brouard  15961:       hesscov(matcov, hess, p, npar, delti, ftolhess, func);
                   15962:       printf("Parameters and 95%% confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W .\n But be careful that parameters are highly correlated because incidence of disability is highly correlated to incidence of recovery.\n It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
                   15963:       fprintf(ficlog, "Parameters, Wald tests and Wald-based confidence intervals\n W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n And Wald-based confidence intervals plus and minus 1.96 * W \n  It might be better to visualize the covariance matrix. See the page 'Matrix of variance-covariance of one-step probabilities' and its graphs.\n");
1.322     brouard  15964:       fprintf(fichtm, "\n<p>The Wald test results are output only if the maximimzation of the Likelihood is performed (mle=1)\n</br>Parameters, Wald tests and Wald-based confidence intervals\n</br> W is simply the result of the division of the parameter by the square root of covariance of the parameter.\n</br> And Wald-based confidence intervals plus and minus 1.96 * W \n </br> It might be better to visualize the covariance matrix. See the page '<a href=\"%s\">Matrix of variance-covariance of one-step probabilities and its graphs</a>'.\n</br>",optionfilehtmcov);
1.319     brouard  15965:       fprintf(fichtm,"\n<table style=\"text-align:center; border: 1px solid\">");
                   15966:       fprintf(fichtm, "\n<tr><th>Model=</th><th>1</th><th>+ age</th>");
                   15967:       if(nagesqr==1){
                   15968:        printf("  + age*age  ");
                   15969:        fprintf(ficres,"  + age*age  ");
                   15970:        fprintf(ficlog,"  + age*age  ");
                   15971:        fprintf(fichtm, "<th>+ age*age</th>");
                   15972:       }
                   15973:       for(j=1;j <=ncovmodel-2;j++){
                   15974:        if(Typevar[j]==0) {
                   15975:          printf("  +      V%d  ",Tvar[j]);
                   15976:          fprintf(fichtm, "<th>+ V%d</th>",Tvar[j]);
                   15977:        }else if(Typevar[j]==1) {
                   15978:          printf("  +    V%d*age ",Tvar[j]);
                   15979:          fprintf(fichtm, "<th>+  V%d*age</th>",Tvar[j]);
                   15980:        }else if(Typevar[j]==2) {
                   15981:          fprintf(fichtm, "<th>+  V%d*V%d</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.349     brouard  15982:        }else if(Typevar[j]==3) { /* TO VERIFY */
                   15983:          fprintf(fichtm, "<th>+  V%d*V%d*age</th>",Tvard[Tposprod[j]][1],Tvard[Tposprod[j]][2]);
1.319     brouard  15984:        }
                   15985:       }
                   15986:       fprintf(fichtm, "</tr>\n");
                   15987:  
1.203     brouard  15988:       for(i=1,jk=1; i <=nlstate; i++){
1.225     brouard  15989:        for(k=1; k <=(nlstate+ndeath); k++){
                   15990:          if (k != i) {
1.319     brouard  15991:            fprintf(fichtm, "<tr valign=top>");
1.225     brouard  15992:            printf("%d%d ",i,k);
                   15993:            fprintf(ficlog,"%d%d ",i,k);
1.319     brouard  15994:            fprintf(fichtm, "<td>%1d%1d</td>",i,k);
1.225     brouard  15995:            for(j=1; j <=ncovmodel; j++){
1.319     brouard  15996:              wald=p[jk]/sqrt(matcov[jk][jk]);
1.324     brouard  15997:              printf("%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
                   15998:              fprintf(ficlog,"%12.7f(%12.7f) W=%8.3f CI=[%12.7f ; %12.7f] ",p[jk],sqrt(matcov[jk][jk]), p[jk]/sqrt(matcov[jk][jk]), p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
1.319     brouard  15999:              if(fabs(wald) > 1.96){
1.321     brouard  16000:                fprintf(fichtm, "<td><b>%12.7f</b></br> (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
1.319     brouard  16001:              }else{
                   16002:                fprintf(fichtm, "<td>%12.7f (%12.7f)</br>",p[jk],sqrt(matcov[jk][jk]));
                   16003:              }
1.324     brouard  16004:              fprintf(fichtm,"W=%8.3f</br>",wald);
1.319     brouard  16005:              fprintf(fichtm,"[%12.7f;%12.7f]</br></td>", p[jk]-1.96*sqrt(matcov[jk][jk]),p[jk]+1.96*sqrt(matcov[jk][jk]));
1.225     brouard  16006:              jk++; 
                   16007:            }
                   16008:            printf("\n");
                   16009:            fprintf(ficlog,"\n");
1.319     brouard  16010:            fprintf(fichtm, "</tr>\n");
1.225     brouard  16011:          }
                   16012:        }
1.193     brouard  16013:       }
1.203     brouard  16014:     } /* end of hesscov and Wald tests */
1.319     brouard  16015:     fprintf(fichtm,"</table>\n");
1.225     brouard  16016:     
1.203     brouard  16017:     /*  */
1.126     brouard  16018:     fprintf(ficres,"# Scales (for hessian or gradient estimation)\n");
                   16019:     printf("# Scales (for hessian or gradient estimation)\n");
                   16020:     fprintf(ficlog,"# Scales (for hessian or gradient estimation)\n");
                   16021:     for(i=1,jk=1; i <=nlstate; i++){
                   16022:       for(j=1; j <=nlstate+ndeath; j++){
1.225     brouard  16023:        if (j!=i) {
                   16024:          fprintf(ficres,"%1d%1d",i,j);
                   16025:          printf("%1d%1d",i,j);
                   16026:          fprintf(ficlog,"%1d%1d",i,j);
                   16027:          for(k=1; k<=ncovmodel;k++){
                   16028:            printf(" %.5e",delti[jk]);
                   16029:            fprintf(ficlog," %.5e",delti[jk]);
                   16030:            fprintf(ficres," %.5e",delti[jk]);
                   16031:            jk++;
                   16032:          }
                   16033:          printf("\n");
                   16034:          fprintf(ficlog,"\n");
                   16035:          fprintf(ficres,"\n");
                   16036:        }
1.126     brouard  16037:       }
                   16038:     }
                   16039:     
                   16040:     fprintf(ficres,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
1.349     brouard  16041:     if(mle >= 1) /* Too big for the screen */
1.126     brouard  16042:       printf("# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   16043:     fprintf(ficlog,"# Covariance matrix \n# 121 Var(a12)\n# 122 Cov(b12,a12) Var(b12)\n#   ...\n# 232 Cov(b23,a12)  Cov(b23,b12) ... Var (b23)\n");
                   16044:     /* # 121 Var(a12)\n\ */
                   16045:     /* # 122 Cov(b12,a12) Var(b12)\n\ */
                   16046:     /* # 131 Cov(a13,a12) Cov(a13,b12, Var(a13)\n\ */
                   16047:     /* # 132 Cov(b13,a12) Cov(b13,b12, Cov(b13,a13) Var(b13)\n\ */
                   16048:     /* # 212 Cov(a21,a12) Cov(a21,b12, Cov(a21,a13) Cov(a21,b13) Var(a21)\n\ */
                   16049:     /* # 212 Cov(b21,a12) Cov(b21,b12, Cov(b21,a13) Cov(b21,b13) Cov(b21,a21) Var(b21)\n\ */
                   16050:     /* # 232 Cov(a23,a12) Cov(a23,b12, Cov(a23,a13) Cov(a23,b13) Cov(a23,a21) Cov(a23,b21) Var(a23)\n\ */
                   16051:     /* # 232 Cov(b23,a12) Cov(b23,b12) ... Var (b23)\n" */
                   16052:     
                   16053:     
                   16054:     /* Just to have a covariance matrix which will be more understandable
                   16055:        even is we still don't want to manage dictionary of variables
                   16056:     */
                   16057:     for(itimes=1;itimes<=2;itimes++){
                   16058:       jj=0;
                   16059:       for(i=1; i <=nlstate; i++){
1.225     brouard  16060:        for(j=1; j <=nlstate+ndeath; j++){
                   16061:          if(j==i) continue;
                   16062:          for(k=1; k<=ncovmodel;k++){
                   16063:            jj++;
                   16064:            ca[0]= k+'a'-1;ca[1]='\0';
                   16065:            if(itimes==1){
                   16066:              if(mle>=1)
                   16067:                printf("#%1d%1d%d",i,j,k);
                   16068:              fprintf(ficlog,"#%1d%1d%d",i,j,k);
                   16069:              fprintf(ficres,"#%1d%1d%d",i,j,k);
                   16070:            }else{
                   16071:              if(mle>=1)
                   16072:                printf("%1d%1d%d",i,j,k);
                   16073:              fprintf(ficlog,"%1d%1d%d",i,j,k);
                   16074:              fprintf(ficres,"%1d%1d%d",i,j,k);
                   16075:            }
                   16076:            ll=0;
                   16077:            for(li=1;li <=nlstate; li++){
                   16078:              for(lj=1;lj <=nlstate+ndeath; lj++){
                   16079:                if(lj==li) continue;
                   16080:                for(lk=1;lk<=ncovmodel;lk++){
                   16081:                  ll++;
                   16082:                  if(ll<=jj){
                   16083:                    cb[0]= lk +'a'-1;cb[1]='\0';
                   16084:                    if(ll<jj){
                   16085:                      if(itimes==1){
                   16086:                        if(mle>=1)
                   16087:                          printf(" Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   16088:                        fprintf(ficlog," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   16089:                        fprintf(ficres," Cov(%s%1d%1d,%s%1d%1d)",ca,i,j,cb, li,lj);
                   16090:                      }else{
                   16091:                        if(mle>=1)
                   16092:                          printf(" %.5e",matcov[jj][ll]); 
                   16093:                        fprintf(ficlog," %.5e",matcov[jj][ll]); 
                   16094:                        fprintf(ficres," %.5e",matcov[jj][ll]); 
                   16095:                      }
                   16096:                    }else{
                   16097:                      if(itimes==1){
                   16098:                        if(mle>=1)
                   16099:                          printf(" Var(%s%1d%1d)",ca,i,j);
                   16100:                        fprintf(ficlog," Var(%s%1d%1d)",ca,i,j);
                   16101:                        fprintf(ficres," Var(%s%1d%1d)",ca,i,j);
                   16102:                      }else{
                   16103:                        if(mle>=1)
                   16104:                          printf(" %.7e",matcov[jj][ll]); 
                   16105:                        fprintf(ficlog," %.7e",matcov[jj][ll]); 
                   16106:                        fprintf(ficres," %.7e",matcov[jj][ll]); 
                   16107:                      }
                   16108:                    }
                   16109:                  }
                   16110:                } /* end lk */
                   16111:              } /* end lj */
                   16112:            } /* end li */
                   16113:            if(mle>=1)
                   16114:              printf("\n");
                   16115:            fprintf(ficlog,"\n");
                   16116:            fprintf(ficres,"\n");
                   16117:            numlinepar++;
                   16118:          } /* end k*/
                   16119:        } /*end j */
1.126     brouard  16120:       } /* end i */
                   16121:     } /* end itimes */
                   16122:     
                   16123:     fflush(ficlog);
                   16124:     fflush(ficres);
1.225     brouard  16125:     while(fgets(line, MAXLINE, ficpar)) {
                   16126:       /* If line starts with a # it is a comment */
                   16127:       if (line[0] == '#') {
                   16128:        numlinepar++;
                   16129:        fputs(line,stdout);
                   16130:        fputs(line,ficparo);
                   16131:        fputs(line,ficlog);
1.299     brouard  16132:        fputs(line,ficres);
1.225     brouard  16133:        continue;
                   16134:       }else
                   16135:        break;
                   16136:     }
                   16137:     
1.209     brouard  16138:     /* while((c=getc(ficpar))=='#' && c!= EOF){ */
                   16139:     /*   ungetc(c,ficpar); */
                   16140:     /*   fgets(line, MAXLINE, ficpar); */
                   16141:     /*   fputs(line,stdout); */
                   16142:     /*   fputs(line,ficparo); */
                   16143:     /* } */
                   16144:     /* ungetc(c,ficpar); */
1.126     brouard  16145:     
                   16146:     estepm=0;
1.209     brouard  16147:     if((num_filled=sscanf(line,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm, &ftolpl)) !=EOF){
1.225     brouard  16148:       
                   16149:       if (num_filled != 6) {
                   16150:        printf("Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                   16151:        fprintf(ficlog,"Error: Not 6 parameters in line, for example:agemin=60 agemax=95 bage=55 fage=95 estepm=24 ftolpl=6e-4\n, your line=%s . Probably you are running an older format.\n",line);
                   16152:        goto end;
                   16153:       }
                   16154:       printf("agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%lf\n",ageminpar,agemaxpar, bage, fage, estepm, ftolpl);
                   16155:     }
                   16156:     /* ftolpl=6*ftol*1.e5; /\* 6.e-3 make convergences in less than 80 loops for the prevalence limit *\/ */
                   16157:     /*ftolpl=6.e-4;*/ /* 6.e-3 make convergences in less than 80 loops for the prevalence limit */
                   16158:     
1.209     brouard  16159:     /* fscanf(ficpar,"agemin=%lf agemax=%lf bage=%lf fage=%lf estepm=%d ftolpl=%\n",&ageminpar,&agemaxpar, &bage, &fage, &estepm); */
1.126     brouard  16160:     if (estepm==0 || estepm < stepm) estepm=stepm;
                   16161:     if (fage <= 2) {
                   16162:       bage = ageminpar;
                   16163:       fage = agemaxpar;
                   16164:     }
                   16165:     
                   16166:     fprintf(ficres,"# agemin agemax for life expectancy, bage fage (if mle==0 ie no data nor Max likelihood).\n");
1.211     brouard  16167:     fprintf(ficres,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
                   16168:     fprintf(ficparo,"agemin=%.0f agemax=%.0f bage=%.0f fage=%.0f estepm=%d, ftolpl=%e\n",ageminpar,agemaxpar,bage,fage, estepm, ftolpl);
1.220     brouard  16169:                
1.186     brouard  16170:     /* Other stuffs, more or less useful */    
1.254     brouard  16171:     while(fgets(line, MAXLINE, ficpar)) {
                   16172:       /* If line starts with a # it is a comment */
                   16173:       if (line[0] == '#') {
                   16174:        numlinepar++;
                   16175:        fputs(line,stdout);
                   16176:        fputs(line,ficparo);
                   16177:        fputs(line,ficlog);
1.299     brouard  16178:        fputs(line,ficres);
1.254     brouard  16179:        continue;
                   16180:       }else
                   16181:        break;
                   16182:     }
                   16183: 
                   16184:     if((num_filled=sscanf(line,"begin-prev-date=%lf/%lf/%lf end-prev-date=%lf/%lf/%lf mov_average=%d\n",&jprev1, &mprev1,&anprev1,&jprev2, &mprev2,&anprev2,&mobilav)) !=EOF){
                   16185:       
                   16186:       if (num_filled != 7) {
                   16187:        printf("Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   16188:        fprintf(ficlog,"Error: Not 7 (data)parameters in line but %d, for example:begin-prev-date=1/1/1990 end-prev-date=1/6/2004  mov_average=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   16189:        goto end;
                   16190:       }
                   16191:       printf("begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   16192:       fprintf(ficparo,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   16193:       fprintf(ficres,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
                   16194:       fprintf(ficlog,"begin-prev-date=%.lf/%.lf/%.lf end-prev-date=%.lf/%.lf/%.lf mov_average=%d\n",jprev1, mprev1,anprev1,jprev2, mprev2,anprev2,mobilav);
1.126     brouard  16195:     }
1.254     brouard  16196: 
                   16197:     while(fgets(line, MAXLINE, ficpar)) {
                   16198:       /* If line starts with a # it is a comment */
                   16199:       if (line[0] == '#') {
                   16200:        numlinepar++;
                   16201:        fputs(line,stdout);
                   16202:        fputs(line,ficparo);
                   16203:        fputs(line,ficlog);
1.299     brouard  16204:        fputs(line,ficres);
1.254     brouard  16205:        continue;
                   16206:       }else
                   16207:        break;
1.126     brouard  16208:     }
                   16209:     
                   16210:     
                   16211:     dateprev1=anprev1+(mprev1-1)/12.+(jprev1-1)/365.;
                   16212:     dateprev2=anprev2+(mprev2-1)/12.+(jprev2-1)/365.;
                   16213:     
1.254     brouard  16214:     if((num_filled=sscanf(line,"pop_based=%d\n",&popbased)) !=EOF){
                   16215:       if (num_filled != 1) {
                   16216:        printf("Error: Not 1 (data)parameters in line but %d, for example:pop_based=0\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   16217:        fprintf(ficlog,"Error: Not 1 (data)parameters in line but %d, for example: pop_based=1\n, your line=%s . Probably you are running an older format.\n",num_filled,line);
                   16218:        goto end;
                   16219:       }
                   16220:       printf("pop_based=%d\n",popbased);
                   16221:       fprintf(ficlog,"pop_based=%d\n",popbased);
                   16222:       fprintf(ficparo,"pop_based=%d\n",popbased);   
                   16223:       fprintf(ficres,"pop_based=%d\n",popbased);   
                   16224:     }
                   16225:      
1.258     brouard  16226:     /* Results */
1.359   ! brouard  16227:     /* Value of covariate in each resultine will be computed (if product) and sorted according to model rank */
1.332     brouard  16228:     /* It is precov[] because we need the varying age in order to compute the real cov[] of the model equation */  
                   16229:     precov=matrix(1,MAXRESULTLINESPONE,1,NCOVMAX+1);
1.307     brouard  16230:     endishere=0;
1.258     brouard  16231:     nresult=0;
1.308     brouard  16232:     parameterline=0;
1.258     brouard  16233:     do{
                   16234:       if(!fgets(line, MAXLINE, ficpar)){
                   16235:        endishere=1;
1.308     brouard  16236:        parameterline=15;
1.258     brouard  16237:       }else if (line[0] == '#') {
                   16238:        /* If line starts with a # it is a comment */
1.254     brouard  16239:        numlinepar++;
                   16240:        fputs(line,stdout);
                   16241:        fputs(line,ficparo);
                   16242:        fputs(line,ficlog);
1.299     brouard  16243:        fputs(line,ficres);
1.254     brouard  16244:        continue;
1.258     brouard  16245:       }else if(sscanf(line,"prevforecast=%[^\n]\n",modeltemp))
                   16246:        parameterline=11;
1.296     brouard  16247:       else if(sscanf(line,"prevbackcast=%[^\n]\n",modeltemp))
1.258     brouard  16248:        parameterline=12;
1.307     brouard  16249:       else if(sscanf(line,"result:%[^\n]\n",modeltemp)){
1.258     brouard  16250:        parameterline=13;
1.307     brouard  16251:       }
1.258     brouard  16252:       else{
                   16253:        parameterline=14;
1.254     brouard  16254:       }
1.308     brouard  16255:       switch (parameterline){ /* =0 only if only comments */
1.258     brouard  16256:       case 11:
1.296     brouard  16257:        if((num_filled=sscanf(line,"prevforecast=%d starting-proj-date=%lf/%lf/%lf final-proj-date=%lf/%lf/%lf mobil_average=%d\n",&prevfcast,&jproj1,&mproj1,&anproj1,&jproj2,&mproj2,&anproj2,&mobilavproj)) !=EOF && (num_filled == 8)){
                   16258:                  fprintf(ficparo,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
1.258     brouard  16259:          printf("prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   16260:          fprintf(ficlog,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   16261:          fprintf(ficres,"prevforecast=%d starting-proj-date=%.lf/%.lf/%.lf final-proj-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevfcast,jproj1,mproj1,anproj1,jproj2,mproj2,anproj2,mobilavproj);
                   16262:          /* day and month of proj2 are not used but only year anproj2.*/
1.273     brouard  16263:          dateproj1=anproj1+(mproj1-1)/12.+(jproj1-1)/365.;
                   16264:          dateproj2=anproj2+(mproj2-1)/12.+(jproj2-1)/365.;
1.296     brouard  16265:           prvforecast = 1;
                   16266:        } 
                   16267:        else if((num_filled=sscanf(line,"prevforecast=%d yearsfproj=%lf mobil_average=%d\n",&prevfcast,&yrfproj,&mobilavproj)) !=EOF){/* && (num_filled == 3))*/
1.313     brouard  16268:          printf("prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
                   16269:          fprintf(ficlog,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
                   16270:          fprintf(ficres,"prevforecast=%d yearsfproj=%.2lf mobil_average=%d\n",prevfcast,yrfproj,mobilavproj);
1.296     brouard  16271:           prvforecast = 2;
                   16272:        }
                   16273:        else {
                   16274:          printf("Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearsfproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   16275:          fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevforecast=1 starting-proj-date=1/1/1990 final-proj-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevforecast=1 yearproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   16276:          goto end;
1.258     brouard  16277:        }
1.254     brouard  16278:        break;
1.258     brouard  16279:       case 12:
1.296     brouard  16280:        if((num_filled=sscanf(line,"prevbackcast=%d starting-back-date=%lf/%lf/%lf final-back-date=%lf/%lf/%lf mobil_average=%d\n",&prevbcast,&jback1,&mback1,&anback1,&jback2,&mback2,&anback2,&mobilavproj)) !=EOF && (num_filled == 8)){
                   16281:           fprintf(ficparo,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   16282:          printf("prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   16283:          fprintf(ficlog,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   16284:          fprintf(ficres,"prevbackcast=%d starting-back-date=%.lf/%.lf/%.lf final-back-date=%.lf/%.lf/%.lf mobil_average=%d\n",prevbcast,jback1,mback1,anback1,jback2,mback2,anback2,mobilavproj);
                   16285:          /* day and month of back2 are not used but only year anback2.*/
1.273     brouard  16286:          dateback1=anback1+(mback1-1)/12.+(jback1-1)/365.;
                   16287:          dateback2=anback2+(mback2-1)/12.+(jback2-1)/365.;
1.296     brouard  16288:           prvbackcast = 1;
                   16289:        } 
                   16290:        else if((num_filled=sscanf(line,"prevbackcast=%d yearsbproj=%lf mobil_average=%d\n",&prevbcast,&yrbproj,&mobilavproj)) ==3){/* && (num_filled == 3))*/
1.313     brouard  16291:          printf("prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
                   16292:          fprintf(ficlog,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
                   16293:          fprintf(ficres,"prevbackcast=%d yearsbproj=%.2lf mobil_average=%d\n",prevbcast,yrbproj,mobilavproj);
1.296     brouard  16294:           prvbackcast = 2;
                   16295:        }
                   16296:        else {
                   16297:          printf("Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearsbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   16298:          fprintf(ficlog,"Error: Not 8 (data)parameters in line but %d, for example:prevbackcast=1 starting-back-date=1/1/1990 final-back-date=1/1/2000 mobil_average=0\nnor 3 (data)parameters, for example:prevbackcast=1 yearbproj=10 mobil_average=0. Your line=%s . You are running probably an older format.\n, ",num_filled,line);
                   16299:          goto end;
1.258     brouard  16300:        }
1.230     brouard  16301:        break;
1.258     brouard  16302:       case 13:
1.332     brouard  16303:        num_filled=sscanf(line,"result:%[^\n]\n",resultlineori);
1.307     brouard  16304:        nresult++; /* Sum of resultlines */
1.342     brouard  16305:        /* printf("Result %d: result:%s\n",nresult, resultlineori); */
1.332     brouard  16306:        /* removefirstspace(&resultlineori); */
                   16307:        
                   16308:        if(strstr(resultlineori,"v") !=0){
                   16309:          printf("Error. 'v' must be in upper case 'V' result: %s ",resultlineori);
                   16310:          fprintf(ficlog,"Error. 'v' must be in upper case result: %s ",resultlineori);fflush(ficlog);
                   16311:          return 1;
                   16312:        }
                   16313:        trimbb(resultline, resultlineori); /* Suppressing double blank in the resultline */
1.342     brouard  16314:        /* printf("Decoderesult resultline=\"%s\" resultlineori=\"%s\"\n", resultline, resultlineori); */
1.318     brouard  16315:        if(nresult > MAXRESULTLINESPONE-1){
                   16316:          printf("ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
                   16317:          fprintf(ficlog,"ERROR: Current version of IMaCh limits the number of resultlines to %d, you used %d\nYou can use the 'r' parameter file '%s' which uses option mle=0 to get other results. ",MAXRESULTLINESPONE-1,nresult,rfileres);
1.307     brouard  16318:          goto end;
                   16319:        }
1.332     brouard  16320:        
1.310     brouard  16321:        if(!decoderesult(resultline, nresult)){ /* Fills TKresult[nresult] combination and Tresult[nresult][k4+1] combination values */
1.314     brouard  16322:          fprintf(ficparo,"result: %s\n",resultline);
                   16323:          fprintf(ficres,"result: %s\n",resultline);
                   16324:          fprintf(ficlog,"result: %s\n",resultline);
1.310     brouard  16325:        } else
                   16326:          goto end;
1.307     brouard  16327:        break;
                   16328:       case 14:
                   16329:        printf("Error: Unknown command '%s'\n",line);
                   16330:        fprintf(ficlog,"Error: Unknown command '%s'\n",line);
1.314     brouard  16331:        if(line[0] == ' ' || line[0] == '\n'){
                   16332:          printf("It should not be an empty line '%s'\n",line);
                   16333:          fprintf(ficlog,"It should not be an empty line '%s'\n",line);
                   16334:        }         
1.307     brouard  16335:        if(ncovmodel >=2 && nresult==0 ){
                   16336:          printf("ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
                   16337:          fprintf(ficlog,"ERROR: no result lines! It should be at minimum 'result: V2=0 V1=1 or result:.' %s\n",line);
1.258     brouard  16338:        }
1.307     brouard  16339:        /* goto end; */
                   16340:        break;
1.308     brouard  16341:       case 15:
                   16342:        printf("End of resultlines.\n");
                   16343:        fprintf(ficlog,"End of resultlines.\n");
                   16344:        break;
                   16345:       default: /* parameterline =0 */
1.307     brouard  16346:        nresult=1;
                   16347:        decoderesult(".",nresult ); /* No covariate */
1.258     brouard  16348:       } /* End switch parameterline */
                   16349:     }while(endishere==0); /* End do */
1.126     brouard  16350:     
1.230     brouard  16351:     /* freqsummary(fileres, agemin, agemax, s, agev, nlstate, imx,Tvaraff,nbcode, ncodemax,mint,anint); */
1.145     brouard  16352:     /* ,dateprev1,dateprev2,jprev1, mprev1,anprev1,jprev2, mprev2,anprev2); */
1.126     brouard  16353:     
                   16354:     replace_back_to_slash(pathc,pathcd); /* Even gnuplot wants a / */
1.194     brouard  16355:     if(ageminpar == AGEOVERFLOW ||agemaxpar == -AGEOVERFLOW){
1.230     brouard  16356:       printf("Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
1.194     brouard  16357: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   16358: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.230     brouard  16359:       fprintf(ficlog,"Warning! Error in gnuplot file with ageminpar %f or agemaxpar %f overflow\n\
1.194     brouard  16360: This is probably because your parameter file doesn't \n  contain the exact number of lines (or columns) corresponding to your model line.\n\
                   16361: Please run with mle=-1 to get a correct covariance matrix.\n",ageminpar,agemaxpar);
1.220     brouard  16362:     }else{
1.270     brouard  16363:       /* printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,fage, prevfcast, backcast, pathc,p, (int)anproj1-(int)agemin, (int)anback1-(int)agemax+1); */
1.296     brouard  16364:       /* It seems that anprojd which is computed from the mean year at interview which is known yet because of freqsummary */
                   16365:       /* date2dmy(dateintmean,&jintmean,&mintmean,&aintmean); */ /* Done in freqsummary */
                   16366:       if(prvforecast==1){
                   16367:         dateprojd=(jproj1+12*mproj1+365*anproj1)/365;
                   16368:         jprojd=jproj1;
                   16369:         mprojd=mproj1;
                   16370:         anprojd=anproj1;
                   16371:         dateprojf=(jproj2+12*mproj2+365*anproj2)/365;
                   16372:         jprojf=jproj2;
                   16373:         mprojf=mproj2;
                   16374:         anprojf=anproj2;
                   16375:       } else if(prvforecast == 2){
                   16376:         dateprojd=dateintmean;
                   16377:         date2dmy(dateprojd,&jprojd, &mprojd, &anprojd);
                   16378:         dateprojf=dateintmean+yrfproj;
                   16379:         date2dmy(dateprojf,&jprojf, &mprojf, &anprojf);
                   16380:       }
                   16381:       if(prvbackcast==1){
                   16382:         datebackd=(jback1+12*mback1+365*anback1)/365;
                   16383:         jbackd=jback1;
                   16384:         mbackd=mback1;
                   16385:         anbackd=anback1;
                   16386:         datebackf=(jback2+12*mback2+365*anback2)/365;
                   16387:         jbackf=jback2;
                   16388:         mbackf=mback2;
                   16389:         anbackf=anback2;
                   16390:       } else if(prvbackcast == 2){
                   16391:         datebackd=dateintmean;
                   16392:         date2dmy(datebackd,&jbackd, &mbackd, &anbackd);
                   16393:         datebackf=dateintmean-yrbproj;
                   16394:         date2dmy(datebackf,&jbackf, &mbackf, &anbackf);
                   16395:       }
                   16396:       
1.350     brouard  16397:       printinggnuplot(fileresu, optionfilefiname,ageminpar,agemaxpar,bage, fage, prevfcast, prevbcast, pathc,p, (int)anprojd-bage, (int)anbackd-fage);/* HERE valgrind Tvard*/
1.220     brouard  16398:     }
                   16399:     printinghtml(fileresu,title,datafile, firstpass, lastpass, stepm, weightopt, \
1.296     brouard  16400:                 model,imx,jmin,jmax,jmean,rfileres,popforecast,mobilav,prevfcast,mobilavproj,prevbcast, estepm, \
                   16401:                 jprev1,mprev1,anprev1,dateprev1, dateprojd, datebackd,jprev2,mprev2,anprev2,dateprev2,dateprojf, datebackf);
1.220     brouard  16402:                
1.225     brouard  16403:     /*------------ free_vector  -------------*/
                   16404:     /*  chdir(path); */
1.220     brouard  16405:                
1.215     brouard  16406:     /* free_ivector(wav,1,imx); */  /* Moved after last prevalence call */
                   16407:     /* free_imatrix(dh,1,lastpass-firstpass+2,1,imx); */
                   16408:     /* free_imatrix(bh,1,lastpass-firstpass+2,1,imx); */
                   16409:     /* free_imatrix(mw,1,lastpass-firstpass+2,1,imx);    */
1.290     brouard  16410:     free_lvector(num,firstobs,lastobs);
                   16411:     free_vector(agedc,firstobs,lastobs);
1.126     brouard  16412:     /*free_matrix(covar,0,NCOVMAX,1,n);*/
                   16413:     /*free_matrix(covar,1,NCOVMAX,1,n);*/
                   16414:     fclose(ficparo);
                   16415:     fclose(ficres);
1.220     brouard  16416:                
                   16417:                
1.186     brouard  16418:     /* Other results (useful)*/
1.220     brouard  16419:                
                   16420:                
1.126     brouard  16421:     /*--------------- Prevalence limit  (period or stable prevalence) --------------*/
1.180     brouard  16422:     /*#include "prevlim.h"*/  /* Use ficrespl, ficlog */
                   16423:     prlim=matrix(1,nlstate,1,nlstate);
1.332     brouard  16424:     /* Computes the prevalence limit for each combination k of the dummy covariates by calling prevalim(k) */
1.209     brouard  16425:     prevalence_limit(p, prlim,  ageminpar, agemaxpar, ftolpl, &ncvyear);
1.126     brouard  16426:     fclose(ficrespl);
                   16427: 
                   16428:     /*------------- h Pij x at various ages ------------*/
1.180     brouard  16429:     /*#include "hpijx.h"*/
1.332     brouard  16430:     /** h Pij x Probability to be in state j at age x+h being in i at x, for each combination k of dummies in the model line or to nres?*/
                   16431:     /* calls hpxij with combination k */
1.180     brouard  16432:     hPijx(p, bage, fage);
1.145     brouard  16433:     fclose(ficrespij);
1.227     brouard  16434:     
1.220     brouard  16435:     /* ncovcombmax=  pow(2,cptcoveff); */
1.332     brouard  16436:     /*-------------- Variance of one-step probabilities for a combination ij or for nres ?---*/
1.145     brouard  16437:     k=1;
1.126     brouard  16438:     varprob(optionfilefiname, matcov, p, delti, nlstate, bage, fage,k,Tvar,nbcode, ncodemax,strstart);
1.227     brouard  16439:     
1.269     brouard  16440:     /* Prevalence for each covariate combination in probs[age][status][cov] */
                   16441:     probs= ma3x(AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
                   16442:     for(i=AGEINF;i<=AGESUP;i++)
1.219     brouard  16443:       for(j=1;j<=nlstate+ndeath;j++) /* ndeath is useless but a necessity to be compared with mobaverages */
1.225     brouard  16444:        for(k=1;k<=ncovcombmax;k++)
                   16445:          probs[i][j][k]=0.;
1.269     brouard  16446:     prevalence(probs, ageminpar, agemaxpar, s, agev, nlstate, imx, Tvar, nbcode, 
                   16447:               ncodemax, mint, anint, dateprev1, dateprev2, firstpass, lastpass);
1.219     brouard  16448:     if (mobilav!=0 ||mobilavproj !=0 ) {
1.269     brouard  16449:       mobaverages= ma3x(AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
                   16450:       for(i=AGEINF;i<=AGESUP;i++)
1.268     brouard  16451:        for(j=1;j<=nlstate+ndeath;j++)
1.227     brouard  16452:          for(k=1;k<=ncovcombmax;k++)
                   16453:            mobaverages[i][j][k]=0.;
1.219     brouard  16454:       mobaverage=mobaverages;
                   16455:       if (mobilav!=0) {
1.235     brouard  16456:        printf("Movingaveraging observed prevalence\n");
1.258     brouard  16457:        fprintf(ficlog,"Movingaveraging observed prevalence\n");
1.227     brouard  16458:        if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilav)!=0){
                   16459:          fprintf(ficlog," Error in movingaverage mobilav=%d\n",mobilav);
                   16460:          printf(" Error in movingaverage mobilav=%d\n",mobilav);
                   16461:        }
1.269     brouard  16462:       } else if (mobilavproj !=0) {
1.235     brouard  16463:        printf("Movingaveraging projected observed prevalence\n");
1.258     brouard  16464:        fprintf(ficlog,"Movingaveraging projected observed prevalence\n");
1.227     brouard  16465:        if (movingaverage(probs, ageminpar, agemaxpar, mobaverage, mobilavproj)!=0){
                   16466:          fprintf(ficlog," Error in movingaverage mobilavproj=%d\n",mobilavproj);
                   16467:          printf(" Error in movingaverage mobilavproj=%d\n",mobilavproj);
                   16468:        }
1.269     brouard  16469:       }else{
                   16470:        printf("Internal error moving average\n");
                   16471:        fflush(stdout);
                   16472:        exit(1);
1.219     brouard  16473:       }
                   16474:     }/* end if moving average */
1.227     brouard  16475:     
1.126     brouard  16476:     /*---------- Forecasting ------------------*/
1.296     brouard  16477:     if(prevfcast==1){ 
                   16478:       /*   /\*    if(stepm ==1){*\/ */
                   16479:       /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
                   16480:       /*This done previously after freqsummary.*/
                   16481:       /*   dateprojd=(jproj1+12*mproj1+365*anproj1)/365; */
                   16482:       /*   dateprojf=(jproj2+12*mproj2+365*anproj2)/365; */
                   16483:       
                   16484:       /* } else if (prvforecast==2){ */
                   16485:       /*   /\*    if(stepm ==1){*\/ */
                   16486:       /*   /\*  anproj1, mproj1, jproj1 either read explicitly or yrfproj *\/ */
                   16487:       /* } */
                   16488:       /*prevforecast(fileresu, dateintmean, anproj1, mproj1, jproj1, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, anproj2, p, cptcoveff);*/
                   16489:       prevforecast(fileresu,dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2, mobilavproj, mobaverage, bage, fage, firstpass, lastpass, p, cptcoveff);
1.126     brouard  16490:     }
1.269     brouard  16491: 
1.296     brouard  16492:     /* Prevbcasting */
                   16493:     if(prevbcast==1){
1.219     brouard  16494:       ddnewms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);       
                   16495:       ddoldms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);       
                   16496:       ddsavms=matrix(1,nlstate+ndeath,1,nlstate+ndeath);
                   16497: 
                   16498:       /*--------------- Back Prevalence limit  (period or stable prevalence) --------------*/
                   16499: 
                   16500:       bprlim=matrix(1,nlstate,1,nlstate);
1.269     brouard  16501: 
1.219     brouard  16502:       back_prevalence_limit(p, bprlim,  ageminpar, agemaxpar, ftolpl, &ncvyear, dateprev1, dateprev2, firstpass, lastpass, mobilavproj);
                   16503:       fclose(ficresplb);
                   16504: 
1.222     brouard  16505:       hBijx(p, bage, fage, mobaverage);
                   16506:       fclose(ficrespijb);
1.219     brouard  16507: 
1.296     brouard  16508:       /* /\* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, *\/ */
                   16509:       /* /\*                  mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); *\/ */
                   16510:       /* prevbackforecast(fileresu, mobaverage, anback1, mback1, jback1, agemin, agemax, dateprev1, dateprev2, */
                   16511:       /*                      mobilavproj, bage, fage, firstpass, lastpass, anback2, p, cptcoveff); */
                   16512:       prevbackforecast(fileresu, mobaverage, dateintmean, dateprojd, dateprojf, agemin, agemax, dateprev1, dateprev2,
                   16513:                       mobilavproj, bage, fage, firstpass, lastpass, p, cptcoveff);
                   16514: 
                   16515:       
1.269     brouard  16516:       varbprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, bprlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
1.268     brouard  16517: 
                   16518:       
1.269     brouard  16519:       free_matrix(bprlim,1,nlstate,1,nlstate); /*here or after loop ? */
1.219     brouard  16520:       free_matrix(ddnewms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   16521:       free_matrix(ddsavms, 1, nlstate+ndeath, 1, nlstate+ndeath);
                   16522:       free_matrix(ddoldms, 1, nlstate+ndeath, 1, nlstate+ndeath);
1.296     brouard  16523:     }    /* end  Prevbcasting */
1.268     brouard  16524:  
1.186     brouard  16525:  
                   16526:     /* ------ Other prevalence ratios------------ */
1.126     brouard  16527: 
1.215     brouard  16528:     free_ivector(wav,1,imx);
                   16529:     free_imatrix(dh,1,lastpass-firstpass+2,1,imx);
                   16530:     free_imatrix(bh,1,lastpass-firstpass+2,1,imx);
                   16531:     free_imatrix(mw,1,lastpass-firstpass+2,1,imx);   
1.218     brouard  16532:                
                   16533:                
1.127     brouard  16534:     /*---------- Health expectancies, no variances ------------*/
1.218     brouard  16535:                
1.201     brouard  16536:     strcpy(filerese,"E_");
                   16537:     strcat(filerese,fileresu);
1.126     brouard  16538:     if((ficreseij=fopen(filerese,"w"))==NULL) {
                   16539:       printf("Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   16540:       fprintf(ficlog,"Problem with Health Exp. resultfile: %s\n", filerese); exit(0);
                   16541:     }
1.208     brouard  16542:     printf("Computing Health Expectancies: result on file '%s' ...", filerese);fflush(stdout);
                   16543:     fprintf(ficlog,"Computing Health Expectancies: result on file '%s' ...", filerese);fflush(ficlog);
1.238     brouard  16544: 
                   16545:     pstamp(ficreseij);
1.219     brouard  16546:                
1.351     brouard  16547:     /* i1=pow(2,cptcoveff); /\* Number of combination of dummy covariates *\/ */
                   16548:     /* if (cptcovn < 1){i1=1;} */
1.235     brouard  16549:     
1.351     brouard  16550:     for(nres=1; nres <= nresult; nres++){ /* For each resultline */
                   16551:     /* for(k=1; k<=i1;k++){ /\* For any combination of dummy covariates, fixed and varying *\/ */
                   16552:       /* if(i1 != 1 && TKresult[nres]!= k) */
                   16553:       /*       continue; */
1.219     brouard  16554:       fprintf(ficreseij,"\n#****** ");
1.235     brouard  16555:       printf("\n#****** ");
1.351     brouard  16556:       for(j=1;j<=cptcovs;j++){
                   16557:       /* for(j=1;j<=cptcoveff;j++) { */
                   16558:        /* fprintf(ficreseij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   16559:        fprintf(ficreseij," V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   16560:        printf(" V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]);
                   16561:        /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
1.235     brouard  16562:       }
                   16563:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
1.337     brouard  16564:        printf(" V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]); /* TvarsQ[j] gives the name of the jth quantitative (fixed or time v) */
                   16565:        fprintf(ficreseij,"V%d=%lg ",TvarsQ[j], TinvDoQresult[nres][TvarsQ[j]]);
1.219     brouard  16566:       }
                   16567:       fprintf(ficreseij,"******\n");
1.235     brouard  16568:       printf("******\n");
1.219     brouard  16569:       
                   16570:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   16571:       oldm=oldms;savm=savms;
1.330     brouard  16572:       /* printf("HELLO Entering evsij bage=%d fage=%d k=%d estepm=%d nres=%d\n",(int) bage, (int)fage, k, estepm, nres); */
1.235     brouard  16573:       evsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, strstart, nres);  
1.127     brouard  16574:       
1.219     brouard  16575:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
1.127     brouard  16576:     }
                   16577:     fclose(ficreseij);
1.208     brouard  16578:     printf("done evsij\n");fflush(stdout);
                   16579:     fprintf(ficlog,"done evsij\n");fflush(ficlog);
1.269     brouard  16580: 
1.218     brouard  16581:                
1.227     brouard  16582:     /*---------- State-specific expectancies and variances ------------*/
1.336     brouard  16583:     /* Should be moved in a function */                
1.201     brouard  16584:     strcpy(filerest,"T_");
                   16585:     strcat(filerest,fileresu);
1.127     brouard  16586:     if((ficrest=fopen(filerest,"w"))==NULL) {
                   16587:       printf("Problem with total LE resultfile: %s\n", filerest);goto end;
                   16588:       fprintf(ficlog,"Problem with total LE resultfile: %s\n", filerest);goto end;
                   16589:     }
1.208     brouard  16590:     printf("Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(stdout);
                   16591:     fprintf(ficlog,"Computing Total Life expectancies with their standard errors: file '%s' ...\n", filerest); fflush(ficlog);
1.201     brouard  16592:     strcpy(fileresstde,"STDE_");
                   16593:     strcat(fileresstde,fileresu);
1.126     brouard  16594:     if((ficresstdeij=fopen(fileresstde,"w"))==NULL) {
1.227     brouard  16595:       printf("Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
                   16596:       fprintf(ficlog,"Problem with State specific Exp. and std errors resultfile: %s\n", fileresstde); exit(0);
1.126     brouard  16597:     }
1.227     brouard  16598:     printf("  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
                   16599:     fprintf(ficlog,"  Computing State-specific Expectancies and standard errors: result on file '%s' \n", fileresstde);
1.126     brouard  16600: 
1.201     brouard  16601:     strcpy(filerescve,"CVE_");
                   16602:     strcat(filerescve,fileresu);
1.126     brouard  16603:     if((ficrescveij=fopen(filerescve,"w"))==NULL) {
1.227     brouard  16604:       printf("Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
                   16605:       fprintf(ficlog,"Problem with Covar. State-specific Exp. resultfile: %s\n", filerescve); exit(0);
1.126     brouard  16606:     }
1.227     brouard  16607:     printf("    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
                   16608:     fprintf(ficlog,"    Computing Covar. of State-specific Expectancies: result on file '%s' \n", filerescve);
1.126     brouard  16609: 
1.201     brouard  16610:     strcpy(fileresv,"V_");
                   16611:     strcat(fileresv,fileresu);
1.126     brouard  16612:     if((ficresvij=fopen(fileresv,"w"))==NULL) {
                   16613:       printf("Problem with variance resultfile: %s\n", fileresv);exit(0);
                   16614:       fprintf(ficlog,"Problem with variance resultfile: %s\n", fileresv);exit(0);
                   16615:     }
1.227     brouard  16616:     printf("      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(stdout);
                   16617:     fprintf(ficlog,"      Computing Variance-covariance of State-specific Expectancies: file '%s' ... ", fileresv);fflush(ficlog);
1.126     brouard  16618: 
1.235     brouard  16619:     i1=pow(2,cptcoveff); /* Number of combination of dummy covariates */
                   16620:     if (cptcovn < 1){i1=1;}
                   16621:     
1.334     brouard  16622:     for(nres=1; nres <= nresult; nres++) /* For each resultline, find the combination and output results according to the values of dummies and then quanti.  */
                   16623:     for(k=1; k<=i1;k++){ /* For any combination of dummy covariates, fixed and varying. For each nres and each value at position k
                   16624:                          * we know Tresult[nres][result_position]= value of the dummy variable at the result_position in the nres resultline
                   16625:                          * Tvqresult[nres][result_position]= id of the variable at the result_position in the nres resultline 
                   16626:                          * and Tqresult[nres][result_position]= value of the variable at the result_position in the nres resultline */
                   16627:       /* */
                   16628:       if(i1 != 1 && TKresult[nres]!= k) /* TKresult[nres] is the combination of this nres resultline. All the i1 combinations are not output */
1.235     brouard  16629:        continue;
1.359   ! brouard  16630:       printf("\n# model=1+age+%s \n#****** Result for:", model);  /* HERE model is empty */
        !          16631:       fprintf(ficrest,"\n# model=1+age+%s \n#****** Result for:", model);
        !          16632:       fprintf(ficlog,"\n# model=1+age+%s \n#****** Result for:", model);
1.334     brouard  16633:       /* It might not be a good idea to mix dummies and quantitative */
                   16634:       /* for(j=1;j<=cptcoveff;j++){ /\* j=resultpos. Could be a loop on cptcovs: number of single dummy covariate in the result line as well as in the model *\/ */
                   16635:       for(j=1;j<=cptcovs;j++){ /* j=resultpos. Could be a loop on cptcovs: number of single covariate (dummy or quantitative) in the result line as well as in the model */
                   16636:        /* printf("V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); /\* Output by variables in the resultline *\/ */
                   16637:        /* Tvaraff[j] is the name of the dummy variable in position j in the equation model:
                   16638:         * Tvaraff[1]@9={4, 3, 0, 0, 0, 0, 0, 0, 0}, in model=V5+V4+V3+V4*V3+V5*age
                   16639:         * (V5 is quanti) V4 and V3 are dummies
                   16640:         * TnsdVar[4] is the position 1 and TnsdVar[3]=2 in codtabm(k,l)(V4  V3)=V4  V3
                   16641:         *                                                              l=1 l=2
                   16642:         *                                                           k=1  1   1   0   0
                   16643:         *                                                           k=2  2   1   1   0
                   16644:         *                                                           k=3 [1] [2]  0   1
                   16645:         *                                                           k=4  2   2   1   1
                   16646:         * If nres=1 result: V3=1 V4=0 then k=3 and outputs
                   16647:         * If nres=2 result: V4=1 V3=0 then k=2 and outputs
                   16648:         * nres=1 =>k=3 j=1 V4= nbcode[4][codtabm(3,1)=1)=0; j=2  V3= nbcode[3][codtabm(3,2)=2]=1
                   16649:         * nres=2 =>k=2 j=1 V4= nbcode[4][codtabm(2,1)=2)=1; j=2  V3= nbcode[3][codtabm(2,2)=1]=0
                   16650:         */
                   16651:        /* Tvresult[nres][j] Name of the variable at position j in this resultline */
                   16652:        /* Tresult[nres][j] Value of this variable at position j could be a float if quantitative  */
                   16653: /* We give up with the combinations!! */
1.342     brouard  16654:        /* if(debugILK) */
                   16655:        /*   printf("\n j=%d In computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d Fixed[modelresult[nres][j]]=%d\n", j, nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff,Fixed[modelresult[nres][j]]);  /\* end if dummy  or quanti *\/ */
1.334     brouard  16656: 
                   16657:        if(Dummy[modelresult[nres][j]]==0){/* Dummy variable of the variable in position modelresult in the model corresponding to j in resultline  */
1.344     brouard  16658:          /* printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][j]); /\* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  *\/ */ /* TinvDoQresult[nres][Name of the variable] */
                   16659:          printf("V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordered by the covariate values in the resultline  */
                   16660:          fprintf(ficlog,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
                   16661:          fprintf(ficrest,"V%d=%lg ",Tvresult[nres][j],TinvDoQresult[nres][Tvresult[nres][j]]); /* Output of each value for the combination TKresult[nres], ordere by the covariate values in the resultline  */
1.334     brouard  16662:          if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
                   16663:            printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
                   16664:          }else{
                   16665:            printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
                   16666:          }
                   16667:          /* fprintf(ficrest,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   16668:          /* fprintf(ficlog,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   16669:        }else if(Dummy[modelresult[nres][j]]==1){ /* Quanti variable */
                   16670:          /* For each selected (single) quantitative value */
1.337     brouard  16671:          printf(" V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
                   16672:          fprintf(ficlog," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
                   16673:          fprintf(ficrest," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][j]);
1.334     brouard  16674:          if(Fixed[modelresult[nres][j]]==0){ /* Fixed */
                   16675:            printf("fixed ");fprintf(ficlog,"fixed ");fprintf(ficrest,"fixed ");
                   16676:          }else{
                   16677:            printf("varyi ");fprintf(ficlog,"varyi ");fprintf(ficrest,"varyi ");
                   16678:          }
                   16679:        }else{
                   16680:          printf("Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   16681:          fprintf(ficlog,"Error in computing T_ Dummy[modelresult[%d][%d]]=%d, modelresult[%d][%d]=%d cptcovs=%d, cptcoveff=%d \n", nres, j, Dummy[modelresult[nres][j]],nres,j,modelresult[nres][j],cptcovs, cptcoveff);  /* end if dummy  or quanti */
                   16682:          exit(1);
                   16683:        }
1.335     brouard  16684:       } /* End loop for each variable in the resultline */
1.334     brouard  16685:       /* for (j=1; j<= nsq; j++){ /\* For each selected (single) quantitative value *\/ */
                   16686:       /*       printf(" V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /\* Wrong j is not in the equation model *\/ */
                   16687:       /*       fprintf(ficrest," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   16688:       /*       fprintf(ficlog," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); */
                   16689:       /* }      */
1.208     brouard  16690:       fprintf(ficrest,"******\n");
1.227     brouard  16691:       fprintf(ficlog,"******\n");
                   16692:       printf("******\n");
1.208     brouard  16693:       
                   16694:       fprintf(ficresstdeij,"\n#****** ");
                   16695:       fprintf(ficrescveij,"\n#****** ");
1.337     brouard  16696:       /* It could have been: for(j=1;j<=cptcoveff;j++) {printf("V=%d=%lg",Tvresult[nres][cpt],TinvDoQresult[nres][Tvresult[nres][cpt]]);} */
                   16697:       /* But it won't be sorted and depends on how the resultline is ordered */
1.225     brouard  16698:       for(j=1;j<=cptcoveff;j++) {
1.334     brouard  16699:        fprintf(ficresstdeij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
                   16700:        /* fprintf(ficresstdeij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   16701:        /* fprintf(ficrescveij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[Tvaraff[j]])]); */
                   16702:       }
                   16703:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value, TvarsQind gives the position of a quantitative in model equation  */
1.337     brouard  16704:        fprintf(ficresstdeij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
                   16705:        fprintf(ficrescveij," V%d=%lg ",Tvar[TvarsQind[j]],Tqresult[nres][resultmodel[nres][TvarsQind[j]]]);
1.235     brouard  16706:       }        
1.208     brouard  16707:       fprintf(ficresstdeij,"******\n");
                   16708:       fprintf(ficrescveij,"******\n");
                   16709:       
                   16710:       fprintf(ficresvij,"\n#****** ");
1.238     brouard  16711:       /* pstamp(ficresvij); */
1.225     brouard  16712:       for(j=1;j<=cptcoveff;j++) 
1.335     brouard  16713:        fprintf(ficresvij,"V%d=%d ",Tvresult[nres][j],Tresult[nres][j]);
                   16714:        /* fprintf(ficresvij,"V%d=%d ",Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,TnsdVar[TnsdVar[Tvaraff[j]]])]); */
1.235     brouard  16715:       for (j=1; j<= nsq; j++){ /* For each selected (single) quantitative value */
1.332     brouard  16716:        /* fprintf(ficresvij," V%d=%f ",Tvqresult[nres][j],Tqresult[nres][j]); /\* To solve *\/ */
1.337     brouard  16717:        fprintf(ficresvij," V%d=%lg ",Tvqresult[nres][j],Tqresult[nres][resultmodel[nres][j]]); /* Solved */
1.235     brouard  16718:       }        
1.208     brouard  16719:       fprintf(ficresvij,"******\n");
                   16720:       
                   16721:       eij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   16722:       oldm=oldms;savm=savms;
1.235     brouard  16723:       printf(" cvevsij ");
                   16724:       fprintf(ficlog, " cvevsij ");
                   16725:       cvevsij(eij, p, nlstate, stepm, (int) bage, (int)fage, oldm, savm, k, estepm, delti, matcov, strstart, nres);
1.208     brouard  16726:       printf(" end cvevsij \n ");
                   16727:       fprintf(ficlog, " end cvevsij \n ");
                   16728:       
                   16729:       /*
                   16730:        */
                   16731:       /* goto endfree; */
                   16732:       
                   16733:       vareij=ma3x(1,nlstate,1,nlstate,(int) bage, (int) fage);
                   16734:       pstamp(ficrest);
                   16735:       
1.269     brouard  16736:       epj=vector(1,nlstate+1);
1.208     brouard  16737:       for(vpopbased=0; vpopbased <= popbased; vpopbased++){ /* Done for vpopbased=0 and vpopbased=1 if popbased==1*/
1.227     brouard  16738:        oldm=oldms;savm=savms; /* ZZ Segmentation fault */
                   16739:        cptcod= 0; /* To be deleted */
                   16740:        printf("varevsij vpopbased=%d \n",vpopbased);
                   16741:        fprintf(ficlog, "varevsij vpopbased=%d \n",vpopbased);
1.235     brouard  16742:        varevsij(optionfilefiname, vareij, matcov, p, delti, nlstate, stepm, (int) bage, (int) fage, oldm, savm, prlim, ftolpl, &ncvyear, k, estepm, cptcov,cptcod,vpopbased,mobilav, strstart, nres); /* cptcod not initialized Intel */
1.227     brouard  16743:        fprintf(ficrest,"# Total life expectancy with std error and decomposition into time to be expected in each health state\n#  (weighted average of eij where weights are ");
                   16744:        if(vpopbased==1)
                   16745:          fprintf(ficrest,"the age specific prevalence observed (cross-sectionally) in the population i.e cross-sectionally\n in each health state (popbased=1) (mobilav=%d)\n",mobilav);
                   16746:        else
1.288     brouard  16747:          fprintf(ficrest,"the age specific forward period (stable) prevalences in each health state \n");
1.335     brouard  16748:        fprintf(ficrest,"# Age popbased mobilav e.. (std) "); /* Adding covariate values? */
1.227     brouard  16749:        for (i=1;i<=nlstate;i++) fprintf(ficrest,"e.%d (std) ",i);
                   16750:        fprintf(ficrest,"\n");
                   16751:        /* printf("Which p?\n"); for(i=1;i<=npar;i++)printf("p[i=%d]=%lf,",i,p[i]);printf("\n"); */
1.288     brouard  16752:        printf("Computing age specific forward period (stable) prevalences in each health state \n");
                   16753:        fprintf(ficlog,"Computing age specific forward period (stable) prevalences in each health state \n");
1.227     brouard  16754:        for(age=bage; age <=fage ;age++){
1.235     brouard  16755:          prevalim(prlim, nlstate, p, age, oldm, savm, ftolpl, &ncvyear, k, nres); /*ZZ Is it the correct prevalim */
1.227     brouard  16756:          if (vpopbased==1) {
                   16757:            if(mobilav ==0){
                   16758:              for(i=1; i<=nlstate;i++)
                   16759:                prlim[i][i]=probs[(int)age][i][k];
                   16760:            }else{ /* mobilav */ 
                   16761:              for(i=1; i<=nlstate;i++)
                   16762:                prlim[i][i]=mobaverage[(int)age][i][k];
                   16763:            }
                   16764:          }
1.219     brouard  16765:          
1.227     brouard  16766:          fprintf(ficrest," %4.0f %d %d",age, vpopbased, mobilav);
                   16767:          /* fprintf(ficrest," %4.0f %d %d %d %d",age, vpopbased, mobilav,Tvaraff[j],nbcode[Tvaraff[j]][codtabm(k,j)]); */ /* to be done */
                   16768:          /* printf(" age %4.0f ",age); */
                   16769:          for(j=1, epj[nlstate+1]=0.;j <=nlstate;j++){
                   16770:            for(i=1, epj[j]=0.;i <=nlstate;i++) {
                   16771:              epj[j] += prlim[i][i]*eij[i][j][(int)age];
                   16772:              /*ZZZ  printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]);*/
                   16773:              /* printf("%lf %lf ", prlim[i][i] ,eij[i][j][(int)age]); */
                   16774:            }
                   16775:            epj[nlstate+1] +=epj[j];
                   16776:          }
                   16777:          /* printf(" age %4.0f \n",age); */
1.219     brouard  16778:          
1.227     brouard  16779:          for(i=1, vepp=0.;i <=nlstate;i++)
                   16780:            for(j=1;j <=nlstate;j++)
                   16781:              vepp += vareij[i][j][(int)age];
                   16782:          fprintf(ficrest," %7.3f (%7.3f)", epj[nlstate+1],sqrt(vepp));
                   16783:          for(j=1;j <=nlstate;j++){
                   16784:            fprintf(ficrest," %7.3f (%7.3f)", epj[j],sqrt(vareij[j][j][(int)age]));
                   16785:          }
                   16786:          fprintf(ficrest,"\n");
                   16787:        }
1.208     brouard  16788:       } /* End vpopbased */
1.269     brouard  16789:       free_vector(epj,1,nlstate+1);
1.208     brouard  16790:       free_ma3x(eij,1,nlstate,1,nlstate,(int) bage, (int)fage);
                   16791:       free_ma3x(vareij,1,nlstate,1,nlstate,(int) bage, (int)fage);
1.235     brouard  16792:       printf("done selection\n");fflush(stdout);
                   16793:       fprintf(ficlog,"done selection\n");fflush(ficlog);
1.208     brouard  16794:       
1.335     brouard  16795:     } /* End k selection or end covariate selection for nres */
1.227     brouard  16796: 
                   16797:     printf("done State-specific expectancies\n");fflush(stdout);
                   16798:     fprintf(ficlog,"done State-specific expectancies\n");fflush(ficlog);
                   16799: 
1.335     brouard  16800:     /* variance-covariance of forward period prevalence */
1.269     brouard  16801:     varprlim(fileresu, nresult, mobaverage, mobilavproj, bage, fage, prlim, &ncvyear, ftolpl, p, matcov, delti, stepm, cptcoveff);
1.268     brouard  16802: 
1.227     brouard  16803:     
1.290     brouard  16804:     free_vector(weight,firstobs,lastobs);
1.351     brouard  16805:     free_imatrix(Tvardk,0,NCOVMAX,1,2);
1.227     brouard  16806:     free_imatrix(Tvard,1,NCOVMAX,1,2);
1.290     brouard  16807:     free_imatrix(s,1,maxwav+1,firstobs,lastobs);
                   16808:     free_matrix(anint,1,maxwav,firstobs,lastobs); 
                   16809:     free_matrix(mint,1,maxwav,firstobs,lastobs);
                   16810:     free_ivector(cod,firstobs,lastobs);
1.227     brouard  16811:     free_ivector(tab,1,NCOVMAX);
                   16812:     fclose(ficresstdeij);
                   16813:     fclose(ficrescveij);
                   16814:     fclose(ficresvij);
                   16815:     fclose(ficrest);
                   16816:     fclose(ficpar);
                   16817:     
                   16818:     
1.126     brouard  16819:     /*---------- End : free ----------------*/
1.219     brouard  16820:     if (mobilav!=0 ||mobilavproj !=0)
1.269     brouard  16821:       free_ma3x(mobaverages,AGEINF, AGESUP,1,nlstate+ndeath, 1,ncovcombmax); /* We need to have a squared matrix with prevalence of the dead! */
                   16822:     free_ma3x(probs,AGEINF,AGESUP,1,nlstate+ndeath, 1,ncovcombmax);
1.220     brouard  16823:     free_matrix(prlim,1,nlstate,1,nlstate); /*here or after loop ? */
                   16824:     free_matrix(pmmij,1,nlstate+ndeath,1,nlstate+ndeath);
1.126     brouard  16825:   }  /* mle==-3 arrives here for freeing */
1.227     brouard  16826:   /* endfree:*/
1.359   ! brouard  16827:   if(mle!=-3) free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /* Could be elsewhere ?*/
1.227     brouard  16828:   free_matrix(oldms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   16829:   free_matrix(newms, 1,nlstate+ndeath,1,nlstate+ndeath);
                   16830:   free_matrix(savms, 1,nlstate+ndeath,1,nlstate+ndeath);
1.341     brouard  16831:   /* if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,1,ntv+nqtv,firstobs,lastobs); */
                   16832:   if(ntv+nqtv>=1)free_ma3x(cotvar,1,maxwav,ncovcol+nqv+1,ncovcol+nqv+ntv+nqtv,firstobs,lastobs);
1.290     brouard  16833:   if(nqtv>=1)free_ma3x(cotqvar,1,maxwav,1,nqtv,firstobs,lastobs);
                   16834:   if(nqv>=1)free_matrix(coqvar,1,nqv,firstobs,lastobs);
                   16835:   free_matrix(covar,0,NCOVMAX,firstobs,lastobs);
1.227     brouard  16836:   free_matrix(matcov,1,npar,1,npar);
                   16837:   free_matrix(hess,1,npar,1,npar);
                   16838:   /*free_vector(delti,1,npar);*/
                   16839:   free_ma3x(delti3,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel); 
                   16840:   free_matrix(agev,1,maxwav,1,imx);
1.269     brouard  16841:   free_ma3x(paramstart,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
1.227     brouard  16842:   free_ma3x(param,1,nlstate,1, nlstate+ndeath-1,1,ncovmodel);
                   16843:   
                   16844:   free_ivector(ncodemax,1,NCOVMAX);
                   16845:   free_ivector(ncodemaxwundef,1,NCOVMAX);
                   16846:   free_ivector(Dummy,-1,NCOVMAX);
                   16847:   free_ivector(Fixed,-1,NCOVMAX);
1.349     brouard  16848:   free_ivector(DummyV,-1,NCOVMAX);
                   16849:   free_ivector(FixedV,-1,NCOVMAX);
1.227     brouard  16850:   free_ivector(Typevar,-1,NCOVMAX);
                   16851:   free_ivector(Tvar,1,NCOVMAX);
1.234     brouard  16852:   free_ivector(TvarsQ,1,NCOVMAX);
                   16853:   free_ivector(TvarsQind,1,NCOVMAX);
                   16854:   free_ivector(TvarsD,1,NCOVMAX);
1.330     brouard  16855:   free_ivector(TnsdVar,1,NCOVMAX);
1.234     brouard  16856:   free_ivector(TvarsDind,1,NCOVMAX);
1.231     brouard  16857:   free_ivector(TvarFD,1,NCOVMAX);
                   16858:   free_ivector(TvarFDind,1,NCOVMAX);
1.232     brouard  16859:   free_ivector(TvarF,1,NCOVMAX);
                   16860:   free_ivector(TvarFind,1,NCOVMAX);
                   16861:   free_ivector(TvarV,1,NCOVMAX);
                   16862:   free_ivector(TvarVind,1,NCOVMAX);
                   16863:   free_ivector(TvarA,1,NCOVMAX);
                   16864:   free_ivector(TvarAind,1,NCOVMAX);
1.231     brouard  16865:   free_ivector(TvarFQ,1,NCOVMAX);
                   16866:   free_ivector(TvarFQind,1,NCOVMAX);
                   16867:   free_ivector(TvarVD,1,NCOVMAX);
                   16868:   free_ivector(TvarVDind,1,NCOVMAX);
                   16869:   free_ivector(TvarVQ,1,NCOVMAX);
                   16870:   free_ivector(TvarVQind,1,NCOVMAX);
1.349     brouard  16871:   free_ivector(TvarAVVA,1,NCOVMAX);
                   16872:   free_ivector(TvarAVVAind,1,NCOVMAX);
                   16873:   free_ivector(TvarVVA,1,NCOVMAX);
                   16874:   free_ivector(TvarVVAind,1,NCOVMAX);
1.339     brouard  16875:   free_ivector(TvarVV,1,NCOVMAX);
                   16876:   free_ivector(TvarVVind,1,NCOVMAX);
                   16877:   
1.230     brouard  16878:   free_ivector(Tvarsel,1,NCOVMAX);
                   16879:   free_vector(Tvalsel,1,NCOVMAX);
1.227     brouard  16880:   free_ivector(Tposprod,1,NCOVMAX);
                   16881:   free_ivector(Tprod,1,NCOVMAX);
                   16882:   free_ivector(Tvaraff,1,NCOVMAX);
1.338     brouard  16883:   free_ivector(invalidvarcomb,0,ncovcombmax);
1.227     brouard  16884:   free_ivector(Tage,1,NCOVMAX);
                   16885:   free_ivector(Tmodelind,1,NCOVMAX);
1.228     brouard  16886:   free_ivector(TmodelInvind,1,NCOVMAX);
                   16887:   free_ivector(TmodelInvQind,1,NCOVMAX);
1.332     brouard  16888: 
1.359   ! brouard  16889:   /* free_matrix(precov, 1,MAXRESULTLINESPONE,1,NCOVMAX+1); /\* Could be elsewhere ?*\/ */
1.332     brouard  16890: 
1.227     brouard  16891:   free_imatrix(nbcode,0,NCOVMAX,0,NCOVMAX);
                   16892:   /* free_imatrix(codtab,1,100,1,10); */
1.126     brouard  16893:   fflush(fichtm);
                   16894:   fflush(ficgp);
                   16895:   
1.227     brouard  16896:   
1.126     brouard  16897:   if((nberr >0) || (nbwarn>0)){
1.216     brouard  16898:     printf("End of Imach with %d errors and/or %d warnings. Please look at the log file for details.\n",nberr,nbwarn);
                   16899:     fprintf(ficlog,"End of Imach with %d errors and/or warnings %d. Please look at the log file for details.\n",nberr,nbwarn);
1.126     brouard  16900:   }else{
                   16901:     printf("End of Imach\n");
                   16902:     fprintf(ficlog,"End of Imach\n");
                   16903:   }
                   16904:   printf("See log file on %s\n",filelog);
                   16905:   /*  gettimeofday(&end_time, (struct timezone*)0);*/  /* after time */
1.157     brouard  16906:   /*(void) gettimeofday(&end_time,&tzp);*/
                   16907:   rend_time = time(NULL);  
                   16908:   end_time = *localtime(&rend_time);
                   16909:   /* tml = *localtime(&end_time.tm_sec); */
                   16910:   strcpy(strtend,asctime(&end_time));
1.126     brouard  16911:   printf("Local time at start %s\nLocal time at end   %s",strstart, strtend); 
                   16912:   fprintf(ficlog,"Local time at start %s\nLocal time at end   %s\n",strstart, strtend); 
1.157     brouard  16913:   printf("Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
1.227     brouard  16914:   
1.157     brouard  16915:   printf("Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
                   16916:   fprintf(ficlog,"Total time used %s\n", asc_diff_time(rend_time -rstart_time,tmpout));
                   16917:   fprintf(ficlog,"Total time was %.0lf Sec.\n", difftime(rend_time,rstart_time));
1.126     brouard  16918:   /*  printf("Total time was %d uSec.\n", total_usecs);*/
                   16919: /*   if(fileappend(fichtm,optionfilehtm)){ */
                   16920:   fprintf(fichtm,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   16921:   fclose(fichtm);
                   16922:   fprintf(fichtmcov,"<br>Local time at start %s<br>Local time at end   %s<br>\n</body></html>",strstart, strtend);
                   16923:   fclose(fichtmcov);
                   16924:   fclose(ficgp);
                   16925:   fclose(ficlog);
                   16926:   /*------ End -----------*/
1.227     brouard  16927:   
1.281     brouard  16928: 
                   16929: /* Executes gnuplot */
1.227     brouard  16930:   
                   16931:   printf("Before Current directory %s!\n",pathcd);
1.184     brouard  16932: #ifdef WIN32
1.227     brouard  16933:   if (_chdir(pathcd) != 0)
                   16934:     printf("Can't move to directory %s!\n",path);
                   16935:   if(_getcwd(pathcd,MAXLINE) > 0)
1.184     brouard  16936: #else
1.227     brouard  16937:     if(chdir(pathcd) != 0)
                   16938:       printf("Can't move to directory %s!\n", path);
                   16939:   if (getcwd(pathcd, MAXLINE) > 0)
1.184     brouard  16940: #endif 
1.126     brouard  16941:     printf("Current directory %s!\n",pathcd);
                   16942:   /*strcat(plotcmd,CHARSEPARATOR);*/
                   16943:   sprintf(plotcmd,"gnuplot");
1.157     brouard  16944: #ifdef _WIN32
1.126     brouard  16945:   sprintf(plotcmd,"\"%sgnuplot.exe\"",pathimach);
                   16946: #endif
                   16947:   if(!stat(plotcmd,&info)){
1.158     brouard  16948:     printf("Error or gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  16949:     if(!stat(getenv("GNUPLOTBIN"),&info)){
1.158     brouard  16950:       printf("Error or gnuplot program not found: '%s' Environment GNUPLOTBIN not set.\n",plotcmd);fflush(stdout);
1.126     brouard  16951:     }else
                   16952:       strcpy(pplotcmd,plotcmd);
1.157     brouard  16953: #ifdef __unix
1.126     brouard  16954:     strcpy(plotcmd,GNUPLOTPROGRAM);
                   16955:     if(!stat(plotcmd,&info)){
1.158     brouard  16956:       printf("Error gnuplot program not found: '%s'\n",plotcmd);fflush(stdout);
1.126     brouard  16957:     }else
                   16958:       strcpy(pplotcmd,plotcmd);
                   16959: #endif
                   16960:   }else
                   16961:     strcpy(pplotcmd,plotcmd);
                   16962:   
                   16963:   sprintf(plotcmd,"%s %s",pplotcmd, optionfilegnuplot);
1.158     brouard  16964:   printf("Starting graphs with: '%s'\n",plotcmd);fflush(stdout);
1.292     brouard  16965:   strcpy(pplotcmd,plotcmd);
1.227     brouard  16966:   
1.126     brouard  16967:   if((outcmd=system(plotcmd)) != 0){
1.292     brouard  16968:     printf("Error in gnuplot, command might not be in your path: '%s', err=%d\n", plotcmd, outcmd);
1.154     brouard  16969:     printf("\n Trying if gnuplot resides on the same directory that IMaCh\n");
1.152     brouard  16970:     sprintf(plotcmd,"%sgnuplot %s", pathimach, optionfilegnuplot);
1.292     brouard  16971:     if((outcmd=system(plotcmd)) != 0){
1.153     brouard  16972:       printf("\n Still a problem with gnuplot command %s, err=%d\n", plotcmd, outcmd);
1.292     brouard  16973:       strcpy(plotcmd,pplotcmd);
                   16974:     }
1.126     brouard  16975:   }
1.158     brouard  16976:   printf(" Successful, please wait...");
1.126     brouard  16977:   while (z[0] != 'q') {
                   16978:     /* chdir(path); */
1.154     brouard  16979:     printf("\nType e to edit results with your browser, g to graph again and q for exit: ");
1.126     brouard  16980:     scanf("%s",z);
                   16981: /*     if (z[0] == 'c') system("./imach"); */
                   16982:     if (z[0] == 'e') {
1.158     brouard  16983: #ifdef __APPLE__
1.152     brouard  16984:       sprintf(pplotcmd, "open %s", optionfilehtm);
1.157     brouard  16985: #elif __linux
                   16986:       sprintf(pplotcmd, "xdg-open %s", optionfilehtm);
1.153     brouard  16987: #else
1.152     brouard  16988:       sprintf(pplotcmd, "%s", optionfilehtm);
1.153     brouard  16989: #endif
                   16990:       printf("Starting browser with: %s",pplotcmd);fflush(stdout);
                   16991:       system(pplotcmd);
1.126     brouard  16992:     }
                   16993:     else if (z[0] == 'g') system(plotcmd);
                   16994:     else if (z[0] == 'q') exit(0);
                   16995:   }
1.227     brouard  16996: end:
1.126     brouard  16997:   while (z[0] != 'q') {
1.195     brouard  16998:     printf("\nType  q for exiting: "); fflush(stdout);
1.126     brouard  16999:     scanf("%s",z);
                   17000:   }
1.283     brouard  17001:   printf("End\n");
1.282     brouard  17002:   exit(0);
1.126     brouard  17003: }

FreeBSD-CVSweb <freebsd-cvsweb@FreeBSD.org>